blob: 06df1877ad0f457091d5430768ec8b9a3c5f7a9f [file] [log] [blame]
J Freyensee0b61d2a2011-05-06 16:56:49 -07001/*
2 * pti.c - PTI driver for cJTAG data extration
3 *
4 * Copyright (C) Intel 2010
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
16 *
17 * The PTI (Parallel Trace Interface) driver directs trace data routed from
18 * various parts in the system out through the Intel Penwell PTI port and
19 * out of the mobile device for analysis with a debugging tool
20 * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
21 * compact JTAG, standard.
22 */
23
24#include <linux/init.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/console.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/tty.h>
31#include <linux/tty_driver.h>
32#include <linux/pci.h>
33#include <linux/mutex.h>
34#include <linux/miscdevice.h>
35#include <linux/pti.h>
Sergei Trofimovich06ed4622011-08-25 15:59:01 -070036#include <linux/slab.h>
37#include <linux/uaccess.h>
J Freyensee0b61d2a2011-05-06 16:56:49 -070038
39#define DRIVERNAME "pti"
40#define PCINAME "pciPTI"
41#define TTYNAME "ttyPTI"
42#define CHARNAME "pti"
43#define PTITTY_MINOR_START 0
44#define PTITTY_MINOR_NUM 2
45#define MAX_APP_IDS 16 /* 128 channel ids / u8 bit size */
46#define MAX_OS_IDS 16 /* 128 channel ids / u8 bit size */
47#define MAX_MODEM_IDS 16 /* 128 channel ids / u8 bit size */
48#define MODEM_BASE_ID 71 /* modem master ID address */
49#define CONTROL_ID 72 /* control master ID address */
50#define CONSOLE_ID 73 /* console master ID address */
51#define OS_BASE_ID 74 /* base OS master ID address */
52#define APP_BASE_ID 80 /* base App master ID address */
53#define CONTROL_FRAME_LEN 32 /* PTI control frame maximum size */
54#define USER_COPY_SIZE 8192 /* 8Kb buffer for user space copy */
55#define APERTURE_14 0x3800000 /* offset to first OS write addr */
56#define APERTURE_LEN 0x400000 /* address length */
57
58struct pti_tty {
59 struct pti_masterchannel *mc;
60};
61
62struct pti_dev {
63 struct tty_port port;
64 unsigned long pti_addr;
65 unsigned long aperture_base;
66 void __iomem *pti_ioaddr;
67 u8 ia_app[MAX_APP_IDS];
68 u8 ia_os[MAX_OS_IDS];
69 u8 ia_modem[MAX_MODEM_IDS];
70};
71
72/*
73 * This protects access to ia_app, ia_os, and ia_modem,
74 * which keeps track of channels allocated in
75 * an aperture write id.
76 */
77static DEFINE_MUTEX(alloclock);
78
79static struct pci_device_id pci_ids[] __devinitconst = {
80 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
81 {0}
82};
83
84static struct tty_driver *pti_tty_driver;
85static struct pti_dev *drv_data;
86
87static unsigned int pti_console_channel;
88static unsigned int pti_control_channel;
89
90/**
91 * pti_write_to_aperture()- The private write function to PTI HW.
92 *
93 * @mc: The 'aperture'. It's part of a write address that holds
94 * a master and channel ID.
95 * @buf: Data being written to the HW that will ultimately be seen
96 * in a debugging tool (Fido, Lauterbach).
97 * @len: Size of buffer.
98 *
99 * Since each aperture is specified by a unique
100 * master/channel ID, no two processes will be writing
101 * to the same aperture at the same time so no lock is required. The
102 * PTI-Output agent will send these out in the order that they arrived, and
103 * thus, it will intermix these messages. The debug tool can then later
104 * regroup the appropriate message segments together reconstituting each
105 * message.
106 */
107static void pti_write_to_aperture(struct pti_masterchannel *mc,
108 u8 *buf,
109 int len)
110{
111 int dwordcnt;
112 int final;
113 int i;
114 u32 ptiword;
115 u32 __iomem *aperture;
116 u8 *p = buf;
117
118 /*
119 * calculate the aperture offset from the base using the master and
120 * channel id's.
