blob: c274039e9c8d6a2f3d5683bef5f3c3143bcd141a [file] [log] [blame]
Matt Flemingbd353862009-08-14 01:58:43 +09001/*
2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
11 *
12 * TODO:
13 * - DWARF64 doesn't work.
Matt Fleming97efbbd2009-08-16 15:56:35 +010014 * - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
Matt Flemingbd353862009-08-14 01:58:43 +090015 */
16
17/* #define DEBUG */
18#include <linux/kernel.h>
19#include <linux/io.h>
20#include <linux/list.h>
Matt Flemingfb3f3e72009-08-16 15:44:08 +010021#include <linux/mempool.h>
Matt Flemingbd353862009-08-14 01:58:43 +090022#include <linux/mm.h>
23#include <asm/dwarf.h>
24#include <asm/unwinder.h>
25#include <asm/sections.h>
Paul Mundt34974472009-08-14 02:10:59 +090026#include <asm/unaligned.h>
Matt Flemingbd353862009-08-14 01:58:43 +090027#include <asm/stacktrace.h>
28
Matt Flemingfb3f3e72009-08-16 15:44:08 +010029/* Reserve enough memory for two stack frames */
30#define DWARF_FRAME_MIN_REQ 2
31/* ... with 4 registers per frame. */
32#define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4)
33
34static struct kmem_cache *dwarf_frame_cachep;
35static mempool_t *dwarf_frame_pool;
36
37static struct kmem_cache *dwarf_reg_cachep;
38static mempool_t *dwarf_reg_pool;
39
Matt Flemingbd353862009-08-14 01:58:43 +090040static LIST_HEAD(dwarf_cie_list);
Paul Mundt97f361e2009-08-17 05:07:38 +090041static DEFINE_SPINLOCK(dwarf_cie_lock);
Matt Flemingbd353862009-08-14 01:58:43 +090042
43static LIST_HEAD(dwarf_fde_list);
Paul Mundt97f361e2009-08-17 05:07:38 +090044static DEFINE_SPINLOCK(dwarf_fde_lock);
Matt Flemingbd353862009-08-14 01:58:43 +090045
46static struct dwarf_cie *cached_cie;
47
Matt Flemingfb3f3e72009-08-16 15:44:08 +010048/**
49 * dwarf_frame_alloc_reg - allocate memory for a DWARF register
50 * @frame: the DWARF frame whose list of registers we insert on
51 * @reg_num: the register number
Matt Flemingbd353862009-08-14 01:58:43 +090052 *
Matt Flemingfb3f3e72009-08-16 15:44:08 +010053 * Allocate space for, and initialise, a dwarf reg from
54 * dwarf_reg_pool and insert it onto the (unsorted) linked-list of
55 * dwarf registers for @frame.
56 *
57 * Return the initialised DWARF reg.
Matt Flemingbd353862009-08-14 01:58:43 +090058 */
Matt Flemingfb3f3e72009-08-16 15:44:08 +010059static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
60 unsigned int reg_num)
Matt Flemingbd353862009-08-14 01:58:43 +090061{
Matt Flemingfb3f3e72009-08-16 15:44:08 +010062 struct dwarf_reg *reg;
Matt Flemingbd353862009-08-14 01:58:43 +090063
Matt Flemingfb3f3e72009-08-16 15:44:08 +010064 reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
65 if (!reg) {
66 printk(KERN_WARNING "Unable to allocate a DWARF register\n");
Matt Flemingbd353862009-08-14 01:58:43 +090067 /*
68 * Let's just bomb hard here, we have no way to
69 * gracefully recover.
70 */
Matt Flemingb344e24a2009-08-16 21:54:48 +010071 UNWINDER_BUG();
Matt Flemingbd353862009-08-14 01:58:43 +090072 }
73
Matt Flemingfb3f3e72009-08-16 15:44:08 +010074 reg->number = reg_num;
75 reg->addr = 0;
76 reg->flags = 0;
77
78 list_add(&reg->link, &frame->reg_list);
79
80 return reg;
81}
82
83static void dwarf_frame_free_regs(struct dwarf_frame *frame)
84{
85 struct dwarf_reg *reg, *n;
86
87 list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
88 list_del(&reg->link);
89 mempool_free(reg, dwarf_reg_pool);
90 }
91}
92
93/**
94 * dwarf_frame_reg - return a DWARF register
95 * @frame: the DWARF frame to search in for @reg_num
96 * @reg_num: the register number to search for
97 *
98 * Lookup and return the dwarf reg @reg_num for this frame. Return
99 * NULL if @reg_num is an register invalid number.
