blob: e13b8db67b7c36e13b8c294c2cfacce4a8527c90 [file] [log] [blame]
Auke Kok9d5c8242008-01-24 02:22:38 -08001/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
Auke Kok9d5c8242008-01-24 02:22:38 -080034#include <linux/ipv6.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/mii.h>
38#include <linux/ethtool.h>
39#include <linux/if_vlan.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/interrupt.h>
43#include <linux/if_ether.h>
44
45#include "igb.h"
46
47#define DRV_VERSION "1.0.8-k2"
48char igb_driver_name[] = "igb";
49char igb_driver_version[] = DRV_VERSION;
50static const char igb_driver_string[] =
51 "Intel(R) Gigabit Ethernet Network Driver";
52static const char igb_copyright[] = "Copyright (c) 2007 Intel Corporation.";
53
54
55static const struct e1000_info *igb_info_tbl[] = {
56 [board_82575] = &e1000_82575_info,
57};
58
59static struct pci_device_id igb_pci_tbl[] = {
60 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
61 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
62 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
63 /* required last entry */
64 {0, }
65};
66
67MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
68
69void igb_reset(struct igb_adapter *);
70static int igb_setup_all_tx_resources(struct igb_adapter *);
71static int igb_setup_all_rx_resources(struct igb_adapter *);
72static void igb_free_all_tx_resources(struct igb_adapter *);
73static void igb_free_all_rx_resources(struct igb_adapter *);
74static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
75static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
76void igb_update_stats(struct igb_adapter *);
77static int igb_probe(struct pci_dev *, const struct pci_device_id *);
78static void __devexit igb_remove(struct pci_dev *pdev);
79static int igb_sw_init(struct igb_adapter *);
80static int igb_open(struct net_device *);
81static int igb_close(struct net_device *);
82static void igb_configure_tx(struct igb_adapter *);
83static void igb_configure_rx(struct igb_adapter *);
84static void igb_setup_rctl(struct igb_adapter *);
85static void igb_clean_all_tx_rings(struct igb_adapter *);
86static void igb_clean_all_rx_rings(struct igb_adapter *);
87static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
88static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
89static void igb_set_multi(struct net_device *);
90static void igb_update_phy_info(unsigned long);
91static void igb_watchdog(unsigned long);
92static void igb_watchdog_task(struct work_struct *);
93static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
94 struct igb_ring *);
95static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
96static struct net_device_stats *igb_get_stats(struct net_device *);
97static int igb_change_mtu(struct net_device *, int);
98static int igb_set_mac(struct net_device *, void *);
99static irqreturn_t igb_intr(int irq, void *);
100static irqreturn_t igb_intr_msi(int irq, void *);
101static irqreturn_t igb_msix_other(int irq, void *);
102static irqreturn_t igb_msix_rx(int irq, void *);
103static irqreturn_t igb_msix_tx(int irq, void *);
104static int igb_clean_rx_ring_msix(struct napi_struct *, int);
105static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
106static int igb_clean(struct napi_struct *, int);
107static bool igb_clean_rx_irq_adv(struct igb_adapter *,
108 struct igb_ring *, int *, int);
109static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
110 struct igb_ring *, int);
111static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
112static void igb_tx_timeout(struct net_device *);
113static void igb_reset_task(struct work_struct *);
114static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
115static void igb_vlan_rx_add_vid(struct net_device *, u16);
116static void igb_vlan_rx_kill_vid(struct net_device *, u16);
117static void igb_restore_vlan(struct igb_adapter *);
118
119static int igb_suspend(struct pci_dev *, pm_message_t);
120#ifdef CONFIG_PM
121static int igb_resume(struct pci_dev *);
122#endif
123static void igb_shutdown(struct pci_dev *);
124
125#ifdef CONFIG_NET_POLL_CONTROLLER
126/* for netdump / net console */
127static void igb_netpoll(struct net_device *);
128#endif
129
130static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
131 pci_channel_state_t);
132static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
133static void igb_io_resume(struct pci_dev *);
134
135static struct pci_error_handlers igb_err_handler = {
136 .error_detected = igb_io_error_detected,
137 .slot_reset = igb_io_slot_reset,
138 .resume = igb_io_resume,
139};
140
141
142static struct pci_driver igb_driver = {
143 .name = igb_driver_name,
144 .id_table = igb_pci_tbl,
145 .probe = igb_probe,
146 .remove = __devexit_p(igb_remove),
147#ifdef CONFIG_PM
148 /* Power Managment Hooks */
149 .suspend = igb_suspend,
150 .resume = igb_resume,
151#endif
152 .shutdown = igb_shutdown,
153 .err_handler = &igb_err_handler
154};
155
156MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
157MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
158MODULE_LICENSE("GPL");
159MODULE_VERSION(DRV_VERSION);
160
161#ifdef DEBUG
162/**
163 * igb_get_hw_dev_name - return device name string
164 * used by hardware layer to print debugging information
165 **/
166char *igb_get_hw_dev_name(struct e1000_hw *hw)
167{
168 struct igb_adapter *adapter = hw->back;
169 return adapter->netdev->name;
170}
171#endif
172
173/**
174 * igb_init_module - Driver Registration Routine
175 *
176 * igb_init_module is the first routine called when the driver is
177 * loaded. All it does is register with the PCI subsystem.
178 **/
179static int __init igb_init_module(void)
180{
181 int ret;
182 printk(KERN_INFO "%s - version %s\n",
183 igb_driver_string, igb_driver_version);
184
185 printk(KERN_INFO "%s\n", igb_copyright);
186
187 ret = pci_register_driver(&igb_driver);
188 return ret;
189}
190
191module_init(igb_init_module);
192
193/**
194 * igb_exit_module - Driver Exit Cleanup Routine
195 *
196 * igb_exit_module is called just before the driver is removed
197 * from memory.
198 **/
199static void __exit igb_exit_module(void)
200{
201 pci_unregister_driver(&igb_driver);
202}
203
204module_exit(igb_exit_module);
205
206/**
207 * igb_alloc_queues - Allocate memory for all rings
208 * @adapter: board private structure to initialize
209 *
210 * We allocate one ring per queue at run-time since we don't know the
211 * number of queues at compile-time.
212 **/
213static int igb_alloc_queues(struct igb_adapter *adapter)
214{
215 int i;
216
217 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
218 sizeof(struct igb_ring), GFP_KERNEL);
219 if (!adapter->tx_ring)
220 return -ENOMEM;
221
222 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
223 sizeof(struct igb_ring), GFP_KERNEL);
224 if (!adapter->rx_ring) {
225 kfree(adapter->tx_ring);
226 return -ENOMEM;
227 }
228
229 for (i = 0; i < adapter->num_rx_queues; i++) {
230 struct igb_ring *ring = &(adapter->rx_ring[i]);
231 ring->adapter = adapter;
232 ring->itr_register = E1000_ITR;
233
234 if (!ring->napi.poll)
235 netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
236 adapter->napi.weight /
237 adapter->num_rx_queues);
238 }
239 return 0;
240}
241
242#define IGB_N0_QUEUE -1
243static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
244 int tx_queue, int msix_vector)
245{
246 u32 msixbm = 0;
247 struct e1000_hw *hw = &adapter->hw;
248 /* The 82575 assigns vectors using a bitmask, which matches the
249 bitmask for the EICR/EIMS/EIMC registers. To assign one
250 or more queues to a vector, we write the appropriate bits
251 into the MSIXBM register for that vector. */
252 if (rx_queue > IGB_N0_QUEUE) {
253 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
254 adapter->rx_ring[rx_queue].eims_value = msixbm;
255 }
256 if (tx_queue > IGB_N0_QUEUE) {
257 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
258 adapter->tx_ring[tx_queue].eims_value =
259 E1000_EICR_TX_QUEUE0 << tx_queue;
260 }
261 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
262}
263
264/**
265 * igb_configure_msix - Configure MSI-X hardware
266 *
267 * igb_configure_msix sets up the hardware to properly
268 * generate MSI-X interrupts.
269 **/
270static void igb_configure_msix(struct igb_adapter *adapter)
271{
272 u32 tmp;
273 int i, vector = 0;
274 struct e1000_hw *hw = &adapter->hw;
275
276 adapter->eims_enable_mask = 0;
277
278 for (i = 0; i < adapter->num_tx_queues; i++) {
279 struct igb_ring *tx_ring = &adapter->tx_ring[i];
280 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
281 adapter->eims_enable_mask |= tx_ring->eims_value;
282 if (tx_ring->itr_val)
283 writel(1000000000 / (tx_ring->itr_val * 256),
284 hw->hw_addr + tx_ring->itr_register);
285 else
286 writel(1, hw->hw_addr + tx_ring->itr_register);
287 }
288
289 for (i = 0; i < adapter->num_rx_queues; i++) {
290 struct igb_ring *rx_ring = &adapter->rx_ring[i];
291 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
292 adapter->eims_enable_mask |= rx_ring->eims_value;
293 if (rx_ring->itr_val)
294 writel(1000000000 / (rx_ring->itr_val * 256),
295 hw->hw_addr + rx_ring->itr_register);
296 else
297 writel(1, hw->hw_addr + rx_ring->itr_register);
298 }
299
300
301 /* set vector for other causes, i.e. link changes */
302 array_wr32(E1000_MSIXBM(0), vector++,
303 E1000_EIMS_OTHER);
304
305 /* disable IAM for ICR interrupt bits */
306 wr32(E1000_IAM, 0);
307
308 tmp = rd32(E1000_CTRL_EXT);
309 /* enable MSI-X PBA support*/
310 tmp |= E1000_CTRL_EXT_PBA_CLR;
311
312 /* Auto-Mask interrupts upon ICR read. */
313 tmp |= E1000_CTRL_EXT_EIAME;
314 tmp |= E1000_CTRL_EXT_IRCA;
315
316 wr32(E1000_CTRL_EXT, tmp);
317 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
318
319 wrfl();
320}
321
322/**
323 * igb_request_msix - Initialize MSI-X interrupts
324 *
325 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
326 * kernel.
327 **/
328static int igb_request_msix(struct igb_adapter *adapter)
329{
330 struct net_device *netdev = adapter->netdev;
331 int i, err = 0, vector = 0;
332
333 vector = 0;
334
335 for (i = 0; i < adapter->num_tx_queues; i++) {
336 struct igb_ring *ring = &(adapter->tx_ring[i]);
337 sprintf(ring->name, "%s-tx%d", netdev->name, i);
338 err = request_irq(adapter->msix_entries[vector].vector,
339 &igb_msix_tx, 0, ring->name,
340 &(adapter->tx_ring[i]));
341 if (err)
342 goto out;
343 ring->itr_register = E1000_EITR(0) + (vector << 2);
344 ring->itr_val = adapter->itr;
345 vector++;
346 }
347 for (i = 0; i < adapter->num_rx_queues; i++) {
348 struct igb_ring *ring = &(adapter->rx_ring[i]);
349 if (strlen(netdev->name) < (IFNAMSIZ - 5))
350 sprintf(ring->name, "%s-rx%d", netdev->name, i);
351 else
352 memcpy(ring->name, netdev->name, IFNAMSIZ);
353 err = request_irq(adapter->msix_entries[vector].vector,
354 &igb_msix_rx, 0, ring->name,
355 &(adapter->rx_ring[i]));
356 if (err)
357 goto out;
358 ring->itr_register = E1000_EITR(0) + (vector << 2);
359 ring->itr_val = adapter->itr;
360 vector++;
361 }
362
363 err = request_irq(adapter->msix_entries[vector].vector,
364 &igb_msix_other, 0, netdev->name, netdev);
365 if (err)
366 goto out;
367
368 adapter->napi.poll = igb_clean_rx_ring_msix;
369 for (i = 0; i < adapter->num_rx_queues; i++)
370 adapter->rx_ring[i].napi.poll = adapter->napi.poll;
371 igb_configure_msix(adapter);
372 return 0;
373out:
374 return err;
375}
376
377static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
378{
379 if (adapter->msix_entries) {
380 pci_disable_msix(adapter->pdev);
381 kfree(adapter->msix_entries);
382 adapter->msix_entries = NULL;
383 } else if (adapter->msi_enabled)
384 pci_disable_msi(adapter->pdev);
385 return;
386}
387
388
389/**
390 * igb_set_interrupt_capability - set MSI or MSI-X if supported
391 *
392 * Attempt to configure interrupts using the best available
393 * capabilities of the hardware and kernel.
394 **/
395static void igb_set_interrupt_capability(struct igb_adapter *adapter)
396{
397 int err;
398 int numvecs, i;
399
400 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
401 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
402 GFP_KERNEL);
403 if (!adapter->msix_entries)
404 goto msi_only;
405
406 for (i = 0; i < numvecs; i++)
407 adapter->msix_entries[i].entry = i;
408
409 err = pci_enable_msix(adapter->pdev,
410 adapter->msix_entries,
411 numvecs);
412 if (err == 0)
413 return;
414
415 igb_reset_interrupt_capability(adapter);
416
417 /* If we can't do MSI-X, try MSI */
418msi_only:
419 adapter->num_rx_queues = 1;
420 if (!pci_enable_msi(adapter->pdev))
421 adapter->msi_enabled = 1;
422 return;
423}
424
425/**
426 * igb_request_irq - initialize interrupts
427 *
428 * Attempts to configure interrupts using the best available
429 * capabilities of the hardware and kernel.
430 **/
431static int igb_request_irq(struct igb_adapter *adapter)
432{
433 struct net_device *netdev = adapter->netdev;
434 struct e1000_hw *hw = &adapter->hw;
435 int err = 0;
436
437 if (adapter->msix_entries) {
438 err = igb_request_msix(adapter);
439 if (!err) {
Auke Kok9d5c8242008-01-24 02:22:38 -0800440 /* enable IAM, auto-mask,
Andy Gospodarek6cb5e572008-02-15 14:05:25 -0800441 * DO NOT USE EIAM or IAM in legacy mode */
Auke Kok9d5c8242008-01-24 02:22:38 -0800442 wr32(E1000_IAM, IMS_ENABLE_MASK);
443 goto request_done;
444 }
445 /* fall back to MSI */
446 igb_reset_interrupt_capability(adapter);
447 if (!pci_enable_msi(adapter->pdev))
448 adapter->msi_enabled = 1;
449 igb_free_all_tx_resources(adapter);
450 igb_free_all_rx_resources(adapter);
451 adapter->num_rx_queues = 1;
452 igb_alloc_queues(adapter);
453 }
454 if (adapter->msi_enabled) {
455 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
456 netdev->name, netdev);
457 if (!err)
458 goto request_done;
459 /* fall back to legacy interrupts */
460 igb_reset_interrupt_capability(adapter);
461 adapter->msi_enabled = 0;
462 }
463
464 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
465 netdev->name, netdev);
466
Andy Gospodarek6cb5e572008-02-15 14:05:25 -0800467 if (err)
Auke Kok9d5c8242008-01-24 02:22:38 -0800468 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
469 err);
Auke Kok9d5c8242008-01-24 02:22:38 -0800470
471request_done:
472 return err;
473}
474
475static void igb_free_irq(struct igb_adapter *adapter)
476{
477 struct net_device *netdev = adapter->netdev;
478
479 if (adapter->msix_entries) {
480 int vector = 0, i;
481
482 for (i = 0; i < adapter->num_tx_queues; i++)
483 free_irq(adapter->msix_entries[vector++].vector,
484 &(adapter->tx_ring[i]));
485 for (i = 0; i < adapter->num_rx_queues; i++)
486 free_irq(adapter->msix_entries[vector++].vector,
487 &(adapter->rx_ring[i]));
488
489 free_irq(adapter->msix_entries[vector++].vector, netdev);
490 return;
491 }
492
493 free_irq(adapter->pdev->irq, netdev);
494}
495
496/**
497 * igb_irq_disable - Mask off interrupt generation on the NIC
498 * @adapter: board private structure
499 **/
500static void igb_irq_disable(struct igb_adapter *adapter)
501{
502 struct e1000_hw *hw = &adapter->hw;
503
504 if (adapter->msix_entries) {
505 wr32(E1000_EIMC, ~0);
506 wr32(E1000_EIAC, 0);
507 }
508 wr32(E1000_IMC, ~0);
509 wrfl();
510 synchronize_irq(adapter->pdev->irq);
511}
512
513/**
514 * igb_irq_enable - Enable default interrupt generation settings
515 * @adapter: board private structure
516 **/
517static void igb_irq_enable(struct igb_adapter *adapter)
518{
519 struct e1000_hw *hw = &adapter->hw;
520
521 if (adapter->msix_entries) {
522 wr32(E1000_EIMS,
523 adapter->eims_enable_mask);
524 wr32(E1000_EIAC,
525 adapter->eims_enable_mask);
526 wr32(E1000_IMS, E1000_IMS_LSC);
527 } else
528 wr32(E1000_IMS, IMS_ENABLE_MASK);
529}
530
531static void igb_update_mng_vlan(struct igb_adapter *adapter)
532{
533 struct net_device *netdev = adapter->netdev;
534 u16 vid = adapter->hw.mng_cookie.vlan_id;
535 u16 old_vid = adapter->mng_vlan_id;
536 if (adapter->vlgrp) {
537 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
538 if (adapter->hw.mng_cookie.status &
539 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
540 igb_vlan_rx_add_vid(netdev, vid);
541 adapter->mng_vlan_id = vid;
542 } else
543 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
544
545 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
546 (vid != old_vid) &&
547 !vlan_group_get_device(adapter->vlgrp, old_vid))
548 igb_vlan_rx_kill_vid(netdev, old_vid);
549 } else
550 adapter->mng_vlan_id = vid;
551 }
552}
553
554/**
555 * igb_release_hw_control - release control of the h/w to f/w
556 * @adapter: address of board private structure
557 *
558 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
559 * For ASF and Pass Through versions of f/w this means that the
560 * driver is no longer loaded.
