blob: 57d3ee9e4bde2a799715ca75871fd61b27858b0a [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
Jan Kiszka414fa982012-04-24 16:40:15 +020027
Wu Fengguang2044892d2009-12-24 09:04:16 +0800282. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020029-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030030
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080034handle will create a VM file descriptor which can be used to issue VM
Avi Kivity9c1b96e2009-06-09 12:37:58 +030035ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
Jan Kiszka414fa982012-04-24 16:40:15 +020047
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300483. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020049-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030050
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
Masanari Iidac9f3f2d2013-07-18 01:29:12 +090056The extension mechanism is not based on the Linux version number.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030057Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
Jan Kiszka414fa982012-04-24 16:40:15 +020061
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300624. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020063------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030064
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030071 API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
Avi Kivity9c1b96e2009-06-09 12:37:58 +030072 means availability needs to be checked with KVM_CHECK_EXTENSION
Michael S. Tsirkin7f05db62014-10-12 11:34:00 +030073 (see section 4.4), or 'none' which means that while not all kernels
74 support this ioctl, there's no capability bit to check its
75 availability: for kernels that don't support the ioctl,
76 the ioctl returns -ENOTTY.
Avi Kivity9c1b96e2009-06-09 12:37:58 +030077
78 Architectures: which instruction set architectures provide this ioctl.
79 x86 includes both i386 and x86_64.
80
81 Type: system, vm, or vcpu.
82
83 Parameters: what parameters are accepted by the ioctl.
84
85 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
86 are not detailed, but errors with specific meanings are.
87
Jan Kiszka414fa982012-04-24 16:40:15 +020088
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300894.1 KVM_GET_API_VERSION
90
91Capability: basic
92Architectures: all
93Type: system ioctl
94Parameters: none
95Returns: the constant KVM_API_VERSION (=12)
96
97This identifies the API version as the stable kvm API. It is not
98expected that this number will change. However, Linux 2.6.20 and
992.6.21 report earlier versions; these are not documented and not
100supported. Applications should refuse to run if KVM_GET_API_VERSION
101returns a value other than 12. If this check passes, all ioctls
102described as 'basic' will be available.
103
Jan Kiszka414fa982012-04-24 16:40:15 +0200104
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001054.2 KVM_CREATE_VM
106
107Capability: basic
108Architectures: all
109Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100110Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300111Returns: a VM fd that can be used to control the new virtual machine.
112
Jann Hornbcb85c82017-04-24 11:16:49 +0200113The new VM has no virtual cpus and no memory.
James Hogana8a3c422017-03-14 10:15:19 +0000114You probably want to use 0 as machine type.
Carsten Ottee08b9632012-01-04 10:25:20 +0100115
116In order to create user controlled virtual machines on S390, check
117KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
118privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300119
James Hogana8a3c422017-03-14 10:15:19 +0000120To use hardware assisted virtualization on MIPS (VZ ASE) rather than
121the default trap & emulate implementation (which changes the virtual
122memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
123flag KVM_VM_MIPS_VZ.
124
Jan Kiszka414fa982012-04-24 16:40:15 +0200125
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001264.3 KVM_GET_MSR_INDEX_LIST
127
128Capability: basic
129Architectures: x86
130Type: system
131Parameters: struct kvm_msr_list (in/out)
132Returns: 0 on success; -1 on error
133Errors:
134 E2BIG: the msr index list is to be to fit in the array specified by
135 the user.
136
137struct kvm_msr_list {
138 __u32 nmsrs; /* number of msrs in entries */
139 __u32 indices[0];
140};
141
142This ioctl returns the guest msrs that are supported. The list varies
143by kvm version and host processor, but does not change otherwise. The
144user fills in the size of the indices array in nmsrs, and in return
145kvm adjusts nmsrs to reflect the actual number of msrs and fills in
146the indices array with their numbers.
147
Avi Kivity2e2602c2010-07-07 14:09:39 +0300148Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
149not returned in the MSR list, as different vcpus can have a different number
150of banks, as set via the KVM_X86_SETUP_MCE ioctl.
151
Jan Kiszka414fa982012-04-24 16:40:15 +0200152
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001534.4 KVM_CHECK_EXTENSION
154
Alexander Graf92b591a2014-07-14 18:33:08 +0200155Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300156Architectures: all
Alexander Graf92b591a2014-07-14 18:33:08 +0200157Type: system ioctl, vm ioctl
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300158Parameters: extension identifier (KVM_CAP_*)
159Returns: 0 if unsupported; 1 (or some other positive integer) if supported
160
161The API allows the application to query about extensions to the core
162kvm API. Userspace passes an extension identifier (an integer) and
163receives an integer that describes the extension availability.
164Generally 0 means no and 1 means yes, but some extensions may report
165additional information in the integer return value.
166
Alexander Graf92b591a2014-07-14 18:33:08 +0200167Based on their initialization different VMs may have different capabilities.
168It is thus encouraged to use the vm ioctl to query for capabilities (available
169with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
Jan Kiszka414fa982012-04-24 16:40:15 +0200170
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001714.5 KVM_GET_VCPU_MMAP_SIZE
172
173Capability: basic
174Architectures: all
175Type: system ioctl
176Parameters: none
177Returns: size of vcpu mmap area, in bytes
178
179The KVM_RUN ioctl (cf.) communicates with userspace via a shared
180memory region. This ioctl returns the size of that region. See the
181KVM_RUN documentation for details.
182
Jan Kiszka414fa982012-04-24 16:40:15 +0200183
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001844.6 KVM_SET_MEMORY_REGION
185
186Capability: basic
187Architectures: all
188Type: vm ioctl
189Parameters: struct kvm_memory_region (in)
190Returns: 0 on success, -1 on error
191
Avi Kivityb74a07b2010-06-21 11:48:05 +0300192This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300193
Jan Kiszka414fa982012-04-24 16:40:15 +0200194
Paul Bolle68ba6972011-02-15 00:05:59 +01001954.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300196
197Capability: basic
198Architectures: all
199Type: vm ioctl
200Parameters: vcpu id (apic id on x86)
201Returns: vcpu fd on success, -1 on error
202
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200203This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
204The vcpu id is an integer in the range [0, max_vcpu_id).
Sasha Levin8c3ba332011-07-18 17:17:15 +0300205
206The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
207the KVM_CHECK_EXTENSION ioctl() at run-time.
208The maximum possible value for max_vcpus can be retrieved using the
209KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
210
Pekka Enberg76d25402011-05-09 22:48:54 +0300211If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
212cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300213If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
214same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300215
Greg Kurz0b1b1df2016-05-09 18:13:37 +0200216The maximum possible value for max_vcpu_id can be retrieved using the
217KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
218
219If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
220is the same as the value returned from KVM_CAP_MAX_VCPUS.
221
Paul Mackerras371fefd2011-06-29 00:23:08 +0000222On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
223threads in one or more virtual CPU cores. (This is because the
224hardware requires all the hardware threads in a CPU core to be in the
225same partition.) The KVM_CAP_PPC_SMT capability indicates the number
226of vcpus per virtual core (vcore). The vcore id is obtained by
227dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
228given vcore will always be in the same physical core as each other
229(though that might be a different physical core from time to time).
230Userspace can control the threading (SMT) mode of the guest by its
231allocation of vcpu ids. For example, if userspace wants
232single-threaded guest vcpus, it should make all vcpu ids be a multiple
233of the number of vcpus per vcore.
234
Carsten Otte5b1c1492012-01-04 10:25:23 +0100235For virtual cpus that have been created with S390 user controlled virtual
236machines, the resulting vcpu fd can be memory mapped at page offset
237KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
238cpu's hardware control block.
239
Jan Kiszka414fa982012-04-24 16:40:15 +0200240
Paul Bolle68ba6972011-02-15 00:05:59 +01002414.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300242
243Capability: basic
244Architectures: x86
245Type: vm ioctl
246Parameters: struct kvm_dirty_log (in/out)
247Returns: 0 on success, -1 on error
248
249/* for KVM_GET_DIRTY_LOG */
250struct kvm_dirty_log {
251 __u32 slot;
252 __u32 padding;
253 union {
254 void __user *dirty_bitmap; /* one bit per page */
255 __u64 padding;
256 };
257};
258
259Given a memory slot, return a bitmap containing any pages dirtied
260since the last call to this ioctl. Bit 0 is the first page in the
261memory slot. Ensure the entire structure is cleared to avoid padding
262issues.
263
Paolo Bonzinif481b062015-05-17 17:30:37 +0200264If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
265the address space for which you want to return the dirty bitmap.
266They must be less than the value that KVM_CHECK_EXTENSION returns for
267the KVM_CAP_MULTI_ADDRESS_SPACE capability.
268
Jan Kiszka414fa982012-04-24 16:40:15 +0200269
Paul Bolle68ba6972011-02-15 00:05:59 +01002704.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300271
272Capability: basic
273Architectures: x86
274Type: vm ioctl
275Parameters: struct kvm_memory_alias (in)
276Returns: 0 (success), -1 (error)
277
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300278This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300279
Jan Kiszka414fa982012-04-24 16:40:15 +0200280
Paul Bolle68ba6972011-02-15 00:05:59 +01002814.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300282
283Capability: basic
284Architectures: all
285Type: vcpu ioctl
286Parameters: none
287Returns: 0 on success, -1 on error
288Errors:
289 EINTR: an unmasked signal is pending
290
291This ioctl is used to run a guest virtual cpu. While there are no
292explicit parameters, there is an implicit parameter block that can be
293obtained by mmap()ing the vcpu fd at offset 0, with the size given by
294KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
295kvm_run' (see below).
296
Jan Kiszka414fa982012-04-24 16:40:15 +0200297
Paul Bolle68ba6972011-02-15 00:05:59 +01002984.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300299
300Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +0100301Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300302Type: vcpu ioctl
303Parameters: struct kvm_regs (out)
304Returns: 0 on success, -1 on error
305
306Reads the general purpose registers from the vcpu.
307
308/* x86 */
309struct kvm_regs {
310 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
311 __u64 rax, rbx, rcx, rdx;
312 __u64 rsi, rdi, rsp, rbp;
313 __u64 r8, r9, r10, r11;
314 __u64 r12, r13, r14, r15;
315 __u64 rip, rflags;
316};
317
James Hoganc2d2c212014-07-04 15:11:35 +0100318/* mips */
319struct kvm_regs {
320 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
321 __u64 gpr[32];
322 __u64 hi;
323 __u64 lo;
324 __u64 pc;
325};
326
Jan Kiszka414fa982012-04-24 16:40:15 +0200327
Paul Bolle68ba6972011-02-15 00:05:59 +01003284.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300329
330Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +0100331Architectures: all except ARM, arm64
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300332Type: vcpu ioctl
333Parameters: struct kvm_regs (in)
334Returns: 0 on success, -1 on error
335
336Writes the general purpose registers into the vcpu.
337
338See KVM_GET_REGS for the data structure.
339
Jan Kiszka414fa982012-04-24 16:40:15 +0200340
Paul Bolle68ba6972011-02-15 00:05:59 +01003414.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300342
343Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500344Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300345Type: vcpu ioctl
346Parameters: struct kvm_sregs (out)
347Returns: 0 on success, -1 on error
348
349Reads special registers from the vcpu.
350
351/* x86 */
352struct kvm_sregs {
353 struct kvm_segment cs, ds, es, fs, gs, ss;
354 struct kvm_segment tr, ldt;
355 struct kvm_dtable gdt, idt;
356 __u64 cr0, cr2, cr3, cr4, cr8;
357 __u64 efer;
358 __u64 apic_base;
359 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
360};
361
Mihai Caraman68e2ffe2012-12-11 03:38:23 +0000362/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
Scott Wood5ce941e2011-04-27 17:24:21 -0500363
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300364interrupt_bitmap is a bitmap of pending external interrupts. At most
365one bit may be set. This interrupt has been acknowledged by the APIC
366but not yet injected into the cpu core.
367
Jan Kiszka414fa982012-04-24 16:40:15 +0200368
Paul Bolle68ba6972011-02-15 00:05:59 +01003694.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300370
371Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500372Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300373Type: vcpu ioctl
374Parameters: struct kvm_sregs (in)
375Returns: 0 on success, -1 on error
376
377Writes special registers into the vcpu. See KVM_GET_SREGS for the
378data structures.
379
Jan Kiszka414fa982012-04-24 16:40:15 +0200380
Paul Bolle68ba6972011-02-15 00:05:59 +01003814.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300382
383Capability: basic
384Architectures: x86
385Type: vcpu ioctl
386Parameters: struct kvm_translation (in/out)
387Returns: 0 on success, -1 on error
388
389Translates a virtual address according to the vcpu's current address
390translation mode.
391
392struct kvm_translation {
393 /* in */
394 __u64 linear_address;
395
396 /* out */
397 __u64 physical_address;
398 __u8 valid;
399 __u8 writeable;
400 __u8 usermode;
401 __u8 pad[5];
402};
403
Jan Kiszka414fa982012-04-24 16:40:15 +0200404
Paul Bolle68ba6972011-02-15 00:05:59 +01004054.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300406
407Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +0100408Architectures: x86, ppc, mips
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300409Type: vcpu ioctl
410Parameters: struct kvm_interrupt (in)
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200411Returns: 0 on success, negative on failure.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300412
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200413Queues a hardware interrupt vector to be injected.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300414
415/* for KVM_INTERRUPT */
416struct kvm_interrupt {
417 /* in */
418 __u32 irq;
419};
420
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200421X86:
422
Steve Rutherford1c1a9ce2015-07-30 11:27:16 +0200423Returns: 0 on success,
424 -EEXIST if an interrupt is already enqueued
425 -EINVAL the the irq number is invalid
426 -ENXIO if the PIC is in the kernel
427 -EFAULT if the pointer is invalid
428
429Note 'irq' is an interrupt vector, not an interrupt pin or line. This
430ioctl is useful if the in-kernel PIC is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300431
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200432PPC:
433
434Queues an external interrupt to be injected. This ioctl is overleaded
435with 3 different irq values:
436
437a) KVM_INTERRUPT_SET
438
439 This injects an edge type external interrupt into the guest once it's ready
440 to receive interrupts. When injected, the interrupt is done.
441
442b) KVM_INTERRUPT_UNSET
443
444 This unsets any pending interrupt.
445
446 Only available with KVM_CAP_PPC_UNSET_IRQ.
447
448c) KVM_INTERRUPT_SET_LEVEL
449
450 This injects a level type external interrupt into the guest context. The
451 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
452 is triggered.
453
454 Only available with KVM_CAP_PPC_IRQ_LEVEL.
455
456Note that any value for 'irq' other than the ones stated above is invalid
457and incurs unexpected behavior.
458
James Hoganc2d2c212014-07-04 15:11:35 +0100459MIPS:
460
461Queues an external interrupt to be injected into the virtual CPU. A negative
462interrupt number dequeues the interrupt.
463
Jan Kiszka414fa982012-04-24 16:40:15 +0200464
Paul Bolle68ba6972011-02-15 00:05:59 +01004654.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300466
467Capability: basic
468Architectures: none
469Type: vcpu ioctl
470Parameters: none)
471Returns: -1 on error
472
473Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
474
Jan Kiszka414fa982012-04-24 16:40:15 +0200475
Paul Bolle68ba6972011-02-15 00:05:59 +01004764.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300477
478Capability: basic
479Architectures: x86
480Type: vcpu ioctl
481Parameters: struct kvm_msrs (in/out)
482Returns: 0 on success, -1 on error
483
484Reads model-specific registers from the vcpu. Supported msr indices can
485be obtained using KVM_GET_MSR_INDEX_LIST.
486
487struct kvm_msrs {
488 __u32 nmsrs; /* number of msrs in entries */
489 __u32 pad;
490
491 struct kvm_msr_entry entries[0];
492};
493
494struct kvm_msr_entry {
495 __u32 index;
496 __u32 reserved;
497 __u64 data;
498};
499
500Application code should set the 'nmsrs' member (which indicates the
501size of the entries array) and the 'index' member of each array entry.
502kvm will fill in the 'data' member.
503
Jan Kiszka414fa982012-04-24 16:40:15 +0200504
Paul Bolle68ba6972011-02-15 00:05:59 +01005054.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300506
507Capability: basic
508Architectures: x86
509Type: vcpu ioctl
510Parameters: struct kvm_msrs (in)
511Returns: 0 on success, -1 on error
512
513Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
514data structures.
515
516Application code should set the 'nmsrs' member (which indicates the
517size of the entries array), and the 'index' and 'data' members of each
518array entry.
519
Jan Kiszka414fa982012-04-24 16:40:15 +0200520
Paul Bolle68ba6972011-02-15 00:05:59 +01005214.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300522
523Capability: basic
524Architectures: x86
525Type: vcpu ioctl
526Parameters: struct kvm_cpuid (in)
527Returns: 0 on success, -1 on error
528
529Defines the vcpu responses to the cpuid instruction. Applications
530should use the KVM_SET_CPUID2 ioctl if available.
531
532
533struct kvm_cpuid_entry {
534 __u32 function;
535 __u32 eax;
536 __u32 ebx;
537 __u32 ecx;
538 __u32 edx;
539 __u32 padding;
540};
541
542/* for KVM_SET_CPUID */
543struct kvm_cpuid {
544 __u32 nent;
545 __u32 padding;
546 struct kvm_cpuid_entry entries[0];
547};
548
Jan Kiszka414fa982012-04-24 16:40:15 +0200549
Paul Bolle68ba6972011-02-15 00:05:59 +01005504.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300551
552Capability: basic
James Hogan572e0922014-07-04 15:11:33 +0100553Architectures: all
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300554Type: vcpu ioctl
555Parameters: struct kvm_signal_mask (in)
556Returns: 0 on success, -1 on error
557
558Defines which signals are blocked during execution of KVM_RUN. This
559signal mask temporarily overrides the threads signal mask. Any
560unblocked signal received (except SIGKILL and SIGSTOP, which retain
561their traditional behaviour) will cause KVM_RUN to return with -EINTR.
562
563Note the signal will only be delivered if not blocked by the original
564signal mask.
565
566/* for KVM_SET_SIGNAL_MASK */
567struct kvm_signal_mask {
568 __u32 len;
569 __u8 sigset[0];
570};
571
Jan Kiszka414fa982012-04-24 16:40:15 +0200572
Paul Bolle68ba6972011-02-15 00:05:59 +01005734.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300574
575Capability: basic
576Architectures: x86
577Type: vcpu ioctl
578Parameters: struct kvm_fpu (out)
579Returns: 0 on success, -1 on error
580
581Reads the floating point state from the vcpu.
582
583/* for KVM_GET_FPU and KVM_SET_FPU */
584struct kvm_fpu {
585 __u8 fpr[8][16];
586 __u16 fcw;
587 __u16 fsw;
588 __u8 ftwx; /* in fxsave format */
589 __u8 pad1;
590 __u16 last_opcode;
591 __u64 last_ip;
592 __u64 last_dp;
593 __u8 xmm[16][16];
594 __u32 mxcsr;
595 __u32 pad2;
596};
597
Jan Kiszka414fa982012-04-24 16:40:15 +0200598
Paul Bolle68ba6972011-02-15 00:05:59 +01005994.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300600
601Capability: basic
602Architectures: x86
603Type: vcpu ioctl
604Parameters: struct kvm_fpu (in)
605Returns: 0 on success, -1 on error
606
607Writes the floating point state to the vcpu.
608
609/* for KVM_GET_FPU and KVM_SET_FPU */
610struct kvm_fpu {
611 __u8 fpr[8][16];
612 __u16 fcw;
613 __u16 fsw;
614 __u8 ftwx; /* in fxsave format */
615 __u8 pad1;
616 __u16 last_opcode;
617 __u64 last_ip;
618 __u64 last_dp;
619 __u8 xmm[16][16];
620 __u32 mxcsr;
621 __u32 pad2;
622};
623
Jan Kiszka414fa982012-04-24 16:40:15 +0200624
Paul Bolle68ba6972011-02-15 00:05:59 +01006254.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300626
Cornelia Huck84223592013-07-15 13:36:01 +0200627Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
Tiejun Chenc32a4272014-11-20 11:07:18 +0100628Architectures: x86, ARM, arm64, s390
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300629Type: vm ioctl
630Parameters: none
631Returns: 0 on success, -1 on error
632
Andre Przywaraac3d3732014-06-03 10:26:30 +0200633Creates an interrupt controller model in the kernel.
634On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
635future vcpus to have a local APIC. IRQ routing for GSIs 0-15 is set to both
636PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
637On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
638KVM_CREATE_DEVICE, which also supports creating a GICv2. Using
639KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
640On s390, a dummy irq routing table is created.
Cornelia Huck84223592013-07-15 13:36:01 +0200641
642Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
643before KVM_CREATE_IRQCHIP can be used.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300644
Jan Kiszka414fa982012-04-24 16:40:15 +0200645
Paul Bolle68ba6972011-02-15 00:05:59 +01006464.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300647
648Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100649Architectures: x86, arm, arm64
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300650Type: vm ioctl
651Parameters: struct kvm_irq_level
652Returns: 0 on success, -1 on error
653
654Sets the level of a GSI input to the interrupt controller model in the kernel.
Christoffer Dall86ce8532013-01-20 18:28:08 -0500655On some architectures it is required that an interrupt controller model has
656been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
657interrupts require the level to be set to 1 and then back to 0.
658
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500659On real hardware, interrupt pins can be active-low or active-high. This
660does not matter for the level field of struct kvm_irq_level: 1 always
661means active (asserted), 0 means inactive (deasserted).
662
663x86 allows the operating system to program the interrupt polarity
664(active-low/active-high) for level-triggered interrupts, and KVM used
665to consider the polarity. However, due to bitrot in the handling of
666active-low interrupts, the above convention is now valid on x86 too.
667This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
668should not present interrupts to the guest as active-low unless this
669capability is present (or unless it is not using the in-kernel irqchip,
670of course).
