blob: e79a26a886c883e0fc56ba0318a1aaa87b41e366 [file] [log] [blame]
Auke Kok9d5c8242008-01-24 02:22:38 -08001/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
Auke Kok9d5c8242008-01-24 02:22:38 -080034#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/mii.h>
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/interrupt.h>
43#include <linux/if_ether.h>
44
45#include "igb.h"
46
47#define DRV_VERSION "1.0.8-k2"
48char igb_driver_name[] = "igb";
49char igb_driver_version[] = DRV_VERSION;
50static const char igb_driver_string[] =
51 "Intel(R) Gigabit Ethernet Network Driver";
52static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
53
54
55static const struct e1000_info *igb_info_tbl[] = {
56 [board_82575] = &e1000_82575_info,
57};
58
59static struct pci_device_id igb_pci_tbl[] = {
60 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
63 /* required last entry */
64 {0, }
65};
66
67MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
68
69void igb_reset(struct igb_adapter *);
70static int igb_setup_all_tx_resources(struct igb_adapter *);
71static int igb_setup_all_rx_resources(struct igb_adapter *);
72static void igb_free_all_tx_resources(struct igb_adapter *);
73static void igb_free_all_rx_resources(struct igb_adapter *);
74static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
75static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
76void igb_update_stats(struct igb_adapter *);
77static int igb_probe(struct pci_dev *, const struct pci_device_id *);
78static void __devexit igb_remove(struct pci_dev *pdev);
79static int igb_sw_init(struct igb_adapter *);
80static int igb_open(struct net_device *);
81static int igb_close(struct net_device *);
82static void igb_configure_tx(struct igb_adapter *);
83static void igb_configure_rx(struct igb_adapter *);
84static void igb_setup_rctl(struct igb_adapter *);
85static void igb_clean_all_tx_rings(struct igb_adapter *);
86static void igb_clean_all_rx_rings(struct igb_adapter *);
87static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
88static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
89static void igb_set_multi(struct net_device *);
90static void igb_update_phy_info(unsigned long);
91static void igb_watchdog(unsigned long);
92static void igb_watchdog_task(struct work_struct *);
93static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
94 struct igb_ring *);
95static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
96static struct net_device_stats *igb_get_stats(struct net_device *);
97static int igb_change_mtu(struct net_device *, int);
98static int igb_set_mac(struct net_device *, void *);
99static irqreturn_t igb_intr(int irq, void *);
100static irqreturn_t igb_intr_msi(int irq, void *);
101static irqreturn_t igb_msix_other(int irq, void *);
102static irqreturn_t igb_msix_rx(int irq, void *);
103static irqreturn_t igb_msix_tx(int irq, void *);
104static int igb_clean_rx_ring_msix(struct napi_struct *, int);
105static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
106static int igb_clean(struct napi_struct *, int);
107static bool igb_clean_rx_irq_adv(struct igb_adapter *,
108 struct igb_ring *, int *, int);
109static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
110 struct igb_ring *, int);
111static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
112static void igb_tx_timeout(struct net_device *);
113static void igb_reset_task(struct work_struct *);
114static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
115static void igb_vlan_rx_add_vid(struct net_device *, u16);
116static void igb_vlan_rx_kill_vid(struct net_device *, u16);
117static void igb_restore_vlan(struct igb_adapter *);
118
119static int igb_suspend(struct pci_dev *, pm_message_t);
120#ifdef CONFIG_PM
121static int igb_resume(struct pci_dev *);
122#endif
123static void igb_shutdown(struct pci_dev *);
124
125#ifdef CONFIG_NET_POLL_CONTROLLER
126/* for netdump / net console */
127static void igb_netpoll(struct net_device *);
128#endif
129
130static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
131 pci_channel_state_t);
132static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
133static void igb_io_resume(struct pci_dev *);
134
135static struct pci_error_handlers igb_err_handler = {
136 .error_detected = igb_io_error_detected,
137 .slot_reset = igb_io_slot_reset,
138 .resume = igb_io_resume,
139};
140
141
142static struct pci_driver igb_driver = {
143 .name = igb_driver_name,
144 .id_table = igb_pci_tbl,
145 .probe = igb_probe,
146 .remove = __devexit_p(igb_remove),
147#ifdef CONFIG_PM
148 /* Power Managment Hooks */
149 .suspend = igb_suspend,
150 .resume = igb_resume,
151#endif
152 .shutdown = igb_shutdown,
153 .err_handler = &igb_err_handler
154};
155
156MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
157MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
158MODULE_LICENSE("GPL");
159MODULE_VERSION(DRV_VERSION);
160
161#ifdef DEBUG
162/**
163 * igb_get_hw_dev_name - return device name string
164 * used by hardware layer to print debugging information
165 **/
166char *igb_get_hw_dev_name(struct e1000_hw *hw)
167{
168 struct igb_adapter *adapter = hw->back;
169 return adapter->netdev->name;
170}
171#endif
172
173/**
174 * igb_init_module - Driver Registration Routine
175 *
176 * igb_init_module is the first routine called when the driver is
177 * loaded. All it does is register with the PCI subsystem.
178 **/
179static int __init igb_init_module(void)
180{
181 int ret;
182 printk(KERN_INFO "%s - version %s\n",
183 igb_driver_string, igb_driver_version);
184
185 printk(KERN_INFO "%s\n", igb_copyright);
186
187 ret = pci_register_driver(&igb_driver);
188 return ret;
189}
190
191module_init(igb_init_module);
192
193/**
194 * igb_exit_module - Driver Exit Cleanup Routine
195 *
196 * igb_exit_module is called just before the driver is removed
197 * from memory.
198 **/
199static void __exit igb_exit_module(void)
200{
201 pci_unregister_driver(&igb_driver);
202}
203
204module_exit(igb_exit_module);
205
206/**
207 * igb_alloc_queues - Allocate memory for all rings
208 * @adapter: board private structure to initialize
209 *
210 * We allocate one ring per queue at run-time since we don't know the
211 * number of queues at compile-time.
212 **/
213static int igb_alloc_queues(struct igb_adapter *adapter)
214{
215 int i;
216
217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
218 sizeof(struct igb_ring), GFP_KERNEL);
219 if (!adapter->tx_ring)
220 return -ENOMEM;
221
222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
223 sizeof(struct igb_ring), GFP_KERNEL);
224 if (!adapter->rx_ring) {
225 kfree(adapter->tx_ring);
226 return -ENOMEM;
227 }
228
229 for (i = 0; i < adapter->num_rx_queues; i++) {
230 struct igb_ring *ring = &(adapter->rx_ring[i]);
231 ring->adapter = adapter;
232 ring->itr_register = E1000_ITR;
233
234 if (!ring->napi.poll)
235 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
236 adapter->napi.weight /
237 adapter->num_rx_queues);
238 }
239 return 0;
240}
241
242#define IGB_N0_QUEUE -1
243static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
244 int tx_queue, int msix_vector)
245{
246 u32 msixbm = 0;
247 struct e1000_hw *hw = &adapter->hw;
248 /* The 82575 assigns vectors using a bitmask, which matches the
249 bitmask for the EICR/EIMS/EIMC registers. To assign one
250 or more queues to a vector, we write the appropriate bits
251 into the MSIXBM register for that vector. */
252 if (rx_queue > IGB_N0_QUEUE) {
253 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
254 adapter->rx_ring[rx_queue].eims_value = msixbm;
255 }
256 if (tx_queue > IGB_N0_QUEUE) {
257 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
258 adapter->tx_ring[tx_queue].eims_value =
259 E1000_EICR_TX_QUEUE0 << tx_queue;
260 }
261 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
262}
263
264/**
265 * igb_configure_msix - Configure MSI-X hardware
266 *
267 * igb_configure_msix sets up the hardware to properly
268 * generate MSI-X interrupts.
269 **/
270static void igb_configure_msix(struct igb_adapter *adapter)
271{
272 u32 tmp;
273 int i, vector = 0;
274 struct e1000_hw *hw = &adapter->hw;
275
276 adapter->eims_enable_mask = 0;
277
278 for (i = 0; i < adapter->num_tx_queues; i++) {
279 struct igb_ring *tx_ring = &adapter->tx_ring[i];
280 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
281 adapter->eims_enable_mask |= tx_ring->eims_value;
282 if (tx_ring->itr_val)
283 writel(1000000000 / (tx_ring->itr_val * 256),
284 hw->hw_addr + tx_ring->itr_register);
285 else
286 writel(1, hw->hw_addr + tx_ring->itr_register);
287 }
288
289 for (i = 0; i < adapter->num_rx_queues; i++) {
290 struct igb_ring *rx_ring = &adapter->rx_ring[i];
291 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
292 adapter->eims_enable_mask |= rx_ring->eims_value;
293 if (rx_ring->itr_val)
294 writel(1000000000 / (rx_ring->itr_val * 256),
295 hw->hw_addr + rx_ring->itr_register);
296 else
297 writel(1, hw->hw_addr + rx_ring->itr_register);
298 }
299
300
301 /* set vector for other causes, i.e. link changes */
302 array_wr32(E1000_MSIXBM(0), vector++,
303 E1000_EIMS_OTHER);
304
305 /* disable IAM for ICR interrupt bits */
306 wr32(E1000_IAM, 0);
307
308 tmp = rd32(E1000_CTRL_EXT);
309 /* enable MSI-X PBA support*/
310 tmp |= E1000_CTRL_EXT_PBA_CLR;
311
312 /* Auto-Mask interrupts upon ICR read. */
313 tmp |= E1000_CTRL_EXT_EIAME;
314 tmp |= E1000_CTRL_EXT_IRCA;
315
316 wr32(E1000_CTRL_EXT, tmp);
317 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
318
319 wrfl();
320}
321
322/**
323 * igb_request_msix - Initialize MSI-X interrupts
324 *
325 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
326 * kernel.
327 **/
328static int igb_request_msix(struct igb_adapter *adapter)
329{
330 struct net_device *netdev = adapter->netdev;
331 int i, err = 0, vector = 0;
332
333 vector = 0;
334
335 for (i = 0; i < adapter->num_tx_queues; i++) {
336 struct igb_ring *ring = &(adapter->tx_ring[i]);
337 sprintf(ring->name, "%s-tx%d", netdev->name, i);
338 err = request_irq(adapter->msix_entries[vector].vector,
339 &igb_msix_tx, 0, ring->name,
340 &(adapter->tx_ring[i]));
341 if (err)
342 goto out;
343 ring->itr_register = E1000_EITR(0) + (vector << 2);
344 ring->itr_val = adapter->itr;
345 vector++;
346 }
347 for (i = 0; i < adapter->num_rx_queues; i++) {
348 struct igb_ring *ring = &(adapter->rx_ring[i]);
349 if (strlen(netdev->name) < (IFNAMSIZ - 5))
350 sprintf(ring->name, "%s-rx%d", netdev->name, i);
351 else
352 memcpy(ring->name, netdev->name, IFNAMSIZ);
353 err = request_irq(adapter->msix_entries[vector].vector,
354 &igb_msix_rx, 0, ring->name,
355 &(adapter->rx_ring[i]));
356 if (err)
357 goto out;
358 ring->itr_register = E1000_EITR(0) + (vector << 2);
359 ring->itr_val = adapter->itr;
360 vector++;
361 }
362
363 err = request_irq(adapter->msix_entries[vector].vector,
364 &igb_msix_other, 0, netdev->name, netdev);
365 if (err)
366 goto out;
367
368 adapter->napi.poll = igb_clean_rx_ring_msix;
369 for (i = 0; i < adapter->num_rx_queues; i++)
370 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
371 igb_configure_msix(adapter);
372 return 0;
373out:
374 return err;
375}
376
377static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
378{
379 if (adapter->msix_entries) {
380 pci_disable_msix(adapter->pdev);
381 kfree(adapter->msix_entries);
382 adapter->msix_entries = NULL;
383 } else if (adapter->msi_enabled)
384 pci_disable_msi(adapter->pdev);
385 return;
386}
387
388
389/**
390 * igb_set_interrupt_capability - set MSI or MSI-X if supported
391 *
392 * Attempt to configure interrupts using the best available
393 * capabilities of the hardware and kernel.
394 **/
395static void igb_set_interrupt_capability(struct igb_adapter *adapter)
396{
397 int err;
398 int numvecs, i;
399
400 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
401 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
402 GFP_KERNEL);
403 if (!adapter->msix_entries)
404 goto msi_only;
405
406 for (i = 0; i < numvecs; i++)
407 adapter->msix_entries[i].entry = i;
408
409 err = pci_enable_msix(adapter->pdev,
410 adapter->msix_entries,
411 numvecs);
412 if (err == 0)
413 return;
414
415 igb_reset_interrupt_capability(adapter);
416
417 /* If we can't do MSI-X, try MSI */
418msi_only:
419 adapter->num_rx_queues = 1;
420 if (!pci_enable_msi(adapter->pdev))
421 adapter->msi_enabled = 1;
422 return;
423}
424
425/**
426 * igb_request_irq - initialize interrupts
427 *
428 * Attempts to configure interrupts using the best available
429 * capabilities of the hardware and kernel.
430 **/
431static int igb_request_irq(struct igb_adapter *adapter)
432{
433 struct net_device *netdev = adapter->netdev;
434 struct e1000_hw *hw = &adapter->hw;
435 int err = 0;
436
437 if (adapter->msix_entries) {
438 err = igb_request_msix(adapter);
439 if (!err) {
Auke Kok9d5c8242008-01-24 02:22:38 -0800440 /* enable IAM, auto-mask,
Andy Gospodarek6cb5e572008-02-15 14:05:25 -0800441 * DO NOT USE EIAM or IAM in legacy mode */
Auke Kok9d5c8242008-01-24 02:22:38 -0800442 wr32(E1000_IAM, IMS_ENABLE_MASK);
443 goto request_done;
444 }
445 /* fall back to MSI */
446 igb_reset_interrupt_capability(adapter);
447 if (!pci_enable_msi(adapter->pdev))
448 adapter->msi_enabled = 1;
449 igb_free_all_tx_resources(adapter);
450 igb_free_all_rx_resources(adapter);
451 adapter->num_rx_queues = 1;
452 igb_alloc_queues(adapter);
453 }
454 if (adapter->msi_enabled) {
455 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
456 netdev->name, netdev);
457 if (!err)
458 goto request_done;
459 /* fall back to legacy interrupts */
460 igb_reset_interrupt_capability(adapter);
461 adapter->msi_enabled = 0;
462 }
463
464 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
465 netdev->name, netdev);
466
Andy Gospodarek6cb5e572008-02-15 14:05:25 -0800467 if (err)
Auke Kok9d5c8242008-01-24 02:22:38 -0800468 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
469 err);
Auke Kok9d5c8242008-01-24 02:22:38 -0800470
471request_done:
472 return err;
473}
474
475static void igb_free_irq(struct igb_adapter *adapter)
476{
477 struct net_device *netdev = adapter->netdev;
478
479 if (adapter->msix_entries) {
480 int vector = 0, i;
481
482 for (i = 0; i < adapter->num_tx_queues; i++)
483 free_irq(adapter->msix_entries[vector++].vector,
484 &(adapter->tx_ring[i]));
485 for (i = 0; i < adapter->num_rx_queues; i++)
486 free_irq(adapter->msix_entries[vector++].vector,
487 &(adapter->rx_ring[i]));
488
489 free_irq(adapter->msix_entries[vector++].vector, netdev);
490 return;
491 }
492
493 free_irq(adapter->pdev->irq, netdev);
494}
495
496/**
497 * igb_irq_disable - Mask off interrupt generation on the NIC
498 * @adapter: board private structure
499 **/
500static void igb_irq_disable(struct igb_adapter *adapter)
501{
502 struct e1000_hw *hw = &adapter->hw;
503
504 if (adapter->msix_entries) {
505 wr32(E1000_EIMC, ~0);
506 wr32(E1000_EIAC, 0);
507 }
508 wr32(E1000_IMC, ~0);
509 wrfl();
510 synchronize_irq(adapter->pdev->irq);
511}
512
513/**
514 * igb_irq_enable - Enable default interrupt generation settings
515 * @adapter: board private structure
516 **/
517static void igb_irq_enable(struct igb_adapter *adapter)
518{
519 struct e1000_hw *hw = &adapter->hw;
520
521 if (adapter->msix_entries) {
522 wr32(E1000_EIMS,
523 adapter->eims_enable_mask);
524 wr32(E1000_EIAC,
525 adapter->eims_enable_mask);
526 wr32(E1000_IMS, E1000_IMS_LSC);
527 } else
528 wr32(E1000_IMS, IMS_ENABLE_MASK);
529}
530
531static void igb_update_mng_vlan(struct igb_adapter *adapter)
532{
533 struct net_device *netdev = adapter->netdev;
534 u16 vid = adapter->hw.mng_cookie.vlan_id;
535 u16 old_vid = adapter->mng_vlan_id;
536 if (adapter->vlgrp) {
537 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
538 if (adapter->hw.mng_cookie.status &
539 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
540 igb_vlan_rx_add_vid(netdev, vid);
541 adapter->mng_vlan_id = vid;
542 } else
543 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
544
545 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
546 (vid != old_vid) &&
547 !vlan_group_get_device(adapter->vlgrp, old_vid))
548 igb_vlan_rx_kill_vid(netdev, old_vid);
549 } else
550 adapter->mng_vlan_id = vid;
551 }
552}
553
554/**
555 * igb_release_hw_control - release control of the h/w to f/w
556 * @adapter: address of board private structure
557 *
558 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
559 * For ASF and Pass Through versions of f/w this means that the
560 * driver is no longer loaded.
