blob: 57774cb91ae3889ab6c09f71cd29572a096dfa11 [file] [log] [blame]
Timur Tabi17467f22008-01-11 18:15:26 +01001/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +00006 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
Timur Tabi17467f22008-01-11 18:15:26 +010011 *
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
15 */
16
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/interrupt.h>
22#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090023#include <linux/gfp.h>
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000024#include <linux/of_platform.h>
25#include <linux/list.h>
Timur Tabi17467f22008-01-11 18:15:26 +010026
Timur Tabi17467f22008-01-11 18:15:26 +010027#include <sound/core.h>
28#include <sound/pcm.h>
29#include <sound/pcm_params.h>
30#include <sound/soc.h>
31
32#include <asm/io.h>
33
34#include "fsl_dma.h"
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000035#include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
Timur Tabi17467f22008-01-11 18:15:26 +010036
37/*
38 * The formats that the DMA controller supports, which is anything
39 * that is 8, 16, or 32 bits.
40 */
41#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
42 SNDRV_PCM_FMTBIT_U8 | \
43 SNDRV_PCM_FMTBIT_S16_LE | \
44 SNDRV_PCM_FMTBIT_S16_BE | \
45 SNDRV_PCM_FMTBIT_U16_LE | \
46 SNDRV_PCM_FMTBIT_U16_BE | \
47 SNDRV_PCM_FMTBIT_S24_LE | \
48 SNDRV_PCM_FMTBIT_S24_BE | \
49 SNDRV_PCM_FMTBIT_U24_LE | \
50 SNDRV_PCM_FMTBIT_U24_BE | \
51 SNDRV_PCM_FMTBIT_S32_LE | \
52 SNDRV_PCM_FMTBIT_S32_BE | \
53 SNDRV_PCM_FMTBIT_U32_LE | \
54 SNDRV_PCM_FMTBIT_U32_BE)
55
56#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
57 SNDRV_PCM_RATE_CONTINUOUS)
58
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000059struct dma_object {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000060 struct snd_soc_platform_driver dai;
Timur Tabi17467f22008-01-11 18:15:26 +010061 dma_addr_t ssi_stx_phys;
62 dma_addr_t ssi_srx_phys;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +000063 struct ccsr_dma_channel __iomem *channel;
64 unsigned int irq;
65 bool assigned;
66 char path[1];
67};
Timur Tabi17467f22008-01-11 18:15:26 +010068
69/*
70 * The number of DMA links to use. Two is the bare minimum, but if you
71 * have really small links you might need more.
72 */
73#define NUM_DMA_LINKS 2
74
75/** fsl_dma_private: p-substream DMA data
76 *
77 * Each substream has a 1-to-1 association with a DMA channel.
78 *
79 * The link[] array is first because it needs to be aligned on a 32-byte
80 * boundary, so putting it first will ensure alignment without padding the
81 * structure.
82 *
83 * @link[]: array of link descriptors
Timur Tabi17467f22008-01-11 18:15:26 +010084 * @dma_channel: pointer to the DMA channel's registers
85 * @irq: IRQ for this DMA channel
86 * @substream: pointer to the substream object, needed by the ISR
87 * @ssi_sxx_phys: bus address of the STX or SRX register to use
88 * @ld_buf_phys: physical address of the LD buffer
89 * @current_link: index into link[] of the link currently being processed
90 * @dma_buf_phys: physical address of the DMA buffer
91 * @dma_buf_next: physical address of the next period to process
92 * @dma_buf_end: physical address of the byte after the end of the DMA
93 * @buffer period_size: the size of a single period
94 * @num_periods: the number of periods in the DMA buffer
95 */
96struct fsl_dma_private {
97 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
Timur Tabi17467f22008-01-11 18:15:26 +010098 struct ccsr_dma_channel __iomem *dma_channel;
99 unsigned int irq;
100 struct snd_pcm_substream *substream;
101 dma_addr_t ssi_sxx_phys;
102 dma_addr_t ld_buf_phys;
103 unsigned int current_link;
104 dma_addr_t dma_buf_phys;
105 dma_addr_t dma_buf_next;
106 dma_addr_t dma_buf_end;
107 size_t period_size;
108 unsigned int num_periods;
109};
110
111/**
112 * fsl_dma_hardare: define characteristics of the PCM hardware.
113 *
114 * The PCM hardware is the Freescale DMA controller. This structure defines
115 * the capabilities of that hardware.
116 *
117 * Since the sampling rate and data format are not controlled by the DMA
118 * controller, we specify no limits for those values. The only exception is
119 * period_bytes_min, which is set to a reasonably low value to prevent the
120 * DMA controller from generating too many interrupts per second.
121 *
122 * Since each link descriptor has a 32-bit byte count field, we set
123 * period_bytes_max to the largest 32-bit number. We also have no maximum
124 * number of periods.
