blob: 6065d029c3bc191f2a8324b20f5d2f55d1891ab0 [file] [log] [blame]
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005#if V8_TARGET_ARCH_PPC
6
Ben Murdochda12d292016-06-02 14:46:10 +01007#include "src/code-stubs.h"
8#include "src/api-arguments.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -04009#include "src/base/bits.h"
10#include "src/bootstrapper.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040011#include "src/codegen.h"
12#include "src/ic/handler-compiler.h"
13#include "src/ic/ic.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000014#include "src/ic/stub-cache.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040015#include "src/isolate.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000016#include "src/ppc/code-stubs-ppc.h"
17#include "src/regexp/jsregexp.h"
18#include "src/regexp/regexp-macro-assembler.h"
Emily Bernierd0a1eb72015-03-24 16:35:39 -040019#include "src/runtime/runtime.h"
20
21namespace v8 {
22namespace internal {
23
Ben Murdoch61f157c2016-09-16 13:49:30 +010024#define __ ACCESS_MASM(masm)
Emily Bernierd0a1eb72015-03-24 16:35:39 -040025
Ben Murdoch61f157c2016-09-16 13:49:30 +010026void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
27 __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
28 __ StorePX(r4, MemOperand(sp, r0));
29 __ push(r4);
30 __ push(r5);
31 __ addi(r3, r3, Operand(3));
32 __ TailCallRuntime(Runtime::kNewArray);
Emily Bernierd0a1eb72015-03-24 16:35:39 -040033}
34
Ben Murdochda12d292016-06-02 14:46:10 +010035void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
36 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
37 descriptor->Initialize(r3, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
38}
Emily Bernierd0a1eb72015-03-24 16:35:39 -040039
Ben Murdoch61f157c2016-09-16 13:49:30 +010040void FastFunctionBindStub::InitializeDescriptor(
Emily Bernierd0a1eb72015-03-24 16:35:39 -040041 CodeStubDescriptor* descriptor) {
Ben Murdoch61f157c2016-09-16 13:49:30 +010042 Address deopt_handler = Runtime::FunctionForId(Runtime::kFunctionBind)->entry;
43 descriptor->Initialize(r3, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -040044}
45
Emily Bernierd0a1eb72015-03-24 16:35:39 -040046static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Ben Murdoch097c5b22016-05-18 11:27:45 +010047 Condition cond);
Emily Bernierd0a1eb72015-03-24 16:35:39 -040048static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
49 Register rhs, Label* lhs_not_nan,
50 Label* slow, bool strict);
51static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
52 Register rhs);
53
54
55void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
56 ExternalReference miss) {
57 // Update the static counter each time a new code stub is generated.
58 isolate()->counters()->code_stubs()->Increment();
59
60 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000061 int param_count = descriptor.GetRegisterParameterCount();
Emily Bernierd0a1eb72015-03-24 16:35:39 -040062 {
63 // Call the runtime system in a fresh internal frame.
64 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
65 DCHECK(param_count == 0 ||
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000066 r3.is(descriptor.GetRegisterParameter(param_count - 1)));
Emily Bernierd0a1eb72015-03-24 16:35:39 -040067 // Push arguments
68 for (int i = 0; i < param_count; ++i) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000069 __ push(descriptor.GetRegisterParameter(i));
Emily Bernierd0a1eb72015-03-24 16:35:39 -040070 }
71 __ CallExternalReference(miss, param_count);
72 }
73
74 __ Ret();
75}
76
77
78void DoubleToIStub::Generate(MacroAssembler* masm) {
79 Label out_of_range, only_low, negate, done, fastpath_done;
80 Register input_reg = source();
81 Register result_reg = destination();
82 DCHECK(is_truncating());
83
84 int double_offset = offset();
85
86 // Immediate values for this stub fit in instructions, so it's safe to use ip.
87 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
88 Register scratch_low =
89 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
90 Register scratch_high =
91 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
92 DoubleRegister double_scratch = kScratchDoubleReg;
93
94 __ push(scratch);
95 // Account for saved regs if input is sp.
96 if (input_reg.is(sp)) double_offset += kPointerSize;
97
98 if (!skip_fastpath()) {
99 // Load double input.
100 __ lfd(double_scratch, MemOperand(input_reg, double_offset));
101
102 // Do fast-path convert from double to int.
103 __ ConvertDoubleToInt64(double_scratch,
104#if !V8_TARGET_ARCH_PPC64
105 scratch,
106#endif
107 result_reg, d0);
108
109// Test for overflow
110#if V8_TARGET_ARCH_PPC64
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000111 __ TestIfInt32(result_reg, r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400112#else
113 __ TestIfInt32(scratch, result_reg, r0);
114#endif
115 __ beq(&fastpath_done);
116 }
117
118 __ Push(scratch_high, scratch_low);
119 // Account for saved regs if input is sp.
120 if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
121
122 __ lwz(scratch_high,
123 MemOperand(input_reg, double_offset + Register::kExponentOffset));
124 __ lwz(scratch_low,
125 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
126
127 __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
128 // Load scratch with exponent - 1. This is faster than loading
129 // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
130 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
131 __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
132 // If exponent is greater than or equal to 84, the 32 less significant
133 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
134 // the result is 0.
135 // Compare exponent with 84 (compare exponent - 1 with 83).
136 __ cmpi(scratch, Operand(83));
137 __ bge(&out_of_range);
138
139 // If we reach this code, 31 <= exponent <= 83.
140 // So, we don't have to handle cases where 0 <= exponent <= 20 for
141 // which we would need to shift right the high part of the mantissa.
142 // Scratch contains exponent - 1.
143 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
144 __ subfic(scratch, scratch, Operand(51));
145 __ cmpi(scratch, Operand::Zero());
146 __ ble(&only_low);
147 // 21 <= exponent <= 51, shift scratch_low and scratch_high
148 // to generate the result.
149 __ srw(scratch_low, scratch_low, scratch);
150 // Scratch contains: 52 - exponent.
151 // We needs: exponent - 20.
152 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
153 __ subfic(scratch, scratch, Operand(32));
154 __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
155 // Set the implicit 1 before the mantissa part in scratch_high.
156 STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
157 __ oris(result_reg, result_reg,
158 Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16)));
159 __ slw(r0, result_reg, scratch);
160 __ orx(result_reg, scratch_low, r0);
161 __ b(&negate);
162
163 __ bind(&out_of_range);
164 __ mov(result_reg, Operand::Zero());
165 __ b(&done);
166
167 __ bind(&only_low);
168 // 52 <= exponent <= 83, shift only scratch_low.
169 // On entry, scratch contains: 52 - exponent.
170 __ neg(scratch, scratch);
171 __ slw(result_reg, scratch_low, scratch);
172
173 __ bind(&negate);
174 // If input was positive, scratch_high ASR 31 equals 0 and
175 // scratch_high LSR 31 equals zero.
176 // New result = (result eor 0) + 0 = result.
177 // If the input was negative, we have to negate the result.
178 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
179 // New result = (result eor 0xffffffff) + 1 = 0 - result.
180 __ srawi(r0, scratch_high, 31);
181#if V8_TARGET_ARCH_PPC64
182 __ srdi(r0, r0, Operand(32));
183#endif
184 __ xor_(result_reg, result_reg, r0);
185 __ srwi(r0, scratch_high, Operand(31));
186 __ add(result_reg, result_reg, r0);
187
188 __ bind(&done);
189 __ Pop(scratch_high, scratch_low);
190
191 __ bind(&fastpath_done);
192 __ pop(scratch);
193
194 __ Ret();
195}
196
197
198// Handle the case where the lhs and rhs are the same object.
199// Equality is almost reflexive (everything but NaN), so this is a test
200// for "identity and not NaN".
201static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Ben Murdoch097c5b22016-05-18 11:27:45 +0100202 Condition cond) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400203 Label not_identical;
204 Label heap_number, return_equal;
205 __ cmp(r3, r4);
206 __ bne(&not_identical);
207
208 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
209 // so we do the second best thing - test it ourselves.
210 // They are both equal and they are not both Smis so both of them are not
211 // Smis. If it's not a heap number, then return equal.
212 if (cond == lt || cond == gt) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000213 // Call runtime on identical JSObjects.
214 __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400215 __ bge(slow);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000216 // Call runtime on identical symbols since we need to throw a TypeError.
217 __ cmpi(r7, Operand(SYMBOL_TYPE));
218 __ beq(slow);
219 // Call runtime on identical SIMD values since we must throw a TypeError.
220 __ cmpi(r7, Operand(SIMD128_VALUE_TYPE));
221 __ beq(slow);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400222 } else {
223 __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE);
224 __ beq(&heap_number);
225 // Comparing JS objects with <=, >= is complicated.
226 if (cond != eq) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000227 __ cmpi(r7, Operand(FIRST_JS_RECEIVER_TYPE));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400228 __ bge(slow);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000229 // Call runtime on identical symbols since we need to throw a TypeError.
230 __ cmpi(r7, Operand(SYMBOL_TYPE));
231 __ beq(slow);
232 // Call runtime on identical SIMD values since we must throw a TypeError.
233 __ cmpi(r7, Operand(SIMD128_VALUE_TYPE));
234 __ beq(slow);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400235 // Normally here we fall through to return_equal, but undefined is
236 // special: (undefined == undefined) == true, but
237 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
238 if (cond == le || cond == ge) {
239 __ cmpi(r7, Operand(ODDBALL_TYPE));
240 __ bne(&return_equal);
241 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
242 __ cmp(r3, r5);
243 __ bne(&return_equal);
244 if (cond == le) {
245 // undefined <= undefined should fail.
246 __ li(r3, Operand(GREATER));
247 } else {
248 // undefined >= undefined should fail.
249 __ li(r3, Operand(LESS));
250 }
251 __ Ret();
252 }
253 }
254 }
255
256 __ bind(&return_equal);
257 if (cond == lt) {
258 __ li(r3, Operand(GREATER)); // Things aren't less than themselves.
259 } else if (cond == gt) {
260 __ li(r3, Operand(LESS)); // Things aren't greater than themselves.
261 } else {
262 __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
263 }
264 __ Ret();
265
266 // For less and greater we don't have to check for NaN since the result of
267 // x < x is false regardless. For the others here is some code to check
268 // for NaN.
269 if (cond != lt && cond != gt) {
270 __ bind(&heap_number);
271 // It is a heap number, so return non-equal if it's NaN and equal if it's
272 // not NaN.
273
274 // The representation of NaN values has all exponent bits (52..62) set,
275 // and not all mantissa bits (0..51) clear.
276 // Read top bits of double representation (second word of value).
277 __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
278 // Test that exponent bits are all set.
279 STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
280 __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask);
281 __ cmpli(r6, Operand(0x7ff));
282 __ bne(&return_equal);
283
284 // Shift out flag and all exponent bits, retaining only mantissa.
285 __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord));
286 // Or with all low-bits of mantissa.
287 __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
288 __ orx(r3, r6, r5);
289 __ cmpi(r3, Operand::Zero());
290 // For equal we already have the right value in r3: Return zero (equal)
291 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
292 // not (it's a NaN). For <= and >= we need to load r0 with the failing
293 // value if it's a NaN.
294 if (cond != eq) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000295 if (CpuFeatures::IsSupported(ISELECT)) {
296 __ li(r4, Operand((cond == le) ? GREATER : LESS));
297 __ isel(eq, r3, r3, r4);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400298 } else {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000299 // All-zero means Infinity means equal.
300 __ Ret(eq);
301 if (cond == le) {
302 __ li(r3, Operand(GREATER)); // NaN <= NaN should fail.
303 } else {
304 __ li(r3, Operand(LESS)); // NaN >= NaN should fail.
305 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400306 }
307 }
308 __ Ret();
309 }
310 // No fall through here.
311
312 __ bind(&not_identical);
313}
314
315
316// See comment at call site.
317static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
318 Register rhs, Label* lhs_not_nan,
319 Label* slow, bool strict) {
320 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
321
322 Label rhs_is_smi;
323 __ JumpIfSmi(rhs, &rhs_is_smi);
324
325 // Lhs is a Smi. Check whether the rhs is a heap number.
326 __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE);
327 if (strict) {
328 // If rhs is not a number and lhs is a Smi then strict equality cannot
329 // succeed. Return non-equal
330 // If rhs is r3 then there is already a non zero value in it.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400331 if (!rhs.is(r3)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000332 Label skip;
333 __ beq(&skip);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400334 __ mov(r3, Operand(NOT_EQUAL));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000335 __ Ret();
336 __ bind(&skip);
337 } else {
338 __ Ret(ne);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400339 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400340 } else {
341 // Smi compared non-strictly with a non-Smi non-heap-number. Call
342 // the runtime.
343 __ bne(slow);
344 }
345
346 // Lhs is a smi, rhs is a number.
347 // Convert lhs to a double in d7.
348 __ SmiToDouble(d7, lhs);
349 // Load the double from rhs, tagged HeapNumber r3, to d6.
350 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
351
352 // We now have both loaded as doubles but we can skip the lhs nan check
353 // since it's a smi.
354 __ b(lhs_not_nan);
355
356 __ bind(&rhs_is_smi);
357 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
358 __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE);
359 if (strict) {
360 // If lhs is not a number and rhs is a smi then strict equality cannot
361 // succeed. Return non-equal.
362 // If lhs is r3 then there is already a non zero value in it.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400363 if (!lhs.is(r3)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000364 Label skip;
365 __ beq(&skip);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400366 __ mov(r3, Operand(NOT_EQUAL));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000367 __ Ret();
368 __ bind(&skip);
369 } else {
370 __ Ret(ne);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400371 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400372 } else {
373 // Smi compared non-strictly with a non-smi non-heap-number. Call
374 // the runtime.
375 __ bne(slow);
376 }
377
378 // Rhs is a smi, lhs is a heap number.
379 // Load the double from lhs, tagged HeapNumber r4, to d7.
380 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
381 // Convert rhs to a double in d6.
382 __ SmiToDouble(d6, rhs);
383 // Fall through to both_loaded_as_doubles.
384}
385
386
387// See comment at call site.
388static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
389 Register rhs) {
390 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
391
392 // If either operand is a JS object or an oddball value, then they are
393 // not equal since their pointers are different.
394 // There is no test for undetectability in strict equality.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000395 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400396 Label first_non_object;
397 // Get the type of the first operand into r5 and compare it with
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000398 // FIRST_JS_RECEIVER_TYPE.
399 __ CompareObjectType(rhs, r5, r5, FIRST_JS_RECEIVER_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400400 __ blt(&first_non_object);
401
402 // Return non-zero (r3 is not zero)
403 Label return_not_equal;
404 __ bind(&return_not_equal);
405 __ Ret();
406
407 __ bind(&first_non_object);
408 // Check for oddballs: true, false, null, undefined.
409 __ cmpi(r5, Operand(ODDBALL_TYPE));
410 __ beq(&return_not_equal);
411
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000412 __ CompareObjectType(lhs, r6, r6, FIRST_JS_RECEIVER_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400413 __ bge(&return_not_equal);
414
415 // Check for oddballs: true, false, null, undefined.
416 __ cmpi(r6, Operand(ODDBALL_TYPE));
417 __ beq(&return_not_equal);
418
419 // Now that we have the types we might as well check for
420 // internalized-internalized.
421 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
422 __ orx(r5, r5, r6);
423 __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask));
424 __ beq(&return_not_equal, cr0);
425}
426
427
428// See comment at call site.
429static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
430 Register rhs,
431 Label* both_loaded_as_doubles,
432 Label* not_heap_numbers, Label* slow) {
433 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
434
435 __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE);
436 __ bne(not_heap_numbers);
437 __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
438 __ cmp(r5, r6);
439 __ bne(slow); // First was a heap number, second wasn't. Go slow case.
440
441 // Both are heap numbers. Load them up then jump to the code we have
442 // for that.
443 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
444 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
445
446 __ b(both_loaded_as_doubles);
447}
448
Ben Murdochda12d292016-06-02 14:46:10 +0100449// Fast negative check for internalized-to-internalized equality or receiver
450// equality. Also handles the undetectable receiver to null/undefined
451// comparison.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400452static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
453 Register lhs, Register rhs,
454 Label* possible_strings,
Ben Murdoch097c5b22016-05-18 11:27:45 +0100455 Label* runtime_call) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400456 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
457
458 // r5 is object type of rhs.
Ben Murdochda12d292016-06-02 14:46:10 +0100459 Label object_test, return_equal, return_unequal, undetectable;
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400460 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
461 __ andi(r0, r5, Operand(kIsNotStringMask));
462 __ bne(&object_test, cr0);
463 __ andi(r0, r5, Operand(kIsNotInternalizedMask));
464 __ bne(possible_strings, cr0);
465 __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100466 __ bge(runtime_call);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400467 __ andi(r0, r6, Operand(kIsNotInternalizedMask));
468 __ bne(possible_strings, cr0);
469
Ben Murdoch097c5b22016-05-18 11:27:45 +0100470 // Both are internalized. We already checked they weren't the same pointer so
471 // they are not equal. Return non-equal by returning the non-zero object
472 // pointer in r3.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400473 __ Ret();
474
475 __ bind(&object_test);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100476 __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400477 __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +0100478 __ lbz(r7, FieldMemOperand(r5, Map::kBitFieldOffset));
479 __ lbz(r8, FieldMemOperand(r6, Map::kBitFieldOffset));
480 __ andi(r0, r7, Operand(1 << Map::kIsUndetectable));
481 __ bne(&undetectable, cr0);
482 __ andi(r0, r8, Operand(1 << Map::kIsUndetectable));
483 __ bne(&return_unequal, cr0);
484
485 __ CompareInstanceType(r5, r5, FIRST_JS_RECEIVER_TYPE);
486 __ blt(runtime_call);
487 __ CompareInstanceType(r6, r6, FIRST_JS_RECEIVER_TYPE);
488 __ blt(runtime_call);
489
490 __ bind(&return_unequal);
491 // Return non-equal by returning the non-zero object pointer in r3.
492 __ Ret();
493
494 __ bind(&undetectable);
495 __ andi(r0, r8, Operand(1 << Map::kIsUndetectable));
496 __ beq(&return_unequal, cr0);
Ben Murdochda12d292016-06-02 14:46:10 +0100497
498 // If both sides are JSReceivers, then the result is false according to
499 // the HTML specification, which says that only comparisons with null or
500 // undefined are affected by special casing for document.all.
501 __ CompareInstanceType(r5, r5, ODDBALL_TYPE);
502 __ beq(&return_equal);
503 __ CompareInstanceType(r6, r6, ODDBALL_TYPE);
504 __ bne(&return_unequal);
505
506 __ bind(&return_equal);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100507 __ li(r3, Operand(EQUAL));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400508 __ Ret();
509}
510
511
512static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
513 Register scratch,
514 CompareICState::State expected,
515 Label* fail) {
516 Label ok;
517 if (expected == CompareICState::SMI) {
518 __ JumpIfNotSmi(input, fail);
519 } else if (expected == CompareICState::NUMBER) {
520 __ JumpIfSmi(input, &ok);
521 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
522 DONT_DO_SMI_CHECK);
523 }
524 // We could be strict about internalized/non-internalized here, but as long as
525 // hydrogen doesn't care, the stub doesn't have to care either.
526 __ bind(&ok);
527}
528
529
530// On entry r4 and r5 are the values to be compared.
531// On exit r3 is 0, positive or negative to indicate the result of
532// the comparison.
533void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
534 Register lhs = r4;
535 Register rhs = r3;
536 Condition cc = GetCondition();
537
538 Label miss;
539 CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss);
540 CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss);
541
542 Label slow; // Call builtin.
543 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
544
545 Label not_two_smis, smi_done;
546 __ orx(r5, r4, r3);
547 __ JumpIfNotSmi(r5, &not_two_smis);
548 __ SmiUntag(r4);
549 __ SmiUntag(r3);
550 __ sub(r3, r4, r3);
551 __ Ret();
552 __ bind(&not_two_smis);
553
554 // NOTICE! This code is only reached after a smi-fast-case check, so
555 // it is certain that at least one operand isn't a smi.
556
557 // Handle the case where the objects are identical. Either returns the answer
558 // or goes to slow. Only falls through if the objects were not identical.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100559 EmitIdenticalObjectComparison(masm, &slow, cc);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400560
561 // If either is a Smi (we know that not both are), then they can only
562 // be strictly equal if the other is a HeapNumber.
563 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000564 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400565 __ and_(r5, lhs, rhs);
566 __ JumpIfNotSmi(r5, &not_smis);
567 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
568 // 1) Return the answer.
569 // 2) Go to slow.
570 // 3) Fall through to both_loaded_as_doubles.
571 // 4) Jump to lhs_not_nan.
572 // In cases 3 and 4 we have found out we were dealing with a number-number
573 // comparison. The double values of the numbers have been loaded
574 // into d7 and d6.
575 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
576
577 __ bind(&both_loaded_as_doubles);
578 // The arguments have been converted to doubles and stored in d6 and d7
579 __ bind(&lhs_not_nan);
580 Label no_nan;
581 __ fcmpu(d7, d6);
582
583 Label nan, equal, less_than;
584 __ bunordered(&nan);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000585 if (CpuFeatures::IsSupported(ISELECT)) {
586 DCHECK(EQUAL == 0);
587 __ li(r4, Operand(GREATER));
588 __ li(r5, Operand(LESS));
589 __ isel(eq, r3, r0, r4);
590 __ isel(lt, r3, r5, r3);
591 __ Ret();
592 } else {
593 __ beq(&equal);
594 __ blt(&less_than);
595 __ li(r3, Operand(GREATER));
596 __ Ret();
597 __ bind(&equal);
598 __ li(r3, Operand(EQUAL));
599 __ Ret();
600 __ bind(&less_than);
601 __ li(r3, Operand(LESS));
602 __ Ret();
603 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400604
605 __ bind(&nan);
606 // If one of the sides was a NaN then the v flag is set. Load r3 with
607 // whatever it takes to make the comparison fail, since comparisons with NaN
608 // always fail.
609 if (cc == lt || cc == le) {
610 __ li(r3, Operand(GREATER));
611 } else {
612 __ li(r3, Operand(LESS));
613 }
614 __ Ret();
615
616 __ bind(&not_smis);
617 // At this point we know we are dealing with two different objects,
618 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
619 if (strict()) {
620 // This returns non-equal for some object types, or falls through if it
621 // was not lucky.
622 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
623 }
624
625 Label check_for_internalized_strings;
626 Label flat_string_check;
627 // Check for heap-number-heap-number comparison. Can jump to slow case,
628 // or load both doubles into r3, r4, r5, r6 and jump to the code that handles
629 // that case. If the inputs are not doubles then jumps to
630 // check_for_internalized_strings.
631 // In this case r5 will contain the type of rhs_. Never falls through.
632 EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
633 &check_for_internalized_strings,
634 &flat_string_check);
635
636 __ bind(&check_for_internalized_strings);
637 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
638 // internalized strings.
639 if (cc == eq && !strict()) {
640 // Returns an answer for two internalized strings or two detectable objects.
641 // Otherwise jumps to string case or not both strings case.
642 // Assumes that r5 is the type of rhs_ on entry.
643 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
644 &slow);
645 }
646
647 // Check for both being sequential one-byte strings,
648 // and inline if that is the case.
649 __ bind(&flat_string_check);
650
651 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow);
652
653 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5,
654 r6);
655 if (cc == eq) {
656 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6);
657 } else {
658 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7);
659 }
660 // Never falls through to here.
661
662 __ bind(&slow);
663
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400664 if (cc == eq) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100665 {
666 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
667 __ Push(lhs, rhs);
668 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
669 }
670 // Turn true into 0 and false into some non-zero value.
671 STATIC_ASSERT(EQUAL == 0);
672 __ LoadRoot(r4, Heap::kTrueValueRootIndex);
673 __ sub(r3, r3, r4);
674 __ Ret();
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400675 } else {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100676 __ Push(lhs, rhs);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400677 int ncr; // NaN compare result
678 if (cc == lt || cc == le) {
679 ncr = GREATER;
680 } else {
681 DCHECK(cc == gt || cc == ge); // remaining cases
682 ncr = LESS;
683 }
684 __ LoadSmiLiteral(r3, Smi::FromInt(ncr));
685 __ push(r3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400686
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000687 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
688 // tagged as a small integer.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100689 __ TailCallRuntime(Runtime::kCompare);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000690 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400691
692 __ bind(&miss);
693 GenerateMiss(masm);
694}
695
696
697void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
698 // We don't allow a GC during a store buffer overflow so there is no need to
699 // store the registers in any particular way, but we do have to store and
700 // restore them.
701 __ mflr(r0);
702 __ MultiPush(kJSCallerSaved | r0.bit());
703 if (save_doubles()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000704 __ MultiPushDoubles(kCallerSavedDoubles);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400705 }
706 const int argument_count = 1;
707 const int fp_argument_count = 0;
708 const Register scratch = r4;
709
710 AllowExternalCallThatCantCauseGC scope(masm);
711 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
712 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
713 __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
714 argument_count);
715 if (save_doubles()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000716 __ MultiPopDoubles(kCallerSavedDoubles);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400717 }
718 __ MultiPop(kJSCallerSaved | r0.bit());
719 __ mtlr(r0);
720 __ Ret();
721}
722
723
724void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
725 __ PushSafepointRegisters();
726 __ blr();
727}
728
729
730void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
731 __ PopSafepointRegisters();
732 __ blr();
733}
734
735
736void MathPowStub::Generate(MacroAssembler* masm) {
737 const Register base = r4;
738 const Register exponent = MathPowTaggedDescriptor::exponent();
739 DCHECK(exponent.is(r5));
740 const Register heapnumbermap = r8;
741 const Register heapnumber = r3;
742 const DoubleRegister double_base = d1;
743 const DoubleRegister double_exponent = d2;
744 const DoubleRegister double_result = d3;
745 const DoubleRegister double_scratch = d0;
746 const Register scratch = r11;
747 const Register scratch2 = r10;
748
749 Label call_runtime, done, int_exponent;
750 if (exponent_type() == ON_STACK) {
751 Label base_is_smi, unpack_exponent;
752 // The exponent and base are supplied as arguments on the stack.
