blob: 572b26b0705dc3642e4058ecd41637ee0c06c2ff [file] [log] [blame]
sewardjf98e1c02008-10-25 16:22:41 +00001
2/*--------------------------------------------------------------------*/
3/*--- LibHB: a library for implementing and checking ---*/
4/*--- the happens-before relationship in concurrent programs. ---*/
5/*--- libhb_main.c ---*/
6/*--------------------------------------------------------------------*/
7
8/*
9 This file is part of LibHB, a library for implementing and checking
10 the happens-before relationship in concurrent programs.
11
njn9f207462009-03-10 22:02:09 +000012 Copyright (C) 2008-2009 OpenWorks Ltd
sewardjf98e1c02008-10-25 16:22:41 +000013 info@open-works.co.uk
14
15 This program is free software; you can redistribute it and/or
16 modify it under the terms of the GNU General Public License as
17 published by the Free Software Foundation; either version 2 of the
18 License, or (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
28 02111-1307, USA.
29
30 The GNU General Public License is contained in the file COPYING.
31*/
32
33#include "pub_tool_basics.h"
34#include "pub_tool_libcassert.h"
35#include "pub_tool_libcbase.h"
36#include "pub_tool_libcprint.h"
37#include "pub_tool_mallocfree.h"
38#include "pub_tool_wordfm.h"
sewardjbc307e52008-12-06 22:10:54 +000039#include "pub_tool_sparsewa.h"
sewardjf98e1c02008-10-25 16:22:41 +000040#include "pub_tool_xarray.h"
41#include "pub_tool_oset.h"
42#include "pub_tool_threadstate.h"
43#include "pub_tool_aspacemgr.h"
44#include "pub_tool_execontext.h"
45#include "pub_tool_errormgr.h"
sewardjd024ae52008-11-09 20:47:57 +000046#include "pub_tool_options.h" // VG_(clo_verbosity)
sewardjf98e1c02008-10-25 16:22:41 +000047#include "hg_basics.h"
48#include "hg_wordset.h"
49#include "hg_lock_n_thread.h"
50#include "hg_errors.h"
51
52#include "libhb.h"
53
54
sewardj8f5374e2008-12-07 11:40:17 +000055/////////////////////////////////////////////////////////////////
56/////////////////////////////////////////////////////////////////
57// //
58// Debugging #defines //
59// //
60/////////////////////////////////////////////////////////////////
61/////////////////////////////////////////////////////////////////
62
63/* Check the sanity of shadow values in the core memory state
64 machine. Change #if 0 to #if 1 to enable this. */
65#if 0
66# define CHECK_MSM 1
67#else
68# define CHECK_MSM 0
69#endif
70
71
72/* Check sanity (reference counts, etc) in the conflicting access
73 machinery. Change #if 0 to #if 1 to enable this. */
74#if 0
75# define CHECK_CEM 1
76#else
77# define CHECK_CEM 0
78#endif
79
80
81/* Check sanity in the compressed shadow memory machinery,
82 particularly in its caching innards. Unfortunately there's no
83 almost-zero-cost way to make them selectable at run time. Hence
84 set the #if 0 to #if 1 and rebuild if you want them. */
85#if 0
86# define CHECK_ZSM 1 /* do sanity-check CacheLine stuff */
87# define inline __attribute__((noinline))
88 /* probably want to ditch -fomit-frame-pointer too */
89#else
90# define CHECK_ZSM 0 /* don't sanity-check CacheLine stuff */
91#endif
92
93
94/////////////////////////////////////////////////////////////////
95/////////////////////////////////////////////////////////////////
96// //
97// Forward declarations //
98// //
99/////////////////////////////////////////////////////////////////
100/////////////////////////////////////////////////////////////////
101
sewardjf98e1c02008-10-25 16:22:41 +0000102/* fwds for
103 Globals needed by other parts of the library. These are set
104 once at startup and then never changed. */
105static void (*main_get_stacktrace)( Thr*, Addr*, UWord ) = NULL;
sewardjd52392d2008-11-08 20:36:26 +0000106static ExeContext* (*main_get_EC)( Thr* ) = NULL;
sewardjf98e1c02008-10-25 16:22:41 +0000107
sewardjf98e1c02008-10-25 16:22:41 +0000108
109
110/////////////////////////////////////////////////////////////////
111/////////////////////////////////////////////////////////////////
112// //
113// SECTION BEGIN compressed shadow memory //
114// //
115/////////////////////////////////////////////////////////////////
116/////////////////////////////////////////////////////////////////
117
118#ifndef __HB_ZSM_H
119#define __HB_ZSM_H
120
121typedef ULong SVal;
122
123/* This value has special significance to the implementation, and callers
124 may not store it in the shadow memory. */
125#define SVal_INVALID (3ULL << 62)
126
127/* This is the default value for shadow memory. Initially the shadow
128 memory contains no accessible areas and so all reads produce this
129 value. TODO: make this caller-defineable. */
130#define SVal_NOACCESS (2ULL << 62)
131
132/* Initialise the library. Once initialised, it will (or may) call
133 rcinc and rcdec in response to all the calls below, in order to
134 allow the user to do reference counting on the SVals stored herein.
135 It is important to understand, however, that due to internal
136 caching, the reference counts are in general inaccurate, and can be
137 both above or below the true reference count for an item. In
138 particular, the library may indicate that the reference count for
139 an item is zero, when in fact it is not.
140
141 To make the reference counting exact and therefore non-pointless,
142 call zsm_flush_cache. Immediately after it returns, the reference
143 counts for all items, as deduced by the caller by observing calls
144 to rcinc and rcdec, will be correct, and so any items with a zero
145 reference count may be freed (or at least considered to be
146 unreferenced by this library).
147*/
148static void zsm_init ( void(*rcinc)(SVal), void(*rcdec)(SVal) );
149
150static void zsm_set_range ( Addr, SizeT, SVal );
151static SVal zsm_read8 ( Addr );
152static void zsm_copy_range ( Addr, Addr, SizeT );
153static void zsm_flush_cache ( void );
154
155#endif /* ! __HB_ZSM_H */
156
157
sewardjf98e1c02008-10-25 16:22:41 +0000158/* Round a up to the next multiple of N. N must be a power of 2 */
159#define ROUNDUP(a, N) ((a + N - 1) & ~(N-1))
160/* Round a down to the next multiple of N. N must be a power of 2 */
161#define ROUNDDN(a, N) ((a) & ~(N-1))
162
163
164
165/* ------ User-supplied RC functions ------ */
166static void(*rcinc)(SVal) = NULL;
167static void(*rcdec)(SVal) = NULL;
168
169
170/* ------ CacheLine ------ */
171
172#define N_LINE_BITS 6 /* must be >= 3 */
173#define N_LINE_ARANGE (1 << N_LINE_BITS)
174#define N_LINE_TREES (N_LINE_ARANGE >> 3)
175
176typedef
177 struct {
178 UShort descrs[N_LINE_TREES];
179 SVal svals[N_LINE_ARANGE]; // == N_LINE_TREES * 8
180 }
181 CacheLine;
182
183#define TREE_DESCR_16_0 (1<<0)
184#define TREE_DESCR_32_0 (1<<1)
185#define TREE_DESCR_16_1 (1<<2)
186#define TREE_DESCR_64 (1<<3)
187#define TREE_DESCR_16_2 (1<<4)
188#define TREE_DESCR_32_1 (1<<5)
189#define TREE_DESCR_16_3 (1<<6)
190#define TREE_DESCR_8_0 (1<<7)
191#define TREE_DESCR_8_1 (1<<8)
192#define TREE_DESCR_8_2 (1<<9)
193#define TREE_DESCR_8_3 (1<<10)
194#define TREE_DESCR_8_4 (1<<11)
195#define TREE_DESCR_8_5 (1<<12)
196#define TREE_DESCR_8_6 (1<<13)
197#define TREE_DESCR_8_7 (1<<14)
198#define TREE_DESCR_DTY (1<<15)
199
200typedef
201 struct {
202 SVal dict[4]; /* can represent up to 4 diff values in the line */
203 UChar ix2s[N_LINE_ARANGE/4]; /* array of N_LINE_ARANGE 2-bit
204 dict indexes */
205 /* if dict[0] == SVal_INVALID then dict[1] is the index of the
206 LineF to use, and dict[2..] are also SVal_INVALID. */
207 }
208 LineZ; /* compressed rep for a cache line */
209
210typedef
211 struct {
212 Bool inUse;
213 SVal w64s[N_LINE_ARANGE];
214 }
215 LineF; /* full rep for a cache line */
216
217/* Shadow memory.
218 Primary map is a WordFM Addr SecMap*.
219 SecMaps cover some page-size-ish section of address space and hold
220 a compressed representation.
221 CacheLine-sized chunks of SecMaps are copied into a Cache, being
222 decompressed when moved into the cache and recompressed on the
223 way out. Because of this, the cache must operate as a writeback
224 cache, not a writethrough one.
225
226 Each SecMap must hold a power-of-2 number of CacheLines. Hence
227 N_SECMAP_BITS must >= N_LINE_BITS.
228*/
229#define N_SECMAP_BITS 13
230#define N_SECMAP_ARANGE (1 << N_SECMAP_BITS)
231
232// # CacheLines held by a SecMap
233#define N_SECMAP_ZLINES (N_SECMAP_ARANGE / N_LINE_ARANGE)
234
235/* The data in the SecMap is held in the array of LineZs. Each LineZ
236 either carries the required data directly, in a compressed
237 representation, or it holds (in .dict[0]) an index to the LineF in
238 .linesF that holds the full representation.
239
240 Currently-unused LineF's have their .inUse bit set to zero.
241 Since each in-use LineF is referred to be exactly one LineZ,
242 the number of .linesZ[] that refer to .linesF should equal
243 the number of .linesF[] that have .inUse == True.
244
245 RC obligations: the RCs presented to the user include exactly
246 the values in:
247 * direct Z reps, that is, ones for which .dict[0] != SVal_INVALID
248 * F reps that are in use (.inUse == True)
249
250 Hence the following actions at the following transitions are required:
251
252 F rep: .inUse==True -> .inUse==False -- rcdec_LineF
253 F rep: .inUse==False -> .inUse==True -- rcinc_LineF
254 Z rep: .dict[0] from other to SVal_INVALID -- rcdec_LineZ
255 Z rep: .dict[0] from SVal_INVALID to other -- rcinc_LineZ
256*/
257typedef
258 struct {
259 UInt magic;
260 LineZ linesZ[N_SECMAP_ZLINES];
261 LineF* linesF;
262 UInt linesF_size;
263 }
264 SecMap;
265
266#define SecMap_MAGIC 0x571e58cbU
267
268static inline Bool is_sane_SecMap ( SecMap* sm ) {
269 return sm != NULL && sm->magic == SecMap_MAGIC;
270}
271
272/* ------ Cache ------ */
273
274#define N_WAY_BITS 16
275#define N_WAY_NENT (1 << N_WAY_BITS)
276
277/* Each tag is the address of the associated CacheLine, rounded down
278 to a CacheLine address boundary. A CacheLine size must be a power
279 of 2 and must be 8 or more. Hence an easy way to initialise the
280 cache so it is empty is to set all the tag values to any value % 8
281 != 0, eg 1. This means all queries in the cache initially miss.
282 It does however require us to detect and not writeback, any line
283 with a bogus tag. */
284typedef
285 struct {
286 CacheLine lyns0[N_WAY_NENT];
287 Addr tags0[N_WAY_NENT];
288 }
289 Cache;
290
291static inline Bool is_valid_scache_tag ( Addr tag ) {
292 /* a valid tag should be naturally aligned to the start of
293 a CacheLine. */
294 return 0 == (tag & (N_LINE_ARANGE - 1));
295}
296
297
298/* --------- Primary data structures --------- */
299
300/* Shadow memory primary map */
301static WordFM* map_shmem = NULL; /* WordFM Addr SecMap* */
302static Cache cache_shmem;
303
304
305static UWord stats__secmaps_search = 0; // # SM finds
306static UWord stats__secmaps_search_slow = 0; // # SM lookupFMs
307static UWord stats__secmaps_allocd = 0; // # SecMaps issued
308static UWord stats__secmap_ga_space_covered = 0; // # ga bytes covered
309static UWord stats__secmap_linesZ_allocd = 0; // # LineZ's issued
310static UWord stats__secmap_linesZ_bytes = 0; // .. using this much storage
311static UWord stats__secmap_linesF_allocd = 0; // # LineF's issued
312static UWord stats__secmap_linesF_bytes = 0; // .. using this much storage
313static UWord stats__secmap_iterator_steppings = 0; // # calls to stepSMIter
314static UWord stats__cache_Z_fetches = 0; // # Z lines fetched
315static UWord stats__cache_Z_wbacks = 0; // # Z lines written back
316static UWord stats__cache_F_fetches = 0; // # F lines fetched
317static UWord stats__cache_F_wbacks = 0; // # F lines written back
318static UWord stats__cache_invals = 0; // # cache invals
319static UWord stats__cache_flushes = 0; // # cache flushes
320static UWord stats__cache_totrefs = 0; // # total accesses
321static UWord stats__cache_totmisses = 0; // # misses
322static ULong stats__cache_make_New_arange = 0; // total arange made New
323static ULong stats__cache_make_New_inZrep = 0; // arange New'd on Z reps
324static UWord stats__cline_normalises = 0; // # calls to cacheline_normalise
325static UWord stats__cline_read64s = 0; // # calls to s_m_read64
326static UWord stats__cline_read32s = 0; // # calls to s_m_read32
327static UWord stats__cline_read16s = 0; // # calls to s_m_read16
328static UWord stats__cline_read8s = 0; // # calls to s_m_read8
329static UWord stats__cline_write64s = 0; // # calls to s_m_write64
330static UWord stats__cline_write32s = 0; // # calls to s_m_write32
331static UWord stats__cline_write16s = 0; // # calls to s_m_write16
332static UWord stats__cline_write8s = 0; // # calls to s_m_write8
333static UWord stats__cline_set64s = 0; // # calls to s_m_set64
334static UWord stats__cline_set32s = 0; // # calls to s_m_set32
335static UWord stats__cline_set16s = 0; // # calls to s_m_set16
336static UWord stats__cline_set8s = 0; // # calls to s_m_set8
337static UWord stats__cline_get8s = 0; // # calls to s_m_get8
338static UWord stats__cline_copy8s = 0; // # calls to s_m_copy8
339static UWord stats__cline_64to32splits = 0; // # 64-bit accesses split
340static UWord stats__cline_32to16splits = 0; // # 32-bit accesses split
341static UWord stats__cline_16to8splits = 0; // # 16-bit accesses split
342static UWord stats__cline_64to32pulldown = 0; // # calls to pulldown_to_32
343static UWord stats__cline_32to16pulldown = 0; // # calls to pulldown_to_16
344static UWord stats__cline_16to8pulldown = 0; // # calls to pulldown_to_8
345
346static inline Addr shmem__round_to_SecMap_base ( Addr a ) {
347 return a & ~(N_SECMAP_ARANGE - 1);
348}
349static inline UWord shmem__get_SecMap_offset ( Addr a ) {
350 return a & (N_SECMAP_ARANGE - 1);
351}
352
353
354/*----------------------------------------------------------------*/
355/*--- map_shmem :: WordFM Addr SecMap ---*/
356/*--- shadow memory (low level handlers) (shmem__* fns) ---*/
357/*----------------------------------------------------------------*/
358
359/*--------------- SecMap allocation --------------- */
360
361static HChar* shmem__bigchunk_next = NULL;
362static HChar* shmem__bigchunk_end1 = NULL;
363
364static void* shmem__bigchunk_alloc ( SizeT n )
365{
366 const SizeT sHMEM__BIGCHUNK_SIZE = 4096 * 256 * 4;
367 tl_assert(n > 0);
368 n = VG_ROUNDUP(n, 16);
369 tl_assert(shmem__bigchunk_next <= shmem__bigchunk_end1);
370 tl_assert(shmem__bigchunk_end1 - shmem__bigchunk_next
371 <= (SSizeT)sHMEM__BIGCHUNK_SIZE);
372 if (shmem__bigchunk_next + n > shmem__bigchunk_end1) {
373 if (0)
374 VG_(printf)("XXXXX bigchunk: abandoning %d bytes\n",
375 (Int)(shmem__bigchunk_end1 - shmem__bigchunk_next));
376 shmem__bigchunk_next = VG_(am_shadow_alloc)( sHMEM__BIGCHUNK_SIZE );
377 if (shmem__bigchunk_next == NULL)
378 VG_(out_of_memory_NORETURN)(
379 "helgrind:shmem__bigchunk_alloc", sHMEM__BIGCHUNK_SIZE );
380 shmem__bigchunk_end1 = shmem__bigchunk_next + sHMEM__BIGCHUNK_SIZE;
381 }
382 tl_assert(shmem__bigchunk_next);
383 tl_assert( 0 == (((Addr)shmem__bigchunk_next) & (16-1)) );
384 tl_assert(shmem__bigchunk_next + n <= shmem__bigchunk_end1);
385 shmem__bigchunk_next += n;
386 return shmem__bigchunk_next - n;
387}
388
389static SecMap* shmem__alloc_SecMap ( void )
390{
391 Word i, j;
392 SecMap* sm = shmem__bigchunk_alloc( sizeof(SecMap) );
393 if (0) VG_(printf)("alloc_SecMap %p\n",sm);
394 tl_assert(sm);
395 sm->magic = SecMap_MAGIC;
396 for (i = 0; i < N_SECMAP_ZLINES; i++) {
397 sm->linesZ[i].dict[0] = SVal_NOACCESS;
398 sm->linesZ[i].dict[1] = SVal_INVALID;
399 sm->linesZ[i].dict[2] = SVal_INVALID;
400 sm->linesZ[i].dict[3] = SVal_INVALID;
401 for (j = 0; j < N_LINE_ARANGE/4; j++)
402 sm->linesZ[i].ix2s[j] = 0; /* all reference dict[0] */
403 }
404 sm->linesF = NULL;
405 sm->linesF_size = 0;
406 stats__secmaps_allocd++;
407 stats__secmap_ga_space_covered += N_SECMAP_ARANGE;
408 stats__secmap_linesZ_allocd += N_SECMAP_ZLINES;
409 stats__secmap_linesZ_bytes += N_SECMAP_ZLINES * sizeof(LineZ);
410 return sm;
411}
412
413typedef struct { Addr gaKey; SecMap* sm; } SMCacheEnt;
414static SMCacheEnt smCache[3] = { {1,NULL}, {1,NULL}, {1,NULL} };
415
416static SecMap* shmem__find_SecMap ( Addr ga )
417{
418 SecMap* sm = NULL;
419 Addr gaKey = shmem__round_to_SecMap_base(ga);
420 // Cache
421 stats__secmaps_search++;
422 if (LIKELY(gaKey == smCache[0].gaKey))
423 return smCache[0].sm;
424 if (LIKELY(gaKey == smCache[1].gaKey)) {
425 SMCacheEnt tmp = smCache[0];
426 smCache[0] = smCache[1];
427 smCache[1] = tmp;
428 return smCache[0].sm;
429 }
430 if (gaKey == smCache[2].gaKey) {
431 SMCacheEnt tmp = smCache[1];
432 smCache[1] = smCache[2];
433 smCache[2] = tmp;
434 return smCache[1].sm;
435 }
436 // end Cache
437 stats__secmaps_search_slow++;
438 if (VG_(lookupFM)( map_shmem,
439 NULL/*keyP*/, (UWord*)&sm, (UWord)gaKey )) {
440 tl_assert(sm != NULL);
441 smCache[2] = smCache[1];
442 smCache[1] = smCache[0];
443 smCache[0].gaKey = gaKey;
444 smCache[0].sm = sm;
445 } else {
446 tl_assert(sm == NULL);
447 }
448 return sm;
449}
450
451static SecMap* shmem__find_or_alloc_SecMap ( Addr ga )
452{
453 SecMap* sm = shmem__find_SecMap ( ga );
454 if (LIKELY(sm)) {
455 return sm;
456 } else {
457 /* create a new one */
458 Addr gaKey = shmem__round_to_SecMap_base(ga);
459 sm = shmem__alloc_SecMap();
460 tl_assert(sm);
461 VG_(addToFM)( map_shmem, (UWord)gaKey, (UWord)sm );
462 return sm;
463 }
464}
465
466
467/* ------------ LineF and LineZ related ------------ */
468
469static void rcinc_LineF ( LineF* lineF ) {
470 UWord i;
471 tl_assert(lineF->inUse);
472 for (i = 0; i < N_LINE_ARANGE; i++)
473 rcinc(lineF->w64s[i]);
474}
475
476static void rcdec_LineF ( LineF* lineF ) {
477 UWord i;
478 tl_assert(lineF->inUse);
479 for (i = 0; i < N_LINE_ARANGE; i++)
480 rcdec(lineF->w64s[i]);
481}
482
483static void rcinc_LineZ ( LineZ* lineZ ) {
484 tl_assert(lineZ->dict[0] != SVal_INVALID);
485 rcinc(lineZ->dict[0]);
486 if (lineZ->dict[1] != SVal_INVALID) rcinc(lineZ->dict[1]);
487 if (lineZ->dict[2] != SVal_INVALID) rcinc(lineZ->dict[2]);
488 if (lineZ->dict[3] != SVal_INVALID) rcinc(lineZ->dict[3]);
489}
490
491static void rcdec_LineZ ( LineZ* lineZ ) {
492 tl_assert(lineZ->dict[0] != SVal_INVALID);
493 rcdec(lineZ->dict[0]);
494 if (lineZ->dict[1] != SVal_INVALID) rcdec(lineZ->dict[1]);
495 if (lineZ->dict[2] != SVal_INVALID) rcdec(lineZ->dict[2]);
496 if (lineZ->dict[3] != SVal_INVALID) rcdec(lineZ->dict[3]);
497}
498
499inline
500static void write_twobit_array ( UChar* arr, UWord ix, UWord b2 ) {
501 Word bix, shft, mask, prep;
502 tl_assert(ix >= 0);
503 bix = ix >> 2;
504 shft = 2 * (ix & 3); /* 0, 2, 4 or 6 */
505 mask = 3 << shft;
506 prep = b2 << shft;
507 arr[bix] = (arr[bix] & ~mask) | prep;
508}
509
510inline
511static UWord read_twobit_array ( UChar* arr, UWord ix ) {
512 Word bix, shft;
513 tl_assert(ix >= 0);
514 bix = ix >> 2;
515 shft = 2 * (ix & 3); /* 0, 2, 4 or 6 */
516 return (arr[bix] >> shft) & 3;
517}
518
519/* Given address 'tag', find either the Z or F line containing relevant
520 data, so it can be read into the cache.