561 *
562 **/
563static void igb_release_hw_control(struct igb_adapter *adapter)
564{
565 struct e1000_hw *hw = &adapter->hw;
566 u32 ctrl_ext;
567
568 /* Let firmware take over control of h/w */
569 ctrl_ext = rd32(E1000_CTRL_EXT);
570 wr32(E1000_CTRL_EXT,
571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
572}
573
574
575/**
576 * igb_get_hw_control - get control of the h/w from f/w
577 * @adapter: address of board private structure
578 *
579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
580 * For ASF and Pass Through versions of f/w this means that
581 * the driver is loaded.
582 *
583 **/
584static void igb_get_hw_control(struct igb_adapter *adapter)
585{
586 struct e1000_hw *hw = &adapter->hw;
587 u32 ctrl_ext;
588
589 /* Let firmware know the driver has taken over */
590 ctrl_ext = rd32(E1000_CTRL_EXT);
591 wr32(E1000_CTRL_EXT,
592 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
593}
594
595static void igb_init_manageability(struct igb_adapter *adapter)
596{
597 struct e1000_hw *hw = &adapter->hw;
598
599 if (adapter->en_mng_pt) {
600 u32 manc2h = rd32(E1000_MANC2H);
601 u32 manc = rd32(E1000_MANC);
602
Auke Kok9d5c8242008-01-24 02:22:38 -0800603 /* enable receiving management packets to the host */
604 /* this will probably generate destination unreachable messages
605 * from the host OS, but the packets will be handled on SMBUS */
606 manc |= E1000_MANC_EN_MNG2HOST;
607#define E1000_MNG2HOST_PORT_623 (1 << 5)
608#define E1000_MNG2HOST_PORT_664 (1 << 6)
609 manc2h |= E1000_MNG2HOST_PORT_623;
610 manc2h |= E1000_MNG2HOST_PORT_664;
611 wr32(E1000_MANC2H, manc2h);
612
613 wr32(E1000_MANC, manc);
614 }
615}
616
Auke Kok9d5c8242008-01-24 02:22:38 -0800617/**
618 * igb_configure - configure the hardware for RX and TX
619 * @adapter: private board structure
620 **/
621static void igb_configure(struct igb_adapter *adapter)
622{
623 struct net_device *netdev = adapter->netdev;
624 int i;
625
626 igb_get_hw_control(adapter);
627 igb_set_multi(netdev);
628
629 igb_restore_vlan(adapter);
630 igb_init_manageability(adapter);
631
632 igb_configure_tx(adapter);
633 igb_setup_rctl(adapter);
634 igb_configure_rx(adapter);
635 /* call IGB_DESC_UNUSED which always leaves
636 * at least 1 descriptor unused to make sure
637 * next_to_use != next_to_clean */
638 for (i = 0; i < adapter->num_rx_queues; i++) {
639 struct igb_ring *ring = &adapter->rx_ring[i];
640 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
641 }
642
643
644 adapter->tx_queue_len = netdev->tx_queue_len;
645}
646
647
648/**
649 * igb_up - Open the interface and prepare it to handle traffic
650 * @adapter: board private structure
651 **/
652
653int igb_up(struct igb_adapter *adapter)
654{
655 struct e1000_hw *hw = &adapter->hw;
656 int i;
657
658 /* hardware has been reset, we need to reload some things */
659 igb_configure(adapter);
660
661 clear_bit(__IGB_DOWN, &adapter->state);
662
663 napi_enable(&adapter->napi);
664
665 if (adapter->msix_entries) {
666 for (i = 0; i < adapter->num_rx_queues; i++)
667 napi_enable(&adapter->rx_ring[i].napi);
668 igb_configure_msix(adapter);
669 }
670
671 /* Clear any pending interrupts. */
672 rd32(E1000_ICR);
673 igb_irq_enable(adapter);
674
675 /* Fire a link change interrupt to start the watchdog. */
676 wr32(E1000_ICS, E1000_ICS_LSC);
677 return 0;
678}
679
680void igb_down(struct igb_adapter *adapter)
681{
682 struct e1000_hw *hw = &adapter->hw;
683 struct net_device *netdev = adapter->netdev;
684 u32 tctl, rctl;
685 int i;
686
687 /* signal that we're down so the interrupt handler does not
688 * reschedule our watchdog timer */
689 set_bit(__IGB_DOWN, &adapter->state);
690
691 /* disable receives in the hardware */
692 rctl = rd32(E1000_RCTL);
693 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
694 /* flush and sleep below */
695
696 netif_stop_queue(netdev);
697
698 /* disable transmits in the hardware */
699 tctl = rd32(E1000_TCTL);
700 tctl &= ~E1000_TCTL_EN;
701 wr32(E1000_TCTL, tctl);
702 /* flush both disables and wait for them to finish */
703 wrfl();
704 msleep(10);
705
706 napi_disable(&adapter->napi);
707
708 if (adapter->msix_entries)
709 for (i = 0; i < adapter->num_rx_queues; i++)
710 napi_disable(&adapter->rx_ring[i].napi);
711 igb_irq_disable(adapter);
712
713 del_timer_sync(&adapter->watchdog_timer);
714 del_timer_sync(&adapter->phy_info_timer);
715
716 netdev->tx_queue_len = adapter->tx_queue_len;
717 netif_carrier_off(netdev);
718 adapter->link_speed = 0;
719 adapter->link_duplex = 0;
720
Jeff Kirsher30236822008-06-24 17:01:15 -0700721 if (!pci_channel_offline(adapter->pdev))
722 igb_reset(adapter);
Auke Kok9d5c8242008-01-24 02:22:38 -0800723 igb_clean_all_tx_rings(adapter);
724 igb_clean_all_rx_rings(adapter);
725}
726
727void igb_reinit_locked(struct igb_adapter *adapter)
728{
729 WARN_ON(in_interrupt());
730 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
731 msleep(1);
732 igb_down(adapter);
733 igb_up(adapter);
734 clear_bit(__IGB_RESETTING, &adapter->state);
735}
736
737void igb_reset(struct igb_adapter *adapter)
738{
739 struct e1000_hw *hw = &adapter->hw;
740 struct e1000_fc_info *fc = &adapter->hw.fc;
741 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
742 u16 hwm;
743
744 /* Repartition Pba for greater than 9k mtu
745 * To take effect CTRL.RST is required.
746 */
747 pba = E1000_PBA_34K;
748
749 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
750 /* adjust PBA for jumbo frames */
751 wr32(E1000_PBA, pba);
752
753 /* To maintain wire speed transmits, the Tx FIFO should be
754 * large enough to accommodate two full transmit packets,
755 * rounded up to the next 1KB and expressed in KB. Likewise,
756 * the Rx FIFO should be large enough to accommodate at least
757 * one full receive packet and is similarly rounded up and
758 * expressed in KB. */
759 pba = rd32(E1000_PBA);
760 /* upper 16 bits has Tx packet buffer allocation size in KB */
761 tx_space = pba >> 16;
762 /* lower 16 bits has Rx packet buffer allocation size in KB */
763 pba &= 0xffff;
764 /* the tx fifo also stores 16 bytes of information about the tx
765 * but don't include ethernet FCS because hardware appends it */
766 min_tx_space = (adapter->max_frame_size +
767 sizeof(struct e1000_tx_desc) -
768 ETH_FCS_LEN) * 2;
769 min_tx_space = ALIGN(min_tx_space, 1024);
770 min_tx_space >>= 10;
771 /* software strips receive CRC, so leave room for it */
772 min_rx_space = adapter->max_frame_size;
773 min_rx_space = ALIGN(min_rx_space, 1024);
774 min_rx_space >>= 10;
775
776 /* If current Tx allocation is less than the min Tx FIFO size,
777 * and the min Tx FIFO size is less than the current Rx FIFO
778 * allocation, take space away from current Rx allocation */
779 if (tx_space < min_tx_space &&
780 ((min_tx_space - tx_space) < pba)) {
781 pba = pba - (min_tx_space - tx_space);
782
783 /* if short on rx space, rx wins and must trump tx
784 * adjustment */
785 if (pba < min_rx_space)
786 pba = min_rx_space;
787 }
788 }
789 wr32(E1000_PBA, pba);
790
791 /* flow control settings */
792 /* The high water mark must be low enough to fit one full frame
793 * (or the size used for early receive) above it in the Rx FIFO.
794 * Set it to the lower of:
795 * - 90% of the Rx FIFO size, or
796 * - the full Rx FIFO size minus one full frame */
797 hwm = min(((pba << 10) * 9 / 10),
798 ((pba << 10) - adapter->max_frame_size));
799
800 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
801 fc->low_water = fc->high_water - 8;
802 fc->pause_time = 0xFFFF;
803 fc->send_xon = 1;
804 fc->type = fc->original_type;
805
806 /* Allow time for pending master requests to run */
807 adapter->hw.mac.ops.reset_hw(&adapter->hw);
808 wr32(E1000_WUC, 0);
809
810 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
811 dev_err(&adapter->pdev->dev, "Hardware Error\n");
812
813 igb_update_mng_vlan(adapter);
814
815 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
816 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
817
818 igb_reset_adaptive(&adapter->hw);
Bill Hayes68707ac2008-02-19 10:24:41 -0800819 if (adapter->hw.phy.ops.get_phy_info)
820 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
Auke Kok9d5c8242008-01-24 02:22:38 -0800821}
822
823/**
824 * igb_probe - Device Initialization Routine
825 * @pdev: PCI device information struct
826 * @ent: entry in igb_pci_tbl
827 *
828 * Returns 0 on success, negative on failure
829 *
830 * igb_probe initializes an adapter identified by a pci_dev structure.
831 * The OS initialization, configuring of the adapter private structure,
832 * and a hardware reset occur.
833 **/
834static int __devinit igb_probe(struct pci_dev *pdev,
835 const struct pci_device_id *ent)
836{
837 struct net_device *netdev;
838 struct igb_adapter *adapter;
839 struct e1000_hw *hw;
840 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
841 unsigned long mmio_start, mmio_len;
842 static int cards_found;
843 int i, err, pci_using_dac;
844 u16 eeprom_data = 0;
845 u16 eeprom_apme_mask = IGB_EEPROM_APME;
846 u32 part_num;
847
848 err = pci_enable_device(pdev);
849 if (err)
850 return err;
851
852 pci_using_dac = 0;
853 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
854 if (!err) {
855 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
856 if (!err)
857 pci_using_dac = 1;
858 } else {
859 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
860 if (err) {
861 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
862 if (err) {
863 dev_err(&pdev->dev, "No usable DMA "
864 "configuration, aborting\n");
865 goto err_dma;
866 }
867 }
868 }
869
870 err = pci_request_regions(pdev, igb_driver_name);
871 if (err)
872 goto err_pci_reg;
873
874 pci_set_master(pdev);
Auke Kokc682fc22008-04-23 11:09:34 -0700875 pci_save_state(pdev);
Auke Kok9d5c8242008-01-24 02:22:38 -0800876
877 err = -ENOMEM;
878 netdev = alloc_etherdev(sizeof(struct igb_adapter));
879 if (!netdev)
880 goto err_alloc_etherdev;
881
882 SET_NETDEV_DEV(netdev, &pdev->dev);
883
884 pci_set_drvdata(pdev, netdev);
885 adapter = netdev_priv(netdev);
886 adapter->netdev = netdev;
887 adapter->pdev = pdev;
888 hw = &adapter->hw;
889 hw->back = adapter;
890 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
891
892 mmio_start = pci_resource_start(pdev, 0);
893 mmio_len = pci_resource_len(pdev, 0);
894
895 err = -EIO;
896 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
897 if (!adapter->hw.hw_addr)
898 goto err_ioremap;
899
900 netdev->open = &igb_open;
901 netdev->stop = &igb_close;
902 netdev->get_stats = &igb_get_stats;
903 netdev->set_multicast_list = &igb_set_multi;
904 netdev->set_mac_address = &igb_set_mac;
905 netdev->change_mtu = &igb_change_mtu;
906 netdev->do_ioctl = &igb_ioctl;
907 igb_set_ethtool_ops(netdev);
908 netdev->tx_timeout = &igb_tx_timeout;
909 netdev->watchdog_timeo = 5 * HZ;
910 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
911 netdev->vlan_rx_register = igb_vlan_rx_register;
912 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
913 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
914#ifdef CONFIG_NET_POLL_CONTROLLER
915 netdev->poll_controller = igb_netpoll;
916#endif
917 netdev->hard_start_xmit = &igb_xmit_frame_adv;
918
919 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
920
921 netdev->mem_start = mmio_start;
922 netdev->mem_end = mmio_start + mmio_len;
923
924 adapter->bd_number = cards_found;
925
926 /* PCI config space info */
927 hw->vendor_id = pdev->vendor;
928 hw->device_id = pdev->device;
929 hw->revision_id = pdev->revision;
930 hw->subsystem_vendor_id = pdev->subsystem_vendor;
931 hw->subsystem_device_id = pdev->subsystem_device;
932
933 /* setup the private structure */
934 hw->back = adapter;
935 /* Copy the default MAC, PHY and NVM function pointers */
936 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
937 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
938 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
939 /* Initialize skew-specific constants */
940 err = ei->get_invariants(hw);
941 if (err)
942 goto err_hw_init;
943
944 err = igb_sw_init(adapter);
945 if (err)
946 goto err_sw_init;
947
948 igb_get_bus_info_pcie(hw);
949
950 hw->phy.autoneg_wait_to_complete = false;
951 hw->mac.adaptive_ifs = true;
952
953 /* Copper options */
954 if (hw->phy.media_type == e1000_media_type_copper) {
955 hw->phy.mdix = AUTO_ALL_MODES;
956 hw->phy.disable_polarity_correction = false;
957 hw->phy.ms_type = e1000_ms_hw_default;
958 }
959
960 if (igb_check_reset_block(hw))
961 dev_info(&pdev->dev,
962 "PHY reset is blocked due to SOL/IDER session.\n");
963
964 netdev->features = NETIF_F_SG |
965 NETIF_F_HW_CSUM |
966 NETIF_F_HW_VLAN_TX |
967 NETIF_F_HW_VLAN_RX |
968 NETIF_F_HW_VLAN_FILTER;
969
970 netdev->features |= NETIF_F_TSO;
971
972 netdev->features |= NETIF_F_TSO6;
973 if (pci_using_dac)
974 netdev->features |= NETIF_F_HIGHDMA;
975
976 netdev->features |= NETIF_F_LLTX;
977 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
978
979 /* before reading the NVM, reset the controller to put the device in a
980 * known good starting state */
981 hw->mac.ops.reset_hw(hw);
982
983 /* make sure the NVM is good */
984 if (igb_validate_nvm_checksum(hw) < 0) {
985 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
986 err = -EIO;
987 goto err_eeprom;
988 }
989
990 /* copy the MAC address out of the NVM */
991 if (hw->mac.ops.read_mac_addr(hw))
992 dev_err(&pdev->dev, "NVM Read Error\n");
993
994 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
995 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
996
997 if (!is_valid_ether_addr(netdev->perm_addr)) {
998 dev_err(&pdev->dev, "Invalid MAC Address\n");
999 err = -EIO;
1000 goto err_eeprom;
1001 }
1002
1003 init_timer(&adapter->watchdog_timer);
1004 adapter->watchdog_timer.function = &igb_watchdog;
1005 adapter->watchdog_timer.data = (unsigned long) adapter;
1006
1007 init_timer(&adapter->phy_info_timer);
1008 adapter->phy_info_timer.function = &igb_update_phy_info;
1009 adapter->phy_info_timer.data = (unsigned long) adapter;
1010
1011 INIT_WORK(&adapter->reset_task, igb_reset_task);
1012 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1013
1014 /* Initialize link & ring properties that are user-changeable */
1015 adapter->tx_ring->count = 256;
1016 for (i = 0; i < adapter->num_tx_queues; i++)
1017 adapter->tx_ring[i].count = adapter->tx_ring->count;
1018 adapter->rx_ring->count = 256;
1019 for (i = 0; i < adapter->num_rx_queues; i++)
1020 adapter->rx_ring[i].count = adapter->rx_ring->count;
1021
1022 adapter->fc_autoneg = true;
1023 hw->mac.autoneg = true;
1024 hw->phy.autoneg_advertised = 0x2f;
1025
1026 hw->fc.original_type = e1000_fc_default;
1027 hw->fc.type = e1000_fc_default;
1028
1029 adapter->itr_setting = 3;
1030 adapter->itr = IGB_START_ITR;
1031
1032 igb_validate_mdi_setting(hw);
1033
1034 adapter->rx_csum = 1;
1035
1036 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1037 * enable the ACPI Magic Packet filter
1038 */
1039
1040 if (hw->bus.func == 0 ||
1041 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1042 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1043 &eeprom_data);
1044
1045 if (eeprom_data & eeprom_apme_mask)
1046 adapter->eeprom_wol |= E1000_WUFC_MAG;
1047
1048 /* now that we have the eeprom settings, apply the special cases where
1049 * the eeprom may be wrong or the board simply won't support wake on
1050 * lan on a particular port */
1051 switch (pdev->device) {
1052 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1053 adapter->eeprom_wol = 0;
1054 break;
1055 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1056 /* Wake events only supported on port A for dual fiber
1057 * regardless of eeprom setting */
1058 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1059 adapter->eeprom_wol = 0;
1060 break;
1061 }
1062
1063 /* initialize the wol settings based on the eeprom settings */
1064 adapter->wol = adapter->eeprom_wol;
1065
1066 /* reset the hardware with the new settings */
1067 igb_reset(adapter);
1068
1069 /* let the f/w know that the h/w is now under the control of the
1070 * driver. */
1071 igb_get_hw_control(adapter);
1072
1073 /* tell the stack to leave us alone until igb_open() is called */
1074 netif_carrier_off(netdev);
1075 netif_stop_queue(netdev);
1076
1077 strcpy(netdev->name, "eth%d");
1078 err = register_netdev(netdev);
1079 if (err)
1080 goto err_register;
1081
1082 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1083 /* print bus type/speed/width info */
1084 dev_info(&pdev->dev,
1085 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1086 netdev->name,
1087 ((hw->bus.speed == e1000_bus_speed_2500)
1088 ? "2.5Gb/s" : "unknown"),
1089 ((hw->bus.width == e1000_bus_width_pcie_x4)
1090 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1091 ? "Width x1" : "unknown"),
1092 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1093 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1094
1095 igb_read_part_num(hw, &part_num);
1096 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1097 (part_num >> 8), (part_num & 0xff));
1098
1099 dev_info(&pdev->dev,
1100 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1101 adapter->msix_entries ? "MSI-X" :
1102 adapter->msi_enabled ? "MSI" : "legacy",
1103 adapter->num_rx_queues, adapter->num_tx_queues);
1104
1105 cards_found++;
1106 return 0;
1107
1108err_register:
1109 igb_release_hw_control(adapter);
1110err_eeprom:
1111 if (!igb_check_reset_block(hw))
1112 hw->phy.ops.reset_phy(hw);
1113
1114 if (hw->flash_address)
1115 iounmap(hw->flash_address);
1116
1117 igb_remove_device(hw);
1118 kfree(adapter->tx_ring);
1119 kfree(adapter->rx_ring);
1120err_sw_init:
1121err_hw_init:
1122 iounmap(hw->hw_addr);
1123err_ioremap:
1124 free_netdev(netdev);
1125err_alloc_etherdev:
1126 pci_release_regions(pdev);
1127err_pci_reg:
1128err_dma:
1129 pci_disable_device(pdev);
1130 return err;
1131}
1132
1133/**
1134 * igb_remove - Device Removal Routine
1135 * @pdev: PCI device information struct
1136 *
1137 * igb_remove is called by the PCI subsystem to alert the driver
1138 * that it should release a PCI device. The could be caused by a
1139 * Hot-Plug event, or because the driver is going to be removed from
1140 * memory.
