blob: 3e5ece6e7c9517d5ec324d5b1fc672787467404a [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
Doug Thompson7d6034d2009-04-27 20:01:01 +02002#include <asm/k8.h>
Doug Thompson2bc65412009-05-04 20:11:14 +02003
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
16/* Lookup table for all possible MC control instances */
17struct amd64_pvt;
Borislav Petkov3011b202009-09-21 13:23:34 +020018static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
Doug Thompson2bc65412009-05-04 20:11:14 +020020
21/*
Borislav Petkovb70ef012009-06-25 19:32:38 +020022 * See F2x80 for K8 and F2x[1,0]80 for Fam10 and later. The table below is only
23 * for DDR2 DRAM mapping.
24 */
25u32 revf_quad_ddr2_shift[] = {
26 0, /* 0000b NULL DIMM (128mb) */
27 28, /* 0001b 256mb */
28 29, /* 0010b 512mb */
29 29, /* 0011b 512mb */
30 29, /* 0100b 512mb */
31 30, /* 0101b 1gb */
32 30, /* 0110b 1gb */
33 31, /* 0111b 2gb */
34 31, /* 1000b 2gb */
35 32, /* 1001b 4gb */
36 32, /* 1010b 4gb */
37 33, /* 1011b 8gb */
38 0, /* 1100b future */
39 0, /* 1101b future */
40 0, /* 1110b future */
41 0 /* 1111b future */
42};
43
44/*
45 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
46 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
47 * or higher value'.
48 *
49 *FIXME: Produce a better mapping/linearisation.
50 */
51
52struct scrubrate scrubrates[] = {
53 { 0x01, 1600000000UL},
54 { 0x02, 800000000UL},
55 { 0x03, 400000000UL},
56 { 0x04, 200000000UL},
57 { 0x05, 100000000UL},
58 { 0x06, 50000000UL},
59 { 0x07, 25000000UL},
60 { 0x08, 12284069UL},
61 { 0x09, 6274509UL},
62 { 0x0A, 3121951UL},
63 { 0x0B, 1560975UL},
64 { 0x0C, 781440UL},
65 { 0x0D, 390720UL},
66 { 0x0E, 195300UL},
67 { 0x0F, 97650UL},
68 { 0x10, 48854UL},
69 { 0x11, 24427UL},
70 { 0x12, 12213UL},
71 { 0x13, 6101UL},
72 { 0x14, 3051UL},
73 { 0x15, 1523UL},
74 { 0x16, 761UL},
75 { 0x00, 0UL}, /* scrubbing off */
76};
77
78/*
Doug Thompson2bc65412009-05-04 20:11:14 +020079 * Memory scrubber control interface. For K8, memory scrubbing is handled by
80 * hardware and can involve L2 cache, dcache as well as the main memory. With
81 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
82 * functionality.
83 *
84 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
85 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
86 * bytes/sec for the setting.
87 *
88 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
89 * other archs, we might not have access to the caches directly.
90 */
91
92/*
93 * scan the scrub rate mapping table for a close or matching bandwidth value to
94 * issue. If requested is too big, then use last maximum value found.
95 */
96static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
97 u32 min_scrubrate)
98{
99 u32 scrubval;
100 int i;
101
102 /*
103 * map the configured rate (new_bw) to a value specific to the AMD64
104 * memory controller and apply to register. Search for the first
105 * bandwidth entry that is greater or equal than the setting requested
106 * and program that. If at last entry, turn off DRAM scrubbing.
107 */
108 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
109 /*
110 * skip scrub rates which aren't recommended
111 * (see F10 BKDG, F3x58)
112 */
113 if (scrubrates[i].scrubval < min_scrubrate)
114 continue;
115
116 if (scrubrates[i].bandwidth <= new_bw)
117 break;
118
119 /*
120 * if no suitable bandwidth found, turn off DRAM scrubbing
121 * entirely by falling back to the last element in the
122 * scrubrates array.
123 */
124 }
125
126 scrubval = scrubrates[i].scrubval;
127 if (scrubval)
128 edac_printk(KERN_DEBUG, EDAC_MC,
129 "Setting scrub rate bandwidth: %u\n",
130 scrubrates[i].bandwidth);
131 else
132 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
133
134 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
135
136 return 0;
137}
138
139static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
140{
141 struct amd64_pvt *pvt = mci->pvt_info;
142 u32 min_scrubrate = 0x0;
143
144 switch (boot_cpu_data.x86) {
145 case 0xf:
146 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
147 break;
148 case 0x10:
149 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
150 break;
151 case 0x11:
152 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
153 break;
154
155 default:
156 amd64_printk(KERN_ERR, "Unsupported family!\n");
157 break;
158 }
159 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
160 min_scrubrate);
161}
162
163static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
164{
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 scrubval = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200167 int status = -1, i;
Doug Thompson2bc65412009-05-04 20:11:14 +0200168
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200169 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
Doug Thompson2bc65412009-05-04 20:11:14 +0200170
171 scrubval = scrubval & 0x001F;
172
173 edac_printk(KERN_DEBUG, EDAC_MC,
174 "pci-read, sdram scrub control value: %d \n", scrubval);
175
176 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
177 if (scrubrates[i].scrubval == scrubval) {
178 *bw = scrubrates[i].bandwidth;
179 status = 0;
180 break;
181 }
182 }
183
184 return status;
185}
186
Doug Thompson67757632009-04-27 15:53:22 +0200187/* Map from a CSROW entry to the mask entry that operates on it */
188static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
189{
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200190 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F)
191 return csrow;
192 else
193 return csrow >> 1;
Doug Thompson67757632009-04-27 15:53:22 +0200194}
195
196/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
197static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
198{
199 if (dct == 0)
200 return pvt->dcsb0[csrow];
201 else
202 return pvt->dcsb1[csrow];
203}
204
205/*
206 * Return the 'mask' address the i'th CS entry. This function is needed because
207 * there number of DCSM registers on Rev E and prior vs Rev F and later is
208 * different.
209 */
210static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
211{
212 if (dct == 0)
213 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
214 else
215 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
216}
217
218
219/*
220 * In *base and *limit, pass back the full 40-bit base and limit physical
221 * addresses for the node given by node_id. This information is obtained from
222 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
223 * base and limit addresses are of type SysAddr, as defined at the start of
224 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
225 * in the address range they represent.
226 */
227static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
228 u64 *base, u64 *limit)
229{
230 *base = pvt->dram_base[node_id];
231 *limit = pvt->dram_limit[node_id];
232}
233
234/*
235 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
236 * with node_id
237 */
238static int amd64_base_limit_match(struct amd64_pvt *pvt,
239 u64 sys_addr, int node_id)
240{
241 u64 base, limit, addr;
242
243 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
244
245 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
246 * all ones if the most significant implemented address bit is 1.
247 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
248 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
249 * Application Programming.
250 */
251 addr = sys_addr & 0x000000ffffffffffull;
252
253 return (addr >= base) && (addr <= limit);
254}
255
256/*
257 * Attempt to map a SysAddr to a node. On success, return a pointer to the
258 * mem_ctl_info structure for the node that the SysAddr maps to.
259 *
260 * On failure, return NULL.
261 */
262static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
263 u64 sys_addr)
264{
265 struct amd64_pvt *pvt;
266 int node_id;
267 u32 intlv_en, bits;
268
269 /*
270 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
271 * 3.4.4.2) registers to map the SysAddr to a node ID.
272 */
273 pvt = mci->pvt_info;
274
275 /*
276 * The value of this field should be the same for all DRAM Base
277 * registers. Therefore we arbitrarily choose to read it from the
278 * register for node 0.
279 */
280 intlv_en = pvt->dram_IntlvEn[0];
281
282 if (intlv_en == 0) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200283 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
Doug Thompson67757632009-04-27 15:53:22 +0200284 if (amd64_base_limit_match(pvt, sys_addr, node_id))
Borislav Petkov8edc5442009-09-18 12:39:19 +0200285 goto found;
Doug Thompson67757632009-04-27 15:53:22 +0200286 }
Borislav Petkov8edc5442009-09-18 12:39:19 +0200287 goto err_no_match;
Doug Thompson67757632009-04-27 15:53:22 +0200288 }
289
Borislav Petkov72f158f2009-09-18 12:27:27 +0200290 if (unlikely((intlv_en != 0x01) &&
291 (intlv_en != 0x03) &&
292 (intlv_en != 0x07))) {
Doug Thompson67757632009-04-27 15:53:22 +0200293 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
294 "IntlvEn field of DRAM Base Register for node 0: "
Borislav Petkov72f158f2009-09-18 12:27:27 +0200295 "this probably indicates a BIOS bug.\n", intlv_en);
Doug Thompson67757632009-04-27 15:53:22 +0200296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
Borislav Petkov8edc5442009-09-18 12:39:19 +0200302 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
Doug Thompson67757632009-04-27 15:53:22 +0200303 break; /* intlv_sel field matches */
304
305 if (++node_id >= DRAM_REG_COUNT)
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
311 amd64_printk(KERN_WARNING,
Borislav Petkov8edc5442009-09-18 12:39:19 +0200312 "%s(): sys_addr 0x%llx falls outside base/limit "
313 "address range for node %d with node interleaving "
314 "enabled.\n",
315 __func__, sys_addr, node_id);
Doug Thompson67757632009-04-27 15:53:22 +0200316 return NULL;
317 }
318
319found:
320 return edac_mc_find(node_id);
321
322err_no_match:
323 debugf2("sys_addr 0x%lx doesn't match any node\n",
324 (unsigned long)sys_addr);
325
326 return NULL;
327}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200328
329/*
330 * Extract the DRAM CS base address from selected csrow register.
331 */
332static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
333{
334 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
335 pvt->dcs_shift;
336}
337
338/*
339 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
340 */
341static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
342{
343 u64 dcsm_bits, other_bits;
344 u64 mask;
345
346 /* Extract bits from DRAM CS Mask. */
347 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
348
349 other_bits = pvt->dcsm_mask;
350 other_bits = ~(other_bits << pvt->dcs_shift);
351
352 /*
353 * The extracted bits from DCSM belong in the spaces represented by
354 * the cleared bits in other_bits.
355 */
356 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
357
358 return mask;
359}
360
361/*
362 * @input_addr is an InputAddr associated with the node given by mci. Return the
363 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
364 */
365static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
366{
367 struct amd64_pvt *pvt;
368 int csrow;
369 u64 base, mask;
370
371 pvt = mci->pvt_info;
372
373 /*
374 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
375 * base/mask register pair, test the condition shown near the start of
376 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
377 */
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200378 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompsone2ce7252009-04-27 15:57:12 +0200379
380 /* This DRAM chip select is disabled on this node */
381 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
382 continue;
383
384 base = base_from_dct_base(pvt, csrow);
385 mask = ~mask_from_dct_mask(pvt, csrow);
386
387 if ((input_addr & mask) == (base & mask)) {
388 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
389 (unsigned long)input_addr, csrow,
390 pvt->mc_node_id);
391
392 return csrow;
393 }
394 }
395
396 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
397 (unsigned long)input_addr, pvt->mc_node_id);
398
399 return -1;
400}
401
402/*
403 * Return the base value defined by the DRAM Base register for the node
404 * represented by mci. This function returns the full 40-bit value despite the
405 * fact that the register only stores bits 39-24 of the value. See section
406 * 3.4.4.1 (BKDG #26094, K8, revA-E)
407 */
408static inline u64 get_dram_base(struct mem_ctl_info *mci)
409{
410 struct amd64_pvt *pvt = mci->pvt_info;
411
412 return pvt->dram_base[pvt->mc_node_id];
413}
414
415/*
416 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
417 * for the node represented by mci. Info is passed back in *hole_base,
418 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
419 * info is invalid. Info may be invalid for either of the following reasons:
420 *
421 * - The revision of the node is not E or greater. In this case, the DRAM Hole
422 * Address Register does not exist.