753 // This can only happen if the stub is called from non-optimized code.
754 // Load input parameters from stack to double registers.
755 __ LoadP(base, MemOperand(sp, 1 * kPointerSize));
756 __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize));
757
758 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
759
760 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
761 __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset));
762 __ cmp(scratch, heapnumbermap);
763 __ bne(&call_runtime);
764
765 __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
766 __ b(&unpack_exponent);
767
768 __ bind(&base_is_smi);
769 __ ConvertIntToDouble(scratch, double_base);
770 __ bind(&unpack_exponent);
771
772 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
773 __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
774 __ cmp(scratch, heapnumbermap);
775 __ bne(&call_runtime);
776
777 __ lfd(double_exponent,
778 FieldMemOperand(exponent, HeapNumber::kValueOffset));
779 } else if (exponent_type() == TAGGED) {
780 // Base is already in double_base.
781 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
782
783 __ lfd(double_exponent,
784 FieldMemOperand(exponent, HeapNumber::kValueOffset));
785 }
786
787 if (exponent_type() != INTEGER) {
788 // Detect integer exponents stored as double.
789 __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
790 double_scratch);
791 __ beq(&int_exponent);
792
793 if (exponent_type() == ON_STACK) {
794 // Detect square root case. Crankshaft detects constant +/-0.5 at
795 // compile time and uses DoMathPowHalf instead. We then skip this check
796 // for non-constant cases of +/-0.5 as these hardly occur.
797 Label not_plus_half, not_minus_inf1, not_minus_inf2;
798
799 // Test for 0.5.
800 __ LoadDoubleLiteral(double_scratch, 0.5, scratch);
801 __ fcmpu(double_exponent, double_scratch);
802 __ bne(&not_plus_half);
803
804 // Calculates square root of base. Check for the special case of
805 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
806 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
807 __ fcmpu(double_base, double_scratch);
808 __ bne(&not_minus_inf1);
809 __ fneg(double_result, double_scratch);
810 __ b(&done);
811 __ bind(&not_minus_inf1);
812
813 // Add +0 to convert -0 to +0.
814 __ fadd(double_scratch, double_base, kDoubleRegZero);
815 __ fsqrt(double_result, double_scratch);
816 __ b(&done);
817
818 __ bind(&not_plus_half);
819 __ LoadDoubleLiteral(double_scratch, -0.5, scratch);
820 __ fcmpu(double_exponent, double_scratch);
821 __ bne(&call_runtime);
822
823 // Calculates square root of base. Check for the special case of
824 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
825 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
826 __ fcmpu(double_base, double_scratch);
827 __ bne(&not_minus_inf2);
828 __ fmr(double_result, kDoubleRegZero);
829 __ b(&done);
830 __ bind(&not_minus_inf2);
831
832 // Add +0 to convert -0 to +0.
833 __ fadd(double_scratch, double_base, kDoubleRegZero);
834 __ LoadDoubleLiteral(double_result, 1.0, scratch);
835 __ fsqrt(double_scratch, double_scratch);
836 __ fdiv(double_result, double_result, double_scratch);
837 __ b(&done);
838 }
839
840 __ mflr(r0);
841 __ push(r0);
842 {
843 AllowExternalCallThatCantCauseGC scope(masm);
844 __ PrepareCallCFunction(0, 2, scratch);
845 __ MovToFloatParameters(double_base, double_exponent);
846 __ CallCFunction(
847 ExternalReference::power_double_double_function(isolate()), 0, 2);
848 }
849 __ pop(r0);
850 __ mtlr(r0);
851 __ MovFromFloatResult(double_result);
852 __ b(&done);
853 }
854
855 // Calculate power with integer exponent.
856 __ bind(&int_exponent);
857
858 // Get two copies of exponent in the registers scratch and exponent.
859 if (exponent_type() == INTEGER) {
860 __ mr(scratch, exponent);
861 } else {
862 // Exponent has previously been stored into scratch as untagged integer.
863 __ mr(exponent, scratch);
864 }
865 __ fmr(double_scratch, double_base); // Back up base.
866 __ li(scratch2, Operand(1));
867 __ ConvertIntToDouble(scratch2, double_result);
868
869 // Get absolute value of exponent.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400870 __ cmpi(scratch, Operand::Zero());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000871 if (CpuFeatures::IsSupported(ISELECT)) {
872 __ neg(scratch2, scratch);
873 __ isel(lt, scratch, scratch2, scratch);
874 } else {
875 Label positive_exponent;
876 __ bge(&positive_exponent);
877 __ neg(scratch, scratch);
878 __ bind(&positive_exponent);
879 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400880
881 Label while_true, no_carry, loop_end;
882 __ bind(&while_true);
883 __ andi(scratch2, scratch, Operand(1));
884 __ beq(&no_carry, cr0);
885 __ fmul(double_result, double_result, double_scratch);
886 __ bind(&no_carry);
887 __ ShiftRightArithImm(scratch, scratch, 1, SetRC);
888 __ beq(&loop_end, cr0);
889 __ fmul(double_scratch, double_scratch, double_scratch);
890 __ b(&while_true);
891 __ bind(&loop_end);
892
893 __ cmpi(exponent, Operand::Zero());
894 __ bge(&done);
895
896 __ li(scratch2, Operand(1));
897 __ ConvertIntToDouble(scratch2, double_scratch);
898 __ fdiv(double_result, double_scratch, double_result);
899 // Test whether result is zero. Bail out to check for subnormal result.
900 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
901 __ fcmpu(double_result, kDoubleRegZero);
902 __ bne(&done);
903 // double_exponent may not containe the exponent value if the input was a
904 // smi. We set it with exponent value before bailing out.
905 __ ConvertIntToDouble(exponent, double_exponent);
906
907 // Returning or bailing out.
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400908 if (exponent_type() == ON_STACK) {
909 // The arguments are still on the stack.
910 __ bind(&call_runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000911 __ TailCallRuntime(Runtime::kMathPowRT);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400912
913 // The stub is called from non-optimized code, which expects the result
914 // as heap number in exponent.
915 __ bind(&done);
916 __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap,
917 &call_runtime);
918 __ stfd(double_result,
919 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
920 DCHECK(heapnumber.is(r3));
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400921 __ Ret(2);
922 } else {
923 __ mflr(r0);
924 __ push(r0);
925 {
926 AllowExternalCallThatCantCauseGC scope(masm);
927 __ PrepareCallCFunction(0, 2, scratch);
928 __ MovToFloatParameters(double_base, double_exponent);
929 __ CallCFunction(
930 ExternalReference::power_double_double_function(isolate()), 0, 2);
931 }
932 __ pop(r0);
933 __ mtlr(r0);
934 __ MovFromFloatResult(double_result);
935
936 __ bind(&done);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400937 __ Ret();
938 }
939}
940
941
942bool CEntryStub::NeedsImmovableCode() { return true; }
943
944
945void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
946 CEntryStub::GenerateAheadOfTime(isolate);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400947 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
948 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
Ben Murdoch61f157c2016-09-16 13:49:30 +0100949 CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400950 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000951 CreateWeakCellStub::GenerateAheadOfTime(isolate);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400952 BinaryOpICStub::GenerateAheadOfTime(isolate);
953 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
954 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
955 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000956 StoreFastElementStub::GenerateAheadOfTime(isolate);
957 TypeofStub::GenerateAheadOfTime(isolate);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400958}
959
960
961void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
962 StoreRegistersStateStub stub(isolate);
963 stub.GetCode();
964}
965
966
967void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
968 RestoreRegistersStateStub stub(isolate);
969 stub.GetCode();
970}
971
972
973void CodeStub::GenerateFPStubs(Isolate* isolate) {
974 // Generate if not already in cache.
975 SaveFPRegsMode mode = kSaveFPRegs;
976 CEntryStub(isolate, 1, mode).GetCode();
977 StoreBufferOverflowStub(isolate, mode).GetCode();
978 isolate->set_fp_stubs_generated(true);
979}
980
981
982void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
983 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
984 stub.GetCode();
985}
986
987
988void CEntryStub::Generate(MacroAssembler* masm) {
989 // Called from JavaScript; parameters are on stack as if calling JS function.
990 // r3: number of arguments including receiver
991 // r4: pointer to builtin function
992 // fp: frame pointer (restored after C call)
993 // sp: stack pointer (restored as callee's sp after C call)
994 // cp: current context (C callee-saved)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000995 //
996 // If argv_in_register():
997 // r5: pointer to the first argument
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400998 ProfileEntryHookStub::MaybeCallEntryHook(masm);
999
1000 __ mr(r15, r4);
1001
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001002 if (argv_in_register()) {
1003 // Move argv into the correct register.
1004 __ mr(r4, r5);
1005 } else {
1006 // Compute the argv pointer.
1007 __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
1008 __ add(r4, r4, sp);
1009 __ subi(r4, r4, Operand(kPointerSize));
1010 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001011
1012 // Enter the exit frame that transitions from JavaScript to C++.
1013 FrameScope scope(masm, StackFrame::MANUAL);
1014
1015 // Need at least one extra slot for return address location.
1016 int arg_stack_space = 1;
1017
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001018 // Pass buffer for return value on stack if necessary
Ben Murdoch097c5b22016-05-18 11:27:45 +01001019 bool needs_return_buffer =
1020 result_size() > 2 ||
1021 (result_size() == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
1022 if (needs_return_buffer) {
1023 arg_stack_space += result_size();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001024 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001025
1026 __ EnterExitFrame(save_doubles(), arg_stack_space);
1027
1028 // Store a copy of argc in callee-saved registers for later.
1029 __ mr(r14, r3);
1030
1031 // r3, r14: number of arguments including receiver (C callee-saved)
1032 // r4: pointer to the first argument
1033 // r15: pointer to builtin function (C callee-saved)
1034
1035 // Result returned in registers or stack, depending on result size and ABI.
1036
1037 Register isolate_reg = r5;
Ben Murdoch097c5b22016-05-18 11:27:45 +01001038 if (needs_return_buffer) {
1039 // The return value is a non-scalar value.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001040 // Use frame storage reserved by calling function to pass return
1041 // buffer as implicit first argument.
1042 __ mr(r5, r4);
1043 __ mr(r4, r3);
1044 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
1045 isolate_reg = r6;
1046 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001047
1048 // Call C built-in.
1049 __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
1050
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001051 Register target = r15;
Ben Murdoch097c5b22016-05-18 11:27:45 +01001052 if (ABI_USES_FUNCTION_DESCRIPTORS) {
1053 // AIX/PPC64BE Linux use a function descriptor.
1054 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize));
1055 __ LoadP(ip, MemOperand(r15, 0)); // Instruction address
1056 target = ip;
1057 } else if (ABI_CALL_VIA_IP) {
1058 __ Move(ip, r15);
1059 target = ip;
1060 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001061
1062 // To let the GC traverse the return address of the exit frames, we need to
1063 // know where the return address is. The CEntryStub is unmovable, so
1064 // we can store the address on the stack to be able to find it again and
1065 // we never have to restore it, because it will not change.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001066 Label after_call;
1067 __ mov_label_addr(r0, &after_call);
1068 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
1069 __ Call(target);
1070 __ bind(&after_call);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001071
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001072 // If return value is on the stack, pop it to registers.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001073 if (needs_return_buffer) {
1074 if (result_size() > 2) __ LoadP(r5, MemOperand(r3, 2 * kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001075 __ LoadP(r4, MemOperand(r3, kPointerSize));
1076 __ LoadP(r3, MemOperand(r3));
1077 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001078
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001079 // Check result for exception sentinel.
1080 Label exception_returned;
1081 __ CompareRoot(r3, Heap::kExceptionRootIndex);
1082 __ beq(&exception_returned);
1083
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001084 // Check that there is no pending exception, otherwise we
1085 // should have returned the exception sentinel.
1086 if (FLAG_debug_code) {
1087 Label okay;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001088 ExternalReference pending_exception_address(
1089 Isolate::kPendingExceptionAddress, isolate());
1090
Ben Murdoch097c5b22016-05-18 11:27:45 +01001091 __ mov(r6, Operand(pending_exception_address));
1092 __ LoadP(r6, MemOperand(r6));
1093 __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001094 // Cannot use check here as it attempts to generate call into runtime.
1095 __ beq(&okay);
1096 __ stop("Unexpected pending exception");
1097 __ bind(&okay);
1098 }
1099
1100 // Exit C frame and return.
1101 // r3:r4: result
1102 // sp: stack pointer
1103 // fp: frame pointer
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001104 Register argc;
1105 if (argv_in_register()) {
1106 // We don't want to pop arguments so set argc to no_reg.
1107 argc = no_reg;
1108 } else {
1109 // r14: still holds argc (callee-saved).
1110 argc = r14;
1111 }
1112 __ LeaveExitFrame(save_doubles(), argc, true);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001113 __ blr();
1114
1115 // Handling of exception.
1116 __ bind(&exception_returned);
1117
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001118 ExternalReference pending_handler_context_address(
1119 Isolate::kPendingHandlerContextAddress, isolate());
1120 ExternalReference pending_handler_code_address(
1121 Isolate::kPendingHandlerCodeAddress, isolate());
1122 ExternalReference pending_handler_offset_address(
1123 Isolate::kPendingHandlerOffsetAddress, isolate());
1124 ExternalReference pending_handler_fp_address(
1125 Isolate::kPendingHandlerFPAddress, isolate());
1126 ExternalReference pending_handler_sp_address(
1127 Isolate::kPendingHandlerSPAddress, isolate());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001128
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001129 // Ask the runtime for help to determine the handler. This will set r3 to
1130 // contain the current pending exception, don't clobber it.
1131 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1132 isolate());
1133 {
1134 FrameScope scope(masm, StackFrame::MANUAL);
1135 __ PrepareCallCFunction(3, 0, r3);
1136 __ li(r3, Operand::Zero());
1137 __ li(r4, Operand::Zero());
1138 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
1139 __ CallCFunction(find_handler, 3);
1140 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001141
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001142 // Retrieve the handler context, SP and FP.
1143 __ mov(cp, Operand(pending_handler_context_address));
1144 __ LoadP(cp, MemOperand(cp));
1145 __ mov(sp, Operand(pending_handler_sp_address));
1146 __ LoadP(sp, MemOperand(sp));
1147 __ mov(fp, Operand(pending_handler_fp_address));
1148 __ LoadP(fp, MemOperand(fp));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001149
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001150 // If the handler is a JS frame, restore the context to the frame. Note that
1151 // the context will be set to (cp == 0) for non-JS frames.
1152 Label skip;
1153 __ cmpi(cp, Operand::Zero());
1154 __ beq(&skip);
1155 __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1156 __ bind(&skip);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001157
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001158 // Compute the handler entry address and jump to it.
1159 ConstantPoolUnavailableScope constant_pool_unavailable(masm);
1160 __ mov(r4, Operand(pending_handler_code_address));
1161 __ LoadP(r4, MemOperand(r4));
1162 __ mov(r5, Operand(pending_handler_offset_address));
1163 __ LoadP(r5, MemOperand(r5));
1164 __ addi(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
1165 if (FLAG_enable_embedded_constant_pool) {
1166 __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r4);
1167 }
1168 __ add(ip, r4, r5);
1169 __ Jump(ip);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001170}
1171
1172
1173void JSEntryStub::Generate(MacroAssembler* masm) {
1174 // r3: code entry
1175 // r4: function
1176 // r5: receiver
1177 // r6: argc
1178 // [sp+0]: argv
1179
1180 Label invoke, handler_entry, exit;
1181
1182// Called from C
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001183 __ function_descriptor();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001184
1185 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1186
1187 // PPC LINUX ABI:
1188 // preserve LR in pre-reserved slot in caller's frame
1189 __ mflr(r0);
1190 __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
1191
1192 // Save callee saved registers on the stack.
1193 __ MultiPush(kCalleeSaved);
1194
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001195 // Save callee-saved double registers.
1196 __ MultiPushDoubles(kCalleeSavedDoubles);
1197 // Set up the reserved register for 0.0.
1198 __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001199
1200 // Push a frame with special values setup to mark it as an entry frame.
1201 // r3: code entry
1202 // r4: function
1203 // r5: receiver
1204 // r6: argc
1205 // r7: argv
1206 __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1207 __ push(r0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001208 if (FLAG_enable_embedded_constant_pool) {
1209 __ li(kConstantPoolRegister, Operand::Zero());
1210 __ push(kConstantPoolRegister);
1211 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001212 int marker = type();
1213 __ LoadSmiLiteral(r0, Smi::FromInt(marker));
1214 __ push(r0);
1215 __ push(r0);
1216 // Save copies of the top frame descriptor on the stack.
1217 __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1218 __ LoadP(r0, MemOperand(r8));
1219 __ push(r0);
1220
1221 // Set up frame pointer for the frame to be pushed.
1222 __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1223
1224 // If this is the outermost JS call, set js_entry_sp value.
1225 Label non_outermost_js;
1226 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1227 __ mov(r8, Operand(ExternalReference(js_entry_sp)));
1228 __ LoadP(r9, MemOperand(r8));
1229 __ cmpi(r9, Operand::Zero());
1230 __ bne(&non_outermost_js);
1231 __ StoreP(fp, MemOperand(r8));
1232 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1233 Label cont;
1234 __ b(&cont);
1235 __ bind(&non_outermost_js);
1236 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
1237 __ bind(&cont);
1238 __ push(ip); // frame-type
1239
1240 // Jump to a faked try block that does the invoke, with a faked catch
1241 // block that sets the pending exception.
1242 __ b(&invoke);
1243
1244 __ bind(&handler_entry);
1245 handler_offset_ = handler_entry.pos();
1246 // Caught exception: Store result (exception) in the pending exception
1247 // field in the JSEnv and return a failure sentinel. Coming in here the
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001248 // fp will be invalid because the PushStackHandler below sets it to 0 to
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001249 // signal the existence of the JSEntry frame.
1250 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1251 isolate())));
1252
1253 __ StoreP(r3, MemOperand(ip));
1254 __ LoadRoot(r3, Heap::kExceptionRootIndex);
1255 __ b(&exit);
1256
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001257 // Invoke: Link this frame into the handler chain.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001258 __ bind(&invoke);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001259 // Must preserve r3-r7.
1260 __ PushStackHandler();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001261 // If an exception not caught by another handler occurs, this handler
1262 // returns control to the code after the b(&invoke) above, which
1263 // restores all kCalleeSaved registers (including cp and fp) to their
1264 // saved values before returning a failure to C.
1265
1266 // Clear any pending exceptions.
1267 __ mov(r8, Operand(isolate()->factory()->the_hole_value()));
1268 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1269 isolate())));
1270 __ StoreP(r8, MemOperand(ip));
1271
1272 // Invoke the function by calling through JS entry trampoline builtin.
1273 // Notice that we cannot store a reference to the trampoline code directly in
1274 // this stub, because runtime stubs are not traversed when doing GC.
1275
1276 // Expected registers by Builtins::JSEntryTrampoline
1277 // r3: code entry
1278 // r4: function
1279 // r5: receiver
1280 // r6: argc
1281 // r7: argv
1282 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1283 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1284 isolate());
1285 __ mov(ip, Operand(construct_entry));
1286 } else {
1287 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1288 __ mov(ip, Operand(entry));
1289 }
1290 __ LoadP(ip, MemOperand(ip)); // deref address
1291
1292 // Branch and link to JSEntryTrampoline.
1293 // the address points to the start of the code object, skip the header
1294 __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1295 __ mtctr(ip);
1296 __ bctrl(); // make the call
1297
1298 // Unlink this frame from the handler chain.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001299 __ PopStackHandler();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001300
1301 __ bind(&exit); // r3 holds result
1302 // Check if the current stack frame is marked as the outermost JS frame.
1303 Label non_outermost_js_2;
1304 __ pop(r8);
1305 __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
1306 __ bne(&non_outermost_js_2);
1307 __ mov(r9, Operand::Zero());
1308 __ mov(r8, Operand(ExternalReference(js_entry_sp)));
1309 __ StoreP(r9, MemOperand(r8));
1310 __ bind(&non_outermost_js_2);
1311
1312 // Restore the top frame descriptors from the stack.
1313 __ pop(r6);
1314 __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1315 __ StoreP(r6, MemOperand(ip));
1316
1317 // Reset the stack to the callee saved registers.
1318 __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1319
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001320 // Restore callee-saved double registers.
1321 __ MultiPopDoubles(kCalleeSavedDoubles);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001322
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001323 // Restore callee-saved registers.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001324 __ MultiPop(kCalleeSaved);
1325
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001326 // Return
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001327 __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001328 __ mtlr(r0);
1329 __ blr();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001330}
1331
1332
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001333void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1334 Label miss;
1335 Register receiver = LoadDescriptor::ReceiverRegister();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001336 // Ensure that the vector and slot registers won't be clobbered before
1337 // calling the miss handler.
1338 DCHECK(!AreAliased(r7, r8, LoadWithVectorDescriptor::VectorRegister(),
1339 LoadWithVectorDescriptor::SlotRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001340
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001341 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r7,
1342 r8, &miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001343 __ bind(&miss);
1344 PropertyAccessCompiler::TailCallBuiltin(
1345 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1346}
1347
1348
1349void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1350 // Return address is in lr.
1351 Label miss;
1352
1353 Register receiver = LoadDescriptor::ReceiverRegister();
1354 Register index = LoadDescriptor::NameRegister();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001355 Register scratch = r8;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001356 Register result = r3;
1357 DCHECK(!scratch.is(receiver) && !scratch.is(index));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001358 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
1359 result.is(LoadWithVectorDescriptor::SlotRegister()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001360
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001361 // StringCharAtGenerator doesn't use the result register until it's passed
1362 // the different miss possibilities. If it did, we would have a conflict
1363 // when FLAG_vector_ics is true.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001364 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1365 &miss, // When not a string.
1366 &miss, // When not a number.
1367 &miss, // When index out of range.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001368 RECEIVER_IS_STRING);
1369 char_at_generator.GenerateFast(masm);
1370 __ Ret();
1371
1372 StubRuntimeCallHelper call_helper;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001373 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001374
1375 __ bind(&miss);
1376 PropertyAccessCompiler::TailCallBuiltin(
1377 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1378}
1379
1380
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001381void RegExpExecStub::Generate(MacroAssembler* masm) {
1382// Just jump directly to runtime if native RegExp is not selected at compile
1383// time or if regexp entry in generated code is turned off runtime switch or
1384// at compilation.
1385#ifdef V8_INTERPRETED_REGEXP
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001386 __ TailCallRuntime(Runtime::kRegExpExec);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001387#else // V8_INTERPRETED_REGEXP
1388
1389 // Stack frame on entry.
1390 // sp[0]: last_match_info (expected JSArray)
1391 // sp[4]: previous index
1392 // sp[8]: subject string
1393 // sp[12]: JSRegExp object
1394
1395 const int kLastMatchInfoOffset = 0 * kPointerSize;
1396 const int kPreviousIndexOffset = 1 * kPointerSize;
1397 const int kSubjectOffset = 2 * kPointerSize;
1398 const int kJSRegExpOffset = 3 * kPointerSize;
1399
1400 Label runtime, br_over, encoding_type_UC16;
1401
1402 // Allocation of registers for this function. These are in callee save
1403 // registers and will be preserved by the call to the native RegExp code, as
1404 // this code is called using the normal C calling convention. When calling
1405 // directly from generated code the native RegExp code will not do a GC and
1406 // therefore the content of these registers are safe to use after the call.
1407 Register subject = r14;
1408 Register regexp_data = r15;
1409 Register last_match_info_elements = r16;
1410 Register code = r17;
1411
1412 // Ensure register assigments are consistent with callee save masks
1413 DCHECK(subject.bit() & kCalleeSaved);
1414 DCHECK(regexp_data.bit() & kCalleeSaved);
1415 DCHECK(last_match_info_elements.bit() & kCalleeSaved);
1416 DCHECK(code.bit() & kCalleeSaved);
1417
1418 // Ensure that a RegExp stack is allocated.
1419 ExternalReference address_of_regexp_stack_memory_address =
1420 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1421 ExternalReference address_of_regexp_stack_memory_size =
1422 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1423 __ mov(r3, Operand(address_of_regexp_stack_memory_size));
1424 __ LoadP(r3, MemOperand(r3, 0));
1425 __ cmpi(r3, Operand::Zero());
1426 __ beq(&runtime);
1427
1428 // Check that the first argument is a JSRegExp object.
1429 __ LoadP(r3, MemOperand(sp, kJSRegExpOffset));
1430 __ JumpIfSmi(r3, &runtime);
1431 __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
1432 __ bne(&runtime);
1433
1434 // Check that the RegExp has been compiled (data contains a fixed array).