561 *
562 **/
563static void igb_release_hw_control(struct igb_adapter *adapter)
564{
565 struct e1000_hw *hw = &adapter->hw;
566 u32 ctrl_ext;
567
568 /* Let firmware take over control of h/w */
569 ctrl_ext = rd32(E1000_CTRL_EXT);
570 wr32(E1000_CTRL_EXT,
571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
572}
573
574
575/**
576 * igb_get_hw_control - get control of the h/w from f/w
577 * @adapter: address of board private structure
578 *
579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
580 * For ASF and Pass Through versions of f/w this means that
581 * the driver is loaded.
582 *
583 **/
584static void igb_get_hw_control(struct igb_adapter *adapter)
585{
586 struct e1000_hw *hw = &adapter->hw;
587 u32 ctrl_ext;
588
589 /* Let firmware know the driver has taken over */
590 ctrl_ext = rd32(E1000_CTRL_EXT);
591 wr32(E1000_CTRL_EXT,
592 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
593}
594
595static void igb_init_manageability(struct igb_adapter *adapter)
596{
597 struct e1000_hw *hw = &adapter->hw;
598
599 if (adapter->en_mng_pt) {
600 u32 manc2h = rd32(E1000_MANC2H);
601 u32 manc = rd32(E1000_MANC);
602
Auke Kok9d5c8242008-01-24 02:22:38 -0800603 /* enable receiving management packets to the host */
604 /* this will probably generate destination unreachable messages
605 * from the host OS, but the packets will be handled on SMBUS */
606 manc |= E1000_MANC_EN_MNG2HOST;
607#define E1000_MNG2HOST_PORT_623 (1 << 5)
608#define E1000_MNG2HOST_PORT_664 (1 << 6)
609 manc2h |= E1000_MNG2HOST_PORT_623;
610 manc2h |= E1000_MNG2HOST_PORT_664;
611 wr32(E1000_MANC2H, manc2h);
612
613 wr32(E1000_MANC, manc);
614 }
615}
616
Auke Kok9d5c8242008-01-24 02:22:38 -0800617/**
618 * igb_configure - configure the hardware for RX and TX
619 * @adapter: private board structure
620 **/
621static void igb_configure(struct igb_adapter *adapter)
622{
623 struct net_device *netdev = adapter->netdev;
624 int i;
625
626 igb_get_hw_control(adapter);
627 igb_set_multi(netdev);
628
629 igb_restore_vlan(adapter);
630 igb_init_manageability(adapter);
631
632 igb_configure_tx(adapter);
633 igb_setup_rctl(adapter);
634 igb_configure_rx(adapter);
635 /* call IGB_DESC_UNUSED which always leaves
636 * at least 1 descriptor unused to make sure
637 * next_to_use != next_to_clean */
638 for (i = 0; i < adapter->num_rx_queues; i++) {
639 struct igb_ring *ring = &adapter->rx_ring[i];
640 igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
641 }
642
643
644 adapter->tx_queue_len = netdev->tx_queue_len;
645}
646
647
648/**
649 * igb_up - Open the interface and prepare it to handle traffic
650 * @adapter: board private structure
651 **/
652
653int igb_up(struct igb_adapter *adapter)
654{
655 struct e1000_hw *hw = &adapter->hw;
656 int i;
657
658 /* hardware has been reset, we need to reload some things */
659 igb_configure(adapter);
660
661 clear_bit(__IGB_DOWN, &adapter->state);
662
663 napi_enable(&adapter->napi);
664
665 if (adapter->msix_entries) {
666 for (i = 0; i < adapter->num_rx_queues; i++)
667 napi_enable(&adapter->rx_ring[i].napi);
668 igb_configure_msix(adapter);
669 }
670
671 /* Clear any pending interrupts. */
672 rd32(E1000_ICR);
673 igb_irq_enable(adapter);
674
675 /* Fire a link change interrupt to start the watchdog. */
676 wr32(E1000_ICS, E1000_ICS_LSC);
677 return 0;
678}
679
680void igb_down(struct igb_adapter *adapter)
681{
682 struct e1000_hw *hw = &adapter->hw;
683 struct net_device *netdev = adapter->netdev;
684 u32 tctl, rctl;
685 int i;
686
687 /* signal that we're down so the interrupt handler does not
688 * reschedule our watchdog timer */
689 set_bit(__IGB_DOWN, &adapter->state);
690
691 /* disable receives in the hardware */
692 rctl = rd32(E1000_RCTL);
693 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
694 /* flush and sleep below */
695
696 netif_stop_queue(netdev);
697
698 /* disable transmits in the hardware */
699 tctl = rd32(E1000_TCTL);
700 tctl &= ~E1000_TCTL_EN;
701 wr32(E1000_TCTL, tctl);
702 /* flush both disables and wait for them to finish */
703 wrfl();
704 msleep(10);
705
706 napi_disable(&adapter->napi);
707
708 if (adapter->msix_entries)
709 for (i = 0; i < adapter->num_rx_queues; i++)
710 napi_disable(&adapter->rx_ring[i].napi);
711 igb_irq_disable(adapter);
712
713 del_timer_sync(&adapter->watchdog_timer);
714 del_timer_sync(&adapter->phy_info_timer);
715
716 netdev->tx_queue_len = adapter->tx_queue_len;
717 netif_carrier_off(netdev);
718 adapter->link_speed = 0;
719 adapter->link_duplex = 0;
720
721 igb_reset(adapter);
722 igb_clean_all_tx_rings(adapter);
723 igb_clean_all_rx_rings(adapter);
724}
725
726void igb_reinit_locked(struct igb_adapter *adapter)
727{
728 WARN_ON(in_interrupt());
729 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
730 msleep(1);
731 igb_down(adapter);
732 igb_up(adapter);
733 clear_bit(__IGB_RESETTING, &adapter->state);
734}
735
736void igb_reset(struct igb_adapter *adapter)
737{
738 struct e1000_hw *hw = &adapter->hw;
739 struct e1000_fc_info *fc = &adapter->hw.fc;
740 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
741 u16 hwm;
742
743 /* Repartition Pba for greater than 9k mtu
744 * To take effect CTRL.RST is required.
745 */
746 pba = E1000_PBA_34K;
747
748 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
749 /* adjust PBA for jumbo frames */
750 wr32(E1000_PBA, pba);
751
752 /* To maintain wire speed transmits, the Tx FIFO should be
753 * large enough to accommodate two full transmit packets,
754 * rounded up to the next 1KB and expressed in KB. Likewise,
755 * the Rx FIFO should be large enough to accommodate at least
756 * one full receive packet and is similarly rounded up and
757 * expressed in KB. */
758 pba = rd32(E1000_PBA);
759 /* upper 16 bits has Tx packet buffer allocation size in KB */
760 tx_space = pba >> 16;
761 /* lower 16 bits has Rx packet buffer allocation size in KB */
762 pba &= 0xffff;
763 /* the tx fifo also stores 16 bytes of information about the tx
764 * but don't include ethernet FCS because hardware appends it */
765 min_tx_space = (adapter->max_frame_size +
766 sizeof(struct e1000_tx_desc) -
767 ETH_FCS_LEN) * 2;
768 min_tx_space = ALIGN(min_tx_space, 1024);
769 min_tx_space >>= 10;
770 /* software strips receive CRC, so leave room for it */
771 min_rx_space = adapter->max_frame_size;
772 min_rx_space = ALIGN(min_rx_space, 1024);
773 min_rx_space >>= 10;
774
775 /* If current Tx allocation is less than the min Tx FIFO size,
776 * and the min Tx FIFO size is less than the current Rx FIFO
777 * allocation, take space away from current Rx allocation */
778 if (tx_space < min_tx_space &&
779 ((min_tx_space - tx_space) < pba)) {
780 pba = pba - (min_tx_space - tx_space);
781
782 /* if short on rx space, rx wins and must trump tx
783 * adjustment */
784 if (pba < min_rx_space)
785 pba = min_rx_space;
786 }
787 }
788 wr32(E1000_PBA, pba);
789
790 /* flow control settings */
791 /* The high water mark must be low enough to fit one full frame
792 * (or the size used for early receive) above it in the Rx FIFO.
793 * Set it to the lower of:
794 * - 90% of the Rx FIFO size, or
795 * - the full Rx FIFO size minus one full frame */
796 hwm = min(((pba << 10) * 9 / 10),
797 ((pba << 10) - adapter->max_frame_size));
798
799 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
800 fc->low_water = fc->high_water - 8;
801 fc->pause_time = 0xFFFF;
802 fc->send_xon = 1;
803 fc->type = fc->original_type;
804
805 /* Allow time for pending master requests to run */
806 adapter->hw.mac.ops.reset_hw(&adapter->hw);
807 wr32(E1000_WUC, 0);
808
809 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
810 dev_err(&adapter->pdev->dev, "Hardware Error\n");
811
812 igb_update_mng_vlan(adapter);
813
814 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
815 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
816
817 igb_reset_adaptive(&adapter->hw);
Bill Hayes68707ac2008-02-19 10:24:41 -0800818 if (adapter->hw.phy.ops.get_phy_info)
819 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
Auke Kok9d5c8242008-01-24 02:22:38 -0800820}
821
822/**
Taku Izumi42bfd33a2008-06-20 12:10:30 +0900823 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
824 * @pdev: PCI device information struct
825 *
826 * Returns true if an adapter needs ioport resources
827 **/
828static int igb_is_need_ioport(struct pci_dev *pdev)
829{
830 switch (pdev->device) {
831 /* Currently there are no adapters that need ioport resources */
832 default:
833 return false;
834 }
835}
836
837/**
Auke Kok9d5c8242008-01-24 02:22:38 -0800838 * igb_probe - Device Initialization Routine
839 * @pdev: PCI device information struct
840 * @ent: entry in igb_pci_tbl
841 *
842 * Returns 0 on success, negative on failure
843 *
844 * igb_probe initializes an adapter identified by a pci_dev structure.
845 * The OS initialization, configuring of the adapter private structure,
846 * and a hardware reset occur.
847 **/
848static int __devinit igb_probe(struct pci_dev *pdev,
849 const struct pci_device_id *ent)
850{
851 struct net_device *netdev;
852 struct igb_adapter *adapter;
853 struct e1000_hw *hw;
854 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
855 unsigned long mmio_start, mmio_len;
856 static int cards_found;
857 int i, err, pci_using_dac;
858 u16 eeprom_data = 0;
859 u16 eeprom_apme_mask = IGB_EEPROM_APME;
860 u32 part_num;
Taku Izumi42bfd33a2008-06-20 12:10:30 +0900861 int bars, need_ioport;
Auke Kok9d5c8242008-01-24 02:22:38 -0800862
Taku Izumi42bfd33a2008-06-20 12:10:30 +0900863 /* do not allocate ioport bars when not needed */
864 need_ioport = igb_is_need_ioport(pdev);
865 if (need_ioport) {
866 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
867 err = pci_enable_device(pdev);
868 } else {
869 bars = pci_select_bars(pdev, IORESOURCE_MEM);
870 err = pci_enable_device_mem(pdev);
871 }
Auke Kok9d5c8242008-01-24 02:22:38 -0800872 if (err)
873 return err;
874
875 pci_using_dac = 0;
876 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
877 if (!err) {
878 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
879 if (!err)
880 pci_using_dac = 1;
881 } else {
882 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
883 if (err) {
884 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
885 if (err) {
886 dev_err(&pdev->dev, "No usable DMA "
887 "configuration, aborting\n");
888 goto err_dma;
889 }
890 }
891 }
892
Taku Izumi42bfd33a2008-06-20 12:10:30 +0900893 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
Auke Kok9d5c8242008-01-24 02:22:38 -0800894 if (err)
895 goto err_pci_reg;
896
897 pci_set_master(pdev);
Auke Kokc682fc22008-04-23 11:09:34 -0700898 pci_save_state(pdev);
Auke Kok9d5c8242008-01-24 02:22:38 -0800899
900 err = -ENOMEM;
901 netdev = alloc_etherdev(sizeof(struct igb_adapter));
902 if (!netdev)
903 goto err_alloc_etherdev;
904
905 SET_NETDEV_DEV(netdev, &pdev->dev);
906
907 pci_set_drvdata(pdev, netdev);
908 adapter = netdev_priv(netdev);
909 adapter->netdev = netdev;
910 adapter->pdev = pdev;
911 hw = &adapter->hw;
912 hw->back = adapter;
913 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
Taku Izumi42bfd33a2008-06-20 12:10:30 +0900914 adapter->bars = bars;
915 adapter->need_ioport = need_ioport;
Auke Kok9d5c8242008-01-24 02:22:38 -0800916
917 mmio_start = pci_resource_start(pdev, 0);
918 mmio_len = pci_resource_len(pdev, 0);
919
920 err = -EIO;
921 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
922 if (!adapter->hw.hw_addr)
923 goto err_ioremap;
924
925 netdev->open = &igb_open;
926 netdev->stop = &igb_close;
927 netdev->get_stats = &igb_get_stats;
928 netdev->set_multicast_list = &igb_set_multi;
929 netdev->set_mac_address = &igb_set_mac;
930 netdev->change_mtu = &igb_change_mtu;
931 netdev->do_ioctl = &igb_ioctl;
932 igb_set_ethtool_ops(netdev);
933 netdev->tx_timeout = &igb_tx_timeout;
934 netdev->watchdog_timeo = 5 * HZ;
935 netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
936 netdev->vlan_rx_register = igb_vlan_rx_register;
937 netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
938 netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
939#ifdef CONFIG_NET_POLL_CONTROLLER
940 netdev->poll_controller = igb_netpoll;
941#endif
942 netdev->hard_start_xmit = &igb_xmit_frame_adv;
943
944 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
945
946 netdev->mem_start = mmio_start;
947 netdev->mem_end = mmio_start + mmio_len;
948
949 adapter->bd_number = cards_found;
950
951 /* PCI config space info */
952 hw->vendor_id = pdev->vendor;
953 hw->device_id = pdev->device;
954 hw->revision_id = pdev->revision;
955 hw->subsystem_vendor_id = pdev->subsystem_vendor;
956 hw->subsystem_device_id = pdev->subsystem_device;
957
958 /* setup the private structure */
959 hw->back = adapter;
960 /* Copy the default MAC, PHY and NVM function pointers */
961 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
962 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
963 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
964 /* Initialize skew-specific constants */
965 err = ei->get_invariants(hw);
966 if (err)
967 goto err_hw_init;
968
969 err = igb_sw_init(adapter);
970 if (err)
971 goto err_sw_init;
972
973 igb_get_bus_info_pcie(hw);
974
975 hw->phy.autoneg_wait_to_complete = false;
976 hw->mac.adaptive_ifs = true;
977
978 /* Copper options */
979 if (hw->phy.media_type == e1000_media_type_copper) {
980 hw->phy.mdix = AUTO_ALL_MODES;
981 hw->phy.disable_polarity_correction = false;
982 hw->phy.ms_type = e1000_ms_hw_default;
983 }
984
985 if (igb_check_reset_block(hw))
986 dev_info(&pdev->dev,
987 "PHY reset is blocked due to SOL/IDER session.\n");
988
989 netdev->features = NETIF_F_SG |
990 NETIF_F_HW_CSUM |
991 NETIF_F_HW_VLAN_TX |
992 NETIF_F_HW_VLAN_RX |
993 NETIF_F_HW_VLAN_FILTER;
994
995 netdev->features |= NETIF_F_TSO;
Auke Kok9d5c8242008-01-24 02:22:38 -0800996 netdev->features |= NETIF_F_TSO6;
Jeff Kirsher48f29ff2008-06-05 04:06:27 -0700997
998 netdev->vlan_features |= NETIF_F_TSO;
999 netdev->vlan_features |= NETIF_F_TSO6;
1000 netdev->vlan_features |= NETIF_F_HW_CSUM;
1001 netdev->vlan_features |= NETIF_F_SG;
1002
Auke Kok9d5c8242008-01-24 02:22:38 -08001003 if (pci_using_dac)
1004 netdev->features |= NETIF_F_HIGHDMA;
1005
1006 netdev->features |= NETIF_F_LLTX;
1007 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1008
1009 /* before reading the NVM, reset the controller to put the device in a
1010 * known good starting state */
1011 hw->mac.ops.reset_hw(hw);
1012
1013 /* make sure the NVM is good */
1014 if (igb_validate_nvm_checksum(hw) < 0) {
1015 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1016 err = -EIO;
1017 goto err_eeprom;
1018 }
1019
1020 /* copy the MAC address out of the NVM */
1021 if (hw->mac.ops.read_mac_addr(hw))
1022 dev_err(&pdev->dev, "NVM Read Error\n");
1023
1024 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1025 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1026
1027 if (!is_valid_ether_addr(netdev->perm_addr)) {
1028 dev_err(&pdev->dev, "Invalid MAC Address\n");
1029 err = -EIO;
1030 goto err_eeprom;
1031 }
1032
1033 init_timer(&adapter->watchdog_timer);
1034 adapter->watchdog_timer.function = &igb_watchdog;
1035 adapter->watchdog_timer.data = (unsigned long) adapter;
1036
1037 init_timer(&adapter->phy_info_timer);
1038 adapter->phy_info_timer.function = &igb_update_phy_info;
1039 adapter->phy_info_timer.data = (unsigned long) adapter;
1040
1041 INIT_WORK(&adapter->reset_task, igb_reset_task);
1042 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1043
1044 /* Initialize link & ring properties that are user-changeable */
1045 adapter->tx_ring->count = 256;
1046 for (i = 0; i < adapter->num_tx_queues; i++)
1047 adapter->tx_ring[i].count = adapter->tx_ring->count;
1048 adapter->rx_ring->count = 256;
1049 for (i = 0; i < adapter->num_rx_queues; i++)
1050 adapter->rx_ring[i].count = adapter->rx_ring->count;
1051
1052 adapter->fc_autoneg = true;
1053 hw->mac.autoneg = true;
1054 hw->phy.autoneg_advertised = 0x2f;
1055
1056 hw->fc.original_type = e1000_fc_default;
1057 hw->fc.type = e1000_fc_default;
1058
1059 adapter->itr_setting = 3;
1060 adapter->itr = IGB_START_ITR;
1061
1062 igb_validate_mdi_setting(hw);
1063
1064 adapter->rx_csum = 1;
1065
1066 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1067 * enable the ACPI Magic Packet filter
1068 */
1069
1070 if (hw->bus.func == 0 ||
1071 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1072 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1073 &eeprom_data);
1074
1075 if (eeprom_data & eeprom_apme_mask)
1076 adapter->eeprom_wol |= E1000_WUFC_MAG;
1077
1078 /* now that we have the eeprom settings, apply the special cases where
1079 * the eeprom may be wrong or the board simply won't support wake on
1080 * lan on a particular port */
1081 switch (pdev->device) {
1082 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1083 adapter->eeprom_wol = 0;
1084 break;
1085 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1086 /* Wake events only supported on port A for dual fiber
1087 * regardless of eeprom setting */
1088 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1089 adapter->eeprom_wol = 0;
1090 break;
1091 }
1092
1093 /* initialize the wol settings based on the eeprom settings */
1094 adapter->wol = adapter->eeprom_wol;
1095
1096 /* reset the hardware with the new settings */
1097 igb_reset(adapter);
1098
1099 /* let the f/w know that the h/w is now under the control of the
1100 * driver. */
1101 igb_get_hw_control(adapter);
1102
1103 /* tell the stack to leave us alone until igb_open() is called */
1104 netif_carrier_off(netdev);
1105 netif_stop_queue(netdev);
1106
1107 strcpy(netdev->name, "eth%d");
1108 err = register_netdev(netdev);
1109 if (err)
1110 goto err_register;
1111
1112 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1113 /* print bus type/speed/width info */
1114 dev_info(&pdev->dev,
1115 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1116 netdev->name,
1117 ((hw->bus.speed == e1000_bus_speed_2500)
1118 ? "2.5Gb/s" : "unknown"),
1119 ((hw->bus.width == e1000_bus_width_pcie_x4)
1120 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1121 ? "Width x1" : "unknown"),
1122 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1123 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1124
1125 igb_read_part_num(hw, &part_num);
1126 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1127 (part_num >> 8), (part_num & 0xff));
1128
1129 dev_info(&pdev->dev,
1130 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1131 adapter->msix_entries ? "MSI-X" :
1132 adapter->msi_enabled ? "MSI" : "legacy",
1133 adapter->num_rx_queues, adapter->num_tx_queues);
1134
1135 cards_found++;
1136 return 0;
1137
1138err_register:
1139 igb_release_hw_control(adapter);
1140err_eeprom:
1141 if (!igb_check_reset_block(hw))
1142 hw->phy.ops.reset_phy(hw);
1143
1144 if (hw->flash_address)
1145 iounmap(hw->flash_address);
1146
1147 igb_remove_device(hw);
1148 kfree(adapter->tx_ring);
1149 kfree(adapter->rx_ring);
1150err_sw_init:
1151err_hw_init:
1152 iounmap(hw->hw_addr);
1153err_ioremap:
1154 free_netdev(netdev);
1155err_alloc_etherdev:
Taku Izumi42bfd33a2008-06-20 12:10:30 +09001156 pci_release_selected_regions(pdev, bars);
Auke Kok9d5c8242008-01-24 02:22:38 -08001157err_pci_reg:
1158err_dma:
1159 pci_disable_device(pdev);
1160 return err;
1161}
1162
1163/**
1164 * igb_remove - Device Removal Routine
1165 * @pdev: PCI device information struct
1166 *
1167 * igb_remove is called by the PCI subsystem to alert the driver
1168 * that it should release a PCI device. The could be caused by a
1169 * Hot-Plug event, or because the driver is going to be removed from
1170 * memory.