100 */
101static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
102 unsigned int reg_num)
103{
104 struct dwarf_reg *reg;
105
106 list_for_each_entry(reg, &frame->reg_list, link) {
107 if (reg->number == reg_num)
108 return reg;
Matt Flemingbd353862009-08-14 01:58:43 +0900109 }
110
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100111 return NULL;
Matt Flemingbd353862009-08-14 01:58:43 +0900112}
113
114/**
115 * dwarf_read_addr - read dwarf data
116 * @src: source address of data
117 * @dst: destination address to store the data to
118 *
119 * Read 'n' bytes from @src, where 'n' is the size of an address on
120 * the native machine. We return the number of bytes read, which
121 * should always be 'n'. We also have to be careful when reading
122 * from @src and writing to @dst, because they can be arbitrarily
123 * aligned. Return 'n' - the number of bytes read.
124 */
Paul Mundt34974472009-08-14 02:10:59 +0900125static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
Matt Flemingbd353862009-08-14 01:58:43 +0900126{
Paul Mundtbf43a162009-08-14 03:06:13 +0900127 u32 val = get_unaligned(src);
128 put_unaligned(val, dst);
Matt Flemingbd353862009-08-14 01:58:43 +0900129 return sizeof(unsigned long *);
130}
131
132/**
133 * dwarf_read_uleb128 - read unsigned LEB128 data
134 * @addr: the address where the ULEB128 data is stored
135 * @ret: address to store the result
136 *
137 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
138 * from Appendix C of the DWARF 3 spec. For information on the
139 * encodings refer to section "7.6 - Variable Length Data". Return
140 * the number of bytes read.
141 */
142static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
143{
144 unsigned int result;
145 unsigned char byte;
146 int shift, count;
147
148 result = 0;
149 shift = 0;
150 count = 0;
151
152 while (1) {
153 byte = __raw_readb(addr);
154 addr++;
155 count++;
156
157 result |= (byte & 0x7f) << shift;
158 shift += 7;
159
160 if (!(byte & 0x80))
161 break;
162 }
163
164 *ret = result;
165
166 return count;
167}
168
169/**
170 * dwarf_read_leb128 - read signed LEB128 data
171 * @addr: the address of the LEB128 encoded data
172 * @ret: address to store the result
173 *
174 * Decode signed LEB128 data. The algorithm is taken from Appendix
175 * C of the DWARF 3 spec. Return the number of bytes read.
176 */
177static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
178{
179 unsigned char byte;
180 int result, shift;
181 int num_bits;
182 int count;
183
184 result = 0;
185 shift = 0;
186 count = 0;
187
188 while (1) {
189 byte = __raw_readb(addr);
190 addr++;
191 result |= (byte & 0x7f) << shift;
192 shift += 7;
193 count++;
194
195 if (!(byte & 0x80))
196 break;
197 }
198
199 /* The number of bits in a signed integer. */
200 num_bits = 8 * sizeof(result);
201
202 if ((shift < num_bits) && (byte & 0x40))
203 result |= (-1 << shift);
204
205 *ret = result;
206
207 return count;
208}
209
210/**
211 * dwarf_read_encoded_value - return the decoded value at @addr
212 * @addr: the address of the encoded value
213 * @val: where to write the decoded value
214 * @encoding: the encoding with which we can decode @addr
215 *
216 * GCC emits encoded address in the .eh_frame FDE entries. Decode
217 * the value at @addr using @encoding. The decoded value is written
218 * to @val and the number of bytes read is returned.
219 */
220static int dwarf_read_encoded_value(char *addr, unsigned long *val,
221 char encoding)
222{
223 unsigned long decoded_addr = 0;
224 int count = 0;
225
226 switch (encoding & 0x70) {
227 case DW_EH_PE_absptr:
228 break;
229 case DW_EH_PE_pcrel:
230 decoded_addr = (unsigned long)addr;
231 break;
232 default:
233 pr_debug("encoding=0x%x\n", (encoding & 0x70));
Matt Flemingb344e24a2009-08-16 21:54:48 +0100234 UNWINDER_BUG();
Matt Flemingbd353862009-08-14 01:58:43 +0900235 }
236
237 if ((encoding & 0x07) == 0x00)
238 encoding |= DW_EH_PE_udata4;
239
240 switch (encoding & 0x0f) {
241 case DW_EH_PE_sdata4:
242 case DW_EH_PE_udata4:
243 count += 4;
Paul Mundt34974472009-08-14 02:10:59 +0900244 decoded_addr += get_unaligned((u32 *)addr);
Matt Flemingbd353862009-08-14 01:58:43 +0900245 __raw_writel(decoded_addr, val);
246 break;
247 default:
248 pr_debug("encoding=0x%x\n", encoding);
Matt Flemingb344e24a2009-08-16 21:54:48 +0100249 UNWINDER_BUG();
Matt Flemingbd353862009-08-14 01:58:43 +0900250 }
251
252 return count;
253}
254
255/**
256 * dwarf_entry_len - return the length of an FDE or CIE
257 * @addr: the address of the entry
258 * @len: the length of the entry
259 *
260 * Read the initial_length field of the entry and store the size of
261 * the entry in @len. We return the number of bytes read. Return a
262 * count of 0 on error.