1141 **/
1142static void __devexit igb_remove(struct pci_dev *pdev)
1143{
1144 struct net_device *netdev = pci_get_drvdata(pdev);
1145 struct igb_adapter *adapter = netdev_priv(netdev);
1146
1147 /* flush_scheduled work may reschedule our watchdog task, so
1148 * explicitly disable watchdog tasks from being rescheduled */
1149 set_bit(__IGB_DOWN, &adapter->state);
1150 del_timer_sync(&adapter->watchdog_timer);
1151 del_timer_sync(&adapter->phy_info_timer);
1152
1153 flush_scheduled_work();
1154
Auke Kok9d5c8242008-01-24 02:22:38 -08001155 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1156 * would have already happened in close and is redundant. */
1157 igb_release_hw_control(adapter);
1158
1159 unregister_netdev(netdev);
1160
1161 if (!igb_check_reset_block(&adapter->hw))
1162 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1163
1164 igb_remove_device(&adapter->hw);
1165 igb_reset_interrupt_capability(adapter);
1166
1167 kfree(adapter->tx_ring);
1168 kfree(adapter->rx_ring);
1169
1170 iounmap(adapter->hw.hw_addr);
1171 if (adapter->hw.flash_address)
1172 iounmap(adapter->hw.flash_address);
1173 pci_release_regions(pdev);
1174
1175 free_netdev(netdev);
1176
1177 pci_disable_device(pdev);
1178}
1179
1180/**
1181 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1182 * @adapter: board private structure to initialize
1183 *
1184 * igb_sw_init initializes the Adapter private data structure.
1185 * Fields are initialized based on PCI device information and
1186 * OS network device settings (MTU size).
1187 **/
1188static int __devinit igb_sw_init(struct igb_adapter *adapter)
1189{
1190 struct e1000_hw *hw = &adapter->hw;
1191 struct net_device *netdev = adapter->netdev;
1192 struct pci_dev *pdev = adapter->pdev;
1193
1194 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1195
1196 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1197 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1198 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1199 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1200
1201 /* Number of supported queues. */
1202 /* Having more queues than CPUs doesn't make sense. */
1203 adapter->num_tx_queues = 1;
1204 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1205
1206 igb_set_interrupt_capability(adapter);
1207
1208 if (igb_alloc_queues(adapter)) {
1209 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1210 return -ENOMEM;
1211 }
1212
1213 /* Explicitly disable IRQ since the NIC can be in any state. */
1214 igb_irq_disable(adapter);
1215
1216 set_bit(__IGB_DOWN, &adapter->state);
1217 return 0;
1218}
1219
1220/**
1221 * igb_open - Called when a network interface is made active
1222 * @netdev: network interface device structure
1223 *
1224 * Returns 0 on success, negative value on failure
1225 *
1226 * The open entry point is called when a network interface is made
1227 * active by the system (IFF_UP). At this point all resources needed
1228 * for transmit and receive operations are allocated, the interrupt
1229 * handler is registered with the OS, the watchdog timer is started,
1230 * and the stack is notified that the interface is ready.
1231 **/
1232static int igb_open(struct net_device *netdev)
1233{
1234 struct igb_adapter *adapter = netdev_priv(netdev);
1235 struct e1000_hw *hw = &adapter->hw;
1236 int err;
1237 int i;
1238
1239 /* disallow open during test */
1240 if (test_bit(__IGB_TESTING, &adapter->state))
1241 return -EBUSY;
1242
1243 /* allocate transmit descriptors */
1244 err = igb_setup_all_tx_resources(adapter);
1245 if (err)
1246 goto err_setup_tx;
1247
1248 /* allocate receive descriptors */
1249 err = igb_setup_all_rx_resources(adapter);
1250 if (err)
1251 goto err_setup_rx;
1252
1253 /* e1000_power_up_phy(adapter); */
1254
1255 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1256 if ((adapter->hw.mng_cookie.status &
1257 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1258 igb_update_mng_vlan(adapter);
1259
1260 /* before we allocate an interrupt, we must be ready to handle it.
1261 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1262 * as soon as we call pci_request_irq, so we have to setup our
1263 * clean_rx handler before we do so. */
1264 igb_configure(adapter);
1265
1266 err = igb_request_irq(adapter);
1267 if (err)
1268 goto err_req_irq;
1269
1270 /* From here on the code is the same as igb_up() */
1271 clear_bit(__IGB_DOWN, &adapter->state);
1272
1273 napi_enable(&adapter->napi);
1274 if (adapter->msix_entries)
1275 for (i = 0; i < adapter->num_rx_queues; i++)
1276 napi_enable(&adapter->rx_ring[i].napi);
1277
1278 igb_irq_enable(adapter);
1279
1280 /* Clear any pending interrupts. */
1281 rd32(E1000_ICR);
1282 /* Fire a link status change interrupt to start the watchdog. */
1283 wr32(E1000_ICS, E1000_ICS_LSC);
1284
1285 return 0;
1286
1287err_req_irq:
1288 igb_release_hw_control(adapter);
1289 /* e1000_power_down_phy(adapter); */
1290 igb_free_all_rx_resources(adapter);
1291err_setup_rx:
1292 igb_free_all_tx_resources(adapter);
1293err_setup_tx:
1294 igb_reset(adapter);
1295
1296 return err;
1297}
1298
1299/**
1300 * igb_close - Disables a network interface
1301 * @netdev: network interface device structure
1302 *
1303 * Returns 0, this is not allowed to fail
1304 *
1305 * The close entry point is called when an interface is de-activated
1306 * by the OS. The hardware is still under the driver's control, but
1307 * needs to be disabled. A global MAC reset is issued to stop the
1308 * hardware, and all transmit and receive resources are freed.
1309 **/
1310static int igb_close(struct net_device *netdev)
1311{
1312 struct igb_adapter *adapter = netdev_priv(netdev);
1313
1314 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1315 igb_down(adapter);
1316
1317 igb_free_irq(adapter);
1318
1319 igb_free_all_tx_resources(adapter);
1320 igb_free_all_rx_resources(adapter);
1321
1322 /* kill manageability vlan ID if supported, but not if a vlan with
1323 * the same ID is registered on the host OS (let 8021q kill it) */
1324 if ((adapter->hw.mng_cookie.status &
1325 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1326 !(adapter->vlgrp &&
1327 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1328 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1329
1330 return 0;
1331}
1332
1333/**
1334 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1335 * @adapter: board private structure
1336 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1337 *
1338 * Return 0 on success, negative on failure
1339 **/
1340
1341int igb_setup_tx_resources(struct igb_adapter *adapter,
1342 struct igb_ring *tx_ring)
1343{
1344 struct pci_dev *pdev = adapter->pdev;
1345 int size;
1346
1347 size = sizeof(struct igb_buffer) * tx_ring->count;
1348 tx_ring->buffer_info = vmalloc(size);
1349 if (!tx_ring->buffer_info)
1350 goto err;
1351 memset(tx_ring->buffer_info, 0, size);
1352
1353 /* round up to nearest 4K */
1354 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1355 + sizeof(u32);
1356 tx_ring->size = ALIGN(tx_ring->size, 4096);
1357
1358 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1359 &tx_ring->dma);
1360
1361 if (!tx_ring->desc)
1362 goto err;
1363
1364 tx_ring->adapter = adapter;
1365 tx_ring->next_to_use = 0;
1366 tx_ring->next_to_clean = 0;
1367 spin_lock_init(&tx_ring->tx_clean_lock);
1368 spin_lock_init(&tx_ring->tx_lock);
1369 return 0;
1370
1371err:
1372 vfree(tx_ring->buffer_info);
1373 dev_err(&adapter->pdev->dev,
1374 "Unable to allocate memory for the transmit descriptor ring\n");
1375 return -ENOMEM;
1376}
1377
1378/**
1379 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1380 * (Descriptors) for all queues
1381 * @adapter: board private structure
1382 *
1383 * Return 0 on success, negative on failure
1384 **/
1385static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1386{
1387 int i, err = 0;
1388
1389 for (i = 0; i < adapter->num_tx_queues; i++) {
1390 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1391 if (err) {
1392 dev_err(&adapter->pdev->dev,
1393 "Allocation for Tx Queue %u failed\n", i);
1394 for (i--; i >= 0; i--)
1395 igb_free_tx_resources(adapter,
1396 &adapter->tx_ring[i]);
1397 break;
1398 }
1399 }
1400
1401 return err;
1402}
1403
1404/**
1405 * igb_configure_tx - Configure transmit Unit after Reset
1406 * @adapter: board private structure
1407 *
1408 * Configure the Tx unit of the MAC after a reset.
1409 **/
1410static void igb_configure_tx(struct igb_adapter *adapter)
1411{
1412 u64 tdba, tdwba;
1413 struct e1000_hw *hw = &adapter->hw;
1414 u32 tctl;
1415 u32 txdctl, txctrl;
1416 int i;
1417
1418 for (i = 0; i < adapter->num_tx_queues; i++) {
1419 struct igb_ring *ring = &(adapter->tx_ring[i]);
1420
1421 wr32(E1000_TDLEN(i),
1422 ring->count * sizeof(struct e1000_tx_desc));
1423 tdba = ring->dma;
1424 wr32(E1000_TDBAL(i),
1425 tdba & 0x00000000ffffffffULL);
1426 wr32(E1000_TDBAH(i), tdba >> 32);
1427
1428 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1429 tdwba |= 1; /* enable head wb */
1430 wr32(E1000_TDWBAL(i),
1431 tdwba & 0x00000000ffffffffULL);
1432 wr32(E1000_TDWBAH(i), tdwba >> 32);
1433
1434 ring->head = E1000_TDH(i);
1435 ring->tail = E1000_TDT(i);
1436 writel(0, hw->hw_addr + ring->tail);
1437 writel(0, hw->hw_addr + ring->head);
1438 txdctl = rd32(E1000_TXDCTL(i));
1439 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1440 wr32(E1000_TXDCTL(i), txdctl);
1441
1442 /* Turn off Relaxed Ordering on head write-backs. The
1443 * writebacks MUST be delivered in order or it will
1444 * completely screw up our bookeeping.
1445 */
1446 txctrl = rd32(E1000_DCA_TXCTRL(i));
1447 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1448 wr32(E1000_DCA_TXCTRL(i), txctrl);
1449 }
1450
1451
1452
1453 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1454
1455 /* Program the Transmit Control Register */
1456
1457 tctl = rd32(E1000_TCTL);
1458 tctl &= ~E1000_TCTL_CT;
1459 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1460 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1461
1462 igb_config_collision_dist(hw);
1463
1464 /* Setup Transmit Descriptor Settings for eop descriptor */
1465 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1466
1467 /* Enable transmits */
1468 tctl |= E1000_TCTL_EN;
1469
1470 wr32(E1000_TCTL, tctl);
1471}
1472
1473/**
1474 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1475 * @adapter: board private structure
1476 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1477 *
1478 * Returns 0 on success, negative on failure
1479 **/
1480
1481int igb_setup_rx_resources(struct igb_adapter *adapter,
1482 struct igb_ring *rx_ring)
1483{
1484 struct pci_dev *pdev = adapter->pdev;
1485 int size, desc_len;
1486
1487 size = sizeof(struct igb_buffer) * rx_ring->count;
1488 rx_ring->buffer_info = vmalloc(size);
1489 if (!rx_ring->buffer_info)
1490 goto err;
1491 memset(rx_ring->buffer_info, 0, size);
1492
1493 desc_len = sizeof(union e1000_adv_rx_desc);
1494
1495 /* Round up to nearest 4K */
1496 rx_ring->size = rx_ring->count * desc_len;
1497 rx_ring->size = ALIGN(rx_ring->size, 4096);
1498
1499 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1500 &rx_ring->dma);
1501
1502 if (!rx_ring->desc)
1503 goto err;
1504
1505 rx_ring->next_to_clean = 0;
1506 rx_ring->next_to_use = 0;
1507 rx_ring->pending_skb = NULL;
1508
1509 rx_ring->adapter = adapter;
1510 /* FIXME: do we want to setup ring->napi->poll here? */
1511 rx_ring->napi.poll = adapter->napi.poll;
1512
1513 return 0;
1514
1515err:
1516 vfree(rx_ring->buffer_info);
1517 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1518 "the receive descriptor ring\n");
1519 return -ENOMEM;
1520}
1521
1522/**
1523 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1524 * (Descriptors) for all queues
1525 * @adapter: board private structure
1526 *
1527 * Return 0 on success, negative on failure
1528 **/
1529static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1530{
1531 int i, err = 0;
1532
1533 for (i = 0; i < adapter->num_rx_queues; i++) {
1534 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1535 if (err) {
1536 dev_err(&adapter->pdev->dev,
1537 "Allocation for Rx Queue %u failed\n", i);
1538 for (i--; i >= 0; i--)
1539 igb_free_rx_resources(adapter,
1540 &adapter->rx_ring[i]);
1541 break;
1542 }
1543 }
1544
1545 return err;
1546}
1547
1548/**
1549 * igb_setup_rctl - configure the receive control registers
1550 * @adapter: Board private structure
1551 **/
1552static void igb_setup_rctl(struct igb_adapter *adapter)
1553{
1554 struct e1000_hw *hw = &adapter->hw;
1555 u32 rctl;
1556 u32 srrctl = 0;
1557 int i;
1558
1559 rctl = rd32(E1000_RCTL);
1560
1561 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1562
1563 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1564 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1565 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1566
1567 /* disable the stripping of CRC because it breaks
1568 * BMC firmware connected over SMBUS
1569 rctl |= E1000_RCTL_SECRC;
1570 */
1571
1572 rctl &= ~E1000_RCTL_SBP;
1573
1574 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1575 rctl &= ~E1000_RCTL_LPE;
1576 else
1577 rctl |= E1000_RCTL_LPE;
1578 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1579 /* Setup buffer sizes */
1580 rctl &= ~E1000_RCTL_SZ_4096;
1581 rctl |= E1000_RCTL_BSEX;
1582 switch (adapter->rx_buffer_len) {
1583 case IGB_RXBUFFER_256:
1584 rctl |= E1000_RCTL_SZ_256;
1585 rctl &= ~E1000_RCTL_BSEX;
1586 break;
1587 case IGB_RXBUFFER_512:
1588 rctl |= E1000_RCTL_SZ_512;
1589 rctl &= ~E1000_RCTL_BSEX;
1590 break;
1591 case IGB_RXBUFFER_1024:
1592 rctl |= E1000_RCTL_SZ_1024;
1593 rctl &= ~E1000_RCTL_BSEX;
1594 break;
1595 case IGB_RXBUFFER_2048:
1596 default:
1597 rctl |= E1000_RCTL_SZ_2048;
1598 rctl &= ~E1000_RCTL_BSEX;
1599 break;
1600 case IGB_RXBUFFER_4096:
1601 rctl |= E1000_RCTL_SZ_4096;
1602 break;
1603 case IGB_RXBUFFER_8192:
1604 rctl |= E1000_RCTL_SZ_8192;
1605 break;
1606 case IGB_RXBUFFER_16384:
1607 rctl |= E1000_RCTL_SZ_16384;
1608 break;
1609 }
1610 } else {
1611 rctl &= ~E1000_RCTL_BSEX;
1612 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1613 }
1614
1615 /* 82575 and greater support packet-split where the protocol
1616 * header is placed in skb->data and the packet data is
1617 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1618 * In the case of a non-split, skb->data is linearly filled,
1619 * followed by the page buffers. Therefore, skb->data is
1620 * sized to hold the largest protocol header.