1171 **/
1172static void __devexit igb_remove(struct pci_dev *pdev)
1173{
1174 struct net_device *netdev = pci_get_drvdata(pdev);
1175 struct igb_adapter *adapter = netdev_priv(netdev);
1176
1177 /* flush_scheduled work may reschedule our watchdog task, so
1178 * explicitly disable watchdog tasks from being rescheduled */
1179 set_bit(__IGB_DOWN, &adapter->state);
1180 del_timer_sync(&adapter->watchdog_timer);
1181 del_timer_sync(&adapter->phy_info_timer);
1182
1183 flush_scheduled_work();
1184
Auke Kok9d5c8242008-01-24 02:22:38 -08001185 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1186 * would have already happened in close and is redundant. */
1187 igb_release_hw_control(adapter);
1188
1189 unregister_netdev(netdev);
1190
1191 if (!igb_check_reset_block(&adapter->hw))
1192 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1193
1194 igb_remove_device(&adapter->hw);
1195 igb_reset_interrupt_capability(adapter);
1196
1197 kfree(adapter->tx_ring);
1198 kfree(adapter->rx_ring);
1199
1200 iounmap(adapter->hw.hw_addr);
1201 if (adapter->hw.flash_address)
1202 iounmap(adapter->hw.flash_address);
Taku Izumi42bfd33a2008-06-20 12:10:30 +09001203 pci_release_selected_regions(pdev, adapter->bars);
Auke Kok9d5c8242008-01-24 02:22:38 -08001204
1205 free_netdev(netdev);
1206
1207 pci_disable_device(pdev);
1208}
1209
1210/**
1211 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1212 * @adapter: board private structure to initialize
1213 *
1214 * igb_sw_init initializes the Adapter private data structure.
1215 * Fields are initialized based on PCI device information and
1216 * OS network device settings (MTU size).
1217 **/
1218static int __devinit igb_sw_init(struct igb_adapter *adapter)
1219{
1220 struct e1000_hw *hw = &adapter->hw;
1221 struct net_device *netdev = adapter->netdev;
1222 struct pci_dev *pdev = adapter->pdev;
1223
1224 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1225
1226 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1227 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1228 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1229 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1230
1231 /* Number of supported queues. */
1232 /* Having more queues than CPUs doesn't make sense. */
1233 adapter->num_tx_queues = 1;
1234 adapter->num_rx_queues = min(IGB_MAX_RX_QUEUES, num_online_cpus());
1235
1236 igb_set_interrupt_capability(adapter);
1237
1238 if (igb_alloc_queues(adapter)) {
1239 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1240 return -ENOMEM;
1241 }
1242
1243 /* Explicitly disable IRQ since the NIC can be in any state. */
1244 igb_irq_disable(adapter);
1245
1246 set_bit(__IGB_DOWN, &adapter->state);
1247 return 0;
1248}
1249
1250/**
1251 * igb_open - Called when a network interface is made active
1252 * @netdev: network interface device structure
1253 *
1254 * Returns 0 on success, negative value on failure
1255 *
1256 * The open entry point is called when a network interface is made
1257 * active by the system (IFF_UP). At this point all resources needed
1258 * for transmit and receive operations are allocated, the interrupt
1259 * handler is registered with the OS, the watchdog timer is started,
1260 * and the stack is notified that the interface is ready.
1261 **/
1262static int igb_open(struct net_device *netdev)
1263{
1264 struct igb_adapter *adapter = netdev_priv(netdev);
1265 struct e1000_hw *hw = &adapter->hw;
1266 int err;
1267 int i;
1268
1269 /* disallow open during test */
1270 if (test_bit(__IGB_TESTING, &adapter->state))
1271 return -EBUSY;
1272
1273 /* allocate transmit descriptors */
1274 err = igb_setup_all_tx_resources(adapter);
1275 if (err)
1276 goto err_setup_tx;
1277
1278 /* allocate receive descriptors */
1279 err = igb_setup_all_rx_resources(adapter);
1280 if (err)
1281 goto err_setup_rx;
1282
1283 /* e1000_power_up_phy(adapter); */
1284
1285 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1286 if ((adapter->hw.mng_cookie.status &
1287 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1288 igb_update_mng_vlan(adapter);
1289
1290 /* before we allocate an interrupt, we must be ready to handle it.
1291 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1292 * as soon as we call pci_request_irq, so we have to setup our
1293 * clean_rx handler before we do so. */
1294 igb_configure(adapter);
1295
1296 err = igb_request_irq(adapter);
1297 if (err)
1298 goto err_req_irq;
1299
1300 /* From here on the code is the same as igb_up() */
1301 clear_bit(__IGB_DOWN, &adapter->state);
1302
1303 napi_enable(&adapter->napi);
1304 if (adapter->msix_entries)
1305 for (i = 0; i < adapter->num_rx_queues; i++)
1306 napi_enable(&adapter->rx_ring[i].napi);
1307
1308 igb_irq_enable(adapter);
1309
1310 /* Clear any pending interrupts. */
1311 rd32(E1000_ICR);
1312 /* Fire a link status change interrupt to start the watchdog. */
1313 wr32(E1000_ICS, E1000_ICS_LSC);
1314
1315 return 0;
1316
1317err_req_irq:
1318 igb_release_hw_control(adapter);
1319 /* e1000_power_down_phy(adapter); */
1320 igb_free_all_rx_resources(adapter);
1321err_setup_rx:
1322 igb_free_all_tx_resources(adapter);
1323err_setup_tx:
1324 igb_reset(adapter);
1325
1326 return err;
1327}
1328
1329/**
1330 * igb_close - Disables a network interface
1331 * @netdev: network interface device structure
1332 *
1333 * Returns 0, this is not allowed to fail
1334 *
1335 * The close entry point is called when an interface is de-activated
1336 * by the OS. The hardware is still under the driver's control, but
1337 * needs to be disabled. A global MAC reset is issued to stop the
1338 * hardware, and all transmit and receive resources are freed.
1339 **/
1340static int igb_close(struct net_device *netdev)
1341{
1342 struct igb_adapter *adapter = netdev_priv(netdev);
1343
1344 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1345 igb_down(adapter);
1346
1347 igb_free_irq(adapter);
1348
1349 igb_free_all_tx_resources(adapter);
1350 igb_free_all_rx_resources(adapter);
1351
1352 /* kill manageability vlan ID if supported, but not if a vlan with
1353 * the same ID is registered on the host OS (let 8021q kill it) */
1354 if ((adapter->hw.mng_cookie.status &
1355 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1356 !(adapter->vlgrp &&
1357 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1358 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1359
1360 return 0;
1361}
1362
1363/**
1364 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1365 * @adapter: board private structure
1366 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1367 *
1368 * Return 0 on success, negative on failure
1369 **/
1370
1371int igb_setup_tx_resources(struct igb_adapter *adapter,
1372 struct igb_ring *tx_ring)
1373{
1374 struct pci_dev *pdev = adapter->pdev;
1375 int size;
1376
1377 size = sizeof(struct igb_buffer) * tx_ring->count;
1378 tx_ring->buffer_info = vmalloc(size);
1379 if (!tx_ring->buffer_info)
1380 goto err;
1381 memset(tx_ring->buffer_info, 0, size);
1382
1383 /* round up to nearest 4K */
1384 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1385 + sizeof(u32);
1386 tx_ring->size = ALIGN(tx_ring->size, 4096);
1387
1388 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1389 &tx_ring->dma);
1390
1391 if (!tx_ring->desc)
1392 goto err;
1393
1394 tx_ring->adapter = adapter;
1395 tx_ring->next_to_use = 0;
1396 tx_ring->next_to_clean = 0;
1397 spin_lock_init(&tx_ring->tx_clean_lock);
1398 spin_lock_init(&tx_ring->tx_lock);
1399 return 0;
1400
1401err:
1402 vfree(tx_ring->buffer_info);
1403 dev_err(&adapter->pdev->dev,
1404 "Unable to allocate memory for the transmit descriptor ring\n");
1405 return -ENOMEM;
1406}
1407
1408/**
1409 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1410 * (Descriptors) for all queues
1411 * @adapter: board private structure
1412 *
1413 * Return 0 on success, negative on failure
1414 **/
1415static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1416{
1417 int i, err = 0;
1418
1419 for (i = 0; i < adapter->num_tx_queues; i++) {
1420 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1421 if (err) {
1422 dev_err(&adapter->pdev->dev,
1423 "Allocation for Tx Queue %u failed\n", i);
1424 for (i--; i >= 0; i--)
1425 igb_free_tx_resources(adapter,
1426 &adapter->tx_ring[i]);
1427 break;
1428 }
1429 }
1430
1431 return err;
1432}
1433
1434/**
1435 * igb_configure_tx - Configure transmit Unit after Reset
1436 * @adapter: board private structure
1437 *
1438 * Configure the Tx unit of the MAC after a reset.
1439 **/
1440static void igb_configure_tx(struct igb_adapter *adapter)
1441{
1442 u64 tdba, tdwba;
1443 struct e1000_hw *hw = &adapter->hw;
1444 u32 tctl;
1445 u32 txdctl, txctrl;
1446 int i;
1447
1448 for (i = 0; i < adapter->num_tx_queues; i++) {
1449 struct igb_ring *ring = &(adapter->tx_ring[i]);
1450
1451 wr32(E1000_TDLEN(i),
1452 ring->count * sizeof(struct e1000_tx_desc));
1453 tdba = ring->dma;
1454 wr32(E1000_TDBAL(i),
1455 tdba & 0x00000000ffffffffULL);
1456 wr32(E1000_TDBAH(i), tdba >> 32);
1457
1458 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1459 tdwba |= 1; /* enable head wb */
1460 wr32(E1000_TDWBAL(i),
1461 tdwba & 0x00000000ffffffffULL);
1462 wr32(E1000_TDWBAH(i), tdwba >> 32);
1463
1464 ring->head = E1000_TDH(i);
1465 ring->tail = E1000_TDT(i);
1466 writel(0, hw->hw_addr + ring->tail);
1467 writel(0, hw->hw_addr + ring->head);
1468 txdctl = rd32(E1000_TXDCTL(i));
1469 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1470 wr32(E1000_TXDCTL(i), txdctl);
1471
1472 /* Turn off Relaxed Ordering on head write-backs. The
1473 * writebacks MUST be delivered in order or it will
1474 * completely screw up our bookeeping.
1475 */
1476 txctrl = rd32(E1000_DCA_TXCTRL(i));
1477 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1478 wr32(E1000_DCA_TXCTRL(i), txctrl);
1479 }
1480
1481
1482
1483 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1484
1485 /* Program the Transmit Control Register */
1486
1487 tctl = rd32(E1000_TCTL);
1488 tctl &= ~E1000_TCTL_CT;
1489 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1490 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1491
1492 igb_config_collision_dist(hw);
1493
1494 /* Setup Transmit Descriptor Settings for eop descriptor */
1495 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1496
1497 /* Enable transmits */
1498 tctl |= E1000_TCTL_EN;
1499
1500 wr32(E1000_TCTL, tctl);
1501}
1502
1503/**
1504 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1505 * @adapter: board private structure
1506 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1507 *
1508 * Returns 0 on success, negative on failure
1509 **/
1510
1511int igb_setup_rx_resources(struct igb_adapter *adapter,
1512 struct igb_ring *rx_ring)
1513{
1514 struct pci_dev *pdev = adapter->pdev;
1515 int size, desc_len;
1516
1517 size = sizeof(struct igb_buffer) * rx_ring->count;
1518 rx_ring->buffer_info = vmalloc(size);
1519 if (!rx_ring->buffer_info)
1520 goto err;
1521 memset(rx_ring->buffer_info, 0, size);
1522
1523 desc_len = sizeof(union e1000_adv_rx_desc);
1524
1525 /* Round up to nearest 4K */
1526 rx_ring->size = rx_ring->count * desc_len;
1527 rx_ring->size = ALIGN(rx_ring->size, 4096);
1528
1529 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1530 &rx_ring->dma);
1531
1532 if (!rx_ring->desc)
1533 goto err;
1534
1535 rx_ring->next_to_clean = 0;
1536 rx_ring->next_to_use = 0;
1537 rx_ring->pending_skb = NULL;
1538
1539 rx_ring->adapter = adapter;
1540 /* FIXME: do we want to setup ring->napi->poll here? */
1541 rx_ring->napi.poll = adapter->napi.poll;
1542
1543 return 0;
1544
1545err:
1546 vfree(rx_ring->buffer_info);
1547 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1548 "the receive descriptor ring\n");
1549 return -ENOMEM;
1550}
1551
1552/**
1553 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1554 * (Descriptors) for all queues
1555 * @adapter: board private structure
1556 *
1557 * Return 0 on success, negative on failure
1558 **/
1559static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1560{
1561 int i, err = 0;
1562
1563 for (i = 0; i < adapter->num_rx_queues; i++) {
1564 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1565 if (err) {
1566 dev_err(&adapter->pdev->dev,
1567 "Allocation for Rx Queue %u failed\n", i);
1568 for (i--; i >= 0; i--)
1569 igb_free_rx_resources(adapter,
1570 &adapter->rx_ring[i]);
1571 break;
1572 }
1573 }
1574
1575 return err;
1576}
1577
1578/**
1579 * igb_setup_rctl - configure the receive control registers
1580 * @adapter: Board private structure
1581 **/
1582static void igb_setup_rctl(struct igb_adapter *adapter)
1583{
1584 struct e1000_hw *hw = &adapter->hw;
1585 u32 rctl;
1586 u32 srrctl = 0;
1587 int i;
1588
1589 rctl = rd32(E1000_RCTL);
1590
1591 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1592
1593 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1594 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1595 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1596
1597 /* disable the stripping of CRC because it breaks
1598 * BMC firmware connected over SMBUS
1599 rctl |= E1000_RCTL_SECRC;
1600 */
1601
1602 rctl &= ~E1000_RCTL_SBP;
1603
1604 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1605 rctl &= ~E1000_RCTL_LPE;
1606 else
1607 rctl |= E1000_RCTL_LPE;
1608 if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1609 /* Setup buffer sizes */
1610 rctl &= ~E1000_RCTL_SZ_4096;
1611 rctl |= E1000_RCTL_BSEX;
1612 switch (adapter->rx_buffer_len) {
1613 case IGB_RXBUFFER_256:
1614 rctl |= E1000_RCTL_SZ_256;
1615 rctl &= ~E1000_RCTL_BSEX;
1616 break;
1617 case IGB_RXBUFFER_512:
1618 rctl |= E1000_RCTL_SZ_512;
1619 rctl &= ~E1000_RCTL_BSEX;
1620 break;
1621 case IGB_RXBUFFER_1024:
1622 rctl |= E1000_RCTL_SZ_1024;
1623 rctl &= ~E1000_RCTL_BSEX;
1624 break;
1625 case IGB_RXBUFFER_2048:
1626 default:
1627 rctl |= E1000_RCTL_SZ_2048;
1628 rctl &= ~E1000_RCTL_BSEX;
1629 break;
1630 case IGB_RXBUFFER_4096:
1631 rctl |= E1000_RCTL_SZ_4096;
1632 break;
1633 case IGB_RXBUFFER_8192:
1634 rctl |= E1000_RCTL_SZ_8192;
1635 break;
1636 case IGB_RXBUFFER_16384:
1637 rctl |= E1000_RCTL_SZ_16384;
1638 break;
1639 }
1640 } else {
1641 rctl &= ~E1000_RCTL_BSEX;
1642 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1643 }
1644
1645 /* 82575 and greater support packet-split where the protocol
1646 * header is placed in skb->data and the packet data is
1647 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1648 * In the case of a non-split, skb->data is linearly filled,
1649 * followed by the page buffers. Therefore, skb->data is
1650 * sized to hold the largest protocol header.