521*/
522static void find_ZF_for_reading ( /*OUT*/LineZ** zp,
523 /*OUT*/LineF** fp, Addr tag ) {
524 LineZ* lineZ;
525 LineF* lineF;
526 UWord zix;
527 SecMap* sm = shmem__find_or_alloc_SecMap(tag);
528 UWord smoff = shmem__get_SecMap_offset(tag);
529 /* since smoff is derived from a valid tag, it should be
530 cacheline-aligned. */
531 tl_assert(0 == (smoff & (N_LINE_ARANGE - 1)));
532 zix = smoff >> N_LINE_BITS;
533 tl_assert(zix < N_SECMAP_ZLINES);
534 lineZ = &sm->linesZ[zix];
535 lineF = NULL;
536 if (lineZ->dict[0] == SVal_INVALID) {
537 UInt fix = (UInt)lineZ->dict[1];
538 tl_assert(sm->linesF);
539 tl_assert(sm->linesF_size > 0);
540 tl_assert(fix >= 0 && fix < sm->linesF_size);
541 lineF = &sm->linesF[fix];
542 tl_assert(lineF->inUse);
543 lineZ = NULL;
544 }
545 *zp = lineZ;
546 *fp = lineF;
547}
548
549/* Given address 'tag', return the relevant SecMap and the index of
550 the LineZ within it, in the expectation that the line is to be
551 overwritten. Regardless of whether 'tag' is currently associated
552 with a Z or F representation, to rcdec on the current
553 representation, in recognition of the fact that the contents are
554 just about to be overwritten. */
555static __attribute__((noinline))
556void find_Z_for_writing ( /*OUT*/SecMap** smp,
557 /*OUT*/Word* zixp,
558 Addr tag ) {
559 LineZ* lineZ;
560 LineF* lineF;
561 UWord zix;
562 SecMap* sm = shmem__find_or_alloc_SecMap(tag);
563 UWord smoff = shmem__get_SecMap_offset(tag);
564 /* since smoff is derived from a valid tag, it should be
565 cacheline-aligned. */
566 tl_assert(0 == (smoff & (N_LINE_ARANGE - 1)));
567 zix = smoff >> N_LINE_BITS;
568 tl_assert(zix < N_SECMAP_ZLINES);
569 lineZ = &sm->linesZ[zix];
570 lineF = NULL;
571 /* re RCs, we are freeing up this LineZ/LineF so that new data can
572 be parked in it. Hence have to rcdec it accordingly. */
573 /* If lineZ has an associated lineF, free it up. */
574 if (lineZ->dict[0] == SVal_INVALID) {
575 UInt fix = (UInt)lineZ->dict[1];
576 tl_assert(sm->linesF);
577 tl_assert(sm->linesF_size > 0);
578 tl_assert(fix >= 0 && fix < sm->linesF_size);
579 lineF = &sm->linesF[fix];
580 tl_assert(lineF->inUse);
581 rcdec_LineF(lineF);
582 lineF->inUse = False;
583 } else {
584 rcdec_LineZ(lineZ);
585 }
586 *smp = sm;
587 *zixp = zix;
588}
589
590static __attribute__((noinline))
591void alloc_F_for_writing ( /*MOD*/SecMap* sm, /*OUT*/Word* fixp ) {
592 UInt i, new_size;
593 LineF* nyu;
594
595 if (sm->linesF) {
596 tl_assert(sm->linesF_size > 0);
597 } else {
598 tl_assert(sm->linesF_size == 0);
599 }
600
601 if (sm->linesF) {
602 for (i = 0; i < sm->linesF_size; i++) {
603 if (!sm->linesF[i].inUse) {
604 *fixp = (Word)i;
605 return;
606 }
607 }
608 }
609
610 /* No free F line found. Expand existing array and try again. */
611 new_size = sm->linesF_size==0 ? 1 : 2 * sm->linesF_size;
612 nyu = HG_(zalloc)( "libhb.aFfw.1 (LineF storage)",
613 new_size * sizeof(LineF) );
614 tl_assert(nyu);
615
616 stats__secmap_linesF_allocd += (new_size - sm->linesF_size);
617 stats__secmap_linesF_bytes += (new_size - sm->linesF_size)
618 * sizeof(LineF);
619
620 if (0)
621 VG_(printf)("SM %p: expand F array from %d to %d\n",
622 sm, (Int)sm->linesF_size, new_size);
623
624 for (i = 0; i < new_size; i++)
625 nyu[i].inUse = False;
626
627 if (sm->linesF) {
628 for (i = 0; i < sm->linesF_size; i++) {
629 tl_assert(sm->linesF[i].inUse);
630 nyu[i] = sm->linesF[i];
631 }
632 VG_(memset)(sm->linesF, 0, sm->linesF_size * sizeof(LineF) );
633 HG_(free)(sm->linesF);
634 }
635
636 sm->linesF = nyu;
637 sm->linesF_size = new_size;
638
639 for (i = 0; i < sm->linesF_size; i++) {
640 if (!sm->linesF[i].inUse) {
641 *fixp = (Word)i;
642 return;
643 }
644 }
645
646 /*NOTREACHED*/
647 tl_assert(0);
648}
649
650
651/* ------------ CacheLine and implicit-tree related ------------ */
652
653__attribute__((unused))
654static void pp_CacheLine ( CacheLine* cl ) {
655 Word i;
656 if (!cl) {
657 VG_(printf)("%s","pp_CacheLine(NULL)\n");
658 return;
659 }
660 for (i = 0; i < N_LINE_TREES; i++)
661 VG_(printf)(" descr: %04lx\n", (UWord)cl->descrs[i]);
662 for (i = 0; i < N_LINE_ARANGE; i++)
663 VG_(printf)(" sval: %08lx\n", (UWord)cl->svals[i]);
664}
665
666static UChar descr_to_validbits ( UShort descr )
667{
668 /* a.k.a Party Time for gcc's constant folder */
669# define DESCR(b8_7, b8_6, b8_5, b8_4, b8_3, b8_2, b8_1, b8_0, \
670 b16_3, b32_1, b16_2, b64, b16_1, b32_0, b16_0) \
671 ( (UShort) ( ( (b8_7) << 14) | ( (b8_6) << 13) | \
672 ( (b8_5) << 12) | ( (b8_4) << 11) | \
673 ( (b8_3) << 10) | ( (b8_2) << 9) | \
674 ( (b8_1) << 8) | ( (b8_0) << 7) | \
675 ( (b16_3) << 6) | ( (b32_1) << 5) | \
676 ( (b16_2) << 4) | ( (b64) << 3) | \
677 ( (b16_1) << 2) | ( (b32_0) << 1) | \
678 ( (b16_0) << 0) ) )
679
680# define BYTE(bit7, bit6, bit5, bit4, bit3, bit2, bit1, bit0) \
681 ( (UChar) ( ( (bit7) << 7) | ( (bit6) << 6) | \
682 ( (bit5) << 5) | ( (bit4) << 4) | \
683 ( (bit3) << 3) | ( (bit2) << 2) | \
684 ( (bit1) << 1) | ( (bit0) << 0) ) )
685
686 /* these should all get folded out at compile time */
687 tl_assert(DESCR(1,0,0,0,0,0,0,0, 0,0,0, 0, 0,0,0) == TREE_DESCR_8_7);
688 tl_assert(DESCR(0,0,0,0,0,0,0,1, 0,0,0, 0, 0,0,0) == TREE_DESCR_8_0);
689 tl_assert(DESCR(0,0,0,0,0,0,0,0, 1,0,0, 0, 0,0,0) == TREE_DESCR_16_3);
690 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 0,0,0) == TREE_DESCR_32_1);
691 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,1, 0, 0,0,0) == TREE_DESCR_16_2);
692 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 1, 0,0,0) == TREE_DESCR_64);
693 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 1,0,0) == TREE_DESCR_16_1);
694 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 0,1,0) == TREE_DESCR_32_0);
695 tl_assert(DESCR(0,0,0,0,0,0,0,0, 0,0,0, 0, 0,0,1) == TREE_DESCR_16_0);
696
697 switch (descr) {
698 /*
699 +--------------------------------- TREE_DESCR_8_7
700 | +------------------- TREE_DESCR_8_0
701 | | +---------------- TREE_DESCR_16_3
702 | | | +-------------- TREE_DESCR_32_1
703 | | | | +------------ TREE_DESCR_16_2
704 | | | | | +--------- TREE_DESCR_64
705 | | | | | | +------ TREE_DESCR_16_1
706 | | | | | | | +---- TREE_DESCR_32_0
707 | | | | | | | | +-- TREE_DESCR_16_0
708 | | | | | | | | |
709 | | | | | | | | | GRANULARITY, 7 -> 0 */
710 case DESCR(1,1,1,1,1,1,1,1, 0,0,0, 0, 0,0,0): /* 8 8 8 8 8 8 8 8 */
711 return BYTE(1,1,1,1,1,1,1,1);
712 case DESCR(1,1,0,0,1,1,1,1, 0,0,1, 0, 0,0,0): /* 8 8 16 8 8 8 8 */
713 return BYTE(1,1,0,1,1,1,1,1);
714 case DESCR(0,0,1,1,1,1,1,1, 1,0,0, 0, 0,0,0): /* 16 8 8 8 8 8 8 */
715 return BYTE(0,1,1,1,1,1,1,1);
716 case DESCR(0,0,0,0,1,1,1,1, 1,0,1, 0, 0,0,0): /* 16 16 8 8 8 8 */
717 return BYTE(0,1,0,1,1,1,1,1);
718
719 case DESCR(1,1,1,1,1,1,0,0, 0,0,0, 0, 0,0,1): /* 8 8 8 8 8 8 16 */
720 return BYTE(1,1,1,1,1,1,0,1);
721 case DESCR(1,1,0,0,1,1,0,0, 0,0,1, 0, 0,0,1): /* 8 8 16 8 8 16 */
722 return BYTE(1,1,0,1,1,1,0,1);
723 case DESCR(0,0,1,1,1,1,0,0, 1,0,0, 0, 0,0,1): /* 16 8 8 8 8 16 */
724 return BYTE(0,1,1,1,1,1,0,1);
725 case DESCR(0,0,0,0,1,1,0,0, 1,0,1, 0, 0,0,1): /* 16 16 8 8 16 */
726 return BYTE(0,1,0,1,1,1,0,1);
727
728 case DESCR(1,1,1,1,0,0,1,1, 0,0,0, 0, 1,0,0): /* 8 8 8 8 16 8 8 */
729 return BYTE(1,1,1,1,0,1,1,1);
730 case DESCR(1,1,0,0,0,0,1,1, 0,0,1, 0, 1,0,0): /* 8 8 16 16 8 8 */
731 return BYTE(1,1,0,1,0,1,1,1);
732 case DESCR(0,0,1,1,0,0,1,1, 1,0,0, 0, 1,0,0): /* 16 8 8 16 8 8 */
733 return BYTE(0,1,1,1,0,1,1,1);
734 case DESCR(0,0,0,0,0,0,1,1, 1,0,1, 0, 1,0,0): /* 16 16 16 8 8 */
735 return BYTE(0,1,0,1,0,1,1,1);
736
737 case DESCR(1,1,1,1,0,0,0,0, 0,0,0, 0, 1,0,1): /* 8 8 8 8 16 16 */
738 return BYTE(1,1,1,1,0,1,0,1);
739 case DESCR(1,1,0,0,0,0,0,0, 0,0,1, 0, 1,0,1): /* 8 8 16 16 16 */
740 return BYTE(1,1,0,1,0,1,0,1);
741 case DESCR(0,0,1,1,0,0,0,0, 1,0,0, 0, 1,0,1): /* 16 8 8 16 16 */
742 return BYTE(0,1,1,1,0,1,0,1);
743 case DESCR(0,0,0,0,0,0,0,0, 1,0,1, 0, 1,0,1): /* 16 16 16 16 */
744 return BYTE(0,1,0,1,0,1,0,1);
745
746 case DESCR(0,0,0,0,1,1,1,1, 0,1,0, 0, 0,0,0): /* 32 8 8 8 8 */
747 return BYTE(0,0,0,1,1,1,1,1);
748 case DESCR(0,0,0,0,1,1,0,0, 0,1,0, 0, 0,0,1): /* 32 8 8 16 */
749 return BYTE(0,0,0,1,1,1,0,1);
750 case DESCR(0,0,0,0,0,0,1,1, 0,1,0, 0, 1,0,0): /* 32 16 8 8 */
751 return BYTE(0,0,0,1,0,1,1,1);
752 case DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 1,0,1): /* 32 16 16 */
753 return BYTE(0,0,0,1,0,1,0,1);
754
755 case DESCR(1,1,1,1,0,0,0,0, 0,0,0, 0, 0,1,0): /* 8 8 8 8 32 */
756 return BYTE(1,1,1,1,0,0,0,1);
757 case DESCR(1,1,0,0,0,0,0,0, 0,0,1, 0, 0,1,0): /* 8 8 16 32 */
758 return BYTE(1,1,0,1,0,0,0,1);
759 case DESCR(0,0,1,1,0,0,0,0, 1,0,0, 0, 0,1,0): /* 16 8 8 32 */
760 return BYTE(0,1,1,1,0,0,0,1);
761 case DESCR(0,0,0,0,0,0,0,0, 1,0,1, 0, 0,1,0): /* 16 16 32 */
762 return BYTE(0,1,0,1,0,0,0,1);
763
764 case DESCR(0,0,0,0,0,0,0,0, 0,1,0, 0, 0,1,0): /* 32 32 */
765 return BYTE(0,0,0,1,0,0,0,1);
766
767 case DESCR(0,0,0,0,0,0,0,0, 0,0,0, 1, 0,0,0): /* 64 */
768 return BYTE(0,0,0,0,0,0,0,1);
769
770 default: return BYTE(0,0,0,0,0,0,0,0);
771 /* INVALID - any valid descr produces at least one
772 valid bit in tree[0..7]*/
773 }
774 /* NOTREACHED*/
775 tl_assert(0);
776
777# undef DESCR
778# undef BYTE
779}
780
781__attribute__((unused))
782static Bool is_sane_Descr ( UShort descr ) {
783 return descr_to_validbits(descr) != 0;
784}
785
786static void sprintf_Descr ( /*OUT*/HChar* dst, UShort descr ) {
787 VG_(sprintf)(dst,
788 "%d%d%d%d%d%d%d%d %d%d%d %d %d%d%d",
789 (Int)((descr & TREE_DESCR_8_7) ? 1 : 0),
790 (Int)((descr & TREE_DESCR_8_6) ? 1 : 0),
791 (Int)((descr & TREE_DESCR_8_5) ? 1 : 0),
792 (Int)((descr & TREE_DESCR_8_4) ? 1 : 0),
793 (Int)((descr & TREE_DESCR_8_3) ? 1 : 0),
794 (Int)((descr & TREE_DESCR_8_2) ? 1 : 0),
795 (Int)((descr & TREE_DESCR_8_1) ? 1 : 0),
796 (Int)((descr & TREE_DESCR_8_0) ? 1 : 0),
797 (Int)((descr & TREE_DESCR_16_3) ? 1 : 0),
798 (Int)((descr & TREE_DESCR_32_1) ? 1 : 0),
799 (Int)((descr & TREE_DESCR_16_2) ? 1 : 0),
800 (Int)((descr & TREE_DESCR_64) ? 1 : 0),
801 (Int)((descr & TREE_DESCR_16_1) ? 1 : 0),
802 (Int)((descr & TREE_DESCR_32_0) ? 1 : 0),
803 (Int)((descr & TREE_DESCR_16_0) ? 1 : 0)
804 );
805}
806static void sprintf_Byte ( /*OUT*/HChar* dst, UChar byte ) {
807 VG_(sprintf)(dst, "%d%d%d%d%d%d%d%d",
808 (Int)((byte & 128) ? 1 : 0),
809 (Int)((byte & 64) ? 1 : 0),
810 (Int)((byte & 32) ? 1 : 0),
811 (Int)((byte & 16) ? 1 : 0),
812 (Int)((byte & 8) ? 1 : 0),
813 (Int)((byte & 4) ? 1 : 0),
814 (Int)((byte & 2) ? 1 : 0),
815 (Int)((byte & 1) ? 1 : 0)
816 );
817}
818
819static Bool is_sane_Descr_and_Tree ( UShort descr, SVal* tree ) {
820 Word i;
821 UChar validbits = descr_to_validbits(descr);
822 HChar buf[128], buf2[128];
823 if (validbits == 0)
824 goto bad;
825 for (i = 0; i < 8; i++) {
826 if (validbits & (1<<i)) {
827 if (tree[i] == SVal_INVALID)
828 goto bad;
829 } else {
830 if (tree[i] != SVal_INVALID)
831 goto bad;
832 }
833 }
834 return True;
835 bad:
836 sprintf_Descr( buf, descr );
837 sprintf_Byte( buf2, validbits );
838 VG_(printf)("%s","is_sane_Descr_and_Tree: bad tree {\n");
839 VG_(printf)(" validbits 0x%02lx %s\n", (UWord)validbits, buf2);
840 VG_(printf)(" descr 0x%04lx %s\n", (UWord)descr, buf);
841 for (i = 0; i < 8; i++)
842 VG_(printf)(" [%ld] 0x%016llx\n", i, tree[i]);
843 VG_(printf)("%s","}\n");
844 return 0;
845}
846
847static Bool is_sane_CacheLine ( CacheLine* cl )
848{
849 Word tno, cloff;
850
851 if (!cl) goto bad;
852
853 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
854 UShort descr = cl->descrs[tno];
855 SVal* tree = &cl->svals[cloff];
856 if (!is_sane_Descr_and_Tree(descr, tree))
857 goto bad;
858 }
859 tl_assert(cloff == N_LINE_ARANGE);
860 return True;
861 bad:
862 pp_CacheLine(cl);
863 return False;
864}
865
866static UShort normalise_tree ( /*MOD*/SVal* tree )
867{
868 UShort descr;
869 /* pre: incoming tree[0..7] does not have any invalid shvals, in
870 particular no zeroes. */
871 if (UNLIKELY(tree[7] == SVal_INVALID || tree[6] == SVal_INVALID
872 || tree[5] == SVal_INVALID || tree[4] == SVal_INVALID
873 || tree[3] == SVal_INVALID || tree[2] == SVal_INVALID
874 || tree[1] == SVal_INVALID || tree[0] == SVal_INVALID))
875 tl_assert(0);
876
877 descr = TREE_DESCR_8_7 | TREE_DESCR_8_6 | TREE_DESCR_8_5
878 | TREE_DESCR_8_4 | TREE_DESCR_8_3 | TREE_DESCR_8_2
879 | TREE_DESCR_8_1 | TREE_DESCR_8_0;
880 /* build 16-bit layer */
881 if (tree[1] == tree[0]) {
882 tree[1] = SVal_INVALID;
883 descr &= ~(TREE_DESCR_8_1 | TREE_DESCR_8_0);
884 descr |= TREE_DESCR_16_0;
885 }
886 if (tree[3] == tree[2]) {
887 tree[3] = SVal_INVALID;
888 descr &= ~(TREE_DESCR_8_3 | TREE_DESCR_8_2);
889 descr |= TREE_DESCR_16_1;
890 }
891 if (tree[5] == tree[4]) {
892 tree[5] = SVal_INVALID;
893 descr &= ~(TREE_DESCR_8_5 | TREE_DESCR_8_4);
894 descr |= TREE_DESCR_16_2;
895 }
896 if (tree[7] == tree[6]) {
897 tree[7] = SVal_INVALID;
898 descr &= ~(TREE_DESCR_8_7 | TREE_DESCR_8_6);
899 descr |= TREE_DESCR_16_3;
900 }
901 /* build 32-bit layer */
902 if (tree[2] == tree[0]
903 && (descr & TREE_DESCR_16_1) && (descr & TREE_DESCR_16_0)) {
904 tree[2] = SVal_INVALID; /* [3,1] must already be SVal_INVALID */
905 descr &= ~(TREE_DESCR_16_1 | TREE_DESCR_16_0);
906 descr |= TREE_DESCR_32_0;
907 }
908 if (tree[6] == tree[4]
909 && (descr & TREE_DESCR_16_3) && (descr & TREE_DESCR_16_2)) {
910 tree[6] = SVal_INVALID; /* [7,5] must already be SVal_INVALID */
911 descr &= ~(TREE_DESCR_16_3 | TREE_DESCR_16_2);
912 descr |= TREE_DESCR_32_1;
913 }
914 /* build 64-bit layer */
915 if (tree[4] == tree[0]
916 && (descr & TREE_DESCR_32_1) && (descr & TREE_DESCR_32_0)) {
917 tree[4] = SVal_INVALID; /* [7,6,5,3,2,1] must already be SVal_INVALID */
918 descr &= ~(TREE_DESCR_32_1 | TREE_DESCR_32_0);
919 descr |= TREE_DESCR_64;
920 }
921 return descr;
922}
923
924/* This takes a cacheline where all the data is at the leaves
925 (w8[..]) and builds a correctly normalised tree. */
926static void normalise_CacheLine ( /*MOD*/CacheLine* cl )
927{
928 Word tno, cloff;
929 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
930 SVal* tree = &cl->svals[cloff];
931 cl->descrs[tno] = normalise_tree( tree );
932 }
933 tl_assert(cloff == N_LINE_ARANGE);
sewardj8f5374e2008-12-07 11:40:17 +0000934 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +0000935 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
936 stats__cline_normalises++;
937}
938
939
940typedef struct { UChar count; SVal sval; } CountedSVal;
941
942static
943void sequentialise_CacheLine ( /*OUT*/CountedSVal* dst,
944 /*OUT*/Word* dstUsedP,
945 Word nDst, CacheLine* src )
946{
947 Word tno, cloff, dstUsed;
948
949 tl_assert(nDst == N_LINE_ARANGE);
950 dstUsed = 0;
951
952 for (tno = 0, cloff = 0; tno < N_LINE_TREES; tno++, cloff += 8) {
953 UShort descr = src->descrs[tno];
954 SVal* tree = &src->svals[cloff];
955
956 /* sequentialise the tree described by (descr,tree). */
957# define PUT(_n,_v) \
958 do { dst[dstUsed ].count = (_n); \
959 dst[dstUsed++].sval = (_v); \
960 } while (0)
961
962 /* byte 0 */
963 if (descr & TREE_DESCR_64) PUT(8, tree[0]); else
964 if (descr & TREE_DESCR_32_0) PUT(4, tree[0]); else
965 if (descr & TREE_DESCR_16_0) PUT(2, tree[0]); else
966 if (descr & TREE_DESCR_8_0) PUT(1, tree[0]);
967 /* byte 1 */
968 if (descr & TREE_DESCR_8_1) PUT(1, tree[1]);
969 /* byte 2 */
970 if (descr & TREE_DESCR_16_1) PUT(2, tree[2]); else
971 if (descr & TREE_DESCR_8_2) PUT(1, tree[2]);
972 /* byte 3 */
973 if (descr & TREE_DESCR_8_3) PUT(1, tree[3]);
974 /* byte 4 */
975 if (descr & TREE_DESCR_32_1) PUT(4, tree[4]); else
976 if (descr & TREE_DESCR_16_2) PUT(2, tree[4]); else
977 if (descr & TREE_DESCR_8_4) PUT(1, tree[4]);
978 /* byte 5 */
979 if (descr & TREE_DESCR_8_5) PUT(1, tree[5]);
980 /* byte 6 */
981 if (descr & TREE_DESCR_16_3) PUT(2, tree[6]); else
982 if (descr & TREE_DESCR_8_6) PUT(1, tree[6]);
983 /* byte 7 */
984 if (descr & TREE_DESCR_8_7) PUT(1, tree[7]);
985
986# undef PUT
987 /* END sequentialise the tree described by (descr,tree). */
988
989 }
990 tl_assert(cloff == N_LINE_ARANGE);
991 tl_assert(dstUsed <= nDst);
992
993 *dstUsedP = dstUsed;
994}
995
996/* Write the cacheline 'wix' to backing store. Where it ends up
997 is determined by its tag field. */
998static __attribute__((noinline)) void cacheline_wback ( UWord wix )
999{
1000 Word i, j, k, m;
1001 Addr tag;
1002 SecMap* sm;
1003 CacheLine* cl;
1004 LineZ* lineZ;
1005 LineF* lineF;
1006 Word zix, fix, csvalsUsed;
1007 CountedSVal csvals[N_LINE_ARANGE];
1008 SVal sv;
1009
1010 if (0)
1011 VG_(printf)("scache wback line %d\n", (Int)wix);
1012
1013 tl_assert(wix >= 0 && wix < N_WAY_NENT);
1014
1015 tag = cache_shmem.tags0[wix];
1016 cl = &cache_shmem.lyns0[wix];
1017
1018 /* The cache line may have been invalidated; if so, ignore it. */
1019 if (!is_valid_scache_tag(tag))
1020 return;
1021
1022 /* Where are we going to put it? */
1023 sm = NULL;
1024 lineZ = NULL;
1025 lineF = NULL;
1026 zix = fix = -1;
1027
1028 /* find the Z line to write in and rcdec it or the associated F
1029 line. */
1030 find_Z_for_writing( &sm, &zix, tag );
1031
1032 tl_assert(sm);
1033 tl_assert(zix >= 0 && zix < N_SECMAP_ZLINES);
1034 lineZ = &sm->linesZ[zix];
1035
1036 /* Generate the data to be stored */
sewardj8f5374e2008-12-07 11:40:17 +00001037 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001038 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1039
1040 csvalsUsed = -1;
1041 sequentialise_CacheLine( csvals, &csvalsUsed,
1042 N_LINE_ARANGE, cl );
1043 tl_assert(csvalsUsed >= 1 && csvalsUsed <= N_LINE_ARANGE);
1044 if (0) VG_(printf)("%lu ", csvalsUsed);
1045
1046 lineZ->dict[0] = lineZ->dict[1]
1047 = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
1048
1049 /* i indexes actual shadow values, k is cursor in csvals */
1050 i = 0;
1051 for (k = 0; k < csvalsUsed; k++) {
1052
1053 sv = csvals[k].sval;
sewardj8f5374e2008-12-07 11:40:17 +00001054 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001055 tl_assert(csvals[k].count >= 1 && csvals[k].count <= 8);
1056 /* do we already have it? */
1057 if (sv == lineZ->dict[0]) { j = 0; goto dict_ok; }
1058 if (sv == lineZ->dict[1]) { j = 1; goto dict_ok; }
1059 if (sv == lineZ->dict[2]) { j = 2; goto dict_ok; }
1060 if (sv == lineZ->dict[3]) { j = 3; goto dict_ok; }
1061 /* no. look for a free slot. */
sewardj8f5374e2008-12-07 11:40:17 +00001062 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001063 tl_assert(sv != SVal_INVALID);
1064 if (lineZ->dict[0]
1065 == SVal_INVALID) { lineZ->dict[0] = sv; j = 0; goto dict_ok; }
1066 if (lineZ->dict[1]
1067 == SVal_INVALID) { lineZ->dict[1] = sv; j = 1; goto dict_ok; }
1068 if (lineZ->dict[2]
1069 == SVal_INVALID) { lineZ->dict[2] = sv; j = 2; goto dict_ok; }
1070 if (lineZ->dict[3]
1071 == SVal_INVALID) { lineZ->dict[3] = sv; j = 3; goto dict_ok; }
1072 break; /* we'll have to use the f rep */
1073 dict_ok:
1074 m = csvals[k].count;
1075 if (m == 8) {
1076 write_twobit_array( lineZ->ix2s, i+0, j );
1077 write_twobit_array( lineZ->ix2s, i+1, j );
1078 write_twobit_array( lineZ->ix2s, i+2, j );
1079 write_twobit_array( lineZ->ix2s, i+3, j );
1080 write_twobit_array( lineZ->ix2s, i+4, j );
1081 write_twobit_array( lineZ->ix2s, i+5, j );
1082 write_twobit_array( lineZ->ix2s, i+6, j );
1083 write_twobit_array( lineZ->ix2s, i+7, j );
1084 i += 8;
1085 }
1086 else if (m == 4) {
1087 write_twobit_array( lineZ->ix2s, i+0, j );
1088 write_twobit_array( lineZ->ix2s, i+1, j );
1089 write_twobit_array( lineZ->ix2s, i+2, j );
1090 write_twobit_array( lineZ->ix2s, i+3, j );
1091 i += 4;
1092 }
1093 else if (m == 1) {
1094 write_twobit_array( lineZ->ix2s, i+0, j );
1095 i += 1;
1096 }
1097 else if (m == 2) {
1098 write_twobit_array( lineZ->ix2s, i+0, j );
1099 write_twobit_array( lineZ->ix2s, i+1, j );
1100 i += 2;
1101 }
1102 else {
1103 tl_assert(0); /* 8 4 2 or 1 are the only legitimate values for m */
1104 }
1105
1106 }
1107
1108 if (LIKELY(i == N_LINE_ARANGE)) {
1109 /* Construction of the compressed representation was
1110 successful. */
1111 rcinc_LineZ(lineZ);
1112 stats__cache_Z_wbacks++;
1113 } else {
1114 /* Cannot use the compressed(z) representation. Use the full(f)
1115 rep instead. */
1116 tl_assert(i >= 0 && i < N_LINE_ARANGE);
1117 alloc_F_for_writing( sm, &fix );
1118 tl_assert(sm->linesF);
1119 tl_assert(sm->linesF_size > 0);
1120 tl_assert(fix >= 0 && fix < (Word)sm->linesF_size);
1121 lineF = &sm->linesF[fix];
1122 tl_assert(!lineF->inUse);
1123 lineZ->dict[0] = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
1124 lineZ->dict[1] = (SVal)fix;
1125 lineF->inUse = True;
1126 i = 0;
1127 for (k = 0; k < csvalsUsed; k++) {
sewardj8f5374e2008-12-07 11:40:17 +00001128 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001129 tl_assert(csvals[k].count >= 1 && csvals[k].count <= 8);
1130 sv = csvals[k].sval;
sewardj8f5374e2008-12-07 11:40:17 +00001131 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001132 tl_assert(sv != SVal_INVALID);
1133 for (m = csvals[k].count; m > 0; m--) {
1134 lineF->w64s[i] = sv;
1135 i++;
1136 }
1137 }
1138 tl_assert(i == N_LINE_ARANGE);
1139 rcinc_LineF(lineF);
1140 stats__cache_F_wbacks++;
1141 }
sewardjf98e1c02008-10-25 16:22:41 +00001142}
1143
1144/* Fetch the cacheline 'wix' from the backing store. The tag
1145 associated with 'wix' is assumed to have already been filled in;
1146 hence that is used to determine where in the backing store to read
1147 from. */
1148static __attribute__((noinline)) void cacheline_fetch ( UWord wix )
1149{
1150 Word i;
1151 Addr tag;
1152 CacheLine* cl;
1153 LineZ* lineZ;
1154 LineF* lineF;
1155
1156 if (0)
1157 VG_(printf)("scache fetch line %d\n", (Int)wix);
1158
1159 tl_assert(wix >= 0 && wix < N_WAY_NENT);
1160
1161 tag = cache_shmem.tags0[wix];
1162 cl = &cache_shmem.lyns0[wix];
1163