423 *
424 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
425 * indicating that its contents are not valid.
426 *
427 * The values passed back in *hole_base, *hole_offset, and *hole_size are
428 * complete 32-bit values despite the fact that the bitfields in the DHAR
429 * only represent bits 31-24 of the base and offset values.
430 */
431int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
432 u64 *hole_offset, u64 *hole_size)
433{
434 struct amd64_pvt *pvt = mci->pvt_info;
435 u64 base;
436
437 /* only revE and later have the DRAM Hole Address Register */
438 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
439 debugf1(" revision %d for node %d does not support DHAR\n",
440 pvt->ext_model, pvt->mc_node_id);
441 return 1;
442 }
443
444 /* only valid for Fam10h */
445 if (boot_cpu_data.x86 == 0x10 &&
446 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
447 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
448 return 1;
449 }
450
451 if ((pvt->dhar & DHAR_VALID) == 0) {
452 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
453 pvt->mc_node_id);
454 return 1;
455 }
456
457 /* This node has Memory Hoisting */
458
459 /* +------------------+--------------------+--------------------+-----
460 * | memory | DRAM hole | relocated |
461 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
462 * | | | DRAM hole |
463 * | | | [0x100000000, |
464 * | | | (0x100000000+ |
465 * | | | (0xffffffff-x))] |
466 * +------------------+--------------------+--------------------+-----
467 *
468 * Above is a diagram of physical memory showing the DRAM hole and the
469 * relocated addresses from the DRAM hole. As shown, the DRAM hole
470 * starts at address x (the base address) and extends through address
471 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
472 * addresses in the hole so that they start at 0x100000000.
473 */
474
475 base = dhar_base(pvt->dhar);
476
477 *hole_base = base;
478 *hole_size = (0x1ull << 32) - base;
479
480 if (boot_cpu_data.x86 > 0xf)
481 *hole_offset = f10_dhar_offset(pvt->dhar);
482 else
483 *hole_offset = k8_dhar_offset(pvt->dhar);
484
485 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
486 pvt->mc_node_id, (unsigned long)*hole_base,
487 (unsigned long)*hole_offset, (unsigned long)*hole_size);
488
489 return 0;
490}
491EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
492
Doug Thompson93c2df52009-05-04 20:46:50 +0200493/*
494 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
495 * assumed that sys_addr maps to the node given by mci.
496 *
497 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
498 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
499 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
500 * then it is also involved in translating a SysAddr to a DramAddr. Sections
501 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
502 * These parts of the documentation are unclear. I interpret them as follows:
503 *
504 * When node n receives a SysAddr, it processes the SysAddr as follows:
505 *
506 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
507 * Limit registers for node n. If the SysAddr is not within the range
508 * specified by the base and limit values, then node n ignores the Sysaddr
509 * (since it does not map to node n). Otherwise continue to step 2 below.
510 *
511 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
512 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
513 * the range of relocated addresses (starting at 0x100000000) from the DRAM
514 * hole. If not, skip to step 3 below. Else get the value of the
515 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
516 * offset defined by this value from the SysAddr.
517 *
518 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
519 * Base register for node n. To obtain the DramAddr, subtract the base
520 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
521 */
522static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
523{
524 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
525 int ret = 0;
526
527 dram_base = get_dram_base(mci);
528
529 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
530 &hole_size);
531 if (!ret) {
532 if ((sys_addr >= (1ull << 32)) &&
533 (sys_addr < ((1ull << 32) + hole_size))) {
534 /* use DHAR to translate SysAddr to DramAddr */
535 dram_addr = sys_addr - hole_offset;
536
537 debugf2("using DHAR to translate SysAddr 0x%lx to "
538 "DramAddr 0x%lx\n",
539 (unsigned long)sys_addr,
540 (unsigned long)dram_addr);
541
542 return dram_addr;
543 }
544 }
545
546 /*
547 * Translate the SysAddr to a DramAddr as shown near the start of
548 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
549 * only deals with 40-bit values. Therefore we discard bits 63-40 of
550 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
551 * discard are all 1s. Otherwise the bits we discard are all 0s. See
552 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
553 * Programmer's Manual Volume 1 Application Programming.
554 */
555 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
556
557 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
558 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
559 (unsigned long)dram_addr);
560 return dram_addr;
561}
562
563/*
564 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
565 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
566 * for node interleaving.
567 */
568static int num_node_interleave_bits(unsigned intlv_en)
569{
570 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
571 int n;
572
573 BUG_ON(intlv_en > 7);
574 n = intlv_shift_table[intlv_en];
575 return n;
576}
577
578/* Translate the DramAddr given by @dram_addr to an InputAddr. */
579static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
580{
581 struct amd64_pvt *pvt;
582 int intlv_shift;
583 u64 input_addr;
584
585 pvt = mci->pvt_info;
586
587 /*
588 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
589 * concerning translating a DramAddr to an InputAddr.
590 */
591 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
592 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
593 (dram_addr & 0xfff);
594
595 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
596 intlv_shift, (unsigned long)dram_addr,
597 (unsigned long)input_addr);
598
599 return input_addr;
600}
601
602/*
603 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
604 * assumed that @sys_addr maps to the node given by mci.
605 */
606static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
607{
608 u64 input_addr;
609
610 input_addr =
611 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
612
613 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
614 (unsigned long)sys_addr, (unsigned long)input_addr);
615
616 return input_addr;
617}
618
619
620/*
621 * @input_addr is an InputAddr associated with the node represented by mci.
622 * Translate @input_addr to a DramAddr and return the result.
623 */
624static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
625{
626 struct amd64_pvt *pvt;
627 int node_id, intlv_shift;
628 u64 bits, dram_addr;
629 u32 intlv_sel;
630
631 /*
632 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
633 * shows how to translate a DramAddr to an InputAddr. Here we reverse
634 * this procedure. When translating from a DramAddr to an InputAddr, the
635 * bits used for node interleaving are discarded. Here we recover these
636 * bits from the IntlvSel field of the DRAM Limit register (section
637 * 3.4.4.2) for the node that input_addr is associated with.
638 */
639 pvt = mci->pvt_info;
640 node_id = pvt->mc_node_id;
641 BUG_ON((node_id < 0) || (node_id > 7));
642
643 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
644
645 if (intlv_shift == 0) {
646 debugf1(" InputAddr 0x%lx translates to DramAddr of "
647 "same value\n", (unsigned long)input_addr);
648
649 return input_addr;
650 }
651
652 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
653 (input_addr & 0xfff);
654
655 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
656 dram_addr = bits + (intlv_sel << 12);
657
658 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
659 "(%d node interleave bits)\n", (unsigned long)input_addr,
660 (unsigned long)dram_addr, intlv_shift);
661
662 return dram_addr;
663}
664
665/*
666 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
667 * @dram_addr to a SysAddr.
668 */
669static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
670{
671 struct amd64_pvt *pvt = mci->pvt_info;
672 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
673 int ret = 0;
674
675 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
676 &hole_size);
677 if (!ret) {
678 if ((dram_addr >= hole_base) &&
679 (dram_addr < (hole_base + hole_size))) {
680 sys_addr = dram_addr + hole_offset;
681
682 debugf1("using DHAR to translate DramAddr 0x%lx to "
683 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
684 (unsigned long)sys_addr);
685
686 return sys_addr;
687 }
688 }
689
690 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
691 sys_addr = dram_addr + base;
692
693 /*
694 * The sys_addr we have computed up to this point is a 40-bit value
695 * because the k8 deals with 40-bit values. However, the value we are
696 * supposed to return is a full 64-bit physical address. The AMD
697 * x86-64 architecture specifies that the most significant implemented
698 * address bit through bit 63 of a physical address must be either all
699 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
700 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
701 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
702 * Programming.
703 */
704 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
705
706 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
707 pvt->mc_node_id, (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
709
710 return sys_addr;
711}
712
713/*
714 * @input_addr is an InputAddr associated with the node given by mci. Translate
715 * @input_addr to a SysAddr.
716 */
717static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
718 u64 input_addr)
719{
720 return dram_addr_to_sys_addr(mci,
721 input_addr_to_dram_addr(mci, input_addr));
722}
723
724/*
725 * Find the minimum and maximum InputAddr values that map to the given @csrow.
726 * Pass back these values in *input_addr_min and *input_addr_max.
727 */
728static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
729 u64 *input_addr_min, u64 *input_addr_max)
730{
731 struct amd64_pvt *pvt;
732 u64 base, mask;
733
734 pvt = mci->pvt_info;
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200735 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
Doug Thompson93c2df52009-05-04 20:46:50 +0200736
737 base = base_from_dct_base(pvt, csrow);
738 mask = mask_from_dct_mask(pvt, csrow);
739
740 *input_addr_min = base & ~mask;
741 *input_addr_max = base | mask | pvt->dcs_mask_notused;
742}
743
744/*
745 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
746 * Address High (section 3.6.4.6) register values and return the result. Address
747 * is located in the info structure (nbeah and nbeal), the encoding is device
748 * specific.
749 */
750static u64 extract_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +0200751 struct err_regs *info)
Doug Thompson93c2df52009-05-04 20:46:50 +0200752{
753 struct amd64_pvt *pvt = mci->pvt_info;
754
755 return pvt->ops->get_error_address(mci, info);
756}
757
758
759/* Map the Error address to a PAGE and PAGE OFFSET. */
760static inline void error_address_to_page_and_offset(u64 error_address,
761 u32 *page, u32 *offset)
762{
763 *page = (u32) (error_address >> PAGE_SHIFT);
764 *offset = ((u32) error_address) & ~PAGE_MASK;
765}
766
767/*
768 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
769 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
770 * of a node that detected an ECC memory error. mci represents the node that
771 * the error address maps to (possibly different from the node that detected
772 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
773 * error.
774 */
775static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
776{
777 int csrow;
778
779 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
780
781 if (csrow == -1)
782 amd64_mc_printk(mci, KERN_ERR,
783 "Failed to translate InputAddr to csrow for "
784 "address 0x%lx\n", (unsigned long)sys_addr);
785 return csrow;
786}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200787
Doug Thompson2da11652009-04-27 16:09:09 +0200788static int get_channel_from_ecc_syndrome(unsigned short syndrome);
789
790static void amd64_cpu_display_info(struct amd64_pvt *pvt)
791{
792 if (boot_cpu_data.x86 == 0x11)
793 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
794 else if (boot_cpu_data.x86 == 0x10)
795 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
796 else if (boot_cpu_data.x86 == 0xf)
797 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
798 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
799 "Rev F or later" : "Rev E or earlier");
800 else
801 /* we'll hardly ever ever get here */
802 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
803}
804
805/*
806 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
807 * are ECC capable.
808 */
809static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
810{
811 int bit;
Borislav Petkov584fcff2009-06-10 18:29:54 +0200812 enum dev_type edac_cap = EDAC_FLAG_NONE;
Doug Thompson2da11652009-04-27 16:09:09 +0200813
814 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
815 ? 19
816 : 17;
817
Borislav Petkov584fcff2009-06-10 18:29:54 +0200818 if (pvt->dclr0 & BIT(bit))
Doug Thompson2da11652009-04-27 16:09:09 +0200819 edac_cap = EDAC_FLAG_SECDED;
820
821 return edac_cap;
822}
823
824
825static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
826 int ganged);
827
828/* Display and decode various NB registers for debug purposes. */
829static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
830{
831 int ganged;
832
833 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
834 pvt->nbcap,
835 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
836 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
837 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
838 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
839 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
840 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
841 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
842 pvt->dclr0,
843 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
844 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
845 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
846 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
847 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
848 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
849 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
850 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
851 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
852
853
854 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
855
856 if (boot_cpu_data.x86 == 0xf) {
857 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
858 pvt->dhar, dhar_base(pvt->dhar),
859 k8_dhar_offset(pvt->dhar));
860 debugf1(" DramHoleValid=%s\n",
861 (pvt->dhar & DHAR_VALID) ? "True" : "False");
862
863 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
864
865 /* everything below this point is Fam10h and above */
866 return;
867
868 } else {
869 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
870 pvt->dhar, dhar_base(pvt->dhar),
871 f10_dhar_offset(pvt->dhar));
872 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
873 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
874 "True" : "False",
875 (pvt->dhar & DHAR_VALID) ?