1651 */
1652 /* allocations using alloc_page take too long for regular MTU
1653 * so only enable packet split for jumbo frames */
1654 if (rctl & E1000_RCTL_LPE) {
1655 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1656 srrctl = adapter->rx_ps_hdr_size <<
1657 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1658 /* buffer size is ALWAYS one page */
1659 srrctl |= PAGE_SIZE >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1660 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1661 } else {
1662 adapter->rx_ps_hdr_size = 0;
1663 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1664 }
1665
1666 for (i = 0; i < adapter->num_rx_queues; i++)
1667 wr32(E1000_SRRCTL(i), srrctl);
1668
1669 wr32(E1000_RCTL, rctl);
1670}
1671
1672/**
1673 * igb_configure_rx - Configure receive Unit after Reset
1674 * @adapter: board private structure
1675 *
1676 * Configure the Rx unit of the MAC after a reset.
1677 **/
1678static void igb_configure_rx(struct igb_adapter *adapter)
1679{
1680 u64 rdba;
1681 struct e1000_hw *hw = &adapter->hw;
1682 u32 rctl, rxcsum;
1683 u32 rxdctl;
1684 int i;
1685
1686 /* disable receives while setting up the descriptors */
1687 rctl = rd32(E1000_RCTL);
1688 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1689 wrfl();
1690 mdelay(10);
1691
1692 if (adapter->itr_setting > 3)
1693 wr32(E1000_ITR,
1694 1000000000 / (adapter->itr * 256));
1695
1696 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1697 * the Base and Length of the Rx Descriptor Ring */
1698 for (i = 0; i < adapter->num_rx_queues; i++) {
1699 struct igb_ring *ring = &(adapter->rx_ring[i]);
1700 rdba = ring->dma;
1701 wr32(E1000_RDBAL(i),
1702 rdba & 0x00000000ffffffffULL);
1703 wr32(E1000_RDBAH(i), rdba >> 32);
1704 wr32(E1000_RDLEN(i),
1705 ring->count * sizeof(union e1000_adv_rx_desc));
1706
1707 ring->head = E1000_RDH(i);
1708 ring->tail = E1000_RDT(i);
1709 writel(0, hw->hw_addr + ring->tail);
1710 writel(0, hw->hw_addr + ring->head);
1711
1712 rxdctl = rd32(E1000_RXDCTL(i));
1713 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1714 rxdctl &= 0xFFF00000;
1715 rxdctl |= IGB_RX_PTHRESH;
1716 rxdctl |= IGB_RX_HTHRESH << 8;
1717 rxdctl |= IGB_RX_WTHRESH << 16;
1718 wr32(E1000_RXDCTL(i), rxdctl);
1719 }
1720
1721 if (adapter->num_rx_queues > 1) {
1722 u32 random[10];
1723 u32 mrqc;
1724 u32 j, shift;
1725 union e1000_reta {
1726 u32 dword;
1727 u8 bytes[4];
1728 } reta;
1729
1730 get_random_bytes(&random[0], 40);
1731
1732 shift = 6;
1733 for (j = 0; j < (32 * 4); j++) {
1734 reta.bytes[j & 3] =
1735 (j % adapter->num_rx_queues) << shift;
1736 if ((j & 3) == 3)
1737 writel(reta.dword,
1738 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1739 }
1740 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1741
1742 /* Fill out hash function seeds */
1743 for (j = 0; j < 10; j++)
1744 array_wr32(E1000_RSSRK(0), j, random[j]);
1745
1746 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1747 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1748 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1749 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1750 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1751 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1752 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1753 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1754
1755
1756 wr32(E1000_MRQC, mrqc);
1757
1758 /* Multiqueue and raw packet checksumming are mutually
1759 * exclusive. Note that this not the same as TCP/IP
1760 * checksumming, which works fine. */
1761 rxcsum = rd32(E1000_RXCSUM);
1762 rxcsum |= E1000_RXCSUM_PCSD;
1763 wr32(E1000_RXCSUM, rxcsum);
1764 } else {
1765 /* Enable Receive Checksum Offload for TCP and UDP */
1766 rxcsum = rd32(E1000_RXCSUM);
1767 if (adapter->rx_csum) {
1768 rxcsum |= E1000_RXCSUM_TUOFL;
1769
1770 /* Enable IPv4 payload checksum for UDP fragments
1771 * Must be used in conjunction with packet-split. */
1772 if (adapter->rx_ps_hdr_size)
1773 rxcsum |= E1000_RXCSUM_IPPCSE;
1774 } else {
1775 rxcsum &= ~E1000_RXCSUM_TUOFL;
1776 /* don't need to clear IPPCSE as it defaults to 0 */
1777 }
1778 wr32(E1000_RXCSUM, rxcsum);
1779 }
1780
1781 if (adapter->vlgrp)
1782 wr32(E1000_RLPML,
1783 adapter->max_frame_size + VLAN_TAG_SIZE);
1784 else
1785 wr32(E1000_RLPML, adapter->max_frame_size);
1786
1787 /* Enable Receives */
1788 wr32(E1000_RCTL, rctl);
1789}
1790
1791/**
1792 * igb_free_tx_resources - Free Tx Resources per Queue
1793 * @adapter: board private structure
1794 * @tx_ring: Tx descriptor ring for a specific queue
1795 *
1796 * Free all transmit software resources
1797 **/
1798static void igb_free_tx_resources(struct igb_adapter *adapter,
1799 struct igb_ring *tx_ring)
1800{
1801 struct pci_dev *pdev = adapter->pdev;
1802
1803 igb_clean_tx_ring(adapter, tx_ring);
1804
1805 vfree(tx_ring->buffer_info);
1806 tx_ring->buffer_info = NULL;
1807
1808 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1809
1810 tx_ring->desc = NULL;
1811}
1812
1813/**
1814 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1815 * @adapter: board private structure
1816 *
1817 * Free all transmit software resources
1818 **/
1819static void igb_free_all_tx_resources(struct igb_adapter *adapter)
1820{
1821 int i;
1822
1823 for (i = 0; i < adapter->num_tx_queues; i++)
1824 igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
1825}
1826
1827static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
1828 struct igb_buffer *buffer_info)
1829{
1830 if (buffer_info->dma) {
1831 pci_unmap_page(adapter->pdev,
1832 buffer_info->dma,
1833 buffer_info->length,
1834 PCI_DMA_TODEVICE);
1835 buffer_info->dma = 0;
1836 }
1837 if (buffer_info->skb) {
1838 dev_kfree_skb_any(buffer_info->skb);
1839 buffer_info->skb = NULL;
1840 }
1841 buffer_info->time_stamp = 0;
1842 /* buffer_info must be completely set up in the transmit path */
1843}
1844
1845/**
1846 * igb_clean_tx_ring - Free Tx Buffers
1847 * @adapter: board private structure
1848 * @tx_ring: ring to be cleaned
1849 **/
1850static void igb_clean_tx_ring(struct igb_adapter *adapter,
1851 struct igb_ring *tx_ring)
1852{
1853 struct igb_buffer *buffer_info;
1854 unsigned long size;
1855 unsigned int i;
1856
1857 if (!tx_ring->buffer_info)
1858 return;
1859 /* Free all the Tx ring sk_buffs */
1860
1861 for (i = 0; i < tx_ring->count; i++) {
1862 buffer_info = &tx_ring->buffer_info[i];
1863 igb_unmap_and_free_tx_resource(adapter, buffer_info);
1864 }
1865
1866 size = sizeof(struct igb_buffer) * tx_ring->count;
1867 memset(tx_ring->buffer_info, 0, size);
1868
1869 /* Zero out the descriptor ring */
1870
1871 memset(tx_ring->desc, 0, tx_ring->size);
1872
1873 tx_ring->next_to_use = 0;
1874 tx_ring->next_to_clean = 0;
1875
1876 writel(0, adapter->hw.hw_addr + tx_ring->head);
1877 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1878}
1879
1880/**
1881 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
1882 * @adapter: board private structure
1883 **/
1884static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
1885{
1886 int i;
1887
1888 for (i = 0; i < adapter->num_tx_queues; i++)
1889 igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1890}
1891
1892/**
1893 * igb_free_rx_resources - Free Rx Resources
1894 * @adapter: board private structure
1895 * @rx_ring: ring to clean the resources from
1896 *
1897 * Free all receive software resources
1898 **/
1899static void igb_free_rx_resources(struct igb_adapter *adapter,
1900 struct igb_ring *rx_ring)
1901{
1902 struct pci_dev *pdev = adapter->pdev;
1903
1904 igb_clean_rx_ring(adapter, rx_ring);
1905
1906 vfree(rx_ring->buffer_info);
1907 rx_ring->buffer_info = NULL;
1908
1909 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1910
1911 rx_ring->desc = NULL;
1912}
1913
1914/**
1915 * igb_free_all_rx_resources - Free Rx Resources for All Queues
1916 * @adapter: board private structure
1917 *
1918 * Free all receive software resources
1919 **/
1920static void igb_free_all_rx_resources(struct igb_adapter *adapter)
1921{
1922 int i;
1923
1924 for (i = 0; i < adapter->num_rx_queues; i++)
1925 igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
1926}
1927
1928/**
1929 * igb_clean_rx_ring - Free Rx Buffers per Queue
1930 * @adapter: board private structure
1931 * @rx_ring: ring to free buffers from
1932 **/
1933static void igb_clean_rx_ring(struct igb_adapter *adapter,
1934 struct igb_ring *rx_ring)
1935{
1936 struct igb_buffer *buffer_info;
1937 struct pci_dev *pdev = adapter->pdev;
1938 unsigned long size;
1939 unsigned int i;
1940
1941 if (!rx_ring->buffer_info)
1942 return;
1943 /* Free all the Rx ring sk_buffs */
1944 for (i = 0; i < rx_ring->count; i++) {
1945 buffer_info = &rx_ring->buffer_info[i];
1946 if (buffer_info->dma) {
1947 if (adapter->rx_ps_hdr_size)
1948 pci_unmap_single(pdev, buffer_info->dma,
1949 adapter->rx_ps_hdr_size,
1950 PCI_DMA_FROMDEVICE);
1951 else
1952 pci_unmap_single(pdev, buffer_info->dma,
1953 adapter->rx_buffer_len,
1954 PCI_DMA_FROMDEVICE);
1955 buffer_info->dma = 0;
1956 }
1957
1958 if (buffer_info->skb) {
1959 dev_kfree_skb(buffer_info->skb);
1960 buffer_info->skb = NULL;
1961 }
1962 if (buffer_info->page) {
1963 pci_unmap_page(pdev, buffer_info->page_dma,
1964 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1965 put_page(buffer_info->page);
1966 buffer_info->page = NULL;
1967 buffer_info->page_dma = 0;
1968 }
1969 }
1970
1971 /* there also may be some cached data from a chained receive */
1972 if (rx_ring->pending_skb) {
1973 dev_kfree_skb(rx_ring->pending_skb);
1974 rx_ring->pending_skb = NULL;
1975 }
1976
1977 size = sizeof(struct igb_buffer) * rx_ring->count;
1978 memset(rx_ring->buffer_info, 0, size);
1979
1980 /* Zero out the descriptor ring */
1981 memset(rx_ring->desc, 0, rx_ring->size);
1982
1983 rx_ring->next_to_clean = 0;
1984 rx_ring->next_to_use = 0;
1985
1986 writel(0, adapter->hw.hw_addr + rx_ring->head);
1987 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1988}
1989
1990/**
1991 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
1992 * @adapter: board private structure
1993 **/
1994static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
1995{
1996 int i;
1997
1998 for (i = 0; i < adapter->num_rx_queues; i++)
1999 igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2000}
2001
2002/**
2003 * igb_set_mac - Change the Ethernet Address of the NIC
2004 * @netdev: network interface device structure
2005 * @p: pointer to an address structure
2006 *
2007 * Returns 0 on success, negative on failure
2008 **/
2009static int igb_set_mac(struct net_device *netdev, void *p)
2010{
2011 struct igb_adapter *adapter = netdev_priv(netdev);
2012 struct sockaddr *addr = p;
2013
2014 if (!is_valid_ether_addr(addr->sa_data))
2015 return -EADDRNOTAVAIL;
2016
2017 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2018 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2019
2020 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2021
2022 return 0;
2023}
2024
2025/**
2026 * igb_set_multi - Multicast and Promiscuous mode set
2027 * @netdev: network interface device structure
2028 *
2029 * The set_multi entry point is called whenever the multicast address
2030 * list or the network interface flags are updated. This routine is
2031 * responsible for configuring the hardware for proper multicast,
2032 * promiscuous mode, and all-multi behavior.
2033 **/
2034static void igb_set_multi(struct net_device *netdev)
2035{
2036 struct igb_adapter *adapter = netdev_priv(netdev);
2037 struct e1000_hw *hw = &adapter->hw;
2038 struct e1000_mac_info *mac = &hw->mac;
2039 struct dev_mc_list *mc_ptr;
2040 u8 *mta_list;
2041 u32 rctl;
2042 int i;
2043
2044 /* Check for Promiscuous and All Multicast modes */
2045
2046 rctl = rd32(E1000_RCTL);
2047
2048 if (netdev->flags & IFF_PROMISC)
2049 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2050 else if (netdev->flags & IFF_ALLMULTI) {
2051 rctl |= E1000_RCTL_MPE;
2052 rctl &= ~E1000_RCTL_UPE;
2053 } else
2054 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2055
2056 wr32(E1000_RCTL, rctl);
2057
2058 if (!netdev->mc_count) {
2059 /* nothing to program, so clear mc list */
2060 igb_update_mc_addr_list(hw, NULL, 0, 1,
2061 mac->rar_entry_count);
2062 return;
2063 }
2064
2065 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2066 if (!mta_list)
2067 return;
2068
2069 /* The shared function expects a packed array of only addresses. */
2070 mc_ptr = netdev->mc_list;
2071
2072 for (i = 0; i < netdev->mc_count; i++) {
2073 if (!mc_ptr)
2074 break;
2075 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2076 mc_ptr = mc_ptr->next;
2077 }
2078 igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2079 kfree(mta_list);
2080}
2081
2082/* Need to wait a few seconds after link up to get diagnostic information from
2083 * the phy */
2084static void igb_update_phy_info(unsigned long data)
2085{
2086 struct igb_adapter *adapter = (struct igb_adapter *) data;
Bill Hayes68707ac2008-02-19 10:24:41 -08002087 if (adapter->hw.phy.ops.get_phy_info)
2088 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
Auke Kok9d5c8242008-01-24 02:22:38 -08002089}
2090
2091/**
2092 * igb_watchdog - Timer Call-back
2093 * @data: pointer to adapter cast into an unsigned long
2094 **/
2095static void igb_watchdog(unsigned long data)
2096{
2097 struct igb_adapter *adapter = (struct igb_adapter *)data;
2098 /* Do the rest outside of interrupt context */
2099 schedule_work(&adapter->watchdog_task);
2100}
2101
2102static void igb_watchdog_task(struct work_struct *work)
2103{
2104 struct igb_adapter *adapter = container_of(work,
2105 struct igb_adapter, watchdog_task);
2106 struct e1000_hw *hw = &adapter->hw;
2107
2108 struct net_device *netdev = adapter->netdev;
2109 struct igb_ring *tx_ring = adapter->tx_ring;
2110 struct e1000_mac_info *mac = &adapter->hw.mac;
2111 u32 link;
2112 s32 ret_val;
2113
2114 if ((netif_carrier_ok(netdev)) &&
2115 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2116 goto link_up;
2117
2118 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2119 if ((ret_val == E1000_ERR_PHY) &&
2120 (hw->phy.type == e1000_phy_igp_3) &&
2121 (rd32(E1000_CTRL) &
2122 E1000_PHY_CTRL_GBE_DISABLE))
2123 dev_info(&adapter->pdev->dev,
2124 "Gigabit has been disabled, downgrading speed\n");
2125
2126 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2127 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2128 link = mac->serdes_has_link;
2129 else
2130 link = rd32(E1000_STATUS) &
2131 E1000_STATUS_LU;
2132
2133 if (link) {
2134 if (!netif_carrier_ok(netdev)) {
2135 u32 ctrl;
2136 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2137 &adapter->link_speed,
2138 &adapter->link_duplex);
2139
2140 ctrl = rd32(E1000_CTRL);
2141 dev_info(&adapter->pdev->dev,
2142 "NIC Link is Up %d Mbps %s, "
2143 "Flow Control: %s\n",
2144 adapter->link_speed,
2145 adapter->link_duplex == FULL_DUPLEX ?