1435 __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset));
1436 if (FLAG_debug_code) {
1437 __ TestIfSmi(regexp_data, r0);
1438 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
1439 __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE);
1440 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1441 }
1442
1443 // regexp_data: RegExp data (FixedArray)
1444 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1445 __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1446 // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
1447 __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0);
1448 __ bne(&runtime);
1449
1450 // regexp_data: RegExp data (FixedArray)
1451 // Check that the number of captures fit in the static offsets vector buffer.
1452 __ LoadP(r5,
1453 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1454 // Check (number_of_captures + 1) * 2 <= offsets vector size
1455 // Or number_of_captures * 2 <= offsets vector size - 2
1456 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1457 // SmiUntag (which is a nop for 32-bit).
1458 __ SmiToShortArrayOffset(r5, r5);
1459 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1460 __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1461 __ bgt(&runtime);
1462
1463 // Reset offset for possibly sliced string.
1464 __ li(r11, Operand::Zero());
1465 __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1466 __ JumpIfSmi(subject, &runtime);
1467 __ mr(r6, subject); // Make a copy of the original subject string.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001468 // subject: subject string
1469 // r6: subject string
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001470 // regexp_data: RegExp data (FixedArray)
1471 // Handle subject string according to its encoding and representation:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001472 // (1) Sequential string? If yes, go to (4).
1473 // (2) Sequential or cons? If not, go to (5).
1474 // (3) Cons string. If the string is flat, replace subject with first string
1475 // and go to (1). Otherwise bail out to runtime.
1476 // (4) Sequential string. Load regexp code according to encoding.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001477 // (E) Carry on.
1478 /// [...]
1479
1480 // Deferred code at the end of the stub:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001481 // (5) Long external string? If not, go to (7).
1482 // (6) External string. Make it, offset-wise, look like a sequential string.
1483 // Go to (4).
1484 // (7) Short external string or not a string? If yes, bail out to runtime.
1485 // (8) Sliced string. Replace subject with parent. Go to (1).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001486
Ben Murdoch097c5b22016-05-18 11:27:45 +01001487 Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
1488 not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001489
Ben Murdoch097c5b22016-05-18 11:27:45 +01001490 __ bind(&check_underlying);
1491 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
1492 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
1493
1494 // (1) Sequential string? If yes, go to (4).
1495
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001496 STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
1497 kShortExternalStringMask) == 0x93);
1498 __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask |
1499 kShortExternalStringMask));
1500 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001501 __ beq(&seq_string, cr0); // Go to (4).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001502
Ben Murdoch097c5b22016-05-18 11:27:45 +01001503 // (2) Sequential or cons? If not, go to (5).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001504 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1505 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1506 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1507 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1508 STATIC_ASSERT(kExternalStringTag < 0xffffu);
1509 __ cmpi(r4, Operand(kExternalStringTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +01001510 __ bge(&not_seq_nor_cons); // Go to (5).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001511
1512 // (3) Cons string. Check that it's flat.
1513 // Replace subject with first string and reload instance type.
1514 __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset));
1515 __ CompareRoot(r3, Heap::kempty_stringRootIndex);
1516 __ bne(&runtime);
1517 __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01001518 __ b(&check_underlying);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001519
Ben Murdoch097c5b22016-05-18 11:27:45 +01001520 // (4) Sequential string. Load regexp code according to encoding.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001521 __ bind(&seq_string);
1522 // subject: sequential subject string (or look-alike, external string)
1523 // r6: original subject string
1524 // Load previous index and check range before r6 is overwritten. We have to
1525 // use r6 instead of subject here because subject might have been only made
1526 // to look like a sequential string when it actually is an external string.
1527 __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset));
1528 __ JumpIfNotSmi(r4, &runtime);
1529 __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset));
1530 __ cmpl(r6, r4);
1531 __ ble(&runtime);
1532 __ SmiUntag(r4);
1533
1534 STATIC_ASSERT(4 == kOneByteStringTag);
1535 STATIC_ASSERT(kTwoByteStringTag == 0);
1536 STATIC_ASSERT(kStringEncodingMask == 4);
1537 __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC);
1538 __ beq(&encoding_type_UC16, cr0);
1539 __ LoadP(code,
1540 FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
1541 __ b(&br_over);
1542 __ bind(&encoding_type_UC16);
1543 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
1544 __ bind(&br_over);
1545
1546 // (E) Carry on. String handling is done.
1547 // code: irregexp code
1548 // Check that the irregexp code has been generated for the actual string
1549 // encoding. If it has, the field contains a code object otherwise it contains
1550 // a smi (code flushing support).
1551 __ JumpIfSmi(code, &runtime);
1552
1553 // r4: previous index
1554 // r6: encoding of subject string (1 if one_byte, 0 if two_byte);
1555 // code: Address of generated regexp code
1556 // subject: Subject string
1557 // regexp_data: RegExp data (FixedArray)
1558 // All checks done. Now push arguments for native regexp code.
1559 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5);
1560
1561 // Isolates: note we add an additional parameter here (isolate pointer).
1562 const int kRegExpExecuteArguments = 10;
1563 const int kParameterRegisters = 8;
1564 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1565
1566 // Stack pointer now points to cell where return address is to be written.
1567 // Arguments are before that on the stack or in registers.
1568
1569 // Argument 10 (in stack parameter area): Pass current isolate address.
1570 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
1571 __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
1572
1573 // Argument 9 is a dummy that reserves the space used for
1574 // the return address added by the ExitFrame in native calls.
1575
1576 // Argument 8 (r10): Indicate that this is a direct call from JavaScript.
1577 __ li(r10, Operand(1));
1578
1579 // Argument 7 (r9): Start (high end) of backtracking stack memory area.
1580 __ mov(r3, Operand(address_of_regexp_stack_memory_address));
1581 __ LoadP(r3, MemOperand(r3, 0));
1582 __ mov(r5, Operand(address_of_regexp_stack_memory_size));
1583 __ LoadP(r5, MemOperand(r5, 0));
1584 __ add(r9, r3, r5);
1585
1586 // Argument 6 (r8): Set the number of capture registers to zero to force
1587 // global egexps to behave as non-global. This does not affect non-global
1588 // regexps.
1589 __ li(r8, Operand::Zero());
1590
1591 // Argument 5 (r7): static offsets vector buffer.
1592 __ mov(
1593 r7,
1594 Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
1595
1596 // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data
1597 // and calculate the shift of the index (0 for one-byte and 1 for two-byte).
1598 __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1599 __ xori(r6, r6, Operand(1));
1600 // Load the length from the original subject string from the previous stack
1601 // frame. Therefore we have to use fp, which points exactly to two pointer
1602 // sizes below the previous sp. (Because creating a new stack frame pushes
1603 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
1604 __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1605 // If slice offset is not 0, load the length from the original sliced string.
1606 // Argument 4, r6: End of string data
1607 // Argument 3, r5: Start of string data
1608 // Prepare start and end index of the input.
1609 __ ShiftLeft_(r11, r11, r6);
1610 __ add(r11, r18, r11);
1611 __ ShiftLeft_(r5, r4, r6);
1612 __ add(r5, r11, r5);
1613
1614 __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset));
1615 __ SmiUntag(r18);
1616 __ ShiftLeft_(r6, r18, r6);
1617 __ add(r6, r11, r6);
1618
1619 // Argument 2 (r4): Previous index.
1620 // Already there
1621
1622 // Argument 1 (r3): Subject string.
1623 __ mr(r3, subject);
1624
1625 // Locate the code entry and call it.
1626 __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
1627
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001628 DirectCEntryStub stub(isolate());
1629 stub.GenerateCall(masm, code);
1630
1631 __ LeaveExitFrame(false, no_reg, true);
1632
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001633 // r3: result (int32)
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001634 // subject: subject string (callee saved)
1635 // regexp_data: RegExp data (callee saved)
1636 // last_match_info_elements: Last match info elements (callee saved)
1637 // Check the result.
1638 Label success;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001639 __ cmpwi(r3, Operand(1));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001640 // We expect exactly one result since we force the called regexp to behave
1641 // as non-global.
1642 __ beq(&success);
1643 Label failure;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001644 __ cmpwi(r3, Operand(NativeRegExpMacroAssembler::FAILURE));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001645 __ beq(&failure);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001646 __ cmpwi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001647 // If not exception it can only be retry. Handle that in the runtime system.
1648 __ bne(&runtime);
1649 // Result must now be exception. If there is no pending exception already a
1650 // stack overflow (on the backtrack stack) was detected in RegExp code but
1651 // haven't created the exception yet. Handle that in the runtime system.
1652 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1653 __ mov(r4, Operand(isolate()->factory()->the_hole_value()));
1654 __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1655 isolate())));
1656 __ LoadP(r3, MemOperand(r5, 0));
1657 __ cmp(r3, r4);
1658 __ beq(&runtime);
1659
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001660 // For exception, throw the exception again.
1661 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001662
1663 __ bind(&failure);
1664 // For failure and exception return null.
1665 __ mov(r3, Operand(isolate()->factory()->null_value()));
1666 __ addi(sp, sp, Operand(4 * kPointerSize));
1667 __ Ret();
1668
1669 // Process the result from the native regexp code.
1670 __ bind(&success);
1671 __ LoadP(r4,
1672 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1673 // Calculate number of capture registers (number_of_captures + 1) * 2.
1674 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1675 // SmiUntag (which is a nop for 32-bit).
1676 __ SmiToShortArrayOffset(r4, r4);
1677 __ addi(r4, r4, Operand(2));
1678
1679 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
1680 __ JumpIfSmi(r3, &runtime);
1681 __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE);
1682 __ bne(&runtime);
1683 // Check that the JSArray is in fast case.
1684 __ LoadP(last_match_info_elements,
1685 FieldMemOperand(r3, JSArray::kElementsOffset));
1686 __ LoadP(r3,
1687 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1688 __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex);
1689 __ bne(&runtime);
1690 // Check that the last match info has space for the capture registers and the
1691 // additional information.
1692 __ LoadP(
1693 r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1694 __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead));
1695 __ SmiUntag(r0, r3);
1696 __ cmp(r5, r0);
1697 __ bgt(&runtime);
1698
1699 // r4: number of capture registers
1700 // subject: subject string
1701 // Store the capture count.
1702 __ SmiTag(r5, r4);
1703 __ StoreP(r5, FieldMemOperand(last_match_info_elements,
1704 RegExpImpl::kLastCaptureCountOffset),
1705 r0);
1706 // Store last subject and last input.
1707 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1708 RegExpImpl::kLastSubjectOffset),
1709 r0);
1710 __ mr(r5, subject);
1711 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset,
1712 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
1713 __ mr(subject, r5);
1714 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1715 RegExpImpl::kLastInputOffset),
1716 r0);
1717 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset,
1718 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
1719
1720 // Get the static offsets vector filled by the native regexp code.
1721 ExternalReference address_of_static_offsets_vector =
1722 ExternalReference::address_of_static_offsets_vector(isolate());
1723 __ mov(r5, Operand(address_of_static_offsets_vector));
1724
1725 // r4: number of capture registers
1726 // r5: offsets vector
1727 Label next_capture;
1728 // Capture register counter starts from number of capture registers and
1729 // counts down until wraping after zero.
1730 __ addi(
1731 r3, last_match_info_elements,
1732 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize));
1733 __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu
1734 __ mtctr(r4);
1735 __ bind(&next_capture);
1736 // Read the value from the static offsets vector buffer.
1737 __ lwzu(r6, MemOperand(r5, kIntSize));
1738 // Store the smi value in the last match info.
1739 __ SmiTag(r6);
1740 __ StorePU(r6, MemOperand(r3, kPointerSize));
1741 __ bdnz(&next_capture);
1742
1743 // Return last match info.
1744 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
1745 __ addi(sp, sp, Operand(4 * kPointerSize));
1746 __ Ret();
1747
1748 // Do the runtime call to execute the regexp.
1749 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001750 __ TailCallRuntime(Runtime::kRegExpExec);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001751
1752 // Deferred code for string handling.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001753 // (5) Long external string? If not, go to (7).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001754 __ bind(&not_seq_nor_cons);
1755 // Compare flags are still set.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001756 __ bgt(&not_long_external); // Go to (7).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001757
Ben Murdoch097c5b22016-05-18 11:27:45 +01001758 // (6) External string. Make it, offset-wise, look like a sequential string.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001759 __ bind(&external_string);
1760 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
1761 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
1762 if (FLAG_debug_code) {
1763 // Assert that we do not have a cons or slice (indirect strings) here.
1764 // Sequential strings have already been ruled out.
1765 STATIC_ASSERT(kIsIndirectStringMask == 1);
1766 __ andi(r0, r3, Operand(kIsIndirectStringMask));
1767 __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
1768 }
1769 __ LoadP(subject,
1770 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1771 // Move the pointer so that offset-wise, it looks like a sequential string.
1772 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1773 __ subi(subject, subject,
1774 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +01001775 __ b(&seq_string); // Go to (4).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001776
Ben Murdoch097c5b22016-05-18 11:27:45 +01001777 // (7) Short external string or not a string? If yes, bail out to runtime.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001778 __ bind(&not_long_external);
1779 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
1780 __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask));
1781 __ bne(&runtime, cr0);
1782
Ben Murdoch097c5b22016-05-18 11:27:45 +01001783 // (8) Sliced string. Replace subject with parent. Go to (4).
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001784 // Load offset into r11 and replace subject string with parent.
1785 __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1786 __ SmiUntag(r11);
1787 __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1788 __ b(&check_underlying); // Go to (4).
1789#endif // V8_INTERPRETED_REGEXP
1790}
1791
1792
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001793static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1794 // r3 : number of arguments to the construct function
1795 // r4 : the function to call
1796 // r5 : feedback vector
1797 // r6 : slot in feedback vector (Smi)
1798 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1799
1800 // Number-of-arguments register must be smi-tagged to call out.
1801 __ SmiTag(r3);
1802 __ Push(r6, r5, r4, r3);
1803
1804 __ CallStub(stub);
1805
1806 __ Pop(r6, r5, r4, r3);
1807 __ SmiUntag(r3);
1808}
1809
1810
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001811static void GenerateRecordCallTarget(MacroAssembler* masm) {
1812 // Cache the called function in a feedback vector slot. Cache states
1813 // are uninitialized, monomorphic (indicated by a JSFunction), and
1814 // megamorphic.
1815 // r3 : number of arguments to the construct function
1816 // r4 : the function to call
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001817 // r5 : feedback vector
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001818 // r6 : slot in feedback vector (Smi)
1819 Label initialize, done, miss, megamorphic, not_array_function;
Ben Murdoch61f157c2016-09-16 13:49:30 +01001820 Label done_initialize_count, done_increment_count;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001821
1822 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
1823 masm->isolate()->heap()->megamorphic_symbol());
1824 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
1825 masm->isolate()->heap()->uninitialized_symbol());
1826
Ben Murdoch61f157c2016-09-16 13:49:30 +01001827 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
1828
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001829 // Load the cache state into r8.
1830 __ SmiToPtrArrayOffset(r8, r6);
1831 __ add(r8, r5, r8);
1832 __ LoadP(r8, FieldMemOperand(r8, FixedArray::kHeaderSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001833
1834 // A monomorphic cache hit or an already megamorphic state: invoke the
1835 // function without changing the state.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001836 // We don't know if r8 is a WeakCell or a Symbol, but it's harmless to read at
1837 // this position in a symbol (see static asserts in type-feedback-vector.h).
1838 Label check_allocation_site;
1839 Register feedback_map = r9;
1840 Register weak_value = r10;
1841 __ LoadP(weak_value, FieldMemOperand(r8, WeakCell::kValueOffset));
1842 __ cmp(r4, weak_value);
Ben Murdoch61f157c2016-09-16 13:49:30 +01001843 __ beq(&done_increment_count);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001844 __ CompareRoot(r8, Heap::kmegamorphic_symbolRootIndex);
1845 __ beq(&done);
1846 __ LoadP(feedback_map, FieldMemOperand(r8, HeapObject::kMapOffset));
1847 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
1848 __ bne(&check_allocation_site);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001849
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001850 // If the weak cell is cleared, we have a new chance to become monomorphic.
1851 __ JumpIfSmi(weak_value, &initialize);
1852 __ b(&megamorphic);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001853
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001854 __ bind(&check_allocation_site);
1855 // If we came here, we need to see if we are the array function.
1856 // If we didn't have a matching function, and we didn't find the megamorph
1857 // sentinel, then we have in the slot either some other function or an
1858 // AllocationSite.
1859 __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
1860 __ bne(&miss);
1861
1862 // Make sure the function is the Array() function
1863 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
1864 __ cmp(r4, r8);
1865 __ bne(&megamorphic);
Ben Murdoch61f157c2016-09-16 13:49:30 +01001866 __ b(&done_increment_count);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001867
1868 __ bind(&miss);
1869
1870 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1871 // megamorphic.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001872 __ CompareRoot(r8, Heap::kuninitialized_symbolRootIndex);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001873 __ beq(&initialize);
1874 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1875 // write-barrier is needed.
1876 __ bind(&megamorphic);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001877 __ SmiToPtrArrayOffset(r8, r6);
1878 __ add(r8, r5, r8);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001879 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001880 __ StoreP(ip, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001881 __ jmp(&done);
1882
1883 // An uninitialized cache is patched with the function
1884 __ bind(&initialize);
1885
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001886 // Make sure the function is the Array() function.
1887 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
1888 __ cmp(r4, r8);
1889 __ bne(&not_array_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001890
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001891 // The target function is the Array constructor,
1892 // Create an AllocationSite if we don't already have it, store it in the
1893 // slot.
1894 CreateAllocationSiteStub create_stub(masm->isolate());
1895 CallStubInRecordCallTarget(masm, &create_stub);
Ben Murdoch61f157c2016-09-16 13:49:30 +01001896 __ b(&done_initialize_count);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001897
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001898 __ bind(&not_array_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001899
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001900 CreateWeakCellStub weak_cell_stub(masm->isolate());
1901 CallStubInRecordCallTarget(masm, &weak_cell_stub);
Ben Murdoch61f157c2016-09-16 13:49:30 +01001902
1903 __ bind(&done_initialize_count);
1904 // Initialize the call counter.
1905 __ LoadSmiLiteral(r8, Smi::FromInt(1));
1906 __ SmiToPtrArrayOffset(r7, r6);
1907 __ add(r7, r5, r7);
1908 __ StoreP(r8, FieldMemOperand(r7, count_offset), r0);
1909 __ b(&done);
1910
1911 __ bind(&done_increment_count);
1912
1913 // Increment the call count for monomorphic function calls.
1914 __ SmiToPtrArrayOffset(r8, r6);
1915 __ add(r8, r5, r8);
1916
1917 __ LoadP(r7, FieldMemOperand(r8, count_offset));
1918 __ AddSmiLiteral(r7, r7, Smi::FromInt(1), r0);
1919 __ StoreP(r7, FieldMemOperand(r8, count_offset), r0);
1920
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001921 __ bind(&done);
1922}
1923
1924
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001925void CallConstructStub::Generate(MacroAssembler* masm) {
1926 // r3 : number of arguments
1927 // r4 : the function to call
1928 // r5 : feedback vector
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001929 // r6 : slot in feedback vector (Smi, for RecordCallTarget)
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001930
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001931 Label non_function;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001932 // Check that the function is not a smi.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001933 __ JumpIfSmi(r4, &non_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001934 // Check that the function is a JSFunction.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001935 __ CompareObjectType(r4, r8, r8, JS_FUNCTION_TYPE);
1936 __ bne(&non_function);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001937
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001938 GenerateRecordCallTarget(masm);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001939
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001940 __ SmiToPtrArrayOffset(r8, r6);
1941 __ add(r8, r5, r8);
1942 // Put the AllocationSite from the feedback vector into r5, or undefined.
1943 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize));
1944 __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset));
1945 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
1946 if (CpuFeatures::IsSupported(ISELECT)) {
1947 __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
1948 __ isel(eq, r5, r5, r8);
1949 } else {
1950 Label feedback_register_initialized;
1951 __ beq(&feedback_register_initialized);
1952 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
1953 __ bind(&feedback_register_initialized);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001954 }
1955
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001956 __ AssertUndefinedOrAllocationSite(r5, r8);
1957
1958 // Pass function as new target.
1959 __ mr(r6, r4);
1960
1961 // Tail call to the function-specific construct stub (still in the caller
1962 // context at this point).
1963 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
1964 __ LoadP(r7, FieldMemOperand(r7, SharedFunctionInfo::kConstructStubOffset));
1965 __ addi(ip, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001966 __ JumpToJSEntry(ip);
1967
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001968 __ bind(&non_function);
1969 __ mr(r6, r4);
1970 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001971}
1972
1973
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001974void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001975 // r4 - function
1976 // r6 - slot id
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001977 // r5 - vector
1978 // r7 - allocation site (loaded from vector[slot])
1979 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
1980 __ cmp(r4, r8);
1981 __ bne(miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001982
1983 __ mov(r3, Operand(arg_count()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001984
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001985 // Increment the call count for monomorphic function calls.
1986 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
1987 __ SmiToPtrArrayOffset(r8, r6);
1988 __ add(r5, r5, r8);
1989 __ LoadP(r6, FieldMemOperand(r5, count_offset));
Ben Murdoch61f157c2016-09-16 13:49:30 +01001990 __ AddSmiLiteral(r6, r6, Smi::FromInt(1), r0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001991 __ StoreP(r6, FieldMemOperand(r5, count_offset), r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001992
1993 __ mr(r5, r7);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001994 __ mr(r6, r4);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001995 ArrayConstructorStub stub(masm->isolate(), arg_count());
1996 __ TailCallStub(&stub);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001997}
1998
1999
2000void CallICStub::Generate(MacroAssembler* masm) {
2001 // r4 - function
2002 // r6 - slot id (Smi)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002003 // r5 - vector
2004 Label extra_checks_or_miss, call, call_function;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002005 int argc = arg_count();
2006 ParameterCount actual(argc);
2007
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002008 // The checks. First, does r4 match the recorded monomorphic target?
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002009 __ SmiToPtrArrayOffset(r9, r6);
2010 __ add(r9, r5, r9);
2011 __ LoadP(r7, FieldMemOperand(r9, FixedArray::kHeaderSize));
2012
2013 // We don't know that we have a weak cell. We might have a private symbol
2014 // or an AllocationSite, but the memory is safe to examine.
2015 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2016 // FixedArray.
2017 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2018 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2019 // computed, meaning that it can't appear to be a pointer. If the low bit is
2020 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2021 // to be a pointer.
2022 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2023 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2024 WeakCell::kValueOffset &&
2025 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2026
2027 __ LoadP(r8, FieldMemOperand(r7, WeakCell::kValueOffset));
2028 __ cmp(r4, r8);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002029 __ bne(&extra_checks_or_miss);
2030
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002031 // The compare above could have been a SMI/SMI comparison. Guard against this
2032 // convincing us that we have a monomorphic JSFunction.
2033 __ JumpIfSmi(r4, &extra_checks_or_miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002034
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002035 // Increment the call count for monomorphic function calls.
2036 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
2037 __ LoadP(r6, FieldMemOperand(r9, count_offset));
Ben Murdoch61f157c2016-09-16 13:49:30 +01002038 __ AddSmiLiteral(r6, r6, Smi::FromInt(1), r0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002039 __ StoreP(r6, FieldMemOperand(r9, count_offset), r0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002040
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002041 __ bind(&call_function);
2042 __ mov(r3, Operand(argc));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002043 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
2044 tail_call_mode()),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002045 RelocInfo::CODE_TARGET);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002046
2047 __ bind(&extra_checks_or_miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002048 Label uninitialized, miss, not_allocation_site;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002049
2050 __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002051 __ beq(&call);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002052
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002053 // Verify that r7 contains an AllocationSite
2054 __ LoadP(r8, FieldMemOperand(r7, HeapObject::kMapOffset));
2055 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
2056 __ bne(&not_allocation_site);
2057
2058 // We have an allocation site.
2059 HandleArrayCase(masm, &miss);
2060
2061 __ bind(&not_allocation_site);
2062
2063 // The following cases attempt to handle MISS cases without going to the
2064 // runtime.
2065 if (FLAG_trace_ic) {
2066 __ b(&miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002067 }
2068
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002069 __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
2070 __ beq(&uninitialized);
2071
2072 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2073 // to handle it here. More complex cases are dealt with in the runtime.
2074 __ AssertNotSmi(r7);
2075 __ CompareObjectType(r7, r8, r8, JS_FUNCTION_TYPE);
2076 __ bne(&miss);
2077 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
2078 __ StoreP(ip, FieldMemOperand(r9, FixedArray::kHeaderSize), r0);
2079
2080 __ bind(&call);
2081 __ mov(r3, Operand(argc));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002082 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002083 RelocInfo::CODE_TARGET);
2084
2085 __ bind(&uninitialized);
2086
2087 // We are going monomorphic, provided we actually have a JSFunction.
2088 __ JumpIfSmi(r4, &miss);
2089
2090 // Goto miss case if we do not have a function.
2091 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
2092 __ bne(&miss);
2093
2094 // Make sure the function is not the Array() function, which requires special
2095 // behavior on MISS.
2096 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
2097 __ cmp(r4, r7);
2098 __ beq(&miss);
2099
2100 // Make sure the function belongs to the same native context.
2101 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kContextOffset));
2102 __ LoadP(r7, ContextMemOperand(r7, Context::NATIVE_CONTEXT_INDEX));
2103 __ LoadP(ip, NativeContextMemOperand());
2104 __ cmp(r7, ip);
2105 __ bne(&miss);
2106
2107 // Initialize the call counter.