876 "True" : "False");
877 }
878
879 /* Only if NOT ganged does dcl1 have valid info */
880 if (!dct_ganging_enabled(pvt)) {
881 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
882 "Width=%s\n", pvt->dclr1,
883 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
884 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
885 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
886 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
887 "DIMM Type=%s\n",
888 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
889 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
890 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
891 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
892 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
893 }
894
895 /*
896 * Determine if ganged and then dump memory sizes for first controller,
897 * and if NOT ganged dump info for 2nd controller.
898 */
899 ganged = dct_ganging_enabled(pvt);
900
901 f10_debug_display_dimm_sizes(0, pvt, ganged);
902
903 if (!ganged)
904 f10_debug_display_dimm_sizes(1, pvt, ganged);
905}
906
907/* Read in both of DBAM registers */
908static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
909{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200910 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
Doug Thompson2da11652009-04-27 16:09:09 +0200911
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200912 if (boot_cpu_data.x86 >= 0x10)
913 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
Doug Thompson2da11652009-04-27 16:09:09 +0200914}
915
Doug Thompson94be4bf2009-04-27 16:12:00 +0200916/*
917 * NOTE: CPU Revision Dependent code: Rev E and Rev F
918 *
919 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
920 * set the shift factor for the DCSB and DCSM values.
921 *
922 * ->dcs_mask_notused, RevE:
923 *
924 * To find the max InputAddr for the csrow, start with the base address and set
925 * all bits that are "don't care" bits in the test at the start of section
926 * 3.5.4 (p. 84).
927 *
928 * The "don't care" bits are all set bits in the mask and all bits in the gaps
929 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
930 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
931 * gaps.
932 *
933 * ->dcs_mask_notused, RevF and later:
934 *
935 * To find the max InputAddr for the csrow, start with the base address and set
936 * all bits that are "don't care" bits in the test at the start of NPT section
937 * 4.5.4 (p. 87).
938 *
939 * The "don't care" bits are all set bits in the mask and all bits in the gaps
940 * between bit ranges [36:27] and [21:13].
941 *
942 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
943 * which are all bits in the above-mentioned gaps.
944 */
945static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
946{
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200947
948 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_F) {
949 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
950 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
951 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
952 pvt->dcs_shift = REV_E_DCS_SHIFT;
953 pvt->cs_count = 8;
954 pvt->num_dcsm = 8;
955 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200956 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
957 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
958 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
959 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
960
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200961 if (boot_cpu_data.x86 == 0x11) {
962 pvt->cs_count = 4;
963 pvt->num_dcsm = 2;
964 } else {
965 pvt->cs_count = 8;
966 pvt->num_dcsm = 4;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200967 }
Doug Thompson94be4bf2009-04-27 16:12:00 +0200968 }
969}
970
971/*
972 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
973 */
974static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
975{
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200976 int cs, reg;
Doug Thompson94be4bf2009-04-27 16:12:00 +0200977
978 amd64_set_dct_base_and_mask(pvt);
979
Borislav Petkov9d858bb2009-09-21 14:35:51 +0200980 for (cs = 0; cs < pvt->cs_count; cs++) {
Doug Thompson94be4bf2009-04-27 16:12:00 +0200981 reg = K8_DCSB0 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200982 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200983 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
984 cs, pvt->dcsb0[cs], reg);
985
986 /* If DCT are NOT ganged, then read in DCT1's base */
987 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
988 reg = F10_DCSB1 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +0200989 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
990 &pvt->dcsb1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +0200991 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
992 cs, pvt->dcsb1[cs], reg);
993 } else {
994 pvt->dcsb1[cs] = 0;
995 }
996 }
997
998 for (cs = 0; cs < pvt->num_dcsm; cs++) {
Wan Wei4afcd2d2009-07-27 14:34:15 +0200999 reg = K8_DCSM0 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001000 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001001 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1002 cs, pvt->dcsm0[cs], reg);
1003
1004 /* If DCT are NOT ganged, then read in DCT1's mask */
1005 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1006 reg = F10_DCSM1 + (cs * 4);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001007 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1008 &pvt->dcsm1[cs]))
Doug Thompson94be4bf2009-04-27 16:12:00 +02001009 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1010 cs, pvt->dcsm1[cs], reg);
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001011 } else {
Doug Thompson94be4bf2009-04-27 16:12:00 +02001012 pvt->dcsm1[cs] = 0;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001013 }
Doug Thompson94be4bf2009-04-27 16:12:00 +02001014 }
1015}
1016
1017static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1018{
1019 enum mem_type type;
1020
1021 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1022 /* Rev F and later */
1023 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1024 } else {
1025 /* Rev E and earlier */
1026 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1027 }
1028
1029 debugf1(" Memory type is: %s\n",
1030 (type == MEM_DDR2) ? "MEM_DDR2" :
1031 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1032 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1033
1034 return type;
1035}
1036
Doug Thompsonddff8762009-04-27 16:14:52 +02001037/*
1038 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1039 * and the later RevF memory controllers (DDR vs DDR2)
1040 *
1041 * Return:
1042 * number of memory channels in operation
1043 * Pass back:
1044 * contents of the DCL0_LOW register
1045 */
1046static int k8_early_channel_count(struct amd64_pvt *pvt)
1047{
1048 int flag, err = 0;
1049
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001050 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
Doug Thompsonddff8762009-04-27 16:14:52 +02001051 if (err)
1052 return err;
1053
1054 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1055 /* RevF (NPT) and later */
1056 flag = pvt->dclr0 & F10_WIDTH_128;
1057 } else {
1058 /* RevE and earlier */
1059 flag = pvt->dclr0 & REVE_WIDTH_128;
1060 }
1061
1062 /* not used */
1063 pvt->dclr1 = 0;
1064
1065 return (flag) ? 2 : 1;
1066}
1067
1068/* extract the ERROR ADDRESS for the K8 CPUs */
1069static u64 k8_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001070 struct err_regs *info)
Doug Thompsonddff8762009-04-27 16:14:52 +02001071{
1072 return (((u64) (info->nbeah & 0xff)) << 32) +
1073 (info->nbeal & ~0x03);
1074}
1075
1076/*
1077 * Read the Base and Limit registers for K8 based Memory controllers; extract
1078 * fields from the 'raw' reg into separate data fields
1079 *
1080 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1081 */
1082static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1083{
1084 u32 low;
1085 u32 off = dram << 3; /* 8 bytes between DRAM entries */
Doug Thompsonddff8762009-04-27 16:14:52 +02001086
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001087 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001088
1089 /* Extract parts into separate data entries */
Borislav Petkov49978112009-10-12 17:23:03 +02001090 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
Doug Thompsonddff8762009-04-27 16:14:52 +02001091 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1092 pvt->dram_rw_en[dram] = (low & 0x3);
1093
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001094 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
Doug Thompsonddff8762009-04-27 16:14:52 +02001095
1096 /*
1097 * Extract parts into separate data entries. Limit is the HIGHEST memory
1098 * location of the region, so lower 24 bits need to be all ones
1099 */
Borislav Petkov49978112009-10-12 17:23:03 +02001100 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
Doug Thompsonddff8762009-04-27 16:14:52 +02001101 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1102 pvt->dram_DstNode[dram] = (low & 0x7);
1103}
1104
1105static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001106 struct err_regs *info,
Doug Thompsonddff8762009-04-27 16:14:52 +02001107 u64 SystemAddress)
1108{
1109 struct mem_ctl_info *src_mci;
1110 unsigned short syndrome;
1111 int channel, csrow;
1112 u32 page, offset;
1113
1114 /* Extract the syndrome parts and form a 16-bit syndrome */
Borislav Petkovb70ef012009-06-25 19:32:38 +02001115 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1116 syndrome |= LOW_SYNDROME(info->nbsh);
Doug Thompsonddff8762009-04-27 16:14:52 +02001117
1118 /* CHIPKILL enabled */
1119 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1120 channel = get_channel_from_ecc_syndrome(syndrome);
1121 if (channel < 0) {
1122 /*
1123 * Syndrome didn't map, so we don't know which of the
1124 * 2 DIMMs is in error. So we need to ID 'both' of them
1125 * as suspect.
1126 */
1127 amd64_mc_printk(mci, KERN_WARNING,
1128 "unknown syndrome 0x%x - possible error "
1129 "reporting race\n", syndrome);
1130 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1131 return;
1132 }
1133 } else {
1134 /*
1135 * non-chipkill ecc mode
1136 *
1137 * The k8 documentation is unclear about how to determine the
1138 * channel number when using non-chipkill memory. This method
1139 * was obtained from email communication with someone at AMD.
1140 * (Wish the email was placed in this comment - norsk)
1141 */
1142 channel = ((SystemAddress & BIT(3)) != 0);
1143 }
1144
1145 /*
1146 * Find out which node the error address belongs to. This may be
1147 * different from the node that detected the error.
1148 */
1149 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
Keith Mannthey2cff18c2009-09-18 14:35:23 +02001150 if (!src_mci) {
Doug Thompsonddff8762009-04-27 16:14:52 +02001151 amd64_mc_printk(mci, KERN_ERR,
1152 "failed to map error address 0x%lx to a node\n",
1153 (unsigned long)SystemAddress);
1154 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1155 return;
1156 }
1157
1158 /* Now map the SystemAddress to a CSROW */
1159 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1160 if (csrow < 0) {
1161 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1162 } else {
1163 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1164
1165 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1166 channel, EDAC_MOD_STR);
1167 }
1168}
1169
1170/*
1171 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1172 * Address Mapping.
1173 *
1174 * First step is to calc the number of bits to shift a value of 1 left to
1175 * indicate show many pages. Start with the DBAM value as the starting bits,
1176 * then proceed to adjust those shift bits, based on CPU rev and the table.
1177 * See BKDG on the DBAM
1178 */
1179static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1180{
1181 int nr_pages;
1182
1183 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1184 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1185 } else {
1186 /*
1187 * RevE and less section; this line is tricky. It collapses the
1188 * table used by RevD and later to one that matches revisions CG
1189 * and earlier.
1190 */
1191 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1192 (dram_map > 8 ? 4 : (dram_map > 5 ?
1193 3 : (dram_map > 2 ? 1 : 0))) : 0;
1194
1195 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1196 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1197 }
1198
1199 return nr_pages;
1200}
1201
Doug Thompson1afd3c92009-04-27 16:16:50 +02001202/*
1203 * Get the number of DCT channels in use.
1204 *
1205 * Return:
1206 * number of Memory Channels in operation
1207 * Pass back:
1208 * contents of the DCL0_LOW register
1209 */
1210static int f10_early_channel_count(struct amd64_pvt *pvt)
1211{
Wan Wei57a30852009-08-07 17:04:49 +02001212 int dbams[] = { DBAM0, DBAM1 };
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001213 int i, j, channels = 0;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001214 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001215
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001216 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001217 goto err_reg;
1218
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001219 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001220 goto err_reg;
1221
1222 /* If we are in 128 bit mode, then we are using 2 channels */
1223 if (pvt->dclr0 & F10_WIDTH_128) {
1224 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1225 channels = 2;
1226 return channels;
1227 }
1228
1229 /*
1230 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1231 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1232 * will be OFF.