2146 "Full Duplex" : "Half Duplex",
2147 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2148 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2149 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2150 E1000_CTRL_TFCE) ? "TX" : "None")));
2151
2152 /* tweak tx_queue_len according to speed/duplex and
2153 * adjust the timeout factor */
2154 netdev->tx_queue_len = adapter->tx_queue_len;
2155 adapter->tx_timeout_factor = 1;
2156 switch (adapter->link_speed) {
2157 case SPEED_10:
2158 netdev->tx_queue_len = 10;
2159 adapter->tx_timeout_factor = 14;
2160 break;
2161 case SPEED_100:
2162 netdev->tx_queue_len = 100;
2163 /* maybe add some timeout factor ? */
2164 break;
2165 }
2166
2167 netif_carrier_on(netdev);
2168 netif_wake_queue(netdev);
2169
2170 if (!test_bit(__IGB_DOWN, &adapter->state))
2171 mod_timer(&adapter->phy_info_timer,
2172 round_jiffies(jiffies + 2 * HZ));
2173 }
2174 } else {
2175 if (netif_carrier_ok(netdev)) {
2176 adapter->link_speed = 0;
2177 adapter->link_duplex = 0;
2178 dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2179 netif_carrier_off(netdev);
2180 netif_stop_queue(netdev);
2181 if (!test_bit(__IGB_DOWN, &adapter->state))
2182 mod_timer(&adapter->phy_info_timer,
2183 round_jiffies(jiffies + 2 * HZ));
2184 }
2185 }
2186
2187link_up:
2188 igb_update_stats(adapter);
2189
2190 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2191 adapter->tpt_old = adapter->stats.tpt;
2192 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2193 adapter->colc_old = adapter->stats.colc;
2194
2195 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2196 adapter->gorc_old = adapter->stats.gorc;
2197 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2198 adapter->gotc_old = adapter->stats.gotc;
2199
2200 igb_update_adaptive(&adapter->hw);
2201
2202 if (!netif_carrier_ok(netdev)) {
2203 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2204 /* We've lost link, so the controller stops DMA,
2205 * but we've got queued Tx work that's never going
2206 * to get done, so reset controller to flush Tx.
2207 * (Do the reset outside of interrupt context). */
2208 adapter->tx_timeout_count++;
2209 schedule_work(&adapter->reset_task);
2210 }
2211 }
2212
2213 /* Cause software interrupt to ensure rx ring is cleaned */
2214 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2215
2216 /* Force detection of hung controller every watchdog period */
2217 tx_ring->detect_tx_hung = true;
2218
2219 /* Reset the timer */
2220 if (!test_bit(__IGB_DOWN, &adapter->state))
2221 mod_timer(&adapter->watchdog_timer,
2222 round_jiffies(jiffies + 2 * HZ));
2223}
2224
2225enum latency_range {
2226 lowest_latency = 0,
2227 low_latency = 1,
2228 bulk_latency = 2,
2229 latency_invalid = 255
2230};
2231
2232
2233static void igb_lower_rx_eitr(struct igb_adapter *adapter,
2234 struct igb_ring *rx_ring)
2235{
2236 struct e1000_hw *hw = &adapter->hw;
2237 int new_val;
2238
2239 new_val = rx_ring->itr_val / 2;
2240 if (new_val < IGB_MIN_DYN_ITR)
2241 new_val = IGB_MIN_DYN_ITR;
2242
2243 if (new_val != rx_ring->itr_val) {
2244 rx_ring->itr_val = new_val;
2245 wr32(rx_ring->itr_register,
2246 1000000000 / (new_val * 256));
2247 }
2248}
2249
2250static void igb_raise_rx_eitr(struct igb_adapter *adapter,
2251 struct igb_ring *rx_ring)
2252{
2253 struct e1000_hw *hw = &adapter->hw;
2254 int new_val;
2255
2256 new_val = rx_ring->itr_val * 2;
2257 if (new_val > IGB_MAX_DYN_ITR)
2258 new_val = IGB_MAX_DYN_ITR;
2259
2260 if (new_val != rx_ring->itr_val) {
2261 rx_ring->itr_val = new_val;
2262 wr32(rx_ring->itr_register,
2263 1000000000 / (new_val * 256));
2264 }
2265}
2266
2267/**
2268 * igb_update_itr - update the dynamic ITR value based on statistics
2269 * Stores a new ITR value based on packets and byte
2270 * counts during the last interrupt. The advantage of per interrupt
2271 * computation is faster updates and more accurate ITR for the current
2272 * traffic pattern. Constants in this function were computed
2273 * based on theoretical maximum wire speed and thresholds were set based
2274 * on testing data as well as attempting to minimize response time
2275 * while increasing bulk throughput.
2276 * this functionality is controlled by the InterruptThrottleRate module
2277 * parameter (see igb_param.c)
2278 * NOTE: These calculations are only valid when operating in a single-
2279 * queue environment.
2280 * @adapter: pointer to adapter
2281 * @itr_setting: current adapter->itr
2282 * @packets: the number of packets during this measurement interval
2283 * @bytes: the number of bytes during this measurement interval
2284 **/
2285static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2286 int packets, int bytes)
2287{
2288 unsigned int retval = itr_setting;
2289
2290 if (packets == 0)
2291 goto update_itr_done;
2292
2293 switch (itr_setting) {
2294 case lowest_latency:
2295 /* handle TSO and jumbo frames */
2296 if (bytes/packets > 8000)
2297 retval = bulk_latency;
2298 else if ((packets < 5) && (bytes > 512))
2299 retval = low_latency;
2300 break;
2301 case low_latency: /* 50 usec aka 20000 ints/s */
2302 if (bytes > 10000) {
2303 /* this if handles the TSO accounting */
2304 if (bytes/packets > 8000) {
2305 retval = bulk_latency;
2306 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2307 retval = bulk_latency;
2308 } else if ((packets > 35)) {
2309 retval = lowest_latency;
2310 }
2311 } else if (bytes/packets > 2000) {
2312 retval = bulk_latency;
2313 } else if (packets <= 2 && bytes < 512) {
2314 retval = lowest_latency;
2315 }
2316 break;
2317 case bulk_latency: /* 250 usec aka 4000 ints/s */
2318 if (bytes > 25000) {
2319 if (packets > 35)
2320 retval = low_latency;
2321 } else if (bytes < 6000) {
2322 retval = low_latency;
2323 }
2324 break;
2325 }
2326
2327update_itr_done:
2328 return retval;
2329}
2330
2331static void igb_set_itr(struct igb_adapter *adapter, u16 itr_register,
2332 int rx_only)
2333{
2334 u16 current_itr;
2335 u32 new_itr = adapter->itr;
2336
2337 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2338 if (adapter->link_speed != SPEED_1000) {
2339 current_itr = 0;
2340 new_itr = 4000;
2341 goto set_itr_now;
2342 }
2343
2344 adapter->rx_itr = igb_update_itr(adapter,
2345 adapter->rx_itr,
2346 adapter->rx_ring->total_packets,
2347 adapter->rx_ring->total_bytes);
2348 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2349 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2350 adapter->rx_itr = low_latency;
2351
2352 if (!rx_only) {
2353 adapter->tx_itr = igb_update_itr(adapter,
2354 adapter->tx_itr,
2355 adapter->tx_ring->total_packets,
2356 adapter->tx_ring->total_bytes);
2357 /* conservative mode (itr 3) eliminates the
2358 * lowest_latency setting */
2359 if (adapter->itr_setting == 3 &&
2360 adapter->tx_itr == lowest_latency)
2361 adapter->tx_itr = low_latency;
2362
2363 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2364 } else {
2365 current_itr = adapter->rx_itr;
2366 }
2367
2368 switch (current_itr) {
2369 /* counts and packets in update_itr are dependent on these numbers */
2370 case lowest_latency:
2371 new_itr = 70000;
2372 break;
2373 case low_latency:
2374 new_itr = 20000; /* aka hwitr = ~200 */
2375 break;
2376 case bulk_latency:
2377 new_itr = 4000;
2378 break;
2379 default:
2380 break;
2381 }
2382
2383set_itr_now:
2384 if (new_itr != adapter->itr) {
2385 /* this attempts to bias the interrupt rate towards Bulk
2386 * by adding intermediate steps when interrupt rate is
2387 * increasing */
2388 new_itr = new_itr > adapter->itr ?
2389 min(adapter->itr + (new_itr >> 2), new_itr) :
2390 new_itr;
2391 /* Don't write the value here; it resets the adapter's
2392 * internal timer, and causes us to delay far longer than
2393 * we should between interrupts. Instead, we write the ITR
2394 * value at the beginning of the next interrupt so the timing
2395 * ends up being correct.
2396 */
2397 adapter->itr = new_itr;
2398 adapter->set_itr = 1;
2399 }
2400
2401 return;
2402}
2403
2404
2405#define IGB_TX_FLAGS_CSUM 0x00000001
2406#define IGB_TX_FLAGS_VLAN 0x00000002
2407#define IGB_TX_FLAGS_TSO 0x00000004
2408#define IGB_TX_FLAGS_IPV4 0x00000008
2409#define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2410#define IGB_TX_FLAGS_VLAN_SHIFT 16
2411
2412static inline int igb_tso_adv(struct igb_adapter *adapter,
2413 struct igb_ring *tx_ring,
2414 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2415{
2416 struct e1000_adv_tx_context_desc *context_desc;
2417 unsigned int i;
2418 int err;
2419 struct igb_buffer *buffer_info;
2420 u32 info = 0, tu_cmd = 0;
2421 u32 mss_l4len_idx, l4len;
2422 *hdr_len = 0;
2423
2424 if (skb_header_cloned(skb)) {
2425 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2426 if (err)
2427 return err;
2428 }
2429
2430 l4len = tcp_hdrlen(skb);
2431 *hdr_len += l4len;
2432
2433 if (skb->protocol == htons(ETH_P_IP)) {
2434 struct iphdr *iph = ip_hdr(skb);
2435 iph->tot_len = 0;
2436 iph->check = 0;
2437 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2438 iph->daddr, 0,
2439 IPPROTO_TCP,
2440 0);
2441 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2442 ipv6_hdr(skb)->payload_len = 0;
2443 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2444 &ipv6_hdr(skb)->daddr,
2445 0, IPPROTO_TCP, 0);
2446 }
2447
2448 i = tx_ring->next_to_use;
2449
2450 buffer_info = &tx_ring->buffer_info[i];
2451 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2452 /* VLAN MACLEN IPLEN */
2453 if (tx_flags & IGB_TX_FLAGS_VLAN)
2454 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2455 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2456 *hdr_len += skb_network_offset(skb);
2457 info |= skb_network_header_len(skb);
2458 *hdr_len += skb_network_header_len(skb);
2459 context_desc->vlan_macip_lens = cpu_to_le32(info);
2460
2461 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2462 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2463
2464 if (skb->protocol == htons(ETH_P_IP))
2465 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2466 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2467
2468 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2469
2470 /* MSS L4LEN IDX */
2471 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2472 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2473
2474 /* Context index must be unique per ring. Luckily, so is the interrupt
2475 * mask value. */
2476 mss_l4len_idx |= tx_ring->eims_value >> 4;
2477
2478 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2479 context_desc->seqnum_seed = 0;
2480
2481 buffer_info->time_stamp = jiffies;
2482 buffer_info->dma = 0;
2483 i++;
2484 if (i == tx_ring->count)
2485 i = 0;
2486
2487 tx_ring->next_to_use = i;
2488
2489 return true;
2490}
2491
2492static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2493 struct igb_ring *tx_ring,
2494 struct sk_buff *skb, u32 tx_flags)
2495{
2496 struct e1000_adv_tx_context_desc *context_desc;
2497 unsigned int i;
2498 struct igb_buffer *buffer_info;
2499 u32 info = 0, tu_cmd = 0;
2500
2501 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2502 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2503 i = tx_ring->next_to_use;
2504 buffer_info = &tx_ring->buffer_info[i];
2505 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2506
2507 if (tx_flags & IGB_TX_FLAGS_VLAN)
2508 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2509 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2510 if (skb->ip_summed == CHECKSUM_PARTIAL)
2511 info |= skb_network_header_len(skb);
2512
2513 context_desc->vlan_macip_lens = cpu_to_le32(info);
2514
2515 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2516
2517 if (skb->ip_summed == CHECKSUM_PARTIAL) {
Mitch Williams44b0cda2008-03-07 10:32:13 -08002518 switch (skb->protocol) {
2519 case __constant_htons(ETH_P_IP):
Auke Kok9d5c8242008-01-24 02:22:38 -08002520 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
Mitch Williams44b0cda2008-03-07 10:32:13 -08002521 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2522 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2523 break;
2524 case __constant_htons(ETH_P_IPV6):
2525 /* XXX what about other V6 headers?? */
2526 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2527 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2528 break;
2529 default:
2530 if (unlikely(net_ratelimit()))
2531 dev_warn(&adapter->pdev->dev,
2532 "partial checksum but proto=%x!\n",
2533 skb->protocol);
2534 break;
2535 }
Auke Kok9d5c8242008-01-24 02:22:38 -08002536 }
2537
2538 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2539 context_desc->seqnum_seed = 0;
2540 context_desc->mss_l4len_idx =
2541 cpu_to_le32(tx_ring->eims_value >> 4);
2542
2543 buffer_info->time_stamp = jiffies;
2544 buffer_info->dma = 0;
2545
2546 i++;
2547 if (i == tx_ring->count)
2548 i = 0;
2549 tx_ring->next_to_use = i;
2550
2551 return true;
2552 }
2553
2554
2555 return false;
2556}
2557
2558#define IGB_MAX_TXD_PWR 16
2559#define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2560
2561static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2562 struct igb_ring *tx_ring,
2563 struct sk_buff *skb)
2564{
2565 struct igb_buffer *buffer_info;
2566 unsigned int len = skb_headlen(skb);
2567 unsigned int count = 0, i;
2568 unsigned int f;
2569
2570 i = tx_ring->next_to_use;
2571
2572 buffer_info = &tx_ring->buffer_info[i];
2573 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2574 buffer_info->length = len;
2575 /* set time_stamp *before* dma to help avoid a possible race */
2576 buffer_info->time_stamp = jiffies;
2577 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2578 PCI_DMA_TODEVICE);
2579 count++;
2580 i++;
2581 if (i == tx_ring->count)
2582 i = 0;
2583
2584 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2585 struct skb_frag_struct *frag;
2586
2587 frag = &skb_shinfo(skb)->frags[f];
2588 len = frag->size;
2589
2590 buffer_info = &tx_ring->buffer_info[i];
2591 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2592 buffer_info->length = len;
2593 buffer_info->time_stamp = jiffies;
2594 buffer_info->dma = pci_map_page(adapter->pdev,
2595 frag->page,
2596 frag->page_offset,
2597 len,
2598 PCI_DMA_TODEVICE);
2599
2600 count++;
2601 i++;
2602 if (i == tx_ring->count)
2603 i = 0;
2604 }
2605
2606 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2607 tx_ring->buffer_info[i].skb = skb;
2608
2609 return count;
2610}
2611
2612static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2613 struct igb_ring *tx_ring,
2614 int tx_flags, int count, u32 paylen,
2615 u8 hdr_len)
2616{
2617 union e1000_adv_tx_desc *tx_desc = NULL;
2618 struct igb_buffer *buffer_info;
2619 u32 olinfo_status = 0, cmd_type_len;
2620 unsigned int i;
2621
2622 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2623 E1000_ADVTXD_DCMD_DEXT);
2624
2625 if (tx_flags & IGB_TX_FLAGS_VLAN)
2626 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2627
2628 if (tx_flags & IGB_TX_FLAGS_TSO) {
2629 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2630
2631 /* insert tcp checksum */
2632 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2633
2634 /* insert ip checksum */
2635 if (tx_flags & IGB_TX_FLAGS_IPV4)
2636 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2637
2638 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2639 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2640 }
2641
2642 if (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2643 IGB_TX_FLAGS_VLAN))
2644 olinfo_status |= tx_ring->eims_value >> 4;
2645
2646 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2647
2648 i = tx_ring->next_to_use;
2649 while (count--) {
2650 buffer_info = &tx_ring->buffer_info[i];
2651 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2652 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2653 tx_desc->read.cmd_type_len =
2654 cpu_to_le32(cmd_type_len | buffer_info->length);
2655 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2656 i++;
2657 if (i == tx_ring->count)
2658 i = 0;
2659 }
2660
2661 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2662 /* Force memory writes to complete before letting h/w
2663 * know there are new descriptors to fetch. (Only
2664 * applicable for weak-ordered memory model archs,
2665 * such as IA-64). */
2666 wmb();
2667
2668 tx_ring->next_to_use = i;
2669 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2670 /* we need this if more than one processor can write to our tail
2671 * at a time, it syncronizes IO on IA64/Altix systems */
2672 mmiowb();
2673}
2674
2675static int __igb_maybe_stop_tx(struct net_device *netdev,
2676 struct igb_ring *tx_ring, int size)
2677{
2678 struct igb_adapter *adapter = netdev_priv(netdev);
2679
2680 netif_stop_queue(netdev);
2681 /* Herbert's original patch had:
2682 * smp_mb__after_netif_stop_queue();
2683 * but since that doesn't exist yet, just open code it. */
2684 smp_mb();
2685
2686 /* We need to check again in a case another CPU has just
2687 * made room available. */
2688 if (IGB_DESC_UNUSED(tx_ring) < size)
2689 return -EBUSY;
2690
2691 /* A reprieve! */
2692 netif_start_queue(netdev);
2693 ++adapter->restart_queue;
2694 return 0;
2695}
2696
2697static int igb_maybe_stop_tx(struct net_device *netdev,
2698 struct igb_ring *tx_ring, int size)
2699{
2700 if (IGB_DESC_UNUSED(tx_ring) >= size)
2701 return 0;
2702 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2703}
2704
2705#define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2706
2707static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2708 struct net_device *netdev,
2709 struct igb_ring *tx_ring)
2710{
2711 struct igb_adapter *adapter = netdev_priv(netdev);
2712 unsigned int tx_flags = 0;
2713 unsigned int len;
2714 unsigned long irq_flags;
2715 u8 hdr_len = 0;
2716 int tso = 0;
2717
2718 len = skb_headlen(skb);
2719
2720 if (test_bit(__IGB_DOWN, &adapter->state)) {
2721 dev_kfree_skb_any(skb);
2722 return NETDEV_TX_OK;
2723 }
2724
2725 if (skb->len <= 0) {
2726 dev_kfree_skb_any(skb);
2727 return NETDEV_TX_OK;
2728 }
2729
2730 if (!spin_trylock_irqsave(&tx_ring->tx_lock, irq_flags))
2731 /* Collision - tell upper layer to requeue */
2732 return NETDEV_TX_LOCKED;
2733
2734 /* need: 1 descriptor per page,
2735 * + 2 desc gap to keep tail from touching head,
2736 * + 1 desc for skb->data,
2737 * + 1 desc for context descriptor,
2738 * otherwise try next time */
2739 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2740 /* this is a hard error */
2741 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2742 return NETDEV_TX_BUSY;
2743 }
2744
2745 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2746 tx_flags |= IGB_TX_FLAGS_VLAN;
2747 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2748 }
2749
2750 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2751 &hdr_len) : 0;
2752
2753 if (tso < 0) {
2754 dev_kfree_skb_any(skb);
2755 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2756 return NETDEV_TX_OK;
2757 }
2758
2759 if (tso)
2760 tx_flags |= IGB_TX_FLAGS_TSO;
2761 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2762 if (skb->ip_summed == CHECKSUM_PARTIAL)
2763 tx_flags |= IGB_TX_FLAGS_CSUM;
2764
2765 if (skb->protocol == htons(ETH_P_IP))
2766 tx_flags |= IGB_TX_FLAGS_IPV4;
2767
2768 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2769 igb_tx_map_adv(adapter, tx_ring, skb),
2770 skb->len, hdr_len);
2771
2772 netdev->trans_start = jiffies;
2773
2774 /* Make sure there is space in the ring for the next send. */
2775 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
2776
2777 spin_unlock_irqrestore(&tx_ring->tx_lock, irq_flags);
2778 return NETDEV_TX_OK;
2779}
2780
2781static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
2782{
2783 struct igb_adapter *adapter = netdev_priv(netdev);
2784 struct igb_ring *tx_ring = &adapter->tx_ring[0];
2785
2786 /* This goes back to the question of how to logically map a tx queue
2787 * to a flow. Right now, performance is impacted slightly negatively
2788 * if using multiple tx queues. If the stack breaks away from a
2789 * single qdisc implementation, we can look at this again. */
2790 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
2791}
2792
2793/**
2794 * igb_tx_timeout - Respond to a Tx Hang
2795 * @netdev: network interface device structure
2796 **/
2797static void igb_tx_timeout(struct net_device *netdev)
2798{
2799 struct igb_adapter *adapter = netdev_priv(netdev);
2800 struct e1000_hw *hw = &adapter->hw;
2801
2802 /* Do the reset outside of interrupt context */
2803 adapter->tx_timeout_count++;
2804 schedule_work(&adapter->reset_task);
2805 wr32(E1000_EICS, adapter->eims_enable_mask &
2806 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
2807}
2808
2809static void igb_reset_task(struct work_struct *work)
2810{
2811 struct igb_adapter *adapter;
2812 adapter = container_of(work, struct igb_adapter, reset_task);
2813
2814 igb_reinit_locked(adapter);
2815}
2816
2817/**
2818 * igb_get_stats - Get System Network Statistics
2819 * @netdev: network interface device structure
2820 *
2821 * Returns the address of the device statistics structure.