121 */
122 aperture = drv_data->pti_ioaddr + (mc->master << 15)
123 + (mc->channel << 8);
124
125 dwordcnt = len >> 2;
126 final = len - (dwordcnt << 2); /* final = trailing bytes */
127 if (final == 0 && dwordcnt != 0) { /* always need a final dword */
128 final += 4;
129 dwordcnt--;
130 }
131
132 for (i = 0; i < dwordcnt; i++) {
133 ptiword = be32_to_cpu(*(u32 *)p);
134 p += 4;
135 iowrite32(ptiword, aperture);
136 }
137
138 aperture += PTI_LASTDWORD_DTS; /* adding DTS signals that is EOM */
139
140 ptiword = 0;
141 for (i = 0; i < final; i++)
142 ptiword |= *p++ << (24-(8*i));
143
144 iowrite32(ptiword, aperture);
145 return;
146}
147
148/**
149 * pti_control_frame_built_and_sent()- control frame build and send function.
150 *
J Freyensee8168e9c2011-06-17 15:09:53 -0700151 * @mc: The master / channel structure on which the function
152 * built a control frame.
153 * @thread_name: The thread name associated with the master / channel or
154 * 'NULL' if using the 'current' global variable.
J Freyensee0b61d2a2011-05-06 16:56:49 -0700155 *
156 * To be able to post process the PTI contents on host side, a control frame
157 * is added before sending any PTI content. So the host side knows on
158 * each PTI frame the name of the thread using a dedicated master / channel.
J Freyensee8168e9c2011-06-17 15:09:53 -0700159 * The thread name is retrieved from 'current' global variable if 'thread_name'
160 * is 'NULL', else it is retrieved from 'thread_name' parameter.
J Freyensee0b61d2a2011-05-06 16:56:49 -0700161 * This function builds this frame and sends it to a master ID CONTROL_ID.
162 * The overhead is only 32 bytes since the driver only writes to HW
163 * in 32 byte chunks.
164 */
J Freyensee8168e9c2011-06-17 15:09:53 -0700165static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc,
166 const char *thread_name)
J Freyensee0b61d2a2011-05-06 16:56:49 -0700167{
168 struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
169 .channel = 0};
J Freyensee8168e9c2011-06-17 15:09:53 -0700170 const char *thread_name_p;
J Freyensee0b61d2a2011-05-06 16:56:49 -0700171 const char *control_format = "%3d %3d %s";
172 u8 control_frame[CONTROL_FRAME_LEN];
173
J Freyensee8168e9c2011-06-17 15:09:53 -0700174 if (!thread_name) {
175 /*
176 * Since we access the comm member in current's task_struct,
177 * we only need to be as large as what 'comm' in that
178 * structure is.
179 */
180 char comm[TASK_COMM_LEN];
J Freyensee0b61d2a2011-05-06 16:56:49 -0700181
J Freyensee8168e9c2011-06-17 15:09:53 -0700182 if (!in_interrupt())
183 get_task_comm(comm, current);
184 else
185 strncpy(comm, "Interrupt", TASK_COMM_LEN);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700186
J Freyensee8168e9c2011-06-17 15:09:53 -0700187 /* Absolutely ensure our buffer is zero terminated. */
188 comm[TASK_COMM_LEN-1] = 0;
189 thread_name_p = comm;
190 } else {
191 thread_name_p = thread_name;
192 }
J Freyensee0b61d2a2011-05-06 16:56:49 -0700193
194 mccontrol.channel = pti_control_channel;
195 pti_control_channel = (pti_control_channel + 1) & 0x7f;
196
197 snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
J Freyensee8168e9c2011-06-17 15:09:53 -0700198 mc->channel, thread_name_p);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700199 pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
200}
201
202/**
203 * pti_write_full_frame_to_aperture()- high level function to
204 * write to PTI.
205 *
206 * @mc: The 'aperture'. It's part of a write address that holds
207 * a master and channel ID.
208 * @buf: Data being written to the HW that will ultimately be seen
209 * in a debugging tool (Fido, Lauterbach).
210 * @len: Size of buffer.
211 *
212 * All threads sending data (either console, user space application, ...)
213 * are calling the high level function to write to PTI meaning that it is
214 * possible to add a control frame before sending the content.
215 */
216static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
217 const unsigned char *buf,
218 int len)
219{
J Freyensee8168e9c2011-06-17 15:09:53 -0700220 pti_control_frame_built_and_sent(mc, NULL);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700221 pti_write_to_aperture(mc, (u8 *)buf, len);
222}
223
224/**
225 * get_id()- Allocate a master and channel ID.