671
672
Marc Zyngier379e04c2013-04-02 17:46:31 +0100673ARM/arm64 can signal an interrupt either at the CPU level, or at the
674in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
675use PPIs designated for specific cpus. The irq field is interpreted
676like this:
Christoffer Dall86ce8532013-01-20 18:28:08 -0500677
678  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
679 field: | irq_type | vcpu_index | irq_id |
680
681The irq_type field has the following values:
682- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
683- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
684 (the vcpu_index field is ignored)
685- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
686
687(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
688
Gabriel L. Somlo100943c2014-02-27 23:06:17 -0500689In both cases, level is used to assert/deassert the line.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300690
691struct kvm_irq_level {
692 union {
693 __u32 irq; /* GSI */
694 __s32 status; /* not used for KVM_IRQ_LEVEL */
695 };
696 __u32 level; /* 0 or 1 */
697};
698
Jan Kiszka414fa982012-04-24 16:40:15 +0200699
Paul Bolle68ba6972011-02-15 00:05:59 +01007004.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300701
702Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100703Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300704Type: vm ioctl
705Parameters: struct kvm_irqchip (in/out)
706Returns: 0 on success, -1 on error
707
708Reads the state of a kernel interrupt controller created with
709KVM_CREATE_IRQCHIP into a buffer provided by the caller.
710
711struct kvm_irqchip {
712 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
713 __u32 pad;
714 union {
715 char dummy[512]; /* reserving space */
716 struct kvm_pic_state pic;
717 struct kvm_ioapic_state ioapic;
718 } chip;
719};
720
Jan Kiszka414fa982012-04-24 16:40:15 +0200721
Paul Bolle68ba6972011-02-15 00:05:59 +01007224.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300723
724Capability: KVM_CAP_IRQCHIP
Tiejun Chenc32a4272014-11-20 11:07:18 +0100725Architectures: x86
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300726Type: vm ioctl
727Parameters: struct kvm_irqchip (in)
728Returns: 0 on success, -1 on error
729
730Sets the state of a kernel interrupt controller created with
731KVM_CREATE_IRQCHIP from a buffer provided by the caller.
732
733struct kvm_irqchip {
734 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
735 __u32 pad;
736 union {
737 char dummy[512]; /* reserving space */
738 struct kvm_pic_state pic;
739 struct kvm_ioapic_state ioapic;
740 } chip;
741};
742
Jan Kiszka414fa982012-04-24 16:40:15 +0200743
Paul Bolle68ba6972011-02-15 00:05:59 +01007444.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700745
746Capability: KVM_CAP_XEN_HVM
747Architectures: x86
748Type: vm ioctl
749Parameters: struct kvm_xen_hvm_config (in)
750Returns: 0 on success, -1 on error
751
752Sets the MSR that the Xen HVM guest uses to initialize its hypercall
753page, and provides the starting address and size of the hypercall
754blobs in userspace. When the guest writes the MSR, kvm copies one
755page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
756memory.
757
758struct kvm_xen_hvm_config {
759 __u32 flags;
760 __u32 msr;
761 __u64 blob_addr_32;
762 __u64 blob_addr_64;
763 __u8 blob_size_32;
764 __u8 blob_size_64;
765 __u8 pad2[30];
766};
767
Jan Kiszka414fa982012-04-24 16:40:15 +0200768
Paul Bolle68ba6972011-02-15 00:05:59 +01007694.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400770
771Capability: KVM_CAP_ADJUST_CLOCK
772Architectures: x86
773Type: vm ioctl
774Parameters: struct kvm_clock_data (out)
775Returns: 0 on success, -1 on error
776
777Gets the current timestamp of kvmclock as seen by the current guest. In
778conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
779such as migration.
780
Paolo Bonzinie3fd9a92016-11-09 17:48:15 +0100781When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
782set of bits that KVM can return in struct kvm_clock_data's flag member.
783
784The only flag defined now is KVM_CLOCK_TSC_STABLE. If set, the returned
785value is the exact kvmclock value seen by all VCPUs at the instant
786when KVM_GET_CLOCK was called. If clear, the returned value is simply
787CLOCK_MONOTONIC plus a constant offset; the offset can be modified
788with KVM_SET_CLOCK. KVM will try to make all VCPUs follow this clock,
789but the exact value read by each VCPU could differ, because the host
790TSC is not stable.
791
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400792struct kvm_clock_data {
793 __u64 clock; /* kvmclock current value */
794 __u32 flags;
795 __u32 pad[9];
796};
797
Jan Kiszka414fa982012-04-24 16:40:15 +0200798
Paul Bolle68ba6972011-02-15 00:05:59 +01007994.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400800
801Capability: KVM_CAP_ADJUST_CLOCK
802Architectures: x86
803Type: vm ioctl
804Parameters: struct kvm_clock_data (in)
805Returns: 0 on success, -1 on error
806
Wu Fengguang2044892d2009-12-24 09:04:16 +0800807Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400808In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
809such as migration.
810
811struct kvm_clock_data {
812 __u64 clock; /* kvmclock current value */
813 __u32 flags;
814 __u32 pad[9];
815};
816
Jan Kiszka414fa982012-04-24 16:40:15 +0200817
Paul Bolle68ba6972011-02-15 00:05:59 +01008184.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100819
820Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100821Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100822Architectures: x86
823Type: vm ioctl
824Parameters: struct kvm_vcpu_event (out)
825Returns: 0 on success, -1 on error
826
827Gets currently pending exceptions, interrupts, and NMIs as well as related
828states of the vcpu.
829
830struct kvm_vcpu_events {
831 struct {
832 __u8 injected;
833 __u8 nr;
834 __u8 has_error_code;
835 __u8 pad;
836 __u32 error_code;
837 } exception;
838 struct {
839 __u8 injected;
840 __u8 nr;
841 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100842 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100843 } interrupt;
844 struct {
845 __u8 injected;
846 __u8 pending;
847 __u8 masked;
848 __u8 pad;
849 } nmi;
850 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100851 __u32 flags;
Paolo Bonzinif0778252015-04-01 15:06:40 +0200852 struct {
853 __u8 smm;
854 __u8 pending;
855 __u8 smm_inside_nmi;
856 __u8 latched_init;
857 } smi;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100858};
859
Paolo Bonzinif0778252015-04-01 15:06:40 +0200860Only two fields are defined in the flags field:
Jan Kiszka48005f62010-02-19 19:38:07 +0100861
Paolo Bonzinif0778252015-04-01 15:06:40 +0200862- KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
863 interrupt.shadow contains a valid state.
864
865- KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
866 smi contains a valid state.
Jan Kiszka414fa982012-04-24 16:40:15 +0200867
Paul Bolle68ba6972011-02-15 00:05:59 +01008684.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100869
870Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100871Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100872Architectures: x86
873Type: vm ioctl
874Parameters: struct kvm_vcpu_event (in)
875Returns: 0 on success, -1 on error
876
877Set pending exceptions, interrupts, and NMIs as well as related states of the
878vcpu.
879
880See KVM_GET_VCPU_EVENTS for the data structure.
881
Jan Kiszkadab4b912009-12-06 18:24:15 +0100882Fields that may be modified asynchronously by running VCPUs can be excluded
Paolo Bonzinif0778252015-04-01 15:06:40 +0200883from the update. These fields are nmi.pending, sipi_vector, smi.smm,
884smi.pending. Keep the corresponding bits in the flags field cleared to
885suppress overwriting the current in-kernel state. The bits are:
Jan Kiszkadab4b912009-12-06 18:24:15 +0100886
887KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
888KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
Paolo Bonzinif0778252015-04-01 15:06:40 +0200889KVM_VCPUEVENT_VALID_SMM - transfer the smi sub-struct.
Jan Kiszkadab4b912009-12-06 18:24:15 +0100890
Jan Kiszka48005f62010-02-19 19:38:07 +0100891If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
892the flags field to signal that interrupt.shadow contains a valid state and
893shall be written into the VCPU.
894
Paolo Bonzinif0778252015-04-01 15:06:40 +0200895KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
896
Jan Kiszka414fa982012-04-24 16:40:15 +0200897
Paul Bolle68ba6972011-02-15 00:05:59 +01008984.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100899
900Capability: KVM_CAP_DEBUGREGS
901Architectures: x86
902Type: vm ioctl
903Parameters: struct kvm_debugregs (out)
904Returns: 0 on success, -1 on error
905
906Reads debug registers from the vcpu.
907
908struct kvm_debugregs {
909 __u64 db[4];
910 __u64 dr6;
911 __u64 dr7;
912 __u64 flags;
913 __u64 reserved[9];
914};
915
Jan Kiszka414fa982012-04-24 16:40:15 +0200916
Paul Bolle68ba6972011-02-15 00:05:59 +01009174.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100918
919Capability: KVM_CAP_DEBUGREGS
920Architectures: x86
921Type: vm ioctl
922Parameters: struct kvm_debugregs (in)
923Returns: 0 on success, -1 on error
924
925Writes debug registers into the vcpu.
926
927See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
928yet and must be cleared on entry.
929
Jan Kiszka414fa982012-04-24 16:40:15 +0200930
Paul Bolle68ba6972011-02-15 00:05:59 +01009314.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200932
933Capability: KVM_CAP_USER_MEM
934Architectures: all
935Type: vm ioctl
936Parameters: struct kvm_userspace_memory_region (in)
937Returns: 0 on success, -1 on error
938
939struct kvm_userspace_memory_region {
940 __u32 slot;
941 __u32 flags;
942 __u64 guest_phys_addr;
943 __u64 memory_size; /* bytes */
944 __u64 userspace_addr; /* start of the userspace allocated memory */
945};
946
947/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +0800948#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
949#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200950
951This ioctl allows the user to create or modify a guest physical memory
952slot. When changing an existing slot, it may be moved in the guest
953physical memory space, or its flags may be modified. It may not be
954resized. Slots may not overlap in guest physical address space.
Linu Cheriana677e702017-03-08 11:38:32 +0530955Bits 0-15 of "slot" specifies the slot id and this value should be
956less than the maximum number of user memory slots supported per VM.
957The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS,
958if this capability is supported by the architecture.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200959
Paolo Bonzinif481b062015-05-17 17:30:37 +0200960If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
961specifies the address space which is being modified. They must be
962less than the value that KVM_CHECK_EXTENSION returns for the
963KVM_CAP_MULTI_ADDRESS_SPACE capability. Slots in separate address spaces
964are unrelated; the restriction on overlapping slots only applies within
965each address space.
966
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200967Memory for the region is taken starting at the address denoted by the
968field userspace_addr, which must point at user addressable memory for
969the entire memory slot size. Any object may back this memory, including
970anonymous memory, ordinary files, and hugetlbfs.
971
972It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
973be identical. This allows large pages in the guest to be backed by large
974pages in the host.
975
Takuya Yoshikawa75d61fb2013-01-30 19:40:41 +0900976The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
977KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
978writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
979use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
980to make a new slot read-only. In this case, writes to this memory will be
981posted to userspace as KVM_EXIT_MMIO exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200982
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200983When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
984the memory region are automatically reflected into the guest. For example, an
985mmap() that affects the region will be made visible immediately. Another
986example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200987
988It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
989The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
990allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100991
Jan Kiszka414fa982012-04-24 16:40:15 +0200992
Paul Bolle68ba6972011-02-15 00:05:59 +01009934.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +0200994
995Capability: KVM_CAP_SET_TSS_ADDR
996Architectures: x86
997Type: vm ioctl
998Parameters: unsigned long tss_address (in)
999Returns: 0 on success, -1 on error
1000
1001This ioctl defines the physical address of a three-page region in the guest
1002physical address space. The region must be within the first 4GB of the
1003guest physical address space and must not conflict with any memory slot
1004or any mmio address. The guest may malfunction if it accesses this memory
1005region.
1006
1007This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1008because of a quirk in the virtualization implementation (see the internals
1009documentation when it pops into existence).
1010
Jan Kiszka414fa982012-04-24 16:40:15 +02001011
Paul Bolle68ba6972011-02-15 00:05:59 +010010124.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +01001013
Cornelia Huckd938dc52013-10-23 18:26:34 +02001014Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
Nadav Amit90de4a12015-04-13 01:53:41 +03001015Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1016 mips (only KVM_CAP_ENABLE_CAP), ppc, s390
Cornelia Huckd938dc52013-10-23 18:26:34 +02001017Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
Alexander Graf71fbfd52010-03-24 21:48:29 +01001018Parameters: struct kvm_enable_cap (in)
1019Returns: 0 on success; -1 on error
1020
1021+Not all extensions are enabled by default. Using this ioctl the application
1022can enable an extension, making it available to the guest.
1023
1024On systems that do not support this ioctl, it always fails. On systems that
1025do support it, it only works for extensions that are supported for enablement.
1026
1027To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1028be used.
1029
1030struct kvm_enable_cap {
1031 /* in */
1032 __u32 cap;
1033
1034The capability that is supposed to get enabled.
1035
1036 __u32 flags;
1037
1038A bitfield indicating future enhancements. Has to be 0 for now.
1039
1040 __u64 args[4];
1041
1042Arguments for enabling a feature. If a feature needs initial values to
1043function properly, this is the place to put them.
1044
1045 __u8 pad[64];
1046};
1047
Cornelia Huckd938dc52013-10-23 18:26:34 +02001048The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1049for vm-wide capabilities.
Jan Kiszka414fa982012-04-24 16:40:15 +02001050
Paul Bolle68ba6972011-02-15 00:05:59 +010010514.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001052
1053Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001054Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001055Type: vcpu ioctl
1056Parameters: struct kvm_mp_state (out)
1057Returns: 0 on success; -1 on error
1058
1059struct kvm_mp_state {
1060 __u32 mp_state;
1061};
1062
1063Returns the vcpu's current "multiprocessing state" (though also valid on
1064uniprocessor guests).
1065
1066Possible values are:
1067
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001068 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running [x86,arm/arm64]
Avi Kivityb843f062010-04-25 15:51:46 +03001069 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
Tiejun Chenc32a4272014-11-20 11:07:18 +01001070 which has not yet received an INIT signal [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001071 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
Tiejun Chenc32a4272014-11-20 11:07:18 +01001072 now ready for a SIPI [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001073 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
Tiejun Chenc32a4272014-11-20 11:07:18 +01001074 is waiting for an interrupt [x86]
Avi Kivityb843f062010-04-25 15:51:46 +03001075 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Tiejun Chenc32a4272014-11-20 11:07:18 +01001076 accessible via KVM_GET_VCPU_EVENTS) [x86]
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001077 - KVM_MP_STATE_STOPPED: the vcpu is stopped [s390,arm/arm64]
David Hildenbrand6352e4d2014-04-10 17:35:00 +02001078 - KVM_MP_STATE_CHECK_STOP: the vcpu is in a special error state [s390]
1079 - KVM_MP_STATE_OPERATING: the vcpu is operating (running or halted)
1080 [s390]
1081 - KVM_MP_STATE_LOAD: the vcpu is in a special load/startup state
1082 [s390]
Avi Kivityb843f062010-04-25 15:51:46 +03001083
Tiejun Chenc32a4272014-11-20 11:07:18 +01001084On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001085in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1086these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001087
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001088For arm/arm64:
1089
1090The only states that are valid are KVM_MP_STATE_STOPPED and
1091KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001092
Paul Bolle68ba6972011-02-15 00:05:59 +010010934.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +03001094
1095Capability: KVM_CAP_MP_STATE
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001096Architectures: x86, s390, arm, arm64
Avi Kivityb843f062010-04-25 15:51:46 +03001097Type: vcpu ioctl
1098Parameters: struct kvm_mp_state (in)
1099Returns: 0 on success; -1 on error
1100
1101Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1102arguments.
1103
Tiejun Chenc32a4272014-11-20 11:07:18 +01001104On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
David Hildenbrand0b4820d2014-05-12 16:05:13 +02001105in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1106these architectures.
Avi Kivityb843f062010-04-25 15:51:46 +03001107
Alex Bennéeecccf0c2015-03-13 17:02:52 +00001108For arm/arm64:
1109
1110The only states that are valid are KVM_MP_STATE_STOPPED and
1111KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
Jan Kiszka414fa982012-04-24 16:40:15 +02001112
Paul Bolle68ba6972011-02-15 00:05:59 +010011134.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +03001114
1115Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1116Architectures: x86
1117Type: vm ioctl
1118Parameters: unsigned long identity (in)
1119Returns: 0 on success, -1 on error
1120
1121This ioctl defines the physical address of a one-page region in the guest
1122physical address space. The region must be within the first 4GB of the
1123guest physical address space and must not conflict with any memory slot
1124or any mmio address. The guest may malfunction if it accesses this memory
1125region.
1126
David Hildenbrand726b99c2017-08-24 20:51:35 +02001127Setting the address to 0 will result in resetting the address to its default
1128(0xfffbc000).
1129
Avi Kivity47dbb842010-04-29 12:08:56 +03001130This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1131because of a quirk in the virtualization implementation (see the internals
1132documentation when it pops into existence).
1133
David Hildenbrand1af1ac92017-08-24 20:51:36 +02001134Fails if any VCPU has already been created.
Jan Kiszka414fa982012-04-24 16:40:15 +02001135
Paul Bolle68ba6972011-02-15 00:05:59 +010011364.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001137
1138Capability: KVM_CAP_SET_BOOT_CPU_ID
Tiejun Chenc32a4272014-11-20 11:07:18 +01001139Architectures: x86
Avi Kivity57bc24c2010-04-29 12:12:57 +03001140Type: vm ioctl
1141Parameters: unsigned long vcpu_id
1142Returns: 0 on success, -1 on error
1143
1144Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1145as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1146is vcpu 0.
1147
Jan Kiszka414fa982012-04-24 16:40:15 +02001148
Paul Bolle68ba6972011-02-15 00:05:59 +010011494.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001150
1151Capability: KVM_CAP_XSAVE
1152Architectures: x86
1153Type: vcpu ioctl
1154Parameters: struct kvm_xsave (out)
1155Returns: 0 on success, -1 on error
1156
1157struct kvm_xsave {
1158 __u32 region[1024];
1159};
1160
1161This ioctl would copy current vcpu's xsave struct to the userspace.
1162
Jan Kiszka414fa982012-04-24 16:40:15 +02001163
Paul Bolle68ba6972011-02-15 00:05:59 +010011644.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001165
1166Capability: KVM_CAP_XSAVE
1167Architectures: x86
1168Type: vcpu ioctl
1169Parameters: struct kvm_xsave (in)
1170Returns: 0 on success, -1 on error
1171
1172struct kvm_xsave {
1173 __u32 region[1024];
1174};
1175
1176This ioctl would copy userspace's xsave struct to the kernel.
1177
Jan Kiszka414fa982012-04-24 16:40:15 +02001178
Paul Bolle68ba6972011-02-15 00:05:59 +010011794.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001180
1181Capability: KVM_CAP_XCRS
1182Architectures: x86
1183Type: vcpu ioctl
1184Parameters: struct kvm_xcrs (out)
1185Returns: 0 on success, -1 on error
1186
1187struct kvm_xcr {
1188 __u32 xcr;
1189 __u32 reserved;
1190 __u64 value;
1191};
1192
1193struct kvm_xcrs {
1194 __u32 nr_xcrs;
1195 __u32 flags;
1196 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1197 __u64 padding[16];
1198};
1199
1200This ioctl would copy current vcpu's xcrs to the userspace.
1201
Jan Kiszka414fa982012-04-24 16:40:15 +02001202
Paul Bolle68ba6972011-02-15 00:05:59 +010012034.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001204
1205Capability: KVM_CAP_XCRS
1206Architectures: x86
1207Type: vcpu ioctl
1208Parameters: struct kvm_xcrs (in)
1209Returns: 0 on success, -1 on error
1210
1211struct kvm_xcr {
1212 __u32 xcr;
1213 __u32 reserved;
1214 __u64 value;
1215};
1216
1217struct kvm_xcrs {
1218 __u32 nr_xcrs;
1219 __u32 flags;
1220 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1221 __u64 padding[16];
1222};
1223
1224This ioctl would set vcpu's xcr to the value userspace specified.
1225
Jan Kiszka414fa982012-04-24 16:40:15 +02001226
Paul Bolle68ba6972011-02-15 00:05:59 +010012274.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001228
1229Capability: KVM_CAP_EXT_CPUID
1230Architectures: x86
1231Type: system ioctl
1232Parameters: struct kvm_cpuid2 (in/out)
1233Returns: 0 on success, -1 on error
1234
1235struct kvm_cpuid2 {
1236 __u32 nent;
1237 __u32 padding;
1238 struct kvm_cpuid_entry2 entries[0];
1239};
1240
Borislav Petkov9c15bb12013-09-22 16:44:50 +02001241#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1242#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1243#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
Avi Kivityd1535132010-07-14 09:45:21 +03001244
1245struct kvm_cpuid_entry2 {
1246 __u32 function;
1247 __u32 index;
1248 __u32 flags;
1249 __u32 eax;
1250 __u32 ebx;
1251 __u32 ecx;
1252 __u32 edx;
1253 __u32 padding[3];
1254};
1255
1256This ioctl returns x86 cpuid features which are supported by both the hardware
1257and kvm. Userspace can use the information returned by this ioctl to
1258construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1259hardware, kernel, and userspace capabilities, and with user requirements (for
1260example, the user may wish to constrain cpuid to emulate older hardware,
1261or for feature consistency across a cluster).
1262
1263Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1264with the 'nent' field indicating the number of entries in the variable-size
1265array 'entries'. If the number of entries is too low to describe the cpu
1266capabilities, an error (E2BIG) is returned. If the number is too high,
1267the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1268number is just right, the 'nent' field is adjusted to the number of valid
1269entries in the 'entries' array, which is then filled.