1621 */
1622 /* allocations using alloc_page take too long for regular MTU
1623 * so only enable packet split for jumbo frames */
1624 if (rctl & E1000_RCTL_LPE) {
1625 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1626 srrctl = adapter->rx_ps_hdr_size <<
1627 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1628 /* buffer size is ALWAYS one page */
1629 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1630 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1631 } else {
1632 adapter->rx_ps_hdr_size = 0;
1633 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1634 }
1635
1636 for (i = 0; i < adapter->num_rx_queues; i++)
1637 wr32(E1000_SRRCTL(i), srrctl);
1638
1639 wr32(E1000_RCTL, rctl);
1640}
1641
1642/**
1643 * igb_configure_rx - Configure receive Unit after Reset
1644 * @adapter: board private structure
1645 *
1646 * Configure the Rx unit of the MAC after a reset.
1647 **/
1648static void igb_configure_rx(struct igb_adapter *adapter)
1649{
1650 u64 rdba;
1651 struct e1000_hw *hw = &adapter->hw;
1652 u32 rctl, rxcsum;
1653 u32 rxdctl;
1654 int i;
1655
1656 /* disable receives while setting up the descriptors */
1657 rctl = rd32(E1000_RCTL);
1658 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1659 wrfl();
1660 mdelay(10);
1661
1662 if (adapter->itr_setting > 3)
1663 wr32(E1000_ITR,
1664 1000000000 / (adapter->itr * 256));
1665
1666 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1667 * the Base and Length of the Rx Descriptor Ring */
1668 for (i = 0; i < adapter->num_rx_queues; i++) {
1669 struct igb_ring *ring = &(adapter->rx_ring[i]);
1670 rdba = ring->dma;
1671 wr32(E1000_RDBAL(i),
1672 rdba & 0x00000000ffffffffULL);
1673 wr32(E1000_RDBAH(i), rdba >> 32);
1674 wr32(E1000_RDLEN(i),
1675 ring->count * sizeof(union e1000_adv_rx_desc));
1676
1677 ring->head = E1000_RDH(i);
1678 ring->tail = E1000_RDT(i);
1679 writel(0, hw->hw_addr + ring->tail);
1680 writel(0, hw->hw_addr + ring->head);
1681
1682 rxdctl = rd32(E1000_RXDCTL(i));
1683 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1684 rxdctl &= 0xFFF00000;
1685 rxdctl |= IGB_RX_PTHRESH;
1686 rxdctl |= IGB_RX_HTHRESH << 8;
1687 rxdctl |= IGB_RX_WTHRESH << 16;
1688 wr32(E1000_RXDCTL(i), rxdctl);
1689 }
1690
1691 if (adapter->num_rx_queues > 1) {
1692 u32 random[10];
1693 u32 mrqc;
1694 u32 j, shift;
1695 union e1000_reta {
1696 u32 dword;
1697 u8 bytes[4];
1698 } reta;
1699
1700 get_random_bytes(&random[0], 40);
1701
1702 shift = 6;
1703 for (j = 0; j < (32 * 4); j++) {
1704 reta.bytes[j & 3] =
1705 (j % adapter->num_rx_queues) << shift;
1706 if ((j & 3) == 3)
1707 writel(reta.dword,
1708 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1709 }
1710 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1711
1712 /* Fill out hash function seeds */
1713 for (j = 0; j < 10; j++)
1714 array_wr32(E1000_RSSRK(0), j, random[j]);
1715
1716 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1717 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1718 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1719 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1720 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1721 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1722 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1723 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1724
1725
1726 wr32(E1000_MRQC, mrqc);
1727
1728 /* Multiqueue and raw packet checksumming are mutually
1729 * exclusive. Note that this not the same as TCP/IP
1730 * checksumming, which works fine. */
1731 rxcsum = rd32(E1000_RXCSUM);
1732 rxcsum |= E1000_RXCSUM_PCSD;
1733 wr32(E1000_RXCSUM, rxcsum);
1734 } else {
1735 /* Enable Receive Checksum Offload for TCP and UDP */
1736 rxcsum = rd32(E1000_RXCSUM);
1737 if (adapter->rx_csum) {
1738 rxcsum |= E1000_RXCSUM_TUOFL;
1739
1740 /* Enable IPv4 payload checksum for UDP fragments
1741 * Must be used in conjunction with packet-split. */
1742 if (adapter->rx_ps_hdr_size)
1743 rxcsum |= E1000_RXCSUM_IPPCSE;
1744 } else {
1745 rxcsum &= ~E1000_RXCSUM_TUOFL;
1746 /* don't need to clear IPPCSE as it defaults to 0 */
1747 }
1748 wr32(E1000_RXCSUM, rxcsum);
1749 }
1750
1751 if (adapter->vlgrp)
1752 wr32(E1000_RLPML,
1753 adapter->max_frame_size + VLAN_TAG_SIZE);
1754 else
1755 wr32(E1000_RLPML, adapter->max_frame_size);
1756
1757 /* Enable Receives */
1758 wr32(E1000_RCTL, rctl);
1759}
1760
1761/**
1762 * igb_free_tx_resources - Free Tx Resources per Queue
1763 * @adapter: board private structure
1764 * @tx_ring: Tx descriptor ring for a specific queue
1765 *
1766 * Free all transmit software resources
1767 **/
1768static void igb_free_tx_resources(struct igb_adapter *adapter,
1769 struct igb_ring *tx_ring)
1770{
1771 struct pci_dev *pdev = adapter->pdev;
1772
1773 igb_clean_tx_ring(adapter, tx_ring);
1774
1775 vfree(tx_ring->buffer_info);
1776 tx_ring->buffer_info = NULL;
1777
1778 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1779
1780 tx_ring->desc = NULL;
1781}
1782
1783/**
1784 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1785 * @adapter: board private structure
1786 *
1787 * Free all transmit software resources
1788 **/
1789static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1790{
1791 int i;
1792
1793 for (i = 0; i < adapter->num_tx_queues; i++)
1794 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1795}
1796
1797static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1798 struct igb_buffer *buffer_info)
1799{
1800 if (buffer_info->dma) {
1801 pci_unmap_page(adapter->pdev,
1802 buffer_info->dma,
1803 buffer_info->length,
1804 PCI_DMA_TODEVICE);
1805 buffer_info->dma = 0;
1806 }
1807 if (buffer_info->skb) {
1808 dev_kfree_skb_any(buffer_info->skb);
1809 buffer_info->skb = NULL;
1810 }
1811 buffer_info->time_stamp = 0;
1812 /* buffer_info must be completely set up in the transmit path */
1813}
1814
1815/**
1816 * igb_clean_tx_ring - Free Tx Buffers
1817 * @adapter: board private structure
1818 * @tx_ring: ring to be cleaned
1819 **/
1820static void igb_clean_tx_ring(struct igb_adapter *adapter,
1821 struct igb_ring *tx_ring)
1822{
1823 struct igb_buffer *buffer_info;
1824 unsigned long size;
1825 unsigned int i;
1826
1827 if (!tx_ring->buffer_info)
1828 return;
1829 /* Free all the Tx ring sk_buffs */
1830
1831 for (i = 0; i < tx_ring->count; i++) {
1832 buffer_info = &tx_ring->buffer_info[i];
1833 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1834 }
1835
1836 size = sizeof(struct igb_buffer) * tx_ring->count;
1837 memset(tx_ring->buffer_info, 0, size);
1838
1839 /* Zero out the descriptor ring */
1840
1841 memset(tx_ring->desc, 0, tx_ring->size);
1842
1843 tx_ring->next_to_use = 0;
1844 tx_ring->next_to_clean = 0;
1845
1846 writel(0, adapter->hw.hw_addr + tx_ring->head);
1847 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1848}
1849
1850/**
1851 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1852 * @adapter: board private structure
1853 **/
1854static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1855{
1856 int i;
1857
1858 for (i = 0; i < adapter->num_tx_queues; i++)
1859 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1860}
1861
1862/**
1863 * igb_free_rx_resources - Free Rx Resources
1864 * @adapter: board private structure
1865 * @rx_ring: ring to clean the resources from
1866 *
1867 * Free all receive software resources
1868 **/
1869static void igb_free_rx_resources(struct igb_adapter *adapter,
1870 struct igb_ring *rx_ring)
1871{
1872 struct pci_dev *pdev = adapter->pdev;
1873
1874 igb_clean_rx_ring(adapter, rx_ring);
1875
1876 vfree(rx_ring->buffer_info);
1877 rx_ring->buffer_info = NULL;
1878
1879 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1880
1881 rx_ring->desc = NULL;
1882}
1883
1884/**
1885 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1886 * @adapter: board private structure
1887 *
1888 * Free all receive software resources
1889 **/
1890static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1891{
1892 int i;
1893
1894 for (i = 0; i < adapter->num_rx_queues; i++)
1895 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1896}
1897
1898/**
1899 * igb_clean_rx_ring - Free Rx Buffers per Queue
1900 * @adapter: board private structure
1901 * @rx_ring: ring to free buffers from
1902 **/
1903static void igb_clean_rx_ring(struct igb_adapter *adapter,
1904 struct igb_ring *rx_ring)
1905{
1906 struct igb_buffer *buffer_info;
1907 struct pci_dev *pdev = adapter->pdev;
1908 unsigned long size;
1909 unsigned int i;
1910
1911 if (!rx_ring->buffer_info)
1912 return;
1913 /* Free all the Rx ring sk_buffs */
1914 for (i = 0; i < rx_ring->count; i++) {
1915 buffer_info = &rx_ring->buffer_info[i];
1916 if (buffer_info->dma) {
1917 if (adapter->rx_ps_hdr_size)
1918 pci_unmap_single(pdev, buffer_info->dma,
1919 adapter->rx_ps_hdr_size,
1920 PCI_DMA_FROMDEVICE);
1921 else
1922 pci_unmap_single(pdev, buffer_info->dma,
1923 adapter->rx_buffer_len,
1924 PCI_DMA_FROMDEVICE);
1925 buffer_info->dma = 0;
1926 }
1927
1928 if (buffer_info->skb) {
1929 dev_kfree_skb(buffer_info->skb);
1930 buffer_info->skb = NULL;
1931 }
1932 if (buffer_info->page) {
1933 pci_unmap_page(pdev, buffer_info->page_dma,
1934 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1935 put_page(buffer_info->page);
1936 buffer_info->page = NULL;
1937 buffer_info->page_dma = 0;
1938 }
1939 }
1940
1941 /* there also may be some cached data from a chained receive */
1942 if (rx_ring->pending_skb) {
1943 dev_kfree_skb(rx_ring->pending_skb);
1944 rx_ring->pending_skb = NULL;
1945 }
1946
1947 size = sizeof(struct igb_buffer) * rx_ring->count;
1948 memset(rx_ring->buffer_info, 0, size);
1949
1950 /* Zero out the descriptor ring */
1951 memset(rx_ring->desc, 0, rx_ring->size);
1952
1953 rx_ring->next_to_clean = 0;
1954 rx_ring->next_to_use = 0;
1955
1956 writel(0, adapter->hw.hw_addr + rx_ring->head);
1957 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1958}
1959
1960/**
1961 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1962 * @adapter: board private structure
1963 **/
1964static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1965{
1966 int i;
1967
1968 for (i = 0; i < adapter->num_rx_queues; i++)
1969 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1970}
1971
1972/**
1973 * igb_set_mac - Change the Ethernet Address of the NIC
1974 * @netdev: network interface device structure
1975 * @p: pointer to an address structure
1976 *
1977 * Returns 0 on success, negative on failure
1978 **/
1979static int igb_set_mac(struct net_device *netdev, void *p)
1980{
1981 struct igb_adapter *adapter = netdev_priv(netdev);
1982 struct sockaddr *addr = p;
1983
1984 if (!is_valid_ether_addr(addr->sa_data))
1985 return -EADDRNOTAVAIL;
1986
1987 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1988 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
1989
1990 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1991
1992 return 0;
1993}
1994
1995/**
1996 * igb_set_multi - Multicast and Promiscuous mode set
1997 * @netdev: network interface device structure
1998 *
1999 * The set_multi entry point is called whenever the multicast address
2000 * list or the network interface flags are updated. This routine is
2001 * responsible for configuring the hardware for proper multicast,
2002 * promiscuous mode, and all-multi behavior.
2003 **/
2004static void igb_set_multi(struct net_device *netdev)
2005{
2006 struct igb_adapter *adapter = netdev_priv(netdev);
2007 struct e1000_hw *hw = &adapter->hw;
2008 struct e1000_mac_info *mac = &hw->mac;
2009 struct dev_mc_list *mc_ptr;
2010 u8 *mta_list;
2011 u32 rctl;
2012 int i;
2013
2014 /* Check for Promiscuous and All Multicast modes */
2015
2016 rctl = rd32(E1000_RCTL);
2017
2018 if (netdev->flags & IFF_PROMISC)
2019 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2020 else if (netdev->flags & IFF_ALLMULTI) {
2021 rctl |= E1000_RCTL_MPE;
2022 rctl &= ~E1000_RCTL_UPE;
2023 } else
2024 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2025
2026 wr32(E1000_RCTL, rctl);
2027
2028 if (!netdev->mc_count) {
2029 /* nothing to program, so clear mc list */
2030 igb_update_mc_addr_list(hw, NULL, 0, 1,
2031 mac->rar_entry_count);
2032 return;
2033 }
2034
2035 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2036 if (!mta_list)
2037 return;
2038
2039 /* The shared function expects a packed array of only addresses. */
2040 mc_ptr = netdev->mc_list;
2041
2042 for (i = 0; i < netdev->mc_count; i++) {
2043 if (!mc_ptr)
2044 break;
2045 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2046 mc_ptr = mc_ptr->next;
2047 }
2048 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2049 kfree(mta_list);
2050}
2051
2052/* Need to wait a few seconds after link up to get diagnostic information from
2053 * the phy */
2054static void igb_update_phy_info(unsigned long data)
2055{
2056 struct igb_adapter *adapter = (struct igb_adapter *) data;
Bill Hayes68707ac2008-02-19 10:24:41 -08002057 if (adapter->hw.phy.ops.get_phy_info)
2058 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
Auke Kok9d5c8242008-01-24 02:22:38 -08002059}
2060
2061/**
2062 * igb_watchdog - Timer Call-back
2063 * @data: pointer to adapter cast into an unsigned long
2064 **/
2065static void igb_watchdog(unsigned long data)
2066{
2067 struct igb_adapter *adapter = (struct igb_adapter *)data;
2068 /* Do the rest outside of interrupt context */
2069 schedule_work(&adapter->watchdog_task);
2070}
2071
2072static void igb_watchdog_task(struct work_struct *work)
2073{
2074 struct igb_adapter *adapter = container_of(work,
2075 struct igb_adapter, watchdog_task);
2076 struct e1000_hw *hw = &adapter->hw;
2077
2078 struct net_device *netdev = adapter->netdev;
2079 struct igb_ring *tx_ring = adapter->tx_ring;
2080 struct e1000_mac_info *mac = &adapter->hw.mac;
2081 u32 link;
2082 s32 ret_val;
2083
2084 if ((netif_carrier_ok(netdev)) &&
2085 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2086 goto link_up;
2087
2088 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2089 if ((ret_val == E1000_ERR_PHY) &&
2090 (hw->phy.type == e1000_phy_igp_3) &&
2091 (rd32(E1000_CTRL) &
2092 E1000_PHY_CTRL_GBE_DISABLE))
2093 dev_info(&adapter->pdev->dev,
2094 "Gigabit has been disabled, downgrading speed\n");
2095
2096 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2097 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2098 link = mac->serdes_has_link;
2099 else
2100 link = rd32(E1000_STATUS) &
2101 E1000_STATUS_LU;
2102
2103 if (link) {
2104 if (!netif_carrier_ok(netdev)) {
2105 u32 ctrl;
2106 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2107 &adapter->link_speed,
2108 &adapter->link_duplex);
2109
2110 ctrl = rd32(E1000_CTRL);
2111 dev_info(&adapter->pdev->dev,
2112 "NIC Link is Up %d Mbps %s, "
2113 "Flow Control: %s\n",
2114 adapter->link_speed,
2115 adapter->link_duplex == FULL_DUPLEX ?