Timur Tabibe41e942008-07-28 17:04:39 -0500125 *
126 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
127 * limitation in the SSI driver requires the sample rates for playback and
128 * capture to be the same.
Timur Tabi17467f22008-01-11 18:15:26 +0100129 */
130static const struct snd_pcm_hardware fsl_dma_hardware = {
131
Timur Tabi4052ce42008-01-17 17:44:49 +0100132 .info = SNDRV_PCM_INFO_INTERLEAVED |
133 SNDRV_PCM_INFO_MMAP |
Timur Tabibe41e942008-07-28 17:04:39 -0500134 SNDRV_PCM_INFO_MMAP_VALID |
Timur Tabi3a638ff2009-03-06 18:39:34 -0600135 SNDRV_PCM_INFO_JOINT_DUPLEX |
136 SNDRV_PCM_INFO_PAUSE,
Timur Tabi17467f22008-01-11 18:15:26 +0100137 .formats = FSLDMA_PCM_FORMATS,
138 .rates = FSLDMA_PCM_RATES,
139 .rate_min = 5512,
140 .rate_max = 192000,
141 .period_bytes_min = 512, /* A reasonable limit */
142 .period_bytes_max = (u32) -1,
143 .periods_min = NUM_DMA_LINKS,
144 .periods_max = (unsigned int) -1,
145 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
146};
147
148/**
149 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
150 *
151 * This function should be called by the ISR whenever the DMA controller
152 * halts data transfer.
153 */
154static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
155{
156 unsigned long flags;
157
158 snd_pcm_stream_lock_irqsave(substream, flags);
159
160 if (snd_pcm_running(substream))
161 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
162
163 snd_pcm_stream_unlock_irqrestore(substream, flags);
164}
165
166/**
167 * fsl_dma_update_pointers - update LD pointers to point to the next period
168 *
169 * As each period is completed, this function changes the the link
170 * descriptor pointers for that period to point to the next period.
171 */
172static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
173{
174 struct fsl_dma_link_descriptor *link =
175 &dma_private->link[dma_private->current_link];
176
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500177 /* Update our link descriptors to point to the next period. On a 36-bit
178 * system, we also need to update the ESAD bits. We also set (keep) the
179 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
180 */
181 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
182 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
183#ifdef CONFIG_PHYS_64BIT
184 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
185 upper_32_bits(dma_private->dma_buf_next));
186#endif
187 } else {
188 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
189#ifdef CONFIG_PHYS_64BIT
190 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
191 upper_32_bits(dma_private->dma_buf_next));
192#endif
193 }
Timur Tabi17467f22008-01-11 18:15:26 +0100194
195 /* Update our variables for next time */
196 dma_private->dma_buf_next += dma_private->period_size;
197
198 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
199 dma_private->dma_buf_next = dma_private->dma_buf_phys;
200
201 if (++dma_private->current_link >= NUM_DMA_LINKS)
202 dma_private->current_link = 0;
203}
204
205/**
206 * fsl_dma_isr: interrupt handler for the DMA controller
207 *
208 * @irq: IRQ of the DMA channel
209 * @dev_id: pointer to the dma_private structure for this DMA channel
210 */
211static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
212{
213 struct fsl_dma_private *dma_private = dev_id;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000214 struct snd_pcm_substream *substream = dma_private->substream;
215 struct snd_soc_pcm_runtime *rtd = substream->private_data;
216 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100217 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
218 irqreturn_t ret = IRQ_NONE;
219 u32 sr, sr2 = 0;
220
221 /* We got an interrupt, so read the status register to see what we
222 were interrupted for.
223 */
224 sr = in_be32(&dma_channel->sr);
225
226 if (sr & CCSR_DMA_SR_TE) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000227 dev_err(dev, "dma transmit error\n");
228 fsl_dma_abort_stream(substream);
Timur Tabi17467f22008-01-11 18:15:26 +0100229 sr2 |= CCSR_DMA_SR_TE;
230 ret = IRQ_HANDLED;
231 }
232
233 if (sr & CCSR_DMA_SR_CH)
234 ret = IRQ_HANDLED;
235
236 if (sr & CCSR_DMA_SR_PE) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000237 dev_err(dev, "dma programming error\n");
238 fsl_dma_abort_stream(substream);
Timur Tabi17467f22008-01-11 18:15:26 +0100239 sr2 |= CCSR_DMA_SR_PE;
240 ret = IRQ_HANDLED;
241 }
242
243 if (sr & CCSR_DMA_SR_EOLNI) {
244 sr2 |= CCSR_DMA_SR_EOLNI;
245 ret = IRQ_HANDLED;
246 }
247
248 if (sr & CCSR_DMA_SR_CB)
249 ret = IRQ_HANDLED;
250
251 if (sr & CCSR_DMA_SR_EOSI) {
Timur Tabi17467f22008-01-11 18:15:26 +0100252 /* Tell ALSA we completed a period. */
253 snd_pcm_period_elapsed(substream);
254
255 /*
256 * Update our link descriptors to point to the next period. We
257 * only need to do this if the number of periods is not equal to
258 * the number of links.