226 *
J Freyensee8168e9c2011-06-17 15:09:53 -0700227 * @id_array: an array of bits representing what channel
228 * id's are allocated for writing.
229 * @max_ids: The max amount of available write IDs to use.
230 * @base_id: The starting SW channel ID, based on the Intel
231 * PTI arch.
232 * @thread_name: The thread name associated with the master / channel or
233 * 'NULL' if using the 'current' global variable.
J Freyensee0b61d2a2011-05-06 16:56:49 -0700234 *
235 * Returns:
236 * pti_masterchannel struct with master, channel ID address
237 * 0 for error
238 *
239 * Each bit in the arrays ia_app and ia_os correspond to a master and
240 * channel id. The bit is one if the id is taken and 0 if free. For
241 * every master there are 128 channel id's.
242 */
J Freyensee8168e9c2011-06-17 15:09:53 -0700243static struct pti_masterchannel *get_id(u8 *id_array,
244 int max_ids,
245 int base_id,
246 const char *thread_name)
J Freyensee0b61d2a2011-05-06 16:56:49 -0700247{
248 struct pti_masterchannel *mc;
249 int i, j, mask;
250
251 mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
252 if (mc == NULL)
253 return NULL;
254
255 /* look for a byte with a free bit */
256 for (i = 0; i < max_ids; i++)
257 if (id_array[i] != 0xff)
258 break;
259 if (i == max_ids) {
260 kfree(mc);
261 return NULL;
262 }
263 /* find the bit in the 128 possible channel opportunities */
264 mask = 0x80;
265 for (j = 0; j < 8; j++) {
266 if ((id_array[i] & mask) == 0)
267 break;
268 mask >>= 1;
269 }
270
271 /* grab it */
272 id_array[i] |= mask;
273 mc->master = base_id;
274 mc->channel = ((i & 0xf)<<3) + j;
275 /* write new master Id / channel Id allocation to channel control */
J Freyensee8168e9c2011-06-17 15:09:53 -0700276 pti_control_frame_built_and_sent(mc, thread_name);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700277 return mc;
278}
279
280/*
281 * The following three functions:
282 * pti_request_mastercahannel(), mipi_release_masterchannel()
283 * and pti_writedata() are an API for other kernel drivers to
284 * access PTI.
285 */
286
287/**
288 * pti_request_masterchannel()- Kernel API function used to allocate
289 * a master, channel ID address
290 * to write to PTI HW.
291 *
J Freyensee8168e9c2011-06-17 15:09:53 -0700292 * @type: 0- request Application master, channel aperture ID
293 * write address.
294 * 1- request OS master, channel aperture ID write
295 * address.
296 * 2- request Modem master, channel aperture ID
297 * write address.
298 * Other values, error.
299 * @thread_name: The thread name associated with the master / channel or
300 * 'NULL' if using the 'current' global variable.
J Freyensee0b61d2a2011-05-06 16:56:49 -0700301 *
302 * Returns:
303 * pti_masterchannel struct
304 * 0 for error
305 */
J Freyensee8168e9c2011-06-17 15:09:53 -0700306struct pti_masterchannel *pti_request_masterchannel(u8 type,
307 const char *thread_name)
J Freyensee0b61d2a2011-05-06 16:56:49 -0700308{
309 struct pti_masterchannel *mc;
310
311 mutex_lock(&alloclock);
312
313 switch (type) {
314
315 case 0:
J Freyensee8168e9c2011-06-17 15:09:53 -0700316 mc = get_id(drv_data->ia_app, MAX_APP_IDS,
317 APP_BASE_ID, thread_name);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700318 break;
319
320 case 1:
J Freyensee8168e9c2011-06-17 15:09:53 -0700321 mc = get_id(drv_data->ia_os, MAX_OS_IDS,
322 OS_BASE_ID, thread_name);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700323 break;
324
325 case 2:
J Freyensee8168e9c2011-06-17 15:09:53 -0700326 mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS,
327 MODEM_BASE_ID, thread_name);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700328 break;
329 default:
330 mc = NULL;
331 }
332
333 mutex_unlock(&alloclock);
334 return mc;
335}
336EXPORT_SYMBOL_GPL(pti_request_masterchannel);
337
338/**
339 * pti_release_masterchannel()- Kernel API function used to release
340 * a master, channel ID address
341 * used to write to PTI HW.