263 */
264static inline int dwarf_entry_len(char *addr, unsigned long *len)
265{
266 u32 initial_len;
267 int count;
268
Paul Mundt34974472009-08-14 02:10:59 +0900269 initial_len = get_unaligned((u32 *)addr);
Matt Flemingbd353862009-08-14 01:58:43 +0900270 count = 4;
271
272 /*
273 * An initial length field value in the range DW_LEN_EXT_LO -
274 * DW_LEN_EXT_HI indicates an extension, and should not be
275 * interpreted as a length. The only extension that we currently
276 * understand is the use of DWARF64 addresses.
277 */
278 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
279 /*
280 * The 64-bit length field immediately follows the
281 * compulsory 32-bit length field.
282 */
283 if (initial_len == DW_EXT_DWARF64) {
Paul Mundt34974472009-08-14 02:10:59 +0900284 *len = get_unaligned((u64 *)addr + 4);
Matt Flemingbd353862009-08-14 01:58:43 +0900285 count = 12;
286 } else {
287 printk(KERN_WARNING "Unknown DWARF extension\n");
288 count = 0;
289 }
290 } else
291 *len = initial_len;
292
293 return count;
294}
295
296/**
297 * dwarf_lookup_cie - locate the cie
298 * @cie_ptr: pointer to help with lookup
299 */
300static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
301{
Paul Mundt97f361e2009-08-17 05:07:38 +0900302 struct dwarf_cie *cie;
Matt Flemingbd353862009-08-14 01:58:43 +0900303 unsigned long flags;
304
305 spin_lock_irqsave(&dwarf_cie_lock, flags);
306
307 /*
308 * We've cached the last CIE we looked up because chances are
309 * that the FDE wants this CIE.
310 */
311 if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
312 cie = cached_cie;
313 goto out;
314 }
315
Paul Mundt97f361e2009-08-17 05:07:38 +0900316 list_for_each_entry(cie, &dwarf_cie_list, link) {
Matt Flemingbd353862009-08-14 01:58:43 +0900317 if (cie->cie_pointer == cie_ptr) {
318 cached_cie = cie;
319 break;
320 }
321 }
322
323 /* Couldn't find the entry in the list. */
324 if (&cie->link == &dwarf_cie_list)
325 cie = NULL;
326out:
327 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
328 return cie;
329}
330
331/**
332 * dwarf_lookup_fde - locate the FDE that covers pc
333 * @pc: the program counter
334 */
335struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
336{
Paul Mundt97f361e2009-08-17 05:07:38 +0900337 struct dwarf_fde *fde;
Matt Flemingbd353862009-08-14 01:58:43 +0900338 unsigned long flags;
Matt Flemingbd353862009-08-14 01:58:43 +0900339
340 spin_lock_irqsave(&dwarf_fde_lock, flags);
Paul Mundt97f361e2009-08-17 05:07:38 +0900341
342 list_for_each_entry(fde, &dwarf_fde_list, link) {
Matt Flemingbd353862009-08-14 01:58:43 +0900343 unsigned long start, end;
344
345 start = fde->initial_location;
346 end = fde->initial_location + fde->address_range;
347
348 if (pc >= start && pc < end)
349 break;
350 }
351
352 /* Couldn't find the entry in the list. */
353 if (&fde->link == &dwarf_fde_list)
354 fde = NULL;
355
356 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
357
358 return fde;
359}
360
361/**
362 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
363 * @insn_start: address of the first instruction
364 * @insn_end: address of the last instruction
365 * @cie: the CIE for this function
366 * @fde: the FDE for this function
367 * @frame: the instructions calculate the CFA for this frame
368 * @pc: the program counter of the address we're interested in
369 *
370 * Execute the Call Frame instruction sequence starting at
371 * @insn_start and ending at @insn_end. The instructions describe
372 * how to calculate the Canonical Frame Address of a stackframe.