1233 *
1234 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1235 * their CSEnable bit on. If so, then SINGLE DIMM case.
1236 */
1237 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1238
1239 /*
1240 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1241 * is more than just one DIMM present in unganged mode. Need to check
1242 * both controllers since DIMMs can be placed in either one.
1243 */
Wan Wei57a30852009-08-07 17:04:49 +02001244 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001245 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
Doug Thompson1afd3c92009-04-27 16:16:50 +02001246 goto err_reg;
1247
Wan Wei57a30852009-08-07 17:04:49 +02001248 for (j = 0; j < 4; j++) {
1249 if (DBAM_DIMM(j, dbam) > 0) {
1250 channels++;
1251 break;
1252 }
1253 }
Doug Thompson1afd3c92009-04-27 16:16:50 +02001254 }
1255
Borislav Petkov37da0452009-06-10 17:36:57 +02001256 debugf0("MCT channel count: %d\n", channels);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001257
1258 return channels;
1259
1260err_reg:
1261 return -1;
1262
1263}
1264
1265static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1266{
1267 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1268}
1269
1270/* Enable extended configuration access via 0xCF8 feature */
1271static void amd64_setup(struct amd64_pvt *pvt)
1272{
1273 u32 reg;
1274
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001275 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001276
1277 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1278 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1279 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1280}
1281
1282/* Restore the extended configuration access via 0xCF8 feature */
1283static void amd64_teardown(struct amd64_pvt *pvt)
1284{
1285 u32 reg;
1286
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001287 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001288
1289 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1290 if (pvt->flags.cf8_extcfg)
1291 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1292 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1293}
1294
1295static u64 f10_get_error_address(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001296 struct err_regs *info)
Doug Thompson1afd3c92009-04-27 16:16:50 +02001297{
1298 return (((u64) (info->nbeah & 0xffff)) << 32) +
1299 (info->nbeal & ~0x01);
1300}
1301
1302/*
1303 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1304 * fields from the 'raw' reg into separate data fields.
1305 *
1306 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1307 */
1308static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1309{
1310 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1311
1312 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1313 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1314
1315 /* read the 'raw' DRAM BASE Address register */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001316 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001317
1318 /* Read from the ECS data register */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001319 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001320
1321 /* Extract parts into separate data entries */
1322 pvt->dram_rw_en[dram] = (low_base & 0x3);
1323
1324 if (pvt->dram_rw_en[dram] == 0)
1325 return;
1326
1327 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1328
Borislav Petkov66216a72009-09-22 16:48:37 +02001329 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001330 (((u64)low_base & 0xFFFF0000) << 8);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001331
1332 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1333 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1334
1335 /* read the 'raw' LIMIT registers */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001336 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001337
1338 /* Read from the ECS data register for the HIGH portion */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001339 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
Doug Thompson1afd3c92009-04-27 16:16:50 +02001340
1341 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1342 high_base, low_base, high_limit, low_limit);
1343
1344 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1345 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1346
1347 /*
1348 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1349 * memory location of the region, so low 24 bits need to be all ones.
1350 */
Borislav Petkov66216a72009-09-22 16:48:37 +02001351 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
Borislav Petkov49978112009-10-12 17:23:03 +02001352 (((u64) low_limit & 0xFFFF0000) << 8) |
Borislav Petkov66216a72009-09-22 16:48:37 +02001353 0x00FFFFFF;
Doug Thompson1afd3c92009-04-27 16:16:50 +02001354}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001355
1356static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1357{
Doug Thompson6163b5d2009-04-27 16:20:17 +02001358
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001359 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1360 &pvt->dram_ctl_select_low)) {
Borislav Petkov72381bd2009-10-09 19:14:43 +02001361 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1362 "High range addresses at: 0x%x\n",
1363 pvt->dram_ctl_select_low,
1364 dct_sel_baseaddr(pvt));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001365
Borislav Petkov72381bd2009-10-09 19:14:43 +02001366 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1367 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1368 (dct_dram_enabled(pvt) ? "yes" : "no"));
Doug Thompson6163b5d2009-04-27 16:20:17 +02001369
Borislav Petkov72381bd2009-10-09 19:14:43 +02001370 if (!dct_ganging_enabled(pvt))
1371 debugf0(" Address range split per DCT: %s\n",
1372 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1373
1374 debugf0(" DCT data interleave for ECC: %s, "
1375 "DRAM cleared since last warm reset: %s\n",
1376 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1377 (dct_memory_cleared(pvt) ? "yes" : "no"));
1378
1379 debugf0(" DCT channel interleave: %s, "
1380 "DCT interleave bits selector: 0x%x\n",
1381 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
Doug Thompson6163b5d2009-04-27 16:20:17 +02001382 dct_sel_interleave_addr(pvt));
1383 }
1384
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02001385 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1386 &pvt->dram_ctl_select_high);
Doug Thompson6163b5d2009-04-27 16:20:17 +02001387}
1388
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001389/*
1390 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1391 * Interleaving Modes.
1392 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001393static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1394 int hi_range_sel, u32 intlv_en)
1395{
1396 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1397
1398 if (dct_ganging_enabled(pvt))
1399 cs = 0;
1400 else if (hi_range_sel)
1401 cs = dct_sel_high;
1402 else if (dct_interleave_enabled(pvt)) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001403 /*
1404 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1405 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001406 if (dct_sel_interleave_addr(pvt) == 0)
1407 cs = sys_addr >> 6 & 1;
1408 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1409 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1410
1411 if (dct_sel_interleave_addr(pvt) & 1)
1412 cs = (sys_addr >> 9 & 1) ^ temp;
1413 else
1414 cs = (sys_addr >> 6 & 1) ^ temp;
1415 } else if (intlv_en & 4)
1416 cs = sys_addr >> 15 & 1;
1417 else if (intlv_en & 2)
1418 cs = sys_addr >> 14 & 1;
1419 else if (intlv_en & 1)
1420 cs = sys_addr >> 13 & 1;
1421 else
1422 cs = sys_addr >> 12 & 1;
1423 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1424 cs = ~dct_sel_high & 1;
1425 else
1426 cs = 0;
1427
1428 return cs;
1429}
1430
1431static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1432{
1433 if (intlv_en == 1)
1434 return 1;
1435 else if (intlv_en == 3)
1436 return 2;
1437 else if (intlv_en == 7)
1438 return 3;
1439
1440 return 0;
1441}
1442
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001443/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1444static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001445 u32 dct_sel_base_addr,
1446 u64 dct_sel_base_off,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001447 u32 hole_valid, u32 hole_off,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001448 u64 dram_base)
1449{
1450 u64 chan_off;
1451
1452 if (hi_range_sel) {
1453 if (!(dct_sel_base_addr & 0xFFFFF800) &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001454 hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001455 chan_off = hole_off << 16;
1456 else
1457 chan_off = dct_sel_base_off;
1458 } else {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001459 if (hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001460 chan_off = hole_off << 16;
1461 else
1462 chan_off = dram_base & 0xFFFFF8000000ULL;
1463 }
1464
1465 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1466 (chan_off & 0x0000FFFFFF800000ULL);
1467}
1468
1469/* Hack for the time being - Can we get this from BIOS?? */
1470#define CH0SPARE_RANK 0
1471#define CH1SPARE_RANK 1
1472
1473/*
1474 * checks if the csrow passed in is marked as SPARED, if so returns the new
1475 * spare row
1476 */
1477static inline int f10_process_possible_spare(int csrow,
1478 u32 cs, struct amd64_pvt *pvt)
1479{
1480 u32 swap_done;
1481 u32 bad_dram_cs;
1482
1483 /* Depending on channel, isolate respective SPARING info */
1484 if (cs) {
1485 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1486 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1487 if (swap_done && (csrow == bad_dram_cs))
1488 csrow = CH1SPARE_RANK;
1489 } else {
1490 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1491 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1492 if (swap_done && (csrow == bad_dram_cs))
1493 csrow = CH0SPARE_RANK;
1494 }
1495 return csrow;
1496}
1497
1498/*
1499 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1500 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1501 *
1502 * Return:
1503 * -EINVAL: NOT FOUND
1504 * 0..csrow = Chip-Select Row
1505 */
1506static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1507{
1508 struct mem_ctl_info *mci;
1509 struct amd64_pvt *pvt;
1510 u32 cs_base, cs_mask;
1511 int cs_found = -EINVAL;
1512 int csrow;
1513
1514 mci = mci_lookup[nid];
1515 if (!mci)
1516 return cs_found;
1517
1518 pvt = mci->pvt_info;
1519
1520 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1521
Borislav Petkov9d858bb2009-09-21 14:35:51 +02001522 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
Doug Thompson6163b5d2009-04-27 16:20:17 +02001523
1524 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1525 if (!(cs_base & K8_DCSB_CS_ENABLE))
1526 continue;
1527
1528 /*
1529 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1530 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1531 * of the actual address.
1532 */
1533 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1534
1535 /*
1536 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1537 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1538 */
1539 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1540
1541 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1542 csrow, cs_base, cs_mask);
1543
1544 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1545
1546 debugf1(" Final CSMask=0x%x\n", cs_mask);
1547 debugf1(" (InputAddr & ~CSMask)=0x%x "
1548 "(CSBase & ~CSMask)=0x%x\n",
1549 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1550
1551 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1552 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1553
1554 debugf1(" MATCH csrow=%d\n", cs_found);
1555 break;
1556 }
1557 }
1558 return cs_found;
1559}
1560
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001561/* For a given @dram_range, check if @sys_addr falls within it. */
1562static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1563 u64 sys_addr, int *nid, int *chan_sel)
1564{
1565 int node_id, cs_found = -EINVAL, high_range = 0;
1566 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1567 u32 hole_valid, tmp, dct_sel_base, channel;
1568 u64 dram_base, chan_addr, dct_sel_base_off;
1569
1570 dram_base = pvt->dram_base[dram_range];
1571 intlv_en = pvt->dram_IntlvEn[dram_range];
1572
1573 node_id = pvt->dram_DstNode[dram_range];
1574 intlv_sel = pvt->dram_IntlvSel[dram_range];
1575
1576 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1577 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1578
1579 /*
1580 * This assumes that one node's DHAR is the same as all the other
1581 * nodes' DHAR.
1582 */
1583 hole_off = (pvt->dhar & 0x0000FF80);
1584 hole_valid = (pvt->dhar & 0x1);
1585 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1586
1587 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1588 hole_off, hole_valid, intlv_sel);
1589
1590 if (intlv_en ||
1591 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1592 return -EINVAL;
1593
1594 dct_sel_base = dct_sel_baseaddr(pvt);
1595
1596 /*
1597 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1598 * select between DCT0 and DCT1.