Ben Murdoch61f157c2016-09-16 13:49:30 +01002108 __ LoadSmiLiteral(r8, Smi::FromInt(1));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002109 __ StoreP(r8, FieldMemOperand(r9, count_offset), r0);
2110
2111 // Store the function. Use a stub since we need a frame for allocation.
2112 // r5 - vector
2113 // r6 - slot
2114 // r4 - function
2115 {
2116 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2117 CreateWeakCellStub create_stub(masm->isolate());
2118 __ Push(r4);
2119 __ CallStub(&create_stub);
2120 __ Pop(r4);
2121 }
2122
2123 __ b(&call_function);
2124
2125 // We are here because tracing is on or we encountered a MISS case we can't
2126 // handle here.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002127 __ bind(&miss);
2128 GenerateMiss(masm);
2129
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002130 __ b(&call);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002131}
2132
2133
2134void CallICStub::GenerateMiss(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002135 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002136
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002137 // Push the function and feedback info.
2138 __ Push(r4, r5, r6);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002139
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002140 // Call the entry.
2141 __ CallRuntime(Runtime::kCallIC_Miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002142
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002143 // Move result to r4 and exit the internal frame.
2144 __ mr(r4, r3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002145}
2146
2147
2148// StringCharCodeAtGenerator
2149void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2150 // If the receiver is a smi trigger the non-string case.
2151 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2152 __ JumpIfSmi(object_, receiver_not_string_);
2153
2154 // Fetch the instance type of the receiver into result register.
2155 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2156 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2157 // If the receiver is not a string trigger the non-string case.
2158 __ andi(r0, result_, Operand(kIsNotStringMask));
2159 __ bne(receiver_not_string_, cr0);
2160 }
2161
2162 // If the index is non-smi trigger the non-smi case.
2163 __ JumpIfNotSmi(index_, &index_not_smi_);
2164 __ bind(&got_smi_index_);
2165
2166 // Check for index out of range.
2167 __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
2168 __ cmpl(ip, index_);
2169 __ ble(index_out_of_range_);
2170
2171 __ SmiUntag(index_);
2172
2173 StringCharLoadGenerator::Generate(masm, object_, index_, result_,
2174 &call_runtime_);
2175
2176 __ SmiTag(result_);
2177 __ bind(&exit_);
2178}
2179
2180
2181void StringCharCodeAtGenerator::GenerateSlow(
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002182 MacroAssembler* masm, EmbedMode embed_mode,
2183 const RuntimeCallHelper& call_helper) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002184 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2185
2186 // Index is not a smi.
2187 __ bind(&index_not_smi_);
2188 // If index is a heap number, try converting it to an integer.
2189 __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
2190 DONT_DO_SMI_CHECK);
2191 call_helper.BeforeCall(masm);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002192 if (embed_mode == PART_OF_IC_HANDLER) {
2193 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2194 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2195 } else {
2196 // index_ is consumed by runtime conversion function.
2197 __ Push(object_, index_);
2198 }
Ben Murdoch61f157c2016-09-16 13:49:30 +01002199 __ CallRuntime(Runtime::kNumberToSmi);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002200 // Save the conversion result before the pop instructions below
2201 // have a chance to overwrite it.
2202 __ Move(index_, r3);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002203 if (embed_mode == PART_OF_IC_HANDLER) {
2204 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2205 LoadWithVectorDescriptor::SlotRegister(), object_);
2206 } else {
2207 __ pop(object_);
2208 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002209 // Reload the instance type.
2210 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2211 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2212 call_helper.AfterCall(masm);
2213 // If index is still not a smi, it must be out of range.
2214 __ JumpIfNotSmi(index_, index_out_of_range_);
2215 // Otherwise, return to the fast path.
2216 __ b(&got_smi_index_);
2217
2218 // Call runtime. We get here when the receiver is a string and the
2219 // index is a number, but the code of getting the actual character
2220 // is too complex (e.g., when the string needs to be flattened).
2221 __ bind(&call_runtime_);
2222 call_helper.BeforeCall(masm);
2223 __ SmiTag(index_);
2224 __ Push(object_, index_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002225 __ CallRuntime(Runtime::kStringCharCodeAtRT);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002226 __ Move(result_, r3);
2227 call_helper.AfterCall(masm);
2228 __ b(&exit_);
2229
2230 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2231}
2232
2233
2234// -------------------------------------------------------------------------
2235// StringCharFromCodeGenerator
2236
2237void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2238 // Fast case of Heap::LookupSingleCharacterStringFromCode.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002239 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
2240 __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCodeU));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002241 __ ori(r0, r0, Operand(kSmiTagMask));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002242 __ and_(r0, code_, r0, SetRC);
2243 __ bne(&slow_case_, cr0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002244
2245 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2246 // At this point code register contains smi tagged one-byte char code.
2247 __ mr(r0, code_);
2248 __ SmiToPtrArrayOffset(code_, code_);
2249 __ add(result_, result_, code_);
2250 __ mr(code_, r0);
2251 __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2252 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
2253 __ beq(&slow_case_);
2254 __ bind(&exit_);
2255}
2256
2257
2258void StringCharFromCodeGenerator::GenerateSlow(
2259 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
2260 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2261
2262 __ bind(&slow_case_);
2263 call_helper.BeforeCall(masm);
2264 __ push(code_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002265 __ CallRuntime(Runtime::kStringCharFromCode);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002266 __ Move(result_, r3);
2267 call_helper.AfterCall(masm);
2268 __ b(&exit_);
2269
2270 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2271}
2272
2273
2274enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
2275
2276
2277void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest,
2278 Register src, Register count,
2279 Register scratch,
2280 String::Encoding encoding) {
2281 if (FLAG_debug_code) {
2282 // Check that destination is word aligned.
2283 __ andi(r0, dest, Operand(kPointerAlignmentMask));
2284 __ Check(eq, kDestinationOfCopyNotAligned, cr0);
2285 }
2286
2287 // Nothing to do for zero characters.
2288 Label done;
2289 if (encoding == String::TWO_BYTE_ENCODING) {
2290 // double the length
2291 __ add(count, count, count, LeaveOE, SetRC);
2292 __ beq(&done, cr0);
2293 } else {
2294 __ cmpi(count, Operand::Zero());
2295 __ beq(&done);
2296 }
2297
2298 // Copy count bytes from src to dst.
2299 Label byte_loop;
2300 __ mtctr(count);
2301 __ bind(&byte_loop);
2302 __ lbz(scratch, MemOperand(src));
2303 __ addi(src, src, Operand(1));
2304 __ stb(scratch, MemOperand(dest));
2305 __ addi(dest, dest, Operand(1));
2306 __ bdnz(&byte_loop);
2307
2308 __ bind(&done);
2309}
2310
2311
2312void SubStringStub::Generate(MacroAssembler* masm) {
2313 Label runtime;
2314
2315 // Stack frame on entry.
2316 // lr: return address
2317 // sp[0]: to
2318 // sp[4]: from
2319 // sp[8]: string
2320
2321 // This stub is called from the native-call %_SubString(...), so
2322 // nothing can be assumed about the arguments. It is tested that:
2323 // "string" is a sequential string,
2324 // both "from" and "to" are smis, and
2325 // 0 <= from <= to <= string.length.
2326 // If any of these assumptions fail, we call the runtime system.
2327
2328 const int kToOffset = 0 * kPointerSize;
2329 const int kFromOffset = 1 * kPointerSize;
2330 const int kStringOffset = 2 * kPointerSize;
2331
2332 __ LoadP(r5, MemOperand(sp, kToOffset));
2333 __ LoadP(r6, MemOperand(sp, kFromOffset));
2334
2335 // If either to or from had the smi tag bit set, then fail to generic runtime
2336 __ JumpIfNotSmi(r5, &runtime);
2337 __ JumpIfNotSmi(r6, &runtime);
2338 __ SmiUntag(r5);
2339 __ SmiUntag(r6, SetRC);
2340 // Both r5 and r6 are untagged integers.
2341
2342 // We want to bailout to runtime here if From is negative.
2343 __ blt(&runtime, cr0); // From < 0.
2344
2345 __ cmpl(r6, r5);
2346 __ bgt(&runtime); // Fail if from > to.
2347 __ sub(r5, r5, r6);
2348
2349 // Make sure first argument is a string.
2350 __ LoadP(r3, MemOperand(sp, kStringOffset));
2351 __ JumpIfSmi(r3, &runtime);
2352 Condition is_string = masm->IsObjectStringType(r3, r4);
2353 __ b(NegateCondition(is_string), &runtime, cr0);
2354
2355 Label single_char;
2356 __ cmpi(r5, Operand(1));
2357 __ b(eq, &single_char);
2358
2359 // Short-cut for the case of trivial substring.
2360 Label return_r3;
2361 // r3: original string
2362 // r5: result string length
2363 __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset));
2364 __ SmiUntag(r0, r7);
2365 __ cmpl(r5, r0);
2366 // Return original string.
2367 __ beq(&return_r3);
2368 // Longer than original string's length or negative: unsafe arguments.
2369 __ bgt(&runtime);
2370 // Shorter than original string's length: an actual substring.
2371
2372 // Deal with different string types: update the index if necessary
2373 // and put the underlying string into r8.
2374 // r3: original string
2375 // r4: instance type
2376 // r5: length
2377 // r6: from index (untagged)
2378 Label underlying_unpacked, sliced_string, seq_or_external_string;
2379 // If the string is not indirect, it can only be sequential or external.
2380 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2381 STATIC_ASSERT(kIsIndirectStringMask != 0);
2382 __ andi(r0, r4, Operand(kIsIndirectStringMask));
2383 __ beq(&seq_or_external_string, cr0);
2384
2385 __ andi(r0, r4, Operand(kSlicedNotConsMask));
2386 __ bne(&sliced_string, cr0);
2387 // Cons string. Check whether it is flat, then fetch first part.
2388 __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset));
2389 __ CompareRoot(r8, Heap::kempty_stringRootIndex);
2390 __ bne(&runtime);
2391 __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset));
2392 // Update instance type.
2393 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
2394 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
2395 __ b(&underlying_unpacked);
2396
2397 __ bind(&sliced_string);
2398 // Sliced string. Fetch parent and correct start index by offset.
2399 __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset));
2400 __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset));
2401 __ SmiUntag(r4, r7);
2402 __ add(r6, r6, r4); // Add offset to index.
2403 // Update instance type.
2404 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
2405 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
2406 __ b(&underlying_unpacked);
2407
2408 __ bind(&seq_or_external_string);
2409 // Sequential or external string. Just move string to the expected register.
2410 __ mr(r8, r3);
2411
2412 __ bind(&underlying_unpacked);
2413
2414 if (FLAG_string_slices) {
2415 Label copy_routine;
2416 // r8: underlying subject string
2417 // r4: instance type of underlying subject string
2418 // r5: length
2419 // r6: adjusted start index (untagged)
2420 __ cmpi(r5, Operand(SlicedString::kMinLength));
2421 // Short slice. Copy instead of slicing.
2422 __ blt(&copy_routine);
2423 // Allocate new sliced string. At this point we do not reload the instance
2424 // type including the string encoding because we simply rely on the info
2425 // provided by the original string. It does not matter if the original
2426 // string's encoding is wrong because we always have to recheck encoding of
2427 // the newly created string's parent anyways due to externalized strings.
2428 Label two_byte_slice, set_slice_header;
2429 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2430 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2431 __ andi(r0, r4, Operand(kStringEncodingMask));
2432 __ beq(&two_byte_slice, cr0);
2433 __ AllocateOneByteSlicedString(r3, r5, r9, r10, &runtime);
2434 __ b(&set_slice_header);
2435 __ bind(&two_byte_slice);
2436 __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime);
2437 __ bind(&set_slice_header);
2438 __ SmiTag(r6);
2439 __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0);
2440 __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0);
2441 __ b(&return_r3);
2442
2443 __ bind(&copy_routine);
2444 }
2445
2446 // r8: underlying subject string
2447 // r4: instance type of underlying subject string
2448 // r5: length
2449 // r6: adjusted start index (untagged)
2450 Label two_byte_sequential, sequential_string, allocate_result;
2451 STATIC_ASSERT(kExternalStringTag != 0);
2452 STATIC_ASSERT(kSeqStringTag == 0);
2453 __ andi(r0, r4, Operand(kExternalStringTag));
2454 __ beq(&sequential_string, cr0);
2455
2456 // Handle external string.
2457 // Rule out short external strings.
2458 STATIC_ASSERT(kShortExternalStringTag != 0);
2459 __ andi(r0, r4, Operand(kShortExternalStringTag));
2460 __ bne(&runtime, cr0);
2461 __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset));
2462 // r8 already points to the first character of underlying string.
2463 __ b(&allocate_result);
2464
2465 __ bind(&sequential_string);
2466 // Locate first character of underlying subject string.
2467 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2468 __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2469
2470 __ bind(&allocate_result);
2471 // Sequential acii string. Allocate the result.
2472 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2473 __ andi(r0, r4, Operand(kStringEncodingMask));
2474 __ beq(&two_byte_sequential, cr0);
2475
2476 // Allocate and copy the resulting one-byte string.
2477 __ AllocateOneByteString(r3, r5, r7, r9, r10, &runtime);
2478
2479 // Locate first character of substring to copy.
2480 __ add(r8, r8, r6);
2481 // Locate first character of result.
2482 __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2483
2484 // r3: result string
2485 // r4: first character of result string
2486 // r5: result string length
2487 // r8: first character of substring to copy
2488 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2489 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
2490 String::ONE_BYTE_ENCODING);
2491 __ b(&return_r3);
2492
2493 // Allocate and copy the resulting two-byte string.
2494 __ bind(&two_byte_sequential);
2495 __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime);
2496
2497 // Locate first character of substring to copy.
2498 __ ShiftLeftImm(r4, r6, Operand(1));
2499 __ add(r8, r8, r4);
2500 // Locate first character of result.
2501 __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2502
2503 // r3: result string.
2504 // r4: first character of result.
2505 // r5: result length.
2506 // r8: first character of substring to copy.
2507 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2508 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
2509 String::TWO_BYTE_ENCODING);
2510
2511 __ bind(&return_r3);
2512 Counters* counters = isolate()->counters();
2513 __ IncrementCounter(counters->sub_string_native(), 1, r6, r7);
2514 __ Drop(3);
2515 __ Ret();
2516
2517 // Just jump to runtime to create the sub string.
2518 __ bind(&runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002519 __ TailCallRuntime(Runtime::kSubString);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002520
2521 __ bind(&single_char);
2522 // r3: original string
2523 // r4: instance type
2524 // r5: length
2525 // r6: from index (untagged)
2526 __ SmiTag(r6, r6);
2527 StringCharAtGenerator generator(r3, r6, r5, r3, &runtime, &runtime, &runtime,
Ben Murdoch61f157c2016-09-16 13:49:30 +01002528 RECEIVER_IS_STRING);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002529 generator.GenerateFast(masm);
2530 __ Drop(3);
2531 __ Ret();
2532 generator.SkipSlow(masm, &runtime);
2533}
2534
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002535void ToStringStub::Generate(MacroAssembler* masm) {
2536 // The ToString stub takes one argument in r3.
2537 Label is_number;
2538 __ JumpIfSmi(r3, &is_number);
2539
2540 __ CompareObjectType(r3, r4, r4, FIRST_NONSTRING_TYPE);
2541 // r3: receiver
2542 // r4: receiver instance type
2543 __ Ret(lt);
2544
2545 Label not_heap_number;
2546 __ cmpi(r4, Operand(HEAP_NUMBER_TYPE));
2547 __ bne(&not_heap_number);
2548 __ bind(&is_number);
2549 NumberToStringStub stub(isolate());
2550 __ TailCallStub(&stub);
2551 __ bind(&not_heap_number);
2552
2553 Label not_oddball;
2554 __ cmpi(r4, Operand(ODDBALL_TYPE));
2555 __ bne(&not_oddball);
2556 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToStringOffset));
2557 __ Ret();
2558 __ bind(&not_oddball);
2559
2560 __ push(r3); // Push argument.
2561 __ TailCallRuntime(Runtime::kToString);
2562}
2563
2564
Ben Murdoch097c5b22016-05-18 11:27:45 +01002565void ToNameStub::Generate(MacroAssembler* masm) {
2566 // The ToName stub takes one argument in r3.
2567 Label is_number;
2568 __ JumpIfSmi(r3, &is_number);
2569
2570 STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
2571 __ CompareObjectType(r3, r4, r4, LAST_NAME_TYPE);
2572 // r3: receiver
2573 // r4: receiver instance type
2574 __ Ret(le);
2575
2576 Label not_heap_number;
2577 __ cmpi(r4, Operand(HEAP_NUMBER_TYPE));
2578 __ bne(&not_heap_number);
2579 __ bind(&is_number);
2580 NumberToStringStub stub(isolate());
2581 __ TailCallStub(&stub);
2582 __ bind(&not_heap_number);
2583
2584 Label not_oddball;
2585 __ cmpi(r4, Operand(ODDBALL_TYPE));
2586 __ bne(&not_oddball);
2587 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToStringOffset));
2588 __ Ret();
2589 __ bind(&not_oddball);
2590
2591 __ push(r3); // Push argument.
2592 __ TailCallRuntime(Runtime::kToName);
2593}
2594
2595
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002596void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
2597 Register left,
2598 Register right,
2599 Register scratch1,
2600 Register scratch2) {
2601 Register length = scratch1;
2602
2603 // Compare lengths.
2604 Label strings_not_equal, check_zero_length;
2605 __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
2606 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
2607 __ cmp(length, scratch2);
2608 __ beq(&check_zero_length);
2609 __ bind(&strings_not_equal);
2610 __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL));
2611 __ Ret();
2612
2613 // Check if the length is zero.
2614 Label compare_chars;
2615 __ bind(&check_zero_length);
2616 STATIC_ASSERT(kSmiTag == 0);
2617 __ cmpi(length, Operand::Zero());
2618 __ bne(&compare_chars);
2619 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
2620 __ Ret();
2621
2622 // Compare characters.
2623 __ bind(&compare_chars);
2624 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
2625 &strings_not_equal);
2626
2627 // Characters are equal.
2628 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
2629 __ Ret();
2630}
2631
2632
2633void StringHelper::GenerateCompareFlatOneByteStrings(
2634 MacroAssembler* masm, Register left, Register right, Register scratch1,
2635 Register scratch2, Register scratch3) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002636 Label result_not_equal, compare_lengths;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002637 // Find minimum length and length difference.
2638 __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
2639 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
2640 __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC);
2641 Register length_delta = scratch3;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002642 if (CpuFeatures::IsSupported(ISELECT)) {
2643 __ isel(gt, scratch1, scratch2, scratch1, cr0);
2644 } else {
2645 Label skip;
2646 __ ble(&skip, cr0);
2647 __ mr(scratch1, scratch2);
2648 __ bind(&skip);
2649 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002650 Register min_length = scratch1;
2651 STATIC_ASSERT(kSmiTag == 0);
2652 __ cmpi(min_length, Operand::Zero());
2653 __ beq(&compare_lengths);
2654
2655 // Compare loop.
2656 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
2657 &result_not_equal);
2658
2659 // Compare lengths - strings up to min-length are equal.
2660 __ bind(&compare_lengths);
2661 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
2662 // Use length_delta as result if it's zero.
2663 __ mr(r3, length_delta);
2664 __ cmpi(r3, Operand::Zero());
2665 __ bind(&result_not_equal);
2666 // Conditionally update the result based either on length_delta or
2667 // the last comparion performed in the loop above.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002668 if (CpuFeatures::IsSupported(ISELECT)) {
2669 __ LoadSmiLiteral(r4, Smi::FromInt(GREATER));
2670 __ LoadSmiLiteral(r5, Smi::FromInt(LESS));
2671 __ isel(eq, r3, r0, r4);
2672 __ isel(lt, r3, r5, r3);
2673 __ Ret();
2674 } else {
2675 Label less_equal, equal;
2676 __ ble(&less_equal);
2677 __ LoadSmiLiteral(r3, Smi::FromInt(GREATER));
2678 __ Ret();
2679 __ bind(&less_equal);
2680 __ beq(&equal);
2681 __ LoadSmiLiteral(r3, Smi::FromInt(LESS));
2682 __ bind(&equal);
2683 __ Ret();
2684 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002685}
2686
2687
2688void StringHelper::GenerateOneByteCharsCompareLoop(
2689 MacroAssembler* masm, Register left, Register right, Register length,
2690 Register scratch1, Label* chars_not_equal) {
2691 // Change index to run from -length to -1 by adding length to string
2692 // start. This means that loop ends when index reaches zero, which
2693 // doesn't need an additional compare.
2694 __ SmiUntag(length);
2695 __ addi(scratch1, length,
2696 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2697 __ add(left, left, scratch1);
2698 __ add(right, right, scratch1);
2699 __ subfic(length, length, Operand::Zero());
2700 Register index = length; // index = -length;
2701
2702 // Compare loop.
2703 Label loop;
2704 __ bind(&loop);
2705 __ lbzx(scratch1, MemOperand(left, index));
2706 __ lbzx(r0, MemOperand(right, index));
2707 __ cmp(scratch1, r0);
2708 __ bne(chars_not_equal);
2709 __ addi(index, index, Operand(1));
2710 __ cmpi(index, Operand::Zero());
2711 __ bne(&loop);
2712}
2713
2714
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002715void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2716 // ----------- S t a t e -------------
2717 // -- r4 : left
2718 // -- r3 : right
2719 // -- lr : return address
2720 // -----------------------------------
2721
2722 // Load r5 with the allocation site. We stick an undefined dummy value here
2723 // and replace it with the real allocation site later when we instantiate this
2724 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
Ben Murdoch61f157c2016-09-16 13:49:30 +01002725 __ Move(r5, isolate()->factory()->undefined_value());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002726
2727 // Make sure that we actually patched the allocation site.
2728 if (FLAG_debug_code) {
2729 __ TestIfSmi(r5, r0);
2730 __ Assert(ne, kExpectedAllocationSite, cr0);
2731 __ push(r5);
2732 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
2733 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
2734 __ cmp(r5, ip);
2735 __ pop(r5);
2736 __ Assert(eq, kExpectedAllocationSite);
2737 }
2738
2739 // Tail call into the stub that handles binary operations with allocation
2740 // sites.
2741 BinaryOpWithAllocationSiteStub stub(isolate(), state());
2742 __ TailCallStub(&stub);
2743}
2744
2745
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002746void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2747 DCHECK_EQ(CompareICState::BOOLEAN, state());
2748 Label miss;
2749
2750 __ CheckMap(r4, r5, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2751 __ CheckMap(r3, r6, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002752 if (!Token::IsEqualityOp(op())) {
2753 __ LoadP(r4, FieldMemOperand(r4, Oddball::kToNumberOffset));
2754 __ AssertSmi(r4);
2755 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset));
2756 __ AssertSmi(r3);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002757 }
Ben Murdoch097c5b22016-05-18 11:27:45 +01002758 __ sub(r3, r4, r3);
2759 __ Ret();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002760
2761 __ bind(&miss);
2762 GenerateMiss(masm);
2763}
2764
2765
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002766void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2767 DCHECK(state() == CompareICState::SMI);
2768 Label miss;
2769 __ orx(r5, r4, r3);
2770 __ JumpIfNotSmi(r5, &miss);
2771
2772 if (GetCondition() == eq) {
2773 // For equality we do not care about the sign of the result.
2774 // __ sub(r3, r3, r4, SetCC);
2775 __ sub(r3, r3, r4);
2776 } else {
2777 // Untag before subtracting to avoid handling overflow.
2778 __ SmiUntag(r4);
2779 __ SmiUntag(r3);
2780 __ sub(r3, r4, r3);
2781 }
2782 __ Ret();
2783
2784 __ bind(&miss);
2785 GenerateMiss(masm);
2786}
2787
2788
2789void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2790 DCHECK(state() == CompareICState::NUMBER);
2791
2792 Label generic_stub;
2793 Label unordered, maybe_undefined1, maybe_undefined2;
2794 Label miss;
2795 Label equal, less_than;
2796
2797 if (left() == CompareICState::SMI) {
2798 __ JumpIfNotSmi(r4, &miss);
2799 }
2800 if (right() == CompareICState::SMI) {
2801 __ JumpIfNotSmi(r3, &miss);
2802 }
2803
2804 // Inlining the double comparison and falling back to the general compare
2805 // stub if NaN is involved.
2806 // Load left and right operand.
2807 Label done, left, left_smi, right_smi;
2808 __ JumpIfSmi(r3, &right_smi);
2809 __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
2810 DONT_DO_SMI_CHECK);
2811 __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset));
2812 __ b(&left);
2813 __ bind(&right_smi);
2814 __ SmiToDouble(d1, r3);
2815
2816 __ bind(&left);
2817 __ JumpIfSmi(r4, &left_smi);
2818 __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
2819 DONT_DO_SMI_CHECK);
2820 __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset));
2821 __ b(&done);
2822 __ bind(&left_smi);
2823 __ SmiToDouble(d0, r4);
2824
2825 __ bind(&done);
2826
2827 // Compare operands
2828 __ fcmpu(d0, d1);
2829
2830 // Don't base result on status bits when a NaN is involved.