1270
1271The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001272with unknown or unsupported features masked out. Some features (for example,
1273x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1274emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001275
1276 function: the eax value used to obtain the entry
1277 index: the ecx value used to obtain the entry (for entries that are
1278 affected by ecx)
1279 flags: an OR of zero or more of the following:
1280 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1281 if the index field is valid
1282 KVM_CPUID_FLAG_STATEFUL_FUNC:
1283 if cpuid for this function returns different values for successive
1284 invocations; there will be several entries with the same function,
1285 all with this flag set
1286 KVM_CPUID_FLAG_STATE_READ_NEXT:
1287 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1288 the first entry to be read by a cpu
1289 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1290 this function/index combination
1291
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001292The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1293as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1294support. Instead it is reported via
1295
1296 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1297
1298if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1299feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1300
Jan Kiszka414fa982012-04-24 16:40:15 +02001301
Paul Bolle68ba6972011-02-15 00:05:59 +010013024.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001303
1304Capability: KVM_CAP_PPC_GET_PVINFO
1305Architectures: ppc
1306Type: vm ioctl
1307Parameters: struct kvm_ppc_pvinfo (out)
1308Returns: 0 on success, !0 on error
1309
1310struct kvm_ppc_pvinfo {
1311 __u32 flags;
1312 __u32 hcall[4];
1313 __u8 pad[108];
1314};
1315
1316This ioctl fetches PV specific information that need to be passed to the guest
1317using the device tree or other means from vm context.
1318
Liu Yu-B132019202e072012-07-03 05:48:52 +00001319The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001320
1321If any additional field gets added to this structure later on, a bit for that
1322additional piece of information will be set in the flags bitmap.
1323
Liu Yu-B132019202e072012-07-03 05:48:52 +00001324The flags bitmap is defined as:
1325
1326 /* the host supports the ePAPR idle hcall
1327 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001328
Paul Bolle68ba6972011-02-15 00:05:59 +010013294.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001330
1331Capability: KVM_CAP_IRQ_ROUTING
Eric Auger180ae7b2016-07-22 16:20:41 +00001332Architectures: x86 s390 arm arm64
Jan Kiszka49f48172010-11-16 22:30:07 +01001333Type: vm ioctl
1334Parameters: struct kvm_irq_routing (in)
1335Returns: 0 on success, -1 on error
1336
1337Sets the GSI routing table entries, overwriting any previously set entries.
1338
Eric Auger180ae7b2016-07-22 16:20:41 +00001339On arm/arm64, GSI routing has the following limitation:
1340- GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1341
Jan Kiszka49f48172010-11-16 22:30:07 +01001342struct kvm_irq_routing {
1343 __u32 nr;
1344 __u32 flags;
1345 struct kvm_irq_routing_entry entries[0];
1346};
1347
1348No flags are specified so far, the corresponding field must be set to zero.
1349
1350struct kvm_irq_routing_entry {
1351 __u32 gsi;
1352 __u32 type;
1353 __u32 flags;
1354 __u32 pad;
1355 union {
1356 struct kvm_irq_routing_irqchip irqchip;
1357 struct kvm_irq_routing_msi msi;
Cornelia Huck84223592013-07-15 13:36:01 +02001358 struct kvm_irq_routing_s390_adapter adapter;
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001359 struct kvm_irq_routing_hv_sint hv_sint;
Jan Kiszka49f48172010-11-16 22:30:07 +01001360 __u32 pad[8];
1361 } u;
1362};
1363
1364/* gsi routing entry types */
1365#define KVM_IRQ_ROUTING_IRQCHIP 1
1366#define KVM_IRQ_ROUTING_MSI 2
Cornelia Huck84223592013-07-15 13:36:01 +02001367#define KVM_IRQ_ROUTING_S390_ADAPTER 3
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001368#define KVM_IRQ_ROUTING_HV_SINT 4
Jan Kiszka49f48172010-11-16 22:30:07 +01001369
Eric Auger76a10b82016-07-22 16:20:37 +00001370flags:
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001371- KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1372 type, specifies that the devid field contains a valid value. The per-VM
1373 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1374 the device ID. If this capability is not available, userspace should
1375 never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Eric Auger76a10b82016-07-22 16:20:37 +00001376- zero otherwise
Jan Kiszka49f48172010-11-16 22:30:07 +01001377
1378struct kvm_irq_routing_irqchip {
1379 __u32 irqchip;
1380 __u32 pin;
1381};
1382
1383struct kvm_irq_routing_msi {
1384 __u32 address_lo;
1385 __u32 address_hi;
1386 __u32 data;
Eric Auger76a10b82016-07-22 16:20:37 +00001387 union {
1388 __u32 pad;
1389 __u32 devid;
1390 };
Jan Kiszka49f48172010-11-16 22:30:07 +01001391};
1392
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02001393If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1394for the device that wrote the MSI message. For PCI, this is usually a
1395BFD identifier in the lower 16 bits.
Eric Auger76a10b82016-07-22 16:20:37 +00001396
Radim Krčmář371313132016-07-12 22:09:27 +02001397On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1398feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
1399address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
1400address_hi must be zero.
1401
Cornelia Huck84223592013-07-15 13:36:01 +02001402struct kvm_irq_routing_s390_adapter {
1403 __u64 ind_addr;
1404 __u64 summary_addr;
1405 __u64 ind_offset;
1406 __u32 summary_offset;
1407 __u32 adapter_id;
1408};
1409
Andrey Smetanin5c9194122015-11-10 15:36:34 +03001410struct kvm_irq_routing_hv_sint {
1411 __u32 vcpu;
1412 __u32 sint;
1413};
Jan Kiszka414fa982012-04-24 16:40:15 +02001414
Jan Kiszka414fa982012-04-24 16:40:15 +02001415
14164.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001417
1418Capability: KVM_CAP_TSC_CONTROL
1419Architectures: x86
1420Type: vcpu ioctl
1421Parameters: virtual tsc_khz
1422Returns: 0 on success, -1 on error
1423
1424Specifies the tsc frequency for the virtual machine. The unit of the
1425frequency is KHz.
1426
Jan Kiszka414fa982012-04-24 16:40:15 +02001427
14284.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001429
1430Capability: KVM_CAP_GET_TSC_KHZ
1431Architectures: x86
1432Type: vcpu ioctl
1433Parameters: none
1434Returns: virtual tsc-khz on success, negative value on error
1435
1436Returns the tsc frequency of the guest. The unit of the return value is
1437KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1438error.
1439
Jan Kiszka414fa982012-04-24 16:40:15 +02001440
14414.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001442
1443Capability: KVM_CAP_IRQCHIP
1444Architectures: x86
1445Type: vcpu ioctl
1446Parameters: struct kvm_lapic_state (out)
1447Returns: 0 on success, -1 on error
1448
1449#define KVM_APIC_REG_SIZE 0x400
1450struct kvm_lapic_state {
1451 char regs[KVM_APIC_REG_SIZE];
1452};
1453
1454Reads the Local APIC registers and copies them into the input argument. The
1455data format and layout are the same as documented in the architecture manual.
1456
Radim Krčmář371313132016-07-12 22:09:27 +02001457If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1458enabled, then the format of APIC_ID register depends on the APIC mode
1459(reported by MSR_IA32_APICBASE) of its VCPU. x2APIC stores APIC ID in
1460the APIC_ID register (bytes 32-35). xAPIC only allows an 8-bit APIC ID
1461which is stored in bits 31-24 of the APIC register, or equivalently in
1462byte 35 of struct kvm_lapic_state's regs field. KVM_GET_LAPIC must then
1463be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1464
1465If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1466always uses xAPIC format.
1467
Jan Kiszka414fa982012-04-24 16:40:15 +02001468
14694.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001470
1471Capability: KVM_CAP_IRQCHIP
1472Architectures: x86
1473Type: vcpu ioctl
1474Parameters: struct kvm_lapic_state (in)
1475Returns: 0 on success, -1 on error
1476
1477#define KVM_APIC_REG_SIZE 0x400
1478struct kvm_lapic_state {
1479 char regs[KVM_APIC_REG_SIZE];
1480};
1481
Masanari Iidadf5cbb22014-03-21 10:04:30 +09001482Copies the input argument into the Local APIC registers. The data format
Avi Kivitye7677932011-05-11 08:30:51 -04001483and layout are the same as documented in the architecture manual.
1484
Radim Krčmář371313132016-07-12 22:09:27 +02001485The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1486regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1487See the note in KVM_GET_LAPIC.
1488
Jan Kiszka414fa982012-04-24 16:40:15 +02001489
14904.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001491
1492Capability: KVM_CAP_IOEVENTFD
1493Architectures: all
1494Type: vm ioctl
1495Parameters: struct kvm_ioeventfd (in)
1496Returns: 0 on success, !0 on error
1497
1498This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1499within the guest. A guest write in the registered address will signal the
1500provided event instead of triggering an exit.
1501
1502struct kvm_ioeventfd {
1503 __u64 datamatch;
1504 __u64 addr; /* legal pio/mmio address */
Jason Wange9ea5062015-09-15 14:41:59 +08001505 __u32 len; /* 0, 1, 2, 4, or 8 bytes */
Sasha Levin55399a02011-05-28 14:12:30 +03001506 __s32 fd;
1507 __u32 flags;
1508 __u8 pad[36];
1509};
1510
Cornelia Huck2b834512013-02-28 12:33:20 +01001511For the special case of virtio-ccw devices on s390, the ioevent is matched
1512to a subchannel/virtqueue tuple instead.
1513
Sasha Levin55399a02011-05-28 14:12:30 +03001514The following flags are defined:
1515
1516#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1517#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1518#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
Cornelia Huck2b834512013-02-28 12:33:20 +01001519#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1520 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
Sasha Levin55399a02011-05-28 14:12:30 +03001521
1522If datamatch flag is set, the event will be signaled only if the written value
1523to the registered address is equal to datamatch in struct kvm_ioeventfd.
1524
Cornelia Huck2b834512013-02-28 12:33:20 +01001525For virtio-ccw devices, addr contains the subchannel id and datamatch the
1526virtqueue index.
1527
Jason Wange9ea5062015-09-15 14:41:59 +08001528With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1529the kernel will ignore the length of guest write and may get a faster vmexit.
1530The speedup may only apply to specific architectures, but the ioeventfd will
1531work anyway.
Jan Kiszka414fa982012-04-24 16:40:15 +02001532
15334.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001534
1535Capability: KVM_CAP_SW_TLB
1536Architectures: ppc
1537Type: vcpu ioctl
1538Parameters: struct kvm_dirty_tlb (in)
1539Returns: 0 on success, -1 on error
1540
1541struct kvm_dirty_tlb {
1542 __u64 bitmap;
1543 __u32 num_dirty;
1544};
1545
1546This must be called whenever userspace has changed an entry in the shared
1547TLB, prior to calling KVM_RUN on the associated vcpu.
1548
1549The "bitmap" field is the userspace address of an array. This array
1550consists of a number of bits, equal to the total number of TLB entries as
1551determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1552nearest multiple of 64.
1553
1554Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1555array.
1556
1557The array is little-endian: the bit 0 is the least significant bit of the
1558first byte, bit 8 is the least significant bit of the second byte, etc.
1559This avoids any complications with differing word sizes.
1560
1561The "num_dirty" field is a performance hint for KVM to determine whether it
1562should skip processing the bitmap and just invalidate everything. It must
1563be set to the number of set bits in the bitmap.
1564
Jan Kiszka414fa982012-04-24 16:40:15 +02001565
David Gibson54738c02011-06-29 00:22:41 +000015664.62 KVM_CREATE_SPAPR_TCE
1567
1568Capability: KVM_CAP_SPAPR_TCE
1569Architectures: powerpc
1570Type: vm ioctl
1571Parameters: struct kvm_create_spapr_tce (in)
1572Returns: file descriptor for manipulating the created TCE table
1573
1574This creates a virtual TCE (translation control entry) table, which
1575is an IOMMU for PAPR-style virtual I/O. It is used to translate
1576logical addresses used in virtual I/O into guest physical addresses,
1577and provides a scatter/gather capability for PAPR virtual I/O.
1578
1579/* for KVM_CAP_SPAPR_TCE */
1580struct kvm_create_spapr_tce {
1581 __u64 liobn;
1582 __u32 window_size;
1583};
1584
1585The liobn field gives the logical IO bus number for which to create a
1586TCE table. The window_size field specifies the size of the DMA window
1587which this TCE table will translate - the table will contain one 64
1588bit TCE entry for every 4kiB of the DMA window.
1589
1590When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1591table has been created using this ioctl(), the kernel will handle it
1592in real mode, updating the TCE table. H_PUT_TCE calls for other
1593liobns will cause a vm exit and must be handled by userspace.
1594
1595The return value is a file descriptor which can be passed to mmap(2)
1596to map the created TCE table into userspace. This lets userspace read
1597the entries written by kernel-handled H_PUT_TCE calls, and also lets
1598userspace update the TCE table directly which is useful in some
1599circumstances.
1600
Jan Kiszka414fa982012-04-24 16:40:15 +02001601
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000016024.63 KVM_ALLOCATE_RMA
1603
1604Capability: KVM_CAP_PPC_RMA
1605Architectures: powerpc
1606Type: vm ioctl
1607Parameters: struct kvm_allocate_rma (out)
1608Returns: file descriptor for mapping the allocated RMA
1609
1610This allocates a Real Mode Area (RMA) from the pool allocated at boot
1611time by the kernel. An RMA is a physically-contiguous, aligned region
1612of memory used on older POWER processors to provide the memory which
1613will be accessed by real-mode (MMU off) accesses in a KVM guest.
1614POWER processors support a set of sizes for the RMA that usually
1615includes 64MB, 128MB, 256MB and some larger powers of two.
1616
1617/* for KVM_ALLOCATE_RMA */
1618struct kvm_allocate_rma {
1619 __u64 rma_size;
1620};
1621
1622The return value is a file descriptor which can be passed to mmap(2)
1623to map the allocated RMA into userspace. The mapped area can then be
1624passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1625RMA for a virtual machine. The size of the RMA in bytes (which is
1626fixed at host kernel boot time) is returned in the rma_size field of
1627the argument structure.
1628
1629The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1630is supported; 2 if the processor requires all virtual machines to have
1631an RMA, or 1 if the processor can use an RMA but doesn't require it,
1632because it supports the Virtual RMA (VRMA) facility.
1633
Jan Kiszka414fa982012-04-24 16:40:15 +02001634
Avi Kivity3f745f12011-12-07 12:42:47 +020016354.64 KVM_NMI
1636
1637Capability: KVM_CAP_USER_NMI
1638Architectures: x86
1639Type: vcpu ioctl
1640Parameters: none
1641Returns: 0 on success, -1 on error
1642
1643Queues an NMI on the thread's vcpu. Note this is well defined only
1644when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1645between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1646has been called, this interface is completely emulated within the kernel.
1647
1648To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1649following algorithm:
1650
Masanari Iida5d4f6f32015-10-04 00:46:21 +09001651 - pause the vcpu
Avi Kivity3f745f12011-12-07 12:42:47 +02001652 - read the local APIC's state (KVM_GET_LAPIC)
1653 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1654 - if so, issue KVM_NMI
1655 - resume the vcpu
1656
1657Some guests configure the LINT1 NMI input to cause a panic, aiding in
1658debugging.
1659
Jan Kiszka414fa982012-04-24 16:40:15 +02001660
Alexander Grafe24ed812011-09-14 10:02:41 +020016614.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001662
1663Capability: KVM_CAP_S390_UCONTROL
1664Architectures: s390
1665Type: vcpu ioctl
1666Parameters: struct kvm_s390_ucas_mapping (in)
1667Returns: 0 in case of success
1668
1669The parameter is defined like this:
1670 struct kvm_s390_ucas_mapping {
1671 __u64 user_addr;
1672 __u64 vcpu_addr;
1673 __u64 length;
1674 };
1675
1676This ioctl maps the memory at "user_addr" with the length "length" to
1677the vcpu's address space starting at "vcpu_addr". All parameters need to
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001678be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001679
Jan Kiszka414fa982012-04-24 16:40:15 +02001680
Alexander Grafe24ed812011-09-14 10:02:41 +020016814.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001682
1683Capability: KVM_CAP_S390_UCONTROL
1684Architectures: s390
1685Type: vcpu ioctl
1686Parameters: struct kvm_s390_ucas_mapping (in)
1687Returns: 0 in case of success
1688
1689The parameter is defined like this:
1690 struct kvm_s390_ucas_mapping {
1691 __u64 user_addr;
1692 __u64 vcpu_addr;
1693 __u64 length;
1694 };
1695
1696This ioctl unmaps the memory in the vcpu's address space starting at
1697"vcpu_addr" with the length "length". The field "user_addr" is ignored.
Anatol Pomozovf884ab12013-05-08 16:56:16 -07001698All parameters need to be aligned by 1 megabyte.
Carsten Otte27e03932012-01-04 10:25:21 +01001699
Jan Kiszka414fa982012-04-24 16:40:15 +02001700
Alexander Grafe24ed812011-09-14 10:02:41 +020017014.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001702
1703Capability: KVM_CAP_S390_UCONTROL
1704Architectures: s390
1705Type: vcpu ioctl
1706Parameters: vcpu absolute address (in)
1707Returns: 0 in case of success
1708
1709This call creates a page table entry on the virtual cpu's address space
1710(for user controlled virtual machines) or the virtual machine's address
1711space (for regular virtual machines). This only works for minor faults,
1712thus it's recommended to access subject memory page via the user page
1713table upfront. This is useful to handle validity intercepts for user
1714controlled virtual machines to fault in the virtual cpu's lowcore pages
1715prior to calling the KVM_RUN ioctl.
1716
Jan Kiszka414fa982012-04-24 16:40:15 +02001717
Alexander Grafe24ed812011-09-14 10:02:41 +020017184.68 KVM_SET_ONE_REG
1719
1720Capability: KVM_CAP_ONE_REG
1721Architectures: all
1722Type: vcpu ioctl
1723Parameters: struct kvm_one_reg (in)
1724Returns: 0 on success, negative value on failure
1725
1726struct kvm_one_reg {
1727 __u64 id;
1728 __u64 addr;
1729};
1730
1731Using this ioctl, a single vcpu register can be set to a specific value
1732defined by user space with the passed in struct kvm_one_reg, where id
1733refers to the register identifier as described below and addr is a pointer
1734to a variable with the respective size. There can be architecture agnostic
1735and architecture specific registers. Each have their own range of operation
1736and their own constants and width. To keep track of the implemented
1737registers, find a list below:
1738
James Hoganbf5590f2014-07-04 15:11:34 +01001739 Arch | Register | Width (bits)
1740 | |
1741 PPC | KVM_REG_PPC_HIOR | 64
1742 PPC | KVM_REG_PPC_IAC1 | 64
1743 PPC | KVM_REG_PPC_IAC2 | 64
1744 PPC | KVM_REG_PPC_IAC3 | 64
1745 PPC | KVM_REG_PPC_IAC4 | 64
1746 PPC | KVM_REG_PPC_DAC1 | 64
1747 PPC | KVM_REG_PPC_DAC2 | 64
1748 PPC | KVM_REG_PPC_DABR | 64
1749 PPC | KVM_REG_PPC_DSCR | 64
1750 PPC | KVM_REG_PPC_PURR | 64
1751 PPC | KVM_REG_PPC_SPURR | 64
1752 PPC | KVM_REG_PPC_DAR | 64
1753 PPC | KVM_REG_PPC_DSISR | 32
1754 PPC | KVM_REG_PPC_AMR | 64
1755 PPC | KVM_REG_PPC_UAMOR | 64
1756 PPC | KVM_REG_PPC_MMCR0 | 64
1757 PPC | KVM_REG_PPC_MMCR1 | 64
1758 PPC | KVM_REG_PPC_MMCRA | 64
1759 PPC | KVM_REG_PPC_MMCR2 | 64
1760 PPC | KVM_REG_PPC_MMCRS | 64
1761 PPC | KVM_REG_PPC_SIAR | 64
1762 PPC | KVM_REG_PPC_SDAR | 64
1763 PPC | KVM_REG_PPC_SIER | 64
1764 PPC | KVM_REG_PPC_PMC1 | 32
1765 PPC | KVM_REG_PPC_PMC2 | 32
1766 PPC | KVM_REG_PPC_PMC3 | 32
1767 PPC | KVM_REG_PPC_PMC4 | 32
1768 PPC | KVM_REG_PPC_PMC5 | 32
1769 PPC | KVM_REG_PPC_PMC6 | 32
1770 PPC | KVM_REG_PPC_PMC7 | 32
1771 PPC | KVM_REG_PPC_PMC8 | 32
1772 PPC | KVM_REG_PPC_FPR0 | 64
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001773 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001774 PPC | KVM_REG_PPC_FPR31 | 64
1775 PPC | KVM_REG_PPC_VR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001776 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001777 PPC | KVM_REG_PPC_VR31 | 128
1778 PPC | KVM_REG_PPC_VSR0 | 128
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001779 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001780 PPC | KVM_REG_PPC_VSR31 | 128
1781 PPC | KVM_REG_PPC_FPSCR | 64
1782 PPC | KVM_REG_PPC_VSCR | 32
1783 PPC | KVM_REG_PPC_VPA_ADDR | 64
1784 PPC | KVM_REG_PPC_VPA_SLB | 128
1785 PPC | KVM_REG_PPC_VPA_DTL | 128
1786 PPC | KVM_REG_PPC_EPCR | 32
1787 PPC | KVM_REG_PPC_EPR | 32
1788 PPC | KVM_REG_PPC_TCR | 32
1789 PPC | KVM_REG_PPC_TSR | 32
1790 PPC | KVM_REG_PPC_OR_TSR | 32
1791 PPC | KVM_REG_PPC_CLEAR_TSR | 32
1792 PPC | KVM_REG_PPC_MAS0 | 32
1793 PPC | KVM_REG_PPC_MAS1 | 32
1794 PPC | KVM_REG_PPC_MAS2 | 64
1795 PPC | KVM_REG_PPC_MAS7_3 | 64
1796 PPC | KVM_REG_PPC_MAS4 | 32
1797 PPC | KVM_REG_PPC_MAS6 | 32
1798 PPC | KVM_REG_PPC_MMUCFG | 32
1799 PPC | KVM_REG_PPC_TLB0CFG | 32
1800 PPC | KVM_REG_PPC_TLB1CFG | 32
1801 PPC | KVM_REG_PPC_TLB2CFG | 32
1802 PPC | KVM_REG_PPC_TLB3CFG | 32
1803 PPC | KVM_REG_PPC_TLB0PS | 32
1804 PPC | KVM_REG_PPC_TLB1PS | 32
1805 PPC | KVM_REG_PPC_TLB2PS | 32
1806 PPC | KVM_REG_PPC_TLB3PS | 32
1807 PPC | KVM_REG_PPC_EPTCFG | 32
1808 PPC | KVM_REG_PPC_ICP_STATE | 64
1809 PPC | KVM_REG_PPC_TB_OFFSET | 64
1810 PPC | KVM_REG_PPC_SPMC1 | 32
1811 PPC | KVM_REG_PPC_SPMC2 | 32
1812 PPC | KVM_REG_PPC_IAMR | 64
1813 PPC | KVM_REG_PPC_TFHAR | 64
1814 PPC | KVM_REG_PPC_TFIAR | 64
1815 PPC | KVM_REG_PPC_TEXASR | 64
1816 PPC | KVM_REG_PPC_FSCR | 64
1817 PPC | KVM_REG_PPC_PSPB | 32
1818 PPC | KVM_REG_PPC_EBBHR | 64
1819 PPC | KVM_REG_PPC_EBBRR | 64
1820 PPC | KVM_REG_PPC_BESCR | 64
1821 PPC | KVM_REG_PPC_TAR | 64
1822 PPC | KVM_REG_PPC_DPDES | 64
1823 PPC | KVM_REG_PPC_DAWR | 64
1824 PPC | KVM_REG_PPC_DAWRX | 64
1825 PPC | KVM_REG_PPC_CIABR | 64
1826 PPC | KVM_REG_PPC_IC | 64
1827 PPC | KVM_REG_PPC_VTB | 64
1828 PPC | KVM_REG_PPC_CSIGR | 64
1829 PPC | KVM_REG_PPC_TACR | 64
1830 PPC | KVM_REG_PPC_TCSCR | 64
1831 PPC | KVM_REG_PPC_PID | 64
1832 PPC | KVM_REG_PPC_ACOP | 64
1833 PPC | KVM_REG_PPC_VRSAVE | 32
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02001834 PPC | KVM_REG_PPC_LPCR | 32
1835 PPC | KVM_REG_PPC_LPCR_64 | 64
James Hoganbf5590f2014-07-04 15:11:34 +01001836 PPC | KVM_REG_PPC_PPR | 64
1837 PPC | KVM_REG_PPC_ARCH_COMPAT | 32
1838 PPC | KVM_REG_PPC_DABRX | 32
1839 PPC | KVM_REG_PPC_WORT | 64
Bharat Bhushanbc8a4e52014-08-13 14:40:06 +05301840 PPC | KVM_REG_PPC_SPRG9 | 64
1841 PPC | KVM_REG_PPC_DBSR | 32
Paul Mackerrase9cf1e02016-11-18 13:11:42 +11001842 PPC | KVM_REG_PPC_TIDR | 64
1843 PPC | KVM_REG_PPC_PSSCR | 64
James Hoganbf5590f2014-07-04 15:11:34 +01001844 PPC | KVM_REG_PPC_TM_GPR0 | 64
Michael Neuling3b783472013-09-03 11:13:12 +10001845 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001846 PPC | KVM_REG_PPC_TM_GPR31 | 64
1847 PPC | KVM_REG_PPC_TM_VSR0 | 128
Michael Neuling3b783472013-09-03 11:13:12 +10001848 ...