2116 "Full Duplex" : "Half Duplex",
2117 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2118 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2119 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2120 E1000_CTRL_TFCE) ? "TX" : "None")));
2121
2122 /* tweak tx_queue_len according to speed/duplex and
2123 * adjust the timeout factor */
2124 netdev->tx_queue_len = adapter->tx_queue_len;
2125 adapter->tx_timeout_factor = 1;
2126 switch (adapter->link_speed) {
2127 case SPEED_10:
2128 netdev->tx_queue_len = 10;
2129 adapter->tx_timeout_factor = 14;
2130 break;
2131 case SPEED_100:
2132 netdev->tx_queue_len = 100;
2133 /* maybe add some timeout factor ? */
2134 break;
2135 }
2136
2137 netif_carrier_on(netdev);
2138 netif_wake_queue(netdev);
2139
2140 if (!test_bit(__IGB_DOWN, &adapter->state))
2141 mod_timer(&adapter->phy_info_timer,
2142 round_jiffies(jiffies + 2 * HZ));
2143 }
2144 } else {
2145 if (netif_carrier_ok(netdev)) {
2146 adapter->link_speed = 0;
2147 adapter->link_duplex = 0;
2148 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2149 netif_carrier_off(netdev);
2150 netif_stop_queue(netdev);
2151 if (!test_bit(__IGB_DOWN, &adapter->state))
2152 mod_timer(&adapter->phy_info_timer,
2153 round_jiffies(jiffies + 2 * HZ));
2154 }
2155 }
2156
2157link_up:
2158 igb_update_stats(adapter);
2159
2160 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2161 adapter->tpt_old = adapter->stats.tpt;
2162 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2163 adapter->colc_old = adapter->stats.colc;
2164
2165 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2166 adapter->gorc_old = adapter->stats.gorc;
2167 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2168 adapter->gotc_old = adapter->stats.gotc;
2169
2170 igb_update_adaptive(&adapter->hw);
2171
2172 if (!netif_carrier_ok(netdev)) {
2173 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2174 /* We've lost link, so the controller stops DMA,
2175 * but we've got queued Tx work that's never going
2176 * to get done, so reset controller to flush Tx.
2177 * (Do the reset outside of interrupt context). */
2178 adapter->tx_timeout_count++;
2179 schedule_work(&adapter->reset_task);
2180 }
2181 }
2182
2183 /* Cause software interrupt to ensure rx ring is cleaned */
2184 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2185
2186 /* Force detection of hung controller every watchdog period */
2187 tx_ring->detect_tx_hung = true;
2188
2189 /* Reset the timer */
2190 if (!test_bit(__IGB_DOWN, &adapter->state))
2191 mod_timer(&adapter->watchdog_timer,
2192 round_jiffies(jiffies + 2 * HZ));
2193}
2194
2195enum latency_range {
2196 lowest_latency = 0,
2197 low_latency = 1,
2198 bulk_latency = 2,
2199 latency_invalid = 255
2200};
2201
2202
2203static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2204 struct igb_ring *rx_ring)
2205{
2206 struct e1000_hw *hw = &adapter->hw;
2207 int new_val;
2208
2209 new_val = rx_ring->itr_val / 2;
2210 if (new_val < IGB_MIN_DYN_ITR)
2211 new_val = IGB_MIN_DYN_ITR;
2212
2213 if (new_val != rx_ring->itr_val) {
2214 rx_ring->itr_val = new_val;
2215 wr32(rx_ring->itr_register,
2216 1000000000 / (new_val * 256));
2217 }
2218}
2219
2220static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2221 struct igb_ring *rx_ring)
2222{
2223 struct e1000_hw *hw = &adapter->hw;
2224 int new_val;
2225
2226 new_val = rx_ring->itr_val * 2;
2227 if (new_val > IGB_MAX_DYN_ITR)
2228 new_val = IGB_MAX_DYN_ITR;
2229
2230 if (new_val != rx_ring->itr_val) {
2231 rx_ring->itr_val = new_val;
2232 wr32(rx_ring->itr_register,
2233 1000000000 / (new_val * 256));
2234 }
2235}
2236
2237/**
2238 * igb_update_itr - update the dynamic ITR value based on statistics
2239 * Stores a new ITR value based on packets and byte
2240 * counts during the last interrupt. The advantage of per interrupt
2241 * computation is faster updates and more accurate ITR for the current
2242 * traffic pattern. Constants in this function were computed
2243 * based on theoretical maximum wire speed and thresholds were set based
2244 * on testing data as well as attempting to minimize response time
2245 * while increasing bulk throughput.
2246 * this functionality is controlled by the InterruptThrottleRate module
2247 * parameter (see igb_param.c)
2248 * NOTE: These calculations are only valid when operating in a single-
2249 * queue environment.
2250 * @adapter: pointer to adapter
2251 * @itr_setting: current adapter->itr
2252 * @packets: the number of packets during this measurement interval
2253 * @bytes: the number of bytes during this measurement interval
2254 **/
2255static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2256 int packets, int bytes)
2257{
2258 unsigned int retval = itr_setting;
2259
2260 if (packets == 0)
2261 goto update_itr_done;
2262
2263 switch (itr_setting) {
2264 case lowest_latency:
2265 /* handle TSO and jumbo frames */
2266 if (bytes/packets > 8000)
2267 retval = bulk_latency;
2268 else if ((packets < 5) && (bytes > 512))
2269 retval = low_latency;
2270 break;
2271 case low_latency: /* 50 usec aka 20000 ints/s */
2272 if (bytes > 10000) {
2273 /* this if handles the TSO accounting */
2274 if (bytes/packets > 8000) {
2275 retval = bulk_latency;
2276 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2277 retval = bulk_latency;
2278 } else if ((packets > 35)) {
2279 retval = lowest_latency;
2280 }
2281 } else if (bytes/packets > 2000) {
2282 retval = bulk_latency;
2283 } else if (packets <= 2 && bytes < 512) {
2284 retval = lowest_latency;
2285 }
2286 break;
2287 case bulk_latency: /* 250 usec aka 4000 ints/s */
2288 if (bytes > 25000) {
2289 if (packets > 35)
2290 retval = low_latency;
2291 } else if (bytes < 6000) {
2292 retval = low_latency;
2293 }
2294 break;
2295 }
2296
2297update_itr_done:
2298 return retval;
2299}
2300
2301static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2302 int rx_only)
2303{
2304 u16 current_itr;
2305 u32 new_itr = adapter->itr;
2306
2307 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2308 if (adapter->link_speed != SPEED_1000) {
2309 current_itr = 0;
2310 new_itr = 4000;
2311 goto set_itr_now;
2312 }
2313
2314 adapter->rx_itr = igb_update_itr(adapter,
2315 adapter->rx_itr,
2316 adapter->rx_ring->total_packets,
2317 adapter->rx_ring->total_bytes);
2318 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2319 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2320 adapter->rx_itr = low_latency;
2321
2322 if (!rx_only) {
2323 adapter->tx_itr = igb_update_itr(adapter,
2324 adapter->tx_itr,
2325 adapter->tx_ring->total_packets,
2326 adapter->tx_ring->total_bytes);
2327 /* conservative mode (itr 3) eliminates the
2328 * lowest_latency setting */
2329 if (adapter->itr_setting == 3 &&
2330 adapter->tx_itr == lowest_latency)
2331 adapter->tx_itr = low_latency;
2332
2333 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2334 } else {
2335 current_itr = adapter->rx_itr;
2336 }
2337
2338 switch (current_itr) {
2339 /* counts and packets in update_itr are dependent on these numbers */
2340 case lowest_latency:
2341 new_itr = 70000;
2342 break;
2343 case low_latency:
2344 new_itr = 20000; /* aka hwitr = ~200 */
2345 break;
2346 case bulk_latency:
2347 new_itr = 4000;
2348 break;
2349 default:
2350 break;
2351 }
2352
2353set_itr_now:
2354 if (new_itr != adapter->itr) {
2355 /* this attempts to bias the interrupt rate towards Bulk
2356 * by adding intermediate steps when interrupt rate is
2357 * increasing */
2358 new_itr = new_itr > adapter->itr ?
2359 min(adapter->itr + (new_itr >> 2), new_itr) :
2360 new_itr;
2361 /* Don't write the value here; it resets the adapter's
2362 * internal timer, and causes us to delay far longer than
2363 * we should between interrupts. Instead, we write the ITR
2364 * value at the beginning of the next interrupt so the timing
2365 * ends up being correct.
2366 */
2367 adapter->itr = new_itr;
2368 adapter->set_itr = 1;
2369 }
2370
2371 return;
2372}
2373
2374
2375#define IGB_TX_FLAGS_CSUM 0x00000001
2376#define IGB_TX_FLAGS_VLAN 0x00000002
2377#define IGB_TX_FLAGS_TSO 0x00000004
2378#define IGB_TX_FLAGS_IPV4 0x00000008
2379#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2380#define IGB_TX_FLAGS_VLAN_SHIFT 16
2381
2382static inline int igb_tso_adv(struct igb_adapter *adapter,
2383 struct igb_ring *tx_ring,
2384 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2385{
2386 struct e1000_adv_tx_context_desc *context_desc;
2387 unsigned int i;
2388 int err;
2389 struct igb_buffer *buffer_info;
2390 u32 info = 0, tu_cmd = 0;
2391 u32 mss_l4len_idx, l4len;
2392 *hdr_len = 0;
2393
2394 if (skb_header_cloned(skb)) {
2395 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2396 if (err)
2397 return err;
2398 }
2399
2400 l4len = tcp_hdrlen(skb);
2401 *hdr_len += l4len;
2402
2403 if (skb->protocol == htons(ETH_P_IP)) {
2404 struct iphdr *iph = ip_hdr(skb);
2405 iph->tot_len = 0;
2406 iph->check = 0;
2407 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2408 iph->daddr, 0,
2409 IPPROTO_TCP,
2410 0);
2411 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2412 ipv6_hdr(skb)->payload_len = 0;
2413 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2414 &ipv6_hdr(skb)->daddr,
2415 0, IPPROTO_TCP, 0);
2416 }
2417
2418 i = tx_ring->next_to_use;
2419
2420 buffer_info = &tx_ring->buffer_info[i];
2421 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2422 /* VLAN MACLEN IPLEN */
2423 if (tx_flags & IGB_TX_FLAGS_VLAN)
2424 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2425 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2426 *hdr_len += skb_network_offset(skb);
2427 info |= skb_network_header_len(skb);
2428 *hdr_len += skb_network_header_len(skb);
2429 context_desc->vlan_macip_lens = cpu_to_le32(info);
2430
2431 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2432 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2433
2434 if (skb->protocol == htons(ETH_P_IP))
2435 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2436 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2437
2438 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2439
2440 /* MSS L4LEN IDX */
2441 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2442 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2443
2444 /* Context index must be unique per ring. Luckily, so is the interrupt
2445 * mask value. */
2446 mss_l4len_idx |= tx_ring->eims_value >> 4;
2447
2448 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2449 context_desc->seqnum_seed = 0;
2450
2451 buffer_info->time_stamp = jiffies;
2452 buffer_info->dma = 0;
2453 i++;
2454 if (i == tx_ring->count)
2455 i = 0;
2456
2457 tx_ring->next_to_use = i;
2458
2459 return true;
2460}
2461
2462static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2463 struct igb_ring *tx_ring,
2464 struct sk_buff *skb, u32 tx_flags)
2465{
2466 struct e1000_adv_tx_context_desc *context_desc;
2467 unsigned int i;
2468 struct igb_buffer *buffer_info;
2469 u32 info = 0, tu_cmd = 0;
2470
2471 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2472 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2473 i = tx_ring->next_to_use;
2474 buffer_info = &tx_ring->buffer_info[i];
2475 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2476
2477 if (tx_flags & IGB_TX_FLAGS_VLAN)
2478 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2479 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2480 if (skb->ip_summed == CHECKSUM_PARTIAL)
2481 info |= skb_network_header_len(skb);
2482
2483 context_desc->vlan_macip_lens = cpu_to_le32(info);
2484
2485 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2486
2487 if (skb->ip_summed == CHECKSUM_PARTIAL) {
Mitch Williams44b0cda2008-03-07 10:32:13 -08002488 switch (skb->protocol) {
2489 case __constant_htons(ETH_P_IP):
Auke Kok9d5c8242008-01-24 02:22:38 -08002490 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
Mitch Williams44b0cda2008-03-07 10:32:13 -08002491 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2492 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2493 break;
2494 case __constant_htons(ETH_P_IPV6):
2495 /* XXX what about other V6 headers?? */
2496 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2497 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2498 break;
2499 default:
2500 if (unlikely(net_ratelimit()))
2501 dev_warn(&adapter->pdev->dev,
2502 "partial checksum but proto=%x!\n",
2503 skb->protocol);
2504 break;
2505 }
Auke Kok9d5c8242008-01-24 02:22:38 -08002506 }
2507
2508 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2509 context_desc->seqnum_seed = 0;
2510 context_desc->mss_l4len_idx =
2511 cpu_to_le32(tx_ring->eims_value >> 4);
2512
2513 buffer_info->time_stamp = jiffies;
2514 buffer_info->dma = 0;
2515
2516 i++;
2517 if (i == tx_ring->count)
2518 i = 0;
2519 tx_ring->next_to_use = i;
2520
2521 return true;
2522 }
2523
2524
2525 return false;
2526}
2527
2528#define IGB_MAX_TXD_PWR 16
2529#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2530
2531static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2532 struct igb_ring *tx_ring,
2533 struct sk_buff *skb)
2534{
2535 struct igb_buffer *buffer_info;
2536 unsigned int len = skb_headlen(skb);
2537 unsigned int count = 0, i;
2538 unsigned int f;
2539
2540 i = tx_ring->next_to_use;
2541
2542 buffer_info = &tx_ring->buffer_info[i];
2543 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2544 buffer_info->length = len;
2545 /* set time_stamp *before* dma to help avoid a possible race */
2546 buffer_info->time_stamp = jiffies;
2547 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2548 PCI_DMA_TODEVICE);
2549 count++;
2550 i++;
2551 if (i == tx_ring->count)
2552 i = 0;
2553
2554 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2555 struct skb_frag_struct *frag;
2556
2557 frag = &skb_shinfo(skb)->frags[f];
2558 len = frag->size;
2559
2560 buffer_info = &tx_ring->buffer_info[i];
2561 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2562 buffer_info->length = len;
2563 buffer_info->time_stamp = jiffies;
2564 buffer_info->dma = pci_map_page(adapter->pdev,
2565 frag->page,
2566 frag->page_offset,
2567 len,
2568 PCI_DMA_TODEVICE);
2569
2570 count++;
2571 i++;
2572 if (i == tx_ring->count)
2573 i = 0;
2574 }
2575
2576 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2577 tx_ring->buffer_info[i].skb = skb;
2578
2579 return count;
2580}
2581
2582static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2583 struct igb_ring *tx_ring,
2584 int tx_flags, int count, u32 paylen,
2585 u8 hdr_len)
2586{
2587 union e1000_adv_tx_desc *tx_desc = NULL;
2588 struct igb_buffer *buffer_info;
2589 u32 olinfo_status = 0, cmd_type_len;
2590 unsigned int i;
2591
2592 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2593 E1000_ADVTXD_DCMD_DEXT);
2594
2595 if (tx_flags & IGB_TX_FLAGS_VLAN)
2596 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2597
2598 if (tx_flags & IGB_TX_FLAGS_TSO) {
2599 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2600
2601 /* insert tcp checksum */
2602 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2603
2604 /* insert ip checksum */
2605 if (tx_flags & IGB_TX_FLAGS_IPV4)
2606 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2607
2608 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2609 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2610 }
2611
2612 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2613 IGB_TX_FLAGS_VLAN))
2614 olinfo_status |= tx_ring->eims_value >> 4;
2615
2616 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2617
2618 i = tx_ring->next_to_use;
2619 while (count--) {
2620 buffer_info = &tx_ring->buffer_info[i];
2621 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2622 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2623 tx_desc->read.cmd_type_len =
2624 cpu_to_le32(cmd_type_len | buffer_info->length);
2625 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2626 i++;
2627 if (i == tx_ring->count)
2628 i = 0;
2629 }