373 * Store the results in @frame.
374 */
375static int dwarf_cfa_execute_insns(unsigned char *insn_start,
376 unsigned char *insn_end,
377 struct dwarf_cie *cie,
378 struct dwarf_fde *fde,
379 struct dwarf_frame *frame,
Matt Flemingb9558732009-08-15 23:10:57 +0100380 unsigned long pc)
Matt Flemingbd353862009-08-14 01:58:43 +0900381{
382 unsigned char insn;
383 unsigned char *current_insn;
384 unsigned int count, delta, reg, expr_len, offset;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100385 struct dwarf_reg *regp;
Matt Flemingbd353862009-08-14 01:58:43 +0900386
387 current_insn = insn_start;
388
Matt Flemingb9558732009-08-15 23:10:57 +0100389 while (current_insn < insn_end && frame->pc <= pc) {
Matt Flemingbd353862009-08-14 01:58:43 +0900390 insn = __raw_readb(current_insn++);
391
392 /*
393 * Firstly, handle the opcodes that embed their operands
394 * in the instructions.
395 */
396 switch (DW_CFA_opcode(insn)) {
397 case DW_CFA_advance_loc:
398 delta = DW_CFA_operand(insn);
399 delta *= cie->code_alignment_factor;
400 frame->pc += delta;
401 continue;
402 /* NOTREACHED */
403 case DW_CFA_offset:
404 reg = DW_CFA_operand(insn);
405 count = dwarf_read_uleb128(current_insn, &offset);
406 current_insn += count;
407 offset *= cie->data_alignment_factor;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100408 regp = dwarf_frame_alloc_reg(frame, reg);
409 regp->addr = offset;
410 regp->flags |= DWARF_REG_OFFSET;
Matt Flemingbd353862009-08-14 01:58:43 +0900411 continue;
412 /* NOTREACHED */
413 case DW_CFA_restore:
414 reg = DW_CFA_operand(insn);
415 continue;
416 /* NOTREACHED */
417 }
418
419 /*
420 * Secondly, handle the opcodes that don't embed their
421 * operands in the instruction.
422 */
423 switch (insn) {
424 case DW_CFA_nop:
425 continue;
426 case DW_CFA_advance_loc1:
427 delta = *current_insn++;
428 frame->pc += delta * cie->code_alignment_factor;
429 break;
430 case DW_CFA_advance_loc2:
Paul Mundt34974472009-08-14 02:10:59 +0900431 delta = get_unaligned((u16 *)current_insn);
Matt Flemingbd353862009-08-14 01:58:43 +0900432 current_insn += 2;
433 frame->pc += delta * cie->code_alignment_factor;
434 break;
435 case DW_CFA_advance_loc4:
Paul Mundt34974472009-08-14 02:10:59 +0900436 delta = get_unaligned((u32 *)current_insn);
Matt Flemingbd353862009-08-14 01:58:43 +0900437 current_insn += 4;
438 frame->pc += delta * cie->code_alignment_factor;
439 break;
440 case DW_CFA_offset_extended:
441 count = dwarf_read_uleb128(current_insn, &reg);
442 current_insn += count;
443 count = dwarf_read_uleb128(current_insn, &offset);
444 current_insn += count;
445 offset *= cie->data_alignment_factor;
446 break;
447 case DW_CFA_restore_extended:
448 count = dwarf_read_uleb128(current_insn, &reg);
449 current_insn += count;
450 break;
451 case DW_CFA_undefined:
452 count = dwarf_read_uleb128(current_insn, &reg);
453 current_insn += count;
Matt Fleming5580e902009-08-20 19:53:49 +0100454 regp = dwarf_frame_alloc_reg(frame, reg);
455 regp->flags |= DWARF_UNDEFINED;
Matt Flemingbd353862009-08-14 01:58:43 +0900456 break;
457 case DW_CFA_def_cfa:
458 count = dwarf_read_uleb128(current_insn,
459 &frame->cfa_register);
460 current_insn += count;
461 count = dwarf_read_uleb128(current_insn,
462 &frame->cfa_offset);
463 current_insn += count;
464
465 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
466 break;
467 case DW_CFA_def_cfa_register:
468 count = dwarf_read_uleb128(current_insn,
469 &frame->cfa_register);
470 current_insn += count;
471 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
472 break;
473 case DW_CFA_def_cfa_offset:
474 count = dwarf_read_uleb128(current_insn, &offset);