342 *
J Freyensee29021bcc2011-05-25 14:38:18 -0700343 * @mc: master, channel apeture ID address to be released. This
344 * will de-allocate the structure via kfree().
J Freyensee0b61d2a2011-05-06 16:56:49 -0700345 */
346void pti_release_masterchannel(struct pti_masterchannel *mc)
347{
348 u8 master, channel, i;
349
350 mutex_lock(&alloclock);
351
352 if (mc) {
353 master = mc->master;
354 channel = mc->channel;
355
356 if (master == APP_BASE_ID) {
357 i = channel >> 3;
358 drv_data->ia_app[i] &= ~(0x80>>(channel & 0x7));
359 } else if (master == OS_BASE_ID) {
360 i = channel >> 3;
361 drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
362 } else {
363 i = channel >> 3;
364 drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
365 }
366
367 kfree(mc);
368 }
369
370 mutex_unlock(&alloclock);
371}
372EXPORT_SYMBOL_GPL(pti_release_masterchannel);
373
374/**
375 * pti_writedata()- Kernel API function used to write trace
376 * debugging data to PTI HW.
377 *
378 * @mc: Master, channel aperture ID address to write to.
379 * Null value will return with no write occurring.
380 * @buf: Trace debuging data to write to the PTI HW.
381 * Null value will return with no write occurring.
382 * @count: Size of buf. Value of 0 or a negative number will
383 * return with no write occuring.
384 */
385void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
386{
387 /*
388 * since this function is exported, this is treated like an
389 * API function, thus, all parameters should
390 * be checked for validity.
391 */
392 if ((mc != NULL) && (buf != NULL) && (count > 0))
393 pti_write_to_aperture(mc, buf, count);
394 return;
395}
396EXPORT_SYMBOL_GPL(pti_writedata);
397
398/**
399 * pti_pci_remove()- Driver exit method to remove PTI from
400 * PCI bus.
401 * @pdev: variable containing pci info of PTI.
402 */
403static void __devexit pti_pci_remove(struct pci_dev *pdev)
404{
405 struct pti_dev *drv_data;
406
407 drv_data = pci_get_drvdata(pdev);
408 if (drv_data != NULL) {
409 pci_iounmap(pdev, drv_data->pti_ioaddr);
410 pci_set_drvdata(pdev, NULL);
411 kfree(drv_data);
412 pci_release_region(pdev, 1);
413 pci_disable_device(pdev);
414 }
415}
416
417/*
418 * for the tty_driver_*() basic function descriptions, see tty_driver.h.
419 * Specific header comments made for PTI-related specifics.
420 */
421
422/**
423 * pti_tty_driver_open()- Open an Application master, channel aperture
424 * ID to the PTI device via tty device.
425 *
426 * @tty: tty interface.
427 * @filp: filp interface pased to tty_port_open() call.
428 *
429 * Returns:
430 * int, 0 for success
431 * otherwise, fail value
432 *
433 * The main purpose of using the tty device interface is for
434 * each tty port to have a unique PTI write aperture. In an
435 * example use case, ttyPTI0 gets syslogd and an APP aperture
436 * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
437 * modem messages into PTI. Modem trace data does not have to
438 * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
439 * master IDs. These messages go through the PTI HW and out of
440 * the handheld platform and to the Fido/Lauterbach device.
441 */
442static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
443{
444 /*
445 * we actually want to allocate a new channel per open, per
446 * system arch. HW gives more than plenty channels for a single
447 * system task to have its own channel to write trace data. This
448 * also removes a locking requirement for the actual write
449 * procedure.
450 */
451 return tty_port_open(&drv_data->port, tty, filp);
452}
453
454/**
455 * pti_tty_driver_close()- close tty device and release Application
456 * master, channel aperture ID to the PTI device via tty device.
457 *
458 * @tty: tty interface.
459 * @filp: filp interface pased to tty_port_close() call.
460 *
461 * The main purpose of using the tty device interface is to route
462 * syslog daemon messages to the PTI HW and out of the handheld platform
463 * and to the Fido/Lauterbach device.