1164 /* reject nonsense requests */
1165 tl_assert(is_valid_scache_tag(tag));
1166
1167 lineZ = NULL;
1168 lineF = NULL;
1169 find_ZF_for_reading( &lineZ, &lineF, tag );
1170 tl_assert( (lineZ && !lineF) || (!lineZ && lineF) );
1171
1172 /* expand the data into the bottom layer of the tree, then get
1173 cacheline_normalise to build the descriptor array. */
1174 if (lineF) {
1175 tl_assert(lineF->inUse);
1176 for (i = 0; i < N_LINE_ARANGE; i++) {
1177 cl->svals[i] = lineF->w64s[i];
1178 }
1179 stats__cache_F_fetches++;
1180 } else {
1181 for (i = 0; i < N_LINE_ARANGE; i++) {
1182 SVal sv;
1183 UWord ix = read_twobit_array( lineZ->ix2s, i );
1184 /* correct, but expensive: tl_assert(ix >= 0 && ix <= 3); */
1185 sv = lineZ->dict[ix];
1186 tl_assert(sv != SVal_INVALID);
1187 cl->svals[i] = sv;
1188 }
1189 stats__cache_Z_fetches++;
1190 }
1191 normalise_CacheLine( cl );
1192}
1193
1194static void shmem__invalidate_scache ( void ) {
1195 Word wix;
1196 if (0) VG_(printf)("%s","scache inval\n");
1197 tl_assert(!is_valid_scache_tag(1));
1198 for (wix = 0; wix < N_WAY_NENT; wix++) {
1199 cache_shmem.tags0[wix] = 1/*INVALID*/;
1200 }
1201 stats__cache_invals++;
1202}
1203
1204static void shmem__flush_and_invalidate_scache ( void ) {
1205 Word wix;
1206 Addr tag;
1207 if (0) VG_(printf)("%s","scache flush and invalidate\n");
1208 tl_assert(!is_valid_scache_tag(1));
1209 for (wix = 0; wix < N_WAY_NENT; wix++) {
1210 tag = cache_shmem.tags0[wix];
1211 if (tag == 1/*INVALID*/) {
1212 /* already invalid; nothing to do */
1213 } else {
1214 tl_assert(is_valid_scache_tag(tag));
1215 cacheline_wback( wix );
1216 }
1217 cache_shmem.tags0[wix] = 1/*INVALID*/;
1218 }
1219 stats__cache_flushes++;
1220 stats__cache_invals++;
1221}
1222
1223
1224static inline Bool aligned16 ( Addr a ) {
1225 return 0 == (a & 1);
1226}
1227static inline Bool aligned32 ( Addr a ) {
1228 return 0 == (a & 3);
1229}
1230static inline Bool aligned64 ( Addr a ) {
1231 return 0 == (a & 7);
1232}
1233static inline UWord get_cacheline_offset ( Addr a ) {
1234 return (UWord)(a & (N_LINE_ARANGE - 1));
1235}
1236static inline Addr cacheline_ROUNDUP ( Addr a ) {
1237 return ROUNDUP(a, N_LINE_ARANGE);
1238}
1239static inline Addr cacheline_ROUNDDN ( Addr a ) {
1240 return ROUNDDN(a, N_LINE_ARANGE);
1241}
1242static inline UWord get_treeno ( Addr a ) {
1243 return get_cacheline_offset(a) >> 3;
1244}
1245static inline UWord get_tree_offset ( Addr a ) {
1246 return a & 7;
1247}
1248
1249static __attribute__((noinline))
1250 CacheLine* get_cacheline_MISS ( Addr a ); /* fwds */
1251static inline CacheLine* get_cacheline ( Addr a )
1252{
1253 /* tag is 'a' with the in-line offset masked out,
1254 eg a[31]..a[4] 0000 */
1255 Addr tag = a & ~(N_LINE_ARANGE - 1);
1256 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
1257 stats__cache_totrefs++;
1258 if (LIKELY(tag == cache_shmem.tags0[wix])) {
1259 return &cache_shmem.lyns0[wix];
1260 } else {
1261 return get_cacheline_MISS( a );
1262 }
1263}
1264
1265static __attribute__((noinline))
1266 CacheLine* get_cacheline_MISS ( Addr a )
1267{
1268 /* tag is 'a' with the in-line offset masked out,
1269 eg a[31]..a[4] 0000 */
1270
1271 CacheLine* cl;
1272 Addr* tag_old_p;
1273 Addr tag = a & ~(N_LINE_ARANGE - 1);
1274 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
1275
1276 tl_assert(tag != cache_shmem.tags0[wix]);
1277
1278 /* Dump the old line into the backing store. */
1279 stats__cache_totmisses++;
1280
1281 cl = &cache_shmem.lyns0[wix];
1282 tag_old_p = &cache_shmem.tags0[wix];
1283
1284 if (is_valid_scache_tag( *tag_old_p )) {
1285 /* EXPENSIVE and REDUNDANT: callee does it */
sewardj8f5374e2008-12-07 11:40:17 +00001286 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001287 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1288 cacheline_wback( wix );
1289 }
1290 /* and reload the new one */
1291 *tag_old_p = tag;
1292 cacheline_fetch( wix );
sewardj8f5374e2008-12-07 11:40:17 +00001293 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00001294 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
1295 return cl;
1296}
1297
1298static UShort pulldown_to_32 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1299 stats__cline_64to32pulldown++;
1300 switch (toff) {
1301 case 0: case 4:
1302 tl_assert(descr & TREE_DESCR_64);
1303 tree[4] = tree[0];
1304 descr &= ~TREE_DESCR_64;
1305 descr |= (TREE_DESCR_32_1 | TREE_DESCR_32_0);
1306 break;
1307 default:
1308 tl_assert(0);
1309 }
1310 return descr;
1311}
1312
1313static UShort pulldown_to_16 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1314 stats__cline_32to16pulldown++;
1315 switch (toff) {
1316 case 0: case 2:
1317 if (!(descr & TREE_DESCR_32_0)) {
1318 descr = pulldown_to_32(tree, 0, descr);
1319 }
1320 tl_assert(descr & TREE_DESCR_32_0);
1321 tree[2] = tree[0];
1322 descr &= ~TREE_DESCR_32_0;
1323 descr |= (TREE_DESCR_16_1 | TREE_DESCR_16_0);
1324 break;
1325 case 4: case 6:
1326 if (!(descr & TREE_DESCR_32_1)) {
1327 descr = pulldown_to_32(tree, 4, descr);
1328 }
1329 tl_assert(descr & TREE_DESCR_32_1);
1330 tree[6] = tree[4];
1331 descr &= ~TREE_DESCR_32_1;
1332 descr |= (TREE_DESCR_16_3 | TREE_DESCR_16_2);
1333 break;
1334 default:
1335 tl_assert(0);
1336 }
1337 return descr;
1338}
1339
1340static UShort pulldown_to_8 ( /*MOD*/SVal* tree, UWord toff, UShort descr ) {
1341 stats__cline_16to8pulldown++;
1342 switch (toff) {
1343 case 0: case 1:
1344 if (!(descr & TREE_DESCR_16_0)) {
1345 descr = pulldown_to_16(tree, 0, descr);
1346 }
1347 tl_assert(descr & TREE_DESCR_16_0);
1348 tree[1] = tree[0];
1349 descr &= ~TREE_DESCR_16_0;
1350 descr |= (TREE_DESCR_8_1 | TREE_DESCR_8_0);
1351 break;
1352 case 2: case 3:
1353 if (!(descr & TREE_DESCR_16_1)) {
1354 descr = pulldown_to_16(tree, 2, descr);
1355 }
1356 tl_assert(descr & TREE_DESCR_16_1);
1357 tree[3] = tree[2];
1358 descr &= ~TREE_DESCR_16_1;
1359 descr |= (TREE_DESCR_8_3 | TREE_DESCR_8_2);
1360 break;
1361 case 4: case 5:
1362 if (!(descr & TREE_DESCR_16_2)) {
1363 descr = pulldown_to_16(tree, 4, descr);
1364 }
1365 tl_assert(descr & TREE_DESCR_16_2);
1366 tree[5] = tree[4];
1367 descr &= ~TREE_DESCR_16_2;
1368 descr |= (TREE_DESCR_8_5 | TREE_DESCR_8_4);
1369 break;
1370 case 6: case 7:
1371 if (!(descr & TREE_DESCR_16_3)) {
1372 descr = pulldown_to_16(tree, 6, descr);
1373 }
1374 tl_assert(descr & TREE_DESCR_16_3);
1375 tree[7] = tree[6];
1376 descr &= ~TREE_DESCR_16_3;
1377 descr |= (TREE_DESCR_8_7 | TREE_DESCR_8_6);
1378 break;
1379 default:
1380 tl_assert(0);
1381 }
1382 return descr;
1383}
1384
1385
1386static UShort pullup_descr_to_16 ( UShort descr, UWord toff ) {
1387 UShort mask;
1388 switch (toff) {
1389 case 0:
1390 mask = TREE_DESCR_8_1 | TREE_DESCR_8_0;
1391 tl_assert( (descr & mask) == mask );
1392 descr &= ~mask;
1393 descr |= TREE_DESCR_16_0;
1394 break;
1395 case 2:
1396 mask = TREE_DESCR_8_3 | TREE_DESCR_8_2;
1397 tl_assert( (descr & mask) == mask );
1398 descr &= ~mask;
1399 descr |= TREE_DESCR_16_1;
1400 break;
1401 case 4:
1402 mask = TREE_DESCR_8_5 | TREE_DESCR_8_4;
1403 tl_assert( (descr & mask) == mask );
1404 descr &= ~mask;
1405 descr |= TREE_DESCR_16_2;
1406 break;
1407 case 6:
1408 mask = TREE_DESCR_8_7 | TREE_DESCR_8_6;
1409 tl_assert( (descr & mask) == mask );
1410 descr &= ~mask;
1411 descr |= TREE_DESCR_16_3;
1412 break;
1413 default:
1414 tl_assert(0);
1415 }
1416 return descr;
1417}
1418
1419static UShort pullup_descr_to_32 ( UShort descr, UWord toff ) {
1420 UShort mask;
1421 switch (toff) {
1422 case 0:
1423 if (!(descr & TREE_DESCR_16_0))
1424 descr = pullup_descr_to_16(descr, 0);
1425 if (!(descr & TREE_DESCR_16_1))
1426 descr = pullup_descr_to_16(descr, 2);
1427 mask = TREE_DESCR_16_1 | TREE_DESCR_16_0;
1428 tl_assert( (descr & mask) == mask );
1429 descr &= ~mask;
1430 descr |= TREE_DESCR_32_0;
1431 break;
1432 case 4:
1433 if (!(descr & TREE_DESCR_16_2))
1434 descr = pullup_descr_to_16(descr, 4);
1435 if (!(descr & TREE_DESCR_16_3))
1436 descr = pullup_descr_to_16(descr, 6);
1437 mask = TREE_DESCR_16_3 | TREE_DESCR_16_2;
1438 tl_assert( (descr & mask) == mask );
1439 descr &= ~mask;
1440 descr |= TREE_DESCR_32_1;
1441 break;
1442 default:
1443 tl_assert(0);
1444 }
1445 return descr;
1446}
1447
1448static Bool valid_value_is_above_me_32 ( UShort descr, UWord toff ) {
1449 switch (toff) {
1450 case 0: case 4:
1451 return 0 != (descr & TREE_DESCR_64);
1452 default:
1453 tl_assert(0);
1454 }
1455}
1456
1457static Bool valid_value_is_below_me_16 ( UShort descr, UWord toff ) {
1458 switch (toff) {
1459 case 0:
1460 return 0 != (descr & (TREE_DESCR_8_1 | TREE_DESCR_8_0));
1461 case 2:
1462 return 0 != (descr & (TREE_DESCR_8_3 | TREE_DESCR_8_2));
1463 case 4:
1464 return 0 != (descr & (TREE_DESCR_8_5 | TREE_DESCR_8_4));
1465 case 6:
1466 return 0 != (descr & (TREE_DESCR_8_7 | TREE_DESCR_8_6));
1467 default:
1468 tl_assert(0);
1469 }
1470}
1471
1472/* ------------ Cache management ------------ */
1473
1474static void zsm_flush_cache ( void )
1475{
1476 shmem__flush_and_invalidate_scache();
1477}
1478
1479
1480static void zsm_init ( void(*p_rcinc)(SVal), void(*p_rcdec)(SVal) )
1481{
1482 tl_assert( sizeof(UWord) == sizeof(Addr) );
1483
1484 rcinc = p_rcinc;
1485 rcdec = p_rcdec;
1486
1487 tl_assert(map_shmem == NULL);
1488 map_shmem = VG_(newFM)( HG_(zalloc), "libhb.zsm_init.1 (map_shmem)",
1489 HG_(free),
1490 NULL/*unboxed UWord cmp*/);
1491 tl_assert(map_shmem != NULL);
1492 shmem__invalidate_scache();
1493
1494 /* a SecMap must contain an integral number of CacheLines */
1495 tl_assert(0 == (N_SECMAP_ARANGE % N_LINE_ARANGE));
1496 /* also ... a CacheLine holds an integral number of trees */
1497 tl_assert(0 == (N_LINE_ARANGE % 8));
1498}
1499
1500/////////////////////////////////////////////////////////////////
1501/////////////////////////////////////////////////////////////////
1502// //
1503// SECTION END compressed shadow memory //
1504// //
1505/////////////////////////////////////////////////////////////////
1506/////////////////////////////////////////////////////////////////
1507
1508
1509
1510/////////////////////////////////////////////////////////////////
1511/////////////////////////////////////////////////////////////////
1512// //
1513// SECTION BEGIN vts primitives //
1514// //
1515/////////////////////////////////////////////////////////////////
1516/////////////////////////////////////////////////////////////////
1517
1518#ifndef __HB_VTS_H
1519#define __HB_VTS_H
1520
1521/* VtsIDs can't exceed 30 bits, since they have to be packed into the
1522 lowest 30 bits of an SVal. */
1523typedef UInt VtsID;
1524#define VtsID_INVALID 0xFFFFFFFF
1525
1526/* A VTS contains .ts, its vector clock, and also .id, a field to hold
1527 a backlink for the caller's convenience. Since we have no idea
1528 what to set that to in the library, it always gets set to
1529 VtsID_INVALID. */
1530typedef
1531 struct {
1532 VtsID id;
1533 XArray* ts; /* XArray* ScalarTS(abstract) */
1534 }
1535 VTS;
1536
1537
1538/* Create a new, empty VTS. */
1539VTS* VTS__new ( void );
1540
1541/* Delete this VTS in its entirety. */
1542void VTS__delete ( VTS* vts );
1543
1544/* Create a new singleton VTS. */
1545VTS* VTS__singleton ( Thr* thr, ULong tym );
1546
1547/* Return a new VTS in which vts[me]++, so to speak. 'vts' itself is
1548 not modified. */
1549VTS* VTS__tick ( Thr* me, VTS* vts );
1550
1551/* Return a new VTS constructed as the join (max) of the 2 args.
1552 Neither arg is modified. */
1553VTS* VTS__join ( VTS* a, VTS* b );
1554
1555/* Compute the partial ordering relation of the two args. */
1556typedef
1557 enum { POrd_EQ=4, POrd_LT, POrd_GT, POrd_UN }
1558 POrd;
1559
1560POrd VTS__cmp ( VTS* a, VTS* b );
1561
1562/* Compute an arbitrary structural (total) ordering on the two args,
1563 based on their VCs, so they can be looked up in a table, tree, etc.
1564 Returns -1, 0 or 1. */
1565Word VTS__cmp_structural ( VTS* a, VTS* b );
1566
1567/* Debugging only. Display the given VTS in the buffer. */
1568void VTS__show ( HChar* buf, Int nBuf, VTS* vts );
1569
1570/* Debugging only. Return vts[index], so to speak. */
sewardj8669fd32008-10-27 21:42:36 +00001571ULong VTS__indexAt_SLOW ( VTS* vts, Thr* idx );
sewardjf98e1c02008-10-25 16:22:41 +00001572
1573#endif /* ! __HB_VTS_H */
1574
1575
1576/*--------------- to do with Vector Timestamps ---------------*/
1577
1578/* Scalar Timestamp */
1579typedef
1580 struct {
1581 Thr* thr;
1582 ULong tym;
1583 }
1584 ScalarTS;
1585
1586
1587static Bool is_sane_VTS ( VTS* vts )
1588{
1589 UWord i, n;
1590 ScalarTS *st1, *st2;
1591 if (!vts) return False;
1592 if (!vts->ts) return False;
1593 n = VG_(sizeXA)( vts->ts );
1594 if (n >= 2) {
1595 for (i = 0; i < n-1; i++) {
1596 st1 = VG_(indexXA)( vts->ts, i );
1597 st2 = VG_(indexXA)( vts->ts, i+1 );
1598 if (st1->thr >= st2->thr)
1599 return False;
1600 if (st1->tym == 0 || st2->tym == 0)
1601 return False;
1602 }
1603 }
1604 return True;
1605}
1606
1607
1608/* Create a new, empty VTS.
1609*/
1610VTS* VTS__new ( void )
1611{
1612 VTS* vts;
1613 vts = HG_(zalloc)( "libhb.VTS__new.1", sizeof(VTS) );
1614 tl_assert(vts);
1615 vts->id = VtsID_INVALID;
1616 vts->ts = VG_(newXA)( HG_(zalloc), "libhb.VTS__new.2",
1617 HG_(free), sizeof(ScalarTS) );
1618 tl_assert(vts->ts);
1619 return vts;
1620}
1621
1622
1623/* Delete this VTS in its entirety.
1624*/
1625void VTS__delete ( VTS* vts )
1626{
1627 tl_assert(vts);
1628 tl_assert(vts->ts);
1629 VG_(deleteXA)( vts->ts );
1630 HG_(free)(vts);
1631}
1632
1633
1634/* Create a new singleton VTS.
1635*/
1636VTS* VTS__singleton ( Thr* thr, ULong tym ) {
1637 ScalarTS st;
1638 VTS* vts;
1639 tl_assert(thr);
1640 tl_assert(tym >= 1);
1641 vts = VTS__new();
1642 st.thr = thr;
1643 st.tym = tym;
1644 VG_(addToXA)( vts->ts, &st );
1645 return vts;
1646}
1647
1648
1649/* Return a new VTS in which vts[me]++, so to speak. 'vts' itself is
1650 not modified.
1651*/
1652VTS* VTS__tick ( Thr* me, VTS* vts )
1653{
1654 ScalarTS* here = NULL;
1655 ScalarTS tmp;
1656 VTS* res;
1657 Word i, n;
1658 tl_assert(me);
1659 tl_assert(is_sane_VTS(vts));
1660 //if (0) VG_(printf)("tick vts thrno %ld szin %d\n",
1661 // (Word)me->errmsg_index, (Int)VG_(sizeXA)(vts) );
1662 res = VTS__new();
1663 n = VG_(sizeXA)( vts->ts );
1664
1665 /* main loop doesn't handle zero-entry case correctly, so
1666 special-case it. */
1667 if (n == 0) {
1668 tmp.thr = me;
1669 tmp.tym = 1;
1670 VG_(addToXA)( res->ts, &tmp );
1671 tl_assert(is_sane_VTS(res));
1672 return res;
1673 }
1674
1675 for (i = 0; i < n; i++) {
1676 here = VG_(indexXA)( vts->ts, i );
1677 if (me < here->thr) {
1678 /* We just went past 'me', without seeing it. */
1679 tmp.thr = me;
1680 tmp.tym = 1;
1681 VG_(addToXA)( res->ts, &tmp );
1682 tmp = *here;
1683 VG_(addToXA)( res->ts, &tmp );
1684 i++;
1685 break;
1686 }
1687 else if (me == here->thr) {
1688 tmp = *here;
1689 tmp.tym++;
1690 VG_(addToXA)( res->ts, &tmp );
1691 i++;
1692 break;
1693 }
1694 else /* me > here->thr */ {
1695 tmp = *here;
1696 VG_(addToXA)( res->ts, &tmp );
1697 }
1698 }
1699 tl_assert(i >= 0 && i <= n);
1700 if (i == n && here && here->thr < me) {
1701 tmp.thr = me;
1702 tmp.tym = 1;
1703 VG_(addToXA)( res->ts, &tmp );
1704 } else {
1705 for (/*keepgoing*/; i < n; i++) {
1706 here = VG_(indexXA)( vts->ts, i );
1707 tmp = *here;
1708 VG_(addToXA)( res->ts, &tmp );
1709 }
1710 }
1711 tl_assert(is_sane_VTS(res));
1712 //if (0) VG_(printf)("tick vts thrno %ld szou %d\n",
1713 // (Word)me->errmsg_index, (Int)VG_(sizeXA)(res) );
1714 return res;
1715}
1716
1717
1718/* Return a new VTS constructed as the join (max) of the 2 args.
1719 Neither arg is modified.
1720*/
1721VTS* VTS__join ( VTS* a, VTS* b )
1722{
1723 Word ia, ib, useda, usedb;
1724 ULong tyma, tymb, tymMax;
1725 Thr* thr;
1726 VTS* res;
sewardjf98e1c02008-10-25 16:22:41 +00001727
1728 tl_assert(a && a->ts);
1729 tl_assert(b && b->ts);
1730 useda = VG_(sizeXA)( a->ts );
1731 usedb = VG_(sizeXA)( b->ts );
1732
1733 res = VTS__new();
1734 ia = ib = 0;
1735
1736 while (1) {
1737
1738 /* This logic is to enumerate triples (thr, tyma, tymb) drawn
1739 from a and b in order, where thr is the next Thr*
1740 occurring in either a or b, and tyma/b are the relevant
1741 scalar timestamps, taking into account implicit zeroes. */
1742 tl_assert(ia >= 0 && ia <= useda);
1743 tl_assert(ib >= 0 && ib <= usedb);
sewardjf98e1c02008-10-25 16:22:41 +00001744
njn4c245e52009-03-15 23:25:38 +00001745 if (ia == useda && ib == usedb) {
sewardjf98e1c02008-10-25 16:22:41 +00001746 /* both empty - done */
1747 break;
njn4c245e52009-03-15 23:25:38 +00001748
1749 } else if (ia == useda && ib != usedb) {
sewardjf98e1c02008-10-25 16:22:41 +00001750 /* a empty, use up b */
njn4c245e52009-03-15 23:25:38 +00001751 ScalarTS* tmpb = VG_(indexXA)( b->ts, ib );
sewardjf98e1c02008-10-25 16:22:41 +00001752 thr = tmpb->thr;
1753 tyma = 0;
1754 tymb = tmpb->tym;
1755 ib++;
njn4c245e52009-03-15 23:25:38 +00001756
1757 } else if (ia != useda && ib == usedb) {
sewardjf98e1c02008-10-25 16:22:41 +00001758 /* b empty, use up a */
njn4c245e52009-03-15 23:25:38 +00001759 ScalarTS* tmpa = VG_(indexXA)( a->ts, ia );
sewardjf98e1c02008-10-25 16:22:41 +00001760 thr = tmpa->thr;
1761 tyma = tmpa->tym;
1762 tymb = 0;
1763 ia++;
njn4c245e52009-03-15 23:25:38 +00001764
1765 } else {
sewardjf98e1c02008-10-25 16:22:41 +00001766 /* both not empty; extract lowest-Thr*'d triple */
njn4c245e52009-03-15 23:25:38 +00001767 ScalarTS* tmpa = VG_(indexXA)( a->ts, ia );
1768 ScalarTS* tmpb = VG_(indexXA)( b->ts, ib );
sewardjf98e1c02008-10-25 16:22:41 +00001769 if (tmpa->thr < tmpb->thr) {
1770 /* a has the lowest unconsidered Thr* */
1771 thr = tmpa->thr;
1772 tyma = tmpa->tym;
1773 tymb = 0;
1774 ia++;
njn4c245e52009-03-15 23:25:38 +00001775 } else if (tmpa->thr > tmpb->thr) {
sewardjf98e1c02008-10-25 16:22:41 +00001776 /* b has the lowest unconsidered Thr* */
1777 thr = tmpb->thr;
1778 tyma = 0;
1779 tymb = tmpb->tym;
1780 ib++;
1781 } else {
1782 /* they both next mention the same Thr* */
1783 tl_assert(tmpa->thr == tmpb->thr);
1784 thr = tmpa->thr; /* == tmpb->thr */
1785 tyma = tmpa->tym;
1786 tymb = tmpb->tym;
1787 ia++;
1788 ib++;
1789 }
1790 }
1791
1792 /* having laboriously determined (thr, tyma, tymb), do something
1793 useful with it. */
1794 tymMax = tyma > tymb ? tyma : tymb;
1795 if (tymMax > 0) {
1796 ScalarTS st;
1797 st.thr = thr;
1798 st.tym = tymMax;
1799 VG_(addToXA)( res->ts, &st );
1800 }
1801
1802 }
1803
1804 tl_assert(is_sane_VTS( res ));
1805
1806 return res;
1807}
1808
1809
1810/* Compute the partial ordering relation of the two args.
1811*/
1812POrd VTS__cmp ( VTS* a, VTS* b )
1813{
1814 Word ia, ib, useda, usedb;
1815 ULong tyma, tymb;
sewardjf98e1c02008-10-25 16:22:41 +00001816
1817 Bool all_leq = True;
1818 Bool all_geq = True;
1819
1820 tl_assert(a && a->ts);
1821 tl_assert(b && b->ts);
1822 useda = VG_(sizeXA)( a->ts );
1823 usedb = VG_(sizeXA)( b->ts );
1824
1825 ia = ib = 0;
1826
1827 while (1) {
1828
njn4c245e52009-03-15 23:25:38 +00001829 /* This logic is to enumerate doubles (tyma, tymb) drawn
1830 from a and b in order, and tyma/b are the relevant
sewardjf98e1c02008-10-25 16:22:41 +00001831 scalar timestamps, taking into account implicit zeroes. */
1832 tl_assert(ia >= 0 && ia <= useda);
1833 tl_assert(ib >= 0 && ib <= usedb);
sewardjf98e1c02008-10-25 16:22:41 +00001834
njn4c245e52009-03-15 23:25:38 +00001835 if (ia == useda && ib == usedb) {
sewardjf98e1c02008-10-25 16:22:41 +00001836 /* both empty - done */
1837 break;
njn4c245e52009-03-15 23:25:38 +00001838
1839 } else if (ia == useda && ib != usedb) {
sewardjf98e1c02008-10-25 16:22:41 +00001840 /* a empty, use up b */
njn4c245e52009-03-15 23:25:38 +00001841 ScalarTS* tmpb = VG_(indexXA)( b->ts, ib );
sewardjf98e1c02008-10-25 16:22:41 +00001842 tyma = 0;
1843 tymb = tmpb->tym;
1844 ib++;
njn4c245e52009-03-15 23:25:38 +00001845
1846 } else if (ia != useda && ib == usedb) {
sewardjf98e1c02008-10-25 16:22:41 +00001847 /* b empty, use up a */
njn4c245e52009-03-15 23:25:38 +00001848 ScalarTS* tmpa = VG_(indexXA)( a->ts, ia );
sewardjf98e1c02008-10-25 16:22:41 +00001849 tyma = tmpa->tym;
1850 tymb = 0;
1851 ia++;
njn4c245e52009-03-15 23:25:38 +00001852
1853 } else {
sewardjf98e1c02008-10-25 16:22:41 +00001854 /* both not empty; extract lowest-Thr*'d triple */
njn4c245e52009-03-15 23:25:38 +00001855 ScalarTS* tmpa = VG_(indexXA)( a->ts, ia );
1856 ScalarTS* tmpb = VG_(indexXA)( b->ts, ib );
sewardjf98e1c02008-10-25 16:22:41 +00001857 if (tmpa->thr < tmpb->thr) {
1858 /* a has the lowest unconsidered Thr* */
sewardjf98e1c02008-10-25 16:22:41 +00001859 tyma = tmpa->tym;
1860 tymb = 0;
1861 ia++;
1862 }
1863 else
1864 if (tmpa->thr > tmpb->thr) {
1865 /* b has the lowest unconsidered Thr* */
sewardjf98e1c02008-10-25 16:22:41 +00001866 tyma = 0;
1867 tymb = tmpb->tym;
1868 ib++;
1869 } else {
1870 /* they both next mention the same Thr* */
1871 tl_assert(tmpa->thr == tmpb->thr);
sewardjf98e1c02008-10-25 16:22:41 +00001872 tyma = tmpa->tym;
1873 tymb = tmpb->tym;
1874 ia++;
1875 ib++;
1876 }
1877 }
1878
njn4c245e52009-03-15 23:25:38 +00001879 /* having laboriously determined (tyma, tymb), do something
sewardjf98e1c02008-10-25 16:22:41 +00001880 useful with it. */
1881 if (tyma < tymb)
1882 all_geq = False;
1883 if (tyma > tymb)
1884 all_leq = False;
1885 }
1886
1887 if (all_leq && all_geq)
1888 return POrd_EQ;
1889 /* now we know they aren't equal, so either all_leq or all_geq or
1890 both are false. */
1891 if (all_leq)
1892 return POrd_LT;
1893 if (all_geq)
1894 return POrd_GT;
1895 /* hmm, neither all_geq or all_leq. This means unordered. */
1896 return POrd_UN;
1897}
1898
1899
1900/* Compute an arbitrary structural (total) ordering on the two args,
1901 based on their VCs, so they can be looked up in a table, tree, etc.