2822 * The statistics are actually updated from the timer callback.
2823 **/
2824static struct net_device_stats *
2825igb_get_stats(struct net_device *netdev)
2826{
2827 struct igb_adapter *adapter = netdev_priv(netdev);
2828
2829 /* only return the current stats */
2830 return &adapter->net_stats;
2831}
2832
2833/**
2834 * igb_change_mtu - Change the Maximum Transfer Unit
2835 * @netdev: network interface device structure
2836 * @new_mtu: new value for maximum frame size
2837 *
2838 * Returns 0 on success, negative on failure
2839 **/
2840static int igb_change_mtu(struct net_device *netdev, int new_mtu)
2841{
2842 struct igb_adapter *adapter = netdev_priv(netdev);
2843 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2844
2845 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2846 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2847 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2848 return -EINVAL;
2849 }
2850
2851#define MAX_STD_JUMBO_FRAME_SIZE 9234
2852 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2853 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2854 return -EINVAL;
2855 }
2856
2857 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2858 msleep(1);
2859 /* igb_down has a dependency on max_frame_size */
2860 adapter->max_frame_size = max_frame;
2861 if (netif_running(netdev))
2862 igb_down(adapter);
2863
2864 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2865 * means we reserve 2 more, this pushes us to allocate from the next
2866 * larger slab size.
2867 * i.e. RXBUFFER_2048 --> size-4096 slab
2868 */
2869
2870 if (max_frame <= IGB_RXBUFFER_256)
2871 adapter->rx_buffer_len = IGB_RXBUFFER_256;
2872 else if (max_frame <= IGB_RXBUFFER_512)
2873 adapter->rx_buffer_len = IGB_RXBUFFER_512;
2874 else if (max_frame <= IGB_RXBUFFER_1024)
2875 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
2876 else if (max_frame <= IGB_RXBUFFER_2048)
2877 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
2878 else
2879 adapter->rx_buffer_len = IGB_RXBUFFER_4096;
2880 /* adjust allocation if LPE protects us, and we aren't using SBP */
2881 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2882 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
2883 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
2884
2885 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2886 netdev->mtu, new_mtu);
2887 netdev->mtu = new_mtu;
2888
2889 if (netif_running(netdev))
2890 igb_up(adapter);
2891 else
2892 igb_reset(adapter);
2893
2894 clear_bit(__IGB_RESETTING, &adapter->state);
2895
2896 return 0;
2897}
2898
2899/**
2900 * igb_update_stats - Update the board statistics counters
2901 * @adapter: board private structure
2902 **/
2903
2904void igb_update_stats(struct igb_adapter *adapter)
2905{
2906 struct e1000_hw *hw = &adapter->hw;
2907 struct pci_dev *pdev = adapter->pdev;
2908 u16 phy_tmp;
2909
2910#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2911
2912 /*
2913 * Prevent stats update while adapter is being reset, or if the pci
2914 * connection is down.
2915 */
2916 if (adapter->link_speed == 0)
2917 return;
2918 if (pci_channel_offline(pdev))
2919 return;
2920
2921 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
2922 adapter->stats.gprc += rd32(E1000_GPRC);
2923 adapter->stats.gorc += rd32(E1000_GORCL);
2924 rd32(E1000_GORCH); /* clear GORCL */
2925 adapter->stats.bprc += rd32(E1000_BPRC);
2926 adapter->stats.mprc += rd32(E1000_MPRC);
2927 adapter->stats.roc += rd32(E1000_ROC);
2928
2929 adapter->stats.prc64 += rd32(E1000_PRC64);
2930 adapter->stats.prc127 += rd32(E1000_PRC127);
2931 adapter->stats.prc255 += rd32(E1000_PRC255);
2932 adapter->stats.prc511 += rd32(E1000_PRC511);
2933 adapter->stats.prc1023 += rd32(E1000_PRC1023);
2934 adapter->stats.prc1522 += rd32(E1000_PRC1522);
2935 adapter->stats.symerrs += rd32(E1000_SYMERRS);
2936 adapter->stats.sec += rd32(E1000_SEC);
2937
2938 adapter->stats.mpc += rd32(E1000_MPC);
2939 adapter->stats.scc += rd32(E1000_SCC);
2940 adapter->stats.ecol += rd32(E1000_ECOL);
2941 adapter->stats.mcc += rd32(E1000_MCC);
2942 adapter->stats.latecol += rd32(E1000_LATECOL);
2943 adapter->stats.dc += rd32(E1000_DC);
2944 adapter->stats.rlec += rd32(E1000_RLEC);
2945 adapter->stats.xonrxc += rd32(E1000_XONRXC);
2946 adapter->stats.xontxc += rd32(E1000_XONTXC);
2947 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
2948 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
2949 adapter->stats.fcruc += rd32(E1000_FCRUC);
2950 adapter->stats.gptc += rd32(E1000_GPTC);
2951 adapter->stats.gotc += rd32(E1000_GOTCL);
2952 rd32(E1000_GOTCH); /* clear GOTCL */
2953 adapter->stats.rnbc += rd32(E1000_RNBC);
2954 adapter->stats.ruc += rd32(E1000_RUC);
2955 adapter->stats.rfc += rd32(E1000_RFC);
2956 adapter->stats.rjc += rd32(E1000_RJC);
2957 adapter->stats.tor += rd32(E1000_TORH);
2958 adapter->stats.tot += rd32(E1000_TOTH);
2959 adapter->stats.tpr += rd32(E1000_TPR);
2960
2961 adapter->stats.ptc64 += rd32(E1000_PTC64);
2962 adapter->stats.ptc127 += rd32(E1000_PTC127);
2963 adapter->stats.ptc255 += rd32(E1000_PTC255);
2964 adapter->stats.ptc511 += rd32(E1000_PTC511);
2965 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
2966 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
2967
2968 adapter->stats.mptc += rd32(E1000_MPTC);
2969 adapter->stats.bptc += rd32(E1000_BPTC);
2970
2971 /* used for adaptive IFS */
2972
2973 hw->mac.tx_packet_delta = rd32(E1000_TPT);
2974 adapter->stats.tpt += hw->mac.tx_packet_delta;
2975 hw->mac.collision_delta = rd32(E1000_COLC);
2976 adapter->stats.colc += hw->mac.collision_delta;
2977
2978 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
2979 adapter->stats.rxerrc += rd32(E1000_RXERRC);
2980 adapter->stats.tncrs += rd32(E1000_TNCRS);
2981 adapter->stats.tsctc += rd32(E1000_TSCTC);
2982 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
2983
2984 adapter->stats.iac += rd32(E1000_IAC);
2985 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
2986 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
2987 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
2988 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
2989 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
2990 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
2991 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
2992 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
2993
2994 /* Fill out the OS statistics structure */
2995 adapter->net_stats.multicast = adapter->stats.mprc;
2996 adapter->net_stats.collisions = adapter->stats.colc;
2997
2998 /* Rx Errors */
2999
3000 /* RLEC on some newer hardware can be incorrect so build
3001 * our own version based on RUC and ROC */
3002 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3003 adapter->stats.crcerrs + adapter->stats.algnerrc +
3004 adapter->stats.ruc + adapter->stats.roc +
3005 adapter->stats.cexterr;
3006 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3007 adapter->stats.roc;
3008 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3009 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3010 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3011
3012 /* Tx Errors */
3013 adapter->net_stats.tx_errors = adapter->stats.ecol +
3014 adapter->stats.latecol;
3015 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3016 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3017 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3018
3019 /* Tx Dropped needs to be maintained elsewhere */
3020
3021 /* Phy Stats */
3022 if (hw->phy.media_type == e1000_media_type_copper) {
3023 if ((adapter->link_speed == SPEED_1000) &&
3024 (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3025 &phy_tmp))) {
3026 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3027 adapter->phy_stats.idle_errors += phy_tmp;
3028 }
3029 }
3030
3031 /* Management Stats */
3032 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3033 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3034 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3035}
3036
3037
3038static irqreturn_t igb_msix_other(int irq, void *data)
3039{
3040 struct net_device *netdev = data;
3041 struct igb_adapter *adapter = netdev_priv(netdev);
3042 struct e1000_hw *hw = &adapter->hw;
3043 u32 eicr;
3044 /* disable interrupts from the "other" bit, avoid re-entry */
3045 wr32(E1000_EIMC, E1000_EIMS_OTHER);
3046
3047 eicr = rd32(E1000_EICR);
3048
3049 if (eicr & E1000_EIMS_OTHER) {
3050 u32 icr = rd32(E1000_ICR);
3051 /* reading ICR causes bit 31 of EICR to be cleared */
3052 if (!(icr & E1000_ICR_LSC))
3053 goto no_link_interrupt;
3054 hw->mac.get_link_status = 1;
3055 /* guard against interrupt when we're going down */
3056 if (!test_bit(__IGB_DOWN, &adapter->state))
3057 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3058 }
3059
3060no_link_interrupt:
3061 wr32(E1000_IMS, E1000_IMS_LSC);
3062 wr32(E1000_EIMS, E1000_EIMS_OTHER);
3063
3064 return IRQ_HANDLED;
3065}
3066
3067static irqreturn_t igb_msix_tx(int irq, void *data)
3068{
3069 struct igb_ring *tx_ring = data;
3070 struct igb_adapter *adapter = tx_ring->adapter;
3071 struct e1000_hw *hw = &adapter->hw;
3072
3073 if (!tx_ring->itr_val)
3074 wr32(E1000_EIMC, tx_ring->eims_value);
3075
3076 tx_ring->total_bytes = 0;
3077 tx_ring->total_packets = 0;
3078 if (!igb_clean_tx_irq(adapter, tx_ring))
3079 /* Ring was not completely cleaned, so fire another interrupt */
3080 wr32(E1000_EICS, tx_ring->eims_value);
3081
3082 if (!tx_ring->itr_val)
3083 wr32(E1000_EIMS, tx_ring->eims_value);
3084 return IRQ_HANDLED;
3085}
3086
3087static irqreturn_t igb_msix_rx(int irq, void *data)
3088{
3089 struct igb_ring *rx_ring = data;
3090 struct igb_adapter *adapter = rx_ring->adapter;
3091 struct e1000_hw *hw = &adapter->hw;
3092
3093 if (!rx_ring->itr_val)
3094 wr32(E1000_EIMC, rx_ring->eims_value);
3095
3096 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
3097 rx_ring->total_bytes = 0;
3098 rx_ring->total_packets = 0;
3099 rx_ring->no_itr_adjust = 0;
3100 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3101 } else {
3102 if (!rx_ring->no_itr_adjust) {
3103 igb_lower_rx_eitr(adapter, rx_ring);
3104 rx_ring->no_itr_adjust = 1;
3105 }
3106 }
3107
3108 return IRQ_HANDLED;
3109}
3110
3111
3112/**
3113 * igb_intr_msi - Interrupt Handler
3114 * @irq: interrupt number
3115 * @data: pointer to a network interface device structure
3116 **/
3117static irqreturn_t igb_intr_msi(int irq, void *data)
3118{
3119 struct net_device *netdev = data;
3120 struct igb_adapter *adapter = netdev_priv(netdev);
3121 struct napi_struct *napi = &adapter->napi;
3122 struct e1000_hw *hw = &adapter->hw;
3123 /* read ICR disables interrupts using IAM */
3124 u32 icr = rd32(E1000_ICR);
3125
3126 /* Write the ITR value calculated at the end of the
3127 * previous interrupt.
3128 */
3129 if (adapter->set_itr) {
3130 wr32(E1000_ITR,
3131 1000000000 / (adapter->itr * 256));
3132 adapter->set_itr = 0;
3133 }
3134
3135 /* read ICR disables interrupts using IAM */
3136 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3137 hw->mac.get_link_status = 1;
3138 if (!test_bit(__IGB_DOWN, &adapter->state))
3139 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3140 }
3141
3142 if (netif_rx_schedule_prep(netdev, napi)) {
3143 adapter->tx_ring->total_bytes = 0;
3144 adapter->tx_ring->total_packets = 0;
3145 adapter->rx_ring->total_bytes = 0;
3146 adapter->rx_ring->total_packets = 0;
3147 __netif_rx_schedule(netdev, napi);
3148 }
3149
3150 return IRQ_HANDLED;
3151}
3152
3153/**
3154 * igb_intr - Interrupt Handler
3155 * @irq: interrupt number
3156 * @data: pointer to a network interface device structure
3157 **/
3158static irqreturn_t igb_intr(int irq, void *data)
3159{
3160 struct net_device *netdev = data;
3161 struct igb_adapter *adapter = netdev_priv(netdev);
3162 struct napi_struct *napi = &adapter->napi;
3163 struct e1000_hw *hw = &adapter->hw;
3164 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3165 * need for the IMC write */
3166 u32 icr = rd32(E1000_ICR);
3167 u32 eicr = 0;
3168 if (!icr)
3169 return IRQ_NONE; /* Not our interrupt */
3170
3171 /* Write the ITR value calculated at the end of the
3172 * previous interrupt.