2831 __ bunordered(&unordered);
2832
2833 // Return a result of -1, 0, or 1, based on status bits.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002834 if (CpuFeatures::IsSupported(ISELECT)) {
2835 DCHECK(EQUAL == 0);
2836 __ li(r4, Operand(GREATER));
2837 __ li(r5, Operand(LESS));
2838 __ isel(eq, r3, r0, r4);
2839 __ isel(lt, r3, r5, r3);
2840 __ Ret();
2841 } else {
2842 __ beq(&equal);
2843 __ blt(&less_than);
2844 // assume greater than
2845 __ li(r3, Operand(GREATER));
2846 __ Ret();
2847 __ bind(&equal);
2848 __ li(r3, Operand(EQUAL));
2849 __ Ret();
2850 __ bind(&less_than);
2851 __ li(r3, Operand(LESS));
2852 __ Ret();
2853 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002854
2855 __ bind(&unordered);
2856 __ bind(&generic_stub);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002857 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002858 CompareICState::GENERIC, CompareICState::GENERIC);
2859 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2860
2861 __ bind(&maybe_undefined1);
2862 if (Token::IsOrderedRelationalCompareOp(op())) {
2863 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
2864 __ bne(&miss);
2865 __ JumpIfSmi(r4, &unordered);
2866 __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE);
2867 __ bne(&maybe_undefined2);
2868 __ b(&unordered);
2869 }
2870
2871 __ bind(&maybe_undefined2);
2872 if (Token::IsOrderedRelationalCompareOp(op())) {
2873 __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
2874 __ beq(&unordered);
2875 }
2876
2877 __ bind(&miss);
2878 GenerateMiss(masm);
2879}
2880
2881
2882void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
2883 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
2884 Label miss, not_equal;
2885
2886 // Registers containing left and right operands respectively.
2887 Register left = r4;
2888 Register right = r3;
2889 Register tmp1 = r5;
2890 Register tmp2 = r6;
2891
2892 // Check that both operands are heap objects.
2893 __ JumpIfEitherSmi(left, right, &miss);
2894
2895 // Check that both operands are symbols.
2896 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2897 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2898 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2899 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2900 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2901 __ orx(tmp1, tmp1, tmp2);
2902 __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
2903 __ bne(&miss, cr0);
2904
2905 // Internalized strings are compared by identity.
2906 __ cmp(left, right);
2907 __ bne(&not_equal);
2908 // Make sure r3 is non-zero. At this point input operands are
2909 // guaranteed to be non-zero.
2910 DCHECK(right.is(r3));
2911 STATIC_ASSERT(EQUAL == 0);
2912 STATIC_ASSERT(kSmiTag == 0);
2913 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
2914 __ bind(&not_equal);
2915 __ Ret();
2916
2917 __ bind(&miss);
2918 GenerateMiss(masm);
2919}
2920
2921
2922void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
2923 DCHECK(state() == CompareICState::UNIQUE_NAME);
2924 DCHECK(GetCondition() == eq);
2925 Label miss;
2926
2927 // Registers containing left and right operands respectively.
2928 Register left = r4;
2929 Register right = r3;
2930 Register tmp1 = r5;
2931 Register tmp2 = r6;
2932
2933 // Check that both operands are heap objects.
2934 __ JumpIfEitherSmi(left, right, &miss);
2935
2936 // Check that both operands are unique names. This leaves the instance
2937 // types loaded in tmp1 and tmp2.
2938 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2939 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2940 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2941 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2942
2943 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
2944 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
2945
2946 // Unique names are compared by identity.
2947 __ cmp(left, right);
2948 __ bne(&miss);
2949 // Make sure r3 is non-zero. At this point input operands are
2950 // guaranteed to be non-zero.
2951 DCHECK(right.is(r3));
2952 STATIC_ASSERT(EQUAL == 0);
2953 STATIC_ASSERT(kSmiTag == 0);
2954 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
2955 __ Ret();
2956
2957 __ bind(&miss);
2958 GenerateMiss(masm);
2959}
2960
2961
2962void CompareICStub::GenerateStrings(MacroAssembler* masm) {
2963 DCHECK(state() == CompareICState::STRING);
2964 Label miss, not_identical, is_symbol;
2965
2966 bool equality = Token::IsEqualityOp(op());
2967
2968 // Registers containing left and right operands respectively.
2969 Register left = r4;
2970 Register right = r3;
2971 Register tmp1 = r5;
2972 Register tmp2 = r6;
2973 Register tmp3 = r7;
2974 Register tmp4 = r8;
2975
2976 // Check that both operands are heap objects.
2977 __ JumpIfEitherSmi(left, right, &miss);
2978
2979 // Check that both operands are strings. This leaves the instance
2980 // types loaded in tmp1 and tmp2.
2981 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
2982 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
2983 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
2984 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
2985 STATIC_ASSERT(kNotStringTag != 0);
2986 __ orx(tmp3, tmp1, tmp2);
2987 __ andi(r0, tmp3, Operand(kIsNotStringMask));
2988 __ bne(&miss, cr0);
2989
2990 // Fast check for identical strings.
2991 __ cmp(left, right);
2992 STATIC_ASSERT(EQUAL == 0);
2993 STATIC_ASSERT(kSmiTag == 0);
2994 __ bne(&not_identical);
2995 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
2996 __ Ret();
2997 __ bind(&not_identical);
2998
2999 // Handle not identical strings.
3000
3001 // Check that both strings are internalized strings. If they are, we're done
3002 // because we already know they are not identical. We know they are both
3003 // strings.
3004 if (equality) {
3005 DCHECK(GetCondition() == eq);
3006 STATIC_ASSERT(kInternalizedTag == 0);
3007 __ orx(tmp3, tmp1, tmp2);
3008 __ andi(r0, tmp3, Operand(kIsNotInternalizedMask));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003009 // Make sure r3 is non-zero. At this point input operands are
3010 // guaranteed to be non-zero.
3011 DCHECK(right.is(r3));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003012 __ Ret(eq, cr0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003013 }
3014
3015 // Check that both strings are sequential one-byte.
3016 Label runtime;
3017 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3018 &runtime);
3019
3020 // Compare flat one-byte strings. Returns when done.
3021 if (equality) {
3022 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3023 tmp2);
3024 } else {
3025 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3026 tmp2, tmp3);
3027 }
3028
3029 // Handle more complex cases in runtime.
3030 __ bind(&runtime);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003031 if (equality) {
Ben Murdochda12d292016-06-02 14:46:10 +01003032 {
3033 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3034 __ Push(left, right);
3035 __ CallRuntime(Runtime::kStringEqual);
3036 }
3037 __ LoadRoot(r4, Heap::kTrueValueRootIndex);
3038 __ sub(r3, r3, r4);
3039 __ Ret();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003040 } else {
Ben Murdochda12d292016-06-02 14:46:10 +01003041 __ Push(left, right);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003042 __ TailCallRuntime(Runtime::kStringCompare);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003043 }
3044
3045 __ bind(&miss);
3046 GenerateMiss(masm);
3047}
3048
3049
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003050void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
3051 DCHECK_EQ(CompareICState::RECEIVER, state());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003052 Label miss;
3053 __ and_(r5, r4, r3);
3054 __ JumpIfSmi(r5, &miss);
3055
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003056 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
3057 __ CompareObjectType(r3, r5, r5, FIRST_JS_RECEIVER_TYPE);
3058 __ blt(&miss);
3059 __ CompareObjectType(r4, r5, r5, FIRST_JS_RECEIVER_TYPE);
3060 __ blt(&miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003061
3062 DCHECK(GetCondition() == eq);
3063 __ sub(r3, r3, r4);
3064 __ Ret();
3065
3066 __ bind(&miss);
3067 GenerateMiss(masm);
3068}
3069
3070
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003071void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003072 Label miss;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003073 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003074 __ and_(r5, r4, r3);
3075 __ JumpIfSmi(r5, &miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003076 __ GetWeakValue(r7, cell);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003077 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
3078 __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003079 __ cmp(r5, r7);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003080 __ bne(&miss);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003081 __ cmp(r6, r7);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003082 __ bne(&miss);
3083
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003084 if (Token::IsEqualityOp(op())) {
3085 __ sub(r3, r3, r4);
3086 __ Ret();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003087 } else {
3088 if (op() == Token::LT || op() == Token::LTE) {
3089 __ LoadSmiLiteral(r5, Smi::FromInt(GREATER));
3090 } else {
3091 __ LoadSmiLiteral(r5, Smi::FromInt(LESS));
3092 }
3093 __ Push(r4, r3, r5);
3094 __ TailCallRuntime(Runtime::kCompare);
3095 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003096
3097 __ bind(&miss);
3098 GenerateMiss(masm);
3099}
3100
3101
3102void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3103 {
3104 // Call the runtime system in a fresh internal frame.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003105 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3106 __ Push(r4, r3);
3107 __ Push(r4, r3);
3108 __ LoadSmiLiteral(r0, Smi::FromInt(op()));
3109 __ push(r0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003110 __ CallRuntime(Runtime::kCompareIC_Miss);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003111 // Compute the entry point of the rewritten stub.
3112 __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
3113 // Restore registers.
3114 __ Pop(r4, r3);
3115 }
3116
3117 __ JumpToJSEntry(r5);
3118}
3119
3120
3121// This stub is paired with DirectCEntryStub::GenerateCall
3122void DirectCEntryStub::Generate(MacroAssembler* masm) {
3123 // Place the return address on the stack, making the call
3124 // GC safe. The RegExp backend also relies on this.
3125 __ mflr(r0);
3126 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
3127 __ Call(ip); // Call the C++ function.
3128 __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
3129 __ mtlr(r0);
3130 __ blr();
3131}
3132
3133
3134void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01003135 if (ABI_USES_FUNCTION_DESCRIPTORS) {
3136 // AIX/PPC64BE Linux use a function descriptor.
3137 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
3138 __ LoadP(ip, MemOperand(target, 0)); // Instruction address
3139 } else {
3140 // ip needs to be set for DirectCEentryStub::Generate, and also
3141 // for ABI_CALL_VIA_IP.
3142 __ Move(ip, target);
3143 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003144
3145 intptr_t code = reinterpret_cast<intptr_t>(GetCode().location());
3146 __ mov(r0, Operand(code, RelocInfo::CODE_TARGET));
3147 __ Call(r0); // Call the stub.
3148}
3149
3150
3151void NameDictionaryLookupStub::GenerateNegativeLookup(
3152 MacroAssembler* masm, Label* miss, Label* done, Register receiver,
3153 Register properties, Handle<Name> name, Register scratch0) {
3154 DCHECK(name->IsUniqueName());
3155 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3156 // not equal to the name and kProbes-th slot is not used (its name is the
3157 // undefined value), it guarantees the hash table doesn't contain the
3158 // property. It's true even if some slots represent deleted properties
3159 // (their names are the hole value).
3160 for (int i = 0; i < kInlinedProbes; i++) {
3161 // scratch0 points to properties hash.
3162 // Compute the masked index: (hash + i + i * i) & mask.
3163 Register index = scratch0;
3164 // Capacity is smi 2^n.
3165 __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
3166 __ subi(index, index, Operand(1));
3167 __ LoadSmiLiteral(
3168 ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
3169 __ and_(index, index, ip);
3170
3171 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003172 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003173 __ ShiftLeftImm(ip, index, Operand(1));
3174 __ add(index, index, ip); // index *= 3.
3175
3176 Register entity_name = scratch0;
3177 // Having undefined at this place means the name is not contained.
3178 Register tmp = properties;
3179 __ SmiToPtrArrayOffset(ip, index);
3180 __ add(tmp, properties, ip);
3181 __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3182
3183 DCHECK(!tmp.is(entity_name));
3184 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3185 __ cmp(entity_name, tmp);
3186 __ beq(done);
3187
3188 // Load the hole ready for use below:
3189 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3190
3191 // Stop if found the property.
3192 __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0);
3193 __ beq(miss);
3194
3195 Label good;
3196 __ cmp(entity_name, tmp);
3197 __ beq(&good);
3198
3199 // Check if the entry name is not a unique name.
3200 __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3201 __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3202 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3203 __ bind(&good);
3204
3205 // Restore the properties.
3206 __ LoadP(properties,
3207 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3208 }
3209
3210 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
3211 r5.bit() | r4.bit() | r3.bit());
3212
3213 __ mflr(r0);
3214 __ MultiPush(spill_mask);
3215
3216 __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3217 __ mov(r4, Operand(Handle<Name>(name)));
3218 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3219 __ CallStub(&stub);
3220 __ cmpi(r3, Operand::Zero());
3221
3222 __ MultiPop(spill_mask); // MultiPop does not touch condition flags
3223 __ mtlr(r0);
3224
3225 __ beq(done);
3226 __ bne(miss);
3227}
3228
3229
3230// Probe the name dictionary in the |elements| register. Jump to the
3231// |done| label if a property with the given name is found. Jump to
3232// the |miss| label otherwise.
3233// If lookup was successful |scratch2| will be equal to elements + 4 * index.
3234void NameDictionaryLookupStub::GeneratePositiveLookup(
3235 MacroAssembler* masm, Label* miss, Label* done, Register elements,
3236 Register name, Register scratch1, Register scratch2) {
3237 DCHECK(!elements.is(scratch1));
3238 DCHECK(!elements.is(scratch2));
3239 DCHECK(!name.is(scratch1));
3240 DCHECK(!name.is(scratch2));
3241
3242 __ AssertName(name);
3243
3244 // Compute the capacity mask.
3245 __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset));
3246 __ SmiUntag(scratch1); // convert smi to int
3247 __ subi(scratch1, scratch1, Operand(1));
3248
3249 // Generate an unrolled loop that performs a few probes before
3250 // giving up. Measurements done on Gmail indicate that 2 probes
3251 // cover ~93% of loads from dictionaries.
3252 for (int i = 0; i < kInlinedProbes; i++) {
3253 // Compute the masked index: (hash + i + i * i) & mask.
3254 __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3255 if (i > 0) {
3256 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3257 // the hash in a separate instruction. The value hash + i + i * i is right
3258 // shifted in the following and instruction.
3259 DCHECK(NameDictionary::GetProbeOffset(i) <
3260 1 << (32 - Name::kHashFieldOffset));
3261 __ addi(scratch2, scratch2,
3262 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3263 }
3264 __ srwi(scratch2, scratch2, Operand(Name::kHashShift));
3265 __ and_(scratch2, scratch1, scratch2);
3266
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003267 // Scale the index by multiplying by the entry size.
3268 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003269 // scratch2 = scratch2 * 3.
3270 __ ShiftLeftImm(ip, scratch2, Operand(1));
3271 __ add(scratch2, scratch2, ip);
3272
3273 // Check if the key is identical to the name.
3274 __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2));
3275 __ add(scratch2, elements, ip);
3276 __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset));
3277 __ cmp(name, ip);
3278 __ beq(done);
3279 }
3280
3281 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
3282 r5.bit() | r4.bit() | r3.bit()) &
3283 ~(scratch1.bit() | scratch2.bit());
3284
3285 __ mflr(r0);
3286 __ MultiPush(spill_mask);
3287 if (name.is(r3)) {
3288 DCHECK(!elements.is(r4));
3289 __ mr(r4, name);
3290 __ mr(r3, elements);
3291 } else {
3292 __ mr(r3, elements);
3293 __ mr(r4, name);
3294 }
3295 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3296 __ CallStub(&stub);
3297 __ cmpi(r3, Operand::Zero());
3298 __ mr(scratch2, r5);
3299 __ MultiPop(spill_mask);
3300 __ mtlr(r0);
3301
3302 __ bne(done);
3303 __ beq(miss);
3304}
3305
3306
3307void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3308 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3309 // we cannot call anything that could cause a GC from this stub.
3310 // Registers:
3311 // result: NameDictionary to probe
3312 // r4: key
3313 // dictionary: NameDictionary to probe.
3314 // index: will hold an index of entry if lookup is successful.
3315 // might alias with result_.
3316 // Returns:
3317 // result_ is zero if lookup failed, non zero otherwise.
3318
3319 Register result = r3;
3320 Register dictionary = r3;
3321 Register key = r4;
3322 Register index = r5;
3323 Register mask = r6;
3324 Register hash = r7;
3325 Register undefined = r8;
3326 Register entry_key = r9;
3327 Register scratch = r9;
3328
3329 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3330
3331 __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
3332 __ SmiUntag(mask);
3333 __ subi(mask, mask, Operand(1));
3334
3335 __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset));
3336
3337 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3338
3339 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3340 // Compute the masked index: (hash + i + i * i) & mask.
3341 // Capacity is smi 2^n.
3342 if (i > 0) {
3343 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3344 // the hash in a separate instruction. The value hash + i + i * i is right
3345 // shifted in the following and instruction.
3346 DCHECK(NameDictionary::GetProbeOffset(i) <
3347 1 << (32 - Name::kHashFieldOffset));
3348 __ addi(index, hash,
3349 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3350 } else {
3351 __ mr(index, hash);
3352 }
3353 __ srwi(r0, index, Operand(Name::kHashShift));
3354 __ and_(index, mask, r0);
3355
3356 // Scale the index by multiplying by the entry size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003357 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003358 __ ShiftLeftImm(scratch, index, Operand(1));
3359 __ add(index, index, scratch); // index *= 3.
3360
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003361 __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2));
3362 __ add(index, dictionary, scratch);
3363 __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
3364
3365 // Having undefined at this place means the name is not contained.
3366 __ cmp(entry_key, undefined);
3367 __ beq(&not_in_dictionary);
3368
3369 // Stop if found the property.
3370 __ cmp(entry_key, key);
3371 __ beq(&in_dictionary);
3372
3373 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3374 // Check if the entry name is not a unique name.
3375 __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
3376 __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
3377 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
3378 }
3379 }
3380
3381 __ bind(&maybe_in_dictionary);
3382 // If we are doing negative lookup then probing failure should be
3383 // treated as a lookup success. For positive lookup probing failure
3384 // should be treated as lookup failure.
3385 if (mode() == POSITIVE_LOOKUP) {
3386 __ li(result, Operand::Zero());
3387 __ Ret();
3388 }
3389
3390 __ bind(&in_dictionary);
3391 __ li(result, Operand(1));
3392 __ Ret();
3393
3394 __ bind(&not_in_dictionary);
3395 __ li(result, Operand::Zero());
3396 __ Ret();
3397}
3398
3399
3400void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3401 Isolate* isolate) {
3402 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
3403 stub1.GetCode();
3404 // Hydrogen code stubs need stub2 at snapshot time.
3405 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3406 stub2.GetCode();
3407}
3408
3409
3410// Takes the input in 3 registers: address_ value_ and object_. A pointer to
3411// the value has just been written into the object, now this stub makes sure
3412// we keep the GC informed. The word in the object where the value has been
3413// written is in the address register.
3414void RecordWriteStub::Generate(MacroAssembler* masm) {
3415 Label skip_to_incremental_noncompacting;
3416 Label skip_to_incremental_compacting;
3417
3418 // The first two branch instructions are generated with labels so as to
3419 // get the offset fixed up correctly by the bind(Label*) call. We patch
3420 // it back and forth between branch condition True and False
3421 // when we start and stop incremental heap marking.
3422 // See RecordWriteStub::Patch for details.
3423
3424 // Clear the bit, branch on True for NOP action initially
3425 __ crclr(Assembler::encode_crbit(cr2, CR_LT));
3426 __ blt(&skip_to_incremental_noncompacting, cr2);
3427 __ blt(&skip_to_incremental_compacting, cr2);
3428
3429 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3430 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3431 MacroAssembler::kReturnAtEnd);
3432 }
3433 __ Ret();
3434
3435 __ bind(&skip_to_incremental_noncompacting);
3436 GenerateIncremental(masm, INCREMENTAL);
3437
3438 __ bind(&skip_to_incremental_compacting);
3439 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3440
3441 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3442 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3443 // patching not required on PPC as the initial path is effectively NOP
3444}
3445
3446
3447void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3448 regs_.Save(masm);
3449
3450 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3451 Label dont_need_remembered_set;
3452
3453 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3454 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3455 regs_.scratch0(), &dont_need_remembered_set);
3456
Ben Murdoch097c5b22016-05-18 11:27:45 +01003457 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
3458 &dont_need_remembered_set);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003459
3460 // First notify the incremental marker if necessary, then update the
3461 // remembered set.
3462 CheckNeedsToInformIncrementalMarker(
3463 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3464 InformIncrementalMarker(masm);
3465 regs_.Restore(masm);
3466 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3467 MacroAssembler::kReturnAtEnd);
3468
3469 __ bind(&dont_need_remembered_set);
3470 }
3471
3472 CheckNeedsToInformIncrementalMarker(
3473 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3474 InformIncrementalMarker(masm);
3475 regs_.Restore(masm);
3476 __ Ret();
3477}
3478
3479
3480void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3481 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3482 int argument_count = 3;
3483 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3484 Register address =
3485 r3.is(regs_.address()) ? regs_.scratch0() : regs_.address();
3486 DCHECK(!address.is(regs_.object()));
3487 DCHECK(!address.is(r3));
3488 __ mr(address, regs_.address());
3489 __ mr(r3, regs_.object());
3490 __ mr(r4, address);
3491 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
3492
3493 AllowExternalCallThatCantCauseGC scope(masm);
3494 __ CallCFunction(
3495 ExternalReference::incremental_marking_record_write_function(isolate()),
3496 argument_count);
3497 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3498}
3499
3500
3501void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3502 MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
3503 Mode mode) {
3504 Label on_black;
3505 Label need_incremental;
3506 Label need_incremental_pop_scratch;
3507
3508 DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
3509 __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
3510 __ and_(regs_.scratch0(), regs_.object(), r0);
3511 __ LoadP(
3512 regs_.scratch1(),
3513 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
3514 __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1));
3515 __ StoreP(
3516 regs_.scratch1(),
3517 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
3518 __ cmpi(regs_.scratch1(), Operand::Zero()); // PPC, we could do better here
3519 __ blt(&need_incremental);
3520
3521 // Let's look at the color of the object: If it is not black we don't have
3522 // to inform the incremental marker.
3523 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
3524
3525 regs_.Restore(masm);
3526 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3527 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3528 MacroAssembler::kReturnAtEnd);
3529 } else {
3530 __ Ret();
3531 }
3532
3533 __ bind(&on_black);
3534
3535 // Get the value from the slot.
3536 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3537
3538 if (mode == INCREMENTAL_COMPACTION) {
3539 Label ensure_not_white;
3540
3541 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3542 regs_.scratch1(), // Scratch.
3543 MemoryChunk::kEvacuationCandidateMask, eq,
3544 &ensure_not_white);
3545
3546 __ CheckPageFlag(regs_.object(),
3547 regs_.scratch1(), // Scratch.
3548 MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
3549 &need_incremental);
3550
3551 __ bind(&ensure_not_white);
3552 }
3553
3554 // We need extra registers for this, so we push the object and the address
3555 // register temporarily.
3556 __ Push(regs_.object(), regs_.address());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003557 __ JumpIfWhite(regs_.scratch0(), // The value.
3558 regs_.scratch1(), // Scratch.
3559 regs_.object(), // Scratch.
3560 regs_.address(), // Scratch.
3561 &need_incremental_pop_scratch);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003562 __ Pop(regs_.object(), regs_.address());
3563
3564 regs_.Restore(masm);
3565 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3566 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3567 MacroAssembler::kReturnAtEnd);
3568 } else {
3569 __ Ret();
3570 }
3571
3572 __ bind(&need_incremental_pop_scratch);
3573 __ Pop(regs_.object(), regs_.address());
3574
3575 __ bind(&need_incremental);
3576
3577 // Fall through when we need to inform the incremental marker.
3578}
3579
3580
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003581void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3582 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3583 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
3584 int parameter_count_offset =
Ben Murdochda12d292016-06-02 14:46:10 +01003585 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003586 __ LoadP(r4, MemOperand(fp, parameter_count_offset));
3587 if (function_mode() == JS_FUNCTION_STUB_MODE) {
3588 __ addi(r4, r4, Operand(1));
3589 }
3590 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3591 __ slwi(r4, r4, Operand(kPointerSizeLog2));
3592 __ add(sp, sp, r4);
3593 __ Ret();
3594}
3595
3596
3597void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003598 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
Ben Murdoch61f157c2016-09-16 13:49:30 +01003599 LoadICStub stub(isolate());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003600 stub.GenerateForTrampoline(masm);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003601}
3602
3603
3604void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003605 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
Ben Murdoch61f157c2016-09-16 13:49:30 +01003606 KeyedLoadICStub stub(isolate());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003607 stub.GenerateForTrampoline(masm);
3608}
3609
3610
3611void CallICTrampolineStub::Generate(MacroAssembler* masm) {
3612 __ EmitLoadTypeFeedbackVector(r5);
3613 CallICStub stub(isolate(), state());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003614 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3615}
3616
3617
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003618void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
3619
3620
3621void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3622 GenerateImpl(masm, true);
3623}
3624
3625
3626static void HandleArrayCases(MacroAssembler* masm, Register feedback,
3627 Register receiver_map, Register scratch1,
3628 Register scratch2, bool is_polymorphic,
3629 Label* miss) {
3630 // feedback initially contains the feedback array
3631 Label next_loop, prepare_next;
3632 Label start_polymorphic;
3633
3634 Register cached_map = scratch1;
3635
3636 __ LoadP(cached_map,
3637 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
3638 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3639 __ cmp(receiver_map, cached_map);
3640 __ bne(&start_polymorphic);
3641 // found, now call handler.