1902 Returns -1, 0 or 1. (really just 'deriving Ord' :-)
1903*/
1904Word VTS__cmp_structural ( VTS* a, VTS* b )
1905{
1906 /* We just need to generate an arbitrary total ordering based on
1907 a->ts and b->ts. Preferably do it in a way which comes across likely
1908 differences relatively quickly. */
1909 Word i, useda, usedb;
1910 ScalarTS *tmpa, *tmpb;
1911
1912 tl_assert(a && a->ts);
1913 tl_assert(b && b->ts);
1914 useda = VG_(sizeXA)( a->ts );
1915 usedb = VG_(sizeXA)( b->ts );
1916
1917 if (useda < usedb) return -1;
1918 if (useda > usedb) return 1;
1919
1920 /* Same length vectors, so let's step through them together. */
1921 tl_assert(useda == usedb);
1922 for (i = 0; i < useda; i++) {
1923 tmpa = VG_(indexXA)( a->ts, i );
1924 tmpb = VG_(indexXA)( b->ts, i );
1925 if (tmpa->tym < tmpb->tym) return -1;
1926 if (tmpa->tym > tmpb->tym) return 1;
1927 if (tmpa->thr < tmpb->thr) return -1;
1928 if (tmpa->thr > tmpb->thr) return 1;
1929 }
1930
1931 /* They're identical. */
1932 return 0;
1933}
1934
1935
1936/* Debugging only. Display the given VTS in the buffer.
1937*/
1938void VTS__show ( HChar* buf, Int nBuf, VTS* vts ) {
1939 ScalarTS* st;
1940 HChar unit[64];
1941 Word i, n;
1942 Int avail = nBuf;
1943 tl_assert(vts && vts->ts);
1944 tl_assert(nBuf > 16);
1945 buf[0] = '[';
1946 buf[1] = 0;
1947 n = VG_(sizeXA)( vts->ts );
1948 for (i = 0; i < n; i++) {
1949 tl_assert(avail >= 40);
1950 st = VG_(indexXA)( vts->ts, i );
1951 VG_(memset)(unit, 0, sizeof(unit));
1952 VG_(sprintf)(unit, i < n-1 ? "%p:%lld " : "%p:%lld",
1953 st->thr, st->tym);
1954 if (avail < VG_(strlen)(unit) + 40/*let's say*/) {
1955 VG_(strcat)(buf, " ...]");
1956 buf[nBuf-1] = 0;
1957 return;
1958 }
1959 VG_(strcat)(buf, unit);
1960 avail -= VG_(strlen)(unit);
1961 }
1962 VG_(strcat)(buf, "]");
1963 buf[nBuf-1] = 0;
1964}
1965
1966
1967/* Debugging only. Return vts[index], so to speak.
1968*/
1969ULong VTS__indexAt_SLOW ( VTS* vts, Thr* idx ) {
1970 UWord i, n;
1971 tl_assert(vts && vts->ts);
1972 n = VG_(sizeXA)( vts->ts );
1973 for (i = 0; i < n; i++) {
1974 ScalarTS* st = VG_(indexXA)( vts->ts, i );
1975 if (st->thr == idx)
1976 return st->tym;
1977 }
1978 return 0;
1979}
1980
1981
1982/////////////////////////////////////////////////////////////////
1983/////////////////////////////////////////////////////////////////
1984// //
1985// SECTION END vts primitives //
1986// //
1987/////////////////////////////////////////////////////////////////
1988/////////////////////////////////////////////////////////////////
1989
1990
1991
1992/////////////////////////////////////////////////////////////////
1993/////////////////////////////////////////////////////////////////
1994// //
1995// SECTION BEGIN main library //
1996// //
1997/////////////////////////////////////////////////////////////////
1998/////////////////////////////////////////////////////////////////
1999
2000
2001/////////////////////////////////////////////////////////
2002// //
2003// VTS set //
2004// //
2005/////////////////////////////////////////////////////////
2006
2007static WordFM* /* VTS* void void */ vts_set = NULL;
2008
2009static void vts_set_init ( void )
2010{
2011 tl_assert(!vts_set);
2012 vts_set = VG_(newFM)( HG_(zalloc), "libhb.vts_set_init.1",
2013 HG_(free),
2014 (Word(*)(UWord,UWord))VTS__cmp_structural );
2015 tl_assert(vts_set);
2016}
2017
2018/* Given a newly made VTS, look in vts_set to see if we already have
2019 an identical one. If yes, free up this one and return instead a
2020 pointer to the existing one. If no, add this one to the set and
2021 return the same pointer. Caller differentiates the two cases by
2022 comparing returned pointer with the supplied one (although that
2023 does require that the supplied VTS is not already in the set).
2024*/
2025static VTS* vts_set__find_and_dealloc__or_add ( VTS* cand )
2026{
2027 UWord keyW, valW;
2028 /* lookup cand (by value) */
2029 if (VG_(lookupFM)( vts_set, &keyW, &valW, (UWord)cand )) {
2030 /* found it */
2031 tl_assert(valW == 0);
2032 /* if this fails, cand (by ref) was already present (!) */
2033 tl_assert(keyW != (UWord)cand);
2034 VTS__delete(cand);
2035 return (VTS*)keyW;
2036 } else {
2037 /* not present. Add and return pointer to same. */
2038 VG_(addToFM)( vts_set, (UWord)cand, 0/*val is unused*/ );
2039 return cand;
2040 }
2041}
2042
2043
2044/////////////////////////////////////////////////////////
2045// //
2046// VTS table //
2047// //
2048/////////////////////////////////////////////////////////
2049
2050static void VtsID__invalidate_caches ( void ); /* fwds */
2051
2052/* A type to hold VTS table entries. Invariants:
2053 If .vts == NULL, then this entry is not in use, so:
2054 - .rc == 0
2055 - this entry is on the freelist (unfortunately, does not imply
2056 any constraints on value for .nextfree)
2057 If .vts != NULL, then this entry is in use:
2058 - .vts is findable in vts_set
2059 - .vts->id == this entry number
2060 - no specific value for .rc (even 0 is OK)
2061 - this entry is not on freelist, so .nextfree == VtsID_INVALID
2062*/
2063typedef
2064 struct {
2065 VTS* vts; /* vts, in vts_set */
2066 UWord rc; /* reference count - enough for entire aspace */
2067 VtsID freelink; /* chain for free entries, VtsID_INVALID at end */
2068 }
2069 VtsTE;
2070
2071/* The VTS table. */
2072static XArray* /* of VtsTE */ vts_tab = NULL;
2073
2074/* An index into the VTS table, indicating the start of the list of
2075 free (available for use) entries. If the list is empty, this is
2076 VtsID_INVALID. */
2077static VtsID vts_tab_freelist = VtsID_INVALID;
2078
2079/* Do a GC of vts_tab when the freelist becomes empty AND the size of
2080 vts_tab equals or exceeds this size. After GC, the value here is
2081 set appropriately so as to check for the next GC point. */
2082static Word vts_next_GC_at = 1000;
2083
2084static void vts_tab_init ( void )
2085{
2086 vts_tab
2087 = VG_(newXA)( HG_(zalloc), "libhb.vts_tab_init.1",
2088 HG_(free), sizeof(VtsTE) );
2089 vts_tab_freelist
2090 = VtsID_INVALID;
2091 tl_assert(vts_tab);
2092}
2093
2094/* Add ii to the free list, checking that it looks out-of-use. */
2095static void add_to_free_list ( VtsID ii )
2096{
2097 VtsTE* ie = VG_(indexXA)( vts_tab, ii );
2098 tl_assert(ie->vts == NULL);
2099 tl_assert(ie->rc == 0);
2100 tl_assert(ie->freelink == VtsID_INVALID);
2101 ie->freelink = vts_tab_freelist;
2102 vts_tab_freelist = ii;
2103}
2104
2105/* Get an entry from the free list. This will return VtsID_INVALID if
2106 the free list is empty. */
2107static VtsID get_from_free_list ( void )
2108{
2109 VtsID ii;
2110 VtsTE* ie;
2111 if (vts_tab_freelist == VtsID_INVALID)
2112 return VtsID_INVALID;
2113 ii = vts_tab_freelist;
2114 ie = VG_(indexXA)( vts_tab, ii );
2115 tl_assert(ie->vts == NULL);
2116 tl_assert(ie->rc == 0);
2117 vts_tab_freelist = ie->freelink;
2118 return ii;
2119}
2120
2121/* Produce a new VtsID that can be used, either by getting it from
2122 the freelist, or, if that is empty, by expanding vts_tab. */
2123static VtsID get_new_VtsID ( void )
2124{
2125 VtsID ii;
2126 VtsTE te;
2127 ii = get_from_free_list();
2128 if (ii != VtsID_INVALID)
2129 return ii;
2130 te.vts = NULL;
2131 te.rc = 0;
2132 te.freelink = VtsID_INVALID;
2133 ii = (VtsID)VG_(addToXA)( vts_tab, &te );
2134 return ii;
2135}
2136
2137
2138/* Indirect callback from lib_zsm. */
2139static void VtsID__rcinc ( VtsID ii )
2140{
2141 VtsTE* ie;
2142 /* VG_(indexXA) does a range check for us */
2143 ie = VG_(indexXA)( vts_tab, ii );
2144 tl_assert(ie->vts); /* else it's not in use */
2145 tl_assert(ie->rc < ~0UL); /* else we can't continue */
2146 tl_assert(ie->vts->id == ii);
2147 ie->rc++;
2148}
2149
2150/* Indirect callback from lib_zsm. */
2151static void VtsID__rcdec ( VtsID ii )
2152{
2153 VtsTE* ie;
2154 /* VG_(indexXA) does a range check for us */
2155 ie = VG_(indexXA)( vts_tab, ii );
2156 tl_assert(ie->vts); /* else it's not in use */
2157 tl_assert(ie->rc > 0); /* else RC snafu */
2158 tl_assert(ie->vts->id == ii);
2159 ie->rc--;
2160}
2161
2162
2163/* Look up 'cand' in our collection of VTSs. If present, deallocate
2164 it and return the VtsID for the pre-existing version. If not
2165 present, add it to both vts_tab and vts_set, allocate a fresh VtsID
2166 for it, and return that. */
2167static VtsID vts_tab__find_and_dealloc__or_add ( VTS* cand )
2168{
2169 VTS* auld;
2170 tl_assert(cand->id == VtsID_INVALID);
2171 auld = vts_set__find_and_dealloc__or_add(cand);
2172 if (auld != cand) {
2173 /* We already have an Aulde one. Use that. */
2174 VtsTE* ie;
2175 tl_assert(auld->id != VtsID_INVALID);
2176 ie = VG_(indexXA)( vts_tab, auld->id );
2177 tl_assert(ie->vts == auld);
2178 return auld->id;
2179 } else {
2180 VtsID ii = get_new_VtsID();
2181 VtsTE* ie = VG_(indexXA)( vts_tab, ii );
2182 ie->vts = cand;
2183 ie->rc = 0;
2184 ie->freelink = VtsID_INVALID;
2185 cand->id = ii;
2186 return ii;
2187 }
2188}
2189
2190
2191static void show_vts_stats ( HChar* caller )
2192{
2193 UWord nSet, nTab, nLive;
2194 ULong totrc;
2195 UWord n, i;
2196 nSet = VG_(sizeFM)( vts_set );
2197 nTab = VG_(sizeXA)( vts_tab );
2198 totrc = 0;
2199 nLive = 0;
2200 n = VG_(sizeXA)( vts_tab );
2201 for (i = 0; i < n; i++) {
2202 VtsTE* ie = VG_(indexXA)( vts_tab, i );
2203 if (ie->vts) {
2204 nLive++;
2205 totrc += (ULong)ie->rc;
2206 } else {
2207 tl_assert(ie->rc == 0);
2208 }
2209 }
2210 VG_(printf)(" show_vts_stats %s\n", caller);
2211 VG_(printf)(" vts_tab size %4lu\n", nTab);
2212 VG_(printf)(" vts_tab live %4lu\n", nLive);
2213 VG_(printf)(" vts_set size %4lu\n", nSet);
2214 VG_(printf)(" total rc %4llu\n", totrc);
2215}
2216
2217/* NOT TO BE CALLED FROM WITHIN libzsm. */
sewardj8fd92d32008-11-20 23:17:01 +00002218__attribute__((noinline))
sewardjf98e1c02008-10-25 16:22:41 +00002219static void vts_tab__do_GC ( Bool show_stats )
2220{
2221 UWord i, nTab, nLive, nFreed;
2222
2223 /* check this is actually necessary. */
2224 tl_assert(vts_tab_freelist == VtsID_INVALID);
2225
2226 /* empty the caches for partial order checks and binary joins. We
2227 could do better and prune out the entries to be deleted, but it
2228 ain't worth the hassle. */
2229 VtsID__invalidate_caches();
2230
2231 /* First, make the reference counts up to date. */
2232 zsm_flush_cache();
2233
2234 nTab = VG_(sizeXA)( vts_tab );
2235
2236 if (show_stats) {
2237 VG_(printf)("<<GC begins at vts_tab size %lu>>\n", nTab);
2238 show_vts_stats("before GC");
2239 }
2240
2241 /* Now we can inspect the entire vts_tab. Any entries
2242 with zero .rc fields are now no longer in use and can be
2243 free list, removed from vts_set, and deleted. */
2244 nFreed = 0;
2245 for (i = 0; i < nTab; i++) {
2246 Bool present;
2247 UWord oldK = 0, oldV = 0;
2248 VtsTE* te = VG_(indexXA)( vts_tab, i );
2249 if (te->vts == NULL) {
2250 tl_assert(te->rc == 0);
2251 continue; /* already on the free list (presumably) */
2252 }
2253 if (te->rc > 0)
2254 continue; /* in use */
2255 /* Ok, we got one we can free. */
2256 tl_assert(te->vts->id == i);
2257 /* first, remove it from vts_set. */
2258 present = VG_(delFromFM)( vts_set,
2259 &oldK, &oldV, (UWord)te->vts );
2260 tl_assert(present); /* else it isn't in vts_set ?! */
2261 tl_assert(oldV == 0); /* no info stored in vts_set val fields */
2262 tl_assert(oldK == (UWord)te->vts); /* else what did delFromFM find?! */
2263 /* now free the VTS itself */
2264 VTS__delete(te->vts);
2265 te->vts = NULL;
2266 /* and finally put this entry on the free list */
2267 tl_assert(te->freelink == VtsID_INVALID); /* can't already be on it */
2268 add_to_free_list( i );
2269 nFreed++;
2270 }
2271
2272 /* Now figure out when the next GC should be. We'll allow the
2273 number of VTSs to double before GCing again. Except of course
2274 that since we can't (or, at least, don't) shrink vts_tab, we
2275 can't set the threshhold value smaller than it. */
2276 tl_assert(nFreed <= nTab);
2277 nLive = nTab - nFreed;
2278 tl_assert(nLive >= 0 && nLive <= nTab);
2279 vts_next_GC_at = 2 * nLive;
2280 if (vts_next_GC_at < nTab)
2281 vts_next_GC_at = nTab;
2282
2283 if (show_stats) {
2284 show_vts_stats("after GC");
2285 VG_(printf)("<<GC ends, next gc at %ld>>\n", vts_next_GC_at);
2286 }
2287
sewardjd024ae52008-11-09 20:47:57 +00002288 if (VG_(clo_verbosity) > 1) {
sewardjf98e1c02008-10-25 16:22:41 +00002289 static UInt ctr = 0;
2290 tl_assert(nTab > 0);
sewardjd024ae52008-11-09 20:47:57 +00002291 VG_(message)(Vg_DebugMsg,
2292 "libhb: VTS GC: #%u old size %lu live %lu (%2llu%%)",
sewardj8aa41de2009-01-22 12:24:26 +00002293 ctr++, nTab, nLive, (100ULL * (ULong)nLive) / (ULong)nTab);
sewardjf98e1c02008-10-25 16:22:41 +00002294 }
2295}
2296
2297
2298/////////////////////////////////////////////////////////
2299// //
2300// Vts IDs //
2301// //
2302/////////////////////////////////////////////////////////
2303
2304//////////////////////////
2305static ULong stats__getOrdering_queries = 0;
2306static ULong stats__getOrdering_misses = 0;
2307static ULong stats__join2_queries = 0;
2308static ULong stats__join2_misses = 0;
2309
2310static inline UInt ROL32 ( UInt w, Int n ) {
2311 w = (w << n) | (w >> (32-n));
2312 return w;
2313}
2314static inline UInt hash_VtsIDs ( VtsID vi1, VtsID vi2, UInt nTab ) {
2315 UInt hash = ROL32(vi1,19) ^ ROL32(vi2,13);
2316 return hash % nTab;
2317}
2318
2319#define N_GETORDERING_CACHE 1023
2320static
2321 struct { VtsID vi1; VtsID vi2; POrd ord; }
2322 getOrdering_cache[N_GETORDERING_CACHE];
2323
2324#define N_JOIN2_CACHE 1023
2325static
2326 struct { VtsID vi1; VtsID vi2; VtsID res; }
2327 join2_cache[N_JOIN2_CACHE];
2328
2329static void VtsID__invalidate_caches ( void ) {
2330 Int i;
2331 for (i = 0; i < N_GETORDERING_CACHE; i++) {
2332 getOrdering_cache[i].vi1 = VtsID_INVALID;
2333 getOrdering_cache[i].vi2 = VtsID_INVALID;
2334 getOrdering_cache[i].ord = 0; /* an invalid POrd value */
2335 }
2336 for (i = 0; i < N_JOIN2_CACHE; i++) {
2337 join2_cache[i].vi1 = VtsID_INVALID;
2338 join2_cache[i].vi2 = VtsID_INVALID;
2339 join2_cache[i].res = VtsID_INVALID;
2340 }
2341}
2342//////////////////////////
2343
sewardjd52392d2008-11-08 20:36:26 +00002344//static Bool VtsID__is_valid ( VtsID vi ) {
2345// VtsTE* ve;
2346// if (vi >= (VtsID)VG_(sizeXA)( vts_tab ))
2347// return False;
2348// ve = VG_(indexXA)( vts_tab, vi );
2349// if (!ve->vts)
2350// return False;
2351// tl_assert(ve->vts->id == vi);
2352// return True;
2353//}
sewardjf98e1c02008-10-25 16:22:41 +00002354
2355static VTS* VtsID__to_VTS ( VtsID vi ) {
2356 VtsTE* te = VG_(indexXA)( vts_tab, vi );
2357 tl_assert(te->vts);
2358 return te->vts;
2359}
2360
2361static void VtsID__pp ( VtsID vi ) {
2362 HChar buf[100];
2363 VTS* vts = VtsID__to_VTS(vi);
2364 VTS__show( buf, sizeof(buf)-1, vts );
2365 buf[sizeof(buf)-1] = 0;
2366 VG_(printf)("%s", buf);
2367}
2368
2369/* compute partial ordering relation of vi1 and vi2. */
2370__attribute__((noinline))
2371static POrd VtsID__getOrdering_WRK ( VtsID vi1, VtsID vi2 ) {
2372 UInt hash;
2373 POrd ord;
2374 VTS *v1, *v2;
2375 //if (vi1 == vi2) return POrd_EQ;
2376 tl_assert(vi1 != vi2);
2377 ////++
2378 stats__getOrdering_queries++;
2379 hash = hash_VtsIDs(vi1, vi2, N_GETORDERING_CACHE);
2380 if (getOrdering_cache[hash].vi1 == vi1
2381 && getOrdering_cache[hash].vi2 == vi2)
2382 return getOrdering_cache[hash].ord;
2383 stats__getOrdering_misses++;
2384 ////--
2385 v1 = VtsID__to_VTS(vi1);
2386 v2 = VtsID__to_VTS(vi2);
2387 ord = VTS__cmp( v1, v2 );
2388 ////++
2389 getOrdering_cache[hash].vi1 = vi1;
2390 getOrdering_cache[hash].vi2 = vi2;
2391 getOrdering_cache[hash].ord = ord;
2392 ////--
2393 return ord;
2394}
2395static inline POrd VtsID__getOrdering ( VtsID vi1, VtsID vi2 ) {
2396 return vi1 == vi2 ? POrd_EQ : VtsID__getOrdering_WRK(vi1, vi2);
2397}
2398
2399/* compute binary join */
2400__attribute__((noinline))
2401static VtsID VtsID__join2_WRK ( VtsID vi1, VtsID vi2 ) {
2402 UInt hash;
2403 VtsID res;
2404 VTS *vts1, *vts2, *nyu;
2405 //if (vi1 == vi2) return vi1;
2406 tl_assert(vi1 != vi2);
2407 ////++
2408 stats__join2_queries++;
2409 hash = hash_VtsIDs(vi1, vi2, N_JOIN2_CACHE);
2410 if (join2_cache[hash].vi1 == vi1
2411 && join2_cache[hash].vi2 == vi2)
2412 return join2_cache[hash].res;
2413 stats__join2_misses++;
2414 ////--
2415 vts1 = VtsID__to_VTS(vi1);
2416 vts2 = VtsID__to_VTS(vi2);
2417 nyu = VTS__join(vts1,vts2);
2418 res = vts_tab__find_and_dealloc__or_add(nyu);
2419 ////++
2420 join2_cache[hash].vi1 = vi1;
2421 join2_cache[hash].vi2 = vi2;
2422 join2_cache[hash].res = res;
2423 ////--
2424 return res;
2425}
2426static inline VtsID VtsID__join2 ( VtsID vi1, VtsID vi2 ) {
2427 return vi1 == vi2 ? vi1 : VtsID__join2_WRK(vi1, vi2);
2428}
2429
2430/* create a singleton VTS, namely [thr:1] */
2431static VtsID VtsID__mk_Singleton ( Thr* thr, ULong tym ) {
2432 VTS* nyu = VTS__singleton(thr,tym);
2433 return vts_tab__find_and_dealloc__or_add(nyu);
2434}
2435
2436/* tick operation, creates value 1 if specified index is absent */
2437static VtsID VtsID__tick ( VtsID vi, Thr* idx ) {
2438 VTS* vts = VtsID__to_VTS(vi);
2439 VTS* nyu = VTS__tick(idx,vts);
2440 return vts_tab__find_and_dealloc__or_add(nyu);
2441}
2442
2443/* index into a VTS (only for assertions) */
2444static ULong VtsID__indexAt ( VtsID vi, Thr* idx ) {
2445 VTS* vts = VtsID__to_VTS(vi);
2446 return VTS__indexAt_SLOW( vts, idx );
2447}
2448
2449
2450/////////////////////////////////////////////////////////
2451// //
2452// Threads //
2453// //
2454/////////////////////////////////////////////////////////
2455
2456struct _Thr {
2457 /* Current VTSs for this thread. They change as we go along. viR
2458 is the VTS to be used for reads, viW for writes. Usually they
2459 are the same, but can differ when we deal with reader-writer
2460 locks. It is always the case that VtsID__getOrdering(viW,viR)
2461 == POrd_LT or POrdEQ -- that is, viW must be the same, or
2462 lagging behind, viR. */
2463 VtsID viR;
2464 VtsID viW;
2465 /* opaque (to us) data we hold on behalf of the library's user. */
2466 void* opaque;
2467};
2468
2469static Thr* Thr__new ( void ) {
2470 Thr* thr = HG_(zalloc)( "libhb.Thr__new.1", sizeof(Thr) );
2471 thr->viR = VtsID_INVALID;
2472 thr->viW = VtsID_INVALID;
2473 return thr;
2474}
2475
2476
2477/////////////////////////////////////////////////////////
2478// //
2479// Shadow Values //
2480// //
2481/////////////////////////////////////////////////////////
2482
2483// type SVal, SVal_INVALID and SVal_NOACCESS are defined by
2484// hb_zsm.h. We have to do everything else here.
2485
2486/* SVal is 64 bit unsigned int.
2487
2488 <---------30---------> <---------30--------->
2489 00 X-----Rmin-VtsID-----X 00 X-----Wmin-VtsID-----X C(Rmin,Wmin)
2490 01 X--------------------X XX X--------------------X E(rror)
2491 10 X--------------------X XX X--------------------X A: SVal_NOACCESS
2492 11 X--------------------X XX X--------------------X I: SVal_INVALID
2493*/
2494#define SVAL_TAGMASK (3ULL << 62)
2495
2496static inline Bool SVal__isC ( SVal s ) {
2497 return (0ULL << 62) == (s & SVAL_TAGMASK);
2498}
2499static inline SVal SVal__mkC ( VtsID rmini, VtsID wmini ) {
2500 //tl_assert(VtsID__is_valid(rmini));
2501 //tl_assert(VtsID__is_valid(wmini));
2502 return (((ULong)rmini) << 32) | ((ULong)wmini);
2503}
2504static inline VtsID SVal__unC_Rmin ( SVal s ) {
2505 tl_assert(SVal__isC(s));
2506 return (VtsID)(s >> 32);
2507}
2508static inline VtsID SVal__unC_Wmin ( SVal s ) {
2509 tl_assert(SVal__isC(s));
2510 return (VtsID)(s & 0xFFFFFFFFULL);
2511}
2512
2513static Bool SVal__isE ( SVal s ) {
2514 return (1ULL << 62) == (s & SVAL_TAGMASK);
2515}
2516static SVal SVal__mkE ( void ) {
2517 return 1ULL << 62;
2518}
2519
2520static Bool SVal__isA ( SVal s ) {
2521 return (2ULL << 62) == (s & SVAL_TAGMASK);
2522}
2523static SVal SVal__mkA ( void ) {
2524 return 2ULL << 62;
2525}
2526
2527/* Direct callback from lib_zsm. */
2528static void SVal__rcinc ( SVal s ) {
2529 if (SVal__isC(s)) {
2530 VtsID__rcinc( SVal__unC_Rmin(s) );
2531 VtsID__rcinc( SVal__unC_Wmin(s) );
2532 }
2533}
2534
2535/* Direct callback from lib_zsm. */
2536static void SVal__rcdec ( SVal s ) {
2537 if (SVal__isC(s)) {
2538 VtsID__rcdec( SVal__unC_Rmin(s) );
2539 VtsID__rcdec( SVal__unC_Wmin(s) );
2540 }
2541}
2542
2543
2544/////////////////////////////////////////////////////////
2545// //
sewardjd86e3a22008-12-03 11:39:37 +00002546// A simple group (memory) allocator //
2547// //
2548/////////////////////////////////////////////////////////
2549
2550//////////////// BEGIN general group allocator
2551typedef
2552 struct {
2553 UWord elemSzB; /* element size */
2554 UWord nPerGroup; /* # elems per group */
2555 void* (*alloc)(HChar*, SizeT); /* group allocator */
2556 HChar* cc; /* group allocator's cc */
2557 void (*free)(void*); /* group allocator's free-er (unused) */
2558 /* XArray of void* (pointers to groups). The groups themselves.