464 */
465static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
466{
467 tty_port_close(&drv_data->port, tty, filp);
468}
469
470/**
J Freyenseee556b812011-05-25 14:50:26 -0700471 * pti_tty_install()- Used to set up specific master-channels
472 * to tty ports for organizational purposes when
473 * tracing viewed from debuging tools.
J Freyensee0b61d2a2011-05-06 16:56:49 -0700474 *
475 * @driver: tty driver information.
476 * @tty: tty struct containing pti information.
477 *
478 * Returns:
479 * 0 for success
480 * otherwise, error
481 */
482static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
483{
484 int idx = tty->index;
485 struct pti_tty *pti_tty_data;
486 int ret = tty_init_termios(tty);
487
488 if (ret == 0) {
489 tty_driver_kref_get(driver);
490 tty->count++;
491 driver->ttys[idx] = tty;
492
493 pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
494 if (pti_tty_data == NULL)
495 return -ENOMEM;
496
497 if (idx == PTITTY_MINOR_START)
J Freyensee8168e9c2011-06-17 15:09:53 -0700498 pti_tty_data->mc = pti_request_masterchannel(0, NULL);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700499 else
J Freyensee8168e9c2011-06-17 15:09:53 -0700500 pti_tty_data->mc = pti_request_masterchannel(2, NULL);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700501
J Freyensee1dae42b2011-05-25 14:45:40 -0700502 if (pti_tty_data->mc == NULL) {
503 kfree(pti_tty_data);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700504 return -ENXIO;
J Freyensee1dae42b2011-05-25 14:45:40 -0700505 }
J Freyensee0b61d2a2011-05-06 16:56:49 -0700506 tty->driver_data = pti_tty_data;
507 }
508
509 return ret;
510}
511
512/**
513 * pti_tty_cleanup()- Used to de-allocate master-channel resources
514 * tied to tty's of this driver.
515 *
516 * @tty: tty struct containing pti information.
517 */
518static void pti_tty_cleanup(struct tty_struct *tty)
519{
520 struct pti_tty *pti_tty_data = tty->driver_data;
521 if (pti_tty_data == NULL)
522 return;
523 pti_release_masterchannel(pti_tty_data->mc);
J Freyensee1312ba42011-05-25 14:56:43 -0700524 kfree(pti_tty_data);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700525 tty->driver_data = NULL;
526}
527
528/**
529 * pti_tty_driver_write()- Write trace debugging data through the char
530 * interface to the PTI HW. Part of the misc device implementation.
531 *
532 * @filp: Contains private data which is used to obtain
533 * master, channel write ID.
534 * @data: trace data to be written.
535 * @len: # of byte to write.
536 *
537 * Returns:
538 * int, # of bytes written
539 * otherwise, error
540 */
541static int pti_tty_driver_write(struct tty_struct *tty,
542 const unsigned char *buf, int len)
543{
544 struct pti_tty *pti_tty_data = tty->driver_data;
545 if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
546 pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
547 return len;
548 }
549 /*
550 * we can't write to the pti hardware if the private driver_data
551 * and the mc address is not there.
552 */
553 else
554 return -EFAULT;
555}
556
557/**
558 * pti_tty_write_room()- Always returns 2048.
559 *
560 * @tty: contains tty info of the pti driver.
561 */
562static int pti_tty_write_room(struct tty_struct *tty)
563{
564 return 2048;
565}
566
567/**
568 * pti_char_open()- Open an Application master, channel aperture
569 * ID to the PTI device. Part of the misc device implementation.
570 *
571 * @inode: not used.
572 * @filp: Output- will have a masterchannel struct set containing
573 * the allocated application PTI aperture write address.
574 *
575 * Returns:
576 * int, 0 for success
577 * otherwise, a fail value
578 */
579static int pti_char_open(struct inode *inode, struct file *filp)
580{
581 struct pti_masterchannel *mc;
582
583 /*
584 * We really do want to fail immediately if
585 * pti_request_masterchannel() fails,
586 * before assigning the value to filp->private_data.
587 * Slightly easier to debug if this driver needs debugging.
588 */
J Freyensee8168e9c2011-06-17 15:09:53 -0700589 mc = pti_request_masterchannel(0, NULL);
J Freyensee0b61d2a2011-05-06 16:56:49 -0700590 if (mc == NULL)
591 return -ENOMEM;
592 filp->private_data = mc;
593 return 0;
594}
595
596/**
597 * pti_char_release()- Close a char channel to the PTI device. Part
598 * of the misc device implementation.