2630
2631 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2632 /* Force memory writes to complete before letting h/w
2633 * know there are new descriptors to fetch. (Only
2634 * applicable for weak-ordered memory model archs,
2635 * such as IA-64). */
2636 wmb();
2637
2638 tx_ring->next_to_use = i;
2639 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2640 /* we need this if more than one processor can write to our tail
2641 * at a time, it syncronizes IO on IA64/Altix systems */
2642 mmiowb();
2643}
2644
2645static int __igb_maybe_stop_tx(struct net_device *netdev,
2646 struct igb_ring *tx_ring, int size)
2647{
2648 struct igb_adapter *adapter = netdev_priv(netdev);
2649
2650 netif_stop_queue(netdev);
2651 /* Herbert's original patch had:
2652 * smp_mb__after_netif_stop_queue();
2653 * but since that doesn't exist yet, just open code it. */
2654 smp_mb();
2655
2656 /* We need to check again in a case another CPU has just
2657 * made room available. */
2658 if (IGB_DESC_UNUSED(tx_ring) < size)
2659 return -EBUSY;
2660
2661 /* A reprieve! */
2662 netif_start_queue(netdev);
2663 ++adapter->restart_queue;
2664 return 0;
2665}
2666
2667static int igb_maybe_stop_tx(struct net_device *netdev,
2668 struct igb_ring *tx_ring, int size)
2669{
2670 if (IGB_DESC_UNUSED(tx_ring) >= size)
2671 return 0;
2672 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2673}
2674
2675#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2676
2677static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2678 struct net_device *netdev,
2679 struct igb_ring *tx_ring)
2680{
2681 struct igb_adapter *adapter = netdev_priv(netdev);
2682 unsigned int tx_flags = 0;
2683 unsigned int len;
2684 unsigned long irq_flags;
2685 u8 hdr_len = 0;
2686 int tso = 0;
2687
2688 len = skb_headlen(skb);
2689
2690 if (test_bit(__IGB_DOWN, &adapter->state)) {
2691 dev_kfree_skb_any(skb);
2692 return NETDEV_TX_OK;
2693 }
2694
2695 if (skb->len <= 0) {
2696 dev_kfree_skb_any(skb);
2697 return NETDEV_TX_OK;
2698 }
2699
2700 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2701 /* Collision - tell upper layer to requeue */
2702 return NETDEV_TX_LOCKED;
2703
2704 /* need: 1 descriptor per page,
2705 * + 2 desc gap to keep tail from touching head,
2706 * + 1 desc for skb->data,
2707 * + 1 desc for context descriptor,
2708 * otherwise try next time */
2709 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2710 /* this is a hard error */
2711 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2712 return NETDEV_TX_BUSY;
2713 }
2714
2715 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2716 tx_flags |= IGB_TX_FLAGS_VLAN;
2717 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2718 }
2719
2720 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2721 &hdr_len) : 0;
2722
2723 if (tso < 0) {
2724 dev_kfree_skb_any(skb);
2725 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2726 return NETDEV_TX_OK;
2727 }
2728
2729 if (tso)
2730 tx_flags |= IGB_TX_FLAGS_TSO;
2731 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2732 if (skb->ip_summed == CHECKSUM_PARTIAL)
2733 tx_flags |= IGB_TX_FLAGS_CSUM;
2734
2735 if (skb->protocol == htons(ETH_P_IP))
2736 tx_flags |= IGB_TX_FLAGS_IPV4;
2737
2738 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2739 igb_tx_map_adv(adapter, tx_ring, skb),
2740 skb->len, hdr_len);
2741
2742 netdev->trans_start = jiffies;
2743
2744 /* Make sure there is space in the ring for the next send. */
2745 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2746
2747 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2748 return NETDEV_TX_OK;
2749}
2750
2751static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2752{
2753 struct igb_adapter *adapter = netdev_priv(netdev);
2754 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2755
2756 /* This goes back to the question of how to logically map a tx queue
2757 * to a flow. Right now, performance is impacted slightly negatively
2758 * if using multiple tx queues. If the stack breaks away from a
2759 * single qdisc implementation, we can look at this again. */
2760 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2761}
2762
2763/**
2764 * igb_tx_timeout - Respond to a Tx Hang
2765 * @netdev: network interface device structure
2766 **/
2767static void igb_tx_timeout(struct net_device *netdev)
2768{
2769 struct igb_adapter *adapter = netdev_priv(netdev);
2770 struct e1000_hw *hw = &adapter->hw;
2771
2772 /* Do the reset outside of interrupt context */
2773 adapter->tx_timeout_count++;
2774 schedule_work(&adapter->reset_task);
2775 wr32(E1000_EICS, adapter->eims_enable_mask &
2776 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2777}
2778
2779static void igb_reset_task(struct work_struct *work)
2780{
2781 struct igb_adapter *adapter;
2782 adapter = container_of(work, struct igb_adapter, reset_task);
2783
2784 igb_reinit_locked(adapter);
2785}
2786
2787/**
2788 * igb_get_stats - Get System Network Statistics
2789 * @netdev: network interface device structure
2790 *
2791 * Returns the address of the device statistics structure.
2792 * The statistics are actually updated from the timer callback.
2793 **/
2794static struct net_device_stats *
2795igb_get_stats(struct net_device *netdev)
2796{
2797 struct igb_adapter *adapter = netdev_priv(netdev);
2798
2799 /* only return the current stats */
2800 return &adapter->net_stats;
2801}
2802
2803/**
2804 * igb_change_mtu - Change the Maximum Transfer Unit
2805 * @netdev: network interface device structure
2806 * @new_mtu: new value for maximum frame size
2807 *
2808 * Returns 0 on success, negative on failure
2809 **/
2810static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2811{
2812 struct igb_adapter *adapter = netdev_priv(netdev);
2813 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2814
2815 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2816 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2817 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2818 return -EINVAL;
2819 }
2820
2821#define MAX_STD_JUMBO_FRAME_SIZE 9234
2822 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2823 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2824 return -EINVAL;
2825 }
2826
2827 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2828 msleep(1);
2829 /* igb_down has a dependency on max_frame_size */
2830 adapter->max_frame_size = max_frame;
2831 if (netif_running(netdev))
2832 igb_down(adapter);
2833
2834 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2835 * means we reserve 2 more, this pushes us to allocate from the next
2836 * larger slab size.
2837 * i.e. RXBUFFER_2048 --> size-4096 slab
2838 */
2839
2840 if (max_frame <= IGB_RXBUFFER_256)
2841 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2842 else if (max_frame <= IGB_RXBUFFER_512)
2843 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2844 else if (max_frame <= IGB_RXBUFFER_1024)
2845 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2846 else if (max_frame <= IGB_RXBUFFER_2048)
2847 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2848 else
2849 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2850 /* adjust allocation if LPE protects us, and we aren't using SBP */
2851 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2852 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2853 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2854
2855 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2856 netdev->mtu, new_mtu);
2857 netdev->mtu = new_mtu;
2858
2859 if (netif_running(netdev))
2860 igb_up(adapter);
2861 else
2862 igb_reset(adapter);
2863
2864 clear_bit(__IGB_RESETTING, &adapter->state);
2865
2866 return 0;
2867}
2868
2869/**
2870 * igb_update_stats - Update the board statistics counters
2871 * @adapter: board private structure
2872 **/
2873
2874void igb_update_stats(struct igb_adapter *adapter)
2875{
2876 struct e1000_hw *hw = &adapter->hw;
2877 struct pci_dev *pdev = adapter->pdev;
2878 u16 phy_tmp;
2879
2880#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2881
2882 /*
2883 * Prevent stats update while adapter is being reset, or if the pci
2884 * connection is down.
2885 */
2886 if (adapter->link_speed == 0)
2887 return;
2888 if (pci_channel_offline(pdev))
2889 return;
2890
2891 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2892 adapter->stats.gprc += rd32(E1000_GPRC);
2893 adapter->stats.gorc += rd32(E1000_GORCL);
2894 rd32(E1000_GORCH); /* clear GORCL */
2895 adapter->stats.bprc += rd32(E1000_BPRC);
2896 adapter->stats.mprc += rd32(E1000_MPRC);
2897 adapter->stats.roc += rd32(E1000_ROC);
2898
2899 adapter->stats.prc64 += rd32(E1000_PRC64);
2900 adapter->stats.prc127 += rd32(E1000_PRC127);
2901 adapter->stats.prc255 += rd32(E1000_PRC255);
2902 adapter->stats.prc511 += rd32(E1000_PRC511);
2903 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2904 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2905 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2906 adapter->stats.sec += rd32(E1000_SEC);
2907
2908 adapter->stats.mpc += rd32(E1000_MPC);
2909 adapter->stats.scc += rd32(E1000_SCC);
2910 adapter->stats.ecol += rd32(E1000_ECOL);
2911 adapter->stats.mcc += rd32(E1000_MCC);
2912 adapter->stats.latecol += rd32(E1000_LATECOL);
2913 adapter->stats.dc += rd32(E1000_DC);
2914 adapter->stats.rlec += rd32(E1000_RLEC);
2915 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2916 adapter->stats.xontxc += rd32(E1000_XONTXC);
2917 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2918 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2919 adapter->stats.fcruc += rd32(E1000_FCRUC);
2920 adapter->stats.gptc += rd32(E1000_GPTC);
2921 adapter->stats.gotc += rd32(E1000_GOTCL);
2922 rd32(E1000_GOTCH); /* clear GOTCL */
2923 adapter->stats.rnbc += rd32(E1000_RNBC);
2924 adapter->stats.ruc += rd32(E1000_RUC);
2925 adapter->stats.rfc += rd32(E1000_RFC);
2926 adapter->stats.rjc += rd32(E1000_RJC);
2927 adapter->stats.tor += rd32(E1000_TORH);
2928 adapter->stats.tot += rd32(E1000_TOTH);
2929 adapter->stats.tpr += rd32(E1000_TPR);
2930
2931 adapter->stats.ptc64 += rd32(E1000_PTC64);
2932 adapter->stats.ptc127 += rd32(E1000_PTC127);
2933 adapter->stats.ptc255 += rd32(E1000_PTC255);
2934 adapter->stats.ptc511 += rd32(E1000_PTC511);
2935 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2936 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2937
2938 adapter->stats.mptc += rd32(E1000_MPTC);
2939 adapter->stats.bptc += rd32(E1000_BPTC);
2940
2941 /* used for adaptive IFS */
2942
2943 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2944 adapter->stats.tpt += hw->mac.tx_packet_delta;
2945 hw->mac.collision_delta = rd32(E1000_COLC);
2946 adapter->stats.colc += hw->mac.collision_delta;
2947
2948 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2949 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2950 adapter->stats.tncrs += rd32(E1000_TNCRS);
2951 adapter->stats.tsctc += rd32(E1000_TSCTC);
2952 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2953
2954 adapter->stats.iac += rd32(E1000_IAC);
2955 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2956 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2957 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2958 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2959 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2960 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2961 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2962 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2963
2964 /* Fill out the OS statistics structure */
2965 adapter->net_stats.multicast = adapter->stats.mprc;
2966 adapter->net_stats.collisions = adapter->stats.colc;
2967
2968 /* Rx Errors */
2969
2970 /* RLEC on some newer hardware can be incorrect so build
2971 * our own version based on RUC and ROC */
2972 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2973 adapter->stats.crcerrs + adapter->stats.algnerrc +
2974 adapter->stats.ruc + adapter->stats.roc +
2975 adapter->stats.cexterr;
2976 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2977 adapter->stats.roc;
2978 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2979 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2980 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2981
2982 /* Tx Errors */
2983 adapter->net_stats.tx_errors = adapter->stats.ecol +
2984 adapter->stats.latecol;
2985 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2986 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2987 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2988
2989 /* Tx Dropped needs to be maintained elsewhere */
2990
2991 /* Phy Stats */
2992 if (hw->phy.media_type == e1000_media_type_copper) {
2993 if ((adapter->link_speed == SPEED_1000) &&
2994 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
2995 &phy_tmp))) {
2996 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2997 adapter->phy_stats.idle_errors += phy_tmp;
2998 }
2999 }
3000
3001 /* Management Stats */
3002 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3003 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3004 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3005}
3006
3007
3008static irqreturn_t igb_msix_other(int irq, void *data)
3009{
3010 struct net_device *netdev = data;
3011 struct igb_adapter *adapter = netdev_priv(netdev);
3012 struct e1000_hw *hw = &adapter->hw;
3013 u32 eicr;
3014 /* disable interrupts from the "other" bit, avoid re-entry */
3015 wr32(E1000_EIMC, E1000_EIMS_OTHER);
3016
3017 eicr = rd32(E1000_EICR);
3018
3019 if (eicr & E1000_EIMS_OTHER) {
3020 u32 icr = rd32(E1000_ICR);
3021 /* reading ICR causes bit 31 of EICR to be cleared */
3022 if (!(icr & E1000_ICR_LSC))
3023 goto no_link_interrupt;
3024 hw->mac.get_link_status = 1;
3025 /* guard against interrupt when we're going down */
3026 if (!test_bit(__IGB_DOWN, &adapter->state))
3027 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3028 }
3029
3030no_link_interrupt:
3031 wr32(E1000_IMS, E1000_IMS_LSC);
3032 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3033
3034 return IRQ_HANDLED;
3035}
3036
3037static irqreturn_t igb_msix_tx(int irq, void *data)
3038{
3039 struct igb_ring *tx_ring = data;
3040 struct igb_adapter *adapter = tx_ring->adapter;
3041 struct e1000_hw *hw = &adapter->hw;
3042
3043 if (!tx_ring->itr_val)
3044 wr32(E1000_EIMC, tx_ring->eims_value);
3045
3046 tx_ring->total_bytes = 0;
3047 tx_ring->total_packets = 0;
3048 if (!igb_clean_tx_irq(adapter, tx_ring))
3049 /* Ring was not completely cleaned, so fire another interrupt */
3050 wr32(E1000_EICS, tx_ring->eims_value);
3051
3052 if (!tx_ring->itr_val)
3053 wr32(E1000_EIMS, tx_ring->eims_value);
3054 return IRQ_HANDLED;
3055}
3056
3057static irqreturn_t igb_msix_rx(int irq, void *data)
3058{
3059 struct igb_ring *rx_ring = data;
3060 struct igb_adapter *adapter = rx_ring->adapter;
3061 struct e1000_hw *hw = &adapter->hw;
3062
3063 if (!rx_ring->itr_val)
3064 wr32(E1000_EIMC, rx_ring->eims_value);
3065
3066 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3067 rx_ring->total_bytes = 0;
3068 rx_ring->total_packets = 0;
3069 rx_ring->no_itr_adjust = 0;
3070 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3071 } else {
3072 if (!rx_ring->no_itr_adjust) {
3073 igb_lower_rx_eitr(adapter, rx_ring);
3074 rx_ring->no_itr_adjust = 1;
3075 }
3076 }
3077
3078 return IRQ_HANDLED;
3079}
3080
3081
3082/**
3083 * igb_intr_msi - Interrupt Handler
3084 * @irq: interrupt number
3085 * @data: pointer to a network interface device structure
3086 **/
3087static irqreturn_t igb_intr_msi(int irq, void *data)
3088{
3089 struct net_device *netdev = data;
3090 struct igb_adapter *adapter = netdev_priv(netdev);
3091 struct napi_struct *napi = &adapter->napi;
3092 struct e1000_hw *hw = &adapter->hw;
3093 /* read ICR disables interrupts using IAM */
3094 u32 icr = rd32(E1000_ICR);
3095
3096 /* Write the ITR value calculated at the end of the
3097 * previous interrupt.