2559 Each element is a pointer to a block of size (elemSzB *
2560 nPerGroup) bytes. */
2561 XArray* groups;
2562 /* next free element. Is a pointer to an element in one of the
2563 groups pointed to by .groups. */
2564 void* nextFree;
2565 }
2566 GroupAlloc;
2567
2568static void init_GroupAlloc ( /*MOD*/GroupAlloc* ga,
2569 UWord elemSzB,
2570 UWord nPerGroup,
2571 void* (*alloc)(HChar*, SizeT),
2572 HChar* cc,
2573 void (*free)(void*) )
2574{
2575 tl_assert(0 == (elemSzB % sizeof(UWord)));
2576 tl_assert(elemSzB >= sizeof(UWord));
2577 tl_assert(nPerGroup >= 100); /* let's say */
2578 tl_assert(alloc);
2579 tl_assert(cc);
2580 tl_assert(free);
2581 tl_assert(ga);
2582 VG_(memset)(ga, 0, sizeof(*ga));
2583 ga->elemSzB = elemSzB;
2584 ga->nPerGroup = nPerGroup;
2585 ga->groups = NULL;
2586 ga->alloc = alloc;
2587 ga->cc = cc;
2588 ga->free = free;
2589 ga->groups = VG_(newXA)( alloc, cc, free, sizeof(void*) );
2590 ga->nextFree = NULL;
2591 tl_assert(ga->groups);
2592}
2593
2594/* The freelist is empty. Allocate a new group and put all the new
2595 elements in it onto the freelist. */
2596__attribute__((noinline))
2597static void gal_add_new_group ( GroupAlloc* ga )
2598{
2599 Word i;
2600 UWord* group;
2601 tl_assert(ga);
2602 tl_assert(ga->nextFree == NULL);
2603 group = ga->alloc( ga->cc, ga->elemSzB * ga->nPerGroup );
2604 tl_assert(group);
2605 /* extend the freelist through the new group. Place the freelist
2606 pointer in the first word of each element. That's why the
2607 element size must be at least one word. */
2608 for (i = ga->nPerGroup-1; i >= 0; i--) {
2609 UChar* elemC = ((UChar*)group) + i * ga->elemSzB;
2610 UWord* elem = (UWord*)elemC;
2611 tl_assert(0 == (((UWord)elem) % sizeof(UWord)));
2612 *elem = (UWord)ga->nextFree;
2613 ga->nextFree = elem;
2614 }
2615 /* and add to our collection of groups */
2616 VG_(addToXA)( ga->groups, &group );
2617}
2618
2619inline static void* gal_Alloc ( GroupAlloc* ga )
2620{
2621 UWord* elem;
2622 if (UNLIKELY(ga->nextFree == NULL)) {
2623 gal_add_new_group(ga);
2624 }
2625 elem = ga->nextFree;
2626 ga->nextFree = (void*)*elem;
2627 *elem = 0; /* unnecessary, but just to be on the safe side */
2628 return elem;
2629}
2630
2631inline static void* gal_Alloc_w_size_check ( GroupAlloc* ga, SizeT n )
2632{
2633 tl_assert(n == ga->elemSzB);
2634 return gal_Alloc( ga );
2635}
2636
2637inline static void gal_Free ( GroupAlloc* ga, void* p )
2638{
2639 UWord* elem = (UWord*)p;
2640 *elem = (UWord)ga->nextFree;
2641 ga->nextFree = elem;
2642}
2643//////////////// END general group allocator
2644
2645
2646/////////////////////////////////////////////////////////
2647// //
sewardjf98e1c02008-10-25 16:22:41 +00002648// Change-event map2 //
2649// //
2650/////////////////////////////////////////////////////////
2651
sewardjf98e1c02008-10-25 16:22:41 +00002652#define EVENT_MAP_GC_DISCARD_FRACTION 0.5
2653
2654/* This is in two parts:
2655
2656 1. An OSet of RCECs. This is a set of reference-counted stack
2657 traces. When the reference count of a stack trace becomes zero,
2658 it is removed from the set and freed up. The intent is to have
2659 a set of stack traces which can be referred to from (2), but to
2660 only represent each one once. The set is indexed/searched by
2661 ordering on the stack trace vectors.
2662
sewardj849b0ed2008-12-21 10:43:10 +00002663 2. A SparseWA of OldRefs. These store information about each old
2664 ref that we need to record. It is indexed by address of the
sewardjf98e1c02008-10-25 16:22:41 +00002665 location for which the information is recorded. For LRU
2666 purposes, each OldRef also contains a generation number,
2667 indicating when it was most recently accessed.
2668
2669 The important part of an OldRef is, however, its accs[] array.
sewardj849b0ed2008-12-21 10:43:10 +00002670 This is an array of N_OLDREF_ACCS which binds (thread, R/W,
2671 size) triples to RCECs. This allows us to collect the last
2672 access-traceback by up to N_OLDREF_ACCS different triples for
2673 this location. The accs[] array is a MTF-array. If a binding
2674 falls off the end, that's too bad -- we will lose info about
2675 that triple's access to this location.
sewardjf98e1c02008-10-25 16:22:41 +00002676
sewardj849b0ed2008-12-21 10:43:10 +00002677 When the SparseWA becomes too big, we can throw away the OldRefs
sewardjf98e1c02008-10-25 16:22:41 +00002678 whose generation numbers are below some threshold; hence doing
2679 approximate LRU discarding. For each discarded OldRef we must
2680 of course decrement the reference count on the all RCECs it
2681 refers to, in order that entries from (1) eventually get
2682 discarded too.
sewardj849b0ed2008-12-21 10:43:10 +00002683
2684 A major improvement in reliability of this mechanism would be to
2685 have a dynamically sized OldRef.accs[] array, so no entries ever
2686 fall off the end. In investigations (Dec 08) it appears that a
2687 major cause for the non-availability of conflicting-access traces
2688 in race reports is caused by the fixed size of this array. I
2689 suspect for most OldRefs, only a few entries are used, but for a
2690 minority of cases there is an overflow, leading to info lossage.
2691 Investigations also suggest this is very workload and scheduling
2692 sensitive. Therefore a dynamic sizing would be better.
2693
2694 However, dynamic sizing would defeat the use of a GroupAllocator
2695 for OldRef structures. And that's important for performance. So
2696 it's not straightforward to do.
sewardjf98e1c02008-10-25 16:22:41 +00002697*/
2698
2699
2700static UWord stats__ctxt_rcdec1 = 0;
2701static UWord stats__ctxt_rcdec2 = 0;
2702static UWord stats__ctxt_rcdec3 = 0;
2703static UWord stats__ctxt_rcdec_calls = 0;
2704static UWord stats__ctxt_rcdec_discards = 0;
2705static UWord stats__ctxt_rcdec1_eq = 0;
2706
2707static UWord stats__ctxt_tab_curr = 0;
2708static UWord stats__ctxt_tab_max = 0;
2709
2710static UWord stats__ctxt_tab_qs = 0;
2711static UWord stats__ctxt_tab_cmps = 0;
2712
2713
2714///////////////////////////////////////////////////////
2715//// Part (1): An OSet of RCECs
2716///
2717
2718#define N_FRAMES 8
2719
2720// (UInt) `echo "Reference Counted Execution Context" | md5sum`
2721#define RCEC_MAGIC 0xab88abb2UL
2722
2723//#define N_RCEC_TAB 98317 /* prime */
2724#define N_RCEC_TAB 196613 /* prime */
2725
2726typedef
2727 struct _RCEC {
sewardjd86e3a22008-12-03 11:39:37 +00002728 UWord magic; /* sanity check only */
sewardjf98e1c02008-10-25 16:22:41 +00002729 struct _RCEC* next;
sewardjf98e1c02008-10-25 16:22:41 +00002730 UWord rc;
2731 UWord rcX; /* used for crosschecking */
2732 UWord frames[1 + N_FRAMES]; /* first word is hash of all the rest */
2733 }
2734 RCEC;
2735
2736static RCEC** contextTab = NULL; /* hash table of RCEC*s */
2737
2738
2739/* Gives an arbitrary total order on RCEC .frames fields */
2740static Word RCEC__cmp_by_frames ( RCEC* ec1, RCEC* ec2 ) {
2741 Word i;
2742 tl_assert(ec1 && ec1->magic == RCEC_MAGIC);
2743 tl_assert(ec2 && ec2->magic == RCEC_MAGIC);
2744 if (ec1->frames[0] < ec2->frames[0]) return -1;
2745 if (ec1->frames[0] > ec2->frames[0]) return 1;
2746 for (i = 1; i < 1 + N_FRAMES; i++) {
2747 if (ec1->frames[i] < ec2->frames[i]) return -1;
2748 if (ec1->frames[i] > ec2->frames[i]) return 1;
2749 }
2750 return 0;
2751}
2752
2753
2754/* Dec the ref of this RCEC. */
2755static void ctxt__rcdec ( RCEC* ec )
2756{
2757 stats__ctxt_rcdec_calls++;
2758 tl_assert(ec && ec->magic == RCEC_MAGIC);
2759 tl_assert(ec->rc > 0);
2760 ec->rc--;
2761}
2762
2763static void ctxt__rcinc ( RCEC* ec )
2764{
2765 tl_assert(ec && ec->magic == RCEC_MAGIC);
2766 ec->rc++;
2767}
2768
2769
sewardjd86e3a22008-12-03 11:39:37 +00002770//////////// BEGIN RCEC group allocator
2771static GroupAlloc rcec_group_allocator;
2772
2773static RCEC* alloc_RCEC ( void ) {
2774 return gal_Alloc ( &rcec_group_allocator );
2775}
2776
2777static void free_RCEC ( RCEC* rcec ) {
2778 tl_assert(rcec->magic == RCEC_MAGIC);
2779 gal_Free( &rcec_group_allocator, rcec );
2780}
2781//////////// END OldRef group allocator
2782
2783
sewardjf98e1c02008-10-25 16:22:41 +00002784/* Find 'ec' in the RCEC list whose head pointer lives at 'headp' and
2785 move it one step closer the the front of the list, so as to make
2786 subsequent searches for it cheaper. */
2787static void move_RCEC_one_step_forward ( RCEC** headp, RCEC* ec )
2788{
2789 RCEC *ec0, *ec1, *ec2;
2790 if (ec == *headp)
2791 tl_assert(0); /* already at head of list */
2792 tl_assert(ec != NULL);
2793 ec0 = *headp;
2794 ec1 = NULL;
2795 ec2 = NULL;
2796 while (True) {
2797 if (ec0 == NULL || ec0 == ec) break;
2798 ec2 = ec1;
2799 ec1 = ec0;
2800 ec0 = ec0->next;
2801 }
2802 tl_assert(ec0 == ec);
2803 if (ec0 != NULL && ec1 != NULL && ec2 != NULL) {
2804 RCEC* tmp;
2805 /* ec0 points to ec, ec1 to its predecessor, and ec2 to ec1's
2806 predecessor. Swap ec0 and ec1, that is, move ec0 one step
2807 closer to the start of the list. */
2808 tl_assert(ec2->next == ec1);
2809 tl_assert(ec1->next == ec0);
2810 tmp = ec0->next;
2811 ec2->next = ec0;
2812 ec0->next = ec1;
2813 ec1->next = tmp;
2814 }
2815 else
2816 if (ec0 != NULL && ec1 != NULL && ec2 == NULL) {
2817 /* it's second in the list. */
2818 tl_assert(*headp == ec1);
2819 tl_assert(ec1->next == ec0);
2820 ec1->next = ec0->next;
2821 ec0->next = ec1;
2822 *headp = ec0;
2823 }
2824}
2825
2826
2827/* Find the given RCEC in the tree, and return a pointer to it. Or,
2828 if not present, add the given one to the tree (by making a copy of
2829 it, so the caller can immediately deallocate the original) and
2830 return a pointer to the copy. The caller can safely have 'example'
2831 on its stack, since we will always return a pointer to a copy of
2832 it, not to the original. Note that the inserted node will have .rc
2833 of zero and so the caller must immediatly increment it. */
2834__attribute__((noinline))
2835static RCEC* ctxt__find_or_add ( RCEC* example )
2836{
2837 UWord hent;
2838 RCEC* copy;
2839 tl_assert(example && example->magic == RCEC_MAGIC);
2840 tl_assert(example->rc == 0);
2841
2842 /* Search the hash table to see if we already have it. */
2843 stats__ctxt_tab_qs++;
2844 hent = example->frames[0] % N_RCEC_TAB;
2845 copy = contextTab[hent];
2846 while (1) {
2847 if (!copy) break;
2848 tl_assert(copy->magic == RCEC_MAGIC);
2849 stats__ctxt_tab_cmps++;
2850 if (0 == RCEC__cmp_by_frames(copy, example)) break;
2851 copy = copy->next;
2852 }
2853
2854 if (copy) {
2855 tl_assert(copy != example);
2856 /* optimisation: if it's not at the head of its list, move 1
2857 step fwds, to make future searches cheaper */
2858 if (copy != contextTab[hent]) {
2859 move_RCEC_one_step_forward( &contextTab[hent], copy );
2860 }
2861 } else {
sewardjd86e3a22008-12-03 11:39:37 +00002862 copy = alloc_RCEC();
sewardjf98e1c02008-10-25 16:22:41 +00002863 tl_assert(copy != example);
2864 *copy = *example;
2865 copy->next = contextTab[hent];
2866 contextTab[hent] = copy;
2867 stats__ctxt_tab_curr++;
2868 if (stats__ctxt_tab_curr > stats__ctxt_tab_max)
2869 stats__ctxt_tab_max = stats__ctxt_tab_curr;
2870 }
2871 return copy;
2872}
2873
2874static inline UWord ROLW ( UWord w, Int n )
2875{
2876 Int bpw = 8 * sizeof(UWord);
2877 w = (w << n) | (w >> (bpw-n));
2878 return w;
2879}
2880
2881__attribute__((noinline))
2882static RCEC* get_RCEC ( Thr* thr )
2883{
2884 UWord hash, i;
2885 RCEC example;
2886 example.magic = RCEC_MAGIC;
2887 example.rc = 0;
2888 example.rcX = 0;
2889 main_get_stacktrace( thr, &example.frames[1], N_FRAMES );
2890 hash = 0;
2891 for (i = 1; i < 1 + N_FRAMES; i++) {
2892 hash ^= example.frames[i];
2893 hash = ROLW(hash, 19);
2894 }
2895 example.frames[0] = hash;
2896 return ctxt__find_or_add( &example );
2897}
2898
2899///////////////////////////////////////////////////////
sewardjbc307e52008-12-06 22:10:54 +00002900//// Part (2):
2901/// A SparseWA guest-addr -> OldRef, that refers to (1)
sewardjf98e1c02008-10-25 16:22:41 +00002902///
2903
2904// (UInt) `echo "Old Reference Information" | md5sum`
2905#define OldRef_MAGIC 0x30b1f075UL
2906
sewardjc5ea9962008-12-07 01:41:46 +00002907/* Records an access: a thread and a context. The size
2908 (1,2,4,8) and read-or-writeness are also encoded as
2909 follows: bottom bit of .thr is 1 if write, 0 if read
2910 bottom 2 bits of .rcec are encode size:
2911 00 = 1, 01 = 2, 10 = 4, 11 = 8
2912*/
sewardjf98e1c02008-10-25 16:22:41 +00002913typedef struct { Thr* thr; RCEC* rcec; } Thr_n_RCEC;
2914
sewardj849b0ed2008-12-21 10:43:10 +00002915#define N_OLDREF_ACCS 5
sewardjf98e1c02008-10-25 16:22:41 +00002916
2917typedef
2918 struct {
sewardjd86e3a22008-12-03 11:39:37 +00002919 UWord magic; /* sanity check only */
sewardjf98e1c02008-10-25 16:22:41 +00002920 UWord gen; /* when most recently accessed */
sewardjd86e3a22008-12-03 11:39:37 +00002921 /* or free list when not in use */
sewardjf98e1c02008-10-25 16:22:41 +00002922 /* unused slots in this array have .thr == NULL */
2923 Thr_n_RCEC accs[N_OLDREF_ACCS];
2924 }
2925 OldRef;
2926
sewardjd86e3a22008-12-03 11:39:37 +00002927
2928//////////// BEGIN OldRef group allocator
2929static GroupAlloc oldref_group_allocator;
2930
2931static OldRef* alloc_OldRef ( void ) {
2932 return gal_Alloc ( &oldref_group_allocator );
2933}
2934
2935static void free_OldRef ( OldRef* r ) {
2936 tl_assert(r->magic == OldRef_MAGIC);
2937 gal_Free( &oldref_group_allocator, r );
2938}
2939//////////// END OldRef group allocator
2940
sewardjd86e3a22008-12-03 11:39:37 +00002941
sewardjbc307e52008-12-06 22:10:54 +00002942static SparseWA* oldrefTree = NULL; /* SparseWA* OldRef* */
2943static UWord oldrefGen = 0; /* current LRU generation # */
2944static UWord oldrefTreeN = 0; /* # elems in oldrefTree */
2945static UWord oldrefGenIncAt = 0; /* inc gen # when size hits this */
sewardjf98e1c02008-10-25 16:22:41 +00002946
sewardjc5ea9962008-12-07 01:41:46 +00002947inline static void* ptr_or_UWord ( void* p, UWord w ) {
2948 return (void*)( ((UWord)p) | ((UWord)w) );
2949}
2950inline static void* ptr_and_UWord ( void* p, UWord w ) {
2951 return (void*)( ((UWord)p) & ((UWord)w) );
2952}
2953
sewardj1669cc72008-12-13 01:20:21 +00002954inline static UInt min_UInt ( UInt a, UInt b ) {
2955 return a < b ? a : b;
2956}
2957
sewardja781be62008-12-08 00:12:28 +00002958/* Compare the intervals [a1,a1+n1) and [a2,a2+n2). Return -1 if the
2959 first interval is lower, 1 if the first interval is higher, and 0
2960 if there is any overlap. Redundant paranoia with casting is there
2961 following what looked distinctly like a bug in gcc-4.1.2, in which
2962 some of the comparisons were done signedly instead of
2963 unsignedly. */
2964/* Copied from exp-ptrcheck/sg_main.c */
2965static Word cmp_nonempty_intervals ( Addr a1, SizeT n1,
2966 Addr a2, SizeT n2 ) {
2967 UWord a1w = (UWord)a1;
2968 UWord n1w = (UWord)n1;
2969 UWord a2w = (UWord)a2;
2970 UWord n2w = (UWord)n2;
2971 tl_assert(n1w > 0 && n2w > 0);
2972 if (a1w + n1w <= a2w) return -1L;
2973 if (a2w + n2w <= a1w) return 1L;
2974 return 0;
2975}
2976
sewardjc5ea9962008-12-07 01:41:46 +00002977static void event_map_bind ( Addr a, SizeT szB, Bool isW, Thr* thr )
sewardjf98e1c02008-10-25 16:22:41 +00002978{
sewardjd86e3a22008-12-03 11:39:37 +00002979 OldRef* ref;
sewardjc5ea9962008-12-07 01:41:46 +00002980 RCEC* rcec;
sewardjd86e3a22008-12-03 11:39:37 +00002981 Word i, j;
2982 UWord keyW, valW;
2983 Bool b;
sewardjf98e1c02008-10-25 16:22:41 +00002984
sewardjc5ea9962008-12-07 01:41:46 +00002985 rcec = get_RCEC( thr );
2986 ctxt__rcinc(rcec);
2987
2988 /* encode the size and writeness of the transaction in the bottom
2989 two bits of thr and rcec. */
2990 thr = ptr_or_UWord(thr, isW ? 1 : 0);
2991 switch (szB) {
2992 /* This doesn't look particularly branch-predictor friendly. */
2993 case 1: rcec = ptr_or_UWord(rcec, 0); break;
2994 case 2: rcec = ptr_or_UWord(rcec, 1); break;
2995 case 4: rcec = ptr_or_UWord(rcec, 2); break;
2996 case 8: rcec = ptr_or_UWord(rcec, 3); break;
2997 default: tl_assert(0);
2998 }
2999
3000 /* Look in the map to see if we already have this. */
sewardjbc307e52008-12-06 22:10:54 +00003001 b = VG_(lookupSWA)( oldrefTree, &keyW, &valW, a );
sewardjf98e1c02008-10-25 16:22:41 +00003002
sewardjd86e3a22008-12-03 11:39:37 +00003003 if (b) {
sewardjf98e1c02008-10-25 16:22:41 +00003004
3005 /* We already have a record for this address. We now need to
sewardj849b0ed2008-12-21 10:43:10 +00003006 see if we have a stack trace pertaining to this (thread, R/W,
3007 size) triple. */
sewardjd86e3a22008-12-03 11:39:37 +00003008 tl_assert(keyW == a);
3009 ref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00003010 tl_assert(ref->magic == OldRef_MAGIC);
3011
3012 tl_assert(thr);
3013 for (i = 0; i < N_OLDREF_ACCS; i++) {
sewardj849b0ed2008-12-21 10:43:10 +00003014 if (ref->accs[i].thr != thr)
3015 continue;
3016 /* since .thr encodes both the accessing thread and the
3017 read/writeness, we know now that at least those features
3018 of the access match this entry. So we just need to check
3019 the size indication. Do this by inspecting the lowest 2 bits of
3020 .rcec, which contain the encoded size info. */
3021 if (ptr_and_UWord(ref->accs[i].rcec,3) != ptr_and_UWord(rcec,3))
3022 continue;
3023 /* else we have a match, so stop looking. */
3024 break;
sewardjf98e1c02008-10-25 16:22:41 +00003025 }
3026
3027 if (i < N_OLDREF_ACCS) {
3028 /* thread 'thr' has an entry at index 'i'. Update it. */
3029 if (i > 0) {
3030 Thr_n_RCEC tmp = ref->accs[i-1];
3031 ref->accs[i-1] = ref->accs[i];
3032 ref->accs[i] = tmp;
3033 i--;
3034 }
sewardjc5ea9962008-12-07 01:41:46 +00003035 if (rcec == ref->accs[i].rcec) stats__ctxt_rcdec1_eq++;
sewardjf98e1c02008-10-25 16:22:41 +00003036 stats__ctxt_rcdec1++;
sewardjc5ea9962008-12-07 01:41:46 +00003037 ctxt__rcdec( ptr_and_UWord(ref->accs[i].rcec, ~3) );
3038 ref->accs[i].rcec = rcec;
sewardjf98e1c02008-10-25 16:22:41 +00003039 tl_assert(ref->accs[i].thr == thr);
3040 } else {
sewardj849b0ed2008-12-21 10:43:10 +00003041 /* No entry for this (thread, R/W, size) triple. Shuffle all
3042 of them down one slot, and put the new entry at the start
3043 of the array. */
sewardjf98e1c02008-10-25 16:22:41 +00003044 if (ref->accs[N_OLDREF_ACCS-1].thr) {
3045 /* the last slot is in use. We must dec the rc on the
3046 associated rcec. */
3047 tl_assert(ref->accs[N_OLDREF_ACCS-1].rcec);
3048 stats__ctxt_rcdec2++;
sewardj849b0ed2008-12-21 10:43:10 +00003049 if (0 && 0 == (stats__ctxt_rcdec2 & 0xFFF))
3050 VG_(printf)("QQQQ %lu overflows\n",stats__ctxt_rcdec2);
sewardjc5ea9962008-12-07 01:41:46 +00003051 ctxt__rcdec( ptr_and_UWord(ref->accs[N_OLDREF_ACCS-1].rcec, ~3) );
sewardjf98e1c02008-10-25 16:22:41 +00003052 } else {
3053 tl_assert(!ref->accs[N_OLDREF_ACCS-1].rcec);
3054 }
3055 for (j = N_OLDREF_ACCS-1; j >= 1; j--)
3056 ref->accs[j] = ref->accs[j-1];
3057 ref->accs[0].thr = thr;
sewardjc5ea9962008-12-07 01:41:46 +00003058 ref->accs[0].rcec = rcec;
3059 /* thr==NULL is used to signify an empty slot, so we can't
3060 add a NULL thr. */
3061 tl_assert(ptr_and_UWord(thr, ~3) != 0);
sewardjf98e1c02008-10-25 16:22:41 +00003062 }
3063
3064 ref->gen = oldrefGen;
sewardjf98e1c02008-10-25 16:22:41 +00003065
3066 } else {
3067
3068 /* We don't have a record for this address. Create a new one. */
3069 if (oldrefTreeN >= oldrefGenIncAt) {
3070 oldrefGen++;
3071 oldrefGenIncAt = oldrefTreeN + 50000;
3072 if (0) VG_(printf)("oldrefTree: new gen %lu at size %lu\n",
3073 oldrefGen, oldrefTreeN );
3074 }
sewardjd86e3a22008-12-03 11:39:37 +00003075
3076 ref = alloc_OldRef();
sewardjf98e1c02008-10-25 16:22:41 +00003077 ref->magic = OldRef_MAGIC;
3078 ref->gen = oldrefGen;
sewardjc5ea9962008-12-07 01:41:46 +00003079 ref->accs[0].rcec = rcec;
sewardjf98e1c02008-10-25 16:22:41 +00003080 ref->accs[0].thr = thr;
sewardj849b0ed2008-12-21 10:43:10 +00003081 /* thr==NULL is used to signify an empty slot, so we can't add a
3082 NULL thr. */
3083 tl_assert(ptr_and_UWord(thr, ~3) != 0);
sewardjf98e1c02008-10-25 16:22:41 +00003084 for (j = 1; j < N_OLDREF_ACCS; j++) {
3085 ref->accs[j].thr = NULL;
3086 ref->accs[j].rcec = NULL;
3087 }
sewardjbc307e52008-12-06 22:10:54 +00003088 VG_(addToSWA)( oldrefTree, a, (UWord)ref );
sewardjf98e1c02008-10-25 16:22:41 +00003089 oldrefTreeN++;
3090
3091 }
3092}
3093
3094
sewardjc5ea9962008-12-07 01:41:46 +00003095Bool libhb_event_map_lookup ( /*OUT*/ExeContext** resEC,
3096 /*OUT*/Thr** resThr,
3097 /*OUT*/SizeT* resSzB,