James Hoganbf5590f2014-07-04 15:11:34 +01001849 PPC | KVM_REG_PPC_TM_VSR63 | 128
1850 PPC | KVM_REG_PPC_TM_CR | 64
1851 PPC | KVM_REG_PPC_TM_LR | 64
1852 PPC | KVM_REG_PPC_TM_CTR | 64
1853 PPC | KVM_REG_PPC_TM_FPSCR | 64
1854 PPC | KVM_REG_PPC_TM_AMR | 64
1855 PPC | KVM_REG_PPC_TM_PPR | 64
1856 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1857 PPC | KVM_REG_PPC_TM_VSCR | 32
1858 PPC | KVM_REG_PPC_TM_DSCR | 64
1859 PPC | KVM_REG_PPC_TM_TAR | 64
Paul Mackerras0d808df2016-11-07 15:09:58 +11001860 PPC | KVM_REG_PPC_TM_XER | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001861 | |
1862 MIPS | KVM_REG_MIPS_R0 | 64
1863 ...
1864 MIPS | KVM_REG_MIPS_R31 | 64
1865 MIPS | KVM_REG_MIPS_HI | 64
1866 MIPS | KVM_REG_MIPS_LO | 64
1867 MIPS | KVM_REG_MIPS_PC | 64
1868 MIPS | KVM_REG_MIPS_CP0_INDEX | 32
James Hogan013044c2016-12-07 17:16:37 +00001869 MIPS | KVM_REG_MIPS_CP0_ENTRYLO0 | 64
1870 MIPS | KVM_REG_MIPS_CP0_ENTRYLO1 | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001871 MIPS | KVM_REG_MIPS_CP0_CONTEXT | 64
James Hogandffe0422017-03-14 10:15:34 +00001872 MIPS | KVM_REG_MIPS_CP0_CONTEXTCONFIG| 32
James Hoganc2d2c212014-07-04 15:11:35 +01001873 MIPS | KVM_REG_MIPS_CP0_USERLOCAL | 64
James Hogandffe0422017-03-14 10:15:34 +00001874 MIPS | KVM_REG_MIPS_CP0_XCONTEXTCONFIG| 64
James Hoganc2d2c212014-07-04 15:11:35 +01001875 MIPS | KVM_REG_MIPS_CP0_PAGEMASK | 32
James Hoganc992a4f2017-03-14 10:15:31 +00001876 MIPS | KVM_REG_MIPS_CP0_PAGEGRAIN | 32
James Hogan4b7de022017-03-14 10:15:35 +00001877 MIPS | KVM_REG_MIPS_CP0_SEGCTL0 | 64
1878 MIPS | KVM_REG_MIPS_CP0_SEGCTL1 | 64
1879 MIPS | KVM_REG_MIPS_CP0_SEGCTL2 | 64
James Hogan5a2f3522017-03-14 10:15:36 +00001880 MIPS | KVM_REG_MIPS_CP0_PWBASE | 64
1881 MIPS | KVM_REG_MIPS_CP0_PWFIELD | 64
1882 MIPS | KVM_REG_MIPS_CP0_PWSIZE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001883 MIPS | KVM_REG_MIPS_CP0_WIRED | 32
James Hogan5a2f3522017-03-14 10:15:36 +00001884 MIPS | KVM_REG_MIPS_CP0_PWCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001885 MIPS | KVM_REG_MIPS_CP0_HWRENA | 32
1886 MIPS | KVM_REG_MIPS_CP0_BADVADDR | 64
James Hoganedc89262017-03-14 10:15:33 +00001887 MIPS | KVM_REG_MIPS_CP0_BADINSTR | 32
1888 MIPS | KVM_REG_MIPS_CP0_BADINSTRP | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001889 MIPS | KVM_REG_MIPS_CP0_COUNT | 32
1890 MIPS | KVM_REG_MIPS_CP0_ENTRYHI | 64
1891 MIPS | KVM_REG_MIPS_CP0_COMPARE | 32
1892 MIPS | KVM_REG_MIPS_CP0_STATUS | 32
James Hoganad58d4d2015-02-02 22:55:17 +00001893 MIPS | KVM_REG_MIPS_CP0_INTCTL | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001894 MIPS | KVM_REG_MIPS_CP0_CAUSE | 32
1895 MIPS | KVM_REG_MIPS_CP0_EPC | 64
James Hogan1068eaa2014-06-26 13:56:52 +01001896 MIPS | KVM_REG_MIPS_CP0_PRID | 32
James Hogan7801bbe2016-11-14 23:59:27 +00001897 MIPS | KVM_REG_MIPS_CP0_EBASE | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001898 MIPS | KVM_REG_MIPS_CP0_CONFIG | 32
1899 MIPS | KVM_REG_MIPS_CP0_CONFIG1 | 32
1900 MIPS | KVM_REG_MIPS_CP0_CONFIG2 | 32
1901 MIPS | KVM_REG_MIPS_CP0_CONFIG3 | 32
James Hoganc7716072014-06-26 15:11:29 +01001902 MIPS | KVM_REG_MIPS_CP0_CONFIG4 | 32
1903 MIPS | KVM_REG_MIPS_CP0_CONFIG5 | 32
James Hoganc2d2c212014-07-04 15:11:35 +01001904 MIPS | KVM_REG_MIPS_CP0_CONFIG7 | 32
James Hoganc992a4f2017-03-14 10:15:31 +00001905 MIPS | KVM_REG_MIPS_CP0_XCONTEXT | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001906 MIPS | KVM_REG_MIPS_CP0_ERROREPC | 64
James Hogan05108702016-06-15 19:29:56 +01001907 MIPS | KVM_REG_MIPS_CP0_KSCRATCH1 | 64
1908 MIPS | KVM_REG_MIPS_CP0_KSCRATCH2 | 64
1909 MIPS | KVM_REG_MIPS_CP0_KSCRATCH3 | 64
1910 MIPS | KVM_REG_MIPS_CP0_KSCRATCH4 | 64
1911 MIPS | KVM_REG_MIPS_CP0_KSCRATCH5 | 64
1912 MIPS | KVM_REG_MIPS_CP0_KSCRATCH6 | 64
James Hogand42a0082017-03-14 10:15:38 +00001913 MIPS | KVM_REG_MIPS_CP0_MAAR(0..63) | 64
James Hoganc2d2c212014-07-04 15:11:35 +01001914 MIPS | KVM_REG_MIPS_COUNT_CTL | 64
1915 MIPS | KVM_REG_MIPS_COUNT_RESUME | 64
1916 MIPS | KVM_REG_MIPS_COUNT_HZ | 64
James Hogan379245c2014-12-02 15:48:24 +00001917 MIPS | KVM_REG_MIPS_FPR_32(0..31) | 32
1918 MIPS | KVM_REG_MIPS_FPR_64(0..31) | 64
James Hoganab86bd62014-12-02 15:48:24 +00001919 MIPS | KVM_REG_MIPS_VEC_128(0..31) | 128
James Hogan379245c2014-12-02 15:48:24 +00001920 MIPS | KVM_REG_MIPS_FCR_IR | 32
1921 MIPS | KVM_REG_MIPS_FCR_CSR | 32
James Hoganab86bd62014-12-02 15:48:24 +00001922 MIPS | KVM_REG_MIPS_MSA_IR | 32
1923 MIPS | KVM_REG_MIPS_MSA_CSR | 32
Jan Kiszka414fa982012-04-24 16:40:15 +02001924
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001925ARM registers are mapped using the lower 32 bits. The upper 16 of that
1926is the register group type, or coprocessor number:
1927
1928ARM core registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001929 0x4020 0000 0010 <index into the kvm_regs struct:16>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001930
Christoffer Dall11382452013-01-20 18:28:10 -05001931ARM 32-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001932 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
Christoffer Dall11382452013-01-20 18:28:10 -05001933
1934ARM 64-bit CP15 registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001935 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001936
Christoffer Dallc27581e2013-01-20 18:28:10 -05001937ARM CCSIDR registers are demultiplexed by CSSELR value:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001938 0x4020 0000 0011 00 <csselr:8>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001939
Rusty Russell4fe21e42013-01-20 18:28:11 -05001940ARM 32-bit VFP control registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001941 0x4020 0000 0012 1 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05001942
1943ARM 64-bit FP registers have the following id bit patterns:
Christoffer Dallaa404dd2013-04-22 18:57:46 -07001944 0x4030 0000 0012 0 <regno:12>
Rusty Russell4fe21e42013-01-20 18:28:11 -05001945
Marc Zyngier379e04c2013-04-02 17:46:31 +01001946
1947arm64 registers are mapped using the lower 32 bits. The upper 16 of
1948that is the register group type, or coprocessor number:
1949
1950arm64 core/FP-SIMD registers have the following id bit patterns. Note
1951that the size of the access is variable, as the kvm_regs structure
1952contains elements ranging from 32 to 128 bits. The index is a 32bit
1953value in the kvm_regs structure seen as a 32bit array.
1954 0x60x0 0000 0010 <index into the kvm_regs struct:16>
1955
1956arm64 CCSIDR registers are demultiplexed by CSSELR value:
1957 0x6020 0000 0011 00 <csselr:8>
1958
1959arm64 system registers have the following id bit patterns:
1960 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
1961
James Hoganc2d2c212014-07-04 15:11:35 +01001962
1963MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
1964the register group type:
1965
1966MIPS core registers (see above) have the following id bit patterns:
1967 0x7030 0000 0000 <reg:16>
1968
1969MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
1970patterns depending on whether they're 32-bit or 64-bit registers:
1971 0x7020 0000 0001 00 <reg:5> <sel:3> (32-bit)
1972 0x7030 0000 0001 00 <reg:5> <sel:3> (64-bit)
1973
James Hogan013044c2016-12-07 17:16:37 +00001974Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
1975versions of the EntryLo registers regardless of the word size of the host
1976hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
1977with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
1978the PFNX field starting at bit 30.
1979
James Hogand42a0082017-03-14 10:15:38 +00001980MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit
1981patterns:
1982 0x7030 0000 0001 01 <reg:8>
1983
James Hoganc2d2c212014-07-04 15:11:35 +01001984MIPS KVM control registers (see above) have the following id bit patterns:
1985 0x7030 0000 0002 <reg:16>
1986
James Hogan379245c2014-12-02 15:48:24 +00001987MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
1988id bit patterns depending on the size of the register being accessed. They are
1989always accessed according to the current guest FPU mode (Status.FR and
1990Config5.FRE), i.e. as the guest would see them, and they become unpredictable
James Hoganab86bd62014-12-02 15:48:24 +00001991if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
1992registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
1993overlap the FPU registers:
James Hogan379245c2014-12-02 15:48:24 +00001994 0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
1995 0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
James Hoganab86bd62014-12-02 15:48:24 +00001996 0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
James Hogan379245c2014-12-02 15:48:24 +00001997
1998MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
1999following id bit patterns:
2000 0x7020 0000 0003 01 <0:3> <reg:5>
2001
James Hoganab86bd62014-12-02 15:48:24 +00002002MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2003following id bit patterns:
2004 0x7020 0000 0003 02 <0:3> <reg:5>
2005
James Hoganc2d2c212014-07-04 15:11:35 +01002006
Alexander Grafe24ed812011-09-14 10:02:41 +020020074.69 KVM_GET_ONE_REG
2008
2009Capability: KVM_CAP_ONE_REG
2010Architectures: all
2011Type: vcpu ioctl
2012Parameters: struct kvm_one_reg (in and out)
2013Returns: 0 on success, negative value on failure
2014
2015This ioctl allows to receive the value of a single register implemented
2016in a vcpu. The register to read is indicated by the "id" field of the
2017kvm_one_reg struct passed in. On success, the register value can be found
2018at the memory location pointed to by "addr".
2019
2020The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00002021list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02002022
Jan Kiszka414fa982012-04-24 16:40:15 +02002023
Eric B Munson1c0b28c2012-03-10 14:37:27 -050020244.70 KVM_KVMCLOCK_CTRL
2025
2026Capability: KVM_CAP_KVMCLOCK_CTRL
2027Architectures: Any that implement pvclocks (currently x86 only)
2028Type: vcpu ioctl
2029Parameters: None
2030Returns: 0 on success, -1 on error
2031
2032This signals to the host kernel that the specified guest is being paused by
2033userspace. The host will set a flag in the pvclock structure that is checked
2034from the soft lockup watchdog. The flag is part of the pvclock structure that
2035is shared between guest and host, specifically the second bit of the flags
2036field of the pvclock_vcpu_time_info structure. It will be set exclusively by
2037the host and read/cleared exclusively by the guest. The guest operation of
2038checking and clearing the flag must an atomic operation so
2039load-link/store-conditional, or equivalent must be used. There are two cases
2040where the guest will clear the flag: when the soft lockup watchdog timer resets
2041itself or when a soft lockup is detected. This ioctl can be called any time
2042after pausing the vcpu, but before it is resumed.
2043
Jan Kiszka414fa982012-04-24 16:40:15 +02002044
Jan Kiszka07975ad2012-03-29 21:14:12 +020020454.71 KVM_SIGNAL_MSI
2046
2047Capability: KVM_CAP_SIGNAL_MSI
Vladimir Murzin29885092016-11-02 11:55:34 +00002048Architectures: x86 arm arm64
Jan Kiszka07975ad2012-03-29 21:14:12 +02002049Type: vm ioctl
2050Parameters: struct kvm_msi (in)
2051Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2052
2053Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2054MSI messages.
2055
2056struct kvm_msi {
2057 __u32 address_lo;
2058 __u32 address_hi;
2059 __u32 data;
2060 __u32 flags;
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002061 __u32 devid;
2062 __u8 pad[12];
Jan Kiszka07975ad2012-03-29 21:14:12 +02002063};
2064
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002065flags: KVM_MSI_VALID_DEVID: devid contains a valid value. The per-VM
2066 KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2067 the device ID. If this capability is not available, userspace
2068 should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
Andre Przywara2b8ddd92016-07-15 12:43:24 +01002069
Paolo Bonzini6f49b2f2016-08-04 13:59:56 +02002070If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2071for the device that wrote the MSI message. For PCI, this is usually a
2072BFD identifier in the lower 16 bits.
Jan Kiszka07975ad2012-03-29 21:14:12 +02002073
Paolo Bonzini055b6ae2016-08-04 14:01:05 +02002074On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2075feature of KVM_CAP_X2APIC_API capability is enabled. If it is enabled,
2076address_hi bits 31-8 provide bits 31-8 of the destination id. Bits 7-0 of
2077address_hi must be zero.
Radim Krčmář371313132016-07-12 22:09:27 +02002078
Jan Kiszka414fa982012-04-24 16:40:15 +02002079
Jan Kiszka0589ff62012-04-24 16:40:16 +020020804.71 KVM_CREATE_PIT2
2081
2082Capability: KVM_CAP_PIT2
2083Architectures: x86
2084Type: vm ioctl
2085Parameters: struct kvm_pit_config (in)
2086Returns: 0 on success, -1 on error
2087
2088Creates an in-kernel device model for the i8254 PIT. This call is only valid
2089after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2090parameters have to be passed:
2091
2092struct kvm_pit_config {
2093 __u32 flags;
2094 __u32 pad[15];
2095};
2096
2097Valid flags are:
2098
2099#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2100
Jan Kiszkab6ddf052012-04-24 16:40:17 +02002101PIT timer interrupts may use a per-VM kernel thread for injection. If it
2102exists, this thread will have a name of the following pattern:
2103
2104kvm-pit/<owner-process-pid>
2105
2106When running a guest with elevated priorities, the scheduling parameters of
2107this thread may have to be adjusted accordingly.
2108
Jan Kiszka0589ff62012-04-24 16:40:16 +02002109This IOCTL replaces the obsolete KVM_CREATE_PIT.
2110
2111
21124.72 KVM_GET_PIT2
2113
2114Capability: KVM_CAP_PIT_STATE2
2115Architectures: x86
2116Type: vm ioctl
2117Parameters: struct kvm_pit_state2 (out)
2118Returns: 0 on success, -1 on error
2119
2120Retrieves the state of the in-kernel PIT model. Only valid after
2121KVM_CREATE_PIT2. The state is returned in the following structure:
2122
2123struct kvm_pit_state2 {
2124 struct kvm_pit_channel_state channels[3];
2125 __u32 flags;
2126 __u32 reserved[9];
2127};
2128
2129Valid flags are:
2130
2131/* disable PIT in HPET legacy mode */
2132#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2133
2134This IOCTL replaces the obsolete KVM_GET_PIT.
2135
2136
21374.73 KVM_SET_PIT2
2138
2139Capability: KVM_CAP_PIT_STATE2
2140Architectures: x86
2141Type: vm ioctl
2142Parameters: struct kvm_pit_state2 (in)
2143Returns: 0 on success, -1 on error
2144
2145Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2146See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2147
2148This IOCTL replaces the obsolete KVM_SET_PIT.
2149
2150
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000021514.74 KVM_PPC_GET_SMMU_INFO
2152
2153Capability: KVM_CAP_PPC_GET_SMMU_INFO
2154Architectures: powerpc
2155Type: vm ioctl
2156Parameters: None
2157Returns: 0 on success, -1 on error
2158
2159This populates and returns a structure describing the features of
2160the "Server" class MMU emulation supported by KVM.
Stefan Hubercc22c352013-06-05 12:24:37 +02002161This can in turn be used by userspace to generate the appropriate
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002162device-tree properties for the guest operating system.
2163
Carlos Garciac98be0c2014-04-04 22:31:00 -04002164The structure contains some global information, followed by an
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +00002165array of supported segment page sizes:
2166
2167 struct kvm_ppc_smmu_info {
2168 __u64 flags;
2169 __u32 slb_size;
2170 __u32 pad;
2171 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2172 };
2173
2174The supported flags are:
2175
2176 - KVM_PPC_PAGE_SIZES_REAL:
2177 When that flag is set, guest page sizes must "fit" the backing
2178 store page sizes. When not set, any page size in the list can
2179 be used regardless of how they are backed by userspace.
2180
2181 - KVM_PPC_1T_SEGMENTS
2182 The emulated MMU supports 1T segments in addition to the
2183 standard 256M ones.
2184
2185The "slb_size" field indicates how many SLB entries are supported
2186
2187The "sps" array contains 8 entries indicating the supported base
2188page sizes for a segment in increasing order. Each entry is defined
2189as follow:
2190
2191 struct kvm_ppc_one_seg_page_size {
2192 __u32 page_shift; /* Base page shift of segment (or 0) */
2193 __u32 slb_enc; /* SLB encoding for BookS */
2194 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2195 };
2196
2197An entry with a "page_shift" of 0 is unused. Because the array is
2198organized in increasing order, a lookup can stop when encoutering
2199such an entry.