3642 Register handler = feedback;
3643 __ LoadP(handler,
3644 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
3645 __ addi(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3646 __ Jump(ip);
3647
3648
3649 Register length = scratch2;
3650 __ bind(&start_polymorphic);
3651 __ LoadP(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3652 if (!is_polymorphic) {
3653 // If the IC could be monomorphic we have to make sure we don't go past the
3654 // end of the feedback array.
3655 __ CmpSmiLiteral(length, Smi::FromInt(2), r0);
3656 __ beq(miss);
3657 }
3658
3659 Register too_far = length;
3660 Register pointer_reg = feedback;
3661
3662 // +-----+------+------+-----+-----+ ... ----+
3663 // | map | len | wm0 | h0 | wm1 | hN |
3664 // +-----+------+------+-----+-----+ ... ----+
3665 // 0 1 2 len-1
3666 // ^ ^
3667 // | |
3668 // pointer_reg too_far
3669 // aka feedback scratch2
3670 // also need receiver_map
3671 // use cached_map (scratch1) to look in the weak map values.
3672 __ SmiToPtrArrayOffset(r0, length);
3673 __ add(too_far, feedback, r0);
3674 __ addi(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3675 __ addi(pointer_reg, feedback,
3676 Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
3677
3678 __ bind(&next_loop);
3679 __ LoadP(cached_map, MemOperand(pointer_reg));
3680 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3681 __ cmp(receiver_map, cached_map);
3682 __ bne(&prepare_next);
3683 __ LoadP(handler, MemOperand(pointer_reg, kPointerSize));
3684 __ addi(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3685 __ Jump(ip);
3686
3687 __ bind(&prepare_next);
3688 __ addi(pointer_reg, pointer_reg, Operand(kPointerSize * 2));
3689 __ cmp(pointer_reg, too_far);
3690 __ blt(&next_loop);
3691
3692 // We exhausted our array of map handler pairs.
3693 __ b(miss);
3694}
3695
3696
3697static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
3698 Register receiver_map, Register feedback,
3699 Register vector, Register slot,
3700 Register scratch, Label* compare_map,
3701 Label* load_smi_map, Label* try_array) {
3702 __ JumpIfSmi(receiver, load_smi_map);
3703 __ LoadP(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
3704 __ bind(compare_map);
3705 Register cached_map = scratch;
3706 // Move the weak map into the weak_cell register.
3707 __ LoadP(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
3708 __ cmp(cached_map, receiver_map);
3709 __ bne(try_array);
3710 Register handler = feedback;
3711 __ SmiToPtrArrayOffset(r0, slot);
3712 __ add(handler, vector, r0);
3713 __ LoadP(handler,
3714 FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize));
3715 __ addi(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3716 __ Jump(ip);
3717}
3718
3719
3720void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3721 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // r4
3722 Register name = LoadWithVectorDescriptor::NameRegister(); // r5
3723 Register vector = LoadWithVectorDescriptor::VectorRegister(); // r6
3724 Register slot = LoadWithVectorDescriptor::SlotRegister(); // r3
3725 Register feedback = r7;
3726 Register receiver_map = r8;
3727 Register scratch1 = r9;
3728
3729 __ SmiToPtrArrayOffset(r0, slot);
3730 __ add(feedback, vector, r0);
3731 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3732
3733 // Try to quickly handle the monomorphic case without knowing for sure
3734 // if we have a weak cell in feedback. We do know it's safe to look
3735 // at WeakCell::kValueOffset.
3736 Label try_array, load_smi_map, compare_map;
3737 Label not_array, miss;
3738 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3739 scratch1, &compare_map, &load_smi_map, &try_array);
3740
3741 // Is it a fixed array?
3742 __ bind(&try_array);
3743 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3744 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3745 __ bne(&not_array);
3746 HandleArrayCases(masm, feedback, receiver_map, scratch1, r10, true, &miss);
3747
3748 __ bind(&not_array);
3749 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3750 __ bne(&miss);
Ben Murdochc5610432016-08-08 18:44:38 +01003751 Code::Flags code_flags =
3752 Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::LOAD_IC));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003753 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
3754 receiver, name, feedback,
3755 receiver_map, scratch1, r10);
3756
3757 __ bind(&miss);
3758 LoadIC::GenerateMiss(masm);
3759
3760 __ bind(&load_smi_map);
3761 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3762 __ b(&compare_map);
3763}
3764
3765
3766void KeyedLoadICStub::Generate(MacroAssembler* masm) {
3767 GenerateImpl(masm, false);
3768}
3769
3770
3771void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3772 GenerateImpl(masm, true);
3773}
3774
3775
3776void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3777 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // r4
3778 Register key = LoadWithVectorDescriptor::NameRegister(); // r5
3779 Register vector = LoadWithVectorDescriptor::VectorRegister(); // r6
3780 Register slot = LoadWithVectorDescriptor::SlotRegister(); // r3
3781 Register feedback = r7;
3782 Register receiver_map = r8;
3783 Register scratch1 = r9;
3784
3785 __ SmiToPtrArrayOffset(r0, slot);
3786 __ add(feedback, vector, r0);
3787 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3788
3789 // Try to quickly handle the monomorphic case without knowing for sure
3790 // if we have a weak cell in feedback. We do know it's safe to look
3791 // at WeakCell::kValueOffset.
3792 Label try_array, load_smi_map, compare_map;
3793 Label not_array, miss;
3794 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3795 scratch1, &compare_map, &load_smi_map, &try_array);
3796
3797 __ bind(&try_array);
3798 // Is it a fixed array?
3799 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3800 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3801 __ bne(&not_array);
3802
3803 // We have a polymorphic element handler.
3804 Label polymorphic, try_poly_name;
3805 __ bind(&polymorphic);
3806 HandleArrayCases(masm, feedback, receiver_map, scratch1, r10, true, &miss);
3807
3808 __ bind(&not_array);
3809 // Is it generic?
3810 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3811 __ bne(&try_poly_name);
3812 Handle<Code> megamorphic_stub =
3813 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
3814 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
3815
3816 __ bind(&try_poly_name);
3817 // We might have a name in feedback, and a fixed array in the next slot.
3818 __ cmp(key, feedback);
3819 __ bne(&miss);
3820 // If the name comparison succeeded, we know we have a fixed array with
3821 // at least one map/handler pair.
3822 __ SmiToPtrArrayOffset(r0, slot);
3823 __ add(feedback, vector, r0);
3824 __ LoadP(feedback,
3825 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
3826 HandleArrayCases(masm, feedback, receiver_map, scratch1, r10, false, &miss);
3827
3828 __ bind(&miss);
3829 KeyedLoadIC::GenerateMiss(masm);
3830
3831 __ bind(&load_smi_map);
3832 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3833 __ b(&compare_map);
3834}
3835
3836
3837void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3838 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
3839 VectorStoreICStub stub(isolate(), state());
3840 stub.GenerateForTrampoline(masm);
3841}
3842
3843
3844void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3845 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
3846 VectorKeyedStoreICStub stub(isolate(), state());
3847 stub.GenerateForTrampoline(masm);
3848}
3849
3850
3851void VectorStoreICStub::Generate(MacroAssembler* masm) {
3852 GenerateImpl(masm, false);
3853}
3854
3855
3856void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3857 GenerateImpl(masm, true);
3858}
3859
3860
3861void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3862 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // r4
3863 Register key = VectorStoreICDescriptor::NameRegister(); // r5
3864 Register vector = VectorStoreICDescriptor::VectorRegister(); // r6
3865 Register slot = VectorStoreICDescriptor::SlotRegister(); // r7
3866 DCHECK(VectorStoreICDescriptor::ValueRegister().is(r3)); // r3
3867 Register feedback = r8;
3868 Register receiver_map = r9;
3869 Register scratch1 = r10;
3870
3871 __ SmiToPtrArrayOffset(r0, slot);
3872 __ add(feedback, vector, r0);
3873 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3874
3875 // Try to quickly handle the monomorphic case without knowing for sure
3876 // if we have a weak cell in feedback. We do know it's safe to look
3877 // at WeakCell::kValueOffset.
3878 Label try_array, load_smi_map, compare_map;
3879 Label not_array, miss;
3880 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3881 scratch1, &compare_map, &load_smi_map, &try_array);
3882
3883 // Is it a fixed array?
3884 __ bind(&try_array);
3885 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3886 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3887 __ bne(&not_array);
3888
3889 Register scratch2 = r11;
3890 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true,
3891 &miss);
3892
3893 __ bind(&not_array);
3894 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3895 __ bne(&miss);
Ben Murdochc5610432016-08-08 18:44:38 +01003896 Code::Flags code_flags =
3897 Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::STORE_IC));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003898 masm->isolate()->stub_cache()->GenerateProbe(
3899 masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map,
3900 scratch1, scratch2);
3901
3902 __ bind(&miss);
3903 StoreIC::GenerateMiss(masm);
3904
3905 __ bind(&load_smi_map);
3906 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3907 __ b(&compare_map);
3908}
3909
3910
3911void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
3912 GenerateImpl(masm, false);
3913}
3914
3915
3916void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3917 GenerateImpl(masm, true);
3918}
3919
3920
3921static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
3922 Register receiver_map, Register scratch1,
3923 Register scratch2, Label* miss) {
3924 // feedback initially contains the feedback array
3925 Label next_loop, prepare_next;
3926 Label start_polymorphic;
3927 Label transition_call;
3928
3929 Register cached_map = scratch1;
3930 Register too_far = scratch2;
3931 Register pointer_reg = feedback;
3932 __ LoadP(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3933
3934 // +-----+------+------+-----+-----+-----+ ... ----+
3935 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
3936 // +-----+------+------+-----+-----+ ----+ ... ----+
3937 // 0 1 2 len-1
3938 // ^ ^
3939 // | |
3940 // pointer_reg too_far
3941 // aka feedback scratch2
3942 // also need receiver_map
3943 // use cached_map (scratch1) to look in the weak map values.
3944 __ SmiToPtrArrayOffset(r0, too_far);
3945 __ add(too_far, feedback, r0);
3946 __ addi(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3947 __ addi(pointer_reg, feedback,
3948 Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
3949
3950 __ bind(&next_loop);
3951 __ LoadP(cached_map, MemOperand(pointer_reg));
3952 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3953 __ cmp(receiver_map, cached_map);
3954 __ bne(&prepare_next);
3955 // Is it a transitioning store?
3956 __ LoadP(too_far, MemOperand(pointer_reg, kPointerSize));
3957 __ CompareRoot(too_far, Heap::kUndefinedValueRootIndex);
3958 __ bne(&transition_call);
3959 __ LoadP(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
3960 __ addi(ip, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
3961 __ Jump(ip);
3962
3963 __ bind(&transition_call);
3964 __ LoadP(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
3965 __ JumpIfSmi(too_far, miss);
3966
3967 __ LoadP(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
3968
3969 // Load the map into the correct register.
3970 DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
3971 __ mr(feedback, too_far);
3972
3973 __ addi(ip, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
3974 __ Jump(ip);
3975
3976 __ bind(&prepare_next);
3977 __ addi(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
3978 __ cmpl(pointer_reg, too_far);
3979 __ blt(&next_loop);
3980
3981 // We exhausted our array of map handler pairs.
3982 __ b(miss);
3983}
3984
3985
3986void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3987 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // r4
3988 Register key = VectorStoreICDescriptor::NameRegister(); // r5
3989 Register vector = VectorStoreICDescriptor::VectorRegister(); // r6
3990 Register slot = VectorStoreICDescriptor::SlotRegister(); // r7
3991 DCHECK(VectorStoreICDescriptor::ValueRegister().is(r3)); // r3
3992 Register feedback = r8;
3993 Register receiver_map = r9;
3994 Register scratch1 = r10;
3995
3996 __ SmiToPtrArrayOffset(r0, slot);
3997 __ add(feedback, vector, r0);
3998 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
3999
4000 // Try to quickly handle the monomorphic case without knowing for sure
4001 // if we have a weak cell in feedback. We do know it's safe to look
4002 // at WeakCell::kValueOffset.
4003 Label try_array, load_smi_map, compare_map;
4004 Label not_array, miss;
4005 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4006 scratch1, &compare_map, &load_smi_map, &try_array);
4007
4008 __ bind(&try_array);
4009 // Is it a fixed array?
4010 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4011 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
4012 __ bne(&not_array);
4013
4014 // We have a polymorphic element handler.
4015 Label polymorphic, try_poly_name;
4016 __ bind(&polymorphic);
4017
4018 Register scratch2 = r11;
4019
4020 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
4021 &miss);
4022
4023 __ bind(&not_array);
4024 // Is it generic?
4025 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4026 __ bne(&try_poly_name);
4027 Handle<Code> megamorphic_stub =
4028 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4029 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4030
4031 __ bind(&try_poly_name);
4032 // We might have a name in feedback, and a fixed array in the next slot.
4033 __ cmp(key, feedback);
4034 __ bne(&miss);
4035 // If the name comparison succeeded, we know we have a fixed array with
4036 // at least one map/handler pair.
4037 __ SmiToPtrArrayOffset(r0, slot);
4038 __ add(feedback, vector, r0);
4039 __ LoadP(feedback,
4040 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4041 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
4042 &miss);
4043
4044 __ bind(&miss);
4045 KeyedStoreIC::GenerateMiss(masm);
4046
4047 __ bind(&load_smi_map);
4048 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4049 __ b(&compare_map);
4050}
4051
4052
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004053void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4054 if (masm->isolate()->function_entry_hook() != NULL) {
4055 PredictableCodeSizeScope predictable(masm,
4056#if V8_TARGET_ARCH_PPC64
4057 14 * Assembler::kInstrSize);
4058#else
4059 11 * Assembler::kInstrSize);
4060#endif
4061 ProfileEntryHookStub stub(masm->isolate());
4062 __ mflr(r0);
4063 __ Push(r0, ip);
4064 __ CallStub(&stub);
4065 __ Pop(r0, ip);
4066 __ mtlr(r0);
4067 }
4068}
4069
4070
4071void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4072 // The entry hook is a "push lr, ip" instruction, followed by a call.
4073 const int32_t kReturnAddressDistanceFromFunctionStart =
4074 Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize;
4075
4076 // This should contain all kJSCallerSaved registers.
4077 const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
4078 r15.bit(); // Saved stack pointer.
4079
4080 // We also save lr, so the count here is one higher than the mask indicates.
4081 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4082
4083 // Save all caller-save registers as this may be called from anywhere.
4084 __ mflr(ip);
4085 __ MultiPush(kSavedRegs | ip.bit());
4086
4087 // Compute the function's address for the first argument.
4088 __ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart));
4089
4090 // The caller's return address is two slots above the saved temporaries.
4091 // Grab that for the second argument to the hook.
4092 __ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize));
4093
4094 // Align the stack if necessary.
4095 int frame_alignment = masm->ActivationFrameAlignment();
4096 if (frame_alignment > kPointerSize) {
4097 __ mr(r15, sp);
4098 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4099 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
4100 }
4101
4102#if !defined(USE_SIMULATOR)
4103 uintptr_t entry_hook =
4104 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
Ben Murdoch097c5b22016-05-18 11:27:45 +01004105#else
4106 // Under the simulator we need to indirect the entry hook through a
4107 // trampoline function at a known address.
4108 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4109 ExternalReference entry_hook = ExternalReference(
4110 &dispatcher, ExternalReference::BUILTIN_CALL, isolate());
4111
4112 // It additionally takes an isolate as a third parameter
4113 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
4114#endif
4115
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004116 __ mov(ip, Operand(entry_hook));
4117
Ben Murdoch097c5b22016-05-18 11:27:45 +01004118 if (ABI_USES_FUNCTION_DESCRIPTORS) {
4119 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
4120 __ LoadP(ip, MemOperand(ip, 0));
4121 }
4122 // ip set above, so nothing more to do for ABI_CALL_VIA_IP.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004123
4124 // PPC LINUX ABI:
4125 __ li(r0, Operand::Zero());
4126 __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004127
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004128 __ Call(ip);
4129
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004130 __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004131
4132 // Restore the stack pointer if needed.
4133 if (frame_alignment > kPointerSize) {
4134 __ mr(sp, r15);
4135 }
4136
4137 // Also pop lr to get Ret(0).
4138 __ MultiPop(kSavedRegs | ip.bit());
4139 __ mtlr(ip);
4140 __ Ret();
4141}
4142
4143
4144template <class T>
4145static void CreateArrayDispatch(MacroAssembler* masm,
4146 AllocationSiteOverrideMode mode) {
4147 if (mode == DISABLE_ALLOCATION_SITES) {
4148 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4149 __ TailCallStub(&stub);
4150 } else if (mode == DONT_OVERRIDE) {
4151 int last_index =
4152 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4153 for (int i = 0; i <= last_index; ++i) {
4154 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4155 __ Cmpi(r6, Operand(kind), r0);
4156 T stub(masm->isolate(), kind);
4157 __ TailCallStub(&stub, eq);
4158 }
4159
4160 // If we reached this point there is a problem.
4161 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4162 } else {
4163 UNREACHABLE();
4164 }
4165}
4166
4167
4168static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4169 AllocationSiteOverrideMode mode) {
4170 // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4171 // r6 - kind (if mode != DISABLE_ALLOCATION_SITES)
4172 // r3 - number of arguments
4173 // r4 - constructor?
4174 // sp[0] - last argument
4175 Label normal_sequence;
4176 if (mode == DONT_OVERRIDE) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004177 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4178 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4179 STATIC_ASSERT(FAST_ELEMENTS == 2);
4180 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4181 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4182 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004183
4184 // is the low bit set? If so, we are holey and that is good.
4185 __ andi(r0, r6, Operand(1));
4186 __ bne(&normal_sequence, cr0);
4187 }
4188
4189 // look at the first argument
4190 __ LoadP(r8, MemOperand(sp, 0));
4191 __ cmpi(r8, Operand::Zero());
4192 __ beq(&normal_sequence);
4193
4194 if (mode == DISABLE_ALLOCATION_SITES) {
4195 ElementsKind initial = GetInitialFastElementsKind();
4196 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4197
4198 ArraySingleArgumentConstructorStub stub_holey(
4199 masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
4200 __ TailCallStub(&stub_holey);
4201
4202 __ bind(&normal_sequence);
4203 ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
4204 DISABLE_ALLOCATION_SITES);
4205 __ TailCallStub(&stub);
4206 } else if (mode == DONT_OVERRIDE) {
4207 // We are going to create a holey array, but our kind is non-holey.
4208 // Fix kind and retry (only if we have an allocation site in the slot).
4209 __ addi(r6, r6, Operand(1));
4210
4211 if (FLAG_debug_code) {
4212 __ LoadP(r8, FieldMemOperand(r5, 0));
4213 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
4214 __ Assert(eq, kExpectedAllocationSite);
4215 }
4216
4217 // Save the resulting elements kind in type info. We can't just store r6
4218 // in the AllocationSite::transition_info field because elements kind is
4219 // restricted to a portion of the field...upper bits need to be left alone.
4220 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4221 __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
4222 __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
4223 __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset),
4224 r0);
4225
4226 __ bind(&normal_sequence);
4227 int last_index =
4228 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4229 for (int i = 0; i <= last_index; ++i) {
4230 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4231 __ mov(r0, Operand(kind));
4232 __ cmp(r6, r0);
4233 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4234 __ TailCallStub(&stub, eq);
4235 }
4236
4237 // If we reached this point there is a problem.
4238 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4239 } else {
4240 UNREACHABLE();
4241 }
4242}
4243
4244
4245template <class T>
4246static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4247 int to_index =
4248 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4249 for (int i = 0; i <= to_index; ++i) {
4250 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4251 T stub(isolate, kind);
4252 stub.GetCode();
4253 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4254 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4255 stub1.GetCode();
4256 }
4257 }
4258}
4259
4260
Ben Murdoch61f157c2016-09-16 13:49:30 +01004261void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004262 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4263 isolate);
Ben Murdoch61f157c2016-09-16 13:49:30 +01004264 ArrayNArgumentsConstructorStub stub(isolate);
4265 stub.GetCode();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004266 ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
4267 for (int i = 0; i < 2; i++) {
4268 // For internal arrays we only need a few things
4269 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4270 stubh1.GetCode();
4271 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4272 stubh2.GetCode();
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004273 }
4274}
4275
4276
4277void ArrayConstructorStub::GenerateDispatchToArrayStub(
4278 MacroAssembler* masm, AllocationSiteOverrideMode mode) {
4279 if (argument_count() == ANY) {
4280 Label not_zero_case, not_one_case;
4281 __ cmpi(r3, Operand::Zero());
4282 __ bne(&not_zero_case);
4283 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4284
4285 __ bind(&not_zero_case);
4286 __ cmpi(r3, Operand(1));
4287 __ bgt(&not_one_case);
4288 CreateArrayDispatchOneArgument(masm, mode);
4289
4290 __ bind(&not_one_case);
Ben Murdoch61f157c2016-09-16 13:49:30 +01004291 ArrayNArgumentsConstructorStub stub(masm->isolate());
4292 __ TailCallStub(&stub);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004293 } else if (argument_count() == NONE) {
4294 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4295 } else if (argument_count() == ONE) {
4296 CreateArrayDispatchOneArgument(masm, mode);
4297 } else if (argument_count() == MORE_THAN_ONE) {
Ben Murdoch61f157c2016-09-16 13:49:30 +01004298 ArrayNArgumentsConstructorStub stub(masm->isolate());
4299 __ TailCallStub(&stub);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004300 } else {
4301 UNREACHABLE();
4302 }
4303}
4304
4305
4306void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4307 // ----------- S t a t e -------------
4308 // -- r3 : argc (only if argument_count() == ANY)
4309 // -- r4 : constructor
4310 // -- r5 : AllocationSite or undefined
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004311 // -- r6 : new target
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004312 // -- sp[0] : return address
4313 // -- sp[4] : last argument
4314 // -----------------------------------
4315
4316 if (FLAG_debug_code) {
4317 // The array construct code is only set for the global and natives
4318 // builtin Array functions which always have maps.
4319
4320 // Initial map for the builtin Array function should be a map.
4321 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4322 // Will both indicate a NULL and a Smi.
4323 __ TestIfSmi(r7, r0);
4324 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4325 __ CompareObjectType(r7, r7, r8, MAP_TYPE);
4326 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4327
4328 // We should either have undefined in r5 or a valid AllocationSite
4329 __ AssertUndefinedOrAllocationSite(r5, r7);
4330 }
4331
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004332 // Enter the context of the Array function.
4333 __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
4334
4335 Label subclassing;
4336 __ cmp(r6, r4);
4337 __ bne(&subclassing);
4338
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004339 Label no_info;
4340 // Get the elements kind and case on that.
4341 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
4342 __ beq(&no_info);
4343
4344 __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
4345 __ SmiUntag(r6);
4346 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4347 __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask));
4348 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4349
4350 __ bind(&no_info);
4351 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004352
4353 __ bind(&subclassing);
4354 switch (argument_count()) {
4355 case ANY:
4356 case MORE_THAN_ONE:
4357 __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
4358 __ StorePX(r4, MemOperand(sp, r0));
4359 __ addi(r3, r3, Operand(3));
4360 break;
4361 case NONE:
4362 __ StoreP(r4, MemOperand(sp, 0 * kPointerSize));
4363 __ li(r3, Operand(3));
4364 break;
4365 case ONE:
4366 __ StoreP(r4, MemOperand(sp, 1 * kPointerSize));
4367 __ li(r3, Operand(4));
4368 break;
4369 }
4370
4371 __ Push(r6, r5);
4372 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004373}
4374
4375
4376void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
4377 ElementsKind kind) {
4378 __ cmpli(r3, Operand(1));
4379
4380 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4381 __ TailCallStub(&stub0, lt);
4382
Ben Murdoch61f157c2016-09-16 13:49:30 +01004383 ArrayNArgumentsConstructorStub stubN(isolate());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004384 __ TailCallStub(&stubN, gt);
4385
4386 if (IsFastPackedElementsKind(kind)) {
4387 // We might need to create a holey array
4388 // look at the first argument
4389 __ LoadP(r6, MemOperand(sp, 0));
4390 __ cmpi(r6, Operand::Zero());
4391
4392 InternalArraySingleArgumentConstructorStub stub1_holey(
4393 isolate(), GetHoleyElementsKind(kind));
4394 __ TailCallStub(&stub1_holey, ne);
4395 }
4396
4397 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4398 __ TailCallStub(&stub1);
4399}
4400
4401
4402void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4403 // ----------- S t a t e -------------
4404 // -- r3 : argc
4405 // -- r4 : constructor
4406 // -- sp[0] : return address
4407 // -- sp[4] : last argument
4408 // -----------------------------------
4409
4410 if (FLAG_debug_code) {
4411 // The array construct code is only set for the global and natives
4412 // builtin Array functions which always have maps.
4413
4414 // Initial map for the builtin Array function should be a map.
4415 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4416 // Will both indicate a NULL and a Smi.
4417 __ TestIfSmi(r6, r0);
4418 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4419 __ CompareObjectType(r6, r6, r7, MAP_TYPE);
4420 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4421 }
4422
4423 // Figure out the right elements kind
4424 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4425 // Load the map's "bit field 2" into |result|.
4426 __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
4427 // Retrieve elements_kind from bit field 2.