599 *
600 * @inode: Not used in this implementaiton.
601 * @filp: Contains private_data that contains the master, channel
602 * ID to be released by the PTI device.
603 *
604 * Returns:
605 * always 0
606 */
607static int pti_char_release(struct inode *inode, struct file *filp)
608{
609 pti_release_masterchannel(filp->private_data);
J Freyensee29021bcc2011-05-25 14:38:18 -0700610 filp->private_data = NULL;
J Freyensee0b61d2a2011-05-06 16:56:49 -0700611 return 0;
612}
613
614/**
615 * pti_char_write()- Write trace debugging data through the char
616 * interface to the PTI HW. Part of the misc device implementation.
617 *
618 * @filp: Contains private data which is used to obtain
619 * master, channel write ID.
620 * @data: trace data to be written.
621 * @len: # of byte to write.
622 * @ppose: Not used in this function implementation.
623 *
624 * Returns:
625 * int, # of bytes written
626 * otherwise, error value
627 *
628 * Notes: From side discussions with Alan Cox and experimenting
629 * with PTI debug HW like Nokia's Fido box and Lauterbach
630 * devices, 8192 byte write buffer used by USER_COPY_SIZE was
631 * deemed an appropriate size for this type of usage with
632 * debugging HW.
633 */
634static ssize_t pti_char_write(struct file *filp, const char __user *data,
635 size_t len, loff_t *ppose)
636{
637 struct pti_masterchannel *mc;
638 void *kbuf;
639 const char __user *tmp;
640 size_t size = USER_COPY_SIZE;
641 size_t n = 0;
642
643 tmp = data;
644 mc = filp->private_data;
645
646 kbuf = kmalloc(size, GFP_KERNEL);
647 if (kbuf == NULL) {
648 pr_err("%s(%d): buf allocation failed\n",
649 __func__, __LINE__);
650 return -ENOMEM;
651 }
652
653 do {
654 if (len - n > USER_COPY_SIZE)
655 size = USER_COPY_SIZE;
656 else
657 size = len - n;
658
659 if (copy_from_user(kbuf, tmp, size)) {
660 kfree(kbuf);
661 return n ? n : -EFAULT;
662 }
663
664 pti_write_to_aperture(mc, kbuf, size);
665 n += size;
666 tmp += size;
667
668 } while (len > n);
669
670 kfree(kbuf);
671 return len;
672}
673
674static const struct tty_operations pti_tty_driver_ops = {
675 .open = pti_tty_driver_open,
676 .close = pti_tty_driver_close,
677 .write = pti_tty_driver_write,
678 .write_room = pti_tty_write_room,
679 .install = pti_tty_install,
680 .cleanup = pti_tty_cleanup
681};
682
683static const struct file_operations pti_char_driver_ops = {
684 .owner = THIS_MODULE,
685 .write = pti_char_write,
686 .open = pti_char_open,
687 .release = pti_char_release,
688};
689
690static struct miscdevice pti_char_driver = {
691 .minor = MISC_DYNAMIC_MINOR,
692 .name = CHARNAME,
693 .fops = &pti_char_driver_ops
694};
695
696/**
697 * pti_console_write()- Write to the console that has been acquired.
698 *
699 * @c: Not used in this implementaiton.
700 * @buf: Data to be written.
701 * @len: Length of buf.
702 */
703static void pti_console_write(struct console *c, const char *buf, unsigned len)
704{
705 static struct pti_masterchannel mc = {.master = CONSOLE_ID,
706 .channel = 0};
707
708 mc.channel = pti_console_channel;
709 pti_console_channel = (pti_console_channel + 1) & 0x7f;
710
711 pti_write_full_frame_to_aperture(&mc, buf, len);
712}
713
714/**
715 * pti_console_device()- Return the driver tty structure and set the
716 * associated index implementation.
717 *
718 * @c: Console device of the driver.
719 * @index: index associated with c.
720 *
721 * Returns:
722 * always value of pti_tty_driver structure when this function
723 * is called.
724 */
725static struct tty_driver *pti_console_device(struct console *c, int *index)
726{
727 *index = c->index;
728 return pti_tty_driver;
729}
730
731/**
732 * pti_console_setup()- Initialize console variables used by the driver.
733 *
734 * @c: Not used.
735 * @opts: Not used.