475 current_insn += count;
476 frame->cfa_offset = offset;
477 break;
478 case DW_CFA_def_cfa_expression:
479 count = dwarf_read_uleb128(current_insn, &expr_len);
480 current_insn += count;
481
482 frame->cfa_expr = current_insn;
483 frame->cfa_expr_len = expr_len;
484 current_insn += expr_len;
485
486 frame->flags |= DWARF_FRAME_CFA_REG_EXP;
487 break;
488 case DW_CFA_offset_extended_sf:
489 count = dwarf_read_uleb128(current_insn, &reg);
490 current_insn += count;
491 count = dwarf_read_leb128(current_insn, &offset);
492 current_insn += count;
493 offset *= cie->data_alignment_factor;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100494 regp = dwarf_frame_alloc_reg(frame, reg);
495 regp->flags |= DWARF_REG_OFFSET;
496 regp->addr = offset;
Matt Flemingbd353862009-08-14 01:58:43 +0900497 break;
498 case DW_CFA_val_offset:
499 count = dwarf_read_uleb128(current_insn, &reg);
500 current_insn += count;
501 count = dwarf_read_leb128(current_insn, &offset);
502 offset *= cie->data_alignment_factor;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100503 regp = dwarf_frame_alloc_reg(frame, reg);
Matt Fleming97efbbd2009-08-16 15:56:35 +0100504 regp->flags |= DWARF_VAL_OFFSET;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100505 regp->addr = offset;
Matt Flemingbd353862009-08-14 01:58:43 +0900506 break;
Matt Flemingcd7246f2009-08-16 01:44:33 +0100507 case DW_CFA_GNU_args_size:
508 count = dwarf_read_uleb128(current_insn, &offset);
509 current_insn += count;
510 break;
511 case DW_CFA_GNU_negative_offset_extended:
512 count = dwarf_read_uleb128(current_insn, &reg);
513 current_insn += count;
514 count = dwarf_read_uleb128(current_insn, &offset);
515 offset *= cie->data_alignment_factor;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100516
517 regp = dwarf_frame_alloc_reg(frame, reg);
518 regp->flags |= DWARF_REG_OFFSET;
519 regp->addr = -offset;
Matt Flemingcd7246f2009-08-16 01:44:33 +0100520 break;
Matt Flemingbd353862009-08-14 01:58:43 +0900521 default:
522 pr_debug("unhandled DWARF instruction 0x%x\n", insn);
Matt Flemingb344e24a2009-08-16 21:54:48 +0100523 UNWINDER_BUG();
Matt Flemingbd353862009-08-14 01:58:43 +0900524 break;
525 }
526 }
527
528 return 0;
529}
530
531/**
Matt Fleminged4fe7f2009-10-10 16:03:11 +0100532 * dwarf_free_frame - free the memory allocated for @frame
533 * @frame: the frame to free
534 */
535void dwarf_free_frame(struct dwarf_frame *frame)
536{
537 dwarf_frame_free_regs(frame);
538 mempool_free(frame, dwarf_frame_pool);
539}
540
541/**
Matt Flemingc2d474d62009-10-10 16:17:06 +0100542 * dwarf_unwind_stack - unwind the stack
543 *
Matt Flemingbd353862009-08-14 01:58:43 +0900544 * @pc: address of the function to unwind
545 * @prev: struct dwarf_frame of the previous stackframe on the callstack
546 *
547 * Return a struct dwarf_frame representing the most recent frame
548 * on the callstack. Each of the lower (older) stack frames are
549 * linked via the "prev" member.
550 */
Matt Flemingb344e24a2009-08-16 21:54:48 +0100551struct dwarf_frame * dwarf_unwind_stack(unsigned long pc,
552 struct dwarf_frame *prev)
Matt Flemingbd353862009-08-14 01:58:43 +0900553{
554 struct dwarf_frame *frame;
555 struct dwarf_cie *cie;
556 struct dwarf_fde *fde;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100557 struct dwarf_reg *reg;
Matt Flemingbd353862009-08-14 01:58:43 +0900558 unsigned long addr;
Matt Flemingbd353862009-08-14 01:58:43 +0900559
560 /*
Matt Flemingc2d474d62009-10-10 16:17:06 +0100561 * If we're starting at the top of the stack we need get the
562 * contents of a physical register to get the CFA in order to
563 * begin the virtual unwinding of the stack.