2200
2201The "slb_enc" field provides the encoding to use in the SLB for the
2202page size. The bits are in positions such as the value can directly
2203be OR'ed into the "vsid" argument of the slbmte instruction.
2204
2205The "enc" array is a list which for each of those segment base page
2206size provides the list of supported actual page sizes (which can be
2207only larger or equal to the base page size), along with the
Anatol Pomozovf884ab12013-05-08 16:56:16 -07002208corresponding encoding in the hash PTE. Similarly, the array is
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000022098 entries sorted by increasing sizes and an entry with a "0" shift
2210is an empty entry and a terminator:
2211
2212 struct kvm_ppc_one_page_size {
2213 __u32 page_shift; /* Page shift (or 0) */
2214 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2215 };
2216
2217The "pte_enc" field provides a value that can OR'ed into the hash
2218PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2219into the hash PTE second double word).
2220
Alex Williamsonf36992e2012-06-29 09:56:16 -060022214.75 KVM_IRQFD
2222
2223Capability: KVM_CAP_IRQFD
Eric Auger174178f2015-03-04 11:14:36 +01002224Architectures: x86 s390 arm arm64
Alex Williamsonf36992e2012-06-29 09:56:16 -06002225Type: vm ioctl
2226Parameters: struct kvm_irqfd (in)
2227Returns: 0 on success, -1 on error
2228
2229Allows setting an eventfd to directly trigger a guest interrupt.
2230kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2231kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
Masanari Iida17180032013-12-22 01:21:23 +09002232an event is triggered on the eventfd, an interrupt is injected into
Alex Williamsonf36992e2012-06-29 09:56:16 -06002233the guest using the specified gsi pin. The irqfd is removed using
2234the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2235and kvm_irqfd.gsi.
2236
Alex Williamson7a844282012-09-21 11:58:03 -06002237With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2238mechanism allowing emulation of level-triggered, irqfd-based
2239interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2240additional eventfd in the kvm_irqfd.resamplefd field. When operating
2241in resample mode, posting of an interrupt through kvm_irq.fd asserts
2242the specified gsi in the irqchip. When the irqchip is resampled, such
Masanari Iida17180032013-12-22 01:21:23 +09002243as from an EOI, the gsi is de-asserted and the user is notified via
Alex Williamson7a844282012-09-21 11:58:03 -06002244kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2245the interrupt if the device making use of it still requires service.
2246Note that closing the resamplefd is not sufficient to disable the
2247irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2248and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2249
Eric Auger180ae7b2016-07-22 16:20:41 +00002250On arm/arm64, gsi routing being supported, the following can happen:
2251- in case no routing entry is associated to this gsi, injection fails
2252- in case the gsi is associated to an irqchip routing entry,
2253 irqchip.pin + 32 corresponds to the injected SPI ID.
Eric Auger995a0ee2016-07-22 16:20:42 +00002254- in case the gsi is associated to an MSI routing entry, the MSI
2255 message and device ID are translated into an LPI (support restricted
2256 to GICv3 ITS in-kernel emulation).
Eric Auger174178f2015-03-04 11:14:36 +01002257
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070022584.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002259
2260Capability: KVM_CAP_PPC_ALLOC_HTAB
2261Architectures: powerpc
2262Type: vm ioctl
2263Parameters: Pointer to u32 containing hash table order (in/out)
2264Returns: 0 on success, -1 on error
2265
2266This requests the host kernel to allocate an MMU hash table for a
2267guest using the PAPR paravirtualization interface. This only does
2268anything if the kernel is configured to use the Book 3S HV style of
2269virtualization. Otherwise the capability doesn't exist and the ioctl
2270returns an ENOTTY error. The rest of this description assumes Book 3S
2271HV.
2272
2273There must be no vcpus running when this ioctl is called; if there
2274are, it will do nothing and return an EBUSY error.
2275
2276The parameter is a pointer to a 32-bit unsigned integer variable
2277containing the order (log base 2) of the desired size of the hash
2278table, which must be between 18 and 46. On successful return from the
David Gibsonf98a8bf2016-12-20 16:49:03 +11002279ioctl, the value will not be changed by the kernel.
Paul Mackerras32fad282012-05-04 02:32:53 +00002280
2281If no hash table has been allocated when any vcpu is asked to run
2282(with the KVM_RUN ioctl), the host kernel will allocate a
2283default-sized hash table (16 MB).
2284
2285If this ioctl is called when a hash table has already been allocated,
David Gibsonf98a8bf2016-12-20 16:49:03 +11002286with a different order from the existing hash table, the existing hash
2287table will be freed and a new one allocated. If this is ioctl is
2288called when a hash table has already been allocated of the same order
2289as specified, the kernel will clear out the existing hash table (zero
2290all HPTEs). In either case, if the guest is using the virtualized
2291real-mode area (VRMA) facility, the kernel will re-create the VMRA
2292HPTEs on the next KVM_RUN of any vcpu.
Paul Mackerras32fad282012-05-04 02:32:53 +00002293
Cornelia Huck416ad652012-10-02 16:25:37 +020022944.77 KVM_S390_INTERRUPT
2295
2296Capability: basic
2297Architectures: s390
2298Type: vm ioctl, vcpu ioctl
2299Parameters: struct kvm_s390_interrupt (in)
2300Returns: 0 on success, -1 on error
2301
2302Allows to inject an interrupt to the guest. Interrupts can be floating
2303(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2304
2305Interrupt parameters are passed via kvm_s390_interrupt:
2306
2307struct kvm_s390_interrupt {
2308 __u32 type;
2309 __u32 parm;
2310 __u64 parm64;
2311};
2312
2313type can be one of the following:
2314
David Hildenbrand28225452014-10-15 16:48:16 +02002315KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
Cornelia Huck416ad652012-10-02 16:25:37 +02002316KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2317KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2318KVM_S390_RESTART (vcpu) - restart
Thomas Huthe029ae52014-03-26 16:11:54 +01002319KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2320KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
Cornelia Huck416ad652012-10-02 16:25:37 +02002321KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2322 parameters in parm and parm64
2323KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2324KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2325KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
Cornelia Huckd8346b72012-12-20 15:32:08 +01002326KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2327 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2328 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2329 interruption subclass)
Cornelia Huck48a3e952012-12-20 15:32:09 +01002330KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2331 machine check interrupt code in parm64 (note that
2332 machine checks needing further payload are not
2333 supported by this ioctl)
Cornelia Huck416ad652012-10-02 16:25:37 +02002334
2335Note that the vcpu ioctl is asynchronous to vcpu execution.
2336
Paul Mackerrasa2932922012-11-19 22:57:20 +000023374.78 KVM_PPC_GET_HTAB_FD
2338
2339Capability: KVM_CAP_PPC_HTAB_FD
2340Architectures: powerpc
2341Type: vm ioctl
2342Parameters: Pointer to struct kvm_get_htab_fd (in)
2343Returns: file descriptor number (>= 0) on success, -1 on error
2344
2345This returns a file descriptor that can be used either to read out the
2346entries in the guest's hashed page table (HPT), or to write entries to
2347initialize the HPT. The returned fd can only be written to if the
2348KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2349can only be read if that bit is clear. The argument struct looks like
2350this:
2351
2352/* For KVM_PPC_GET_HTAB_FD */
2353struct kvm_get_htab_fd {
2354 __u64 flags;
2355 __u64 start_index;
2356 __u64 reserved[2];
2357};
2358
2359/* Values for kvm_get_htab_fd.flags */
2360#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2361#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2362
2363The `start_index' field gives the index in the HPT of the entry at
2364which to start reading. It is ignored when writing.
2365
2366Reads on the fd will initially supply information about all
2367"interesting" HPT entries. Interesting entries are those with the
2368bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2369all entries. When the end of the HPT is reached, the read() will
2370return. If read() is called again on the fd, it will start again from
2371the beginning of the HPT, but will only return HPT entries that have
2372changed since they were last read.
2373
2374Data read or written is structured as a header (8 bytes) followed by a
2375series of valid HPT entries (16 bytes) each. The header indicates how
2376many valid HPT entries there are and how many invalid entries follow
2377the valid entries. The invalid entries are not represented explicitly
2378in the stream. The header format is:
2379
2380struct kvm_get_htab_header {
2381 __u32 index;
2382 __u16 n_valid;
2383 __u16 n_invalid;
2384};
2385
2386Writes to the fd create HPT entries starting at the index given in the
2387header; first `n_valid' valid entries with contents from the data
2388written, then `n_invalid' invalid entries, invalidating any previously
2389valid entries found.
2390
Scott Wood852b6d52013-04-12 14:08:42 +000023914.79 KVM_CREATE_DEVICE
2392
2393Capability: KVM_CAP_DEVICE_CTRL
2394Type: vm ioctl
2395Parameters: struct kvm_create_device (in/out)
2396Returns: 0 on success, -1 on error
2397Errors:
2398 ENODEV: The device type is unknown or unsupported
2399 EEXIST: Device already created, and this type of device may not
2400 be instantiated multiple times
2401
2402 Other error conditions may be defined by individual device types or
2403 have their standard meanings.
2404
2405Creates an emulated device in the kernel. The file descriptor returned
2406in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2407
2408If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2409device type is supported (not necessarily whether it can be created
2410in the current vm).
2411
2412Individual devices should not define flags. Attributes should be used
2413for specifying any behavior that is not implied by the device type
2414number.
2415
2416struct kvm_create_device {
2417 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2418 __u32 fd; /* out: device handle */
2419 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2420};
2421
24224.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2423
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002424Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2425 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2426Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002427Parameters: struct kvm_device_attr
2428Returns: 0 on success, -1 on error
2429Errors:
2430 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002431 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002432 EPERM: The attribute cannot (currently) be accessed this way
2433 (e.g. read-only attribute, or attribute that only makes
2434 sense when the device is in a different state)
2435
2436 Other error conditions may be defined by individual device types.
2437
2438Gets/sets a specified piece of device configuration and/or state. The
2439semantics are device-specific. See individual device documentation in
2440the "devices" directory. As with ONE_REG, the size of the data
2441transferred is defined by the particular attribute.
2442
2443struct kvm_device_attr {
2444 __u32 flags; /* no flags currently defined */
2445 __u32 group; /* device-defined */
2446 __u64 attr; /* group-defined */
2447 __u64 addr; /* userspace address of attr data */
2448};
2449
24504.81 KVM_HAS_DEVICE_ATTR
2451
Shannon Zhaof577f6c2016-01-11 20:56:17 +08002452Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2453 KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2454Type: device ioctl, vm ioctl, vcpu ioctl
Scott Wood852b6d52013-04-12 14:08:42 +00002455Parameters: struct kvm_device_attr
2456Returns: 0 on success, -1 on error
2457Errors:
2458 ENXIO: The group or attribute is unknown/unsupported for this device
David Hildenbrandf9cbd9b2016-03-03 09:48:47 +01002459 or hardware support is missing.
Scott Wood852b6d52013-04-12 14:08:42 +00002460
2461Tests whether a device supports a particular attribute. A successful
2462return indicates the attribute is implemented. It does not necessarily
2463indicate that the attribute can be read or written in the device's
2464current state. "addr" is ignored.
Alex Williamsonf36992e2012-06-29 09:56:16 -06002465
Alexey Kardashevskiyd8968f12013-06-19 11:42:07 +100024664.82 KVM_ARM_VCPU_INIT
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002467
2468Capability: basic
Marc Zyngier379e04c2013-04-02 17:46:31 +01002469Architectures: arm, arm64
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002470Type: vcpu ioctl
Anup Patelbeb11fc2013-12-12 21:42:24 +05302471Parameters: struct kvm_vcpu_init (in)
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002472Returns: 0 on success; -1 on error
2473Errors:
2474  EINVAL:    the target is unknown, or the combination of features is invalid.
2475  ENOENT:    a features bit specified is unknown.
2476
2477This tells KVM what type of CPU to present to the guest, and what
2478optional features it should have.  This will cause a reset of the cpu
2479registers to their initial values.  If this is not called, KVM_RUN will
2480return ENOEXEC for that vcpu.
2481
2482Note that because some registers reflect machine topology, all vcpus
2483should be created before this ioctl is invoked.
2484
Christoffer Dallf7fa034d2014-10-16 16:40:53 +02002485Userspace can call this function multiple times for a given vcpu, including
2486after the vcpu has been run. This will reset the vcpu to its initial
2487state. All calls to this function after the initial call must use the same
2488target and same set of feature flags, otherwise EINVAL will be returned.
2489
Marc Zyngieraa024c22013-01-20 18:28:13 -05002490Possible features:
2491 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
Christoffer Dall3ad8b3d2014-10-16 16:14:43 +02002492 Depends on KVM_CAP_ARM_PSCI. If not set, the CPU will be powered on
2493 and execute guest code when KVM_RUN is called.
Marc Zyngier379e04c2013-04-02 17:46:31 +01002494 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2495 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
Anup Patel50bb0c92014-04-29 11:24:17 +05302496 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2497 Depends on KVM_CAP_ARM_PSCI_0_2.
Shannon Zhao808e7382016-01-11 22:46:15 +08002498 - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2499 Depends on KVM_CAP_ARM_PMU_V3.
Marc Zyngieraa024c22013-01-20 18:28:13 -05002500
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002501
Anup Patel740edfc2013-09-30 14:20:08 +053025024.83 KVM_ARM_PREFERRED_TARGET
2503
2504Capability: basic
2505Architectures: arm, arm64
2506Type: vm ioctl
2507Parameters: struct struct kvm_vcpu_init (out)
2508Returns: 0 on success; -1 on error
2509Errors:
Christoffer Dalla7265fb2013-10-15 17:43:00 -07002510 ENODEV: no preferred target available for the host
Anup Patel740edfc2013-09-30 14:20:08 +05302511
2512This queries KVM for preferred CPU target type which can be emulated
2513by KVM on underlying host.
2514
2515The ioctl returns struct kvm_vcpu_init instance containing information
2516about preferred CPU target type and recommended features for it. The
2517kvm_vcpu_init->features bitmap returned will have feature bits set if
2518the preferred target recommends setting these features, but this is
2519not mandatory.
2520
2521The information returned by this ioctl can be used to prepare an instance
2522of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2523in VCPU matching underlying host.
2524
2525
25264.84 KVM_GET_REG_LIST
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002527
2528Capability: basic
James Hoganc2d2c212014-07-04 15:11:35 +01002529Architectures: arm, arm64, mips
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002530Type: vcpu ioctl
2531Parameters: struct kvm_reg_list (in/out)
2532Returns: 0 on success; -1 on error
2533Errors:
2534  E2BIG:     the reg index list is too big to fit in the array specified by
2535             the user (the number required will be written into n).
2536
2537struct kvm_reg_list {
2538 __u64 n; /* number of registers in reg[] */
2539 __u64 reg[0];
2540};
2541
2542This ioctl returns the guest registers that are supported for the
2543KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2544
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002545
25464.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
Christoffer Dall3401d5462013-01-23 13:18:04 -05002547
2548Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
Marc Zyngier379e04c2013-04-02 17:46:31 +01002549Architectures: arm, arm64
Christoffer Dall3401d5462013-01-23 13:18:04 -05002550Type: vm ioctl
2551Parameters: struct kvm_arm_device_address (in)
2552Returns: 0 on success, -1 on error
2553Errors:
2554 ENODEV: The device id is unknown
2555 ENXIO: Device not supported on current system
2556 EEXIST: Address already set
2557 E2BIG: Address outside guest physical address space
Christoffer Dall330690c2013-01-21 19:36:13 -05002558 EBUSY: Address overlaps with other device range
Christoffer Dall3401d5462013-01-23 13:18:04 -05002559
2560struct kvm_arm_device_addr {
2561 __u64 id;
2562 __u64 addr;
2563};
2564
2565Specify a device address in the guest's physical address space where guests
2566can access emulated or directly exposed devices, which the host kernel needs
2567to know about. The id field is an architecture specific identifier for a
2568specific device.
2569
Marc Zyngier379e04c2013-04-02 17:46:31 +01002570ARM/arm64 divides the id field into two parts, a device id and an
2571address type id specific to the individual device.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002572
2573  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2574 field: | 0x00000000 | device id | addr type id |
2575
Marc Zyngier379e04c2013-04-02 17:46:31 +01002576ARM/arm64 currently only require this when using the in-kernel GIC
2577support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2578as the device id. When setting the base address for the guest's
2579mapping of the VGIC virtual CPU and distributor interface, the ioctl
2580must be called after calling KVM_CREATE_IRQCHIP, but before calling
2581KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2582base addresses will return -EEXIST.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002583
Christoffer Dallce01e4e2013-09-23 14:55:56 -07002584Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2585should be used instead.
2586
2587
Anup Patel740edfc2013-09-30 14:20:08 +053025884.86 KVM_PPC_RTAS_DEFINE_TOKEN
Michael Ellerman8e591cb2013-04-17 20:30:00 +00002589
2590Capability: KVM_CAP_PPC_RTAS
2591Architectures: ppc
2592Type: vm ioctl
2593Parameters: struct kvm_rtas_token_args
2594Returns: 0 on success, -1 on error
2595
2596Defines a token value for a RTAS (Run Time Abstraction Services)
2597service in order to allow it to be handled in the kernel. The
2598argument struct gives the name of the service, which must be the name
2599of a service that has a kernel-side implementation. If the token
2600value is non-zero, it will be associated with that service, and
2601subsequent RTAS calls by the guest specifying that token will be
2602handled by the kernel. If the token value is 0, then any token
2603associated with the service will be forgotten, and subsequent RTAS
2604calls by the guest for that service will be passed to userspace to be
2605handled.
2606
Alex Bennée4bd9d342014-09-09 17:27:18 +010026074.87 KVM_SET_GUEST_DEBUG
2608
2609Capability: KVM_CAP_SET_GUEST_DEBUG
Alex Bennée0e6f07f2015-07-07 17:29:55 +01002610Architectures: x86, s390, ppc, arm64
Alex Bennée4bd9d342014-09-09 17:27:18 +01002611Type: vcpu ioctl
2612Parameters: struct kvm_guest_debug (in)
2613Returns: 0 on success; -1 on error
2614
2615struct kvm_guest_debug {
2616 __u32 control;
2617 __u32 pad;
2618 struct kvm_guest_debug_arch arch;
2619};
2620
2621Set up the processor specific debug registers and configure vcpu for
2622handling guest debug events. There are two parts to the structure, the
2623first a control bitfield indicates the type of debug events to handle
2624when running. Common control bits are:
2625
2626 - KVM_GUESTDBG_ENABLE: guest debugging is enabled
2627 - KVM_GUESTDBG_SINGLESTEP: the next run should single-step
2628
2629The top 16 bits of the control field are architecture specific control
2630flags which can include the following:
2631
Alex Bennée4bd611c2015-07-07 17:29:57 +01002632 - KVM_GUESTDBG_USE_SW_BP: using software breakpoints [x86, arm64]
Alex Bennée834bf882015-07-07 17:30:02 +01002633 - KVM_GUESTDBG_USE_HW_BP: using hardware breakpoints [x86, s390, arm64]
Alex Bennée4bd9d342014-09-09 17:27:18 +01002634 - KVM_GUESTDBG_INJECT_DB: inject DB type exception [x86]
2635 - KVM_GUESTDBG_INJECT_BP: inject BP type exception [x86]
2636 - KVM_GUESTDBG_EXIT_PENDING: trigger an immediate guest exit [s390]
2637
2638For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2639are enabled in memory so we need to ensure breakpoint exceptions are
2640correctly trapped and the KVM run loop exits at the breakpoint and not
2641running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2642we need to ensure the guest vCPUs architecture specific registers are
2643updated to the correct (supplied) values.
2644
2645The second part of the structure is architecture specific and
2646typically contains a set of debug registers.
2647
Alex Bennée834bf882015-07-07 17:30:02 +01002648For arm64 the number of debug registers is implementation defined and
2649can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2650KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2651indicating the number of supported registers.
2652
Alex Bennée4bd9d342014-09-09 17:27:18 +01002653When debug events exit the main run loop with the reason
2654KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2655structure containing architecture specific debug information.
Christoffer Dall3401d5462013-01-23 13:18:04 -05002656
Alex Bennée209cf192014-09-09 17:27:19 +010026574.88 KVM_GET_EMULATED_CPUID
2658
2659Capability: KVM_CAP_EXT_EMUL_CPUID
2660Architectures: x86
2661Type: system ioctl
2662Parameters: struct kvm_cpuid2 (in/out)
2663Returns: 0 on success, -1 on error
2664
2665struct kvm_cpuid2 {
2666 __u32 nent;
2667 __u32 flags;
2668 struct kvm_cpuid_entry2 entries[0];
2669};
2670
2671The member 'flags' is used for passing flags from userspace.
2672
2673#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2674#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2675#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2676
2677struct kvm_cpuid_entry2 {
2678 __u32 function;
2679 __u32 index;
2680 __u32 flags;
2681 __u32 eax;
2682 __u32 ebx;
2683 __u32 ecx;
2684 __u32 edx;
2685 __u32 padding[3];
2686};
2687
2688This ioctl returns x86 cpuid features which are emulated by
2689kvm.Userspace can use the information returned by this ioctl to query
2690which features are emulated by kvm instead of being present natively.
2691
2692Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2693structure with the 'nent' field indicating the number of entries in
2694the variable-size array 'entries'. If the number of entries is too low
2695to describe the cpu capabilities, an error (E2BIG) is returned. If the
2696number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2697is returned. If the number is just right, the 'nent' field is adjusted
2698to the number of valid entries in the 'entries' array, which is then
2699filled.
2700
2701The entries returned are the set CPUID bits of the respective features
2702which kvm emulates, as returned by the CPUID instruction, with unknown
2703or unsupported feature bits cleared.
2704
2705Features like x2apic, for example, may not be present in the host cpu
2706but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2707emulated efficiently and thus not included here.