259 */
260 if (dma_private->num_periods != NUM_DMA_LINKS)
261 fsl_dma_update_pointers(dma_private);
262
263 sr2 |= CCSR_DMA_SR_EOSI;
264 ret = IRQ_HANDLED;
265 }
266
267 if (sr & CCSR_DMA_SR_EOLSI) {
268 sr2 |= CCSR_DMA_SR_EOLSI;
269 ret = IRQ_HANDLED;
270 }
271
272 /* Clear the bits that we set */
273 if (sr2)
274 out_be32(&dma_channel->sr, sr2);
275
276 return ret;
277}
278
279/**
280 * fsl_dma_new: initialize this PCM driver.
281 *
282 * This function is called when the codec driver calls snd_soc_new_pcms(),
Mark Brown87506542008-11-18 20:50:34 +0000283 * once for each .dai_link in the machine driver's snd_soc_card
Timur Tabi17467f22008-01-11 18:15:26 +0100284 * structure.
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500285 *
286 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
287 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
288 * is specified. Therefore, any DMA buffers we allocate will always be in low
289 * memory, but we support for 36-bit physical addresses anyway.
290 *
291 * Regardless of where the memory is actually allocated, since the device can
292 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
Timur Tabi17467f22008-01-11 18:15:26 +0100293 */
Liam Girdwood8cf7b2b2008-07-07 16:08:00 +0100294static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
Timur Tabi17467f22008-01-11 18:15:26 +0100295 struct snd_pcm *pcm)
296{
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500297 static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
Timur Tabi17467f22008-01-11 18:15:26 +0100298 int ret;
299
300 if (!card->dev->dma_mask)
301 card->dev->dma_mask = &fsl_dma_dmamask;
302
303 if (!card->dev->coherent_dma_mask)
304 card->dev->coherent_dma_mask = fsl_dma_dmamask;
305
Anton Vorontsov5c15a682009-04-04 22:33:19 +0400306 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
Timur Tabi17467f22008-01-11 18:15:26 +0100307 fsl_dma_hardware.buffer_bytes_max,
308 &pcm->streams[0].substream->dma_buffer);
309 if (ret) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000310 dev_err(card->dev, "can't allocate playback dma buffer\n");
311 return ret;
Timur Tabi17467f22008-01-11 18:15:26 +0100312 }
313
Anton Vorontsov5c15a682009-04-04 22:33:19 +0400314 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
Timur Tabi17467f22008-01-11 18:15:26 +0100315 fsl_dma_hardware.buffer_bytes_max,
316 &pcm->streams[1].substream->dma_buffer);
317 if (ret) {
318 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000319 dev_err(card->dev, "can't allocate capture dma buffer\n");
320 return ret;
Timur Tabi17467f22008-01-11 18:15:26 +0100321 }
322
323 return 0;
324}
325
326/**
327 * fsl_dma_open: open a new substream.
328 *
329 * Each substream has its own DMA buffer.
Timur Tabibf9c8c92008-08-01 14:58:44 -0500330 *
331 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
332 * descriptors that ping-pong from one period to the next. For example, if
333 * there are six periods and two link descriptors, this is how they look
334 * before playback starts:
335 *
336 * The last link descriptor
337 * ____________ points back to the first
338 * | |
339 * V |
340 * ___ ___ |
341 * | |->| |->|
342 * |___| |___|
343 * | |
344 * | |
345 * V V
346 * _________________________________________
347 * | | | | | | | The DMA buffer is
348 * | | | | | | | divided into 6 parts
349 * |______|______|______|______|______|______|
350 *
351 * and here's how they look after the first period is finished playing:
352 *
353 * ____________
354 * | |
355 * V |
356 * ___ ___ |
357 * | |->| |->|
358 * |___| |___|
359 * | |
360 * |______________
361 * | |
362 * V V
363 * _________________________________________
364 * | | | | | | |
365 * | | | | | | |
366 * |______|______|______|______|______|______|
367 *
368 * The first link descriptor now points to the third period. The DMA
369 * controller is currently playing the second period. When it finishes, it
370 * will jump back to the first descriptor and play the third period.
371 *
372 * There are four reasons we do this:
373 *
374 * 1. The only way to get the DMA controller to automatically restart the
375 * transfer when it gets to the end of the buffer is to use chaining
376 * mode. Basic direct mode doesn't offer that feature.