1599 */
1600 if (dct_high_range_enabled(pvt) &&
1601 !dct_ganging_enabled(pvt) &&
1602 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1603 high_range = 1;
1604
1605 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1606
1607 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1608 dct_sel_base_off, hole_valid,
1609 hole_off, dram_base);
1610
1611 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1612
1613 /* remove Node ID (in case of memory interleaving) */
1614 tmp = chan_addr & 0xFC0;
1615
1616 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1617
1618 /* remove channel interleave and hash */
1619 if (dct_interleave_enabled(pvt) &&
1620 !dct_high_range_enabled(pvt) &&
1621 !dct_ganging_enabled(pvt)) {
1622 if (dct_sel_interleave_addr(pvt) != 1)
1623 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1624 else {
1625 tmp = chan_addr & 0xFC0;
1626 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1627 | tmp;
1628 }
1629 }
1630
1631 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1632 chan_addr, (u32)(chan_addr >> 8));
1633
1634 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1635
1636 if (cs_found >= 0) {
1637 *nid = node_id;
1638 *chan_sel = channel;
1639 }
1640 return cs_found;
1641}
1642
1643static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1644 int *node, int *chan_sel)
1645{
1646 int dram_range, cs_found = -EINVAL;
1647 u64 dram_base, dram_limit;
1648
1649 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1650
1651 if (!pvt->dram_rw_en[dram_range])
1652 continue;
1653
1654 dram_base = pvt->dram_base[dram_range];
1655 dram_limit = pvt->dram_limit[dram_range];
1656
1657 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1658
1659 cs_found = f10_match_to_this_node(pvt, dram_range,
1660 sys_addr, node,
1661 chan_sel);
1662 if (cs_found >= 0)
1663 break;
1664 }
1665 }
1666 return cs_found;
1667}
1668
1669/*
1670 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1671 * CSROW, Channel.
1672 *
1673 * The @sys_addr is usually an error address received from the hardware.
1674 */
1675static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02001676 struct err_regs *info,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001677 u64 sys_addr)
1678{
1679 struct amd64_pvt *pvt = mci->pvt_info;
1680 u32 page, offset;
1681 unsigned short syndrome;
1682 int nid, csrow, chan = 0;
1683
1684 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1685
1686 if (csrow >= 0) {
1687 error_address_to_page_and_offset(sys_addr, &page, &offset);
1688
Borislav Petkovb70ef012009-06-25 19:32:38 +02001689 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1690 syndrome |= LOW_SYNDROME(info->nbsh);
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001691
1692 /*
1693 * Is CHIPKILL on? If so, then we can attempt to use the
1694 * syndrome to isolate which channel the error was on.
1695 */
1696 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1697 chan = get_channel_from_ecc_syndrome(syndrome);
1698
1699 if (chan >= 0) {
1700 edac_mc_handle_ce(mci, page, offset, syndrome,
1701 csrow, chan, EDAC_MOD_STR);
1702 } else {
1703 /*
1704 * Channel unknown, report all channels on this
1705 * CSROW as failed.
1706 */
1707 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1708 chan++) {
1709 edac_mc_handle_ce(mci, page, offset,
1710 syndrome,
1711 csrow, chan,
1712 EDAC_MOD_STR);
1713 }
1714 }
1715
1716 } else {
1717 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1718 }
1719}
1720
1721/*
1722 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1723 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1724 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1725 *
1726 * Normalize to 128MB by subracting 27 bit shift.
1727 */
1728static int map_dbam_to_csrow_size(int index)
1729{
1730 int mega_bytes = 0;
1731
1732 if (index > 0 && index <= DBAM_MAX_VALUE)
1733 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1734
1735 return mega_bytes;
1736}
1737
1738/*
1739 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1740 * CSROWs as well
1741 */
1742static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1743 int ganged)
1744{
1745 int dimm, size0, size1;
1746 u32 dbam;
1747 u32 *dcsb;
1748
1749 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
1750 ctrl ? pvt->dbam1 : pvt->dbam0,
1751 ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1752
1753 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1754 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1755
1756 /* Dump memory sizes for DIMM and its CSROWs */
1757 for (dimm = 0; dimm < 4; dimm++) {
1758
1759 size0 = 0;
1760 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1761 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1762
1763 size1 = 0;
1764 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1765 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1766
1767 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1768 "CSROW-%d=%5dMB\n",
1769 ctrl,
1770 dimm,
1771 size0 + size1,
1772 dimm * 2,
1773 size0,
1774 dimm * 2 + 1,
1775 size1);
1776 }
1777}
1778
1779/*
1780 * Very early hardware probe on pci_probe thread to determine if this module
1781 * supports the hardware.
1782 *
1783 * Return:
1784 * 0 for OK
1785 * 1 for error
1786 */
1787static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1788{
1789 int ret = 0;
1790
1791 /*
1792 * If we are on a DDR3 machine, we don't know yet if
1793 * we support that properly at this time
1794 */
1795 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1796 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1797
1798 amd64_printk(KERN_WARNING,
1799 "%s() This machine is running with DDR3 memory. "
1800 "This is not currently supported. "
1801 "DCHR0=0x%x DCHR1=0x%x\n",
1802 __func__, pvt->dchr0, pvt->dchr1);
1803
1804 amd64_printk(KERN_WARNING,
1805 " Contact '%s' module MAINTAINER to help add"
1806 " support.\n",
1807 EDAC_MOD_STR);
1808
1809 ret = 1;
1810
1811 }
1812 return ret;
1813}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001814
Doug Thompson4d376072009-04-27 16:25:05 +02001815/*
1816 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1817 * (as per PCI DEVICE_IDs):
1818 *
1819 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1820 * DEVICE ID, even though there is differences between the different Revisions
1821 * (CG,D,E,F).
1822 *
1823 * Family F10h and F11h.
1824 *
1825 */
1826static struct amd64_family_type amd64_family_types[] = {
1827 [K8_CPUS] = {
1828 .ctl_name = "RevF",
1829 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1830 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1831 .ops = {
1832 .early_channel_count = k8_early_channel_count,
1833 .get_error_address = k8_get_error_address,
1834 .read_dram_base_limit = k8_read_dram_base_limit,
1835 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1836 .dbam_map_to_pages = k8_dbam_map_to_pages,
1837 }
1838 },
1839 [F10_CPUS] = {
1840 .ctl_name = "Family 10h",
1841 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1842 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1843 .ops = {
1844 .probe_valid_hardware = f10_probe_valid_hardware,
1845 .early_channel_count = f10_early_channel_count,
1846 .get_error_address = f10_get_error_address,
1847 .read_dram_base_limit = f10_read_dram_base_limit,
1848 .read_dram_ctl_register = f10_read_dram_ctl_register,
1849 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1850 .dbam_map_to_pages = f10_dbam_map_to_pages,
1851 }
1852 },
1853 [F11_CPUS] = {
1854 .ctl_name = "Family 11h",
1855 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1856 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1857 .ops = {
1858 .probe_valid_hardware = f10_probe_valid_hardware,
1859 .early_channel_count = f10_early_channel_count,
1860 .get_error_address = f10_get_error_address,
1861 .read_dram_base_limit = f10_read_dram_base_limit,
1862 .read_dram_ctl_register = f10_read_dram_ctl_register,
1863 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1864 .dbam_map_to_pages = f10_dbam_map_to_pages,
1865 }
1866 },
1867};
1868
1869static struct pci_dev *pci_get_related_function(unsigned int vendor,
1870 unsigned int device,
1871 struct pci_dev *related)
1872{
1873 struct pci_dev *dev = NULL;
1874
1875 dev = pci_get_device(vendor, device, dev);
1876 while (dev) {
1877 if ((dev->bus->number == related->bus->number) &&
1878 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1879 break;
1880 dev = pci_get_device(vendor, device, dev);
1881 }
1882
1883 return dev;
1884}
1885
Doug Thompsonb1289d62009-04-27 16:37:05 +02001886/*
1887 * syndrome mapping table for ECC ChipKill devices
1888 *
1889 * The comment in each row is the token (nibble) number that is in error.
1890 * The least significant nibble of the syndrome is the mask for the bits
1891 * that are in error (need to be toggled) for the particular nibble.
1892 *
1893 * Each row contains 16 entries.
1894 * The first entry (0th) is the channel number for that row of syndromes.
1895 * The remaining 15 entries are the syndromes for the respective Error
1896 * bit mask index.
1897 *
1898 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1899 * bit in error.
1900 * The 2nd index entry is 0x0010 that the second bit is damaged.
1901 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1902 * are damaged.
1903 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1904 * indicating that all 4 bits are damaged.
1905 *
1906 * A search is performed on this table looking for a given syndrome.
1907 *
1908 * See the AMD documentation for ECC syndromes. This ECC table is valid
1909 * across all the versions of the AMD64 processors.
1910 *
1911 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1912 * COLUMN index, then search all ROWS of that column, looking for a match
1913 * with the input syndrome. The ROW value will be the token number.
1914 *
1915 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1916 * error.
1917 */
1918#define NUMBER_ECC_ROWS 36
1919static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1920 /* Channel 0 syndromes */
1921 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1922 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1923 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1924 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1925 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1926 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1927 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1928 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1929 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1930 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1931 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1932 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1933 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1934 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1935 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1936 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1937 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1938 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1939 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1940 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1941 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1942 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1943 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1944 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1945 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1946 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1947 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1948 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1949 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1950 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1951 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1952 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
Doug Thompson4d376072009-04-27 16:25:05 +02001953
Doug Thompsonb1289d62009-04-27 16:37:05 +02001954 /* Channel 1 syndromes */
1955 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1956 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1957 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1958 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
1959 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
1960 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
1961 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
1962 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
1963 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
1964 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
1965 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
1966 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
1967 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
1968 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
1969 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
1970 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
1971 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
1972 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
1973 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
1974 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
1975 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
1976 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
1977 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
1978 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
1979 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
1980 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
1981 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
1982 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
1983 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
1984 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
1985 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
1986 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
1987
1988 /* ECC bits are also in the set of tokens and they too can go bad
1989 * first 2 cover channel 0, while the second 2 cover channel 1
1990 */
1991 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
1992 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
1993 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
1994 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
1995 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
1996 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
1997 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
1998 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
1999};
2000
2001/*
2002 * Given the syndrome argument, scan each of the channel tables for a syndrome
2003 * match. Depending on which table it is found, return the channel number.
2004 */
2005static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2006{
2007 int row;
2008 int column;
2009
2010 /* Determine column to scan */
2011 column = syndrome & 0xF;
2012
2013 /* Scan all rows, looking for syndrome, or end of table */
2014 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2015 if (ecc_chipkill_syndromes[row][column] == syndrome)
2016 return ecc_chipkill_syndromes[row][0];
2017 }
2018
2019 debugf0("syndrome(%x) not found\n", syndrome);
2020 return -1;
2021}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002022
2023/*
2024 * Check for valid error in the NB Status High register. If so, proceed to read
2025 * NB Status Low, NB Address Low and NB Address High registers and store data
2026 * into error structure.
2027 *
2028 * Returns:
2029 * - 1: if hardware regs contains valid error info
2030 * - 0: if no valid error is indicated
2031 */
2032static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002033 struct err_regs *regs)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002034{
2035 struct amd64_pvt *pvt;
2036 struct pci_dev *misc_f3_ctl;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002037
2038 pvt = mci->pvt_info;
2039 misc_f3_ctl = pvt->misc_f3_ctl;
2040
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002041 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
2042 return 0;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002043
2044 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2045 return 0;
2046
2047 /* valid error, read remaining error information registers */
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002048 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
2049 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
2050 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
2051 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2052 return 0;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002053
2054 return 1;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002055}
2056
2057/*
2058 * This function is called to retrieve the error data from hardware and store it
2059 * in the info structure.
2060 *
2061 * Returns:
2062 * - 1: if a valid error is found
2063 * - 0: if no error is found
2064 */
2065static int amd64_get_error_info(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002066 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002067{
2068 struct amd64_pvt *pvt;
Borislav Petkovef44cc42009-07-23 14:45:48 +02002069 struct err_regs regs;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002070
2071 pvt = mci->pvt_info;
2072
2073 if (!amd64_get_error_info_regs(mci, info))
2074 return 0;
2075
2076 /*
2077 * Here's the problem with the K8's EDAC reporting: There are four
2078 * registers which report pieces of error information. They are shared
2079 * between CEs and UEs. Furthermore, contrary to what is stated in the
2080 * BKDG, the overflow bit is never used! Every error always updates the
2081 * reporting registers.