3098 /*OUT*/Bool* resIsW,
3099 Thr* thr, Addr a, SizeT szB, Bool isW )
sewardjf98e1c02008-10-25 16:22:41 +00003100{
sewardja781be62008-12-08 00:12:28 +00003101 Word i, j;
sewardjd86e3a22008-12-03 11:39:37 +00003102 OldRef* ref;
3103 UWord keyW, valW;
3104 Bool b;
sewardjf98e1c02008-10-25 16:22:41 +00003105
sewardjc5ea9962008-12-07 01:41:46 +00003106 Thr* cand_thr;
3107 RCEC* cand_rcec;
3108 Bool cand_isW;
3109 SizeT cand_szB;
sewardja781be62008-12-08 00:12:28 +00003110 Addr cand_a;
3111
3112 Addr toCheck[15];
3113 Int nToCheck = 0;
sewardjc5ea9962008-12-07 01:41:46 +00003114
3115 tl_assert(thr);
3116 tl_assert(szB == 8 || szB == 4 || szB == 2 || szB == 1);
sewardjf98e1c02008-10-25 16:22:41 +00003117
sewardja781be62008-12-08 00:12:28 +00003118 toCheck[nToCheck++] = a;
3119 for (i = -7; i < (Word)szB; i++) {
3120 if (i != 0)
3121 toCheck[nToCheck++] = a + i;
3122 }
3123 tl_assert(nToCheck <= 15);
3124
3125 /* Now see if we can find a suitable matching event for
3126 any of the addresses in toCheck[0 .. nToCheck-1]. */
3127 for (j = 0; j < nToCheck; j++) {
3128
3129 cand_a = toCheck[j];
3130 // VG_(printf)("test %ld %p\n", j, cand_a);
3131
3132 b = VG_(lookupSWA)( oldrefTree, &keyW, &valW, cand_a );
3133 if (!b)
3134 continue;
3135
sewardjd86e3a22008-12-03 11:39:37 +00003136 ref = (OldRef*)valW;
sewardja781be62008-12-08 00:12:28 +00003137 tl_assert(keyW == cand_a);
sewardjf98e1c02008-10-25 16:22:41 +00003138 tl_assert(ref->magic == OldRef_MAGIC);
3139 tl_assert(ref->accs[0].thr); /* first slot must always be used */
3140
sewardjc5ea9962008-12-07 01:41:46 +00003141 cand_thr = NULL;
3142 cand_rcec = NULL;
3143 cand_isW = False;
3144 cand_szB = 0;
sewardjf98e1c02008-10-25 16:22:41 +00003145
sewardjc5ea9962008-12-07 01:41:46 +00003146 for (i = 0; i < N_OLDREF_ACCS; i++) {
3147 Thr_n_RCEC* cand = &ref->accs[i];
3148 cand_thr = ptr_and_UWord(cand->thr, ~3);
3149 cand_rcec = ptr_and_UWord(cand->rcec, ~3);
3150 /* Decode the writeness from the bottom bit of .thr. */
3151 cand_isW = 1 == (UWord)ptr_and_UWord(cand->thr, 1);
3152 /* Decode the size from the bottom two bits of .rcec. */
3153 switch ((UWord)ptr_and_UWord(cand->rcec, 3)) {
3154 case 0: cand_szB = 1; break;
3155 case 1: cand_szB = 2; break;
3156 case 2: cand_szB = 4; break;
3157 case 3: cand_szB = 8; break;
3158 default: tl_assert(0);
3159 }
3160
3161 if (cand_thr == NULL)
3162 /* This slot isn't in use. Ignore it. */
3163 continue;
3164
3165 if (cand_thr == thr)
3166 /* This is an access by the same thread, but we're only
3167 interested in accesses from other threads. Ignore. */
3168 continue;
3169
3170 if ((!cand_isW) && (!isW))
3171 /* We don't want to report a read racing against another
3172 read; that's stupid. So in this case move on. */
3173 continue;
3174
sewardja781be62008-12-08 00:12:28 +00003175 if (cmp_nonempty_intervals(a, szB, cand_a, cand_szB) != 0)
3176 /* No overlap with the access we're asking about. Ignore. */
3177 continue;
3178
sewardjc5ea9962008-12-07 01:41:46 +00003179 /* We have a match. Stop searching. */
3180 break;
3181 }
3182
3183 tl_assert(i >= 0 && i <= N_OLDREF_ACCS);
3184
sewardja781be62008-12-08 00:12:28 +00003185 if (i < N_OLDREF_ACCS) {
3186 /* return with success */
3187 tl_assert(cand_thr);
3188 tl_assert(cand_rcec);
3189 tl_assert(cand_rcec->magic == RCEC_MAGIC);
3190 tl_assert(cand_szB >= 1);
3191 *resEC = VG_(make_ExeContext_from_StackTrace)(
sewardj1669cc72008-12-13 01:20:21 +00003192 &cand_rcec->frames[1],
3193 min_UInt(N_FRAMES, VG_(clo_backtrace_size))
sewardja781be62008-12-08 00:12:28 +00003194 );
3195 *resThr = cand_thr;
3196 *resSzB = cand_szB;
3197 *resIsW = cand_isW;
3198 return True;
3199 }
sewardjc5ea9962008-12-07 01:41:46 +00003200
sewardja781be62008-12-08 00:12:28 +00003201 /* consider next address in toCheck[] */
3202 } /* for (j = 0; j < nToCheck; j++) */
sewardjf98e1c02008-10-25 16:22:41 +00003203
sewardja781be62008-12-08 00:12:28 +00003204 /* really didn't find anything. */
3205 return False;
sewardjf98e1c02008-10-25 16:22:41 +00003206}
3207
3208static void event_map_init ( void )
3209{
3210 Word i;
sewardjd86e3a22008-12-03 11:39:37 +00003211
3212 /* Context (RCEC) group allocator */
3213 init_GroupAlloc ( &rcec_group_allocator,
3214 sizeof(RCEC),
3215 1000 /* RCECs per group */,
3216 HG_(zalloc),
3217 "libhb.event_map_init.1 (RCEC groups)",
3218 HG_(free) );
3219
3220 /* Context table */
sewardjf98e1c02008-10-25 16:22:41 +00003221 tl_assert(!contextTab);
sewardjd86e3a22008-12-03 11:39:37 +00003222 contextTab = HG_(zalloc)( "libhb.event_map_init.2 (context table)",
sewardjf98e1c02008-10-25 16:22:41 +00003223 N_RCEC_TAB * sizeof(RCEC*) );
3224 tl_assert(contextTab);
3225 for (i = 0; i < N_RCEC_TAB; i++)
3226 contextTab[i] = NULL;
3227
sewardjd86e3a22008-12-03 11:39:37 +00003228 /* Oldref group allocator */
3229 init_GroupAlloc ( &oldref_group_allocator,
3230 sizeof(OldRef),
3231 1000 /* OldRefs per group */,
3232 HG_(zalloc),
3233 "libhb.event_map_init.3 (OldRef groups)",
3234 HG_(free) );
3235
sewardjd86e3a22008-12-03 11:39:37 +00003236 /* Oldref tree */
sewardjf98e1c02008-10-25 16:22:41 +00003237 tl_assert(!oldrefTree);
sewardjbc307e52008-12-06 22:10:54 +00003238 oldrefTree = VG_(newSWA)(
3239 HG_(zalloc),
sewardjd86e3a22008-12-03 11:39:37 +00003240 "libhb.event_map_init.4 (oldref tree)",
sewardjbc307e52008-12-06 22:10:54 +00003241 HG_(free)
sewardjf98e1c02008-10-25 16:22:41 +00003242 );
3243 tl_assert(oldrefTree);
3244
3245 oldrefGen = 0;
3246 oldrefGenIncAt = 0;
3247 oldrefTreeN = 0;
3248}
3249
3250static void event_map__check_reference_counts ( Bool before )
3251{
3252 RCEC* rcec;
3253 OldRef* oldref;
3254 Word i;
3255 UWord nEnts = 0;
sewardjd86e3a22008-12-03 11:39:37 +00003256 UWord keyW, valW;
sewardjf98e1c02008-10-25 16:22:41 +00003257
3258 /* Set the 'check' reference counts to zero. Also, optionally
3259 check that the real reference counts are non-zero. We allow
3260 these to fall to zero before a GC, but the GC must get rid of
3261 all those that are zero, hence none should be zero after a
3262 GC. */
3263 for (i = 0; i < N_RCEC_TAB; i++) {
3264 for (rcec = contextTab[i]; rcec; rcec = rcec->next) {
3265 nEnts++;
3266 tl_assert(rcec);
3267 tl_assert(rcec->magic == RCEC_MAGIC);
3268 if (!before)
3269 tl_assert(rcec->rc > 0);
3270 rcec->rcX = 0;
3271 }
3272 }
3273
3274 /* check that the stats are sane */
3275 tl_assert(nEnts == stats__ctxt_tab_curr);
3276 tl_assert(stats__ctxt_tab_curr <= stats__ctxt_tab_max);
3277
3278 /* visit all the referencing points, inc check ref counts */
sewardjbc307e52008-12-06 22:10:54 +00003279 VG_(initIterSWA)( oldrefTree );
3280 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardjd86e3a22008-12-03 11:39:37 +00003281 oldref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00003282 tl_assert(oldref->magic == OldRef_MAGIC);
3283 for (i = 0; i < N_OLDREF_ACCS; i++) {
sewardjc5ea9962008-12-07 01:41:46 +00003284 Thr* aThr = ptr_and_UWord(oldref->accs[i].thr, ~3);
3285 RCEC* aRef = ptr_and_UWord(oldref->accs[i].rcec, ~3);
3286 if (aThr) {
3287 tl_assert(aRef);
3288 tl_assert(aRef->magic == RCEC_MAGIC);
3289 aRef->rcX++;
sewardjf98e1c02008-10-25 16:22:41 +00003290 } else {
sewardjc5ea9962008-12-07 01:41:46 +00003291 tl_assert(!aRef);
sewardjf98e1c02008-10-25 16:22:41 +00003292 }
3293 }
3294 }
3295
3296 /* compare check ref counts with actual */
3297 for (i = 0; i < N_RCEC_TAB; i++) {
3298 for (rcec = contextTab[i]; rcec; rcec = rcec->next) {
3299 tl_assert(rcec->rc == rcec->rcX);
3300 }
3301 }
3302}
3303
sewardj8fd92d32008-11-20 23:17:01 +00003304__attribute__((noinline))
sewardjf98e1c02008-10-25 16:22:41 +00003305static void event_map_maybe_GC ( void )
3306{
3307 OldRef* oldref;
3308 UWord keyW, valW, retained, maxGen;
sewardjf98e1c02008-10-25 16:22:41 +00003309 XArray* refs2del;
3310 Word i, j, n2del;
3311
sewardj8fd92d32008-11-20 23:17:01 +00003312 UWord* genMap = NULL;
3313 UWord genMap_min = 0;
3314 UWord genMap_size = 0;
3315
sewardj849b0ed2008-12-21 10:43:10 +00003316 if (LIKELY(oldrefTreeN < HG_(clo_conflict_cache_size)))
sewardjf98e1c02008-10-25 16:22:41 +00003317 return;
3318
3319 if (0)
3320 VG_(printf)("libhb: event_map GC at size %lu\n", oldrefTreeN);
3321
sewardj849b0ed2008-12-21 10:43:10 +00003322 /* Check for sane command line params. Limit values must match
3323 those in hg_process_cmd_line_option. */
3324 tl_assert( HG_(clo_conflict_cache_size) >= 10*1000 );
3325 tl_assert( HG_(clo_conflict_cache_size) <= 10*1000*1000 );
3326
sewardj8f5374e2008-12-07 11:40:17 +00003327 /* Check our counting is sane (expensive) */
3328 if (CHECK_CEM)
3329 tl_assert(oldrefTreeN == VG_(sizeSWA)( oldrefTree ));
sewardjf98e1c02008-10-25 16:22:41 +00003330
sewardj8f5374e2008-12-07 11:40:17 +00003331 /* Check the reference counts (expensive) */
3332 if (CHECK_CEM)
3333 event_map__check_reference_counts( True/*before*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003334
sewardj8fd92d32008-11-20 23:17:01 +00003335 /* Compute the distribution of generation values in the ref tree.
3336 There are likely only to be a few different generation numbers
3337 in the whole tree, but we don't know what they are. Hence use a
3338 dynamically resized array of counters. The array is genMap[0
3339 .. genMap_size-1], where genMap[0] is the count for the
3340 generation number genMap_min, genMap[1] is the count for
3341 genMap_min+1, etc. If a new number is seen outside the range
3342 [genMap_min .. genMap_min + genMap_size - 1] then the array is
3343 copied into a larger array, and genMap_min and genMap_size are
3344 adjusted accordingly. */
3345
sewardjf98e1c02008-10-25 16:22:41 +00003346 /* genMap :: generation-number -> count-of-nodes-with-that-number */
sewardjf98e1c02008-10-25 16:22:41 +00003347
sewardjbc307e52008-12-06 22:10:54 +00003348 VG_(initIterSWA)( oldrefTree );
3349 while ( VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardj8fd92d32008-11-20 23:17:01 +00003350
sewardjd86e3a22008-12-03 11:39:37 +00003351 UWord ea, key;
3352 oldref = (OldRef*)valW;
3353 key = oldref->gen;
sewardj8fd92d32008-11-20 23:17:01 +00003354
3355 /* BEGIN find 'ea', which is the index in genMap holding the
3356 count for generation number 'key'. */
3357 if (UNLIKELY(genMap == NULL)) {
3358 /* deal with the first key to be seen, so that the following
3359 cases don't need to handle the complexity of a NULL count
3360 array. */
3361 genMap_min = key;
3362 genMap_size = 1;
3363 genMap = HG_(zalloc)( "libhb.emmG.1a",
3364 genMap_size * sizeof(UWord) );
3365 ea = 0;
3366 if (0) VG_(printf)("(%lu) case 1 [%lu .. %lu]\n",
3367 key, genMap_min, genMap_min+genMap_size- 1 );
sewardjf98e1c02008-10-25 16:22:41 +00003368 }
sewardj8fd92d32008-11-20 23:17:01 +00003369 else
3370 if (LIKELY(key >= genMap_min && key < genMap_min + genMap_size)) {
3371 /* this is the expected (almost-always-happens) case: 'key'
3372 is already mapped in the array. */
3373 ea = key - genMap_min;
3374 }
3375 else
3376 if (key < genMap_min) {
3377 /* 'key' appears before the start of the current array.
3378 Extend the current array by allocating a larger one and
3379 copying the current one to the upper end of it. */
3380 Word more;
3381 UWord* map2;
3382 more = genMap_min - key;
3383 tl_assert(more > 0);
3384 map2 = HG_(zalloc)( "libhb.emmG.1b",
3385 (genMap_size + more) * sizeof(UWord) );
3386 VG_(memcpy)( &map2[more], genMap, genMap_size * sizeof(UWord) );
3387 HG_(free)( genMap );
3388 genMap = map2;
3389 genMap_size += more;
3390 genMap_min -= more;
3391 ea = 0;
3392 tl_assert(genMap_min == key);
3393 if (0) VG_(printf)("(%lu) case 2 [%lu .. %lu]\n",
3394 key, genMap_min, genMap_min+genMap_size- 1 );
3395 }
3396 else {
3397 /* 'key' appears after the end of the current array. Extend
3398 the current array by allocating a larger one and copying
3399 the current one to the lower end of it. */
3400 Word more;
3401 UWord* map2;
3402 tl_assert(key >= genMap_min + genMap_size);
3403 more = key - (genMap_min + genMap_size) + 1;
3404 tl_assert(more > 0);
3405 map2 = HG_(zalloc)( "libhb.emmG.1c",
3406 (genMap_size + more) * sizeof(UWord) );
3407 VG_(memcpy)( &map2[0], genMap, genMap_size * sizeof(UWord) );
3408 HG_(free)( genMap );
3409 genMap = map2;
3410 genMap_size += more;
3411 ea = genMap_size - 1;;
3412 tl_assert(genMap_min + genMap_size - 1 == key);
3413 if (0) VG_(printf)("(%lu) case 3 [%lu .. %lu]\n",
3414 key, genMap_min, genMap_min+genMap_size- 1 );
3415 }
3416 /* END find 'ea' from 'key' */
3417
3418 tl_assert(ea >= 0 && ea < genMap_size);
sewardjd86e3a22008-12-03 11:39:37 +00003419 /* and the whole point of this elaborate computation of 'ea' is .. */
sewardj8fd92d32008-11-20 23:17:01 +00003420 genMap[ea]++;
sewardjf98e1c02008-10-25 16:22:41 +00003421 }
3422
sewardj8fd92d32008-11-20 23:17:01 +00003423 tl_assert(genMap);
3424 tl_assert(genMap_size > 0);
sewardjf98e1c02008-10-25 16:22:41 +00003425
sewardj8fd92d32008-11-20 23:17:01 +00003426 /* Sanity check what we just computed */
3427 { UWord sum = 0;
3428 for (i = 0; i < genMap_size; i++) {
3429 if (0) VG_(printf)(" xxx: gen %ld has %lu\n",
3430 i + genMap_min, genMap[i] );
3431 sum += genMap[i];
3432 }
3433 tl_assert(sum == oldrefTreeN);
3434 }
3435
3436 /* Figure out how many generations to throw away */
sewardjf98e1c02008-10-25 16:22:41 +00003437 retained = oldrefTreeN;
3438 maxGen = 0;
sewardj8fd92d32008-11-20 23:17:01 +00003439
3440 for (i = 0; i < genMap_size; i++) {
3441 keyW = i + genMap_min;
3442 valW = genMap[i];
sewardjf98e1c02008-10-25 16:22:41 +00003443 tl_assert(keyW > 0); /* can't allow a generation # 0 */
3444 if (0) VG_(printf)(" XXX: gen %lu has %lu\n", keyW, valW );
3445 tl_assert(keyW >= maxGen);
3446 tl_assert(retained >= valW);
3447 if (retained - valW
sewardj849b0ed2008-12-21 10:43:10 +00003448 > (UWord)(HG_(clo_conflict_cache_size)
3449 * EVENT_MAP_GC_DISCARD_FRACTION)) {
sewardjf98e1c02008-10-25 16:22:41 +00003450 retained -= valW;
3451 maxGen = keyW;
3452 } else {
3453 break;
3454 }
3455 }
sewardjf98e1c02008-10-25 16:22:41 +00003456
sewardj8fd92d32008-11-20 23:17:01 +00003457 HG_(free)(genMap);
sewardjf98e1c02008-10-25 16:22:41 +00003458
sewardj9b1f0fd2008-11-18 23:40:00 +00003459 tl_assert(retained >= 0 && retained <= oldrefTreeN);
sewardjf98e1c02008-10-25 16:22:41 +00003460
3461 /* Now make up a big list of the oldrefTree entries we want to
3462 delete. We can't simultaneously traverse the tree and delete
3463 stuff from it, so first we need to copy them off somewhere
3464 else. (sigh) */
sewardj8fd92d32008-11-20 23:17:01 +00003465 refs2del = VG_(newXA)( HG_(zalloc), "libhb.emmG.2",
sewardjd86e3a22008-12-03 11:39:37 +00003466 HG_(free), sizeof(Addr) );
sewardjf98e1c02008-10-25 16:22:41 +00003467
sewardj9b1f0fd2008-11-18 23:40:00 +00003468 if (retained < oldrefTreeN) {
3469
3470 /* This is the normal (expected) case. We discard any ref whose
3471 generation number <= maxGen. */
sewardjbc307e52008-12-06 22:10:54 +00003472 VG_(initIterSWA)( oldrefTree );
3473 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardjd86e3a22008-12-03 11:39:37 +00003474 oldref = (OldRef*)valW;
sewardj9b1f0fd2008-11-18 23:40:00 +00003475 tl_assert(oldref->magic == OldRef_MAGIC);
3476 if (oldref->gen <= maxGen) {
sewardjd86e3a22008-12-03 11:39:37 +00003477 VG_(addToXA)( refs2del, &keyW );
sewardj9b1f0fd2008-11-18 23:40:00 +00003478 }
sewardjf98e1c02008-10-25 16:22:41 +00003479 }
sewardj9b1f0fd2008-11-18 23:40:00 +00003480 if (VG_(clo_verbosity) > 1) {
3481 VG_(message)(Vg_DebugMsg,
3482 "libhb: EvM GC: delete generations %lu and below, "
3483 "retaining %lu entries",
3484 maxGen, retained );
3485 }
3486
3487 } else {
3488
3489 static UInt rand_seed = 0; /* leave as static */
3490
3491 /* Degenerate case: there's only one generation in the entire
3492 tree, so we need to have some other way of deciding which
3493 refs to throw away. Just throw out half of them randomly. */
3494 tl_assert(retained == oldrefTreeN);
sewardjbc307e52008-12-06 22:10:54 +00003495 VG_(initIterSWA)( oldrefTree );
3496 while (VG_(nextIterSWA)( oldrefTree, &keyW, &valW )) {
sewardj9b1f0fd2008-11-18 23:40:00 +00003497 UInt n;
sewardjd86e3a22008-12-03 11:39:37 +00003498 oldref = (OldRef*)valW;
sewardj9b1f0fd2008-11-18 23:40:00 +00003499 tl_assert(oldref->magic == OldRef_MAGIC);
3500 n = VG_(random)( &rand_seed );
3501 if ((n & 0xFFF) < 0x800) {
sewardjd86e3a22008-12-03 11:39:37 +00003502 VG_(addToXA)( refs2del, &keyW );
sewardj9b1f0fd2008-11-18 23:40:00 +00003503 retained--;
3504 }
3505 }
3506 if (VG_(clo_verbosity) > 1) {
3507 VG_(message)(Vg_DebugMsg,
3508 "libhb: EvM GC: randomly delete half the entries, "
3509 "retaining %lu entries",
3510 retained );
3511 }
3512
sewardjf98e1c02008-10-25 16:22:41 +00003513 }
3514
3515 n2del = VG_(sizeXA)( refs2del );
3516 tl_assert(n2del == (Word)(oldrefTreeN - retained));
3517
3518 if (0) VG_(printf)("%s","deleting entries\n");
3519 for (i = 0; i < n2del; i++) {
sewardjd86e3a22008-12-03 11:39:37 +00003520 Bool b;
3521 Addr ga2del = *(Addr*)VG_(indexXA)( refs2del, i );
sewardjbc307e52008-12-06 22:10:54 +00003522 b = VG_(delFromSWA)( oldrefTree, &keyW, &valW, ga2del );
sewardjd86e3a22008-12-03 11:39:37 +00003523 tl_assert(b);
3524 tl_assert(keyW == ga2del);
3525 oldref = (OldRef*)valW;
sewardjf98e1c02008-10-25 16:22:41 +00003526 for (j = 0; j < N_OLDREF_ACCS; j++) {
sewardjc5ea9962008-12-07 01:41:46 +00003527 Thr* aThr = ptr_and_UWord(oldref->accs[j].thr, ~3);
3528 RCEC* aRef = ptr_and_UWord(oldref->accs[j].rcec, ~3);
3529 if (aRef) {
3530 tl_assert(aThr);
sewardjf98e1c02008-10-25 16:22:41 +00003531 stats__ctxt_rcdec3++;
sewardjc5ea9962008-12-07 01:41:46 +00003532 ctxt__rcdec( aRef );
sewardjf98e1c02008-10-25 16:22:41 +00003533 } else {
sewardjc5ea9962008-12-07 01:41:46 +00003534 tl_assert(!aThr);
sewardjf98e1c02008-10-25 16:22:41 +00003535 }
3536 }
sewardjd86e3a22008-12-03 11:39:37 +00003537
3538 free_OldRef( oldref );
sewardjf98e1c02008-10-25 16:22:41 +00003539 }
3540
3541 VG_(deleteXA)( refs2del );
3542
sewardjc5ea9962008-12-07 01:41:46 +00003543 tl_assert( VG_(sizeSWA)( oldrefTree ) == retained );
sewardjf98e1c02008-10-25 16:22:41 +00003544
3545 oldrefTreeN = retained;
3546 oldrefGenIncAt = oldrefTreeN; /* start new gen right away */
3547
3548 /* Throw away all RCECs with zero reference counts */
3549 for (i = 0; i < N_RCEC_TAB; i++) {
3550 RCEC** pp = &contextTab[i];
3551 RCEC* p = *pp;
3552 while (p) {
3553 if (p->rc == 0) {
3554 *pp = p->next;
sewardjd86e3a22008-12-03 11:39:37 +00003555 free_RCEC(p);
sewardjf98e1c02008-10-25 16:22:41 +00003556 p = *pp;
3557 tl_assert(stats__ctxt_tab_curr > 0);
3558 stats__ctxt_tab_curr--;
3559 } else {
3560 pp = &p->next;
3561 p = p->next;
3562 }
3563 }
3564 }
3565
sewardj8f5374e2008-12-07 11:40:17 +00003566 /* Check the reference counts (expensive) */
3567 if (CHECK_CEM)
3568 event_map__check_reference_counts( False/*after*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003569
3570 //if (0)
3571 //VG_(printf)("XXXX final sizes: oldrefTree %ld, contextTree %ld\n\n",
3572 // VG_(OSetGen_Size)(oldrefTree), VG_(OSetGen_Size)(contextTree));
3573
3574}
3575
3576
3577/////////////////////////////////////////////////////////
3578// //
3579// Core MSM //
3580// //
3581/////////////////////////////////////////////////////////
3582
sewardjb0e009d2008-11-19 16:35:15 +00003583/* Logic in msm_read/msm_write updated/verified after re-analysis,
3584 19 Nov 08. */
3585
sewardjb0e009d2008-11-19 16:35:15 +00003586/* 19 Nov 08: it seems that MSM_RACE2ERR == 1 is a bad idea. When
3587 nonzero, the effect is that when a race is detected for a location,
3588 that location is put into a special 'error' state and no further
3589 checking of it is done until it returns to a 'normal' state, which
3590 requires it to be deallocated and reallocated.
3591
3592 This is a bad idea, because of the interaction with suppressions.
3593 Suppose there is a race on the location, but the error is
3594 suppressed. The location now is marked as in-error. Now any
3595 subsequent race -- including ones we want to see -- will never be
3596 detected until the location is deallocated and reallocated.
3597
sewardj8f5374e2008-12-07 11:40:17 +00003598 Hence set MSM_RACE2ERR to zero. This causes raced-on locations to
sewardjb0e009d2008-11-19 16:35:15 +00003599 remain in the normal 'C' (constrained) state, but places on them
3600 the constraint that the next accesses happen-after both the
3601 existing constraint and the relevant vector clock of the thread
sewardj8f5374e2008-12-07 11:40:17 +00003602 doing the racing access.