377 * 2. We need to receive an interrupt at the end of every period. The DMA
378 * controller can generate an interrupt at the end of every link transfer
379 * (aka segment). Making each period into a DMA segment will give us the
380 * interrupts we need.
381 * 3. By creating only two link descriptors, regardless of the number of
382 * periods, we do not need to reallocate the link descriptors if the
383 * number of periods changes.
384 * 4. All of the audio data is still stored in a single, contiguous DMA
385 * buffer, which is what ALSA expects. We're just dividing it into
386 * contiguous parts, and creating a link descriptor for each one.
Timur Tabi17467f22008-01-11 18:15:26 +0100387 */
388static int fsl_dma_open(struct snd_pcm_substream *substream)
389{
390 struct snd_pcm_runtime *runtime = substream->runtime;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000391 struct snd_soc_pcm_runtime *rtd = substream->private_data;
392 struct device *dev = rtd->platform->dev;
393 struct dma_object *dma =
394 container_of(rtd->platform->driver, struct dma_object, dai);
Timur Tabi17467f22008-01-11 18:15:26 +0100395 struct fsl_dma_private *dma_private;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500396 struct ccsr_dma_channel __iomem *dma_channel;
Timur Tabi17467f22008-01-11 18:15:26 +0100397 dma_addr_t ld_buf_phys;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500398 u64 temp_link; /* Pointer to next link descriptor */
399 u32 mr;
Timur Tabi17467f22008-01-11 18:15:26 +0100400 unsigned int channel;
401 int ret = 0;
Timur Tabibf9c8c92008-08-01 14:58:44 -0500402 unsigned int i;
Timur Tabi17467f22008-01-11 18:15:26 +0100403
404 /*
405 * Reject any DMA buffer whose size is not a multiple of the period
406 * size. We need to make sure that the DMA buffer can be evenly divided
407 * into periods.
408 */
409 ret = snd_pcm_hw_constraint_integer(runtime,
410 SNDRV_PCM_HW_PARAM_PERIODS);
411 if (ret < 0) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000412 dev_err(dev, "invalid buffer size\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100413 return ret;
414 }
415
416 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
417
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000418 if (dma->assigned) {
419 dev_err(dev, "dma channel already assigned\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100420 return -EBUSY;
421 }
422
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000423 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
424 &ld_buf_phys, GFP_KERNEL);
Timur Tabi17467f22008-01-11 18:15:26 +0100425 if (!dma_private) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000426 dev_err(dev, "can't allocate dma private data\n");
Timur Tabi17467f22008-01-11 18:15:26 +0100427 return -ENOMEM;
428 }
429 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000430 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100431 else
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000432 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100433
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000434 dma_private->dma_channel = dma->channel;
435 dma_private->irq = dma->irq;
Timur Tabi17467f22008-01-11 18:15:26 +0100436 dma_private->substream = substream;
437 dma_private->ld_buf_phys = ld_buf_phys;
438 dma_private->dma_buf_phys = substream->dma_buffer.addr;
439
Timur Tabi17467f22008-01-11 18:15:26 +0100440 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
441 if (ret) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000442 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
Timur Tabi17467f22008-01-11 18:15:26 +0100443 dma_private->irq, ret);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000444 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
Timur Tabi17467f22008-01-11 18:15:26 +0100445 dma_private, dma_private->ld_buf_phys);
446 return ret;
447 }
448
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000449 dma->assigned = 1;
Timur Tabi17467f22008-01-11 18:15:26 +0100450
451 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
452 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
453 runtime->private_data = dma_private;
454
Timur Tabibf9c8c92008-08-01 14:58:44 -0500455 /* Program the fixed DMA controller parameters */
Timur Tabi17467f22008-01-11 18:15:26 +0100456
Timur Tabibf9c8c92008-08-01 14:58:44 -0500457 dma_channel = dma_private->dma_channel;
Timur Tabi17467f22008-01-11 18:15:26 +0100458
Timur Tabi17467f22008-01-11 18:15:26 +0100459 temp_link = dma_private->ld_buf_phys +
460 sizeof(struct fsl_dma_link_descriptor);
461
462 for (i = 0; i < NUM_DMA_LINKS; i++) {
Timur Tabi85ef2372009-02-05 17:56:02 -0600463 dma_private->link[i].next = cpu_to_be64(temp_link);
Timur Tabi17467f22008-01-11 18:15:26 +0100464
Timur Tabi17467f22008-01-11 18:15:26 +0100465 temp_link += sizeof(struct fsl_dma_link_descriptor);
466 }
467 /* The last link descriptor points to the first */
468 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
469
470 /* Tell the DMA controller where the first link descriptor is */
471 out_be32(&dma_channel->clndar,
472 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
473 out_be32(&dma_channel->eclndar,
474 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
475
476 /* The manual says the BCR must be clear before enabling EMP */
477 out_be32(&dma_channel->bcr, 0);
478
479 /*
480 * Program the mode register for interrupts, external master control,
481 * and source/destination hold. Also clear the Channel Abort bit.