2708
2709The fields in each entry are defined as follows:
2710
2711 function: the eax value used to obtain the entry
2712 index: the ecx value used to obtain the entry (for entries that are
2713 affected by ecx)
2714 flags: an OR of zero or more of the following:
2715 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2716 if the index field is valid
2717 KVM_CPUID_FLAG_STATEFUL_FUNC:
2718 if cpuid for this function returns different values for successive
2719 invocations; there will be several entries with the same function,
2720 all with this flag set
2721 KVM_CPUID_FLAG_STATE_READ_NEXT:
2722 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2723 the first entry to be read by a cpu
2724 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2725 this function/index combination
2726
Thomas Huth41408c22015-02-06 15:01:21 +010027274.89 KVM_S390_MEM_OP
2728
2729Capability: KVM_CAP_S390_MEM_OP
2730Architectures: s390
2731Type: vcpu ioctl
2732Parameters: struct kvm_s390_mem_op (in)
2733Returns: = 0 on success,
2734 < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2735 > 0 if an exception occurred while walking the page tables
2736
Masanari Iida5d4f6f32015-10-04 00:46:21 +09002737Read or write data from/to the logical (virtual) memory of a VCPU.
Thomas Huth41408c22015-02-06 15:01:21 +01002738
2739Parameters are specified via the following structure:
2740
2741struct kvm_s390_mem_op {
2742 __u64 gaddr; /* the guest address */
2743 __u64 flags; /* flags */
2744 __u32 size; /* amount of bytes */
2745 __u32 op; /* type of operation */
2746 __u64 buf; /* buffer in userspace */
2747 __u8 ar; /* the access register number */
2748 __u8 reserved[31]; /* should be set to 0 */
2749};
2750
2751The type of operation is specified in the "op" field. It is either
2752KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2753KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2754KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2755whether the corresponding memory access would create an access exception
2756(without touching the data in the memory at the destination). In case an
2757access exception occurred while walking the MMU tables of the guest, the
2758ioctl returns a positive error number to indicate the type of exception.
2759This exception is also raised directly at the corresponding VCPU if the
2760flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2761
2762The start address of the memory region has to be specified in the "gaddr"
2763field, and the length of the region in the "size" field. "buf" is the buffer
2764supplied by the userspace application where the read data should be written
2765to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2766is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2767when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2768register number to be used.
2769
2770The "reserved" field is meant for future extensions. It is not used by
2771KVM with the currently defined set of flags.
2772
Jason J. Herne30ee2a92014-09-23 09:23:01 -040027734.90 KVM_S390_GET_SKEYS
2774
2775Capability: KVM_CAP_S390_SKEYS
2776Architectures: s390
2777Type: vm ioctl
2778Parameters: struct kvm_s390_skeys
2779Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2780 keys, negative value on error
2781
2782This ioctl is used to get guest storage key values on the s390
2783architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2784
2785struct kvm_s390_skeys {
2786 __u64 start_gfn;
2787 __u64 count;
2788 __u64 skeydata_addr;
2789 __u32 flags;
2790 __u32 reserved[9];
2791};
2792
2793The start_gfn field is the number of the first guest frame whose storage keys
2794you want to get.
2795
2796The count field is the number of consecutive frames (starting from start_gfn)
2797whose storage keys to get. The count field must be at least 1 and the maximum
2798allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2799will cause the ioctl to return -EINVAL.
2800
2801The skeydata_addr field is the address to a buffer large enough to hold count
2802bytes. This buffer will be filled with storage key data by the ioctl.
2803
28044.91 KVM_S390_SET_SKEYS
2805
2806Capability: KVM_CAP_S390_SKEYS
2807Architectures: s390
2808Type: vm ioctl
2809Parameters: struct kvm_s390_skeys
2810Returns: 0 on success, negative value on error
2811
2812This ioctl is used to set guest storage key values on the s390
2813architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2814See section on KVM_S390_GET_SKEYS for struct definition.
2815
2816The start_gfn field is the number of the first guest frame whose storage keys
2817you want to set.
2818
2819The count field is the number of consecutive frames (starting from start_gfn)
2820whose storage keys to get. The count field must be at least 1 and the maximum
2821allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2822will cause the ioctl to return -EINVAL.
2823
2824The skeydata_addr field is the address to a buffer containing count bytes of
2825storage keys. Each byte in the buffer will be set as the storage key for a
2826single frame starting at start_gfn for count frames.
2827
2828Note: If any architecturally invalid key value is found in the given data then
2829the ioctl will return -EINVAL.
2830
Jens Freimann47b43c52014-11-11 20:57:06 +010028314.92 KVM_S390_IRQ
2832
2833Capability: KVM_CAP_S390_INJECT_IRQ
2834Architectures: s390
2835Type: vcpu ioctl
2836Parameters: struct kvm_s390_irq (in)
2837Returns: 0 on success, -1 on error
2838Errors:
2839 EINVAL: interrupt type is invalid
2840 type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2841 type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2842 than the maximum of VCPUs
2843 EBUSY: type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2844 type is KVM_S390_SIGP_STOP and a stop irq is already pending
2845 type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2846 is already pending
2847
2848Allows to inject an interrupt to the guest.
2849
2850Using struct kvm_s390_irq as a parameter allows
2851to inject additional payload which is not
2852possible via KVM_S390_INTERRUPT.
2853
2854Interrupt parameters are passed via kvm_s390_irq:
2855
2856struct kvm_s390_irq {
2857 __u64 type;
2858 union {
2859 struct kvm_s390_io_info io;
2860 struct kvm_s390_ext_info ext;
2861 struct kvm_s390_pgm_info pgm;
2862 struct kvm_s390_emerg_info emerg;
2863 struct kvm_s390_extcall_info extcall;
2864 struct kvm_s390_prefix_info prefix;
2865 struct kvm_s390_stop_info stop;
2866 struct kvm_s390_mchk_info mchk;
2867 char reserved[64];
2868 } u;
2869};
2870
2871type can be one of the following:
2872
2873KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2874KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2875KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2876KVM_S390_RESTART - restart; no parameters
2877KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2878KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2879KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2880KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2881KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2882
2883
2884Note that the vcpu ioctl is asynchronous to vcpu execution.
2885
Jens Freimann816c7662014-11-24 17:13:46 +010028864.94 KVM_S390_GET_IRQ_STATE
2887
2888Capability: KVM_CAP_S390_IRQ_STATE
2889Architectures: s390
2890Type: vcpu ioctl
2891Parameters: struct kvm_s390_irq_state (out)
2892Returns: >= number of bytes copied into buffer,
2893 -EINVAL if buffer size is 0,
2894 -ENOBUFS if buffer size is too small to fit all pending interrupts,
2895 -EFAULT if the buffer address was invalid
2896
2897This ioctl allows userspace to retrieve the complete state of all currently
2898pending interrupts in a single buffer. Use cases include migration
2899and introspection. The parameter structure contains the address of a
2900userspace buffer and its length:
2901
2902struct kvm_s390_irq_state {
2903 __u64 buf;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01002904 __u32 flags; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01002905 __u32 len;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01002906 __u32 reserved[4]; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01002907};
2908
2909Userspace passes in the above struct and for each pending interrupt a
2910struct kvm_s390_irq is copied to the provided buffer.
2911
Christian Borntraegerbb64da92017-11-21 16:02:52 +01002912The structure contains a flags and a reserved field for future extensions. As
2913the kernel never checked for flags == 0 and QEMU never pre-zeroed flags and
2914reserved, these fields can not be used in the future without breaking
2915compatibility.
2916
Jens Freimann816c7662014-11-24 17:13:46 +01002917If -ENOBUFS is returned the buffer provided was too small and userspace
2918may retry with a bigger buffer.
2919
29204.95 KVM_S390_SET_IRQ_STATE
2921
2922Capability: KVM_CAP_S390_IRQ_STATE
2923Architectures: s390
2924Type: vcpu ioctl
2925Parameters: struct kvm_s390_irq_state (in)
2926Returns: 0 on success,
2927 -EFAULT if the buffer address was invalid,
2928 -EINVAL for an invalid buffer length (see below),
2929 -EBUSY if there were already interrupts pending,
2930 errors occurring when actually injecting the
2931 interrupt. See KVM_S390_IRQ.
2932
2933This ioctl allows userspace to set the complete state of all cpu-local
2934interrupts currently pending for the vcpu. It is intended for restoring
2935interrupt state after a migration. The input parameter is a userspace buffer
2936containing a struct kvm_s390_irq_state:
2937
2938struct kvm_s390_irq_state {
2939 __u64 buf;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01002940 __u32 flags; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01002941 __u32 len;
Christian Borntraegerbb64da92017-11-21 16:02:52 +01002942 __u32 reserved[4]; /* will stay unused for compatibility reasons */
Jens Freimann816c7662014-11-24 17:13:46 +01002943};
2944
Christian Borntraegerbb64da92017-11-21 16:02:52 +01002945The restrictions for flags and reserved apply as well.
2946(see KVM_S390_GET_IRQ_STATE)
2947
Jens Freimann816c7662014-11-24 17:13:46 +01002948The userspace memory referenced by buf contains a struct kvm_s390_irq
2949for each interrupt to be injected into the guest.
2950If one of the interrupts could not be injected for some reason the
2951ioctl aborts.
2952
2953len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
2954and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
2955which is the maximum number of possibly pending cpu-local interrupts.
Jens Freimann47b43c52014-11-11 20:57:06 +01002956
Alexey Kardashevskiyed8e5a22016-01-19 16:12:28 +110029574.96 KVM_SMI
Paolo Bonzinif0778252015-04-01 15:06:40 +02002958
2959Capability: KVM_CAP_X86_SMM
2960Architectures: x86
2961Type: vcpu ioctl
2962Parameters: none
2963Returns: 0 on success, -1 on error
2964
2965Queues an SMI on the thread's vcpu.
2966
Alexey Kardashevskiyd3695aa2016-02-15 12:55:09 +110029674.97 KVM_CAP_PPC_MULTITCE
2968
2969Capability: KVM_CAP_PPC_MULTITCE
2970Architectures: ppc
2971Type: vm
2972
2973This capability means the kernel is capable of handling hypercalls
2974H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
2975space. This significantly accelerates DMA operations for PPC KVM guests.
2976User space should expect that its handlers for these hypercalls
2977are not going to be called if user space previously registered LIOBN
2978in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
2979
2980In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
2981user space might have to advertise it for the guest. For example,
2982IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
2983present in the "ibm,hypertas-functions" device-tree property.
2984
2985The hypercalls mentioned above may or may not be processed successfully
2986in the kernel based fast path. If they can not be handled by the kernel,
2987they will get passed on to user space. So user space still has to have
2988an implementation for these despite the in kernel acceleration.
2989
2990This capability is always enabled.
2991
Alexey Kardashevskiy58ded422016-03-01 17:54:40 +110029924.98 KVM_CREATE_SPAPR_TCE_64
2993
2994Capability: KVM_CAP_SPAPR_TCE_64
2995Architectures: powerpc
2996Type: vm ioctl
2997Parameters: struct kvm_create_spapr_tce_64 (in)
2998Returns: file descriptor for manipulating the created TCE table
2999
3000This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
3001windows, described in 4.62 KVM_CREATE_SPAPR_TCE
3002
3003This capability uses extended struct in ioctl interface:
3004
3005/* for KVM_CAP_SPAPR_TCE_64 */
3006struct kvm_create_spapr_tce_64 {
3007 __u64 liobn;
3008 __u32 page_shift;
3009 __u32 flags;
3010 __u64 offset; /* in pages */
3011 __u64 size; /* in pages */
3012};
3013
3014The aim of extension is to support an additional bigger DMA window with
3015a variable page size.
3016KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3017a bus offset of the corresponding DMA window, @size and @offset are numbers
3018of IOMMU pages.
3019
3020@flags are not used at the moment.
3021
3022The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3023
David Gibsonccc4df42016-12-20 16:48:57 +110030244.99 KVM_REINJECT_CONTROL
Radim Krčmář107d44a22016-03-02 22:56:53 +01003025
3026Capability: KVM_CAP_REINJECT_CONTROL
3027Architectures: x86
3028Type: vm ioctl
3029Parameters: struct kvm_reinject_control (in)
3030Returns: 0 on success,
3031 -EFAULT if struct kvm_reinject_control cannot be read,
3032 -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3033
3034i8254 (PIT) has two modes, reinject and !reinject. The default is reinject,
3035where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3036vector(s) that i8254 injects. Reinject mode dequeues a tick and injects its
3037interrupt whenever there isn't a pending interrupt from i8254.
3038!reinject mode injects an interrupt as soon as a tick arrives.
3039
3040struct kvm_reinject_control {
3041 __u8 pit_reinject;
3042 __u8 reserved[31];
3043};
3044
3045pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3046operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3047
David Gibsonccc4df42016-12-20 16:48:57 +110030484.100 KVM_PPC_CONFIGURE_V3_MMU
Paul Mackerrasc9270132017-01-30 21:21:41 +11003049
3050Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3051Architectures: ppc
3052Type: vm ioctl
3053Parameters: struct kvm_ppc_mmuv3_cfg (in)
3054Returns: 0 on success,
3055 -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3056 -EINVAL if the configuration is invalid
3057
3058This ioctl controls whether the guest will use radix or HPT (hashed
3059page table) translation, and sets the pointer to the process table for
3060the guest.
3061
3062struct kvm_ppc_mmuv3_cfg {
3063 __u64 flags;
3064 __u64 process_table;
3065};
3066
3067There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3068KVM_PPC_MMUV3_GTSE. KVM_PPC_MMUV3_RADIX, if set, configures the guest
3069to use radix tree translation, and if clear, to use HPT translation.
3070KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3071to be able to use the global TLB and SLB invalidation instructions;
3072if clear, the guest may not use these instructions.
3073
3074The process_table field specifies the address and size of the guest
3075process table, which is in the guest's space. This field is formatted
3076as the second doubleword of the partition table entry, as defined in
3077the Power ISA V3.00, Book III section 5.7.6.1.
3078
David Gibsonccc4df42016-12-20 16:48:57 +110030794.101 KVM_PPC_GET_RMMU_INFO
Paul Mackerrasc9270132017-01-30 21:21:41 +11003080
3081Capability: KVM_CAP_PPC_RADIX_MMU
3082Architectures: ppc
3083Type: vm ioctl
3084Parameters: struct kvm_ppc_rmmu_info (out)
3085Returns: 0 on success,
3086 -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3087 -EINVAL if no useful information can be returned
3088
3089This ioctl returns a structure containing two things: (a) a list
3090containing supported radix tree geometries, and (b) a list that maps
3091page sizes to put in the "AP" (actual page size) field for the tlbie
3092(TLB invalidate entry) instruction.
3093
3094struct kvm_ppc_rmmu_info {
3095 struct kvm_ppc_radix_geom {
3096 __u8 page_shift;
3097 __u8 level_bits[4];
3098 __u8 pad[3];
3099 } geometries[8];
3100 __u32 ap_encodings[8];
3101};
3102
3103The geometries[] field gives up to 8 supported geometries for the
3104radix page table, in terms of the log base 2 of the smallest page
3105size, and the number of bits indexed at each level of the tree, from
3106the PTE level up to the PGD level in that order. Any unused entries
3107will have 0 in the page_shift field.
3108
3109The ap_encodings gives the supported page sizes and their AP field
3110encodings, encoded with the AP value in the top 3 bits and the log
3111base 2 of the page size in the bottom 6 bits.
3112
David Gibsonef1ead02016-12-20 16:48:58 +110031134.102 KVM_PPC_RESIZE_HPT_PREPARE
3114
3115Capability: KVM_CAP_SPAPR_RESIZE_HPT
3116Architectures: powerpc
3117Type: vm ioctl
3118Parameters: struct kvm_ppc_resize_hpt (in)
3119Returns: 0 on successful completion,
3120 >0 if a new HPT is being prepared, the value is an estimated
3121 number of milliseconds until preparation is complete
3122 -EFAULT if struct kvm_reinject_control cannot be read,
3123 -EINVAL if the supplied shift or flags are invalid
3124 -ENOMEM if unable to allocate the new HPT
3125 -ENOSPC if there was a hash collision when moving existing
3126 HPT entries to the new HPT
3127 -EIO on other error conditions
3128
3129Used to implement the PAPR extension for runtime resizing of a guest's
3130Hashed Page Table (HPT). Specifically this starts, stops or monitors
3131the preparation of a new potential HPT for the guest, essentially
3132implementing the H_RESIZE_HPT_PREPARE hypercall.
3133
3134If called with shift > 0 when there is no pending HPT for the guest,
3135this begins preparation of a new pending HPT of size 2^(shift) bytes.
3136It then returns a positive integer with the estimated number of
3137milliseconds until preparation is complete.
3138
3139If called when there is a pending HPT whose size does not match that
3140requested in the parameters, discards the existing pending HPT and
3141creates a new one as above.
3142
3143If called when there is a pending HPT of the size requested, will:
3144 * If preparation of the pending HPT is already complete, return 0
3145 * If preparation of the pending HPT has failed, return an error
3146 code, then discard the pending HPT.
3147 * If preparation of the pending HPT is still in progress, return an
3148 estimated number of milliseconds until preparation is complete.
3149
3150If called with shift == 0, discards any currently pending HPT and
3151returns 0 (i.e. cancels any in-progress preparation).
3152
3153flags is reserved for future expansion, currently setting any bits in
3154flags will result in an -EINVAL.
3155
3156Normally this will be called repeatedly with the same parameters until
3157it returns <= 0. The first call will initiate preparation, subsequent
3158ones will monitor preparation until it completes or fails.
3159
3160struct kvm_ppc_resize_hpt {
3161 __u64 flags;
3162 __u32 shift;
3163 __u32 pad;
3164};
3165
31664.103 KVM_PPC_RESIZE_HPT_COMMIT
3167
3168Capability: KVM_CAP_SPAPR_RESIZE_HPT
3169Architectures: powerpc
3170Type: vm ioctl
3171Parameters: struct kvm_ppc_resize_hpt (in)
3172Returns: 0 on successful completion,
3173 -EFAULT if struct kvm_reinject_control cannot be read,
3174 -EINVAL if the supplied shift or flags are invalid
3175 -ENXIO is there is no pending HPT, or the pending HPT doesn't
3176 have the requested size
3177 -EBUSY if the pending HPT is not fully prepared
3178 -ENOSPC if there was a hash collision when moving existing
3179 HPT entries to the new HPT
3180 -EIO on other error conditions
3181
3182Used to implement the PAPR extension for runtime resizing of a guest's
3183Hashed Page Table (HPT). Specifically this requests that the guest be
3184transferred to working with the new HPT, essentially implementing the
3185H_RESIZE_HPT_COMMIT hypercall.
3186
3187This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3188returned 0 with the same parameters. In other cases
3189KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3190-EBUSY, though others may be possible if the preparation was started,
3191but failed).
3192
3193This will have undefined effects on the guest if it has not already
3194placed itself in a quiescent state where no vcpu will make MMU enabled
3195memory accesses.
3196
3197On succsful completion, the pending HPT will become the guest's active
3198HPT and the previous HPT will be discarded.
3199
3200On failure, the guest will still be operating on its previous HPT.
3201
3202struct kvm_ppc_resize_hpt {
3203 __u64 flags;
3204 __u32 shift;
3205 __u32 pad;
3206};
3207
Luiz Capitulino3aa53852017-03-13 09:08:20 -040032084.104 KVM_X86_GET_MCE_CAP_SUPPORTED
3209
3210Capability: KVM_CAP_MCE
3211Architectures: x86
3212Type: system ioctl
3213Parameters: u64 mce_cap (out)
3214Returns: 0 on success, -1 on error
3215
3216Returns supported MCE capabilities. The u64 mce_cap parameter
3217has the same format as the MSR_IA32_MCG_CAP register. Supported
3218capabilities will have the corresponding bits set.
3219
32204.105 KVM_X86_SETUP_MCE
3221
3222Capability: KVM_CAP_MCE
3223Architectures: x86
3224Type: vcpu ioctl
3225Parameters: u64 mcg_cap (in)
3226Returns: 0 on success,
3227 -EFAULT if u64 mcg_cap cannot be read,
3228 -EINVAL if the requested number of banks is invalid,
3229 -EINVAL if requested MCE capability is not supported.
3230
3231Initializes MCE support for use. The u64 mcg_cap parameter
3232has the same format as the MSR_IA32_MCG_CAP register and
3233specifies which capabilities should be enabled. The maximum
3234supported number of error-reporting banks can be retrieved when
3235checking for KVM_CAP_MCE. The supported capabilities can be
3236retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED.
3237
32384.106 KVM_X86_SET_MCE
3239
3240Capability: KVM_CAP_MCE
3241Architectures: x86
3242Type: vcpu ioctl
3243Parameters: struct kvm_x86_mce (in)
3244Returns: 0 on success,
3245 -EFAULT if struct kvm_x86_mce cannot be read,
3246 -EINVAL if the bank number is invalid,
3247 -EINVAL if VAL bit is not set in status field.
3248
3249Inject a machine check error (MCE) into the guest. The input
3250parameter is:
3251
3252struct kvm_x86_mce {
3253 __u64 status;
3254 __u64 addr;
3255 __u64 misc;
3256 __u64 mcg_status;
3257 __u8 bank;
3258 __u8 pad1[7];
3259 __u64 pad2[3];
3260};
3261
3262If the MCE being reported is an uncorrected error, KVM will
3263inject it as an MCE exception into the guest. If the guest
3264MCG_STATUS register reports that an MCE is in progress, KVM
3265causes an KVM_EXIT_SHUTDOWN vmexit.
3266
3267Otherwise, if the MCE is a corrected error, KVM will just
3268store it in the corresponding bank (provided this bank is
3269not holding a previously reported uncorrected error).
3270
Claudio Imbrenda4036e382016-08-04 17:58:47 +020032714.107 KVM_S390_GET_CMMA_BITS
3272
3273Capability: KVM_CAP_S390_CMMA_MIGRATION
3274Architectures: s390
3275Type: vm ioctl
3276Parameters: struct kvm_s390_cmma_log (in, out)
3277Returns: 0 on success, a negative value on error
3278
3279This ioctl is used to get the values of the CMMA bits on the s390
3280architecture. It is meant to be used in two scenarios:
3281- During live migration to save the CMMA values. Live migration needs
3282 to be enabled via the KVM_REQ_START_MIGRATION VM property.