2082 *
2083 * Can you see the race condition? All four error reporting registers
2084 * must be read before a new error updates them! There is no way to read
2085 * all four registers atomically. The best than can be done is to detect
2086 * that a race has occured and then report the error without any kind of
2087 * precision.
2088 *
2089 * What is still positive is that errors are still reported and thus
2090 * problems can still be detected - just not localized because the
2091 * syndrome and address are spread out across registers.
2092 *
2093 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2094 * UEs and CEs should have separate register sets with proper overflow
2095 * bits that are used! At very least the problem can be fixed by
2096 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2097 * set the overflow bit - unless the current error is CE and the new
2098 * error is UE which would be the only situation for overwriting the
2099 * current values.
2100 */
2101
2102 regs = *info;
2103
2104 /* Use info from the second read - most current */
2105 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2106 return 0;
2107
2108 /* clear the error bits in hardware */
2109 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2110
2111 /* Check for the possible race condition */
2112 if ((regs.nbsh != info->nbsh) ||
2113 (regs.nbsl != info->nbsl) ||
2114 (regs.nbeah != info->nbeah) ||
2115 (regs.nbeal != info->nbeal)) {
2116 amd64_mc_printk(mci, KERN_WARNING,
2117 "hardware STATUS read access race condition "
2118 "detected!\n");
2119 return 0;
2120 }
2121 return 1;
2122}
2123
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002124/*
2125 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2126 * ADDRESS and process.
2127 */
2128static void amd64_handle_ce(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002129 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002130{
2131 struct amd64_pvt *pvt = mci->pvt_info;
2132 u64 SystemAddress;
2133
2134 /* Ensure that the Error Address is VALID */
2135 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2136 amd64_mc_printk(mci, KERN_ERR,
2137 "HW has no ERROR_ADDRESS available\n");
2138 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2139 return;
2140 }
2141
2142 SystemAddress = extract_error_address(mci, info);
2143
2144 amd64_mc_printk(mci, KERN_ERR,
2145 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2146
2147 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2148}
2149
2150/* Handle any Un-correctable Errors (UEs) */
2151static void amd64_handle_ue(struct mem_ctl_info *mci,
Borislav Petkovef44cc42009-07-23 14:45:48 +02002152 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002153{
2154 int csrow;
2155 u64 SystemAddress;
2156 u32 page, offset;
2157 struct mem_ctl_info *log_mci, *src_mci = NULL;
2158
2159 log_mci = mci;
2160
2161 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2162 amd64_mc_printk(mci, KERN_CRIT,
2163 "HW has no ERROR_ADDRESS available\n");
2164 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2165 return;
2166 }
2167
2168 SystemAddress = extract_error_address(mci, info);
2169
2170 /*
2171 * Find out which node the error address belongs to. This may be
2172 * different from the node that detected the error.
2173 */
2174 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2175 if (!src_mci) {
2176 amd64_mc_printk(mci, KERN_CRIT,
2177 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2178 (unsigned long)SystemAddress);
2179 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2180 return;
2181 }
2182
2183 log_mci = src_mci;
2184
2185 csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2186 if (csrow < 0) {
2187 amd64_mc_printk(mci, KERN_CRIT,
2188 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2189 (unsigned long)SystemAddress);
2190 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2191 } else {
2192 error_address_to_page_and_offset(SystemAddress, &page, &offset);
2193 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2194 }
2195}
2196
Borislav Petkov549d0422009-07-24 13:51:42 +02002197static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002198 struct err_regs *info)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002199{
Borislav Petkovb70ef012009-06-25 19:32:38 +02002200 u32 ec = ERROR_CODE(info->nbsl);
2201 u32 xec = EXT_ERROR_CODE(info->nbsl);
Borislav Petkov17adea02009-11-04 14:04:06 +01002202 int ecc_type = (info->nbsh >> 13) & 0x3;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002203
Borislav Petkovb70ef012009-06-25 19:32:38 +02002204 /* Bail early out if this was an 'observed' error */
2205 if (PP(ec) == K8_NBSL_PP_OBS)
2206 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002207
Borislav Petkovecaf5602009-07-23 16:32:01 +02002208 /* Do only ECC errors */
2209 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002210 return;
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002211
Borislav Petkovecaf5602009-07-23 16:32:01 +02002212 if (ecc_type == 2)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002213 amd64_handle_ce(mci, info);
Borislav Petkovecaf5602009-07-23 16:32:01 +02002214 else if (ecc_type == 1)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002215 amd64_handle_ue(mci, info);
2216
2217 /*
2218 * If main error is CE then overflow must be CE. If main error is UE
2219 * then overflow is unknown. We'll call the overflow a CE - if
2220 * panic_on_ue is set then we're already panic'ed and won't arrive
2221 * here. Else, then apparently someone doesn't think that UE's are
2222 * catastrophic.
2223 */
2224 if (info->nbsh & K8_NBSH_OVERFLOW)
Borislav Petkovecaf5602009-07-23 16:32:01 +02002225 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002226}
2227
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002228void amd64_decode_bus_error(int node_id, struct err_regs *regs)
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002229{
Borislav Petkov549d0422009-07-24 13:51:42 +02002230 struct mem_ctl_info *mci = mci_lookup[node_id];
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002231
Borislav Petkovb69b29d2009-07-27 16:21:14 +02002232 __amd64_decode_bus_error(mci, regs);
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002233
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002234 /*
2235 * Check the UE bit of the NB status high register, if set generate some
2236 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2237 * If it was a GART error, skip that process.
Borislav Petkov549d0422009-07-24 13:51:42 +02002238 *
2239 * FIXME: this should go somewhere else, if at all.
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002240 */
Borislav Petkov5110dbd2009-06-25 19:51:04 +02002241 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2242 edac_mc_handle_ue_no_info(mci, "UE bit is set");
Borislav Petkov549d0422009-07-24 13:51:42 +02002243
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002244}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002245
Doug Thompson0ec449e2009-04-27 19:41:25 +02002246/*
2247 * The main polling 'check' function, called FROM the edac core to perform the
2248 * error checking and if an error is encountered, error processing.
2249 */
2250static void amd64_check(struct mem_ctl_info *mci)
2251{
Borislav Petkovef44cc42009-07-23 14:45:48 +02002252 struct err_regs regs;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002253
Borislav Petkov549d0422009-07-24 13:51:42 +02002254 if (amd64_get_error_info(mci, &regs)) {
2255 struct amd64_pvt *pvt = mci->pvt_info;
2256 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2257 }
Doug Thompson0ec449e2009-04-27 19:41:25 +02002258}
2259
2260/*
2261 * Input:
2262 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2263 * 2) AMD Family index value
2264 *
2265 * Ouput:
2266 * Upon return of 0, the following filled in:
2267 *
2268 * struct pvt->addr_f1_ctl
2269 * struct pvt->misc_f3_ctl
2270 *
2271 * Filled in with related device funcitions of 'dram_f2_ctl'
2272 * These devices are "reserved" via the pci_get_device()
2273 *
2274 * Upon return of 1 (error status):
2275 *
2276 * Nothing reserved
2277 */
2278static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2279{
2280 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2281
2282 /* Reserve the ADDRESS MAP Device */
2283 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2284 amd64_dev->addr_f1_ctl,
2285 pvt->dram_f2_ctl);
2286
2287 if (!pvt->addr_f1_ctl) {
2288 amd64_printk(KERN_ERR, "error address map device not found: "
2289 "vendor %x device 0x%x (broken BIOS?)\n",
2290 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2291 return 1;
2292 }
2293
2294 /* Reserve the MISC Device */
2295 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2296 amd64_dev->misc_f3_ctl,
2297 pvt->dram_f2_ctl);
2298
2299 if (!pvt->misc_f3_ctl) {
2300 pci_dev_put(pvt->addr_f1_ctl);
2301 pvt->addr_f1_ctl = NULL;
2302
2303 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2304 "vendor %x device 0x%x (broken BIOS?)\n",
2305 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2306 return 1;
2307 }
2308
2309 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2310 pci_name(pvt->addr_f1_ctl));
2311 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2312 pci_name(pvt->dram_f2_ctl));
2313 debugf1(" Misc device PCI Bus ID:\t%s\n",
2314 pci_name(pvt->misc_f3_ctl));
2315
2316 return 0;
2317}
2318
2319static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2320{
2321 pci_dev_put(pvt->addr_f1_ctl);
2322 pci_dev_put(pvt->misc_f3_ctl);
2323}
2324
2325/*
2326 * Retrieve the hardware registers of the memory controller (this includes the
2327 * 'Address Map' and 'Misc' device regs)
2328 */
2329static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2330{
2331 u64 msr_val;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002332 int dram;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002333
2334 /*
2335 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2336 * those are Read-As-Zero
2337 */
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002338 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2339 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002340
2341 /* check first whether TOP_MEM2 is enabled */
2342 rdmsrl(MSR_K8_SYSCFG, msr_val);
2343 if (msr_val & (1U << 21)) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002344 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2345 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002346 } else
2347 debugf0(" TOP_MEM2 disabled.\n");
2348
2349 amd64_cpu_display_info(pvt);
2350
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002351 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002352
2353 if (pvt->ops->read_dram_ctl_register)
2354 pvt->ops->read_dram_ctl_register(pvt);
2355
2356 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2357 /*
2358 * Call CPU specific READ function to get the DRAM Base and
2359 * Limit values from the DCT.
2360 */
2361 pvt->ops->read_dram_base_limit(pvt, dram);
2362
2363 /*
2364 * Only print out debug info on rows with both R and W Enabled.
2365 * Normal processing, compiler should optimize this whole 'if'
2366 * debug output block away.
2367 */
2368 if (pvt->dram_rw_en[dram] != 0) {
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002369 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2370 "DRAM-LIMIT: 0x%016llx\n",
Doug Thompson0ec449e2009-04-27 19:41:25 +02002371 dram,
Borislav Petkove97f8bb2009-10-12 15:27:45 +02002372 pvt->dram_base[dram],
2373 pvt->dram_limit[dram]);
2374
Doug Thompson0ec449e2009-04-27 19:41:25 +02002375 debugf1(" IntlvEn=%s %s %s "
2376 "IntlvSel=%d DstNode=%d\n",
2377 pvt->dram_IntlvEn[dram] ?
2378 "Enabled" : "Disabled",
2379 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2380 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2381 pvt->dram_IntlvSel[dram],
2382 pvt->dram_DstNode[dram]);
2383 }
2384 }
2385
2386 amd64_read_dct_base_mask(pvt);
2387
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002388 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002389 amd64_read_dbam_reg(pvt);
2390
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002391 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2392 F10_ONLINE_SPARE, &pvt->online_spare);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002393
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002394 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2395 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002396
2397 if (!dct_ganging_enabled(pvt)) {
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002398 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2399 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002400 }
Doug Thompson0ec449e2009-04-27 19:41:25 +02002401 amd64_dump_misc_regs(pvt);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002402}
2403
2404/*
2405 * NOTE: CPU Revision Dependent code
2406 *
2407 * Input:
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002408 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
Doug Thompson0ec449e2009-04-27 19:41:25 +02002409 * k8 private pointer to -->
2410 * DRAM Bank Address mapping register
2411 * node_id
2412 * DCL register where dual_channel_active is
2413 *
2414 * The DBAM register consists of 4 sets of 4 bits each definitions:
2415 *
2416 * Bits: CSROWs
2417 * 0-3 CSROWs 0 and 1
2418 * 4-7 CSROWs 2 and 3
2419 * 8-11 CSROWs 4 and 5
2420 * 12-15 CSROWs 6 and 7
2421 *
2422 * Values range from: 0 to 15
2423 * The meaning of the values depends on CPU revision and dual-channel state,
2424 * see relevant BKDG more info.