4428 __ DecodeField<Map::ElementsKindBits>(r6);
4429
4430 if (FLAG_debug_code) {
4431 Label done;
4432 __ cmpi(r6, Operand(FAST_ELEMENTS));
4433 __ beq(&done);
4434 __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS));
4435 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4436 __ bind(&done);
4437 }
4438
4439 Label fast_elements_case;
4440 __ cmpi(r6, Operand(FAST_ELEMENTS));
4441 __ beq(&fast_elements_case);
4442 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4443
4444 __ bind(&fast_elements_case);
4445 GenerateCase(masm, FAST_ELEMENTS);
4446}
4447
Ben Murdoch097c5b22016-05-18 11:27:45 +01004448void FastNewObjectStub::Generate(MacroAssembler* masm) {
4449 // ----------- S t a t e -------------
4450 // -- r4 : target
4451 // -- r6 : new target
4452 // -- cp : context
4453 // -- lr : return address
4454 // -----------------------------------
4455 __ AssertFunction(r4);
4456 __ AssertReceiver(r6);
4457
4458 // Verify that the new target is a JSFunction.
4459 Label new_object;
4460 __ CompareObjectType(r6, r5, r5, JS_FUNCTION_TYPE);
4461 __ bne(&new_object);
4462
4463 // Load the initial map and verify that it's in fact a map.
4464 __ LoadP(r5, FieldMemOperand(r6, JSFunction::kPrototypeOrInitialMapOffset));
4465 __ JumpIfSmi(r5, &new_object);
4466 __ CompareObjectType(r5, r3, r3, MAP_TYPE);
4467 __ bne(&new_object);
4468
4469 // Fall back to runtime if the target differs from the new target's
4470 // initial map constructor.
4471 __ LoadP(r3, FieldMemOperand(r5, Map::kConstructorOrBackPointerOffset));
4472 __ cmp(r3, r4);
4473 __ bne(&new_object);
4474
4475 // Allocate the JSObject on the heap.
4476 Label allocate, done_allocate;
4477 __ lbz(r7, FieldMemOperand(r5, Map::kInstanceSizeOffset));
4478 __ Allocate(r7, r3, r8, r9, &allocate, SIZE_IN_WORDS);
4479 __ bind(&done_allocate);
4480
4481 // Initialize the JSObject fields.
Ben Murdochc5610432016-08-08 18:44:38 +01004482 __ StoreP(r5, FieldMemOperand(r3, JSObject::kMapOffset), r0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004483 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
Ben Murdochc5610432016-08-08 18:44:38 +01004484 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
4485 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004486 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
Ben Murdochc5610432016-08-08 18:44:38 +01004487 __ addi(r4, r3, Operand(JSObject::kHeaderSize - kHeapObjectTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004488
4489 // ----------- S t a t e -------------
Ben Murdochc5610432016-08-08 18:44:38 +01004490 // -- r3 : result (tagged)
Ben Murdoch097c5b22016-05-18 11:27:45 +01004491 // -- r4 : result fields (untagged)
4492 // -- r8 : result end (untagged)
4493 // -- r5 : initial map
4494 // -- cp : context
4495 // -- lr : return address
4496 // -----------------------------------
4497
4498 // Perform in-object slack tracking if requested.
4499 Label slack_tracking;
4500 STATIC_ASSERT(Map::kNoSlackTracking == 0);
4501 __ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
4502 __ lwz(r6, FieldMemOperand(r5, Map::kBitField3Offset));
4503 __ DecodeField<Map::ConstructionCounter>(r10, r6, SetRC);
4504 __ bne(&slack_tracking, cr0);
4505 {
4506 // Initialize all in-object fields with undefined.
4507 __ InitializeFieldsWithFiller(r4, r8, r9);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004508 __ Ret();
4509 }
4510 __ bind(&slack_tracking);
4511 {
4512 // Decrease generous allocation count.
4513 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
4514 __ Add(r6, r6, -(1 << Map::ConstructionCounter::kShift), r0);
4515 __ stw(r6, FieldMemOperand(r5, Map::kBitField3Offset));
4516
4517 // Initialize the in-object fields with undefined.
4518 __ lbz(r7, FieldMemOperand(r5, Map::kUnusedPropertyFieldsOffset));
4519 __ ShiftLeftImm(r7, r7, Operand(kPointerSizeLog2));
4520 __ sub(r7, r8, r7);
4521 __ InitializeFieldsWithFiller(r4, r7, r9);
4522
4523 // Initialize the remaining (reserved) fields with one pointer filler map.
4524 __ LoadRoot(r9, Heap::kOnePointerFillerMapRootIndex);
4525 __ InitializeFieldsWithFiller(r4, r8, r9);
4526
Ben Murdoch097c5b22016-05-18 11:27:45 +01004527 // Check if we can finalize the instance size.
4528 __ cmpi(r10, Operand(Map::kSlackTrackingCounterEnd));
4529 __ Ret(ne);
4530
4531 // Finalize the instance size.
4532 {
4533 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4534 __ Push(r3, r5);
4535 __ CallRuntime(Runtime::kFinalizeInstanceSize);
4536 __ Pop(r3);
4537 }
4538 __ Ret();
4539 }
4540
4541 // Fall back to %AllocateInNewSpace.
4542 __ bind(&allocate);
4543 {
4544 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4545 STATIC_ASSERT(kSmiTag == 0);
4546 __ ShiftLeftImm(r7, r7,
4547 Operand(kPointerSizeLog2 + kSmiTagSize + kSmiShiftSize));
4548 __ Push(r5, r7);
4549 __ CallRuntime(Runtime::kAllocateInNewSpace);
4550 __ Pop(r5);
4551 }
Ben Murdoch097c5b22016-05-18 11:27:45 +01004552 __ lbz(r8, FieldMemOperand(r5, Map::kInstanceSizeOffset));
4553 __ ShiftLeftImm(r8, r8, Operand(kPointerSizeLog2));
4554 __ add(r8, r3, r8);
Ben Murdochc5610432016-08-08 18:44:38 +01004555 __ subi(r8, r8, Operand(kHeapObjectTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004556 __ b(&done_allocate);
4557
4558 // Fall back to %NewObject.
4559 __ bind(&new_object);
4560 __ Push(r4, r6);
4561 __ TailCallRuntime(Runtime::kNewObject);
4562}
4563
4564void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
4565 // ----------- S t a t e -------------
4566 // -- r4 : function
4567 // -- cp : context
4568 // -- fp : frame pointer
4569 // -- lr : return address
4570 // -----------------------------------
4571 __ AssertFunction(r4);
4572
Ben Murdochc5610432016-08-08 18:44:38 +01004573 // Make r5 point to the JavaScript frame.
4574 __ mr(r5, fp);
4575 if (skip_stub_frame()) {
4576 // For Ignition we need to skip the handler/stub frame to reach the
4577 // JavaScript frame for the function.
Ben Murdoch097c5b22016-05-18 11:27:45 +01004578 __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
Ben Murdochc5610432016-08-08 18:44:38 +01004579 }
4580 if (FLAG_debug_code) {
4581 Label ok;
Ben Murdochda12d292016-06-02 14:46:10 +01004582 __ LoadP(ip, MemOperand(r5, StandardFrameConstants::kFunctionOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004583 __ cmp(ip, r4);
Ben Murdochc5610432016-08-08 18:44:38 +01004584 __ beq(&ok);
4585 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
4586 __ bind(&ok);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004587 }
4588
4589 // Check if we have rest parameters (only possible if we have an
4590 // arguments adaptor frame below the function frame).
4591 Label no_rest_parameters;
4592 __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01004593 __ LoadP(ip, MemOperand(r5, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004594 __ CmpSmiLiteral(ip, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
4595 __ bne(&no_rest_parameters);
4596
4597 // Check if the arguments adaptor frame contains more arguments than
4598 // specified by the function's internal formal parameter count.
4599 Label rest_parameters;
4600 __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
Ben Murdoch61f157c2016-09-16 13:49:30 +01004601 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004602 __ LoadWordArith(
Ben Murdoch61f157c2016-09-16 13:49:30 +01004603 r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004604#if V8_TARGET_ARCH_PPC64
Ben Murdoch61f157c2016-09-16 13:49:30 +01004605 __ SmiTag(r6);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004606#endif
Ben Murdoch61f157c2016-09-16 13:49:30 +01004607 __ sub(r3, r3, r6, LeaveOE, SetRC);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004608 __ bgt(&rest_parameters, cr0);
4609
4610 // Return an empty rest parameter array.
4611 __ bind(&no_rest_parameters);
4612 {
4613 // ----------- S t a t e -------------
4614 // -- cp : context
4615 // -- lr : return address
4616 // -----------------------------------
4617
4618 // Allocate an empty rest parameter array.
4619 Label allocate, done_allocate;
Ben Murdochc5610432016-08-08 18:44:38 +01004620 __ Allocate(JSArray::kSize, r3, r4, r5, &allocate, NO_ALLOCATION_FLAGS);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004621 __ bind(&done_allocate);
4622
4623 // Setup the rest parameter array in r0.
4624 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r4);
4625 __ StoreP(r4, FieldMemOperand(r3, JSArray::kMapOffset), r0);
4626 __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex);
4627 __ StoreP(r4, FieldMemOperand(r3, JSArray::kPropertiesOffset), r0);
4628 __ StoreP(r4, FieldMemOperand(r3, JSArray::kElementsOffset), r0);
4629 __ li(r4, Operand::Zero());
4630 __ StoreP(r4, FieldMemOperand(r3, JSArray::kLengthOffset), r0);
4631 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4632 __ Ret();
4633
4634 // Fall back to %AllocateInNewSpace.
4635 __ bind(&allocate);
4636 {
4637 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4638 __ Push(Smi::FromInt(JSArray::kSize));
4639 __ CallRuntime(Runtime::kAllocateInNewSpace);
4640 }
4641 __ b(&done_allocate);
4642 }
4643
4644 __ bind(&rest_parameters);
4645 {
4646 // Compute the pointer to the first rest parameter (skippping the receiver).
4647 __ SmiToPtrArrayOffset(r9, r3);
4648 __ add(r5, r5, r9);
4649 __ addi(r5, r5, Operand(StandardFrameConstants::kCallerSPOffset));
4650
4651 // ----------- S t a t e -------------
4652 // -- cp : context
4653 // -- r3 : number of rest parameters (tagged)
Ben Murdoch61f157c2016-09-16 13:49:30 +01004654 // -- r4 : function
Ben Murdoch097c5b22016-05-18 11:27:45 +01004655 // -- r5 : pointer just past first rest parameters
4656 // -- r9 : size of rest parameters
4657 // -- lr : return address
4658 // -----------------------------------
4659
4660 // Allocate space for the rest parameter array plus the backing store.
4661 Label allocate, done_allocate;
Ben Murdoch61f157c2016-09-16 13:49:30 +01004662 __ mov(r10, Operand(JSArray::kSize + FixedArray::kHeaderSize));
4663 __ add(r10, r10, r9);
4664 __ Allocate(r10, r6, r7, r8, &allocate, NO_ALLOCATION_FLAGS);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004665 __ bind(&done_allocate);
4666
4667 // Setup the elements array in r6.
4668 __ LoadRoot(r4, Heap::kFixedArrayMapRootIndex);
4669 __ StoreP(r4, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
4670 __ StoreP(r3, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
4671 __ addi(r7, r6,
4672 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
4673 {
4674 Label loop;
4675 __ SmiUntag(r0, r3);
4676 __ mtctr(r0);
4677 __ bind(&loop);
4678 __ LoadPU(ip, MemOperand(r5, -kPointerSize));
4679 __ StorePU(ip, MemOperand(r7, kPointerSize));
4680 __ bdnz(&loop);
4681 __ addi(r7, r7, Operand(kPointerSize));
4682 }
4683
4684 // Setup the rest parameter array in r7.
4685 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r4);
4686 __ StoreP(r4, MemOperand(r7, JSArray::kMapOffset));
4687 __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex);
4688 __ StoreP(r4, MemOperand(r7, JSArray::kPropertiesOffset));
4689 __ StoreP(r6, MemOperand(r7, JSArray::kElementsOffset));
4690 __ StoreP(r3, MemOperand(r7, JSArray::kLengthOffset));
4691 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4692 __ addi(r3, r7, Operand(kHeapObjectTag));
4693 __ Ret();
4694
Ben Murdoch61f157c2016-09-16 13:49:30 +01004695 // Fall back to %AllocateInNewSpace (if not too big).
4696 Label too_big_for_new_space;
Ben Murdoch097c5b22016-05-18 11:27:45 +01004697 __ bind(&allocate);
Ben Murdoch61f157c2016-09-16 13:49:30 +01004698 __ Cmpi(r10, Operand(Page::kMaxRegularHeapObjectSize), r0);
4699 __ bgt(&too_big_for_new_space);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004700 {
4701 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
Ben Murdoch61f157c2016-09-16 13:49:30 +01004702 __ SmiTag(r10);
4703 __ Push(r3, r5, r10);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004704 __ CallRuntime(Runtime::kAllocateInNewSpace);
4705 __ mr(r6, r3);
4706 __ Pop(r3, r5);
4707 }
4708 __ b(&done_allocate);
Ben Murdoch61f157c2016-09-16 13:49:30 +01004709
4710 // Fall back to %NewRestParameter.
4711 __ bind(&too_big_for_new_space);
4712 __ push(r4);
4713 __ TailCallRuntime(Runtime::kNewRestParameter);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004714 }
4715}
4716
4717void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
4718 // ----------- S t a t e -------------
4719 // -- r4 : function
4720 // -- cp : context
4721 // -- fp : frame pointer
4722 // -- lr : return address
4723 // -----------------------------------
4724 __ AssertFunction(r4);
4725
Ben Murdochc5610432016-08-08 18:44:38 +01004726 // Make r10 point to the JavaScript frame.
4727 __ mr(r10, fp);
4728 if (skip_stub_frame()) {
4729 // For Ignition we need to skip the handler/stub frame to reach the
4730 // JavaScript frame for the function.
4731 __ LoadP(r10, MemOperand(r10, StandardFrameConstants::kCallerFPOffset));
4732 }
4733 if (FLAG_debug_code) {
4734 Label ok;
4735 __ LoadP(ip, MemOperand(r10, StandardFrameConstants::kFunctionOffset));
4736 __ cmp(ip, r4);
4737 __ beq(&ok);
4738 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
4739 __ bind(&ok);
4740 }
4741
4742
Ben Murdoch097c5b22016-05-18 11:27:45 +01004743 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
4744 __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
4745 __ LoadWordArith(
4746 r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
4747#if V8_TARGET_ARCH_PPC64
4748 __ SmiTag(r5);
4749#endif
4750 __ SmiToPtrArrayOffset(r6, r5);
Ben Murdochc5610432016-08-08 18:44:38 +01004751 __ add(r6, r10, r6);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004752 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
4753
4754 // r4 : function
4755 // r5 : number of parameters (tagged)
4756 // r6 : parameters pointer
Ben Murdochc5610432016-08-08 18:44:38 +01004757 // r10 : JavaScript frame pointer
Ben Murdoch097c5b22016-05-18 11:27:45 +01004758 // Registers used over whole function:
4759 // r8 : arguments count (tagged)
4760 // r9 : mapped parameter count (tagged)
4761
4762 // Check if the calling frame is an arguments adaptor frame.
4763 Label adaptor_frame, try_allocate, runtime;
Ben Murdochc5610432016-08-08 18:44:38 +01004764 __ LoadP(r7, MemOperand(r10, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01004765 __ LoadP(r3, MemOperand(r7, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01004766 __ CmpSmiLiteral(r3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
4767 __ beq(&adaptor_frame);
4768
4769 // No adaptor, parameter count = argument count.
4770 __ mr(r8, r5);
4771 __ mr(r9, r5);
4772 __ b(&try_allocate);
4773
4774 // We have an adaptor frame. Patch the parameters pointer.
4775 __ bind(&adaptor_frame);
4776 __ LoadP(r8, MemOperand(r7, ArgumentsAdaptorFrameConstants::kLengthOffset));
4777 __ SmiToPtrArrayOffset(r6, r8);
4778 __ add(r6, r6, r7);
4779 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
4780
4781 // r8 = argument count (tagged)
4782 // r9 = parameter count (tagged)
4783 // Compute the mapped parameter count = min(r5, r8) in r9.
4784 __ cmp(r5, r8);
4785 if (CpuFeatures::IsSupported(ISELECT)) {
4786 __ isel(lt, r9, r5, r8);
4787 } else {
4788 Label skip;
4789 __ mr(r9, r5);
4790 __ blt(&skip);
4791 __ mr(r9, r8);
4792 __ bind(&skip);
4793 }
4794
4795 __ bind(&try_allocate);
4796
4797 // Compute the sizes of backing store, parameter map, and arguments object.
4798 // 1. Parameter map, has 2 extra words containing context and backing store.
4799 const int kParameterMapHeaderSize =
4800 FixedArray::kHeaderSize + 2 * kPointerSize;
4801 // If there are no mapped parameters, we do not need the parameter_map.
4802 __ CmpSmiLiteral(r9, Smi::FromInt(0), r0);
4803 if (CpuFeatures::IsSupported(ISELECT)) {
4804 __ SmiToPtrArrayOffset(r11, r9);
4805 __ addi(r11, r11, Operand(kParameterMapHeaderSize));
4806 __ isel(eq, r11, r0, r11);
4807 } else {
4808 Label skip2, skip3;
4809 __ bne(&skip2);
4810 __ li(r11, Operand::Zero());
4811 __ b(&skip3);
4812 __ bind(&skip2);
4813 __ SmiToPtrArrayOffset(r11, r9);
4814 __ addi(r11, r11, Operand(kParameterMapHeaderSize));
4815 __ bind(&skip3);
4816 }
4817
4818 // 2. Backing store.
4819 __ SmiToPtrArrayOffset(r7, r8);
4820 __ add(r11, r11, r7);
4821 __ addi(r11, r11, Operand(FixedArray::kHeaderSize));
4822
4823 // 3. Arguments object.
4824 __ addi(r11, r11, Operand(JSSloppyArgumentsObject::kSize));
4825
4826 // Do the allocation of all three objects in one go.
Ben Murdochc5610432016-08-08 18:44:38 +01004827 __ Allocate(r11, r3, r11, r7, &runtime, NO_ALLOCATION_FLAGS);
Ben Murdoch097c5b22016-05-18 11:27:45 +01004828
4829 // r3 = address of new object(s) (tagged)
4830 // r5 = argument count (smi-tagged)
4831 // Get the arguments boilerplate from the current native context into r4.
4832 const int kNormalOffset =
4833 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
4834 const int kAliasedOffset =
4835 Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
4836
4837 __ LoadP(r7, NativeContextMemOperand());
4838 __ cmpi(r9, Operand::Zero());
4839 if (CpuFeatures::IsSupported(ISELECT)) {
4840 __ LoadP(r11, MemOperand(r7, kNormalOffset));
4841 __ LoadP(r7, MemOperand(r7, kAliasedOffset));
4842 __ isel(eq, r7, r11, r7);
4843 } else {
4844 Label skip4, skip5;
4845 __ bne(&skip4);
4846 __ LoadP(r7, MemOperand(r7, kNormalOffset));
4847 __ b(&skip5);
4848 __ bind(&skip4);
4849 __ LoadP(r7, MemOperand(r7, kAliasedOffset));
4850 __ bind(&skip5);
4851 }
4852
4853 // r3 = address of new object (tagged)
4854 // r5 = argument count (smi-tagged)
4855 // r7 = address of arguments map (tagged)
4856 // r9 = mapped parameter count (tagged)
4857 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
4858 __ LoadRoot(r11, Heap::kEmptyFixedArrayRootIndex);
4859 __ StoreP(r11, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
4860 __ StoreP(r11, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
4861
4862 // Set up the callee in-object property.
4863 __ AssertNotSmi(r4);
4864 __ StoreP(r4, FieldMemOperand(r3, JSSloppyArgumentsObject::kCalleeOffset),
4865 r0);
4866
4867 // Use the length (smi tagged) and set that as an in-object property too.
4868 __ AssertSmi(r8);
4869 __ StoreP(r8, FieldMemOperand(r3, JSSloppyArgumentsObject::kLengthOffset),
4870 r0);
4871
4872 // Set up the elements pointer in the allocated arguments object.
4873 // If we allocated a parameter map, r7 will point there, otherwise
4874 // it will point to the backing store.
4875 __ addi(r7, r3, Operand(JSSloppyArgumentsObject::kSize));
4876 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
4877
4878 // r3 = address of new object (tagged)
4879 // r5 = argument count (tagged)
4880 // r7 = address of parameter map or backing store (tagged)
4881 // r9 = mapped parameter count (tagged)
4882 // Initialize parameter map. If there are no mapped arguments, we're done.
4883 Label skip_parameter_map;
4884 __ CmpSmiLiteral(r9, Smi::FromInt(0), r0);
4885 if (CpuFeatures::IsSupported(ISELECT)) {
4886 __ isel(eq, r4, r7, r4);
4887 __ beq(&skip_parameter_map);
4888 } else {
4889 Label skip6;
4890 __ bne(&skip6);
4891 // Move backing store address to r4, because it is
4892 // expected there when filling in the unmapped arguments.
4893 __ mr(r4, r7);
4894 __ b(&skip_parameter_map);
4895 __ bind(&skip6);
4896 }
4897
4898 __ LoadRoot(r8, Heap::kSloppyArgumentsElementsMapRootIndex);
4899 __ StoreP(r8, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
4900 __ AddSmiLiteral(r8, r9, Smi::FromInt(2), r0);
4901 __ StoreP(r8, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
4902 __ StoreP(cp, FieldMemOperand(r7, FixedArray::kHeaderSize + 0 * kPointerSize),
4903 r0);
4904 __ SmiToPtrArrayOffset(r8, r9);
4905 __ add(r8, r8, r7);
4906 __ addi(r8, r8, Operand(kParameterMapHeaderSize));
4907 __ StoreP(r8, FieldMemOperand(r7, FixedArray::kHeaderSize + 1 * kPointerSize),
4908 r0);
4909
4910 // Copy the parameter slots and the holes in the arguments.
4911 // We need to fill in mapped_parameter_count slots. They index the context,
4912 // where parameters are stored in reverse order, at
4913 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4914 // The mapped parameter thus need to get indices
4915 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
4916 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4917 // We loop from right to left.
4918 Label parameters_loop;
4919 __ mr(r8, r9);
4920 __ AddSmiLiteral(r11, r5, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0);
4921 __ sub(r11, r11, r9);
4922 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
4923 __ SmiToPtrArrayOffset(r4, r8);
4924 __ add(r4, r4, r7);
4925 __ addi(r4, r4, Operand(kParameterMapHeaderSize));
4926
4927 // r4 = address of backing store (tagged)
4928 // r7 = address of parameter map (tagged)
4929 // r8 = temporary scratch (a.o., for address calculation)
4930 // r10 = temporary scratch (a.o., for address calculation)
4931 // ip = the hole value
4932 __ SmiUntag(r8);
4933 __ mtctr(r8);
4934 __ ShiftLeftImm(r8, r8, Operand(kPointerSizeLog2));
4935 __ add(r10, r4, r8);
4936 __ add(r8, r7, r8);
4937 __ addi(r10, r10, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4938 __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4939
4940 __ bind(&parameters_loop);
4941 __ StorePU(r11, MemOperand(r8, -kPointerSize));
4942 __ StorePU(ip, MemOperand(r10, -kPointerSize));
4943 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
4944 __ bdnz(&parameters_loop);
4945
4946 // Restore r8 = argument count (tagged).
4947 __ LoadP(r8, FieldMemOperand(r3, JSSloppyArgumentsObject::kLengthOffset));
4948
4949 __ bind(&skip_parameter_map);
4950 // r3 = address of new object (tagged)
4951 // r4 = address of backing store (tagged)
4952 // r8 = argument count (tagged)
4953 // r9 = mapped parameter count (tagged)
4954 // r11 = scratch
4955 // Copy arguments header and remaining slots (if there are any).
4956 __ LoadRoot(r11, Heap::kFixedArrayMapRootIndex);
4957 __ StoreP(r11, FieldMemOperand(r4, FixedArray::kMapOffset), r0);
4958 __ StoreP(r8, FieldMemOperand(r4, FixedArray::kLengthOffset), r0);
4959 __ sub(r11, r8, r9, LeaveOE, SetRC);
4960 __ Ret(eq, cr0);
4961
4962 Label arguments_loop;
4963 __ SmiUntag(r11);
4964 __ mtctr(r11);
4965
4966 __ SmiToPtrArrayOffset(r0, r9);
4967 __ sub(r6, r6, r0);
4968 __ add(r11, r4, r0);
4969 __ addi(r11, r11,
4970 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
4971
4972 __ bind(&arguments_loop);
4973 __ LoadPU(r7, MemOperand(r6, -kPointerSize));
4974 __ StorePU(r7, MemOperand(r11, kPointerSize));
4975 __ bdnz(&arguments_loop);
4976
4977 // Return.
4978 __ Ret();
4979
4980 // Do the runtime call to allocate the arguments object.
4981 // r8 = argument count (tagged)
4982 __ bind(&runtime);
4983 __ Push(r4, r6, r8);
4984 __ TailCallRuntime(Runtime::kNewSloppyArguments);
4985}
4986
4987void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
4988 // ----------- S t a t e -------------
4989 // -- r4 : function
4990 // -- cp : context
4991 // -- fp : frame pointer
4992 // -- lr : return address
4993 // -----------------------------------
4994 __ AssertFunction(r4);
4995
Ben Murdochc5610432016-08-08 18:44:38 +01004996 // Make r5 point to the JavaScript frame.