3283- To non-destructively peek at the CMMA values, with the flag
3284 KVM_S390_CMMA_PEEK set.
3285
3286The ioctl takes parameters via the kvm_s390_cmma_log struct. The desired
3287values are written to a buffer whose location is indicated via the "values"
3288member in the kvm_s390_cmma_log struct. The values in the input struct are
3289also updated as needed.
3290Each CMMA value takes up one byte.
3291
3292struct kvm_s390_cmma_log {
3293 __u64 start_gfn;
3294 __u32 count;
3295 __u32 flags;
3296 union {
3297 __u64 remaining;
3298 __u64 mask;
3299 };
3300 __u64 values;
3301};
3302
3303start_gfn is the number of the first guest frame whose CMMA values are
3304to be retrieved,
3305
3306count is the length of the buffer in bytes,
3307
3308values points to the buffer where the result will be written to.
3309
3310If count is greater than KVM_S390_SKEYS_MAX, then it is considered to be
3311KVM_S390_SKEYS_MAX. KVM_S390_SKEYS_MAX is re-used for consistency with
3312other ioctls.
3313
3314The result is written in the buffer pointed to by the field values, and
3315the values of the input parameter are updated as follows.
3316
3317Depending on the flags, different actions are performed. The only
3318supported flag so far is KVM_S390_CMMA_PEEK.
3319
3320The default behaviour if KVM_S390_CMMA_PEEK is not set is:
3321start_gfn will indicate the first page frame whose CMMA bits were dirty.
3322It is not necessarily the same as the one passed as input, as clean pages
3323are skipped.
3324
3325count will indicate the number of bytes actually written in the buffer.
3326It can (and very often will) be smaller than the input value, since the
3327buffer is only filled until 16 bytes of clean values are found (which
3328are then not copied in the buffer). Since a CMMA migration block needs
3329the base address and the length, for a total of 16 bytes, we will send
3330back some clean data if there is some dirty data afterwards, as long as
3331the size of the clean data does not exceed the size of the header. This
3332allows to minimize the amount of data to be saved or transferred over
3333the network at the expense of more roundtrips to userspace. The next
3334invocation of the ioctl will skip over all the clean values, saving
3335potentially more than just the 16 bytes we found.
3336
3337If KVM_S390_CMMA_PEEK is set:
3338the existing storage attributes are read even when not in migration
3339mode, and no other action is performed;
3340
3341the output start_gfn will be equal to the input start_gfn,
3342
3343the output count will be equal to the input count, except if the end of
3344memory has been reached.
3345
3346In both cases:
3347the field "remaining" will indicate the total number of dirty CMMA values
3348still remaining, or 0 if KVM_S390_CMMA_PEEK is set and migration mode is
3349not enabled.
3350
3351mask is unused.
3352
3353values points to the userspace buffer where the result will be stored.
3354
3355This ioctl can fail with -ENOMEM if not enough memory can be allocated to
3356complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
3357KVM_S390_CMMA_PEEK is not set but migration mode was not enabled, with
3358-EFAULT if the userspace address is invalid or if no page table is
3359present for the addresses (e.g. when using hugepages).
3360
33614.108 KVM_S390_SET_CMMA_BITS
3362
3363Capability: KVM_CAP_S390_CMMA_MIGRATION
3364Architectures: s390
3365Type: vm ioctl
3366Parameters: struct kvm_s390_cmma_log (in)
3367Returns: 0 on success, a negative value on error
3368
3369This ioctl is used to set the values of the CMMA bits on the s390
3370architecture. It is meant to be used during live migration to restore
3371the CMMA values, but there are no restrictions on its use.
3372The ioctl takes parameters via the kvm_s390_cmma_values struct.
3373Each CMMA value takes up one byte.
3374
3375struct kvm_s390_cmma_log {
3376 __u64 start_gfn;
3377 __u32 count;
3378 __u32 flags;
3379 union {
3380 __u64 remaining;
3381 __u64 mask;
3382 };
3383 __u64 values;
3384};
3385
3386start_gfn indicates the starting guest frame number,
3387
3388count indicates how many values are to be considered in the buffer,
3389
3390flags is not used and must be 0.
3391
3392mask indicates which PGSTE bits are to be considered.
3393
3394remaining is not used.
3395
3396values points to the buffer in userspace where to store the values.
3397
3398This ioctl can fail with -ENOMEM if not enough memory can be allocated to
3399complete the task, with -ENXIO if CMMA is not enabled, with -EINVAL if
3400the count field is too large (e.g. more than KVM_S390_CMMA_SIZE_MAX) or
3401if the flags field was not 0, with -EFAULT if the userspace address is
3402invalid, if invalid pages are written to (e.g. after the end of memory)
3403or if no page table is present for the addresses (e.g. when using
3404hugepages).
3405
Avi Kivity9c1b96e2009-06-09 12:37:58 +030034065. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02003407------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003408
3409Application code obtains a pointer to the kvm_run structure by
3410mmap()ing a vcpu fd. From that point, application code can control
3411execution by changing fields in kvm_run prior to calling the KVM_RUN
3412ioctl, and obtain information about the reason KVM_RUN returned by
3413looking up structure members.
3414
3415struct kvm_run {
3416 /* in */
3417 __u8 request_interrupt_window;
3418
3419Request that KVM_RUN return when it becomes possible to inject external
3420interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
3421
Paolo Bonzini460df4c2017-02-08 11:50:15 +01003422 __u8 immediate_exit;
3423
3424This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
3425exits immediately, returning -EINTR. In the common scenario where a
3426signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
3427to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
3428Rather than blocking the signal outside KVM_RUN, userspace can set up
3429a signal handler that sets run->immediate_exit to a non-zero value.
3430
3431This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
3432
3433 __u8 padding1[6];
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003434
3435 /* out */
3436 __u32 exit_reason;
3437
3438When KVM_RUN has returned successfully (return value 0), this informs
3439application code why KVM_RUN has returned. Allowable values for this
3440field are detailed below.
3441
3442 __u8 ready_for_interrupt_injection;
3443
3444If request_interrupt_window has been specified, this field indicates
3445an interrupt can be injected now with KVM_INTERRUPT.
3446
3447 __u8 if_flag;
3448
3449The value of the current interrupt flag. Only valid if in-kernel
3450local APIC is not used.
3451
Paolo Bonzinif0778252015-04-01 15:06:40 +02003452 __u16 flags;
3453
3454More architecture-specific flags detailing state of the VCPU that may
3455affect the device's behavior. The only currently defined flag is
3456KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3457VCPU is in system management mode.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003458
3459 /* in (pre_kvm_run), out (post_kvm_run) */
3460 __u64 cr8;
3461
3462The value of the cr8 register. Only valid if in-kernel local APIC is
3463not used. Both input and output.
3464
3465 __u64 apic_base;
3466
3467The value of the APIC BASE msr. Only valid if in-kernel local
3468APIC is not used. Both input and output.
3469
3470 union {
3471 /* KVM_EXIT_UNKNOWN */
3472 struct {
3473 __u64 hardware_exit_reason;
3474 } hw;
3475
3476If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3477reasons. Further architecture-specific information is available in
3478hardware_exit_reason.
3479
3480 /* KVM_EXIT_FAIL_ENTRY */
3481 struct {
3482 __u64 hardware_entry_failure_reason;
3483 } fail_entry;
3484
3485If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3486to unknown reasons. Further architecture-specific information is
3487available in hardware_entry_failure_reason.
3488
3489 /* KVM_EXIT_EXCEPTION */
3490 struct {
3491 __u32 exception;
3492 __u32 error_code;
3493 } ex;
3494
3495Unused.
3496
3497 /* KVM_EXIT_IO */
3498 struct {
3499#define KVM_EXIT_IO_IN 0
3500#define KVM_EXIT_IO_OUT 1
3501 __u8 direction;
3502 __u8 size; /* bytes */
3503 __u16 port;
3504 __u32 count;
3505 __u64 data_offset; /* relative to kvm_run start */
3506 } io;
3507
Wu Fengguang2044892d2009-12-24 09:04:16 +08003508If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003509executed a port I/O instruction which could not be satisfied by kvm.
3510data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3511where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08003512KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003513
Alex Bennée8ab30c12015-07-07 17:29:53 +01003514 /* KVM_EXIT_DEBUG */
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003515 struct {
3516 struct kvm_debug_exit_arch arch;
3517 } debug;
3518
Alex Bennée8ab30c12015-07-07 17:29:53 +01003519If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3520for which architecture specific information is returned.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003521
3522 /* KVM_EXIT_MMIO */
3523 struct {
3524 __u64 phys_addr;
3525 __u8 data[8];
3526 __u32 len;
3527 __u8 is_write;
3528 } mmio;
3529
Wu Fengguang2044892d2009-12-24 09:04:16 +08003530If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003531executed a memory-mapped I/O instruction which could not be satisfied
3532by kvm. The 'data' member contains the written data if 'is_write' is
3533true, and should be filled by application code otherwise.
3534
Christoffer Dall6acdb162014-01-28 08:28:42 -08003535The 'data' member contains, in its first 'len' bytes, the value as it would
3536appear if the VCPU performed a load or store of the appropriate width directly
3537to the byte array.
3538
Paolo Bonzinicc568ea2014-08-05 09:55:22 +02003539NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
Alexander Grafce91ddc2014-07-28 19:29:13 +02003540 KVM_EXIT_EPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01003541operations are complete (and guest state is consistent) only after userspace
3542has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02003543incomplete operations and then check for pending signals. Userspace
3544can re-enter the guest with an unmasked signal pending to complete
3545pending operations.
3546
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003547 /* KVM_EXIT_HYPERCALL */
3548 struct {
3549 __u64 nr;
3550 __u64 args[6];
3551 __u64 ret;
3552 __u32 longmode;
3553 __u32 pad;
3554 } hypercall;
3555
Avi Kivity647dc492010-04-01 14:39:21 +03003556Unused. This was once used for 'hypercall to userspace'. To implement
3557such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3558Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003559
3560 /* KVM_EXIT_TPR_ACCESS */
3561 struct {
3562 __u64 rip;
3563 __u32 is_write;
3564 __u32 pad;
3565 } tpr_access;
3566
3567To be documented (KVM_TPR_ACCESS_REPORTING).
3568
3569 /* KVM_EXIT_S390_SIEIC */
3570 struct {
3571 __u8 icptcode;
3572 __u64 mask; /* psw upper half */
3573 __u64 addr; /* psw lower half */
3574 __u16 ipa;
3575 __u32 ipb;
3576 } s390_sieic;
3577
3578s390 specific.
3579
3580 /* KVM_EXIT_S390_RESET */
3581#define KVM_S390_RESET_POR 1
3582#define KVM_S390_RESET_CLEAR 2
3583#define KVM_S390_RESET_SUBSYSTEM 4
3584#define KVM_S390_RESET_CPU_INIT 8
3585#define KVM_S390_RESET_IPL 16
3586 __u64 s390_reset_flags;
3587
3588s390 specific.
3589
Carsten Ottee168bf82012-01-04 10:25:22 +01003590 /* KVM_EXIT_S390_UCONTROL */
3591 struct {
3592 __u64 trans_exc_code;
3593 __u32 pgm_code;
3594 } s390_ucontrol;
3595
3596s390 specific. A page fault has occurred for a user controlled virtual
3597machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3598resolved by the kernel.
3599The program code and the translation exception code that were placed
3600in the cpu's lowcore are presented here as defined by the z Architecture
3601Principles of Operation Book in the Chapter for Dynamic Address Translation
3602(DAT)
3603
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003604 /* KVM_EXIT_DCR */
3605 struct {
3606 __u32 dcrn;
3607 __u32 data;
3608 __u8 is_write;
3609 } dcr;
3610
Alexander Grafce91ddc2014-07-28 19:29:13 +02003611Deprecated - was used for 440 KVM.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003612
Alexander Grafad0a0482010-03-24 21:48:30 +01003613 /* KVM_EXIT_OSI */
3614 struct {
3615 __u64 gprs[32];
3616 } osi;
3617
3618MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3619hypercalls and exit with this exit struct that contains all the guest gprs.
3620
3621If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3622Userspace can now handle the hypercall and when it's done modify the gprs as
3623necessary. Upon guest entry all guest GPRs will then be replaced by the values
3624in this struct.
3625
Paul Mackerrasde56a942011-06-29 00:21:34 +00003626 /* KVM_EXIT_PAPR_HCALL */
3627 struct {
3628 __u64 nr;
3629 __u64 ret;
3630 __u64 args[9];
3631 } papr_hcall;
3632
3633This is used on 64-bit PowerPC when emulating a pSeries partition,
3634e.g. with the 'pseries' machine type in qemu. It occurs when the
3635guest does a hypercall using the 'sc 1' instruction. The 'nr' field
3636contains the hypercall number (from the guest R3), and 'args' contains
3637the arguments (from the guest R4 - R12). Userspace should put the
3638return code in 'ret' and any extra returned values in args[].
3639The possible hypercalls are defined in the Power Architecture Platform
3640Requirements (PAPR) document available from www.power.org (free
3641developer registration required to access it).
3642
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003643 /* KVM_EXIT_S390_TSCH */
3644 struct {
3645 __u16 subchannel_id;
3646 __u16 subchannel_nr;
3647 __u32 io_int_parm;
3648 __u32 io_int_word;
3649 __u32 ipb;
3650 __u8 dequeued;
3651 } s390_tsch;
3652
3653s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3654and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3655interrupt for the target subchannel has been dequeued and subchannel_id,
3656subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3657interrupt. ipb is needed for instruction parameter decoding.
3658
Alexander Graf1c810632013-01-04 18:12:48 +01003659 /* KVM_EXIT_EPR */
3660 struct {
3661 __u32 epr;
3662 } epr;
3663
3664On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3665interrupt acknowledge path to the core. When the core successfully
3666delivers an interrupt, it automatically populates the EPR register with
3667the interrupt vector number and acknowledges the interrupt inside
3668the interrupt controller.
3669
3670In case the interrupt controller lives in user space, we need to do
3671the interrupt acknowledge cycle through it to fetch the next to be
3672delivered interrupt vector using this exit.
3673
3674It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3675external interrupt has just been delivered into the guest. User space
3676should put the acknowledged interrupt vector into the 'epr' field.
3677
Anup Patel8ad6b632014-04-29 11:24:19 +05303678 /* KVM_EXIT_SYSTEM_EVENT */
3679 struct {
3680#define KVM_SYSTEM_EVENT_SHUTDOWN 1
3681#define KVM_SYSTEM_EVENT_RESET 2
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003682#define KVM_SYSTEM_EVENT_CRASH 3
Anup Patel8ad6b632014-04-29 11:24:19 +05303683 __u32 type;
3684 __u64 flags;
3685 } system_event;
3686
3687If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3688a system-level event using some architecture specific mechanism (hypercall
3689or some special instruction). In case of ARM/ARM64, this is triggered using
3690HVC instruction based PSCI call from the vcpu. The 'type' field describes
3691the system-level event type. The 'flags' field describes architecture
3692specific flags for the system-level event.
3693
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003694Valid values for 'type' are:
3695 KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3696 VM. Userspace is not obliged to honour this, and if it does honour
3697 this does not need to destroy the VM synchronously (ie it may call
3698 KVM_RUN again before shutdown finally occurs).
3699 KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3700 As with SHUTDOWN, userspace can choose to ignore the request, or
3701 to schedule the reset to occur in the future and may call KVM_RUN again.
Andrey Smetanin2ce79182015-07-03 15:01:41 +03003702 KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3703 has requested a crash condition maintenance. Userspace can choose
3704 to ignore the request, or to gather VM memory core dump and/or
3705 reset/shutdown of the VM.
Christoffer Dallcf5d31882014-10-16 17:00:18 +02003706
Steve Rutherford7543a632015-07-29 23:21:41 -07003707 /* KVM_EXIT_IOAPIC_EOI */
3708 struct {
3709 __u8 vector;
3710 } eoi;
3711
3712Indicates that the VCPU's in-kernel local APIC received an EOI for a
3713level-triggered IOAPIC interrupt. This exit only triggers when the
3714IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3715the userspace IOAPIC should process the EOI and retrigger the interrupt if
3716it is still asserted. Vector is the LAPIC interrupt vector for which the
3717EOI was received.
3718
Andrey Smetanindb3975712015-11-10 15:36:35 +03003719 struct kvm_hyperv_exit {
3720#define KVM_EXIT_HYPERV_SYNIC 1
Andrey Smetanin83326e42016-02-11 16:45:01 +03003721#define KVM_EXIT_HYPERV_HCALL 2
Andrey Smetanindb3975712015-11-10 15:36:35 +03003722 __u32 type;
3723 union {
3724 struct {
3725 __u32 msr;
3726 __u64 control;
3727 __u64 evt_page;
3728 __u64 msg_page;
3729 } synic;
Andrey Smetanin83326e42016-02-11 16:45:01 +03003730 struct {
3731 __u64 input;
3732 __u64 result;
3733 __u64 params[2];
3734 } hcall;
Andrey Smetanindb3975712015-11-10 15:36:35 +03003735 } u;
3736 };
3737 /* KVM_EXIT_HYPERV */
3738 struct kvm_hyperv_exit hyperv;
3739Indicates that the VCPU exits into userspace to process some tasks
3740related to Hyper-V emulation.
3741Valid values for 'type' are:
3742 KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3743Hyper-V SynIC state change. Notification is used to remap SynIC
3744event/message pages and to enable/disable SynIC messages/events processing
3745in userspace.
3746
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003747 /* Fix the size of the union. */
3748 char padding[256];
3749 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01003750
3751 /*
3752 * shared registers between kvm and userspace.
3753 * kvm_valid_regs specifies the register classes set by the host
3754 * kvm_dirty_regs specified the register classes dirtied by userspace
3755 * struct kvm_sync_regs is architecture specific, as well as the
3756 * bits for kvm_valid_regs and kvm_dirty_regs
3757 */
3758 __u64 kvm_valid_regs;
3759 __u64 kvm_dirty_regs;
3760 union {
3761 struct kvm_sync_regs regs;
3762 char padding[1024];
3763 } s;
3764
3765If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3766certain guest registers without having to call SET/GET_*REGS. Thus we can
3767avoid some system call overhead if userspace has to handle the exit.
3768Userspace can query the validity of the structure by checking
3769kvm_valid_regs for specific bits. These bits are architecture specific
3770and usually define the validity of a groups of registers. (e.g. one bit
3771 for general purpose registers)
3772
David Hildenbrandd8482c02014-07-29 08:19:26 +02003773Please note that the kernel is allowed to use the kvm_run structure as the
3774primary storage for certain register types. Therefore, the kernel may use the
3775values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3776
Avi Kivity9c1b96e2009-06-09 12:37:58 +03003777};
Alexander Graf821246a2011-08-31 10:58:55 +02003778
Jan Kiszka414fa982012-04-24 16:40:15 +02003779
Borislav Petkov9c15bb12013-09-22 16:44:50 +02003780
Paul Mackerras699a0ea2014-06-02 11:02:59 +100037816. Capabilities that can be enabled on vCPUs
3782--------------------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02003783
Cornelia Huck0907c852014-06-27 09:29:26 +02003784There are certain capabilities that change the behavior of the virtual CPU or
3785the virtual machine when enabled. To enable them, please see section 4.37.
3786Below you can find a list of capabilities and what their effect on the vCPU or
3787the virtual machine is when enabling them.
Alexander Graf821246a2011-08-31 10:58:55 +02003788
3789The following information is provided along with the description:
3790
3791 Architectures: which instruction set architectures provide this ioctl.
3792 x86 includes both i386 and x86_64.
3793
Cornelia Huck0907c852014-06-27 09:29:26 +02003794 Target: whether this is a per-vcpu or per-vm capability.
3795
Alexander Graf821246a2011-08-31 10:58:55 +02003796 Parameters: what parameters are accepted by the capability.
3797
3798 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3799 are not detailed, but errors with specific meanings are.
3800
Jan Kiszka414fa982012-04-24 16:40:15 +02003801
Alexander Graf821246a2011-08-31 10:58:55 +020038026.1 KVM_CAP_PPC_OSI
3803
3804Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003805Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003806Parameters: none
3807Returns: 0 on success; -1 on error
3808
3809This capability enables interception of OSI hypercalls that otherwise would
3810be treated as normal system calls to be injected into the guest. OSI hypercalls
3811were invented by Mac-on-Linux to have a standardized communication mechanism
3812between the guest and the host.
3813
3814When this capability is enabled, KVM_EXIT_OSI can occur.
3815
Jan Kiszka414fa982012-04-24 16:40:15 +02003816
Alexander Graf821246a2011-08-31 10:58:55 +020038176.2 KVM_CAP_PPC_PAPR
3818
3819Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003820Target: vcpu
Alexander Graf821246a2011-08-31 10:58:55 +02003821Parameters: none
3822Returns: 0 on success; -1 on error
3823
3824This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3825done using the hypercall instruction "sc 1".
3826
3827It also sets the guest privilege level to "supervisor" mode. Usually the guest
3828runs in "hypervisor" privilege mode with a few missing features.
3829
3830In addition to the above, it changes the semantics of SDR1. In this mode, the
3831HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3832HTAB invisible to the guest.
3833
3834When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05003835
Jan Kiszka414fa982012-04-24 16:40:15 +02003836
Scott Wooddc83b8b2011-08-18 15:25:21 -050038376.3 KVM_CAP_SW_TLB
3838
3839Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003840Target: vcpu
Scott Wooddc83b8b2011-08-18 15:25:21 -05003841Parameters: args[0] is the address of a struct kvm_config_tlb
3842Returns: 0 on success; -1 on error
3843
3844struct kvm_config_tlb {
3845 __u64 params;
3846 __u64 array;
3847 __u32 mmu_type;
3848 __u32 array_len;
3849};
3850
3851Configures the virtual CPU's TLB array, establishing a shared memory area
3852between userspace and KVM. The "params" and "array" fields are userspace
3853addresses of mmu-type-specific data structures. The "array_len" field is an
3854safety mechanism, and should be set to the size in bytes of the memory that
3855userspace has reserved for the array. It must be at least the size dictated
3856by "mmu_type" and "params".