Matt Flemingbd353862009-08-14 01:58:43 +0900564 *
Matt Flemingf8264662009-08-13 20:41:31 +0100565 * NOTE: the return address is guaranteed to be setup by the
566 * time this function makes its first function call.
Matt Flemingbd353862009-08-14 01:58:43 +0900567 */
Matt Flemingb9558732009-08-15 23:10:57 +0100568 if (!pc && !prev)
569 pc = (unsigned long)current_text_addr();
Matt Flemingbd353862009-08-14 01:58:43 +0900570
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100571 frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
572 if (!frame) {
573 printk(KERN_ERR "Unable to allocate a dwarf frame\n");
Matt Flemingb344e24a2009-08-16 21:54:48 +0100574 UNWINDER_BUG();
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100575 }
Matt Flemingbd353862009-08-14 01:58:43 +0900576
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100577 INIT_LIST_HEAD(&frame->reg_list);
578 frame->flags = 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900579 frame->prev = prev;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100580 frame->return_addr = 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900581
582 fde = dwarf_lookup_fde(pc);
583 if (!fde) {
584 /*
Matt Flemingc2d474d62009-10-10 16:17:06 +0100585 * This is our normal exit path. There are two reasons
586 * why we might exit here,
Matt Flemingbd353862009-08-14 01:58:43 +0900587 *
588 * a) pc has no asscociated DWARF frame info and so
589 * we don't know how to unwind this frame. This is
590 * usually the case when we're trying to unwind a
591 * frame that was called from some assembly code
592 * that has no DWARF info, e.g. syscalls.
593 *
594 * b) the DEBUG info for pc is bogus. There's
595 * really no way to distinguish this case from the
596 * case above, which sucks because we could print a
597 * warning here.
598 */
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100599 goto bail;
Matt Flemingbd353862009-08-14 01:58:43 +0900600 }
601
602 cie = dwarf_lookup_cie(fde->cie_pointer);
603
604 frame->pc = fde->initial_location;
605
606 /* CIE initial instructions */
607 dwarf_cfa_execute_insns(cie->initial_instructions,
Matt Flemingf8264662009-08-13 20:41:31 +0100608 cie->instructions_end, cie, fde,
Matt Flemingb9558732009-08-15 23:10:57 +0100609 frame, pc);
Matt Flemingbd353862009-08-14 01:58:43 +0900610
611 /* FDE instructions */
612 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
Matt Flemingb9558732009-08-15 23:10:57 +0100613 fde, frame, pc);
Matt Flemingbd353862009-08-14 01:58:43 +0900614
615 /* Calculate the CFA */
616 switch (frame->flags) {
617 case DWARF_FRAME_CFA_REG_OFFSET:
618 if (prev) {
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100619 reg = dwarf_frame_reg(prev, frame->cfa_register);
Matt Flemingb344e24a2009-08-16 21:54:48 +0100620 UNWINDER_BUG_ON(!reg);
621 UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
Matt Flemingbd353862009-08-14 01:58:43 +0900622
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100623 addr = prev->cfa + reg->addr;
Matt Flemingbd353862009-08-14 01:58:43 +0900624 frame->cfa = __raw_readl(addr);
625
626 } else {
627 /*
Matt Flemingc2d474d62009-10-10 16:17:06 +0100628 * Again, we're starting from the top of the
629 * stack. We need to physically read
630 * the contents of a register in order to get
631 * the Canonical Frame Address for this
Matt Flemingbd353862009-08-14 01:58:43 +0900632 * function.
633 */
634 frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
635 }
636
637 frame->cfa += frame->cfa_offset;
638 break;
639 default:
Matt Flemingb344e24a2009-08-16 21:54:48 +0100640 UNWINDER_BUG();
Matt Flemingbd353862009-08-14 01:58:43 +0900641 }
642
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100643 reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
Matt Fleming5580e902009-08-20 19:53:49 +0100644
645 /*
646 * If we haven't seen the return address register or the return
647 * address column is undefined then we must assume that this is
648 * the end of the callstack.