sewardjb0e009d2008-11-19 16:35:15 +00003603*/
3604#define MSM_RACE2ERR 0
3605
sewardjf98e1c02008-10-25 16:22:41 +00003606static ULong stats__msm_read = 0;
3607static ULong stats__msm_read_change = 0;
3608static ULong stats__msm_write = 0;
3609static ULong stats__msm_write_change = 0;
3610
3611__attribute__((noinline))
3612static void record_race_info ( Thr* acc_thr,
sewardja781be62008-12-08 00:12:28 +00003613 Addr acc_addr, SizeT szB, Bool isWrite )
sewardjf98e1c02008-10-25 16:22:41 +00003614{
sewardjc5ea9962008-12-07 01:41:46 +00003615 /* Call here to report a race. We just hand it onwards to
3616 HG_(record_error_Race). If that in turn discovers that the
3617 error is going to be collected, then that queries the
3618 conflicting-event map. The alternative would be to query it
3619 right here. But that causes a lot of pointless queries for
3620 errors which will shortly be discarded as duplicates, and can
3621 become a performance overhead; so we defer the query until we
3622 know the error is not a duplicate. */
3623 tl_assert(acc_thr->opaque);
3624 HG_(record_error_Race)( acc_thr->opaque, acc_addr,
sewardja781be62008-12-08 00:12:28 +00003625 szB, isWrite, NULL/*mb_lastlock*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003626}
3627
3628static Bool is_sane_SVal_C ( SVal sv ) {
3629 POrd ord;
3630 if (!SVal__isC(sv)) return True;
3631 ord = VtsID__getOrdering( SVal__unC_Rmin(sv), SVal__unC_Wmin(sv) );
3632 if (ord == POrd_EQ || ord == POrd_LT) return True;
3633 return False;
3634}
3635
3636
3637/* Compute new state following a read */
3638static inline SVal msm_read ( SVal svOld,
3639 /* The following are only needed for
3640 creating error reports. */
3641 Thr* acc_thr,
3642 Addr acc_addr, SizeT szB )
3643{
3644 SVal svNew = SVal_INVALID;
3645 stats__msm_read++;
3646
3647 /* Redundant sanity check on the constraints */
sewardj8f5374e2008-12-07 11:40:17 +00003648 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003649 tl_assert(is_sane_SVal_C(svOld));
3650 }
3651
3652 if (SVal__isC(svOld)) {
3653 POrd ord;
3654 VtsID tviR = acc_thr->viR;
3655 VtsID tviW = acc_thr->viW;
3656 VtsID rmini = SVal__unC_Rmin(svOld);
3657 VtsID wmini = SVal__unC_Wmin(svOld);
3658
3659 ord = VtsID__getOrdering(rmini,tviR);
3660 if (ord == POrd_EQ || ord == POrd_LT) {
3661 /* no race */
3662 /* Note: RWLOCK subtlety: use tviW, not tviR */
3663 svNew = SVal__mkC( rmini, VtsID__join2(wmini, tviW) );
3664 goto out;
3665 } else {
sewardjb0e009d2008-11-19 16:35:15 +00003666 /* assert on sanity of constraints. */
3667 POrd ordxx = VtsID__getOrdering(rmini,wmini);
3668 tl_assert(ordxx == POrd_EQ || ordxx == POrd_LT);
sewardjf98e1c02008-10-25 16:22:41 +00003669 svNew = MSM_RACE2ERR
3670 ? SVal__mkE()
sewardj8f5374e2008-12-07 11:40:17 +00003671 /* see comments on corresponding fragment in
3672 msm_write for explanation. */
3673 /* aggressive setting: */
3674 /*
sewardjb0e009d2008-11-19 16:35:15 +00003675 : SVal__mkC( VtsID__join2(wmini,tviR),
3676 VtsID__join2(wmini,tviW) );
sewardj8f5374e2008-12-07 11:40:17 +00003677 */
3678 /* "consistent" setting: */
sewardj3b0c4d72008-11-20 11:20:50 +00003679 : SVal__mkC( VtsID__join2(rmini,tviR),
3680 VtsID__join2(wmini,tviW) );
sewardja781be62008-12-08 00:12:28 +00003681 record_race_info( acc_thr, acc_addr, szB, False/*!isWrite*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003682 goto out;
3683 }
3684 }
3685 if (SVal__isA(svOld)) {
3686 /* reading no-access memory (sigh); leave unchanged */
3687 /* check for no pollution */
3688 tl_assert(svOld == SVal_NOACCESS);
3689 svNew = SVal_NOACCESS;
3690 goto out;
3691 }
3692 if (SVal__isE(svOld)) {
3693 /* no race, location is already "in error" */
3694 svNew = SVal__mkE();
3695 goto out;
3696 }
3697 VG_(printf)("msm_read: bad svOld: 0x%016llx\n", svOld);
3698 tl_assert(0);
3699
3700 out:
sewardj8f5374e2008-12-07 11:40:17 +00003701 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003702 tl_assert(is_sane_SVal_C(svNew));
3703 }
3704 tl_assert(svNew != SVal_INVALID);
sewardj849b0ed2008-12-21 10:43:10 +00003705 if (svNew != svOld && HG_(clo_show_conflicts)) {
sewardj8f5374e2008-12-07 11:40:17 +00003706 if (SVal__isC(svOld) && SVal__isC(svNew)) {
sewardjc5ea9962008-12-07 01:41:46 +00003707 event_map_bind( acc_addr, szB, False/*!isWrite*/, acc_thr );
sewardjf98e1c02008-10-25 16:22:41 +00003708 stats__msm_read_change++;
3709 }
3710 }
3711 return svNew;
3712}
3713
3714
3715/* Compute new state following a write */
3716static inline SVal msm_write ( SVal svOld,
3717 /* The following are only needed for
3718 creating error reports. */
3719 Thr* acc_thr,
3720 Addr acc_addr, SizeT szB )
3721{
3722 SVal svNew = SVal_INVALID;
3723 stats__msm_write++;
3724
3725 /* Redundant sanity check on the constraints */
sewardj8f5374e2008-12-07 11:40:17 +00003726 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003727 tl_assert(is_sane_SVal_C(svOld));
3728 }
3729
3730 if (SVal__isC(svOld)) {
3731 POrd ord;
3732 VtsID tviW = acc_thr->viW;
3733 VtsID wmini = SVal__unC_Wmin(svOld);
3734
3735 ord = VtsID__getOrdering(wmini,tviW);
3736 if (ord == POrd_EQ || ord == POrd_LT) {
3737 /* no race */
3738 svNew = SVal__mkC( tviW, tviW );
3739 goto out;
3740 } else {
sewardjb0e009d2008-11-19 16:35:15 +00003741 VtsID tviR = acc_thr->viR;
sewardjf98e1c02008-10-25 16:22:41 +00003742 VtsID rmini = SVal__unC_Rmin(svOld);
sewardjb0e009d2008-11-19 16:35:15 +00003743 /* assert on sanity of constraints. */
3744 POrd ordxx = VtsID__getOrdering(rmini,wmini);
3745 tl_assert(ordxx == POrd_EQ || ordxx == POrd_LT);
sewardjf98e1c02008-10-25 16:22:41 +00003746 svNew = MSM_RACE2ERR
3747 ? SVal__mkE()
sewardj8f5374e2008-12-07 11:40:17 +00003748 /* One possibility is, after a race is seen, to
3749 set the location's constraints as aggressively
3750 (as far ahead) as possible. However, that just
3751 causes lots more races to be reported, which is
3752 very confusing. Hence don't do this. */
3753 /*
sewardjb0e009d2008-11-19 16:35:15 +00003754 : SVal__mkC( VtsID__join2(wmini,tviR),
sewardjf98e1c02008-10-25 16:22:41 +00003755 VtsID__join2(wmini,tviW) );
sewardj8f5374e2008-12-07 11:40:17 +00003756 */
3757 /* instead, re-set the constraints in a way which
3758 is consistent with (ie, as they would have been
3759 computed anyway) had no race been detected. */
sewardj3b0c4d72008-11-20 11:20:50 +00003760 : SVal__mkC( VtsID__join2(rmini,tviR),
3761 VtsID__join2(wmini,tviW) );
sewardja781be62008-12-08 00:12:28 +00003762 record_race_info( acc_thr, acc_addr, szB, True/*isWrite*/ );
sewardjf98e1c02008-10-25 16:22:41 +00003763 goto out;
3764 }
3765 }
3766 if (SVal__isA(svOld)) {
3767 /* writing no-access memory (sigh); leave unchanged */
3768 /* check for no pollution */
3769 tl_assert(svOld == SVal_NOACCESS);
3770 svNew = SVal_NOACCESS;
3771 goto out;
3772 }
3773 if (SVal__isE(svOld)) {
3774 /* no race, location is already "in error" */
3775 svNew = SVal__mkE();
3776 goto out;
3777 }
3778 VG_(printf)("msm_write: bad svOld: 0x%016llx\n", svOld);
3779 tl_assert(0);
3780
3781 out:
sewardj8f5374e2008-12-07 11:40:17 +00003782 if (CHECK_MSM) {
sewardjf98e1c02008-10-25 16:22:41 +00003783 tl_assert(is_sane_SVal_C(svNew));
3784 }
3785 tl_assert(svNew != SVal_INVALID);
sewardj849b0ed2008-12-21 10:43:10 +00003786 if (svNew != svOld && HG_(clo_show_conflicts)) {
sewardj8f5374e2008-12-07 11:40:17 +00003787 if (SVal__isC(svOld) && SVal__isC(svNew)) {
sewardjc5ea9962008-12-07 01:41:46 +00003788 event_map_bind( acc_addr, szB, True/*isWrite*/, acc_thr );
sewardjf98e1c02008-10-25 16:22:41 +00003789 stats__msm_write_change++;
3790 }
3791 }
3792 return svNew;
3793}
3794
3795
3796/////////////////////////////////////////////////////////
3797// //
3798// Apply core MSM to specific memory locations //
3799// //
3800/////////////////////////////////////////////////////////
3801
3802/*------------- ZSM accesses: 8 bit apply ------------- */
3803
3804void zsm_apply8___msm_read ( Thr* thr, Addr a ) {
3805 CacheLine* cl;
3806 UWord cloff, tno, toff;
3807 SVal svOld, svNew;
3808 UShort descr;
3809 stats__cline_read8s++;
3810 cl = get_cacheline(a);
3811 cloff = get_cacheline_offset(a);
3812 tno = get_treeno(a);
3813 toff = get_tree_offset(a); /* == 0 .. 7 */
3814 descr = cl->descrs[tno];
3815 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
3816 SVal* tree = &cl->svals[tno << 3];
3817 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00003818 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003819 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3820 }
3821 svOld = cl->svals[cloff];
3822 svNew = msm_read( svOld, thr,a,1 );
3823 tl_assert(svNew != SVal_INVALID);
3824 cl->svals[cloff] = svNew;
3825}
3826
3827void zsm_apply8___msm_write ( Thr* thr, Addr a ) {
3828 CacheLine* cl;
3829 UWord cloff, tno, toff;
3830 SVal svOld, svNew;
3831 UShort descr;
3832 stats__cline_read8s++;
3833 cl = get_cacheline(a);
3834 cloff = get_cacheline_offset(a);
3835 tno = get_treeno(a);
3836 toff = get_tree_offset(a); /* == 0 .. 7 */
3837 descr = cl->descrs[tno];
3838 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
3839 SVal* tree = &cl->svals[tno << 3];
3840 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00003841 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003842 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3843 }
3844 svOld = cl->svals[cloff];
3845 svNew = msm_write( svOld, thr,a,1 );
3846 tl_assert(svNew != SVal_INVALID);
3847 cl->svals[cloff] = svNew;
3848}
3849
3850/*------------- ZSM accesses: 16 bit apply ------------- */
3851
3852void zsm_apply16___msm_read ( Thr* thr, Addr a ) {
3853 CacheLine* cl;
3854 UWord cloff, tno, toff;
3855 SVal svOld, svNew;
3856 UShort descr;
3857 stats__cline_read16s++;
3858 if (UNLIKELY(!aligned16(a))) goto slowcase;
3859 cl = get_cacheline(a);
3860 cloff = get_cacheline_offset(a);
3861 tno = get_treeno(a);
3862 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
3863 descr = cl->descrs[tno];
3864 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
3865 if (valid_value_is_below_me_16(descr, toff)) {
3866 goto slowcase;
3867 } else {
3868 SVal* tree = &cl->svals[tno << 3];
3869 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
3870 }
sewardj8f5374e2008-12-07 11:40:17 +00003871 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003872 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3873 }
3874 svOld = cl->svals[cloff];
3875 svNew = msm_read( svOld, thr,a,2 );
3876 tl_assert(svNew != SVal_INVALID);
3877 cl->svals[cloff] = svNew;
3878 return;
3879 slowcase: /* misaligned, or must go further down the tree */
3880 stats__cline_16to8splits++;
3881 zsm_apply8___msm_read( thr, a + 0 );
3882 zsm_apply8___msm_read( thr, a + 1 );
3883}
3884
3885void zsm_apply16___msm_write ( Thr* thr, Addr a ) {
3886 CacheLine* cl;
3887 UWord cloff, tno, toff;
3888 SVal svOld, svNew;
3889 UShort descr;
3890 stats__cline_read16s++;
3891 if (UNLIKELY(!aligned16(a))) goto slowcase;
3892 cl = get_cacheline(a);
3893 cloff = get_cacheline_offset(a);
3894 tno = get_treeno(a);
3895 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
3896 descr = cl->descrs[tno];
3897 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
3898 if (valid_value_is_below_me_16(descr, toff)) {
3899 goto slowcase;
3900 } else {
3901 SVal* tree = &cl->svals[tno << 3];
3902 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
3903 }
sewardj8f5374e2008-12-07 11:40:17 +00003904 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003905 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3906 }
3907 svOld = cl->svals[cloff];
3908 svNew = msm_write( svOld, thr,a,2 );
3909 tl_assert(svNew != SVal_INVALID);
3910 cl->svals[cloff] = svNew;
3911 return;
3912 slowcase: /* misaligned, or must go further down the tree */
3913 stats__cline_16to8splits++;
3914 zsm_apply8___msm_write( thr, a + 0 );
3915 zsm_apply8___msm_write( thr, a + 1 );
3916}
3917
3918/*------------- ZSM accesses: 32 bit apply ------------- */
3919
3920void zsm_apply32___msm_read ( Thr* thr, Addr a ) {
3921 CacheLine* cl;
3922 UWord cloff, tno, toff;
3923 SVal svOld, svNew;
3924 UShort descr;
3925 if (UNLIKELY(!aligned32(a))) goto slowcase;
3926 cl = get_cacheline(a);
3927 cloff = get_cacheline_offset(a);
3928 tno = get_treeno(a);
3929 toff = get_tree_offset(a); /* == 0 or 4 */
3930 descr = cl->descrs[tno];
3931 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
3932 if (valid_value_is_above_me_32(descr, toff)) {
3933 SVal* tree = &cl->svals[tno << 3];
3934 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
3935 } else {
3936 goto slowcase;
3937 }
sewardj8f5374e2008-12-07 11:40:17 +00003938 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003939 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3940 }
3941 svOld = cl->svals[cloff];
3942 svNew = msm_read( svOld, thr,a,4 );
3943 tl_assert(svNew != SVal_INVALID);
3944 cl->svals[cloff] = svNew;
3945 return;
3946 slowcase: /* misaligned, or must go further down the tree */
3947 stats__cline_32to16splits++;
3948 zsm_apply16___msm_read( thr, a + 0 );
3949 zsm_apply16___msm_read( thr, a + 2 );
3950}
3951
3952void zsm_apply32___msm_write ( Thr* thr, Addr a ) {
3953 CacheLine* cl;
3954 UWord cloff, tno, toff;
3955 SVal svOld, svNew;
3956 UShort descr;
3957 if (UNLIKELY(!aligned32(a))) goto slowcase;
3958 cl = get_cacheline(a);
3959 cloff = get_cacheline_offset(a);
3960 tno = get_treeno(a);
3961 toff = get_tree_offset(a); /* == 0 or 4 */
3962 descr = cl->descrs[tno];
3963 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
3964 if (valid_value_is_above_me_32(descr, toff)) {
3965 SVal* tree = &cl->svals[tno << 3];
3966 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
3967 } else {
3968 goto slowcase;
3969 }
sewardj8f5374e2008-12-07 11:40:17 +00003970 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00003971 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
3972 }
3973 svOld = cl->svals[cloff];
3974 svNew = msm_write( svOld, thr,a,4 );
3975 tl_assert(svNew != SVal_INVALID);
3976 cl->svals[cloff] = svNew;
3977 return;
3978 slowcase: /* misaligned, or must go further down the tree */
3979 stats__cline_32to16splits++;
3980 zsm_apply16___msm_write( thr, a + 0 );
3981 zsm_apply16___msm_write( thr, a + 2 );
3982}
3983
3984/*------------- ZSM accesses: 64 bit apply ------------- */
3985
3986void zsm_apply64___msm_read ( Thr* thr, Addr a ) {
3987 CacheLine* cl;
njn4c245e52009-03-15 23:25:38 +00003988 UWord cloff, tno;
3989 //UWord toff;
sewardjf98e1c02008-10-25 16:22:41 +00003990 SVal svOld, svNew;
3991 UShort descr;
3992 stats__cline_read64s++;
3993 if (UNLIKELY(!aligned64(a))) goto slowcase;
3994 cl = get_cacheline(a);
3995 cloff = get_cacheline_offset(a);
3996 tno = get_treeno(a);
njn4c245e52009-03-15 23:25:38 +00003997 //toff = get_tree_offset(a); /* == 0, unused */
sewardjf98e1c02008-10-25 16:22:41 +00003998 descr = cl->descrs[tno];
3999 if (UNLIKELY( !(descr & TREE_DESCR_64) )) {
4000 goto slowcase;
4001 }
4002 svOld = cl->svals[cloff];
4003 svNew = msm_read( svOld, thr,a,8 );
4004 tl_assert(svNew != SVal_INVALID);
4005 cl->svals[cloff] = svNew;
4006 return;
4007 slowcase: /* misaligned, or must go further down the tree */
4008 stats__cline_64to32splits++;
4009 zsm_apply32___msm_read( thr, a + 0 );
4010 zsm_apply32___msm_read( thr, a + 4 );
4011}
4012
4013void zsm_apply64___msm_write ( Thr* thr, Addr a ) {
4014 CacheLine* cl;
njn4c245e52009-03-15 23:25:38 +00004015 UWord cloff, tno;
4016 //UWord toff;
sewardjf98e1c02008-10-25 16:22:41 +00004017 SVal svOld, svNew;
4018 UShort descr;
4019 stats__cline_read64s++;
4020 if (UNLIKELY(!aligned64(a))) goto slowcase;
4021 cl = get_cacheline(a);
4022 cloff = get_cacheline_offset(a);
4023 tno = get_treeno(a);
njn4c245e52009-03-15 23:25:38 +00004024 //toff = get_tree_offset(a); /* == 0, unused */
sewardjf98e1c02008-10-25 16:22:41 +00004025 descr = cl->descrs[tno];
4026 if (UNLIKELY( !(descr & TREE_DESCR_64) )) {
4027 goto slowcase;
4028 }
4029 svOld = cl->svals[cloff];
4030 svNew = msm_write( svOld, thr,a,8 );
4031 tl_assert(svNew != SVal_INVALID);
4032 cl->svals[cloff] = svNew;
4033 return;
4034 slowcase: /* misaligned, or must go further down the tree */
4035 stats__cline_64to32splits++;
4036 zsm_apply32___msm_write( thr, a + 0 );
4037 zsm_apply32___msm_write( thr, a + 4 );
4038}
4039
4040/*--------------- ZSM accesses: 8 bit write --------------- */
4041
4042static
4043void zsm_write8 ( Addr a, SVal svNew ) {
4044 CacheLine* cl;
4045 UWord cloff, tno, toff;
4046 UShort descr;
4047 stats__cline_set8s++;
4048 cl = get_cacheline(a);
4049 cloff = get_cacheline_offset(a);
4050 tno = get_treeno(a);
4051 toff = get_tree_offset(a); /* == 0 .. 7 */
4052 descr = cl->descrs[tno];
4053 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
4054 SVal* tree = &cl->svals[tno << 3];
4055 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00004056 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00004057 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
4058 }
4059 tl_assert(svNew != SVal_INVALID);
4060 cl->svals[cloff] = svNew;
4061}
4062
4063/*--------------- ZSM accesses: 16 bit write --------------- */
4064
4065static
4066void zsm_write16 ( Addr a, SVal svNew ) {
4067 CacheLine* cl;
4068 UWord cloff, tno, toff;
4069 UShort descr;
4070 stats__cline_set16s++;
4071 if (UNLIKELY(!aligned16(a))) goto slowcase;
4072 cl = get_cacheline(a);
4073 cloff = get_cacheline_offset(a);
4074 tno = get_treeno(a);
4075 toff = get_tree_offset(a); /* == 0, 2, 4 or 6 */
4076 descr = cl->descrs[tno];
4077 if (UNLIKELY( !(descr & (TREE_DESCR_16_0 << toff)) )) {
4078 if (valid_value_is_below_me_16(descr, toff)) {
4079 /* Writing at this level. Need to fix up 'descr'. */
4080 cl->descrs[tno] = pullup_descr_to_16(descr, toff);
4081 /* At this point, the tree does not match cl->descr[tno] any
4082 more. The assignments below will fix it up. */
4083 } else {
4084 /* We can't indiscriminately write on the w16 node as in the
4085 w64 case, as that might make the node inconsistent with
4086 its parent. So first, pull down to this level. */
4087 SVal* tree = &cl->svals[tno << 3];
4088 cl->descrs[tno] = pulldown_to_16(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00004089 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00004090 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
4091 }
4092 }
4093 tl_assert(svNew != SVal_INVALID);
4094 cl->svals[cloff + 0] = svNew;
4095 cl->svals[cloff + 1] = SVal_INVALID;
4096 return;
4097 slowcase: /* misaligned */
4098 stats__cline_16to8splits++;
4099 zsm_write8( a + 0, svNew );
4100 zsm_write8( a + 1, svNew );
4101}
4102
4103/*--------------- ZSM accesses: 32 bit write --------------- */
4104
4105static
4106void zsm_write32 ( Addr a, SVal svNew ) {
4107 CacheLine* cl;
4108 UWord cloff, tno, toff;
4109 UShort descr;
4110 stats__cline_set32s++;
4111 if (UNLIKELY(!aligned32(a))) goto slowcase;
4112 cl = get_cacheline(a);
4113 cloff = get_cacheline_offset(a);
4114 tno = get_treeno(a);
4115 toff = get_tree_offset(a); /* == 0 or 4 */
4116 descr = cl->descrs[tno];
4117 if (UNLIKELY( !(descr & (TREE_DESCR_32_0 << toff)) )) {
4118 if (valid_value_is_above_me_32(descr, toff)) {
4119 /* We can't indiscriminately write on the w32 node as in the
4120 w64 case, as that might make the node inconsistent with
4121 its parent. So first, pull down to this level. */
4122 SVal* tree = &cl->svals[tno << 3];
4123 cl->descrs[tno] = pulldown_to_32(tree, toff, descr);
sewardj8f5374e2008-12-07 11:40:17 +00004124 if (CHECK_ZSM)
sewardjf98e1c02008-10-25 16:22:41 +00004125 tl_assert(is_sane_CacheLine(cl)); /* EXPENSIVE */
4126 } else {
4127 /* Writing at this level. Need to fix up 'descr'. */
4128 cl->descrs[tno] = pullup_descr_to_32(descr, toff);
4129 /* At this point, the tree does not match cl->descr[tno] any
4130 more. The assignments below will fix it up. */
4131 }
4132 }
4133 tl_assert(svNew != SVal_INVALID);
4134 cl->svals[cloff + 0] = svNew;
4135 cl->svals[cloff + 1] = SVal_INVALID;
4136 cl->svals[cloff + 2] = SVal_INVALID;
4137 cl->svals[cloff + 3] = SVal_INVALID;
4138 return;
4139 slowcase: /* misaligned */
4140 stats__cline_32to16splits++;
4141 zsm_write16( a + 0, svNew );
4142 zsm_write16( a + 2, svNew );
4143}
4144
4145/*--------------- ZSM accesses: 64 bit write --------------- */
4146
4147static
4148void zsm_write64 ( Addr a, SVal svNew ) {
4149 CacheLine* cl;
njn4c245e52009-03-15 23:25:38 +00004150 UWord cloff, tno;
4151 //UWord toff;
sewardjf98e1c02008-10-25 16:22:41 +00004152 stats__cline_set64s++;
4153 if (UNLIKELY(!aligned64(a))) goto slowcase;
4154 cl = get_cacheline(a);
4155 cloff = get_cacheline_offset(a);
4156 tno = get_treeno(a);
njn4c245e52009-03-15 23:25:38 +00004157 //toff = get_tree_offset(a); /* == 0, unused */
sewardjf98e1c02008-10-25 16:22:41 +00004158 cl->descrs[tno] = TREE_DESCR_64;
4159 tl_assert(svNew != SVal_INVALID);
4160 cl->svals[cloff + 0] = svNew;
4161 cl->svals[cloff + 1] = SVal_INVALID;
4162 cl->svals[cloff + 2] = SVal_INVALID;
4163 cl->svals[cloff + 3] = SVal_INVALID;
4164 cl->svals[cloff + 4] = SVal_INVALID;
4165 cl->svals[cloff + 5] = SVal_INVALID;
4166 cl->svals[cloff + 6] = SVal_INVALID;
4167 cl->svals[cloff + 7] = SVal_INVALID;
4168 return;
4169 slowcase: /* misaligned */
4170 stats__cline_64to32splits++;
4171 zsm_write32( a + 0, svNew );
4172 zsm_write32( a + 4, svNew );
4173}
4174
4175/*------------- ZSM accesses: 8 bit read/copy ------------- */
4176
4177static
4178SVal zsm_read8 ( Addr a ) {
4179 CacheLine* cl;
4180 UWord cloff, tno, toff;
4181 UShort descr;
4182 stats__cline_get8s++;
4183 cl = get_cacheline(a);
4184 cloff = get_cacheline_offset(a);
4185 tno = get_treeno(a);
4186 toff = get_tree_offset(a); /* == 0 .. 7 */
4187 descr = cl->descrs[tno];
4188 if (UNLIKELY( !(descr & (TREE_DESCR_8_0 << toff)) )) {
4189 SVal* tree = &cl->svals[tno << 3];
4190 cl->descrs[tno] = pulldown_to_8(tree, toff, descr);
4191 }
4192 return cl->svals[cloff];
4193}
4194
4195static void zsm_copy8 ( Addr src, Addr dst, Bool uu_normalise ) {
4196 SVal sv;
4197 stats__cline_copy8s++;
4198 sv = zsm_read8( src );
4199 zsm_write8( dst, sv );
4200}
4201
4202/* ------------ Shadow memory range setting ops ------------ */
4203
4204void zsm_apply_range___msm_read ( Thr* thr,
4205 Addr a, SizeT len )
4206{
4207 /* fast track a couple of common cases */
4208 if (len == 4 && aligned32(a)) {
4209 zsm_apply32___msm_read( thr, a );
4210 return;
4211 }
4212 if (len == 8 && aligned64(a)) {
4213 zsm_apply64___msm_read( thr, a );
4214 return;
4215 }
4216
4217 /* be completely general (but as efficient as possible) */
4218 if (len == 0) return;
4219
4220 if (!aligned16(a) && len >= 1) {
4221 zsm_apply8___msm_read( thr, a );
4222 a += 1;
4223 len -= 1;
4224 tl_assert(aligned16(a));
4225 }
4226 if (len == 0) return;
4227
4228 if (!aligned32(a) && len >= 2) {
4229 zsm_apply16___msm_read( thr, a );
4230 a += 2;
4231 len -= 2;
4232 tl_assert(aligned32(a));
4233 }
4234 if (len == 0) return;
4235
4236 if (!aligned64(a) && len >= 4) {
4237 zsm_apply32___msm_read( thr, a );
4238 a += 4;
4239 len -= 4;
4240 tl_assert(aligned64(a));
4241 }
4242 if (len == 0) return;
4243
4244 if (len >= 8) {
4245 tl_assert(aligned64(a));
4246 while (len >= 8) {
4247 zsm_apply64___msm_read( thr, a );
4248 a += 8;
4249 len -= 8;
4250 }
4251 tl_assert(aligned64(a));
4252 }
4253 if (len == 0) return;
4254
4255 if (len >= 4)
4256 tl_assert(aligned32(a));
4257 if (len >= 4) {