3857
3858While KVM_RUN is active, the shared region is under control of KVM. Its
3859contents are undefined, and any modification by userspace results in
3860boundedly undefined behavior.
3861
3862On return from KVM_RUN, the shared region will reflect the current state of
3863the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
3864to tell KVM which entries have been changed, prior to calling KVM_RUN again
3865on this vcpu.
3866
3867For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3868 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3869 - The "array" field points to an array of type "struct
3870 kvm_book3e_206_tlb_entry".
3871 - The array consists of all entries in the first TLB, followed by all
3872 entries in the second TLB.
3873 - Within a TLB, entries are ordered first by increasing set number. Within a
3874 set, entries are ordered by way (increasing ESEL).
3875 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3876 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3877 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3878 hardware ignores this value for TLB0.
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003879
38806.4 KVM_CAP_S390_CSS_SUPPORT
3881
3882Architectures: s390
Cornelia Huck0907c852014-06-27 09:29:26 +02003883Target: vcpu
Cornelia Huckfa6b7fe2012-12-20 15:32:12 +01003884Parameters: none
3885Returns: 0 on success; -1 on error
3886
3887This capability enables support for handling of channel I/O instructions.
3888
3889TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3890handled in-kernel, while the other I/O instructions are passed to userspace.
3891
3892When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3893SUBCHANNEL intercepts.
Alexander Graf1c810632013-01-04 18:12:48 +01003894
Cornelia Huck0907c852014-06-27 09:29:26 +02003895Note that even though this capability is enabled per-vcpu, the complete
3896virtual machine is affected.
3897
Alexander Graf1c810632013-01-04 18:12:48 +010038986.5 KVM_CAP_PPC_EPR
3899
3900Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003901Target: vcpu
Alexander Graf1c810632013-01-04 18:12:48 +01003902Parameters: args[0] defines whether the proxy facility is active
3903Returns: 0 on success; -1 on error
3904
3905This capability enables or disables the delivery of interrupts through the
3906external proxy facility.
3907
3908When enabled (args[0] != 0), every time the guest gets an external interrupt
3909delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3910to receive the topmost interrupt vector.
3911
3912When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3913
3914When this capability is enabled, KVM_EXIT_EPR can occur.
Scott Woodeb1e4f42013-04-12 14:08:47 +00003915
39166.6 KVM_CAP_IRQ_MPIC
3917
3918Architectures: ppc
3919Parameters: args[0] is the MPIC device fd
3920 args[1] is the MPIC CPU number for this vcpu
3921
3922This capability connects the vcpu to an in-kernel MPIC device.
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003923
39246.7 KVM_CAP_IRQ_XICS
3925
3926Architectures: ppc
Cornelia Huck0907c852014-06-27 09:29:26 +02003927Target: vcpu
Paul Mackerras5975a2e2013-04-27 00:28:37 +00003928Parameters: args[0] is the XICS device fd
3929 args[1] is the XICS CPU number (server ID) for this vcpu
3930
3931This capability connects the vcpu to an in-kernel XICS device.
Cornelia Huck8a366a42014-06-27 11:06:25 +02003932
39336.8 KVM_CAP_S390_IRQCHIP
3934
3935Architectures: s390
3936Target: vm
3937Parameters: none
3938
3939This capability enables the in-kernel irqchip for s390. Please refer to
3940"4.24 KVM_CREATE_IRQCHIP" for details.
Paul Mackerras699a0ea2014-06-02 11:02:59 +10003941
James Hogan5fafd8742014-12-08 23:07:56 +000039426.9 KVM_CAP_MIPS_FPU
3943
3944Architectures: mips
3945Target: vcpu
3946Parameters: args[0] is reserved for future use (should be 0).
3947
3948This capability allows the use of the host Floating Point Unit by the guest. It
3949allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3950done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3951(depending on the current guest FPU register mode), and the Status.FR,
3952Config5.FRE bits are accessible via the KVM API and also from the guest,
3953depending on them being supported by the FPU.
3954
James Hogand952bd02014-12-08 23:07:56 +000039556.10 KVM_CAP_MIPS_MSA
3956
3957Architectures: mips
3958Target: vcpu
3959Parameters: args[0] is reserved for future use (should be 0).
3960
3961This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3962It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3963Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3964accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3965the guest.
3966
Paul Mackerras699a0ea2014-06-02 11:02:59 +100039677. Capabilities that can be enabled on VMs
3968------------------------------------------
3969
3970There are certain capabilities that change the behavior of the virtual
3971machine when enabled. To enable them, please see section 4.37. Below
3972you can find a list of capabilities and what their effect on the VM
3973is when enabling them.
3974
3975The following information is provided along with the description:
3976
3977 Architectures: which instruction set architectures provide this ioctl.
3978 x86 includes both i386 and x86_64.
3979
3980 Parameters: what parameters are accepted by the capability.
3981
3982 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3983 are not detailed, but errors with specific meanings are.
3984
3985
39867.1 KVM_CAP_PPC_ENABLE_HCALL
3987
3988Architectures: ppc
3989Parameters: args[0] is the sPAPR hcall number
3990 args[1] is 0 to disable, 1 to enable in-kernel handling
3991
3992This capability controls whether individual sPAPR hypercalls (hcalls)
3993get handled by the kernel or not. Enabling or disabling in-kernel
3994handling of an hcall is effective across the VM. On creation, an
3995initial set of hcalls are enabled for in-kernel handling, which
3996consists of those hcalls for which in-kernel handlers were implemented
3997before this capability was implemented. If disabled, the kernel will
3998not to attempt to handle the hcall, but will always exit to userspace
3999to handle it. Note that it may not make sense to enable some and
4000disable others of a group of related hcalls, but KVM does not prevent
4001userspace from doing that.
Paul Mackerrasae2113a2014-06-02 11:03:00 +10004002
4003If the hcall number specified is not one that has an in-kernel
4004implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
4005error.
David Hildenbrand2444b352014-10-09 14:10:13 +02004006
40077.2 KVM_CAP_S390_USER_SIGP
4008
4009Architectures: s390
4010Parameters: none
4011
4012This capability controls which SIGP orders will be handled completely in user
4013space. With this capability enabled, all fast orders will be handled completely
4014in the kernel:
4015- SENSE
4016- SENSE RUNNING
4017- EXTERNAL CALL
4018- EMERGENCY SIGNAL
4019- CONDITIONAL EMERGENCY SIGNAL
4020
4021All other orders will be handled completely in user space.
4022
4023Only privileged operation exceptions will be checked for in the kernel (or even
4024in the hardware prior to interception). If this capability is not enabled, the
4025old way of handling SIGP orders is used (partially in kernel and user space).
Eric Farman68c55752014-06-09 10:57:26 -04004026
40277.3 KVM_CAP_S390_VECTOR_REGISTERS
4028
4029Architectures: s390
4030Parameters: none
4031Returns: 0 on success, negative value on error
4032
4033Allows use of the vector registers introduced with z13 processor, and
4034provides for the synchronization between host and user space. Will
4035return -EINVAL if the machine does not support vectors.
Ekaterina Tumanovae44fc8c2015-01-30 16:55:56 +01004036
40377.4 KVM_CAP_S390_USER_STSI
4038
4039Architectures: s390
4040Parameters: none
4041
4042This capability allows post-handlers for the STSI instruction. After
4043initial handling in the kernel, KVM exits to user space with
4044KVM_EXIT_S390_STSI to allow user space to insert further data.
4045
4046Before exiting to userspace, kvm handlers should fill in s390_stsi field of
4047vcpu->run:
4048struct {
4049 __u64 addr;
4050 __u8 ar;
4051 __u8 reserved;
4052 __u8 fc;
4053 __u8 sel1;
4054 __u16 sel2;
4055} s390_stsi;
4056
4057@addr - guest address of STSI SYSIB
4058@fc - function code
4059@sel1 - selector 1
4060@sel2 - selector 2
4061@ar - access register number
4062
4063KVM handlers should exit to userspace with rc = -EREMOTE.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004064
Steve Rutherford49df6392015-07-29 23:21:40 -070040657.5 KVM_CAP_SPLIT_IRQCHIP
4066
4067Architectures: x86
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004068Parameters: args[0] - number of routes reserved for userspace IOAPICs
Steve Rutherford49df6392015-07-29 23:21:40 -07004069Returns: 0 on success, -1 on error
4070
4071Create a local apic for each processor in the kernel. This can be used
4072instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
4073IOAPIC and PIC (and also the PIT, even though this has to be enabled
4074separately).
4075
Steve Rutherfordb053b2a2015-07-29 23:32:35 -07004076This capability also enables in kernel routing of interrupt requests;
4077when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
4078used in the IRQ routing table. The first args[0] MSI routes are reserved
4079for the IOAPIC pins. Whenever the LAPIC receives an EOI for these routes,
4080a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
Steve Rutherford49df6392015-07-29 23:21:40 -07004081
4082Fails if VCPU has already been created, or if the irqchip is already in the
4083kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
4084
David Hildenbrand051c87f2016-04-19 13:13:40 +020040857.6 KVM_CAP_S390_RI
4086
4087Architectures: s390
4088Parameters: none
4089
4090Allows use of runtime-instrumentation introduced with zEC12 processor.
4091Will return -EINVAL if the machine does not support runtime-instrumentation.
4092Will return -EBUSY if a VCPU has already been created.
Michael Ellermane928e9c2015-03-20 20:39:41 +11004093
Radim Krčmář371313132016-07-12 22:09:27 +020040947.7 KVM_CAP_X2APIC_API
4095
4096Architectures: x86
4097Parameters: args[0] - features that should be enabled
4098Returns: 0 on success, -EINVAL when args[0] contains invalid features
4099
4100Valid feature flags in args[0] are
4101
4102#define KVM_X2APIC_API_USE_32BIT_IDS (1ULL << 0)
Radim Krčmářc5192652016-07-12 22:09:28 +02004103#define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK (1ULL << 1)
Radim Krčmář371313132016-07-12 22:09:27 +02004104
4105Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
4106KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
4107allowing the use of 32-bit APIC IDs. See KVM_CAP_X2APIC_API in their
4108respective sections.
4109
Radim Krčmářc5192652016-07-12 22:09:28 +02004110KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
4111in logical mode or with more than 255 VCPUs. Otherwise, KVM treats 0xff
4112as a broadcast even in x2APIC mode in order to support physical x2APIC
4113without interrupt remapping. This is undesirable in logical mode,
4114where 0xff represents CPUs 0-7 in cluster 0.
Radim Krčmář371313132016-07-12 22:09:27 +02004115
David Hildenbrand6502a342016-06-21 14:19:51 +020041167.8 KVM_CAP_S390_USER_INSTR0
4117
4118Architectures: s390
4119Parameters: none
4120
4121With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
4122be intercepted and forwarded to user space. User space can use this
4123mechanism e.g. to realize 2-byte software breakpoints. The kernel will
4124not inject an operating exception for these instructions, user space has
4125to take care of that.
4126
4127This capability can be enabled dynamically even if VCPUs were already
4128created and are running.
Radim Krčmář371313132016-07-12 22:09:27 +02004129
Fan Zhang4e0b1ab2016-11-29 07:17:55 +010041307.9 KVM_CAP_S390_GS
4131
4132Architectures: s390
4133Parameters: none
4134Returns: 0 on success; -EINVAL if the machine does not support
4135 guarded storage; -EBUSY if a VCPU has already been created.
4136
4137Allows use of guarded storage for the KVM guest.
4138
Yi Min Zhao47a46932017-03-10 09:29:38 +010041397.10 KVM_CAP_S390_AIS
4140
4141Architectures: s390
4142Parameters: none
4143
4144Allow use of adapter-interruption suppression.
4145Returns: 0 on success; -EBUSY if a VCPU has already been created.
4146
Paul Mackerras3c313522017-02-06 13:24:41 +110041477.11 KVM_CAP_PPC_SMT
4148
4149Architectures: ppc
4150Parameters: vsmt_mode, flags
4151
4152Enabling this capability on a VM provides userspace with a way to set
4153the desired virtual SMT mode (i.e. the number of virtual CPUs per
4154virtual core). The virtual SMT mode, vsmt_mode, must be a power of 2
4155between 1 and 8. On POWER8, vsmt_mode must also be no greater than
4156the number of threads per subcore for the host. Currently flags must
4157be 0. A successful call to enable this capability will result in
4158vsmt_mode being returned when the KVM_CAP_PPC_SMT capability is
4159subsequently queried for the VM. This capability is only supported by
4160HV KVM, and can only be set before any VCPUs have been created.
Paul Mackerras2ed4f9d2017-06-21 16:01:27 +10004161The KVM_CAP_PPC_SMT_POSSIBLE capability indicates which virtual SMT
4162modes are available.
Paul Mackerras3c313522017-02-06 13:24:41 +11004163
Aravinda Prasad134764e2017-05-11 16:32:48 +053041647.12 KVM_CAP_PPC_FWNMI
4165
4166Architectures: ppc
4167Parameters: none
4168
4169With this capability a machine check exception in the guest address
4170space will cause KVM to exit the guest with NMI exit reason. This
4171enables QEMU to build error log and branch to guest kernel registered
4172machine check handling routine. Without this capability KVM will
4173branch to guests' 0x200 interrupt vector.
4174
Michael Ellermane928e9c2015-03-20 20:39:41 +110041758. Other capabilities.
4176----------------------
4177
4178This section lists capabilities that give information about other
4179features of the KVM implementation.
4180
41818.1 KVM_CAP_PPC_HWRNG
4182
4183Architectures: ppc
4184
4185This capability, if KVM_CHECK_EXTENSION indicates that it is
4186available, means that that the kernel has an implementation of the
4187H_RANDOM hypercall backed by a hardware random-number generator.
4188If present, the kernel H_RANDOM handler can be enabled for guest use
4189with the KVM_CAP_PPC_ENABLE_HCALL capability.
Andrey Smetanin5c9194122015-11-10 15:36:34 +03004190
41918.2 KVM_CAP_HYPERV_SYNIC
4192
4193Architectures: x86
4194This capability, if KVM_CHECK_EXTENSION indicates that it is
4195available, means that that the kernel has an implementation of the
4196Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
4197used to support Windows Hyper-V based guest paravirt drivers(VMBus).
4198
4199In order to use SynIC, it has to be activated by setting this
4200capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
4201will disable the use of APIC hardware virtualization even if supported
4202by the CPU, as it's incompatible with SynIC auto-EOI behavior.
Paul Mackerrasc9270132017-01-30 21:21:41 +11004203
42048.3 KVM_CAP_PPC_RADIX_MMU
4205
4206Architectures: ppc
4207
4208This capability, if KVM_CHECK_EXTENSION indicates that it is
4209available, means that that the kernel can support guests using the
4210radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
4211processor).
4212
42138.4 KVM_CAP_PPC_HASH_MMU_V3
4214
4215Architectures: ppc
4216
4217This capability, if KVM_CHECK_EXTENSION indicates that it is
4218available, means that that the kernel can support guests using the
4219hashed page table MMU defined in Power ISA V3.00 (as implemented in
4220the POWER9 processor), including in-memory segment tables.
James Hogana8a3c422017-03-14 10:15:19 +00004221
42228.5 KVM_CAP_MIPS_VZ
4223
4224Architectures: mips
4225
4226This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4227it is available, means that full hardware assisted virtualization capabilities
4228of the hardware are available for use through KVM. An appropriate
4229KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
4230utilises it.
4231
4232If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4233available, it means that the VM is using full hardware assisted virtualization
4234capabilities of the hardware. This is useful to check after creating a VM with
4235KVM_VM_MIPS_DEFAULT.
4236
4237The value returned by KVM_CHECK_EXTENSION should be compared against known
4238values (see below). All other values are reserved. This is to allow for the
4239possibility of other hardware assisted virtualization implementations which
4240may be incompatible with the MIPS VZ ASE.
4241
4242 0: The trap & emulate implementation is in use to run guest code in user
4243 mode. Guest virtual memory segments are rearranged to fit the guest in the
4244 user mode address space.
4245
4246 1: The MIPS VZ ASE is in use, providing full hardware assisted
4247 virtualization, including standard guest virtual memory segments.
4248
42498.6 KVM_CAP_MIPS_TE
4250
4251Architectures: mips
4252
4253This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4254it is available, means that the trap & emulate implementation is available to
4255run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
4256assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
4257to KVM_CREATE_VM to create a VM which utilises it.
4258
4259If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4260available, it means that the VM is using trap & emulate.
James Hogan578fd612017-03-14 10:15:20 +00004261
42628.7 KVM_CAP_MIPS_64BIT
4263
4264Architectures: mips
4265
4266This capability indicates the supported architecture type of the guest, i.e. the
4267supported register and address width.
4268
4269The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
4270kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
4271be checked specifically against known values (see below). All other values are
4272reserved.
4273
4274 0: MIPS32 or microMIPS32.
4275 Both registers and addresses are 32-bits wide.
4276 It will only be possible to run 32-bit guest code.
4277
4278 1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
4279 Registers are 64-bits wide, but addresses are 32-bits wide.
4280 64-bit guest code may run but cannot access MIPS64 memory segments.
4281 It will also be possible to run 32-bit guest code.
4282
4283 2: MIPS64 or microMIPS64 with access to all address segments.
4284 Both registers and addresses are 64-bits wide.
4285 It will be possible to run 64-bit or 32-bit guest code.
Michael S. Tsirkin668fffa2017-04-21 12:27:17 +02004286
42878.8 KVM_CAP_X86_GUEST_MWAIT
4288
4289Architectures: x86
4290
4291This capability indicates that guest using memory monotoring instructions
4292(MWAIT/MWAITX) to stop the virtual CPU will not cause a VM exit. As such time
4293spent while virtual CPU is halted in this way will then be accounted for as
4294guest running time on the host (as opposed to e.g. HLT).
Paolo Bonzinic24a7be2017-04-27 17:33:14 +02004295
42968.9 KVM_CAP_ARM_USER_IRQ
Alexander Graf3fe17e62016-09-27 21:08:05 +02004297
4298Architectures: arm, arm64
4299This capability, if KVM_CHECK_EXTENSION indicates that it is available, means
4300that if userspace creates a VM without an in-kernel interrupt controller, it
4301will be notified of changes to the output level of in-kernel emulated devices,
4302which can generate virtual interrupts, presented to the VM.
4303For such VMs, on every return to userspace, the kernel
4304updates the vcpu's run->s.regs.device_irq_level field to represent the actual
4305output level of the device.
4306
4307Whenever kvm detects a change in the device output level, kvm guarantees at
4308least one return to userspace before running the VM. This exit could either
4309be a KVM_EXIT_INTR or any other exit event, like KVM_EXIT_MMIO. This way,
4310userspace can always sample the device output level and re-compute the state of
4311the userspace interrupt controller. Userspace should always check the state
4312of run->s.regs.device_irq_level on every kvm exit.
4313The value in run->s.regs.device_irq_level can represent both level and edge
4314triggered interrupt signals, depending on the device. Edge triggered interrupt
4315signals will exit to userspace with the bit in run->s.regs.device_irq_level
4316set exactly once per edge signal.
4317
4318The field run->s.regs.device_irq_level is available independent of
4319run->kvm_valid_regs or run->kvm_dirty_regs bits.
4320
4321If KVM_CAP_ARM_USER_IRQ is supported, the KVM_CHECK_EXTENSION ioctl returns a
4322number larger than 0 indicating the version of this capability is implemented
4323and thereby which bits in in run->s.regs.device_irq_level can signal values.
4324
4325Currently the following bits are defined for the device_irq_level bitmap:
4326
4327 KVM_CAP_ARM_USER_IRQ >= 1:
4328
4329 KVM_ARM_DEV_EL1_VTIMER - EL1 virtual timer
4330 KVM_ARM_DEV_EL1_PTIMER - EL1 physical timer
4331 KVM_ARM_DEV_PMU - ARM PMU overflow interrupt signal
4332
4333Future versions of kvm may implement additional events. These will get
4334indicated by returning a higher number from KVM_CHECK_EXTENSION and will be
4335listed above.
Paul Mackerras2ed4f9d2017-06-21 16:01:27 +10004336
43378.10 KVM_CAP_PPC_SMT_POSSIBLE
4338
4339Architectures: ppc
4340
4341Querying this capability returns a bitmap indicating the possible
4342virtual SMT modes that can be set using KVM_CAP_PPC_SMT. If bit N
4343(counting from the right) is set, then a virtual SMT mode of 2^N is
4344available.
Roman Kaganefc479e2017-06-22 16:51:01 +03004345
43468.11 KVM_CAP_HYPERV_SYNIC2
4347
4348Architectures: x86
4349
4350This capability enables a newer version of Hyper-V Synthetic interrupt
4351controller (SynIC). The only difference with KVM_CAP_HYPERV_SYNIC is that KVM
4352doesn't clear SynIC message and event flags pages when they are enabled by
4353writing to the respective MSRs.
Roman Kagand3457c82017-07-14 17:13:20 +03004354
43558.12 KVM_CAP_HYPERV_VP_INDEX
4356
4357Architectures: x86
4358
4359This capability indicates that userspace can load HV_X64_MSR_VP_INDEX msr. Its
4360value is used to denote the target vcpu for a SynIC interrupt. For
4361compatibilty, KVM initializes this msr to KVM's internal vcpu index. When this
4362capability is absent, userspace can still query this msr's value.
Christian Borntraegerda9a1442017-11-09 10:00:45 +01004363
43648.13 KVM_CAP_S390_AIS_MIGRATION
4365
4366Architectures: s390
4367Parameters: none
4368
4369This capability indicates if the flic device will be able to get/set the
4370AIS states for migration via the KVM_DEV_FLIC_AISM_ALL attribute and allows
4371to discover this without having to create a flic device.