736 *
737 * Returns:
738 * always 0.
739 */
740static int pti_console_setup(struct console *c, char *opts)
741{
742 pti_console_channel = 0;
743 pti_control_channel = 0;
744 return 0;
745}
746
747/*
748 * pti_console struct, used to capture OS printk()'s and shift
749 * out to the PTI device for debugging. This cannot be
750 * enabled upon boot because of the possibility of eating
751 * any serial console printk's (race condition discovered).
752 * The console should be enabled upon when the tty port is
753 * used for the first time. Since the primary purpose for
754 * the tty port is to hook up syslog to it, the tty port
755 * will be open for a really long time.
756 */
757static struct console pti_console = {
758 .name = TTYNAME,
759 .write = pti_console_write,
760 .device = pti_console_device,
761 .setup = pti_console_setup,
762 .flags = CON_PRINTBUFFER,
763 .index = 0,
764};
765
766/**
767 * pti_port_activate()- Used to start/initialize any items upon
768 * first opening of tty_port().
769 *
770 * @port- The tty port number of the PTI device.
771 * @tty- The tty struct associated with this device.
772 *
773 * Returns:
774 * always returns 0
775 *
776 * Notes: The primary purpose of the PTI tty port 0 is to hook
777 * the syslog daemon to it; thus this port will be open for a
778 * very long time.
779 */
780static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
781{
782 if (port->tty->index == PTITTY_MINOR_START)
783 console_start(&pti_console);
784 return 0;
785}
786
787/**
788 * pti_port_shutdown()- Used to stop/shutdown any items upon the
789 * last tty port close.
790 *
791 * @port- The tty port number of the PTI device.
792 *
793 * Notes: The primary purpose of the PTI tty port 0 is to hook
794 * the syslog daemon to it; thus this port will be open for a
795 * very long time.
796 */
797static void pti_port_shutdown(struct tty_port *port)
798{
799 if (port->tty->index == PTITTY_MINOR_START)
800 console_stop(&pti_console);
801}
802
803static const struct tty_port_operations tty_port_ops = {
804 .activate = pti_port_activate,
805 .shutdown = pti_port_shutdown,
806};
807
808/*
809 * Note the _probe() call sets everything up and ties the char and tty
810 * to successfully detecting the PTI device on the pci bus.
811 */
812
813/**
814 * pti_pci_probe()- Used to detect pti on the pci bus and set
815 * things up in the driver.
816 *
817 * @pdev- pci_dev struct values for pti.
818 * @ent- pci_device_id struct for pti driver.
819 *
820 * Returns:
821 * 0 for success
822 * otherwise, error
823 */
824static int __devinit pti_pci_probe(struct pci_dev *pdev,
825 const struct pci_device_id *ent)
826{
827 int retval = -EINVAL;
828 int pci_bar = 1;
829
830 dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
831 __func__, __LINE__, pdev->vendor, pdev->device);
832
833 retval = misc_register(&pti_char_driver);
834 if (retval) {
835 pr_err("%s(%d): CHAR registration failed of pti driver\n",
836 __func__, __LINE__);
837 pr_err("%s(%d): Error value returned: %d\n",
838 __func__, __LINE__, retval);
839 return retval;
840 }
841
842 retval = pci_enable_device(pdev);
843 if (retval != 0) {
844 dev_err(&pdev->dev,
845 "%s: pci_enable_device() returned error %d\n",
846 __func__, retval);
847 return retval;
848 }
849
850 drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
851
852 if (drv_data == NULL) {
853 retval = -ENOMEM;
854 dev_err(&pdev->dev,
855 "%s(%d): kmalloc() returned NULL memory.\n",
856 __func__, __LINE__);
857 return retval;
858 }
859 drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
860
861 retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
862 if (retval != 0) {
863 dev_err(&pdev->dev,
864 "%s(%d): pci_request_region() returned error %d\n",
865 __func__, __LINE__, retval);
866 kfree(drv_data);
867 return retval;
868 }
869 drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
870 drv_data->pti_ioaddr =
871 ioremap_nocache((u32)drv_data->aperture_base,
872 APERTURE_LEN);
873 if (!drv_data->pti_ioaddr) {
874 pci_release_region(pdev, pci_bar);
875 retval = -ENOMEM;
876 kfree(drv_data);
877 return retval;
878 }
879
880 pci_set_drvdata(pdev, drv_data);
881
882 tty_port_init(&drv_data->port);
883 drv_data->port.ops = &tty_port_ops;
884
885 tty_register_device(pti_tty_driver, 0, &pdev->dev);
886 tty_register_device(pti_tty_driver, 1, &pdev->dev);
887
888 register_console(&pti_console);
889
890 return retval;
891}
892
893static struct pci_driver pti_pci_driver = {
894 .name = PCINAME,
895 .id_table = pci_ids,
896 .probe = pti_pci_probe,
897 .remove = pti_pci_remove,
898};
899
900/**
901 *
902 * pti_init()- Overall entry/init call to the pti driver.