482 */
483 mr = in_be32(&dma_channel->mr) &
484 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
485
486 /*
487 * We want External Master Start and External Master Pause enabled,
488 * because the SSI is controlling the DMA controller. We want the DMA
489 * controller to be set up in advance, and then we signal only the SSI
Timur Tabibf9c8c92008-08-01 14:58:44 -0500490 * to start transferring.
Timur Tabi17467f22008-01-11 18:15:26 +0100491 *
492 * We want End-Of-Segment Interrupts enabled, because this will generate
493 * an interrupt at the end of each segment (each link descriptor
494 * represents one segment). Each DMA segment is the same thing as an
495 * ALSA period, so this is how we get an interrupt at the end of every
496 * period.
497 *
498 * We want Error Interrupt enabled, so that we can get an error if
499 * the DMA controller is mis-programmed somehow.
500 */
501 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
502 CCSR_DMA_MR_EMS_EN;
503
504 /* For playback, we want the destination address to be held. For
505 capture, set the source address to be held. */
506 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
507 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
508
509 out_be32(&dma_channel->mr, mr);
510
511 return 0;
512}
513
514/**
Timur Tabibf9c8c92008-08-01 14:58:44 -0500515 * fsl_dma_hw_params: continue initializing the DMA links
516 *
517 * This function obtains hardware parameters about the opened stream and
518 * programs the DMA controller accordingly.
519 *
Timur Tabi85ef2372009-02-05 17:56:02 -0600520 * One drawback of big-endian is that when copying integers of different
521 * sizes to a fixed-sized register, the address to which the integer must be
522 * copied is dependent on the size of the integer.
Timur Tabi17467f22008-01-11 18:15:26 +0100523 *
524 * For example, if P is the address of a 32-bit register, and X is a 32-bit
525 * integer, then X should be copied to address P. However, if X is a 16-bit
526 * integer, then it should be copied to P+2. If X is an 8-bit register,
527 * then it should be copied to P+3.
528 *
529 * So for playback of 8-bit samples, the DMA controller must transfer single
530 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
531 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
532 *
533 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
534 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
535 * and 8 bytes at a time). So we do not support packed 24-bit samples.
536 * 24-bit data must be padded to 32 bits.
537 */
Timur Tabi85ef2372009-02-05 17:56:02 -0600538static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
539 struct snd_pcm_hw_params *hw_params)
Timur Tabi17467f22008-01-11 18:15:26 +0100540{
541 struct snd_pcm_runtime *runtime = substream->runtime;
542 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000543 struct snd_soc_pcm_runtime *rtd = substream->private_data;
544 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100545
Timur Tabi85ef2372009-02-05 17:56:02 -0600546 /* Number of bits per sample */
547 unsigned int sample_size =
548 snd_pcm_format_physical_width(params_format(hw_params));
549
550 /* Number of bytes per frame */
551 unsigned int frame_size = 2 * (sample_size / 8);
552
553 /* Bus address of SSI STX register */
554 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
555
556 /* Size of the DMA buffer, in bytes */
557 size_t buffer_size = params_buffer_bytes(hw_params);
558
559 /* Number of bytes per period */
560 size_t period_size = params_period_bytes(hw_params);
561
562 /* Pointer to next period */
563 dma_addr_t temp_addr = substream->dma_buffer.addr;
564
565 /* Pointer to DMA controller */
566 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
567
568 u32 mr; /* DMA Mode Register */
569
570 unsigned int i;
571
572 /* Initialize our DMA tracking variables */
573 dma_private->period_size = period_size;
574 dma_private->num_periods = params_periods(hw_params);
575 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
576 dma_private->dma_buf_next = dma_private->dma_buf_phys +
577 (NUM_DMA_LINKS * period_size);
578
579 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
580 /* This happens if the number of periods == NUM_DMA_LINKS */
581 dma_private->dma_buf_next = dma_private->dma_buf_phys;
Timur Tabi17467f22008-01-11 18:15:26 +0100582
583 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
584 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
585
Timur Tabi85ef2372009-02-05 17:56:02 -0600586 /* Due to a quirk of the SSI's STX register, the target address
587 * for the DMA operations depends on the sample size. So we calculate
588 * that offset here. While we're at it, also tell the DMA controller
589 * how much data to transfer per sample.