649 */
650 if (!reg || reg->flags == DWARF_UNDEFINED)
651 goto bail;
652
Matt Flemingb344e24a2009-08-16 21:54:48 +0100653 UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
Matt Flemingbd353862009-08-14 01:58:43 +0900654
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100655 addr = frame->cfa + reg->addr;
Matt Flemingbd353862009-08-14 01:58:43 +0900656 frame->return_addr = __raw_readl(addr);
657
Matt Flemingbd353862009-08-14 01:58:43 +0900658 return frame;
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100659
660bail:
Matt Fleminged4fe7f2009-10-10 16:03:11 +0100661 dwarf_free_frame(frame);
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100662 return NULL;
Matt Flemingbd353862009-08-14 01:58:43 +0900663}
664
665static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
Matt Fleminga6a2f2a2009-10-09 23:20:54 +0100666 unsigned char *end, struct module *mod)
Matt Flemingbd353862009-08-14 01:58:43 +0900667{
668 struct dwarf_cie *cie;
669 unsigned long flags;
670 int count;
671
672 cie = kzalloc(sizeof(*cie), GFP_KERNEL);
673 if (!cie)
674 return -ENOMEM;
675
676 cie->length = len;
677
678 /*
679 * Record the offset into the .eh_frame section
680 * for this CIE. It allows this CIE to be
681 * quickly and easily looked up from the
682 * corresponding FDE.
683 */
684 cie->cie_pointer = (unsigned long)entry;
685
686 cie->version = *(char *)p++;
Matt Flemingb344e24a2009-08-16 21:54:48 +0100687 UNWINDER_BUG_ON(cie->version != 1);
Matt Flemingbd353862009-08-14 01:58:43 +0900688
689 cie->augmentation = p;
690 p += strlen(cie->augmentation) + 1;
691
692 count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
693 p += count;
694
695 count = dwarf_read_leb128(p, &cie->data_alignment_factor);
696 p += count;
697
698 /*
699 * Which column in the rule table contains the
700 * return address?
701 */
702 if (cie->version == 1) {
703 cie->return_address_reg = __raw_readb(p);
704 p++;
705 } else {
706 count = dwarf_read_uleb128(p, &cie->return_address_reg);
707 p += count;
708 }
709
710 if (cie->augmentation[0] == 'z') {
711 unsigned int length, count;
712 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
713
714 count = dwarf_read_uleb128(p, &length);
715 p += count;
716
Matt Flemingb344e24a2009-08-16 21:54:48 +0100717 UNWINDER_BUG_ON((unsigned char *)p > end);
Matt Flemingbd353862009-08-14 01:58:43 +0900718
719 cie->initial_instructions = p + length;
720 cie->augmentation++;
721 }
722
723 while (*cie->augmentation) {
724 /*
725 * "L" indicates a byte showing how the
726 * LSDA pointer is encoded. Skip it.
727 */
728 if (*cie->augmentation == 'L') {
729 p++;
730 cie->augmentation++;
731 } else if (*cie->augmentation == 'R') {
732 /*
733 * "R" indicates a byte showing
734 * how FDE addresses are
735 * encoded.
736 */
737 cie->encoding = *(char *)p++;
738 cie->augmentation++;
739 } else if (*cie->augmentation == 'P') {
740 /*
741 * "R" indicates a personality
742 * routine in the CIE
743 * augmentation.
744 */
Matt Flemingb344e24a2009-08-16 21:54:48 +0100745 UNWINDER_BUG();
Matt Flemingbd353862009-08-14 01:58:43 +0900746 } else if (*cie->augmentation == 'S') {
Matt Flemingb344e24a2009-08-16 21:54:48 +0100747 UNWINDER_BUG();
Matt Flemingbd353862009-08-14 01:58:43 +0900748 } else {
749 /*
750 * Unknown augmentation. Assume
751 * 'z' augmentation.