2425 *
2426 * The memory controller provides for total of only 8 CSROWs in its current
2427 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2428 * single channel or two (2) DIMMs in dual channel mode.
2429 *
2430 * The following code logic collapses the various tables for CSROW based on CPU
2431 * revision.
2432 *
2433 * Returns:
2434 * The number of PAGE_SIZE pages on the specified CSROW number it
2435 * encompasses
2436 *
2437 */
2438static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2439{
2440 u32 dram_map, nr_pages;
2441
2442 /*
2443 * The math on this doesn't look right on the surface because x/2*4 can
2444 * be simplified to x*2 but this expression makes use of the fact that
2445 * it is integral math where 1/2=0. This intermediate value becomes the
2446 * number of bits to shift the DBAM register to extract the proper CSROW
2447 * field.
2448 */
2449 dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2450
2451 nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2452
2453 /*
2454 * If dual channel then double the memory size of single channel.
2455 * Channel count is 1 or 2
2456 */
2457 nr_pages <<= (pvt->channel_count - 1);
2458
2459 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2460 debugf0(" nr_pages= %u channel-count = %d\n",
2461 nr_pages, pvt->channel_count);
2462
2463 return nr_pages;
2464}
2465
2466/*
2467 * Initialize the array of csrow attribute instances, based on the values
2468 * from pci config hardware registers.
2469 */
2470static int amd64_init_csrows(struct mem_ctl_info *mci)
2471{
2472 struct csrow_info *csrow;
2473 struct amd64_pvt *pvt;
2474 u64 input_addr_min, input_addr_max, sys_addr;
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002475 int i, empty = 1;
Doug Thompson0ec449e2009-04-27 19:41:25 +02002476
2477 pvt = mci->pvt_info;
2478
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002479 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
Doug Thompson0ec449e2009-04-27 19:41:25 +02002480
2481 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2482 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2483 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2484 );
2485
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002486 for (i = 0; i < pvt->cs_count; i++) {
Doug Thompson0ec449e2009-04-27 19:41:25 +02002487 csrow = &mci->csrows[i];
2488
2489 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2490 debugf1("----CSROW %d EMPTY for node %d\n", i,
2491 pvt->mc_node_id);
2492 continue;
2493 }
2494
2495 debugf1("----CSROW %d VALID for MC node %d\n",
2496 i, pvt->mc_node_id);
2497
2498 empty = 0;
2499 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2500 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2501 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2502 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2503 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2504 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2505 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2506 /* 8 bytes of resolution */
2507
2508 csrow->mtype = amd64_determine_memory_type(pvt);
2509
2510 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2511 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2512 (unsigned long)input_addr_min,
2513 (unsigned long)input_addr_max);
2514 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2515 (unsigned long)sys_addr, csrow->page_mask);
2516 debugf1(" nr_pages: %u first_page: 0x%lx "
2517 "last_page: 0x%lx\n",
2518 (unsigned)csrow->nr_pages,
2519 csrow->first_page, csrow->last_page);
2520
2521 /*
2522 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2523 */
2524 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2525 csrow->edac_mode =
2526 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2527 EDAC_S4ECD4ED : EDAC_SECDED;
2528 else
2529 csrow->edac_mode = EDAC_NONE;
2530 }
2531
2532 return empty;
2533}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002534
Borislav Petkov06724532009-09-16 13:05:46 +02002535/* get all cores on this DCT */
Rusty Russellba578cb2009-11-03 14:56:35 +10302536static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002537{
Borislav Petkov06724532009-09-16 13:05:46 +02002538 int cpu;
Doug Thompsonf9431992009-04-27 19:46:08 +02002539
Borislav Petkov06724532009-09-16 13:05:46 +02002540 for_each_online_cpu(cpu)
2541 if (amd_get_nb_id(cpu) == nid)
2542 cpumask_set_cpu(cpu, mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002543}
2544
2545/* check MCG_CTL on all the cpus on this node */
Borislav Petkov06724532009-09-16 13:05:46 +02002546static bool amd64_nb_mce_bank_enabled_on_node(int nid)
Doug Thompsonf9431992009-04-27 19:46:08 +02002547{
Rusty Russellba578cb2009-11-03 14:56:35 +10302548 cpumask_var_t mask;
Borislav Petkov06724532009-09-16 13:05:46 +02002549 struct msr *msrs;
2550 int cpu, nbe, idx = 0;
2551 bool ret = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002552
Rusty Russellba578cb2009-11-03 14:56:35 +10302553 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2554 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2555 __func__);
2556 return false;
2557 }
Borislav Petkov06724532009-09-16 13:05:46 +02002558
Rusty Russellba578cb2009-11-03 14:56:35 +10302559 get_cpus_on_this_dct_cpumask(mask, nid);
Borislav Petkov06724532009-09-16 13:05:46 +02002560
Rusty Russellba578cb2009-11-03 14:56:35 +10302561 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
Borislav Petkov06724532009-09-16 13:05:46 +02002562 if (!msrs) {
2563 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2564 __func__);
Rusty Russellba578cb2009-11-03 14:56:35 +10302565 free_cpumask_var(mask);
Borislav Petkov06724532009-09-16 13:05:46 +02002566 return false;
2567 }
2568
Rusty Russellba578cb2009-11-03 14:56:35 +10302569 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
Borislav Petkov06724532009-09-16 13:05:46 +02002570
Rusty Russellba578cb2009-11-03 14:56:35 +10302571 for_each_cpu(cpu, mask) {
Borislav Petkov06724532009-09-16 13:05:46 +02002572 nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2573
2574 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2575 cpu, msrs[idx].q,
2576 (nbe ? "enabled" : "disabled"));
2577
2578 if (!nbe)
2579 goto out;
2580
2581 idx++;
2582 }
2583 ret = true;
2584
2585out:
2586 kfree(msrs);
Rusty Russellba578cb2009-11-03 14:56:35 +10302587 free_cpumask_var(mask);
Doug Thompsonf9431992009-04-27 19:46:08 +02002588 return ret;
2589}
2590
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002591static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2592{
2593 cpumask_var_t cmask;
2594 struct msr *msrs = NULL;
2595 int cpu, idx = 0;
2596
2597 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2598 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2599 __func__);
2600 return false;
2601 }
2602
2603 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2604
2605 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
2606 if (!msrs) {
2607 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2608 __func__);
2609 return -ENOMEM;
2610 }
2611
2612 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2613
2614 for_each_cpu(cpu, cmask) {
2615
2616 if (on) {
2617 if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2618 pvt->flags.ecc_report = 1;
2619
2620 msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2621 } else {
2622 /*
2623 * Turn off ECC reporting only when it was off before
2624 */
2625 if (!pvt->flags.ecc_report)
2626 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2627 }
2628 idx++;
2629 }
2630 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2631
2632 kfree(msrs);
2633 free_cpumask_var(cmask);
2634
2635 return 0;
2636}
2637
2638/*
2639 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2640 * enable it.
2641 */
2642static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2643{
2644 struct amd64_pvt *pvt = mci->pvt_info;
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002645 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2646
2647 if (!ecc_enable_override)
2648 return;
2649
2650 amd64_printk(KERN_WARNING,
2651 "'ecc_enable_override' parameter is active, "
2652 "Enabling AMD ECC hardware now: CAUTION\n");
2653
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002654 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002655
2656 /* turn on UECCn and CECCEn bits */
2657 pvt->old_nbctl = value & mask;
2658 pvt->nbctl_mcgctl_saved = 1;
2659
2660 value |= mask;
2661 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2662
2663 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2664 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2665 "MCGCTL!\n");
2666
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002667 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002668
2669 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2670 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2671 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2672
2673 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2674 amd64_printk(KERN_WARNING,
2675 "This node reports that DRAM ECC is "
2676 "currently Disabled; ENABLING now\n");
2677
2678 /* Attempt to turn on DRAM ECC Enable */
2679 value |= K8_NBCFG_ECC_ENABLE;
2680 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2681
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002682 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002683
2684 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2685 amd64_printk(KERN_WARNING,
2686 "Hardware rejects Enabling DRAM ECC checking\n"
2687 "Check memory DIMM configuration\n");
2688 } else {
2689 amd64_printk(KERN_DEBUG,
2690 "Hardware accepted DRAM ECC Enable\n");
2691 }
2692 }
2693 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2694 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2695 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2696
2697 pvt->ctl_error_info.nbcfg = value;
2698}
2699
2700static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2701{
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002702 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2703
2704 if (!pvt->nbctl_mcgctl_saved)
2705 return;
2706
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002707 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
Borislav Petkovf6d6ae92009-11-03 15:29:26 +01002708 value &= ~mask;
2709 value |= pvt->old_nbctl;
2710
2711 /* restore the NB Enable MCGCTL bit */
2712 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2713
2714 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2715 amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
2716 "MCGCTL!\n");
2717}
2718
Doug Thompsonf9431992009-04-27 19:46:08 +02002719/*
2720 * EDAC requires that the BIOS have ECC enabled before taking over the
2721 * processing of ECC errors. This is because the BIOS can properly initialize
2722 * the memory system completely. A command line option allows to force-enable
2723 * hardware ECC later in amd64_enable_ecc_error_reporting().
2724 */
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002725static const char *ecc_warning =
2726 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2727 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2728 " Also, use of the override can cause unknown side effects.\n";
2729
Doug Thompsonf9431992009-04-27 19:46:08 +02002730static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2731{
2732 u32 value;
Borislav Petkov06724532009-09-16 13:05:46 +02002733 u8 ecc_enabled = 0;
2734 bool nb_mce_en = false;
Doug Thompsonf9431992009-04-27 19:46:08 +02002735
Borislav Petkov6ba5dcd2009-10-13 19:26:55 +02002736 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
Doug Thompsonf9431992009-04-27 19:46:08 +02002737
2738 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002739 if (!ecc_enabled)
2740 amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2741 "is currently disabled, set F3x%x[22] (%s).\n",
2742 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2743 else
2744 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
Doug Thompsonf9431992009-04-27 19:46:08 +02002745
Borislav Petkov06724532009-09-16 13:05:46 +02002746 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2747 if (!nb_mce_en)
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002748 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2749 "0x%08x[4] on node %d to enable.\n",
2750 MSR_IA32_MCG_CTL, pvt->mc_node_id);
Doug Thompsonf9431992009-04-27 19:46:08 +02002751
Borislav Petkov06724532009-09-16 13:05:46 +02002752 if (!ecc_enabled || !nb_mce_en) {
Doug Thompsonf9431992009-04-27 19:46:08 +02002753 if (!ecc_enable_override) {
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002754 amd64_printk(KERN_WARNING, "%s", ecc_warning);
2755 return -ENODEV;
2756 }
2757 } else
Doug Thompsonf9431992009-04-27 19:46:08 +02002758 /* CLEAR the override, since BIOS controlled it */
2759 ecc_enable_override = 0;
Doug Thompsonf9431992009-04-27 19:46:08 +02002760
Borislav Petkovbe3468e2009-08-05 15:47:22 +02002761 return 0;
Doug Thompsonf9431992009-04-27 19:46:08 +02002762}
2763
Doug Thompson7d6034d2009-04-27 20:01:01 +02002764struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2765 ARRAY_SIZE(amd64_inj_attrs) +
2766 1];
2767
2768struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2769
2770static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2771{
2772 unsigned int i = 0, j = 0;
2773
2774 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2775 sysfs_attrs[i] = amd64_dbg_attrs[i];
2776
2777 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2778 sysfs_attrs[i] = amd64_inj_attrs[j];
2779
2780 sysfs_attrs[i] = terminator;
2781
2782 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2783}
2784
2785static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2786{
2787 struct amd64_pvt *pvt = mci->pvt_info;
2788
2789 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2790 mci->edac_ctl_cap = EDAC_FLAG_NONE;
Doug Thompson7d6034d2009-04-27 20:01:01 +02002791
2792 if (pvt->nbcap & K8_NBCAP_SECDED)
2793 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2794
2795 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2796 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2797
2798 mci->edac_cap = amd64_determine_edac_cap(pvt);
2799 mci->mod_name = EDAC_MOD_STR;
2800 mci->mod_ver = EDAC_AMD64_VERSION;
2801 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2802 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2803 mci->ctl_page_to_phys = NULL;
2804
2805 /* IMPORTANT: Set the polling 'check' function in this module */
2806 mci->edac_check = amd64_check;
2807
2808 /* memory scrubber interface */
2809 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2810 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2811}
2812
2813/*
2814 * Init stuff for this DRAM Controller device.