4258 zsm_apply32___msm_read( thr, a );
4259 a += 4;
4260 len -= 4;
4261 }
4262 if (len == 0) return;
4263
4264 if (len >= 2)
4265 tl_assert(aligned16(a));
4266 if (len >= 2) {
4267 zsm_apply16___msm_read( thr, a );
4268 a += 2;
4269 len -= 2;
4270 }
4271 if (len == 0) return;
4272
4273 if (len >= 1) {
4274 zsm_apply8___msm_read( thr, a );
njn4c245e52009-03-15 23:25:38 +00004275 //a += 1;
sewardjf98e1c02008-10-25 16:22:41 +00004276 len -= 1;
4277 }
4278 tl_assert(len == 0);
4279}
4280
4281
4282
4283void zsm_apply_range___msm_write ( Thr* thr,
4284 Addr a, SizeT len )
4285{
4286 /* fast track a couple of common cases */
4287 if (len == 4 && aligned32(a)) {
4288 zsm_apply32___msm_write( thr, a );
4289 return;
4290 }
4291 if (len == 8 && aligned64(a)) {
4292 zsm_apply64___msm_write( thr, a );
4293 return;
4294 }
4295
4296 /* be completely general (but as efficient as possible) */
4297 if (len == 0) return;
4298
4299 if (!aligned16(a) && len >= 1) {
4300 zsm_apply8___msm_write( thr, a );
4301 a += 1;
4302 len -= 1;
4303 tl_assert(aligned16(a));
4304 }
4305 if (len == 0) return;
4306
4307 if (!aligned32(a) && len >= 2) {
4308 zsm_apply16___msm_write( thr, a );
4309 a += 2;
4310 len -= 2;
4311 tl_assert(aligned32(a));
4312 }
4313 if (len == 0) return;
4314
4315 if (!aligned64(a) && len >= 4) {
4316 zsm_apply32___msm_write( thr, a );
4317 a += 4;
4318 len -= 4;
4319 tl_assert(aligned64(a));
4320 }
4321 if (len == 0) return;
4322
4323 if (len >= 8) {
4324 tl_assert(aligned64(a));
4325 while (len >= 8) {
4326 zsm_apply64___msm_write( thr, a );
4327 a += 8;
4328 len -= 8;
4329 }
4330 tl_assert(aligned64(a));
4331 }
4332 if (len == 0) return;
4333
4334 if (len >= 4)
4335 tl_assert(aligned32(a));
4336 if (len >= 4) {
4337 zsm_apply32___msm_write( thr, a );
4338 a += 4;
4339 len -= 4;
4340 }
4341 if (len == 0) return;
4342
4343 if (len >= 2)
4344 tl_assert(aligned16(a));
4345 if (len >= 2) {
4346 zsm_apply16___msm_write( thr, a );
4347 a += 2;
4348 len -= 2;
4349 }
4350 if (len == 0) return;
4351
4352 if (len >= 1) {
4353 zsm_apply8___msm_write( thr, a );
njn4c245e52009-03-15 23:25:38 +00004354 //a += 1;
sewardjf98e1c02008-10-25 16:22:41 +00004355 len -= 1;
4356 }
4357 tl_assert(len == 0);
4358}
4359
4360
4361
4362
4363/* Block-copy states (needed for implementing realloc()). */
4364
4365static void zsm_copy_range ( Addr src, Addr dst, SizeT len )
4366{
4367 SizeT i;
4368 if (len == 0)
4369 return;
4370
4371 /* assert for non-overlappingness */
4372 tl_assert(src+len <= dst || dst+len <= src);
4373
4374 /* To be simple, just copy byte by byte. But so as not to wreck
4375 performance for later accesses to dst[0 .. len-1], normalise
4376 destination lines as we finish with them, and also normalise the
4377 line containing the first and last address. */
4378 for (i = 0; i < len; i++) {
4379 Bool normalise
4380 = get_cacheline_offset( dst+i+1 ) == 0 /* last in line */
4381 || i == 0 /* first in range */
4382 || i == len-1; /* last in range */
4383 zsm_copy8( src+i, dst+i, normalise );
4384 }
4385}
4386
4387
4388/* For setting address ranges to a given value. Has considerable
4389 sophistication so as to avoid generating large numbers of pointless
4390 cache loads/writebacks for large ranges. */
4391
4392/* Do small ranges in-cache, in the obvious way. */
4393static
4394void zsm_set_range_SMALL ( Addr a, SizeT len, SVal svNew )
4395{
4396 /* fast track a couple of common cases */
4397 if (len == 4 && aligned32(a)) {
4398 zsm_write32( a, svNew );
4399 return;
4400 }
4401 if (len == 8 && aligned64(a)) {
4402 zsm_write64( a, svNew );
4403 return;
4404 }
4405
4406 /* be completely general (but as efficient as possible) */
4407 if (len == 0) return;
4408
4409 if (!aligned16(a) && len >= 1) {
4410 zsm_write8( a, svNew );
4411 a += 1;
4412 len -= 1;
4413 tl_assert(aligned16(a));
4414 }
4415 if (len == 0) return;
4416
4417 if (!aligned32(a) && len >= 2) {
4418 zsm_write16( a, svNew );
4419 a += 2;
4420 len -= 2;
4421 tl_assert(aligned32(a));
4422 }
4423 if (len == 0) return;
4424
4425 if (!aligned64(a) && len >= 4) {
4426 zsm_write32( a, svNew );
4427 a += 4;
4428 len -= 4;
4429 tl_assert(aligned64(a));
4430 }
4431 if (len == 0) return;
4432
4433 if (len >= 8) {
4434 tl_assert(aligned64(a));
4435 while (len >= 8) {
4436 zsm_write64( a, svNew );
4437 a += 8;
4438 len -= 8;
4439 }
4440 tl_assert(aligned64(a));
4441 }
4442 if (len == 0) return;
4443
4444 if (len >= 4)
4445 tl_assert(aligned32(a));
4446 if (len >= 4) {
4447 zsm_write32( a, svNew );
4448 a += 4;
4449 len -= 4;
4450 }
4451 if (len == 0) return;
4452
4453 if (len >= 2)
4454 tl_assert(aligned16(a));
4455 if (len >= 2) {
4456 zsm_write16( a, svNew );
4457 a += 2;
4458 len -= 2;
4459 }
4460 if (len == 0) return;
4461
4462 if (len >= 1) {
4463 zsm_write8( a, svNew );
njn4c245e52009-03-15 23:25:38 +00004464 //a += 1;
sewardjf98e1c02008-10-25 16:22:41 +00004465 len -= 1;
4466 }
4467 tl_assert(len == 0);
4468}
4469
4470
4471/* If we're doing a small range, hand off to zsm_set_range_SMALL. But
4472 for larger ranges, try to operate directly on the out-of-cache
4473 representation, rather than dragging lines into the cache,
4474 overwriting them, and forcing them out. This turns out to be an
4475 important performance optimisation. */
4476
4477static void zsm_set_range ( Addr a, SizeT len, SVal svNew )
4478{
4479 tl_assert(svNew != SVal_INVALID);
4480 stats__cache_make_New_arange += (ULong)len;
4481
4482 if (0 && len > 500)
4483 VG_(printf)("make New ( %#lx, %ld )\n", a, len );
4484
4485 if (0) {
4486 static UWord n_New_in_cache = 0;
4487 static UWord n_New_not_in_cache = 0;
4488 /* tag is 'a' with the in-line offset masked out,
4489 eg a[31]..a[4] 0000 */
4490 Addr tag = a & ~(N_LINE_ARANGE - 1);
4491 UWord wix = (a >> N_LINE_BITS) & (N_WAY_NENT - 1);
4492 if (LIKELY(tag == cache_shmem.tags0[wix])) {
4493 n_New_in_cache++;
4494 } else {
4495 n_New_not_in_cache++;
4496 }
4497 if (0 == ((n_New_in_cache + n_New_not_in_cache) % 100000))
4498 VG_(printf)("shadow_mem_make_New: IN %lu OUT %lu\n",
4499 n_New_in_cache, n_New_not_in_cache );
4500 }
4501
4502 if (LIKELY(len < 2 * N_LINE_ARANGE)) {
4503 zsm_set_range_SMALL( a, len, svNew );
4504 } else {
4505 Addr before_start = a;
4506 Addr aligned_start = cacheline_ROUNDUP(a);
4507 Addr after_start = cacheline_ROUNDDN(a + len);
4508 UWord before_len = aligned_start - before_start;
4509 UWord aligned_len = after_start - aligned_start;
4510 UWord after_len = a + len - after_start;
4511 tl_assert(before_start <= aligned_start);
4512 tl_assert(aligned_start <= after_start);
4513 tl_assert(before_len < N_LINE_ARANGE);
4514 tl_assert(after_len < N_LINE_ARANGE);
4515 tl_assert(get_cacheline_offset(aligned_start) == 0);
4516 if (get_cacheline_offset(a) == 0) {
4517 tl_assert(before_len == 0);
4518 tl_assert(a == aligned_start);
4519 }
4520 if (get_cacheline_offset(a+len) == 0) {
4521 tl_assert(after_len == 0);
4522 tl_assert(after_start == a+len);
4523 }
4524 if (before_len > 0) {
4525 zsm_set_range_SMALL( before_start, before_len, svNew );
4526 }
4527 if (after_len > 0) {
4528 zsm_set_range_SMALL( after_start, after_len, svNew );
4529 }
4530 stats__cache_make_New_inZrep += (ULong)aligned_len;
4531
4532 while (1) {
4533 Addr tag;
4534 UWord wix;
4535 if (aligned_start >= after_start)
4536 break;
4537 tl_assert(get_cacheline_offset(aligned_start) == 0);
4538 tag = aligned_start & ~(N_LINE_ARANGE - 1);
4539 wix = (aligned_start >> N_LINE_BITS) & (N_WAY_NENT - 1);
4540 if (tag == cache_shmem.tags0[wix]) {
4541 UWord i;
4542 for (i = 0; i < N_LINE_ARANGE / 8; i++)
4543 zsm_write64( aligned_start + i * 8, svNew );
4544 } else {
4545 UWord i;
4546 Word zix;
4547 SecMap* sm;
4548 LineZ* lineZ;
4549 /* This line is not in the cache. Do not force it in; instead
4550 modify it in-place. */
4551 /* find the Z line to write in and rcdec it or the
4552 associated F line. */
4553 find_Z_for_writing( &sm, &zix, tag );
4554 tl_assert(sm);
4555 tl_assert(zix >= 0 && zix < N_SECMAP_ZLINES);
4556 lineZ = &sm->linesZ[zix];
4557 lineZ->dict[0] = svNew;
4558 lineZ->dict[1] = lineZ->dict[2] = lineZ->dict[3] = SVal_INVALID;
4559 for (i = 0; i < N_LINE_ARANGE/4; i++)
4560 lineZ->ix2s[i] = 0; /* all refer to dict[0] */
4561 rcinc_LineZ(lineZ);
4562 }
4563 aligned_start += N_LINE_ARANGE;
4564 aligned_len -= N_LINE_ARANGE;
4565 }
4566 tl_assert(aligned_start == after_start);
4567 tl_assert(aligned_len == 0);
4568 }
4569}
4570
4571
4572/////////////////////////////////////////////////////////
4573// //
4574// Synchronisation objects //
4575// //
4576/////////////////////////////////////////////////////////
4577
4578// (UInt) `echo "Synchronisation object" | md5sum`
4579#define SO_MAGIC 0x56b3c5b0U
4580
4581struct _SO {
4582 VtsID viR; /* r-clock of sender */
4583 VtsID viW; /* w-clock of sender */
4584 UInt magic;
4585};
4586
4587static SO* SO__Alloc ( void ) {
4588 SO* so = HG_(zalloc)( "libhb.SO__Alloc.1", sizeof(SO) );
4589 so->viR = VtsID_INVALID;
4590 so->viW = VtsID_INVALID;
4591 so->magic = SO_MAGIC;
4592 return so;
4593}
4594static void SO__Dealloc ( SO* so ) {
4595 tl_assert(so);
4596 tl_assert(so->magic == SO_MAGIC);
4597 if (so->viR == VtsID_INVALID) {
4598 tl_assert(so->viW == VtsID_INVALID);
4599 } else {
4600 tl_assert(so->viW != VtsID_INVALID);
4601 VtsID__rcdec(so->viR);
4602 VtsID__rcdec(so->viW);
4603 }
4604 so->magic = 0;
4605 HG_(free)( so );
4606}
4607
4608
4609/////////////////////////////////////////////////////////
4610// //
4611// Top Level API //
4612// //
4613/////////////////////////////////////////////////////////
4614
4615static void show_thread_state ( HChar* str, Thr* t )
4616{
4617 if (1) return;
4618 if (t->viR == t->viW) {
4619 VG_(printf)("thr \"%s\" %p has vi* %u==", str, t, t->viR );
4620 VtsID__pp( t->viR );
4621 VG_(printf)("%s","\n");
4622 } else {
4623 VG_(printf)("thr \"%s\" %p has viR %u==", str, t, t->viR );
4624 VtsID__pp( t->viR );
4625 VG_(printf)(" viW %u==", t->viW);
4626 VtsID__pp( t->viW );
4627 VG_(printf)("%s","\n");
4628 }
4629}
4630
4631
4632Thr* libhb_init (
4633 void (*get_stacktrace)( Thr*, Addr*, UWord ),
sewardjd52392d2008-11-08 20:36:26 +00004634 ExeContext* (*get_EC)( Thr* )
sewardjf98e1c02008-10-25 16:22:41 +00004635 )
4636{
4637 Thr* thr;
4638 VtsID vi;
4639 tl_assert(get_stacktrace);
sewardjf98e1c02008-10-25 16:22:41 +00004640 tl_assert(get_EC);
4641 main_get_stacktrace = get_stacktrace;
sewardjf98e1c02008-10-25 16:22:41 +00004642 main_get_EC = get_EC;
4643
4644 // No need to initialise hg_wordfm.
4645 // No need to initialise hg_wordset.
4646
4647 vts_set_init();
4648 vts_tab_init();
4649 event_map_init();
4650 VtsID__invalidate_caches();
4651
4652 // initialise shadow memory
4653 zsm_init( SVal__rcinc, SVal__rcdec );
4654
4655 thr = Thr__new();
4656 vi = VtsID__mk_Singleton( thr, 1 );
4657 thr->viR = vi;
4658 thr->viW = vi;
4659 VtsID__rcinc(thr->viR);
4660 VtsID__rcinc(thr->viW);
4661
4662 show_thread_state(" root", thr);
4663 return thr;
4664}
4665
4666Thr* libhb_create ( Thr* parent )
4667{
4668 /* The child's VTSs are copies of the parent's VTSs, but ticked at
4669 the child's index. Since the child's index is guaranteed
4670 unique, it has never been seen before, so the implicit value
4671 before the tick is zero and after that is one. */
4672 Thr* child = Thr__new();
4673
4674 child->viR = VtsID__tick( parent->viR, child );
4675 child->viW = VtsID__tick( parent->viW, child );
4676 VtsID__rcinc(child->viR);
4677 VtsID__rcinc(child->viW);
4678
4679 tl_assert(VtsID__indexAt( child->viR, child ) == 1);
4680 tl_assert(VtsID__indexAt( child->viW, child ) == 1);
4681
4682 /* and the parent has to move along too */
4683 VtsID__rcdec(parent->viR);
4684 VtsID__rcdec(parent->viW);
4685 parent->viR = VtsID__tick( parent->viR, parent );
4686 parent->viW = VtsID__tick( parent->viW, parent );
4687 VtsID__rcinc(parent->viR);
4688 VtsID__rcinc(parent->viW);
4689
4690 show_thread_state(" child", child);
4691 show_thread_state("parent", parent);
4692
4693 return child;
4694}
4695
4696/* Shut down the library, and print stats (in fact that's _all_
4697 this is for. */
4698void libhb_shutdown ( Bool show_stats )
4699{
4700 if (show_stats) {
4701 VG_(printf)("%s","<<< BEGIN libhb stats >>>\n");
4702 VG_(printf)(" secmaps: %'10lu allocd (%'12lu g-a-range)\n",
4703 stats__secmaps_allocd,
4704 stats__secmap_ga_space_covered);
4705 VG_(printf)(" linesZ: %'10lu allocd (%'12lu bytes occupied)\n",
4706 stats__secmap_linesZ_allocd,
4707 stats__secmap_linesZ_bytes);
4708 VG_(printf)(" linesF: %'10lu allocd (%'12lu bytes occupied)\n",
4709 stats__secmap_linesF_allocd,
4710 stats__secmap_linesF_bytes);
4711 VG_(printf)(" secmaps: %'10lu iterator steppings\n",
4712 stats__secmap_iterator_steppings);
4713 VG_(printf)(" secmaps: %'10lu searches (%'12lu slow)\n",
4714 stats__secmaps_search, stats__secmaps_search_slow);
4715
4716 VG_(printf)("%s","\n");
4717 VG_(printf)(" cache: %'lu totrefs (%'lu misses)\n",
4718 stats__cache_totrefs, stats__cache_totmisses );
4719 VG_(printf)(" cache: %'14lu Z-fetch, %'14lu F-fetch\n",
4720 stats__cache_Z_fetches, stats__cache_F_fetches );
4721 VG_(printf)(" cache: %'14lu Z-wback, %'14lu F-wback\n",
4722 stats__cache_Z_wbacks, stats__cache_F_wbacks );
4723 VG_(printf)(" cache: %'14lu invals, %'14lu flushes\n",
4724 stats__cache_invals, stats__cache_flushes );
4725 VG_(printf)(" cache: %'14llu arange_New %'14llu direct-to-Zreps\n",
4726 stats__cache_make_New_arange,
4727 stats__cache_make_New_inZrep);
4728
4729 VG_(printf)("%s","\n");
4730 VG_(printf)(" cline: %'10lu normalises\n",
4731 stats__cline_normalises );
4732 VG_(printf)(" cline: rds 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4733 stats__cline_read64s,
4734 stats__cline_read32s,
4735 stats__cline_read16s,
4736 stats__cline_read8s );
4737 VG_(printf)(" cline: wrs 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4738 stats__cline_write64s,
4739 stats__cline_write32s,
4740 stats__cline_write16s,
4741 stats__cline_write8s );
4742 VG_(printf)(" cline: sets 8/4/2/1: %'13lu %'13lu %'13lu %'13lu\n",
4743 stats__cline_set64s,
4744 stats__cline_set32s,
4745 stats__cline_set16s,
4746 stats__cline_set8s );
4747 VG_(printf)(" cline: get1s %'lu, copy1s %'lu\n",
4748 stats__cline_get8s, stats__cline_copy8s );
4749 VG_(printf)(" cline: splits: 8to4 %'12lu 4to2 %'12lu 2to1 %'12lu\n",
4750 stats__cline_64to32splits,
4751 stats__cline_32to16splits,
4752 stats__cline_16to8splits );
4753 VG_(printf)(" cline: pulldowns: 8to4 %'12lu 4to2 %'12lu 2to1 %'12lu\n",
4754 stats__cline_64to32pulldown,
4755 stats__cline_32to16pulldown,
4756 stats__cline_16to8pulldown );
4757 if (0)
4758 VG_(printf)(" cline: sizeof(CacheLineZ) %ld, covers %ld bytes of arange\n",
4759 (Word)sizeof(LineZ), (Word)N_LINE_ARANGE);
4760
4761 VG_(printf)("%s","\n");
4762
4763 VG_(printf)(" libhb: %'13llu msm_read (%'llu changed)\n",
4764 stats__msm_read, stats__msm_read_change);
4765 VG_(printf)(" libhb: %'13llu msm_write (%'llu changed)\n",
4766 stats__msm_write, stats__msm_write_change);
4767 VG_(printf)(" libhb: %'13llu getOrd queries (%'llu misses)\n",
4768 stats__getOrdering_queries, stats__getOrdering_misses);
4769 VG_(printf)(" libhb: %'13llu join2 queries (%'llu misses)\n",
4770 stats__join2_queries, stats__join2_misses);
4771
4772 VG_(printf)("%s","\n");
4773 VG_(printf)(
4774 " libhb: %ld entries in vts_table (approximately %lu bytes)\n",
4775 VG_(sizeXA)( vts_tab ), VG_(sizeXA)( vts_tab ) * sizeof(VtsTE)
4776 );
4777 VG_(printf)( " libhb: %lu entries in vts_set\n",
4778 VG_(sizeFM)( vts_set ) );
4779
4780 VG_(printf)("%s","\n");
4781 VG_(printf)( " libhb: ctxt__rcdec: 1=%lu(%lu eq), 2=%lu, 3=%lu\n",
4782 stats__ctxt_rcdec1, stats__ctxt_rcdec1_eq,
4783 stats__ctxt_rcdec2,
4784 stats__ctxt_rcdec3 );
4785 VG_(printf)( " libhb: ctxt__rcdec: calls %lu, discards %lu\n",
4786 stats__ctxt_rcdec_calls, stats__ctxt_rcdec_discards);
4787 VG_(printf)( " libhb: contextTab: %lu slots, %lu max ents\n",
4788 (UWord)N_RCEC_TAB,
4789 stats__ctxt_tab_curr );
4790 VG_(printf)( " libhb: contextTab: %lu queries, %lu cmps\n",
4791 stats__ctxt_tab_qs,
4792 stats__ctxt_tab_cmps );
4793#if 0
4794 VG_(printf)("sizeof(AvlNode) = %lu\n", sizeof(AvlNode));
4795 VG_(printf)("sizeof(WordBag) = %lu\n", sizeof(WordBag));
4796 VG_(printf)("sizeof(MaybeWord) = %lu\n", sizeof(MaybeWord));
4797 VG_(printf)("sizeof(CacheLine) = %lu\n", sizeof(CacheLine));
4798 VG_(printf)("sizeof(LineZ) = %lu\n", sizeof(LineZ));
4799 VG_(printf)("sizeof(LineF) = %lu\n", sizeof(LineF));
4800 VG_(printf)("sizeof(SecMap) = %lu\n", sizeof(SecMap));
4801 VG_(printf)("sizeof(Cache) = %lu\n", sizeof(Cache));
4802 VG_(printf)("sizeof(SMCacheEnt) = %lu\n", sizeof(SMCacheEnt));
4803 VG_(printf)("sizeof(CountedSVal) = %lu\n", sizeof(CountedSVal));
4804 VG_(printf)("sizeof(VTS) = %lu\n", sizeof(VTS));
4805 VG_(printf)("sizeof(ScalarTS) = %lu\n", sizeof(ScalarTS));
4806 VG_(printf)("sizeof(VtsTE) = %lu\n", sizeof(VtsTE));
4807 VG_(printf)("sizeof(MSMInfo) = %lu\n", sizeof(MSMInfo));
4808
4809 VG_(printf)("sizeof(struct _XArray) = %lu\n", sizeof(struct _XArray));
4810 VG_(printf)("sizeof(struct _WordFM) = %lu\n", sizeof(struct _WordFM));
4811 VG_(printf)("sizeof(struct _Thr) = %lu\n", sizeof(struct _Thr));
4812 VG_(printf)("sizeof(struct _SO) = %lu\n", sizeof(struct _SO));
4813#endif
4814
4815 VG_(printf)("%s","<<< END libhb stats >>>\n");
4816 VG_(printf)("%s","\n");
4817
4818 }
4819}
4820
4821void libhb_async_exit ( Thr* thr )
4822{
4823 /* is there anything we need to do? */
4824}
4825
4826/* Both Segs and SOs point to VTSs. However, there is no sharing, so
4827 a Seg that points at a VTS is its one-and-only owner, and ditto for
4828 a SO that points at a VTS. */
4829
4830SO* libhb_so_alloc ( void )
4831{
4832 return SO__Alloc();
4833}
4834
4835void libhb_so_dealloc ( SO* so )
4836{
4837 tl_assert(so);
4838 tl_assert(so->magic == SO_MAGIC);
4839 SO__Dealloc(so);
4840}
4841
4842/* See comments in libhb.h for details on the meaning of
4843 strong vs weak sends and strong vs weak receives. */
4844void libhb_so_send ( Thr* thr, SO* so, Bool strong_send )
4845{
4846 /* Copy the VTSs from 'thr' into the sync object, and then move
4847 the thread along one step. */
4848
4849 tl_assert(so);
4850 tl_assert(so->magic == SO_MAGIC);
4851
4852 /* stay sane .. a thread's read-clock must always lead or be the
4853 same as its write-clock */
4854 { POrd ord = VtsID__getOrdering(thr->viW, thr->viR);
4855 tl_assert(ord == POrd_EQ || ord == POrd_LT);
4856 }
4857
4858 /* since we're overwriting the VtsIDs in the SO, we need to drop
4859 any references made by the previous contents thereof */
4860 if (so->viR == VtsID_INVALID) {
4861 tl_assert(so->viW == VtsID_INVALID);
4862 so->viR = thr->viR;
4863 so->viW = thr->viW;
4864 VtsID__rcinc(so->viR);
4865 VtsID__rcinc(so->viW);
4866 } else {
4867 /* In a strong send, we dump any previous VC in the SO and
4868 install the sending thread's VC instead. For a weak send we
4869 must join2 with what's already there. */
4870 tl_assert(so->viW != VtsID_INVALID);
4871 VtsID__rcdec(so->viR);
4872 VtsID__rcdec(so->viW);
4873 so->viR = strong_send ? thr->viR : VtsID__join2( so->viR, thr->viR );
4874 so->viW = strong_send ? thr->viW : VtsID__join2( so->viW, thr->viW );
4875 VtsID__rcinc(so->viR);
4876 VtsID__rcinc(so->viW);
4877 }
4878
4879 /* move both parent clocks along */
4880 VtsID__rcdec(thr->viR);
4881 VtsID__rcdec(thr->viW);
4882 thr->viR = VtsID__tick( thr->viR, thr );
4883 thr->viW = VtsID__tick( thr->viW, thr );
4884 VtsID__rcinc(thr->viR);
4885 VtsID__rcinc(thr->viW);
4886 if (strong_send)
4887 show_thread_state("s-send", thr);
4888 else
4889 show_thread_state("w-send", thr);
4890}
4891
4892void libhb_so_recv ( Thr* thr, SO* so, Bool strong_recv )
4893{
4894 tl_assert(so);
4895 tl_assert(so->magic == SO_MAGIC);
4896
4897 if (so->viR != VtsID_INVALID) {
4898 tl_assert(so->viW != VtsID_INVALID);
4899
4900 /* Weak receive (basically, an R-acquisition of a R-W lock).
4901 This advances the read-clock of the receiver, but not the
4902 write-clock. */
4903 VtsID__rcdec(thr->viR);
4904 thr->viR = VtsID__join2( thr->viR, so->viR );
4905 VtsID__rcinc(thr->viR);
4906
4907 /* For a strong receive, we also advance the receiver's write
4908 clock, which means the receive as a whole is essentially
4909 equivalent to a W-acquisition of a R-W lock. */
4910 if (strong_recv) {
4911 VtsID__rcdec(thr->viW);
4912 thr->viW = VtsID__join2( thr->viW, so->viW );
4913 VtsID__rcinc(thr->viW);
4914 }
4915
4916 if (strong_recv)
4917 show_thread_state("s-recv", thr);
4918 else
4919 show_thread_state("w-recv", thr);
4920
4921 } else {
4922 tl_assert(so->viW == VtsID_INVALID);
4923 /* Deal with degenerate case: 'so' has no vts, so there has been
4924 no message posted to it. Just ignore this case. */
4925 show_thread_state("d-recv", thr);
4926 }
4927}
4928
4929Bool libhb_so_everSent ( SO* so )
4930{
4931 if (so->viR == VtsID_INVALID) {
4932 tl_assert(so->viW == VtsID_INVALID);
4933 return False;
4934 } else {
4935 tl_assert(so->viW != VtsID_INVALID);
4936 return True;
4937 }
4938}
4939
4940#define XXX1 0 // 0x67a106c
4941#define XXX2 0
4942
4943static Bool TRACEME(Addr a, SizeT szB) {
4944 if (XXX1 && a <= XXX1 && XXX1 <= a+szB) return True;
4945 if (XXX2 && a <= XXX2 && XXX2 <= a+szB) return True;
4946 return False;
4947}
4948static void trace ( Thr* thr, Addr a, SizeT szB, HChar* s ) {
4949 SVal sv = zsm_read8(a);
4950 VG_(printf)("thr %p (%#lx,%lu) %s: 0x%016llx ", thr,a,szB,s,sv);
4951 show_thread_state("", thr);
4952 VG_(printf)("%s","\n");
4953}
4954
4955void libhb_range_new ( Thr* thr, Addr a, SizeT szB )
4956{
4957 SVal sv = SVal__mkC(thr->viW, thr->viW);
4958 tl_assert(is_sane_SVal_C(sv));
4959 if(TRACEME(a,szB))trace(thr,a,szB,"nw-before");
4960 zsm_set_range( a, szB, sv );
4961 if(TRACEME(a,szB))trace(thr,a,szB,"nw-after ");
4962}
4963
4964void libhb_range_noaccess ( Thr* thr, Addr a, SizeT szB )
4965{
4966 if(TRACEME(a,szB))trace(thr,a,szB,"NA-before");
4967 zsm_set_range( a, szB, SVal__mkA() );
4968 if(TRACEME(a,szB))trace(thr,a,szB,"NA-after ");
4969}
4970
4971void* libhb_get_Thr_opaque ( Thr* thr ) {
4972 tl_assert(thr);
4973 return thr->opaque;
4974}
4975
4976void libhb_set_Thr_opaque ( Thr* thr, void* v ) {
4977 tl_assert(thr);
4978 thr->opaque = v;
4979}
4980
4981void libhb_copy_shadow_state ( Addr dst, Addr src, SizeT len )
4982{
4983 zsm_copy_range(dst, src, len);
4984}
4985
4986void libhb_maybe_GC ( void )
4987{
4988 event_map_maybe_GC();
4989 /* If there are still freelist entries available, no need for a
4990 GC. */
4991 if (vts_tab_freelist != VtsID_INVALID)
4992 return;
4993 /* So all the table entries are full, and we're having to expand
4994 the table. But did we hit the threshhold point yet? */
4995 if (VG_(sizeXA)( vts_tab ) < vts_next_GC_at)
4996 return;
4997 vts_tab__do_GC( False/*don't show stats*/ );
4998}
4999
5000
5001/////////////////////////////////////////////////////////////////
5002/////////////////////////////////////////////////////////////////
5003// //
5004// SECTION END main library //
5005// //
5006/////////////////////////////////////////////////////////////////
5007/////////////////////////////////////////////////////////////////
5008
5009/*--------------------------------------------------------------------*/
5010/*--- end libhb_main.c ---*/
5011/*--------------------------------------------------------------------*/