4997 __ mr(r5, fp);
4998 if (skip_stub_frame()) {
4999 // For Ignition we need to skip the handler/stub frame to reach the
5000 // JavaScript frame for the function.
Ben Murdoch097c5b22016-05-18 11:27:45 +01005001 __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
Ben Murdochc5610432016-08-08 18:44:38 +01005002 }
5003 if (FLAG_debug_code) {
5004 Label ok;
Ben Murdochda12d292016-06-02 14:46:10 +01005005 __ LoadP(ip, MemOperand(r5, StandardFrameConstants::kFunctionOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005006 __ cmp(ip, r4);
Ben Murdochc5610432016-08-08 18:44:38 +01005007 __ b(&ok);
5008 __ Abort(kInvalidFrameForFastNewRestArgumentsStub);
5009 __ bind(&ok);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005010 }
5011
5012 // Check if we have an arguments adaptor frame below the function frame.
5013 Label arguments_adaptor, arguments_done;
5014 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
Ben Murdochda12d292016-06-02 14:46:10 +01005015 __ LoadP(ip, MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005016 __ CmpSmiLiteral(ip, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
5017 __ beq(&arguments_adaptor);
5018 {
Ben Murdoch61f157c2016-09-16 13:49:30 +01005019 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005020 __ LoadWordArith(
5021 r3,
Ben Murdoch61f157c2016-09-16 13:49:30 +01005022 FieldMemOperand(r7, SharedFunctionInfo::kFormalParameterCountOffset));
Ben Murdoch097c5b22016-05-18 11:27:45 +01005023#if V8_TARGET_ARCH_PPC64
5024 __ SmiTag(r3);
5025#endif
5026 __ SmiToPtrArrayOffset(r9, r3);
5027 __ add(r5, r5, r9);
5028 }
5029 __ b(&arguments_done);
5030 __ bind(&arguments_adaptor);
5031 {
5032 __ LoadP(r3, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
5033 __ SmiToPtrArrayOffset(r9, r3);
5034 __ add(r5, r6, r9);
5035 }
5036 __ bind(&arguments_done);
5037 __ addi(r5, r5, Operand(StandardFrameConstants::kCallerSPOffset));
5038
5039 // ----------- S t a t e -------------
5040 // -- cp : context
5041 // -- r3 : number of rest parameters (tagged)
Ben Murdoch61f157c2016-09-16 13:49:30 +01005042 // -- r4 : function
Ben Murdoch097c5b22016-05-18 11:27:45 +01005043 // -- r5 : pointer just past first rest parameters
5044 // -- r9 : size of rest parameters
5045 // -- lr : return address
5046 // -----------------------------------
5047
5048 // Allocate space for the strict arguments object plus the backing store.
5049 Label allocate, done_allocate;
Ben Murdoch61f157c2016-09-16 13:49:30 +01005050 __ mov(r10,
5051 Operand(JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
5052 __ add(r10, r10, r9);
5053 __ Allocate(r10, r6, r7, r8, &allocate, NO_ALLOCATION_FLAGS);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005054 __ bind(&done_allocate);
5055
5056 // Setup the elements array in r6.
5057 __ LoadRoot(r4, Heap::kFixedArrayMapRootIndex);
5058 __ StoreP(r4, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
5059 __ StoreP(r3, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
5060 __ addi(r7, r6,
5061 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
5062 {
5063 Label loop, done_loop;
5064 __ SmiUntag(r0, r3, SetRC);
5065 __ beq(&done_loop, cr0);
5066 __ mtctr(r0);
5067 __ bind(&loop);
5068 __ LoadPU(ip, MemOperand(r5, -kPointerSize));
5069 __ StorePU(ip, MemOperand(r7, kPointerSize));
5070 __ bdnz(&loop);
5071 __ bind(&done_loop);
5072 __ addi(r7, r7, Operand(kPointerSize));
5073 }
5074
5075 // Setup the rest parameter array in r7.
5076 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, r4);
5077 __ StoreP(r4, MemOperand(r7, JSStrictArgumentsObject::kMapOffset));
5078 __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex);
5079 __ StoreP(r4, MemOperand(r7, JSStrictArgumentsObject::kPropertiesOffset));
5080 __ StoreP(r6, MemOperand(r7, JSStrictArgumentsObject::kElementsOffset));
5081 __ StoreP(r3, MemOperand(r7, JSStrictArgumentsObject::kLengthOffset));
5082 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
5083 __ addi(r3, r7, Operand(kHeapObjectTag));
5084 __ Ret();
5085
Ben Murdoch61f157c2016-09-16 13:49:30 +01005086 // Fall back to %AllocateInNewSpace (if not too big).
5087 Label too_big_for_new_space;
Ben Murdoch097c5b22016-05-18 11:27:45 +01005088 __ bind(&allocate);
Ben Murdoch61f157c2016-09-16 13:49:30 +01005089 __ Cmpi(r10, Operand(Page::kMaxRegularHeapObjectSize), r0);
5090 __ bgt(&too_big_for_new_space);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005091 {
5092 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
Ben Murdoch61f157c2016-09-16 13:49:30 +01005093 __ SmiTag(r10);
5094 __ Push(r3, r5, r10);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005095 __ CallRuntime(Runtime::kAllocateInNewSpace);
5096 __ mr(r6, r3);
5097 __ Pop(r3, r5);
5098 }
5099 __ b(&done_allocate);
Ben Murdoch61f157c2016-09-16 13:49:30 +01005100
5101 // Fall back to %NewStrictArguments.
5102 __ bind(&too_big_for_new_space);
5103 __ push(r4);
5104 __ TailCallRuntime(Runtime::kNewStrictArguments);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005105}
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005106
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005107void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5108 Register value = r3;
5109 Register slot = r5;
5110
5111 Register cell = r4;
5112 Register cell_details = r6;
5113 Register cell_value = r7;
5114 Register cell_value_map = r8;
5115 Register scratch = r9;
5116
5117 Register context = cp;
5118 Register context_temp = cell;
5119
5120 Label fast_heapobject_case, fast_smi_case, slow_case;
5121
5122 if (FLAG_debug_code) {
5123 __ CompareRoot(value, Heap::kTheHoleValueRootIndex);
5124 __ Check(ne, kUnexpectedValue);
5125 }
5126
5127 // Go up the context chain to the script context.
5128 for (int i = 0; i < depth(); i++) {
5129 __ LoadP(context_temp, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5130 context = context_temp;
5131 }
5132
5133 // Load the PropertyCell at the specified slot.
5134 __ ShiftLeftImm(r0, slot, Operand(kPointerSizeLog2));
5135 __ add(cell, context, r0);
5136 __ LoadP(cell, ContextMemOperand(cell));
5137
5138 // Load PropertyDetails for the cell (actually only the cell_type and kind).
5139 __ LoadP(cell_details, FieldMemOperand(cell, PropertyCell::kDetailsOffset));
5140 __ SmiUntag(cell_details);
5141 __ andi(cell_details, cell_details,
5142 Operand(PropertyDetails::PropertyCellTypeField::kMask |
5143 PropertyDetails::KindField::kMask |
5144 PropertyDetails::kAttributesReadOnlyMask));
5145
5146 // Check if PropertyCell holds mutable data.
5147 Label not_mutable_data;
5148 __ cmpi(cell_details, Operand(PropertyDetails::PropertyCellTypeField::encode(
5149 PropertyCellType::kMutable) |
5150 PropertyDetails::KindField::encode(kData)));
5151 __ bne(&not_mutable_data);
5152 __ JumpIfSmi(value, &fast_smi_case);
5153
5154 __ bind(&fast_heapobject_case);
5155 __ StoreP(value, FieldMemOperand(cell, PropertyCell::kValueOffset), r0);
5156 // RecordWriteField clobbers the value register, so we copy it before the
5157 // call.
5158 __ mr(r6, value);
5159 __ RecordWriteField(cell, PropertyCell::kValueOffset, r6, scratch,
5160 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
5161 OMIT_SMI_CHECK);
5162 __ Ret();
5163
5164 __ bind(&not_mutable_data);
5165 // Check if PropertyCell value matches the new value (relevant for Constant,
5166 // ConstantType and Undefined cells).
5167 Label not_same_value;
5168 __ LoadP(cell_value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5169 __ cmp(cell_value, value);
5170 __ bne(&not_same_value);
5171
5172 // Make sure the PropertyCell is not marked READ_ONLY.
5173 __ andi(r0, cell_details, Operand(PropertyDetails::kAttributesReadOnlyMask));
5174 __ bne(&slow_case, cr0);
5175
5176 if (FLAG_debug_code) {
5177 Label done;
5178 // This can only be true for Constant, ConstantType and Undefined cells,
5179 // because we never store the_hole via this stub.
5180 __ cmpi(cell_details,
5181 Operand(PropertyDetails::PropertyCellTypeField::encode(
5182 PropertyCellType::kConstant) |
5183 PropertyDetails::KindField::encode(kData)));
5184 __ beq(&done);
5185 __ cmpi(cell_details,
5186 Operand(PropertyDetails::PropertyCellTypeField::encode(
5187 PropertyCellType::kConstantType) |
5188 PropertyDetails::KindField::encode(kData)));
5189 __ beq(&done);
5190 __ cmpi(cell_details,
5191 Operand(PropertyDetails::PropertyCellTypeField::encode(
5192 PropertyCellType::kUndefined) |
5193 PropertyDetails::KindField::encode(kData)));
5194 __ Check(eq, kUnexpectedValue);
5195 __ bind(&done);
5196 }
5197 __ Ret();
5198 __ bind(&not_same_value);
5199
5200 // Check if PropertyCell contains data with constant type (and is not
5201 // READ_ONLY).
5202 __ cmpi(cell_details, Operand(PropertyDetails::PropertyCellTypeField::encode(
5203 PropertyCellType::kConstantType) |
5204 PropertyDetails::KindField::encode(kData)));
5205 __ bne(&slow_case);
5206
5207 // Now either both old and new values must be smis or both must be heap
5208 // objects with same map.
5209 Label value_is_heap_object;
5210 __ JumpIfNotSmi(value, &value_is_heap_object);
5211 __ JumpIfNotSmi(cell_value, &slow_case);
5212 // Old and new values are smis, no need for a write barrier here.
5213 __ bind(&fast_smi_case);
5214 __ StoreP(value, FieldMemOperand(cell, PropertyCell::kValueOffset), r0);
5215 __ Ret();
5216
5217 __ bind(&value_is_heap_object);
5218 __ JumpIfSmi(cell_value, &slow_case);
5219
5220 __ LoadP(cell_value_map, FieldMemOperand(cell_value, HeapObject::kMapOffset));
5221 __ LoadP(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5222 __ cmp(cell_value_map, scratch);
5223 __ beq(&fast_heapobject_case);
5224
5225 // Fallback to runtime.
5226 __ bind(&slow_case);
5227 __ SmiTag(slot);
5228 __ Push(slot, value);
5229 __ TailCallRuntime(is_strict(language_mode())
5230 ? Runtime::kStoreGlobalViaContext_Strict
5231 : Runtime::kStoreGlobalViaContext_Sloppy);
5232}
5233
5234
5235static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5236 return ref0.address() - ref1.address();
5237}
5238
5239
5240// Calls an API function. Allocates HandleScope, extracts returned value
5241// from handle and propagates exceptions. Restores context. stack_space
5242// - space to be unwound on exit (includes the call JS arguments space and
5243// the additional space allocated for the fast call).
5244static void CallApiFunctionAndReturn(MacroAssembler* masm,
5245 Register function_address,
5246 ExternalReference thunk_ref,
5247 int stack_space,
5248 MemOperand* stack_space_operand,
5249 MemOperand return_value_operand,
5250 MemOperand* context_restore_operand) {
5251 Isolate* isolate = masm->isolate();
5252 ExternalReference next_address =
5253 ExternalReference::handle_scope_next_address(isolate);
5254 const int kNextOffset = 0;
5255 const int kLimitOffset = AddressOffset(
5256 ExternalReference::handle_scope_limit_address(isolate), next_address);
5257 const int kLevelOffset = AddressOffset(
5258 ExternalReference::handle_scope_level_address(isolate), next_address);
5259
5260 // Additional parameter is the address of the actual callback.
5261 DCHECK(function_address.is(r4) || function_address.is(r5));
5262 Register scratch = r6;
5263
5264 __ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate)));
5265 __ lbz(scratch, MemOperand(scratch, 0));
5266 __ cmpi(scratch, Operand::Zero());
5267
5268 if (CpuFeatures::IsSupported(ISELECT)) {
5269 __ mov(scratch, Operand(thunk_ref));
5270 __ isel(eq, scratch, function_address, scratch);
5271 } else {
5272 Label profiler_disabled;
5273 Label end_profiler_check;
5274 __ beq(&profiler_disabled);
5275 __ mov(scratch, Operand(thunk_ref));
5276 __ b(&end_profiler_check);
5277 __ bind(&profiler_disabled);
5278 __ mr(scratch, function_address);
5279 __ bind(&end_profiler_check);
5280 }
5281
5282 // Allocate HandleScope in callee-save registers.
5283 // r17 - next_address
5284 // r14 - next_address->kNextOffset
5285 // r15 - next_address->kLimitOffset
5286 // r16 - next_address->kLevelOffset
5287 __ mov(r17, Operand(next_address));
5288 __ LoadP(r14, MemOperand(r17, kNextOffset));
5289 __ LoadP(r15, MemOperand(r17, kLimitOffset));
5290 __ lwz(r16, MemOperand(r17, kLevelOffset));
5291 __ addi(r16, r16, Operand(1));
5292 __ stw(r16, MemOperand(r17, kLevelOffset));
5293
5294 if (FLAG_log_timer_events) {
5295 FrameScope frame(masm, StackFrame::MANUAL);
5296 __ PushSafepointRegisters();
5297 __ PrepareCallCFunction(1, r3);
5298 __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
5299 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5300 1);
5301 __ PopSafepointRegisters();
5302 }
5303
5304 // Native call returns to the DirectCEntry stub which redirects to the
5305 // return address pushed on stack (could have moved after GC).
5306 // DirectCEntry stub itself is generated early and never moves.
5307 DirectCEntryStub stub(isolate);
5308 stub.GenerateCall(masm, scratch);
5309
5310 if (FLAG_log_timer_events) {
5311 FrameScope frame(masm, StackFrame::MANUAL);
5312 __ PushSafepointRegisters();
5313 __ PrepareCallCFunction(1, r3);
5314 __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
5315 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5316 1);
5317 __ PopSafepointRegisters();
5318 }
5319
5320 Label promote_scheduled_exception;
5321 Label delete_allocated_handles;
5322 Label leave_exit_frame;
5323 Label return_value_loaded;
5324
5325 // load value from ReturnValue
5326 __ LoadP(r3, return_value_operand);
5327 __ bind(&return_value_loaded);
5328 // No more valid handles (the result handle was the last one). Restore
5329 // previous handle scope.
5330 __ StoreP(r14, MemOperand(r17, kNextOffset));
5331 if (__ emit_debug_code()) {
5332 __ lwz(r4, MemOperand(r17, kLevelOffset));
5333 __ cmp(r4, r16);
5334 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
5335 }
5336 __ subi(r16, r16, Operand(1));
5337 __ stw(r16, MemOperand(r17, kLevelOffset));
5338 __ LoadP(r0, MemOperand(r17, kLimitOffset));
5339 __ cmp(r15, r0);
5340 __ bne(&delete_allocated_handles);
5341
5342 // Leave the API exit frame.
5343 __ bind(&leave_exit_frame);
5344 bool restore_context = context_restore_operand != NULL;
5345 if (restore_context) {
5346 __ LoadP(cp, *context_restore_operand);
5347 }
5348 // LeaveExitFrame expects unwind space to be in a register.
5349 if (stack_space_operand != NULL) {
5350 __ lwz(r14, *stack_space_operand);
5351 } else {
5352 __ mov(r14, Operand(stack_space));
5353 }
5354 __ LeaveExitFrame(false, r14, !restore_context, stack_space_operand != NULL);
5355
5356 // Check if the function scheduled an exception.
5357 __ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
5358 __ mov(r15, Operand(ExternalReference::scheduled_exception_address(isolate)));
5359 __ LoadP(r15, MemOperand(r15));
5360 __ cmp(r14, r15);
5361 __ bne(&promote_scheduled_exception);
5362
5363 __ blr();
5364
5365 // Re-throw by promoting a scheduled exception.
5366 __ bind(&promote_scheduled_exception);
5367 __ TailCallRuntime(Runtime::kPromoteScheduledException);
5368
5369 // HandleScope limit has changed. Delete allocated extensions.
5370 __ bind(&delete_allocated_handles);
5371 __ StoreP(r15, MemOperand(r17, kLimitOffset));
5372 __ mr(r14, r3);
5373 __ PrepareCallCFunction(1, r15);
5374 __ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
5375 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5376 1);
5377 __ mr(r3, r14);
5378 __ b(&leave_exit_frame);
5379}
5380
Ben Murdochda12d292016-06-02 14:46:10 +01005381void CallApiCallbackStub::Generate(MacroAssembler* masm) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005382 // ----------- S t a t e -------------
5383 // -- r3 : callee
5384 // -- r7 : call_data
5385 // -- r5 : holder
5386 // -- r4 : api_function_address
5387 // -- cp : context
5388 // --
5389 // -- sp[0] : last argument
5390 // -- ...
5391 // -- sp[(argc - 1)* 4] : first argument
5392 // -- sp[argc * 4] : receiver
5393 // -----------------------------------
5394
5395 Register callee = r3;
5396 Register call_data = r7;
5397 Register holder = r5;
5398 Register api_function_address = r4;
5399 Register context = cp;
5400
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005401 typedef FunctionCallbackArguments FCA;
5402
5403 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5404 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5405 STATIC_ASSERT(FCA::kDataIndex == 4);
5406 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5407 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5408 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5409 STATIC_ASSERT(FCA::kHolderIndex == 0);
Ben Murdochc5610432016-08-08 18:44:38 +01005410 STATIC_ASSERT(FCA::kNewTargetIndex == 7);
5411 STATIC_ASSERT(FCA::kArgsLength == 8);
5412
5413 // new target
5414 __ PushRoot(Heap::kUndefinedValueRootIndex);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005415
5416 // context save
5417 __ push(context);
Ben Murdochda12d292016-06-02 14:46:10 +01005418 if (!is_lazy()) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005419 // load context from callee
5420 __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5421 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005422
5423 // callee
5424 __ push(callee);
5425
5426 // call data
5427 __ push(call_data);
5428
5429 Register scratch = call_data;
Ben Murdochda12d292016-06-02 14:46:10 +01005430 if (!call_data_undefined()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005431 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5432 }
5433 // return value
5434 __ push(scratch);
5435 // return value default
5436 __ push(scratch);
5437 // isolate
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005438 __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005439 __ push(scratch);
5440 // holder
5441 __ push(holder);
5442
5443 // Prepare arguments.
5444 __ mr(scratch, sp);
5445
5446 // Allocate the v8::Arguments structure in the arguments' space since
5447 // it's not controlled by GC.
5448 // PPC LINUX ABI:
5449 //
Ben Murdochc5610432016-08-08 18:44:38 +01005450 // Create 4 extra slots on stack:
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005451 // [0] space for DirectCEntryStub's LR save
Ben Murdochc5610432016-08-08 18:44:38 +01005452 // [1-3] FunctionCallbackInfo
5453 const int kApiStackSpace = 4;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005454 const int kFunctionCallbackInfoOffset =
5455 (kStackFrameExtraParamSlot + 1) * kPointerSize;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005456
5457 FrameScope frame_scope(masm, StackFrame::MANUAL);
5458 __ EnterExitFrame(false, kApiStackSpace);
5459
5460 DCHECK(!api_function_address.is(r3) && !scratch.is(r3));
5461 // r3 = FunctionCallbackInfo&
5462 // Arguments is after the return address.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005463 __ addi(r3, sp, Operand(kFunctionCallbackInfoOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005464 // FunctionCallbackInfo::implicit_args_
5465 __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize));
Ben Murdochda12d292016-06-02 14:46:10 +01005466 // FunctionCallbackInfo::values_
5467 __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
5468 __ StoreP(ip, MemOperand(r3, 1 * kPointerSize));
5469 // FunctionCallbackInfo::length_ = argc
5470 __ li(ip, Operand(argc()));
5471 __ stw(ip, MemOperand(r3, 2 * kPointerSize));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005472
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005473 ExternalReference thunk_ref =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005474 ExternalReference::invoke_function_callback(masm->isolate());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005475
5476 AllowExternalCallThatCantCauseGC scope(masm);
5477 MemOperand context_restore_operand(
5478 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5479 // Stores return the first js argument
5480 int return_value_offset = 0;
Ben Murdochda12d292016-06-02 14:46:10 +01005481 if (is_store()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005482 return_value_offset = 2 + FCA::kArgsLength;
5483 } else {
5484 return_value_offset = 2 + FCA::kReturnValueOffset;
5485 }
5486 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005487 int stack_space = 0;
Ben Murdochc5610432016-08-08 18:44:38 +01005488 MemOperand length_operand =
5489 MemOperand(sp, kFunctionCallbackInfoOffset + 2 * kPointerSize);
5490 MemOperand* stack_space_operand = &length_operand;
Ben Murdochda12d292016-06-02 14:46:10 +01005491 stack_space = argc() + FCA::kArgsLength + 1;
5492 stack_space_operand = NULL;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005493 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5494 stack_space_operand, return_value_operand,
5495 &context_restore_operand);
5496}
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005497
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005498
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005499void CallApiGetterStub::Generate(MacroAssembler* masm) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005500 int arg0Slot = 0;
5501 int accessorInfoSlot = 0;
5502 int apiStackSpace = 0;
Ben Murdochc5610432016-08-08 18:44:38 +01005503 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
5504 // name below the exit frame to make GC aware of them.
5505 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
5506 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
5507 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
5508 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
5509 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
5510 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
5511 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
5512 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
5513
5514 Register receiver = ApiGetterDescriptor::ReceiverRegister();
5515 Register holder = ApiGetterDescriptor::HolderRegister();
5516 Register callback = ApiGetterDescriptor::CallbackRegister();
5517 Register scratch = r7;
5518 DCHECK(!AreAliased(receiver, holder, callback, scratch));
5519
5520 Register api_function_address = r5;
5521
5522 __ push(receiver);
5523 // Push data from AccessorInfo.
5524 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
5525 __ push(scratch);
5526 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5527 __ Push(scratch, scratch);
5528 __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
5529 __ Push(scratch, holder);
5530 __ Push(Smi::FromInt(0)); // should_throw_on_error -> false
5531 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
5532 __ push(scratch);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005533
Ben Murdoch097c5b22016-05-18 11:27:45 +01005534 // v8::PropertyCallbackInfo::args_ array and name handle.
5535 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5536
5537 // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
5538 __ mr(r3, sp); // r3 = Handle<Name>
5539 __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = v8::PCI::args_
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005540
5541// If ABI passes Handles (pointer-sized struct) in a register:
5542//
5543// Create 2 extra slots on stack:
5544// [0] space for DirectCEntryStub's LR save
5545// [1] AccessorInfo&
5546//
5547// Otherwise:
5548//
5549// Create 3 extra slots on stack:
5550// [0] space for DirectCEntryStub's LR save
5551// [1] copy of Handle (first arg)
5552// [2] AccessorInfo&
Ben Murdoch097c5b22016-05-18 11:27:45 +01005553 if (ABI_PASSES_HANDLES_IN_REGS) {
5554 accessorInfoSlot = kStackFrameExtraParamSlot + 1;
5555 apiStackSpace = 2;
5556 } else {
5557 arg0Slot = kStackFrameExtraParamSlot + 1;
5558 accessorInfoSlot = arg0Slot + 1;
5559 apiStackSpace = 3;
5560 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005561
5562 FrameScope frame_scope(masm, StackFrame::MANUAL);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005563 __ EnterExitFrame(false, apiStackSpace);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005564
Ben Murdoch097c5b22016-05-18 11:27:45 +01005565 if (!ABI_PASSES_HANDLES_IN_REGS) {
5566 // pass 1st arg by reference
5567 __ StoreP(r3, MemOperand(sp, arg0Slot * kPointerSize));
5568 __ addi(r3, sp, Operand(arg0Slot * kPointerSize));
5569 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005570
Ben Murdoch097c5b22016-05-18 11:27:45 +01005571 // Create v8::PropertyCallbackInfo object on the stack and initialize
5572 // it's args_ field.
5573 __ StoreP(r4, MemOperand(sp, accessorInfoSlot * kPointerSize));
5574 __ addi(r4, sp, Operand(accessorInfoSlot * kPointerSize));
5575 // r4 = v8::PropertyCallbackInfo&
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005576
5577 ExternalReference thunk_ref =
5578 ExternalReference::invoke_accessor_getter_callback(isolate());
Ben Murdoch097c5b22016-05-18 11:27:45 +01005579
Ben Murdochc5610432016-08-08 18:44:38 +01005580 __ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
5581 __ LoadP(api_function_address,
5582 FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
5583
Ben Murdoch097c5b22016-05-18 11:27:45 +01005584 // +3 is to skip prolog, return address and name handle.
5585 MemOperand return_value_operand(
5586 fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005587 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
Ben Murdoch097c5b22016-05-18 11:27:45 +01005588 kStackUnwindSpace, NULL, return_value_operand, NULL);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005589}
5590
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005591#undef __
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005592} // namespace internal
5593} // namespace v8
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005594
5595#endif // V8_TARGET_ARCH_PPC