3098 */
3099 if (adapter->set_itr) {
3100 wr32(E1000_ITR,
3101 1000000000 / (adapter->itr * 256));
3102 adapter->set_itr = 0;
3103 }
3104
3105 /* read ICR disables interrupts using IAM */
3106 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3107 hw->mac.get_link_status = 1;
3108 if (!test_bit(__IGB_DOWN, &adapter->state))
3109 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3110 }
3111
3112 if (netif_rx_schedule_prep(netdev, napi)) {
3113 adapter->tx_ring->total_bytes = 0;
3114 adapter->tx_ring->total_packets = 0;
3115 adapter->rx_ring->total_bytes = 0;
3116 adapter->rx_ring->total_packets = 0;
3117 __netif_rx_schedule(netdev, napi);
3118 }
3119
3120 return IRQ_HANDLED;
3121}
3122
3123/**
3124 * igb_intr - Interrupt Handler
3125 * @irq: interrupt number
3126 * @data: pointer to a network interface device structure
3127 **/
3128static irqreturn_t igb_intr(int irq, void *data)
3129{
3130 struct net_device *netdev = data;
3131 struct igb_adapter *adapter = netdev_priv(netdev);
3132 struct napi_struct *napi = &adapter->napi;
3133 struct e1000_hw *hw = &adapter->hw;
3134 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3135 * need for the IMC write */
3136 u32 icr = rd32(E1000_ICR);
3137 u32 eicr = 0;
3138 if (!icr)
3139 return IRQ_NONE; /* Not our interrupt */
3140
3141 /* Write the ITR value calculated at the end of the
3142 * previous interrupt.
3143 */
3144 if (adapter->set_itr) {
3145 wr32(E1000_ITR,
3146 1000000000 / (adapter->itr * 256));
3147 adapter->set_itr = 0;
3148 }
3149
3150 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3151 * not set, then the adapter didn't send an interrupt */
3152 if (!(icr & E1000_ICR_INT_ASSERTED))
3153 return IRQ_NONE;
3154
3155 eicr = rd32(E1000_EICR);
3156
3157 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3158 hw->mac.get_link_status = 1;
3159 /* guard against interrupt when we're going down */
3160 if (!test_bit(__IGB_DOWN, &adapter->state))
3161 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3162 }
3163
3164 if (netif_rx_schedule_prep(netdev, napi)) {
3165 adapter->tx_ring->total_bytes = 0;
3166 adapter->rx_ring->total_bytes = 0;
3167 adapter->tx_ring->total_packets = 0;
3168 adapter->rx_ring->total_packets = 0;
3169 __netif_rx_schedule(netdev, napi);
3170 }
3171
3172 return IRQ_HANDLED;
3173}
3174
3175/**
3176 * igb_clean - NAPI Rx polling callback
3177 * @adapter: board private structure
3178 **/
3179static int igb_clean(struct napi_struct *napi, int budget)
3180{
3181 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3182 napi);
3183 struct net_device *netdev = adapter->netdev;
3184 int tx_clean_complete = 1, work_done = 0;
3185 int i;
3186
3187 /* Must NOT use netdev_priv macro here. */
3188 adapter = netdev->priv;
3189
3190 /* Keep link state information with original netdev */
3191 if (!netif_carrier_ok(netdev))
3192 goto quit_polling;
3193
3194 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3195 * being cleaned by multiple cpus simultaneously. A failure obtaining
3196 * the lock means tx_ring[i] is currently being cleaned anyway. */
3197 for (i = 0; i < adapter->num_tx_queues; i++) {
3198 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3199 tx_clean_complete &= igb_clean_tx_irq(adapter,
3200 &adapter->tx_ring[i]);
3201 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3202 }
3203 }
3204
3205 for (i = 0; i < adapter->num_rx_queues; i++)
3206 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3207 adapter->rx_ring[i].napi.weight);
3208
3209 /* If no Tx and not enough Rx work done, exit the polling mode */
3210 if ((tx_clean_complete && (work_done < budget)) ||
3211 !netif_running(netdev)) {
3212quit_polling:
3213 if (adapter->itr_setting & 3)
3214 igb_set_itr(adapter, E1000_ITR, false);
3215 netif_rx_complete(netdev, napi);
3216 if (!test_bit(__IGB_DOWN, &adapter->state))
3217 igb_irq_enable(adapter);
3218 return 0;
3219 }
3220
3221 return 1;
3222}
3223
3224static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3225{
3226 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3227 struct igb_adapter *adapter = rx_ring->adapter;
3228 struct e1000_hw *hw = &adapter->hw;
3229 struct net_device *netdev = adapter->netdev;
3230 int work_done = 0;
3231
3232 /* Keep link state information with original netdev */
3233 if (!netif_carrier_ok(netdev))
3234 goto quit_polling;
3235
3236 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3237
3238
3239 /* If not enough Rx work done, exit the polling mode */
3240 if ((work_done == 0) || !netif_running(netdev)) {
3241quit_polling:
3242 netif_rx_complete(netdev, napi);
3243
3244 wr32(E1000_EIMS, rx_ring->eims_value);
3245 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3246 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3247 int mean_size = rx_ring->total_bytes /
3248 rx_ring->total_packets;
3249 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3250 igb_raise_rx_eitr(adapter, rx_ring);
3251 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3252 igb_lower_rx_eitr(adapter, rx_ring);
3253 }
3254 return 0;
3255 }
3256
3257 return 1;
3258}
Al Viro6d8126f2008-03-16 22:23:24 +00003259
3260static inline u32 get_head(struct igb_ring *tx_ring)
3261{
3262 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3263 return le32_to_cpu(*(volatile __le32 *)end);
3264}
3265
Auke Kok9d5c8242008-01-24 02:22:38 -08003266/**
3267 * igb_clean_tx_irq - Reclaim resources after transmit completes
3268 * @adapter: board private structure
3269 * returns true if ring is completely cleaned
3270 **/
3271static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3272 struct igb_ring *tx_ring)
3273{
3274 struct net_device *netdev = adapter->netdev;
3275 struct e1000_hw *hw = &adapter->hw;
3276 struct e1000_tx_desc *tx_desc;
3277 struct igb_buffer *buffer_info;
3278 struct sk_buff *skb;
3279 unsigned int i;
3280 u32 head, oldhead;
3281 unsigned int count = 0;
3282 bool cleaned = false;
3283 bool retval = true;
3284 unsigned int total_bytes = 0, total_packets = 0;
3285
3286 rmb();
Al Viro6d8126f2008-03-16 22:23:24 +00003287 head = get_head(tx_ring);
Auke Kok9d5c8242008-01-24 02:22:38 -08003288 i = tx_ring->next_to_clean;
3289 while (1) {
3290 while (i != head) {
3291 cleaned = true;
3292 tx_desc = E1000_TX_DESC(*tx_ring, i);
3293 buffer_info = &tx_ring->buffer_info[i];
3294 skb = buffer_info->skb;
3295
3296 if (skb) {
3297 unsigned int segs, bytecount;
3298 /* gso_segs is currently only valid for tcp */
3299 segs = skb_shinfo(skb)->gso_segs ?: 1;
3300 /* multiply data chunks by size of headers */
3301 bytecount = ((segs - 1) * skb_headlen(skb)) +
3302 skb->len;
3303 total_packets += segs;
3304 total_bytes += bytecount;
3305 }
3306
3307 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3308 tx_desc->upper.data = 0;
3309
3310 i++;
3311 if (i == tx_ring->count)
3312 i = 0;
3313
3314 count++;
3315 if (count == IGB_MAX_TX_CLEAN) {
3316 retval = false;
3317 goto done_cleaning;
3318 }
3319 }
3320 oldhead = head;
3321 rmb();
Al Viro6d8126f2008-03-16 22:23:24 +00003322 head = get_head(tx_ring);
Auke Kok9d5c8242008-01-24 02:22:38 -08003323 if (head == oldhead)
3324 goto done_cleaning;
3325 } /* while (1) */
3326
3327done_cleaning:
3328 tx_ring->next_to_clean = i;
3329
3330 if (unlikely(cleaned &&
3331 netif_carrier_ok(netdev) &&
3332 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3333 /* Make sure that anybody stopping the queue after this
3334 * sees the new next_to_clean.
3335 */
3336 smp_mb();
3337 if (netif_queue_stopped(netdev) &&
3338 !(test_bit(__IGB_DOWN, &adapter->state))) {
3339 netif_wake_queue(netdev);
3340 ++adapter->restart_queue;
3341 }
3342 }
3343
3344 if (tx_ring->detect_tx_hung) {
3345 /* Detect a transmit hang in hardware, this serializes the
3346 * check with the clearing of time_stamp and movement of i */
3347 tx_ring->detect_tx_hung = false;
3348 if (tx_ring->buffer_info[i].time_stamp &&
3349 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3350 (adapter->tx_timeout_factor * HZ))
3351 && !(rd32(E1000_STATUS) &
3352 E1000_STATUS_TXOFF)) {
3353
3354 tx_desc = E1000_TX_DESC(*tx_ring, i);
3355 /* detected Tx unit hang */
3356 dev_err(&adapter->pdev->dev,
3357 "Detected Tx Unit Hang\n"
3358 " Tx Queue <%lu>\n"
3359 " TDH <%x>\n"
3360 " TDT <%x>\n"
3361 " next_to_use <%x>\n"
3362 " next_to_clean <%x>\n"
3363 " head (WB) <%x>\n"
3364 "buffer_info[next_to_clean]\n"
3365 " time_stamp <%lx>\n"
3366 " jiffies <%lx>\n"
3367 " desc.status <%x>\n",
3368 (unsigned long)((tx_ring - adapter->tx_ring) /
3369 sizeof(struct igb_ring)),
3370 readl(adapter->hw.hw_addr + tx_ring->head),
3371 readl(adapter->hw.hw_addr + tx_ring->tail),
3372 tx_ring->next_to_use,
3373 tx_ring->next_to_clean,
3374 head,
3375 tx_ring->buffer_info[i].time_stamp,
3376 jiffies,
3377 tx_desc->upper.fields.status);
3378 netif_stop_queue(netdev);
3379 }
3380 }
3381 tx_ring->total_bytes += total_bytes;
3382 tx_ring->total_packets += total_packets;
3383 adapter->net_stats.tx_bytes += total_bytes;
3384 adapter->net_stats.tx_packets += total_packets;
3385 return retval;
3386}
3387
3388
3389/**
3390 * igb_receive_skb - helper function to handle rx indications
3391 * @adapter: board private structure
3392 * @status: descriptor status field as written by hardware
3393 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3394 * @skb: pointer to sk_buff to be indicated to stack
3395 **/
Al Viro6d8126f2008-03-16 22:23:24 +00003396static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
Auke Kok9d5c8242008-01-24 02:22:38 -08003397 struct sk_buff *skb)
3398{
3399 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3400 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3401 le16_to_cpu(vlan) &
3402 E1000_RXD_SPC_VLAN_MASK);
3403 else
3404 netif_receive_skb(skb);
3405}
3406
3407
3408static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3409 u32 status_err, struct sk_buff *skb)
3410{
3411 skb->ip_summed = CHECKSUM_NONE;
3412
3413 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3414 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3415 return;
3416 /* TCP/UDP checksum error bit is set */
3417 if (status_err &
3418 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3419 /* let the stack verify checksum errors */
3420 adapter->hw_csum_err++;
3421 return;
3422 }
3423 /* It must be a TCP or UDP packet with a valid checksum */
3424 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3425 skb->ip_summed = CHECKSUM_UNNECESSARY;
3426
3427 adapter->hw_csum_good++;
3428}
3429
3430static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3431 struct igb_ring *rx_ring,
3432 int *work_done, int budget)
3433{
3434 struct net_device *netdev = adapter->netdev;
3435 struct pci_dev *pdev = adapter->pdev;
3436 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3437 struct igb_buffer *buffer_info , *next_buffer;
3438 struct sk_buff *skb;
3439 unsigned int i, j;
3440 u32 length, hlen, staterr;
3441 bool cleaned = false;
3442 int cleaned_count = 0;
3443 unsigned int total_bytes = 0, total_packets = 0;
3444
3445 i = rx_ring->next_to_clean;
3446 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3447 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3448
3449 while (staterr & E1000_RXD_STAT_DD) {
3450 if (*work_done >= budget)
3451 break;
3452 (*work_done)++;
3453 buffer_info = &rx_ring->buffer_info[i];
3454
3455 /* HW will not DMA in data larger than the given buffer, even
3456 * if it parses the (NFS, of course) header to be larger. In
3457 * that case, it fills the header buffer and spills the rest
3458 * into the page.