590 */
591 switch (sample_size) {
Timur Tabi17467f22008-01-11 18:15:26 +0100592 case 8:
593 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
594 ssi_sxx_phys += 3;
595 break;
596 case 16:
597 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
598 ssi_sxx_phys += 2;
599 break;
600 case 32:
601 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
602 break;
603 default:
Timur Tabi85ef2372009-02-05 17:56:02 -0600604 /* We should never get here */
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000605 dev_err(dev, "unsupported sample size %u\n", sample_size);
Timur Tabi17467f22008-01-11 18:15:26 +0100606 return -EINVAL;
607 }
608
Timur Tabi17467f22008-01-11 18:15:26 +0100609 /*
610 * BWC should always be a multiple of the frame size. BWC determines
611 * how many bytes are sent/received before the DMA controller checks the
612 * SSI to see if it needs to stop. For playback, the transmit FIFO can
613 * hold three frames, so we want to send two frames at a time. For
614 * capture, the receive FIFO is triggered when it contains one frame, so
615 * we want to receive one frame at a time.
616 */
Timur Tabi17467f22008-01-11 18:15:26 +0100617 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
618 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
619 else
620 mr |= CCSR_DMA_MR_BWC(frame_size);
621
622 out_be32(&dma_channel->mr, mr);
623
Timur Tabi17467f22008-01-11 18:15:26 +0100624 for (i = 0; i < NUM_DMA_LINKS; i++) {
625 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
626
Timur Tabi85ef2372009-02-05 17:56:02 -0600627 link->count = cpu_to_be32(period_size);
628
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500629 /* The snoop bit tells the DMA controller whether it should tell
Timur Tabi85ef2372009-02-05 17:56:02 -0600630 * the ECM to snoop during a read or write to an address. For
631 * audio, we use DMA to transfer data between memory and an I/O
632 * device (the SSI's STX0 or SRX0 register). Snooping is only
633 * needed if there is a cache, so we need to snoop memory
634 * addresses only. For playback, that means we snoop the source
635 * but not the destination. For capture, we snoop the
636 * destination but not the source.
637 *
638 * Note that failing to snoop properly is unlikely to cause
639 * cache incoherency if the period size is larger than the
640 * size of L1 cache. This is because filling in one period will
641 * flush out the data for the previous period. So if you
642 * increased period_bytes_min to a large enough size, you might
643 * get more performance by not snooping, and you'll still be
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500644 * okay. You'll need to update fsl_dma_update_pointers() also.
Timur Tabi85ef2372009-02-05 17:56:02 -0600645 */
646 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
647 link->source_addr = cpu_to_be32(temp_addr);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500648 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
649 upper_32_bits(temp_addr));
Timur Tabi85ef2372009-02-05 17:56:02 -0600650
Timur Tabi17467f22008-01-11 18:15:26 +0100651 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500652 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
653 upper_32_bits(ssi_sxx_phys));
Timur Tabi85ef2372009-02-05 17:56:02 -0600654 } else {
Timur Tabi17467f22008-01-11 18:15:26 +0100655 link->source_addr = cpu_to_be32(ssi_sxx_phys);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500656 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
657 upper_32_bits(ssi_sxx_phys));
Timur Tabi85ef2372009-02-05 17:56:02 -0600658
659 link->dest_addr = cpu_to_be32(temp_addr);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500660 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
661 upper_32_bits(temp_addr));
Timur Tabi85ef2372009-02-05 17:56:02 -0600662 }
663
664 temp_addr += period_size;
Timur Tabi17467f22008-01-11 18:15:26 +0100665 }
666
667 return 0;
668}
669
670/**
671 * fsl_dma_pointer: determine the current position of the DMA transfer
672 *
673 * This function is called by ALSA when ALSA wants to know where in the
674 * stream buffer the hardware currently is.
675 *
676 * For playback, the SAR register contains the physical address of the most
677 * recent DMA transfer. For capture, the value is in the DAR register.
678 *
679 * The base address of the buffer is stored in the source_addr field of the
680 * first link descriptor.
681 */
682static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
683{
684 struct snd_pcm_runtime *runtime = substream->runtime;
685 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000686 struct snd_soc_pcm_runtime *rtd = substream->private_data;
687 struct device *dev = rtd->platform->dev;
Timur Tabi17467f22008-01-11 18:15:26 +0100688 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
689 dma_addr_t position;
690 snd_pcm_uframes_t frames;
691
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500692 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
693 * only have 32-bit DMA addresses. This function is typically called
694 * in interrupt context, so we need to optimize it.