3173 */
3174 if (adapter->set_itr) {
3175 wr32(E1000_ITR,
3176 1000000000 / (adapter->itr * 256));
3177 adapter->set_itr = 0;
3178 }
3179
3180 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3181 * not set, then the adapter didn't send an interrupt */
3182 if (!(icr & E1000_ICR_INT_ASSERTED))
3183 return IRQ_NONE;
3184
3185 eicr = rd32(E1000_EICR);
3186
3187 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3188 hw->mac.get_link_status = 1;
3189 /* guard against interrupt when we're going down */
3190 if (!test_bit(__IGB_DOWN, &adapter->state))
3191 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3192 }
3193
3194 if (netif_rx_schedule_prep(netdev, napi)) {
3195 adapter->tx_ring->total_bytes = 0;
3196 adapter->rx_ring->total_bytes = 0;
3197 adapter->tx_ring->total_packets = 0;
3198 adapter->rx_ring->total_packets = 0;
3199 __netif_rx_schedule(netdev, napi);
3200 }
3201
3202 return IRQ_HANDLED;
3203}
3204
3205/**
3206 * igb_clean - NAPI Rx polling callback
3207 * @adapter: board private structure
3208 **/
3209static int igb_clean(struct napi_struct *napi, int budget)
3210{
3211 struct igb_adapter *adapter = container_of(napi, struct igb_adapter,
3212 napi);
3213 struct net_device *netdev = adapter->netdev;
3214 int tx_clean_complete = 1, work_done = 0;
3215 int i;
3216
3217 /* Must NOT use netdev_priv macro here. */
3218 adapter = netdev->priv;
3219
3220 /* Keep link state information with original netdev */
3221 if (!netif_carrier_ok(netdev))
3222 goto quit_polling;
3223
3224 /* igb_clean is called per-cpu. This lock protects tx_ring[i] from
3225 * being cleaned by multiple cpus simultaneously. A failure obtaining
3226 * the lock means tx_ring[i] is currently being cleaned anyway. */
3227 for (i = 0; i < adapter->num_tx_queues; i++) {
3228 if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
3229 tx_clean_complete &= igb_clean_tx_irq(adapter,
3230 &adapter->tx_ring[i]);
3231 spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
3232 }
3233 }
3234
3235 for (i = 0; i < adapter->num_rx_queues; i++)
3236 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
3237 adapter->rx_ring[i].napi.weight);
3238
3239 /* If no Tx and not enough Rx work done, exit the polling mode */
3240 if ((tx_clean_complete && (work_done < budget)) ||
3241 !netif_running(netdev)) {
3242quit_polling:
3243 if (adapter->itr_setting & 3)
3244 igb_set_itr(adapter, E1000_ITR, false);
3245 netif_rx_complete(netdev, napi);
3246 if (!test_bit(__IGB_DOWN, &adapter->state))
3247 igb_irq_enable(adapter);
3248 return 0;
3249 }
3250
3251 return 1;
3252}
3253
3254static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3255{
3256 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3257 struct igb_adapter *adapter = rx_ring->adapter;
3258 struct e1000_hw *hw = &adapter->hw;
3259 struct net_device *netdev = adapter->netdev;
3260 int work_done = 0;
3261
3262 /* Keep link state information with original netdev */
3263 if (!netif_carrier_ok(netdev))
3264 goto quit_polling;
3265
3266 igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
3267
3268
3269 /* If not enough Rx work done, exit the polling mode */
3270 if ((work_done == 0) || !netif_running(netdev)) {
3271quit_polling:
3272 netif_rx_complete(netdev, napi);
3273
3274 wr32(E1000_EIMS, rx_ring->eims_value);
3275 if ((adapter->itr_setting & 3) && !rx_ring->no_itr_adjust &&
3276 (rx_ring->total_packets > IGB_DYN_ITR_PACKET_THRESHOLD)) {
3277 int mean_size = rx_ring->total_bytes /
3278 rx_ring->total_packets;
3279 if (mean_size < IGB_DYN_ITR_LENGTH_LOW)
3280 igb_raise_rx_eitr(adapter, rx_ring);
3281 else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
3282 igb_lower_rx_eitr(adapter, rx_ring);
3283 }
3284 return 0;
3285 }
3286
3287 return 1;
3288}
Al Viro6d8126f2008-03-16 22:23:24 +00003289
3290static inline u32 get_head(struct igb_ring *tx_ring)
3291{
3292 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3293 return le32_to_cpu(*(volatile __le32 *)end);
3294}
3295
Auke Kok9d5c8242008-01-24 02:22:38 -08003296/**
3297 * igb_clean_tx_irq - Reclaim resources after transmit completes
3298 * @adapter: board private structure
3299 * returns true if ring is completely cleaned
3300 **/
3301static bool igb_clean_tx_irq(struct igb_adapter *adapter,
3302 struct igb_ring *tx_ring)
3303{
3304 struct net_device *netdev = adapter->netdev;
3305 struct e1000_hw *hw = &adapter->hw;
3306 struct e1000_tx_desc *tx_desc;
3307 struct igb_buffer *buffer_info;
3308 struct sk_buff *skb;
3309 unsigned int i;
3310 u32 head, oldhead;
3311 unsigned int count = 0;
3312 bool cleaned = false;
3313 bool retval = true;
3314 unsigned int total_bytes = 0, total_packets = 0;
3315
3316 rmb();
Al Viro6d8126f2008-03-16 22:23:24 +00003317 head = get_head(tx_ring);
Auke Kok9d5c8242008-01-24 02:22:38 -08003318 i = tx_ring->next_to_clean;
3319 while (1) {
3320 while (i != head) {
3321 cleaned = true;
3322 tx_desc = E1000_TX_DESC(*tx_ring, i);
3323 buffer_info = &tx_ring->buffer_info[i];
3324 skb = buffer_info->skb;
3325
3326 if (skb) {
3327 unsigned int segs, bytecount;
3328 /* gso_segs is currently only valid for tcp */
3329 segs = skb_shinfo(skb)->gso_segs ?: 1;
3330 /* multiply data chunks by size of headers */
3331 bytecount = ((segs - 1) * skb_headlen(skb)) +
3332 skb->len;
3333 total_packets += segs;
3334 total_bytes += bytecount;
3335 }
3336
3337 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3338 tx_desc->upper.data = 0;
3339
3340 i++;
3341 if (i == tx_ring->count)
3342 i = 0;
3343
3344 count++;
3345 if (count == IGB_MAX_TX_CLEAN) {
3346 retval = false;
3347 goto done_cleaning;
3348 }
3349 }
3350 oldhead = head;
3351 rmb();
Al Viro6d8126f2008-03-16 22:23:24 +00003352 head = get_head(tx_ring);
Auke Kok9d5c8242008-01-24 02:22:38 -08003353 if (head == oldhead)
3354 goto done_cleaning;
3355 } /* while (1) */
3356
3357done_cleaning:
3358 tx_ring->next_to_clean = i;
3359
3360 if (unlikely(cleaned &&
3361 netif_carrier_ok(netdev) &&
3362 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3363 /* Make sure that anybody stopping the queue after this
3364 * sees the new next_to_clean.
3365 */
3366 smp_mb();
3367 if (netif_queue_stopped(netdev) &&
3368 !(test_bit(__IGB_DOWN, &adapter->state))) {
3369 netif_wake_queue(netdev);
3370 ++adapter->restart_queue;
3371 }
3372 }
3373
3374 if (tx_ring->detect_tx_hung) {
3375 /* Detect a transmit hang in hardware, this serializes the
3376 * check with the clearing of time_stamp and movement of i */
3377 tx_ring->detect_tx_hung = false;
3378 if (tx_ring->buffer_info[i].time_stamp &&
3379 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3380 (adapter->tx_timeout_factor * HZ))
3381 && !(rd32(E1000_STATUS) &
3382 E1000_STATUS_TXOFF)) {
3383
3384 tx_desc = E1000_TX_DESC(*tx_ring, i);
3385 /* detected Tx unit hang */
3386 dev_err(&adapter->pdev->dev,
3387 "Detected Tx Unit Hang\n"
3388 " Tx Queue <%lu>\n"
3389 " TDH <%x>\n"
3390 " TDT <%x>\n"
3391 " next_to_use <%x>\n"
3392 " next_to_clean <%x>\n"
3393 " head (WB) <%x>\n"
3394 "buffer_info[next_to_clean]\n"
3395 " time_stamp <%lx>\n"
3396 " jiffies <%lx>\n"
3397 " desc.status <%x>\n",
3398 (unsigned long)((tx_ring - adapter->tx_ring) /
3399 sizeof(struct igb_ring)),
3400 readl(adapter->hw.hw_addr + tx_ring->head),
3401 readl(adapter->hw.hw_addr + tx_ring->tail),
3402 tx_ring->next_to_use,
3403 tx_ring->next_to_clean,
3404 head,
3405 tx_ring->buffer_info[i].time_stamp,
3406 jiffies,
3407 tx_desc->upper.fields.status);
3408 netif_stop_queue(netdev);
3409 }
3410 }
3411 tx_ring->total_bytes += total_bytes;
3412 tx_ring->total_packets += total_packets;
3413 adapter->net_stats.tx_bytes += total_bytes;
3414 adapter->net_stats.tx_packets += total_packets;
3415 return retval;
3416}
3417
3418
3419/**
3420 * igb_receive_skb - helper function to handle rx indications
3421 * @adapter: board private structure
3422 * @status: descriptor status field as written by hardware
3423 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3424 * @skb: pointer to sk_buff to be indicated to stack
3425 **/
Al Viro6d8126f2008-03-16 22:23:24 +00003426static void igb_receive_skb(struct igb_adapter *adapter, u8 status, __le16 vlan,
Auke Kok9d5c8242008-01-24 02:22:38 -08003427 struct sk_buff *skb)
3428{
3429 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
3430 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3431 le16_to_cpu(vlan) &
3432 E1000_RXD_SPC_VLAN_MASK);
3433 else
3434 netif_receive_skb(skb);
3435}
3436
3437
3438static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3439 u32 status_err, struct sk_buff *skb)
3440{
3441 skb->ip_summed = CHECKSUM_NONE;
3442
3443 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3444 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3445 return;
3446 /* TCP/UDP checksum error bit is set */
3447 if (status_err &
3448 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3449 /* let the stack verify checksum errors */
3450 adapter->hw_csum_err++;
3451 return;
3452 }
3453 /* It must be a TCP or UDP packet with a valid checksum */
3454 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3455 skb->ip_summed = CHECKSUM_UNNECESSARY;
3456
3457 adapter->hw_csum_good++;
3458}
3459
3460static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
3461 struct igb_ring *rx_ring,
3462 int *work_done, int budget)
3463{
3464 struct net_device *netdev = adapter->netdev;
3465 struct pci_dev *pdev = adapter->pdev;
3466 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3467 struct igb_buffer *buffer_info , *next_buffer;
3468 struct sk_buff *skb;
3469 unsigned int i, j;
3470 u32 length, hlen, staterr;
3471 bool cleaned = false;
3472 int cleaned_count = 0;
3473 unsigned int total_bytes = 0, total_packets = 0;
3474
3475 i = rx_ring->next_to_clean;
3476 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3477 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3478
3479 while (staterr & E1000_RXD_STAT_DD) {
3480 if (*work_done >= budget)
3481 break;
3482 (*work_done)++;
3483 buffer_info = &rx_ring->buffer_info[i];
3484
3485 /* HW will not DMA in data larger than the given buffer, even
3486 * if it parses the (NFS, of course) header to be larger. In
3487 * that case, it fills the header buffer and spills the rest
3488 * into the page.
3489 */
Al Viro7deb07b2008-03-16 22:43:06 +00003490 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3491 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
Auke Kok9d5c8242008-01-24 02:22:38 -08003492 if (hlen > adapter->rx_ps_hdr_size)
3493 hlen = adapter->rx_ps_hdr_size;
3494
3495 length = le16_to_cpu(rx_desc->wb.upper.length);
3496 cleaned = true;
3497 cleaned_count++;
3498
3499 if (rx_ring->pending_skb != NULL) {
3500 skb = rx_ring->pending_skb;
3501 rx_ring->pending_skb = NULL;
3502 j = rx_ring->pending_skb_page;
3503 } else {
3504 skb = buffer_info->skb;
3505 prefetch(skb->data - NET_IP_ALIGN);
3506 buffer_info->skb = NULL;
3507 if (hlen) {
3508 pci_unmap_single(pdev, buffer_info->dma,
3509 adapter->rx_ps_hdr_size +
3510 NET_IP_ALIGN,
3511 PCI_DMA_FROMDEVICE);
3512 skb_put(skb, hlen);
3513 } else {
3514 pci_unmap_single(pdev, buffer_info->dma,
3515 adapter->rx_buffer_len +
3516 NET_IP_ALIGN,
3517 PCI_DMA_FROMDEVICE);
3518 skb_put(skb, length);
3519 goto send_up;
3520 }
3521 j = 0;
3522 }
3523
3524 while (length) {
3525 pci_unmap_page(pdev, buffer_info->page_dma,
3526 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3527 buffer_info->page_dma = 0;
3528 skb_fill_page_desc(skb, j, buffer_info->page,
3529 0, length);
3530 buffer_info->page = NULL;
3531
3532 skb->len += length;
3533 skb->data_len += length;
3534 skb->truesize += length;
3535 rx_desc->wb.upper.status_error = 0;
3536 if (staterr & E1000_RXD_STAT_EOP)
3537 break;
3538
3539 j++;
3540 cleaned_count++;
3541 i++;
3542 if (i == rx_ring->count)
3543 i = 0;
3544
3545 buffer_info = &rx_ring->buffer_info[i];
3546 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3547 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3548 length = le16_to_cpu(rx_desc->wb.upper.length);
3549 if (!(staterr & E1000_RXD_STAT_DD)) {
3550 rx_ring->pending_skb = skb;
3551 rx_ring->pending_skb_page = j;
3552 goto out;
3553 }
3554 }
3555send_up:
3556 pskb_trim(skb, skb->len - 4);
3557 i++;
3558 if (i == rx_ring->count)
3559 i = 0;
3560 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3561 prefetch(next_rxd);
3562 next_buffer = &rx_ring->buffer_info[i];
3563
3564 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3565 dev_kfree_skb_irq(skb);
3566 goto next_desc;
3567 }
3568 rx_ring->no_itr_adjust |= (staterr & E1000_RXD_STAT_DYNINT);
3569
3570 total_bytes += skb->len;
3571 total_packets++;
3572
3573 igb_rx_checksum_adv(adapter, staterr, skb);
3574
3575 skb->protocol = eth_type_trans(skb, netdev);
3576
3577 igb_receive_skb(adapter, staterr, rx_desc->wb.upper.vlan, skb);
3578
3579 netdev->last_rx = jiffies;
3580
3581next_desc:
3582 rx_desc->wb.upper.status_error = 0;
3583
3584 /* return some buffers to hardware, one at a time is too slow */
3585 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3586 igb_alloc_rx_buffers_adv(adapter, rx_ring,
3587 cleaned_count);
3588 cleaned_count = 0;
3589 }
3590
3591 /* use prefetched values */
3592 rx_desc = next_rxd;
3593 buffer_info = next_buffer;
3594
3595 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3596 }
3597out:
3598 rx_ring->next_to_clean = i;
3599 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3600
3601 if (cleaned_count)
3602 igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
3603
3604 rx_ring->total_packets += total_packets;
3605 rx_ring->total_bytes += total_bytes;
3606 rx_ring->rx_stats.packets += total_packets;
3607 rx_ring->rx_stats.bytes += total_bytes;
3608 adapter->net_stats.rx_bytes += total_bytes;
3609 adapter->net_stats.rx_packets += total_packets;
3610 return cleaned;
3611}
3612
3613
3614/**
3615 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3616 * @adapter: address of board private structure
3617 **/
3618static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
3619 struct igb_ring *rx_ring,
3620 int cleaned_count)
3621{
3622 struct net_device *netdev = adapter->netdev;
3623 struct pci_dev *pdev = adapter->pdev;
3624 union e1000_adv_rx_desc *rx_desc;
3625 struct igb_buffer *buffer_info;
3626 struct sk_buff *skb;
3627 unsigned int i;
3628
3629 i = rx_ring->next_to_use;
3630 buffer_info = &rx_ring->buffer_info[i];
3631
3632 while (cleaned_count--) {
3633 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3634
3635 if (adapter->rx_ps_hdr_size && !buffer_info->page) {
3636 buffer_info->page = alloc_page(GFP_ATOMIC);
3637 if (!buffer_info->page) {
3638 adapter->alloc_rx_buff_failed++;
3639 goto no_buffers;
3640 }
3641 buffer_info->page_dma =
3642 pci_map_page(pdev,