2815 *
2816 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2817 * Space feature MUST be enabled on ALL Processors prior to actually reading
2818 * from the ECS registers. Since the loading of the module can occur on any
2819 * 'core', and cores don't 'see' all the other processors ECS data when the
2820 * others are NOT enabled. Our solution is to first enable ECS access in this
2821 * routine on all processors, gather some data in a amd64_pvt structure and
2822 * later come back in a finish-setup function to perform that final
2823 * initialization. See also amd64_init_2nd_stage() for that.
2824 */
2825static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2826 int mc_type_index)
2827{
2828 struct amd64_pvt *pvt = NULL;
2829 int err = 0, ret;
2830
2831 ret = -ENOMEM;
2832 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2833 if (!pvt)
2834 goto err_exit;
2835
Borislav Petkov37da0452009-06-10 17:36:57 +02002836 pvt->mc_node_id = get_node_id(dram_f2_ctl);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002837
2838 pvt->dram_f2_ctl = dram_f2_ctl;
2839 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2840 pvt->mc_type_index = mc_type_index;
2841 pvt->ops = family_ops(mc_type_index);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002842
2843 /*
2844 * We have the dram_f2_ctl device as an argument, now go reserve its
2845 * sibling devices from the PCI system.
2846 */
2847 ret = -ENODEV;
2848 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2849 if (err)
2850 goto err_free;
2851
2852 ret = -EINVAL;
2853 err = amd64_check_ecc_enabled(pvt);
2854 if (err)
2855 goto err_put;
2856
2857 /*
2858 * Key operation here: setup of HW prior to performing ops on it. Some
2859 * setup is required to access ECS data. After this is performed, the
2860 * 'teardown' function must be called upon error and normal exit paths.
2861 */
2862 if (boot_cpu_data.x86 >= 0x10)
2863 amd64_setup(pvt);
2864
2865 /*
2866 * Save the pointer to the private data for use in 2nd initialization
2867 * stage
2868 */
2869 pvt_lookup[pvt->mc_node_id] = pvt;
2870
2871 return 0;
2872
2873err_put:
2874 amd64_free_mc_sibling_devices(pvt);
2875
2876err_free:
2877 kfree(pvt);
2878
2879err_exit:
2880 return ret;
2881}
2882
2883/*
2884 * This is the finishing stage of the init code. Needs to be performed after all
2885 * MCs' hardware have been prepped for accessing extended config space.
2886 */
2887static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2888{
2889 int node_id = pvt->mc_node_id;
2890 struct mem_ctl_info *mci;
2891 int ret, err = 0;
2892
2893 amd64_read_mc_registers(pvt);
2894
2895 ret = -ENODEV;
2896 if (pvt->ops->probe_valid_hardware) {
2897 err = pvt->ops->probe_valid_hardware(pvt);
2898 if (err)
2899 goto err_exit;
2900 }
2901
2902 /*
2903 * We need to determine how many memory channels there are. Then use
2904 * that information for calculating the size of the dynamic instance
2905 * tables in the 'mci' structure
2906 */
2907 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2908 if (pvt->channel_count < 0)
2909 goto err_exit;
2910
2911 ret = -ENOMEM;
Borislav Petkov9d858bb2009-09-21 14:35:51 +02002912 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
Doug Thompson7d6034d2009-04-27 20:01:01 +02002913 if (!mci)
2914 goto err_exit;
2915
2916 mci->pvt_info = pvt;
2917
2918 mci->dev = &pvt->dram_f2_ctl->dev;
2919 amd64_setup_mci_misc_attributes(mci);
2920
2921 if (amd64_init_csrows(mci))
2922 mci->edac_cap = EDAC_FLAG_NONE;
2923
2924 amd64_enable_ecc_error_reporting(mci);
2925 amd64_set_mc_sysfs_attributes(mci);
2926
2927 ret = -ENODEV;
2928 if (edac_mc_add_mc(mci)) {
2929 debugf1("failed edac_mc_add_mc()\n");
2930 goto err_add_mc;
2931 }
2932
2933 mci_lookup[node_id] = mci;
2934 pvt_lookup[node_id] = NULL;
Borislav Petkov549d0422009-07-24 13:51:42 +02002935
2936 /* register stuff with EDAC MCE */
2937 if (report_gart_errors)
2938 amd_report_gart_errors(true);
2939
2940 amd_register_ecc_decoder(amd64_decode_bus_error);
2941
Doug Thompson7d6034d2009-04-27 20:01:01 +02002942 return 0;
2943
2944err_add_mc:
2945 edac_mc_free(mci);
2946
2947err_exit:
2948 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2949
2950 amd64_restore_ecc_error_reporting(pvt);
2951
2952 if (boot_cpu_data.x86 > 0xf)
2953 amd64_teardown(pvt);
2954
2955 amd64_free_mc_sibling_devices(pvt);
2956
2957 kfree(pvt_lookup[pvt->mc_node_id]);
2958 pvt_lookup[node_id] = NULL;
2959
2960 return ret;
2961}
2962
2963
2964static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2965 const struct pci_device_id *mc_type)
2966{
2967 int ret = 0;
2968
Borislav Petkov37da0452009-06-10 17:36:57 +02002969 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
Doug Thompson7d6034d2009-04-27 20:01:01 +02002970 get_amd_family_name(mc_type->driver_data));
2971
2972 ret = pci_enable_device(pdev);
2973 if (ret < 0)
2974 ret = -EIO;
2975 else
2976 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2977
2978 if (ret < 0)
2979 debugf0("ret=%d\n", ret);
2980
2981 return ret;
2982}
2983
2984static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2985{
2986 struct mem_ctl_info *mci;
2987 struct amd64_pvt *pvt;
2988
2989 /* Remove from EDAC CORE tracking list */
2990 mci = edac_mc_del_mc(&pdev->dev);
2991 if (!mci)
2992 return;
2993
2994 pvt = mci->pvt_info;
2995
2996 amd64_restore_ecc_error_reporting(pvt);
2997
2998 if (boot_cpu_data.x86 > 0xf)
2999 amd64_teardown(pvt);
3000
3001 amd64_free_mc_sibling_devices(pvt);
3002
3003 kfree(pvt);
3004 mci->pvt_info = NULL;
3005
3006 mci_lookup[pvt->mc_node_id] = NULL;
3007
Borislav Petkov549d0422009-07-24 13:51:42 +02003008 /* unregister from EDAC MCE */
3009 amd_report_gart_errors(false);
3010 amd_unregister_ecc_decoder(amd64_decode_bus_error);
3011
Doug Thompson7d6034d2009-04-27 20:01:01 +02003012 /* Free the EDAC CORE resources */
3013 edac_mc_free(mci);
3014}
3015
3016/*
3017 * This table is part of the interface for loading drivers for PCI devices. The
3018 * PCI core identifies what devices are on a system during boot, and then
3019 * inquiry this table to see if this driver is for a given device found.
3020 */
3021static const struct pci_device_id amd64_pci_table[] __devinitdata = {
3022 {
3023 .vendor = PCI_VENDOR_ID_AMD,
3024 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
3025 .subvendor = PCI_ANY_ID,
3026 .subdevice = PCI_ANY_ID,
3027 .class = 0,
3028 .class_mask = 0,
3029 .driver_data = K8_CPUS
3030 },
3031 {
3032 .vendor = PCI_VENDOR_ID_AMD,
3033 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
3034 .subvendor = PCI_ANY_ID,
3035 .subdevice = PCI_ANY_ID,
3036 .class = 0,
3037 .class_mask = 0,
3038 .driver_data = F10_CPUS
3039 },
3040 {
3041 .vendor = PCI_VENDOR_ID_AMD,
3042 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
3043 .subvendor = PCI_ANY_ID,
3044 .subdevice = PCI_ANY_ID,
3045 .class = 0,
3046 .class_mask = 0,
3047 .driver_data = F11_CPUS
3048 },
3049 {0, }
3050};
3051MODULE_DEVICE_TABLE(pci, amd64_pci_table);
3052
3053static struct pci_driver amd64_pci_driver = {
3054 .name = EDAC_MOD_STR,
3055 .probe = amd64_init_one_instance,
3056 .remove = __devexit_p(amd64_remove_one_instance),
3057 .id_table = amd64_pci_table,
3058};
3059
3060static void amd64_setup_pci_device(void)
3061{
3062 struct mem_ctl_info *mci;
3063 struct amd64_pvt *pvt;
3064
3065 if (amd64_ctl_pci)
3066 return;
3067
3068 mci = mci_lookup[0];
3069 if (mci) {
3070
3071 pvt = mci->pvt_info;
3072 amd64_ctl_pci =
3073 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3074 EDAC_MOD_STR);
3075
3076 if (!amd64_ctl_pci) {
3077 pr_warning("%s(): Unable to create PCI control\n",
3078 __func__);
3079
3080 pr_warning("%s(): PCI error report via EDAC not set\n",
3081 __func__);
3082 }
3083 }
3084}
3085
3086static int __init amd64_edac_init(void)
3087{
3088 int nb, err = -ENODEV;
3089
3090 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3091
3092 opstate_init();
3093
3094 if (cache_k8_northbridges() < 0)
Li Honga3c4c582009-10-19 16:33:29 +08003095 return err;
Doug Thompson7d6034d2009-04-27 20:01:01 +02003096
3097 err = pci_register_driver(&amd64_pci_driver);
3098 if (err)
3099 return err;
3100
3101 /*
3102 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3103 * amd64_pvt structs. These will be used in the 2nd stage init function
3104 * to finish initialization of the MC instances.
3105 */
3106 for (nb = 0; nb < num_k8_northbridges; nb++) {
3107 if (!pvt_lookup[nb])
3108 continue;
3109
3110 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3111 if (err)
Borislav Petkov37da0452009-06-10 17:36:57 +02003112 goto err_2nd_stage;
Doug Thompson7d6034d2009-04-27 20:01:01 +02003113 }
3114
3115 amd64_setup_pci_device();
3116
3117 return 0;
3118
Borislav Petkov37da0452009-06-10 17:36:57 +02003119err_2nd_stage:
3120 debugf0("2nd stage failed\n");
Doug Thompson7d6034d2009-04-27 20:01:01 +02003121 pci_unregister_driver(&amd64_pci_driver);
3122
3123 return err;
3124}
3125
3126static void __exit amd64_edac_exit(void)
3127{
3128 if (amd64_ctl_pci)
3129 edac_pci_release_generic_ctl(amd64_ctl_pci);
3130
3131 pci_unregister_driver(&amd64_pci_driver);
3132}
3133
3134module_init(amd64_edac_init);
3135module_exit(amd64_edac_exit);
3136
3137MODULE_LICENSE("GPL");
3138MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3139 "Dave Peterson, Thayne Harbaugh");
3140MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3141 EDAC_AMD64_VERSION);
3142
3143module_param(edac_op_state, int, 0444);
3144MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");