3459 */
Al Viro7deb07b2008-03-16 22:43:06 +00003460 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3461 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
Auke Kok9d5c8242008-01-24 02:22:38 -08003462 if (hlen > adapter->rx_ps_hdr_size)
3463 hlen = adapter->rx_ps_hdr_size;
3464
3465 length = le16_to_cpu(rx_desc->wb.upper.length);
3466 cleaned = true;
3467 cleaned_count++;
3468
3469 if (rx_ring->pending_skb != NULL) {
3470 skb = rx_ring->pending_skb;
3471 rx_ring->pending_skb = NULL;
3472 j = rx_ring->pending_skb_page;
3473 } else {
3474 skb = buffer_info->skb;
3475 prefetch(skb->data - NET_IP_ALIGN);
3476 buffer_info->skb = NULL;
3477 if (hlen) {
3478 pci_unmap_single(pdev, buffer_info->dma,
3479 adapter->rx_ps_hdr_size +
3480 NET_IP_ALIGN,
3481 PCI_DMA_FROMDEVICE);
3482 skb_put(skb, hlen);
3483 } else {
3484 pci_unmap_single(pdev, buffer_info->dma,
3485 adapter->rx_buffer_len +
3486 NET_IP_ALIGN,
3487 PCI_DMA_FROMDEVICE);
3488 skb_put(skb, length);
3489 goto send_up;
3490 }
3491 j = 0;
3492 }
3493
3494 while (length) {
3495 pci_unmap_page(pdev, buffer_info->page_dma,
3496 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3497 buffer_info->page_dma = 0;
3498 skb_fill_page_desc(skb, j, buffer_info->page,
3499 0, length);
3500 buffer_info->page = NULL;
3501
3502 skb->len += length;
3503 skb->data_len += length;
3504 skb->truesize += length;
3505 rx_desc->wb.upper.status_error = 0;
3506 if (staterr & E1000_RXD_STAT_EOP)
3507 break;
3508
3509 j++;
3510 cleaned_count++;
3511 i++;
3512 if (i == rx_ring->count)
3513 i = 0;
3514
3515 buffer_info = &rx_ring->buffer_info[i];
3516 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3518 length = le16_to_cpu(rx_desc->wb.upper.length);
3519 if (!(staterr & E1000_RXD_STAT_DD)) {
3520 rx_ring->pending_skb = skb;
3521 rx_ring->pending_skb_page = j;
3522 goto out;
3523 }
3524 }
3525send_up:
3526 pskb_trim(skb, skb->len - 4);
3527 i++;
3528 if (i == rx_ring->count)
3529 i = 0;
3530 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3531 prefetch(next_rxd);
3532 next_buffer = &rx_ring->buffer_info[i];
3533
3534 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3535 dev_kfree_skb_irq(skb);
3536 goto next_desc;
3537 }
3538 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3539
3540 total_bytes += skb->len;
3541 total_packets++;
3542
3543 igb_rx_checksum_adv(adapter, staterr, skb);
3544
3545 skb->protocol = eth_type_trans(skb, netdev);
3546
3547 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3548
3549 netdev->last_rx = jiffies;
3550
3551next_desc:
3552 rx_desc->wb.upper.status_error = 0;
3553
3554 /* return some buffers to hardware, one at a time is too slow */
3555 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3556 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3557 cleaned_count);
3558 cleaned_count = 0;
3559 }
3560
3561 /* use prefetched values */
3562 rx_desc = next_rxd;
3563 buffer_info = next_buffer;
3564
3565 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3566 }
3567out:
3568 rx_ring->next_to_clean = i;
3569 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3570
3571 if (cleaned_count)
3572 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3573
3574 rx_ring->total_packets += total_packets;
3575 rx_ring->total_bytes += total_bytes;
3576 rx_ring->rx_stats.packets += total_packets;
3577 rx_ring->rx_stats.bytes += total_bytes;
3578 adapter->net_stats.rx_bytes += total_bytes;
3579 adapter->net_stats.rx_packets += total_packets;
3580 return cleaned;
3581}
3582
3583
3584/**
3585 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3586 * @adapter: address of board private structure
3587 **/
3588static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3589 struct igb_ring *rx_ring,
3590 int cleaned_count)
3591{
3592 struct net_device *netdev = adapter->netdev;
3593 struct pci_dev *pdev = adapter->pdev;
3594 union e1000_adv_rx_desc *rx_desc;
3595 struct igb_buffer *buffer_info;
3596 struct sk_buff *skb;
3597 unsigned int i;
3598
3599 i = rx_ring->next_to_use;
3600 buffer_info = &rx_ring->buffer_info[i];
3601
3602 while (cleaned_count--) {
3603 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3604
3605 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3606 buffer_info->page = alloc_page(GFP_ATOMIC);
3607 if (!buffer_info->page) {
3608 adapter->alloc_rx_buff_failed++;
3609 goto no_buffers;
3610 }
3611 buffer_info->page_dma =
3612 pci_map_page(pdev,
3613 buffer_info->page,
3614 0, PAGE_SIZE,
3615 PCI_DMA_FROMDEVICE);
3616 }
3617
3618 if (!buffer_info->skb) {
3619 int bufsz;
3620
3621 if (adapter->rx_ps_hdr_size)
3622 bufsz = adapter->rx_ps_hdr_size;
3623 else
3624 bufsz = adapter->rx_buffer_len;
3625 bufsz += NET_IP_ALIGN;
3626 skb = netdev_alloc_skb(netdev, bufsz);
3627
3628 if (!skb) {
3629 adapter->alloc_rx_buff_failed++;
3630 goto no_buffers;
3631 }
3632
3633 /* Make buffer alignment 2 beyond a 16 byte boundary
3634 * this will result in a 16 byte aligned IP header after
3635 * the 14 byte MAC header is removed
3636 */
3637 skb_reserve(skb, NET_IP_ALIGN);
3638
3639 buffer_info->skb = skb;
3640 buffer_info->dma = pci_map_single(pdev, skb->data,
3641 bufsz,
3642 PCI_DMA_FROMDEVICE);
3643
3644 }
3645 /* Refresh the desc even if buffer_addrs didn't change because
3646 * each write-back erases this info. */
3647 if (adapter->rx_ps_hdr_size) {
3648 rx_desc->read.pkt_addr =
3649 cpu_to_le64(buffer_info->page_dma);
3650 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3651 } else {
3652 rx_desc->read.pkt_addr =
3653 cpu_to_le64(buffer_info->dma);
3654 rx_desc->read.hdr_addr = 0;
3655 }
3656
3657 i++;
3658 if (i == rx_ring->count)
3659 i = 0;
3660 buffer_info = &rx_ring->buffer_info[i];
3661 }
3662
3663no_buffers:
3664 if (rx_ring->next_to_use != i) {
3665 rx_ring->next_to_use = i;
3666 if (i == 0)
3667 i = (rx_ring->count - 1);
3668 else
3669 i--;
3670
3671 /* Force memory writes to complete before letting h/w
3672 * know there are new descriptors to fetch. (Only
3673 * applicable for weak-ordered memory model archs,
3674 * such as IA-64). */
3675 wmb();
3676 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3677 }
3678}
3679
3680/**
3681 * igb_mii_ioctl -
3682 * @netdev:
3683 * @ifreq:
3684 * @cmd:
3685 **/
3686static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3687{
3688 struct igb_adapter *adapter = netdev_priv(netdev);
3689 struct mii_ioctl_data *data = if_mii(ifr);
3690
3691 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3692 return -EOPNOTSUPP;
3693
3694 switch (cmd) {
3695 case SIOCGMIIPHY:
3696 data->phy_id = adapter->hw.phy.addr;
3697 break;
3698 case SIOCGMIIREG:
3699 if (!capable(CAP_NET_ADMIN))
3700 return -EPERM;
3701 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3702 data->reg_num
3703 & 0x1F, &data->val_out))
3704 return -EIO;
3705 break;
3706 case SIOCSMIIREG:
3707 default:
3708 return -EOPNOTSUPP;
3709 }
3710 return 0;
3711}
3712
3713/**
3714 * igb_ioctl -
3715 * @netdev:
3716 * @ifreq:
3717 * @cmd:
3718 **/
3719static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3720{
3721 switch (cmd) {
3722 case SIOCGMIIPHY:
3723 case SIOCGMIIREG:
3724 case SIOCSMIIREG:
3725 return igb_mii_ioctl(netdev, ifr, cmd);
3726 default:
3727 return -EOPNOTSUPP;
3728 }
3729}
3730
3731static void igb_vlan_rx_register(struct net_device *netdev,
3732 struct vlan_group *grp)
3733{
3734 struct igb_adapter *adapter = netdev_priv(netdev);
3735 struct e1000_hw *hw = &adapter->hw;
3736 u32 ctrl, rctl;
3737
3738 igb_irq_disable(adapter);
3739 adapter->vlgrp = grp;
3740
3741 if (grp) {
3742 /* enable VLAN tag insert/strip */
3743 ctrl = rd32(E1000_CTRL);
3744 ctrl |= E1000_CTRL_VME;
3745 wr32(E1000_CTRL, ctrl);
3746
3747 /* enable VLAN receive filtering */
3748 rctl = rd32(E1000_RCTL);
3749 rctl |= E1000_RCTL_VFE;
3750 rctl &= ~E1000_RCTL_CFIEN;
3751 wr32(E1000_RCTL, rctl);
3752 igb_update_mng_vlan(adapter);
3753 wr32(E1000_RLPML,
3754 adapter->max_frame_size + VLAN_TAG_SIZE);
3755 } else {
3756 /* disable VLAN tag insert/strip */
3757 ctrl = rd32(E1000_CTRL);
3758 ctrl &= ~E1000_CTRL_VME;
3759 wr32(E1000_CTRL, ctrl);
3760
3761 /* disable VLAN filtering */
3762 rctl = rd32(E1000_RCTL);
3763 rctl &= ~E1000_RCTL_VFE;
3764 wr32(E1000_RCTL, rctl);
3765 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3766 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3767 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3768 }
3769 wr32(E1000_RLPML,
3770 adapter->max_frame_size);
3771 }
3772
3773 if (!test_bit(__IGB_DOWN, &adapter->state))
3774 igb_irq_enable(adapter);
3775}
3776
3777static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3778{
3779 struct igb_adapter *adapter = netdev_priv(netdev);
3780 struct e1000_hw *hw = &adapter->hw;
3781 u32 vfta, index;
3782
3783 if ((adapter->hw.mng_cookie.status &
3784 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3785 (vid == adapter->mng_vlan_id))
3786 return;
3787 /* add VID to filter table */
3788 index = (vid >> 5) & 0x7F;
3789 vfta = array_rd32(E1000_VFTA, index);
3790 vfta |= (1 << (vid & 0x1F));
3791 igb_write_vfta(&adapter->hw, index, vfta);
3792}
3793
3794static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3795{
3796 struct igb_adapter *adapter = netdev_priv(netdev);
3797 struct e1000_hw *hw = &adapter->hw;
3798 u32 vfta, index;
3799
3800 igb_irq_disable(adapter);
3801 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3802
3803 if (!test_bit(__IGB_DOWN, &adapter->state))
3804 igb_irq_enable(adapter);
3805
3806 if ((adapter->hw.mng_cookie.status &
3807 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3808 (vid == adapter->mng_vlan_id)) {
3809 /* release control to f/w */
3810 igb_release_hw_control(adapter);
3811 return;
3812 }
3813
3814 /* remove VID from filter table */
3815 index = (vid >> 5) & 0x7F;
3816 vfta = array_rd32(E1000_VFTA, index);
3817 vfta &= ~(1 << (vid & 0x1F));
3818 igb_write_vfta(&adapter->hw, index, vfta);
3819}
3820
3821static void igb_restore_vlan(struct igb_adapter *adapter)
3822{
3823 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3824
3825 if (adapter->vlgrp) {
3826 u16 vid;
3827 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3828 if (!vlan_group_get_device(adapter->vlgrp, vid))
3829 continue;
3830 igb_vlan_rx_add_vid(adapter->netdev, vid);
3831 }
3832 }
3833}
3834
3835int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3836{
3837 struct e1000_mac_info *mac = &adapter->hw.mac;
3838
3839 mac->autoneg = 0;
3840
3841 /* Fiber NICs only allow 1000 gbps Full duplex */
3842 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3843 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3844 dev_err(&adapter->pdev->dev,
3845 "Unsupported Speed/Duplex configuration\n");
3846 return -EINVAL;
3847 }
3848
3849 switch (spddplx) {
3850 case SPEED_10 + DUPLEX_HALF:
3851 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3852 break;
3853 case SPEED_10 + DUPLEX_FULL:
3854 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3855 break;
3856 case SPEED_100 + DUPLEX_HALF:
3857 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3858 break;
3859 case SPEED_100 + DUPLEX_FULL:
3860 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3861 break;
3862 case SPEED_1000 + DUPLEX_FULL:
3863 mac->autoneg = 1;
3864 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3865 break;
3866 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3867 default:
3868 dev_err(&adapter->pdev->dev,
3869 "Unsupported Speed/Duplex configuration\n");
3870 return -EINVAL;
3871 }
3872 return 0;
3873}
3874
3875
3876static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3877{
3878 struct net_device *netdev = pci_get_drvdata(pdev);
3879 struct igb_adapter *adapter = netdev_priv(netdev);
3880 struct e1000_hw *hw = &adapter->hw;
3881 u32 ctrl, ctrl_ext, rctl, status;
3882 u32 wufc = adapter->wol;
3883#ifdef CONFIG_PM
3884 int retval = 0;
3885#endif
3886
3887 netif_device_detach(netdev);
3888
3889 if (netif_running(netdev)) {
3890 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3891 igb_down(adapter);
3892 igb_free_irq(adapter);
3893 }
3894
3895#ifdef CONFIG_PM
3896 retval = pci_save_state(pdev);
3897 if (retval)
3898 return retval;
3899#endif
3900
3901 status = rd32(E1000_STATUS);
3902 if (status & E1000_STATUS_LU)
3903 wufc &= ~E1000_WUFC_LNKC;
3904
3905 if (wufc) {
3906 igb_setup_rctl(adapter);
3907 igb_set_multi(netdev);
3908
3909 /* turn on all-multi mode if wake on multicast is enabled */
3910 if (wufc & E1000_WUFC_MC) {
3911 rctl = rd32(E1000_RCTL);
3912 rctl |= E1000_RCTL_MPE;
3913 wr32(E1000_RCTL, rctl);
3914 }
3915
3916 ctrl = rd32(E1000_CTRL);
3917 /* advertise wake from D3Cold */
3918 #define E1000_CTRL_ADVD3WUC 0x00100000
3919 /* phy power management enable */
3920 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3921 ctrl |= E1000_CTRL_ADVD3WUC;
3922 wr32(E1000_CTRL, ctrl);
3923
3924 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3925 adapter->hw.phy.media_type ==
3926 e1000_media_type_internal_serdes) {
3927 /* keep the laser running in D3 */
3928 ctrl_ext = rd32(E1000_CTRL_EXT);
3929 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3930 wr32(E1000_CTRL_EXT, ctrl_ext);
3931 }
3932
3933 /* Allow time for pending master requests to run */
3934 igb_disable_pcie_master(&adapter->hw);
3935
3936 wr32(E1000_WUC, E1000_WUC_PME_EN);
3937 wr32(E1000_WUFC, wufc);
3938 pci_enable_wake(pdev, PCI_D3hot, 1);
3939 pci_enable_wake(pdev, PCI_D3cold, 1);
3940 } else {
3941 wr32(E1000_WUC, 0);
3942 wr32(E1000_WUFC, 0);
3943 pci_enable_wake(pdev, PCI_D3hot, 0);
3944 pci_enable_wake(pdev, PCI_D3cold, 0);
3945 }
3946
Auke Kok9d5c8242008-01-24 02:22:38 -08003947 /* make sure adapter isn't asleep if manageability is enabled */
3948 if (adapter->en_mng_pt) {
3949 pci_enable_wake(pdev, PCI_D3hot, 1);
3950 pci_enable_wake(pdev, PCI_D3cold, 1);
3951 }
3952
3953 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3954 * would have already happened in close and is redundant. */
3955 igb_release_hw_control(adapter);
3956
3957 pci_disable_device(pdev);
3958
3959 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3960
3961 return 0;
3962}
3963
3964#ifdef CONFIG_PM
3965static int igb_resume(struct pci_dev *pdev)
3966{
3967 struct net_device *netdev = pci_get_drvdata(pdev);
3968 struct igb_adapter *adapter = netdev_priv(netdev);
3969 struct e1000_hw *hw = &adapter->hw;
3970 u32 err;
3971
3972 pci_set_power_state(pdev, PCI_D0);
3973 pci_restore_state(pdev);
3974 err = pci_enable_device(pdev);
3975 if (err) {
3976 dev_err(&pdev->dev,
3977 "igb: Cannot enable PCI device from suspend\n");
3978 return err;
3979 }
3980 pci_set_master(pdev);
3981
3982 pci_enable_wake(pdev, PCI_D3hot, 0);
3983 pci_enable_wake(pdev, PCI_D3cold, 0);
3984
3985 if (netif_running(netdev)) {
3986 err = igb_request_irq(adapter);
3987 if (err)
3988 return err;
3989 }
3990
3991 /* e1000_power_up_phy(adapter); */
3992
3993 igb_reset(adapter);
3994 wr32(E1000_WUS, ~0);
3995
3996 igb_init_manageability(adapter);
3997
3998 if (netif_running(netdev))
3999 igb_up(adapter);
4000
4001 netif_device_attach(netdev);
4002
4003 /* let the f/w know that the h/w is now under the control of the
4004 * driver. */
4005 igb_get_hw_control(adapter);
4006
4007 return 0;
4008}
4009#endif
4010
4011static void igb_shutdown(struct pci_dev *pdev)
4012{
4013 igb_suspend(pdev, PMSG_SUSPEND);
4014}
4015
4016#ifdef CONFIG_NET_POLL_CONTROLLER
4017/*
4018 * Polling 'interrupt' - used by things like netconsole to send skbs
4019 * without having to re-enable interrupts. It's not called while
4020 * the interrupt routine is executing.
4021 */
4022static void igb_netpoll(struct net_device *netdev)
4023{
4024 struct igb_adapter *adapter = netdev_priv(netdev);
4025 int i;
4026 int work_done = 0;
4027
4028 igb_irq_disable(adapter);
4029 for (i = 0; i < adapter->num_tx_queues; i++)
4030 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4031
4032 for (i = 0; i < adapter->num_rx_queues; i++)
4033 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4034 &work_done,
4035 adapter->rx_ring[i].napi.weight);
4036
4037 igb_irq_enable(adapter);
4038}
4039#endif /* CONFIG_NET_POLL_CONTROLLER */
4040
4041/**
4042 * igb_io_error_detected - called when PCI error is detected
4043 * @pdev: Pointer to PCI device
4044 * @state: The current pci connection state
4045 *
4046 * This function is called after a PCI bus error affecting
4047 * this device has been detected.
4048 */
4049static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4050 pci_channel_state_t state)
4051{
4052 struct net_device *netdev = pci_get_drvdata(pdev);
4053 struct igb_adapter *adapter = netdev_priv(netdev);
4054
4055 netif_device_detach(netdev);
4056
4057 if (netif_running(netdev))
4058 igb_down(adapter);
4059 pci_disable_device(pdev);
4060
4061 /* Request a slot slot reset. */
4062 return PCI_ERS_RESULT_NEED_RESET;
4063}
4064
4065/**
4066 * igb_io_slot_reset - called after the pci bus has been reset.
4067 * @pdev: Pointer to PCI device
4068 *
4069 * Restart the card from scratch, as if from a cold-boot. Implementation
4070 * resembles the first-half of the igb_resume routine.
4071 */
4072static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4073{
4074 struct net_device *netdev = pci_get_drvdata(pdev);
4075 struct igb_adapter *adapter = netdev_priv(netdev);
4076 struct e1000_hw *hw = &adapter->hw;
4077
4078 if (pci_enable_device(pdev)) {
4079 dev_err(&pdev->dev,
4080 "Cannot re-enable PCI device after reset.\n");
4081 return PCI_ERS_RESULT_DISCONNECT;
4082 }
4083 pci_set_master(pdev);
Auke Kokc682fc22008-04-23 11:09:34 -07004084 pci_restore_state(pdev);
Auke Kok9d5c8242008-01-24 02:22:38 -08004085
4086 pci_enable_wake(pdev, PCI_D3hot, 0);
4087 pci_enable_wake(pdev, PCI_D3cold, 0);
4088
4089 igb_reset(adapter);
4090 wr32(E1000_WUS, ~0);
4091
4092 return PCI_ERS_RESULT_RECOVERED;
4093}
4094
4095/**
4096 * igb_io_resume - called when traffic can start flowing again.
4097 * @pdev: Pointer to PCI device
4098 *
4099 * This callback is called when the error recovery driver tells us that
4100 * its OK to resume normal operation. Implementation resembles the
4101 * second-half of the igb_resume routine.
4102 */
4103static void igb_io_resume(struct pci_dev *pdev)
4104{
4105 struct net_device *netdev = pci_get_drvdata(pdev);
4106 struct igb_adapter *adapter = netdev_priv(netdev);
4107
4108 igb_init_manageability(adapter);
4109
4110 if (netif_running(netdev)) {
4111 if (igb_up(adapter)) {
4112 dev_err(&pdev->dev, "igb_up failed after reset\n");
4113 return;
4114 }
4115 }
4116
4117 netif_device_attach(netdev);
4118
4119 /* let the f/w know that the h/w is now under the control of the
4120 * driver. */
4121 igb_get_hw_control(adapter);
4122
4123}
4124
4125/* igb_main.c */