695 */
696 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
Timur Tabi17467f22008-01-11 18:15:26 +0100697 position = in_be32(&dma_channel->sar);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500698#ifdef CONFIG_PHYS_64BIT
699 position |= (u64)(in_be32(&dma_channel->satr) &
700 CCSR_DMA_ATR_ESAD_MASK) << 32;
701#endif
702 } else {
Timur Tabi17467f22008-01-11 18:15:26 +0100703 position = in_be32(&dma_channel->dar);
Timur Tabi1a3c5a42010-08-02 12:44:36 -0500704#ifdef CONFIG_PHYS_64BIT
705 position |= (u64)(in_be32(&dma_channel->datr) &
706 CCSR_DMA_ATR_ESAD_MASK) << 32;
707#endif
708 }
Timur Tabi17467f22008-01-11 18:15:26 +0100709
Timur Tabia4d11fe2009-03-25 18:20:37 -0500710 /*
711 * When capture is started, the SSI immediately starts to fill its FIFO.
712 * This means that the DMA controller is not started until the FIFO is
713 * full. However, ALSA calls this function before that happens, when
714 * MR.DAR is still zero. In this case, just return zero to indicate
715 * that nothing has been received yet.
716 */
717 if (!position)
718 return 0;
719
720 if ((position < dma_private->dma_buf_phys) ||
721 (position > dma_private->dma_buf_end)) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000722 dev_err(dev, "dma pointer is out of range, halting stream\n");
Timur Tabia4d11fe2009-03-25 18:20:37 -0500723 return SNDRV_PCM_POS_XRUN;
724 }
725
Timur Tabi17467f22008-01-11 18:15:26 +0100726 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
727
728 /*
729 * If the current address is just past the end of the buffer, wrap it
730 * around.
731 */
732 if (frames == runtime->buffer_size)
733 frames = 0;
734
735 return frames;
736}
737
738/**
739 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
740 *
741 * Release the resources allocated in fsl_dma_hw_params() and de-program the
742 * registers.
743 *
744 * This function can be called multiple times.
745 */
746static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
747{
748 struct snd_pcm_runtime *runtime = substream->runtime;
749 struct fsl_dma_private *dma_private = runtime->private_data;
750
751 if (dma_private) {
752 struct ccsr_dma_channel __iomem *dma_channel;
753
754 dma_channel = dma_private->dma_channel;
755
756 /* Stop the DMA */
757 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
758 out_be32(&dma_channel->mr, 0);
759
760 /* Reset all the other registers */
761 out_be32(&dma_channel->sr, -1);
762 out_be32(&dma_channel->clndar, 0);
763 out_be32(&dma_channel->eclndar, 0);
764 out_be32(&dma_channel->satr, 0);
765 out_be32(&dma_channel->sar, 0);
766 out_be32(&dma_channel->datr, 0);
767 out_be32(&dma_channel->dar, 0);
768 out_be32(&dma_channel->bcr, 0);
769 out_be32(&dma_channel->nlndar, 0);
770 out_be32(&dma_channel->enlndar, 0);
771 }
772
773 return 0;
774}
775
776/**
777 * fsl_dma_close: close the stream.
778 */
779static int fsl_dma_close(struct snd_pcm_substream *substream)
780{
781 struct snd_pcm_runtime *runtime = substream->runtime;
782 struct fsl_dma_private *dma_private = runtime->private_data;
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000783 struct snd_soc_pcm_runtime *rtd = substream->private_data;
784 struct device *dev = rtd->platform->dev;
785 struct dma_object *dma =
786 container_of(rtd->platform->driver, struct dma_object, dai);
Timur Tabi17467f22008-01-11 18:15:26 +0100787
788 if (dma_private) {
789 if (dma_private->irq)
790 free_irq(dma_private->irq, dma_private);
791
792 if (dma_private->ld_buf_phys) {
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000793 dma_unmap_single(dev, dma_private->ld_buf_phys,
794 sizeof(dma_private->link),
795 DMA_TO_DEVICE);
Timur Tabi17467f22008-01-11 18:15:26 +0100796 }
797
798 /* Deallocate the fsl_dma_private structure */
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000799 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
800 dma_private, dma_private->ld_buf_phys);
Timur Tabi17467f22008-01-11 18:15:26 +0100801 substream->runtime->private_data = NULL;
802 }
803
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000804 dma->assigned = 0;
Timur Tabi17467f22008-01-11 18:15:26 +0100805
806 return 0;
807}
808
809/*
810 * Remove this PCM driver.
811 */
812static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
813{
814 struct snd_pcm_substream *substream;
815 unsigned int i;
816
817 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
818 substream = pcm->streams[i].substream;
819 if (substream) {
820 snd_dma_free_pages(&substream->dma_buffer);
821 substream->dma_buffer.area = NULL;
822 substream->dma_buffer.addr = 0;
823 }
824 }
825}
826
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000827/**
828 * find_ssi_node -- returns the SSI node that points to his DMA channel node
829 *
830 * Although this DMA driver attempts to operate independently of the other
831 * devices, it still needs to determine some information about the SSI device
832 * that it's working with. Unfortunately, the device tree does not contain
833 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
834 * other way. So we need to scan the device tree for SSI nodes until we find
835 * the one that points to the given DMA channel node. It's ugly, but at least
836 * it's contained in this one function.