903 * It starts the registration process with the kernel.
904 *
905 * Returns:
906 * int __init, 0 for success
907 * otherwise value is an error
908 *
909 */
910static int __init pti_init(void)
911{
912 int retval = -EINVAL;
913
914 /* First register module as tty device */
915
916 pti_tty_driver = alloc_tty_driver(1);
917 if (pti_tty_driver == NULL) {
918 pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
919 __func__, __LINE__);
920 return -ENOMEM;
921 }
922
923 pti_tty_driver->owner = THIS_MODULE;
924 pti_tty_driver->magic = TTY_DRIVER_MAGIC;
925 pti_tty_driver->driver_name = DRIVERNAME;
926 pti_tty_driver->name = TTYNAME;
927 pti_tty_driver->major = 0;
928 pti_tty_driver->minor_start = PTITTY_MINOR_START;
929 pti_tty_driver->minor_num = PTITTY_MINOR_NUM;
930 pti_tty_driver->num = PTITTY_MINOR_NUM;
931 pti_tty_driver->type = TTY_DRIVER_TYPE_SYSTEM;
932 pti_tty_driver->subtype = SYSTEM_TYPE_SYSCONS;
933 pti_tty_driver->flags = TTY_DRIVER_REAL_RAW |
934 TTY_DRIVER_DYNAMIC_DEV;
935 pti_tty_driver->init_termios = tty_std_termios;
936
937 tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
938
939 retval = tty_register_driver(pti_tty_driver);
940 if (retval) {
941 pr_err("%s(%d): TTY registration failed of pti driver\n",
942 __func__, __LINE__);
943 pr_err("%s(%d): Error value returned: %d\n",
944 __func__, __LINE__, retval);
945
946 pti_tty_driver = NULL;
947 return retval;
948 }
949
950 retval = pci_register_driver(&pti_pci_driver);
951
952 if (retval) {
953 pr_err("%s(%d): PCI registration failed of pti driver\n",
954 __func__, __LINE__);
955 pr_err("%s(%d): Error value returned: %d\n",
956 __func__, __LINE__, retval);
957
958 tty_unregister_driver(pti_tty_driver);
959 pr_err("%s(%d): Unregistering TTY part of pti driver\n",
960 __func__, __LINE__);
961 pti_tty_driver = NULL;
962 return retval;
963 }
964
965 return retval;
966}
967
968/**
969 * pti_exit()- Unregisters this module as a tty and pci driver.
970 */
971static void __exit pti_exit(void)
972{
973 int retval;
974
975 tty_unregister_device(pti_tty_driver, 0);
976 tty_unregister_device(pti_tty_driver, 1);
977
978 retval = tty_unregister_driver(pti_tty_driver);
979 if (retval) {
980 pr_err("%s(%d): TTY unregistration failed of pti driver\n",
981 __func__, __LINE__);
982 pr_err("%s(%d): Error value returned: %d\n",
983 __func__, __LINE__, retval);
984 }
985
986 pci_unregister_driver(&pti_pci_driver);
987
988 retval = misc_deregister(&pti_char_driver);
989 if (retval) {
990 pr_err("%s(%d): CHAR unregistration failed of pti driver\n",
991 __func__, __LINE__);
992 pr_err("%s(%d): Error value returned: %d\n",
993 __func__, __LINE__, retval);
994 }
995
996 unregister_console(&pti_console);
997 return;
998}
999
1000module_init(pti_init);
1001module_exit(pti_exit);
1002
1003MODULE_LICENSE("GPL");
1004MODULE_AUTHOR("Ken Mills, Jay Freyensee");
1005MODULE_DESCRIPTION("PTI Driver");
1006