3643 buffer_info->page,
3644 0, PAGE_SIZE,
3645 PCI_DMA_FROMDEVICE);
3646 }
3647
3648 if (!buffer_info->skb) {
3649 int bufsz;
3650
3651 if (adapter->rx_ps_hdr_size)
3652 bufsz = adapter->rx_ps_hdr_size;
3653 else
3654 bufsz = adapter->rx_buffer_len;
3655 bufsz += NET_IP_ALIGN;
3656 skb = netdev_alloc_skb(netdev, bufsz);
3657
3658 if (!skb) {
3659 adapter->alloc_rx_buff_failed++;
3660 goto no_buffers;
3661 }
3662
3663 /* Make buffer alignment 2 beyond a 16 byte boundary
3664 * this will result in a 16 byte aligned IP header after
3665 * the 14 byte MAC header is removed
3666 */
3667 skb_reserve(skb, NET_IP_ALIGN);
3668
3669 buffer_info->skb = skb;
3670 buffer_info->dma = pci_map_single(pdev, skb->data,
3671 bufsz,
3672 PCI_DMA_FROMDEVICE);
3673
3674 }
3675 /* Refresh the desc even if buffer_addrs didn't change because
3676 * each write-back erases this info. */
3677 if (adapter->rx_ps_hdr_size) {
3678 rx_desc->read.pkt_addr =
3679 cpu_to_le64(buffer_info->page_dma);
3680 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
3681 } else {
3682 rx_desc->read.pkt_addr =
3683 cpu_to_le64(buffer_info->dma);
3684 rx_desc->read.hdr_addr = 0;
3685 }
3686
3687 i++;
3688 if (i == rx_ring->count)
3689 i = 0;
3690 buffer_info = &rx_ring->buffer_info[i];
3691 }
3692
3693no_buffers:
3694 if (rx_ring->next_to_use != i) {
3695 rx_ring->next_to_use = i;
3696 if (i == 0)
3697 i = (rx_ring->count - 1);
3698 else
3699 i--;
3700
3701 /* Force memory writes to complete before letting h/w
3702 * know there are new descriptors to fetch. (Only
3703 * applicable for weak-ordered memory model archs,
3704 * such as IA-64). */
3705 wmb();
3706 writel(i, adapter->hw.hw_addr + rx_ring->tail);
3707 }
3708}
3709
3710/**
3711 * igb_mii_ioctl -
3712 * @netdev:
3713 * @ifreq:
3714 * @cmd:
3715 **/
3716static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3717{
3718 struct igb_adapter *adapter = netdev_priv(netdev);
3719 struct mii_ioctl_data *data = if_mii(ifr);
3720
3721 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3722 return -EOPNOTSUPP;
3723
3724 switch (cmd) {
3725 case SIOCGMIIPHY:
3726 data->phy_id = adapter->hw.phy.addr;
3727 break;
3728 case SIOCGMIIREG:
3729 if (!capable(CAP_NET_ADMIN))
3730 return -EPERM;
3731 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
3732 data->reg_num
3733 & 0x1F, &data->val_out))
3734 return -EIO;
3735 break;
3736 case SIOCSMIIREG:
3737 default:
3738 return -EOPNOTSUPP;
3739 }
3740 return 0;
3741}
3742
3743/**
3744 * igb_ioctl -
3745 * @netdev:
3746 * @ifreq:
3747 * @cmd:
3748 **/
3749static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3750{
3751 switch (cmd) {
3752 case SIOCGMIIPHY:
3753 case SIOCGMIIREG:
3754 case SIOCSMIIREG:
3755 return igb_mii_ioctl(netdev, ifr, cmd);
3756 default:
3757 return -EOPNOTSUPP;
3758 }
3759}
3760
3761static void igb_vlan_rx_register(struct net_device *netdev,
3762 struct vlan_group *grp)
3763{
3764 struct igb_adapter *adapter = netdev_priv(netdev);
3765 struct e1000_hw *hw = &adapter->hw;
3766 u32 ctrl, rctl;
3767
3768 igb_irq_disable(adapter);
3769 adapter->vlgrp = grp;
3770
3771 if (grp) {
3772 /* enable VLAN tag insert/strip */
3773 ctrl = rd32(E1000_CTRL);
3774 ctrl |= E1000_CTRL_VME;
3775 wr32(E1000_CTRL, ctrl);
3776
3777 /* enable VLAN receive filtering */
3778 rctl = rd32(E1000_RCTL);
3779 rctl |= E1000_RCTL_VFE;
3780 rctl &= ~E1000_RCTL_CFIEN;
3781 wr32(E1000_RCTL, rctl);
3782 igb_update_mng_vlan(adapter);
3783 wr32(E1000_RLPML,
3784 adapter->max_frame_size + VLAN_TAG_SIZE);
3785 } else {
3786 /* disable VLAN tag insert/strip */
3787 ctrl = rd32(E1000_CTRL);
3788 ctrl &= ~E1000_CTRL_VME;
3789 wr32(E1000_CTRL, ctrl);
3790
3791 /* disable VLAN filtering */
3792 rctl = rd32(E1000_RCTL);
3793 rctl &= ~E1000_RCTL_VFE;
3794 wr32(E1000_RCTL, rctl);
3795 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
3796 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3797 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
3798 }
3799 wr32(E1000_RLPML,
3800 adapter->max_frame_size);
3801 }
3802
3803 if (!test_bit(__IGB_DOWN, &adapter->state))
3804 igb_irq_enable(adapter);
3805}
3806
3807static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
3808{
3809 struct igb_adapter *adapter = netdev_priv(netdev);
3810 struct e1000_hw *hw = &adapter->hw;
3811 u32 vfta, index;
3812
3813 if ((adapter->hw.mng_cookie.status &
3814 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3815 (vid == adapter->mng_vlan_id))
3816 return;
3817 /* add VID to filter table */
3818 index = (vid >> 5) & 0x7F;
3819 vfta = array_rd32(E1000_VFTA, index);
3820 vfta |= (1 << (vid & 0x1F));
3821 igb_write_vfta(&adapter->hw, index, vfta);
3822}
3823
3824static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
3825{
3826 struct igb_adapter *adapter = netdev_priv(netdev);
3827 struct e1000_hw *hw = &adapter->hw;
3828 u32 vfta, index;
3829
3830 igb_irq_disable(adapter);
3831 vlan_group_set_device(adapter->vlgrp, vid, NULL);
3832
3833 if (!test_bit(__IGB_DOWN, &adapter->state))
3834 igb_irq_enable(adapter);
3835
3836 if ((adapter->hw.mng_cookie.status &
3837 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3838 (vid == adapter->mng_vlan_id)) {
3839 /* release control to f/w */
3840 igb_release_hw_control(adapter);
3841 return;
3842 }
3843
3844 /* remove VID from filter table */
3845 index = (vid >> 5) & 0x7F;
3846 vfta = array_rd32(E1000_VFTA, index);
3847 vfta &= ~(1 << (vid & 0x1F));
3848 igb_write_vfta(&adapter->hw, index, vfta);
3849}
3850
3851static void igb_restore_vlan(struct igb_adapter *adapter)
3852{
3853 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
3854
3855 if (adapter->vlgrp) {
3856 u16 vid;
3857 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
3858 if (!vlan_group_get_device(adapter->vlgrp, vid))
3859 continue;
3860 igb_vlan_rx_add_vid(adapter->netdev, vid);
3861 }
3862 }
3863}
3864
3865int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
3866{
3867 struct e1000_mac_info *mac = &adapter->hw.mac;
3868
3869 mac->autoneg = 0;
3870
3871 /* Fiber NICs only allow 1000 gbps Full duplex */
3872 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
3873 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
3874 dev_err(&adapter->pdev->dev,
3875 "Unsupported Speed/Duplex configuration\n");
3876 return -EINVAL;
3877 }
3878
3879 switch (spddplx) {
3880 case SPEED_10 + DUPLEX_HALF:
3881 mac->forced_speed_duplex = ADVERTISE_10_HALF;
3882 break;
3883 case SPEED_10 + DUPLEX_FULL:
3884 mac->forced_speed_duplex = ADVERTISE_10_FULL;
3885 break;
3886 case SPEED_100 + DUPLEX_HALF:
3887 mac->forced_speed_duplex = ADVERTISE_100_HALF;
3888 break;
3889 case SPEED_100 + DUPLEX_FULL:
3890 mac->forced_speed_duplex = ADVERTISE_100_FULL;
3891 break;
3892 case SPEED_1000 + DUPLEX_FULL:
3893 mac->autoneg = 1;
3894 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
3895 break;
3896 case SPEED_1000 + DUPLEX_HALF: /* not supported */
3897 default:
3898 dev_err(&adapter->pdev->dev,
3899 "Unsupported Speed/Duplex configuration\n");
3900 return -EINVAL;
3901 }
3902 return 0;
3903}
3904
3905
3906static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
3907{
3908 struct net_device *netdev = pci_get_drvdata(pdev);
3909 struct igb_adapter *adapter = netdev_priv(netdev);
3910 struct e1000_hw *hw = &adapter->hw;
3911 u32 ctrl, ctrl_ext, rctl, status;
3912 u32 wufc = adapter->wol;
3913#ifdef CONFIG_PM
3914 int retval = 0;
3915#endif
3916
3917 netif_device_detach(netdev);
3918
3919 if (netif_running(netdev)) {
3920 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3921 igb_down(adapter);
3922 igb_free_irq(adapter);
3923 }
3924
3925#ifdef CONFIG_PM
3926 retval = pci_save_state(pdev);
3927 if (retval)
3928 return retval;
3929#endif
3930
3931 status = rd32(E1000_STATUS);
3932 if (status & E1000_STATUS_LU)
3933 wufc &= ~E1000_WUFC_LNKC;
3934
3935 if (wufc) {
3936 igb_setup_rctl(adapter);
3937 igb_set_multi(netdev);
3938
3939 /* turn on all-multi mode if wake on multicast is enabled */
3940 if (wufc & E1000_WUFC_MC) {
3941 rctl = rd32(E1000_RCTL);
3942 rctl |= E1000_RCTL_MPE;
3943 wr32(E1000_RCTL, rctl);
3944 }
3945
3946 ctrl = rd32(E1000_CTRL);
3947 /* advertise wake from D3Cold */
3948 #define E1000_CTRL_ADVD3WUC 0x00100000
3949 /* phy power management enable */
3950 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3951 ctrl |= E1000_CTRL_ADVD3WUC;
3952 wr32(E1000_CTRL, ctrl);
3953
3954 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3955 adapter->hw.phy.media_type ==
3956 e1000_media_type_internal_serdes) {
3957 /* keep the laser running in D3 */
3958 ctrl_ext = rd32(E1000_CTRL_EXT);
3959 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3960 wr32(E1000_CTRL_EXT, ctrl_ext);
3961 }
3962
3963 /* Allow time for pending master requests to run */
3964 igb_disable_pcie_master(&adapter->hw);
3965
3966 wr32(E1000_WUC, E1000_WUC_PME_EN);
3967 wr32(E1000_WUFC, wufc);
3968 pci_enable_wake(pdev, PCI_D3hot, 1);
3969 pci_enable_wake(pdev, PCI_D3cold, 1);
3970 } else {
3971 wr32(E1000_WUC, 0);
3972 wr32(E1000_WUFC, 0);
3973 pci_enable_wake(pdev, PCI_D3hot, 0);
3974 pci_enable_wake(pdev, PCI_D3cold, 0);
3975 }
3976
Auke Kok9d5c8242008-01-24 02:22:38 -08003977 /* make sure adapter isn't asleep if manageability is enabled */
3978 if (adapter->en_mng_pt) {
3979 pci_enable_wake(pdev, PCI_D3hot, 1);
3980 pci_enable_wake(pdev, PCI_D3cold, 1);
3981 }
3982
3983 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3984 * would have already happened in close and is redundant. */
3985 igb_release_hw_control(adapter);
3986
3987 pci_disable_device(pdev);
3988
3989 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3990
3991 return 0;
3992}
3993
3994#ifdef CONFIG_PM
3995static int igb_resume(struct pci_dev *pdev)
3996{
3997 struct net_device *netdev = pci_get_drvdata(pdev);
3998 struct igb_adapter *adapter = netdev_priv(netdev);
3999 struct e1000_hw *hw = &adapter->hw;
4000 u32 err;
4001
4002 pci_set_power_state(pdev, PCI_D0);
4003 pci_restore_state(pdev);
Taku Izumi42bfd33a2008-06-20 12:10:30 +09004004
4005 if (adapter->need_ioport)
4006 err = pci_enable_device(pdev);
4007 else
4008 err = pci_enable_device_mem(pdev);
Auke Kok9d5c8242008-01-24 02:22:38 -08004009 if (err) {
4010 dev_err(&pdev->dev,
4011 "igb: Cannot enable PCI device from suspend\n");
4012 return err;
4013 }
4014 pci_set_master(pdev);
4015
4016 pci_enable_wake(pdev, PCI_D3hot, 0);
4017 pci_enable_wake(pdev, PCI_D3cold, 0);
4018
4019 if (netif_running(netdev)) {
4020 err = igb_request_irq(adapter);
4021 if (err)
4022 return err;
4023 }
4024
4025 /* e1000_power_up_phy(adapter); */
4026
4027 igb_reset(adapter);
4028 wr32(E1000_WUS, ~0);
4029
4030 igb_init_manageability(adapter);
4031
4032 if (netif_running(netdev))
4033 igb_up(adapter);
4034
4035 netif_device_attach(netdev);
4036
4037 /* let the f/w know that the h/w is now under the control of the
4038 * driver. */
4039 igb_get_hw_control(adapter);
4040
4041 return 0;
4042}
4043#endif
4044
4045static void igb_shutdown(struct pci_dev *pdev)
4046{
4047 igb_suspend(pdev, PMSG_SUSPEND);
4048}
4049
4050#ifdef CONFIG_NET_POLL_CONTROLLER
4051/*
4052 * Polling 'interrupt' - used by things like netconsole to send skbs
4053 * without having to re-enable interrupts. It's not called while
4054 * the interrupt routine is executing.
4055 */
4056static void igb_netpoll(struct net_device *netdev)
4057{
4058 struct igb_adapter *adapter = netdev_priv(netdev);
4059 int i;
4060 int work_done = 0;
4061
4062 igb_irq_disable(adapter);
4063 for (i = 0; i < adapter->num_tx_queues; i++)
4064 igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
4065
4066 for (i = 0; i < adapter->num_rx_queues; i++)
4067 igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
4068 &work_done,
4069 adapter->rx_ring[i].napi.weight);
4070
4071 igb_irq_enable(adapter);
4072}
4073#endif /* CONFIG_NET_POLL_CONTROLLER */
4074
4075/**
4076 * igb_io_error_detected - called when PCI error is detected
4077 * @pdev: Pointer to PCI device
4078 * @state: The current pci connection state
4079 *
4080 * This function is called after a PCI bus error affecting
4081 * this device has been detected.
4082 */
4083static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4084 pci_channel_state_t state)
4085{
4086 struct net_device *netdev = pci_get_drvdata(pdev);
4087 struct igb_adapter *adapter = netdev_priv(netdev);
4088
4089 netif_device_detach(netdev);
4090
4091 if (netif_running(netdev))
4092 igb_down(adapter);
4093 pci_disable_device(pdev);
4094
4095 /* Request a slot slot reset. */
4096 return PCI_ERS_RESULT_NEED_RESET;
4097}
4098
4099/**
4100 * igb_io_slot_reset - called after the pci bus has been reset.
4101 * @pdev: Pointer to PCI device
4102 *
4103 * Restart the card from scratch, as if from a cold-boot. Implementation
4104 * resembles the first-half of the igb_resume routine.
4105 */
4106static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4107{
4108 struct net_device *netdev = pci_get_drvdata(pdev);
4109 struct igb_adapter *adapter = netdev_priv(netdev);
4110 struct e1000_hw *hw = &adapter->hw;
Taku Izumi42bfd33a2008-06-20 12:10:30 +09004111 int err;
Auke Kok9d5c8242008-01-24 02:22:38 -08004112
Taku Izumi42bfd33a2008-06-20 12:10:30 +09004113 if (adapter->need_ioport)
4114 err = pci_enable_device(pdev);
4115 else
4116 err = pci_enable_device_mem(pdev);
4117 if (err) {
Auke Kok9d5c8242008-01-24 02:22:38 -08004118 dev_err(&pdev->dev,
4119 "Cannot re-enable PCI device after reset.\n");
4120 return PCI_ERS_RESULT_DISCONNECT;
4121 }
4122 pci_set_master(pdev);
Auke Kokc682fc22008-04-23 11:09:34 -07004123 pci_restore_state(pdev);
Auke Kok9d5c8242008-01-24 02:22:38 -08004124
4125 pci_enable_wake(pdev, PCI_D3hot, 0);
4126 pci_enable_wake(pdev, PCI_D3cold, 0);
4127
4128 igb_reset(adapter);
4129 wr32(E1000_WUS, ~0);
4130
4131 return PCI_ERS_RESULT_RECOVERED;
4132}
4133
4134/**
4135 * igb_io_resume - called when traffic can start flowing again.
4136 * @pdev: Pointer to PCI device
4137 *
4138 * This callback is called when the error recovery driver tells us that
4139 * its OK to resume normal operation. Implementation resembles the
4140 * second-half of the igb_resume routine.
4141 */
4142static void igb_io_resume(struct pci_dev *pdev)
4143{
4144 struct net_device *netdev = pci_get_drvdata(pdev);
4145 struct igb_adapter *adapter = netdev_priv(netdev);
4146
4147 igb_init_manageability(adapter);
4148
4149 if (netif_running(netdev)) {
4150 if (igb_up(adapter)) {
4151 dev_err(&pdev->dev, "igb_up failed after reset\n");
4152 return;
4153 }
4154 }
4155
4156 netif_device_attach(netdev);
4157
4158 /* let the f/w know that the h/w is now under the control of the
4159 * driver. */
4160 igb_get_hw_control(adapter);
4161
4162}
4163
4164/* igb_main.c */