837 */
838static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
839{
840 struct device_node *ssi_np, *np;
841
842 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
843 /* Check each DMA phandle to see if it points to us. We
844 * assume that device_node pointers are a valid comparison.
845 */
846 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
847 if (np == dma_channel_np)
848 return ssi_np;
849
850 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
851 if (np == dma_channel_np)
852 return ssi_np;
853 }
854
855 return NULL;
856}
857
Timur Tabi17467f22008-01-11 18:15:26 +0100858static struct snd_pcm_ops fsl_dma_ops = {
859 .open = fsl_dma_open,
860 .close = fsl_dma_close,
861 .ioctl = snd_pcm_lib_ioctl,
862 .hw_params = fsl_dma_hw_params,
863 .hw_free = fsl_dma_hw_free,
Timur Tabi17467f22008-01-11 18:15:26 +0100864 .pointer = fsl_dma_pointer,
865};
866
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000867static int __devinit fsl_soc_dma_probe(struct of_device *of_dev,
868 const struct of_device_id *match)
869 {
870 struct dma_object *dma;
871 struct device_node *np = of_dev->dev.of_node;
872 struct device_node *ssi_np;
873 struct resource res;
874 int ret;
875
876 /* Find the SSI node that points to us. */
877 ssi_np = find_ssi_node(np);
878 if (!ssi_np) {
879 dev_err(&of_dev->dev, "cannot find parent SSI node\n");
880 return -ENODEV;
881 }
882
883 ret = of_address_to_resource(ssi_np, 0, &res);
884 of_node_put(ssi_np);
885 if (ret) {
886 dev_err(&of_dev->dev, "could not determine device resources\n");
887 return ret;
888 }
889
890 dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
891 if (!dma) {
892 dev_err(&of_dev->dev, "could not allocate dma object\n");
893 return -ENOMEM;
894 }
895
896 strcpy(dma->path, np->full_name);
897 dma->dai.ops = &fsl_dma_ops;
898 dma->dai.pcm_new = fsl_dma_new;
899 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
900
901 /* Store the SSI-specific information that we need */
902 dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
903 dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
904
905 ret = snd_soc_register_platform(&of_dev->dev, &dma->dai);
906 if (ret) {
907 dev_err(&of_dev->dev, "could not register platform\n");
908 kfree(dma);
909 return ret;
910 }
911
912 dma->channel = of_iomap(np, 0);
913 dma->irq = irq_of_parse_and_map(np, 0);
Timur Tabi87a06322010-08-03 17:55:28 -0500914
915 dev_set_drvdata(&of_dev->dev, dma);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000916
917 return 0;
918}
919
920static int __devexit fsl_soc_dma_remove(struct of_device *of_dev)
921{
Timur Tabi87a06322010-08-03 17:55:28 -0500922 struct dma_object *dma = dev_get_drvdata(&of_dev->dev);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000923
Timur Tabi87a06322010-08-03 17:55:28 -0500924 snd_soc_unregister_platform(&of_dev->dev);
925 iounmap(dma->channel);
926 irq_dispose_mapping(dma->irq);
927 kfree(dma);
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000928
929 return 0;
930}
931
932static const struct of_device_id fsl_soc_dma_ids[] = {
933 { .compatible = "fsl,ssi-dma-channel", },
934 {}
Timur Tabi17467f22008-01-11 18:15:26 +0100935};
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000936MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
Timur Tabi17467f22008-01-11 18:15:26 +0100937
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000938static struct of_platform_driver fsl_soc_dma_driver = {
939 .driver = {
940 .name = "fsl-pcm-audio",
941 .owner = THIS_MODULE,
942 .of_match_table = fsl_soc_dma_ids,
943 },
944 .probe = fsl_soc_dma_probe,
945 .remove = __devexit_p(fsl_soc_dma_remove),
946};
947
948static int __init fsl_soc_dma_init(void)
949{
950 pr_info("Freescale Elo DMA ASoC PCM Driver\n");
951
952 return of_register_platform_driver(&fsl_soc_dma_driver);
953}
954
955static void __exit fsl_soc_dma_exit(void)
956{
957 of_unregister_platform_driver(&fsl_soc_dma_driver);
958}
959
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000960module_init(fsl_soc_dma_init);
961module_exit(fsl_soc_dma_exit);
Mark Brown958e7922008-12-03 19:58:17 +0000962
Timur Tabi17467f22008-01-11 18:15:26 +0100963MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
Liam Girdwoodf0fba2a2010-03-17 20:15:21 +0000964MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
965MODULE_LICENSE("GPL v2");