752 */
753 p = cie->initial_instructions;
Matt Flemingb344e24a2009-08-16 21:54:48 +0100754 UNWINDER_BUG_ON(!p);
Matt Flemingbd353862009-08-14 01:58:43 +0900755 break;
756 }
757 }
758
759 cie->initial_instructions = p;
760 cie->instructions_end = end;
761
Matt Fleminga6a2f2a2009-10-09 23:20:54 +0100762 cie->mod = mod;
763
Matt Flemingbd353862009-08-14 01:58:43 +0900764 /* Add to list */
765 spin_lock_irqsave(&dwarf_cie_lock, flags);
766 list_add_tail(&cie->link, &dwarf_cie_list);
767 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
768
769 return 0;
770}
771
772static int dwarf_parse_fde(void *entry, u32 entry_type,
Matt Fleming54806752009-08-20 19:42:34 +0100773 void *start, unsigned long len,
Matt Fleminga6a2f2a2009-10-09 23:20:54 +0100774 unsigned char *end, struct module *mod)
Matt Flemingbd353862009-08-14 01:58:43 +0900775{
776 struct dwarf_fde *fde;
777 struct dwarf_cie *cie;
778 unsigned long flags;
779 int count;
780 void *p = start;
781
782 fde = kzalloc(sizeof(*fde), GFP_KERNEL);
783 if (!fde)
784 return -ENOMEM;
785
786 fde->length = len;
787
788 /*
789 * In a .eh_frame section the CIE pointer is the
790 * delta between the address within the FDE
791 */
792 fde->cie_pointer = (unsigned long)(p - entry_type - 4);
793
794 cie = dwarf_lookup_cie(fde->cie_pointer);
795 fde->cie = cie;
796
797 if (cie->encoding)
798 count = dwarf_read_encoded_value(p, &fde->initial_location,
799 cie->encoding);
800 else
801 count = dwarf_read_addr(p, &fde->initial_location);
802
803 p += count;
804
805 if (cie->encoding)
806 count = dwarf_read_encoded_value(p, &fde->address_range,
807 cie->encoding & 0x0f);
808 else
809 count = dwarf_read_addr(p, &fde->address_range);
810
811 p += count;
812
813 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
814 unsigned int length;
815 count = dwarf_read_uleb128(p, &length);
816 p += count + length;
817 }
818
819 /* Call frame instructions. */
820 fde->instructions = p;
Matt Fleming54806752009-08-20 19:42:34 +0100821 fde->end = end;
Matt Flemingbd353862009-08-14 01:58:43 +0900822
Matt Fleminga6a2f2a2009-10-09 23:20:54 +0100823 fde->mod = mod;
824
Matt Flemingbd353862009-08-14 01:58:43 +0900825 /* Add to list. */
826 spin_lock_irqsave(&dwarf_fde_lock, flags);
827 list_add_tail(&fde->link, &dwarf_fde_list);
828 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
829
830 return 0;
831}
832
Matt Flemingb344e24a2009-08-16 21:54:48 +0100833static void dwarf_unwinder_dump(struct task_struct *task,
834 struct pt_regs *regs,
Matt Flemingbd353862009-08-14 01:58:43 +0900835 unsigned long *sp,
Matt Flemingb344e24a2009-08-16 21:54:48 +0100836 const struct stacktrace_ops *ops,
837 void *data)
Matt Flemingbd353862009-08-14 01:58:43 +0900838{
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100839 struct dwarf_frame *frame, *_frame;
840 unsigned long return_addr;
Matt Flemingbd353862009-08-14 01:58:43 +0900841
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100842 _frame = NULL;
843 return_addr = 0;
Matt Flemingbd353862009-08-14 01:58:43 +0900844
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100845 while (1) {
846 frame = dwarf_unwind_stack(return_addr, _frame);
847
Matt Fleminged4fe7f2009-10-10 16:03:11 +0100848 if (_frame)
849 dwarf_free_frame(_frame);
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100850
851 _frame = frame;
852
853 if (!frame || !frame->return_addr)
854 break;
855
856 return_addr = frame->return_addr;
857 ops->address(data, return_addr, 1);
Matt Flemingbd353862009-08-14 01:58:43 +0900858 }
Matt Fleminged4fe7f2009-10-10 16:03:11 +0100859
860 if (frame)
861 dwarf_free_frame(frame);
Matt Flemingbd353862009-08-14 01:58:43 +0900862}
863
864static struct unwinder dwarf_unwinder = {
865 .name = "dwarf-unwinder",
866 .dump = dwarf_unwinder_dump,
867 .rating = 150,
868};
869
870static void dwarf_unwinder_cleanup(void)
871{
Paul Mundt97f361e2009-08-17 05:07:38 +0900872 struct dwarf_cie *cie;
873 struct dwarf_fde *fde;
Matt Flemingbd353862009-08-14 01:58:43 +0900874
875 /*
876 * Deallocate all the memory allocated for the DWARF unwinder.
877 * Traverse all the FDE/CIE lists and remove and free all the
878 * memory associated with those data structures.
879 */
Paul Mundt97f361e2009-08-17 05:07:38 +0900880 list_for_each_entry(cie, &dwarf_cie_list, link)
Matt Flemingbd353862009-08-14 01:58:43 +0900881 kfree(cie);
Matt Flemingbd353862009-08-14 01:58:43 +0900882
Paul Mundt97f361e2009-08-17 05:07:38 +0900883 list_for_each_entry(fde, &dwarf_fde_list, link)
Matt Flemingbd353862009-08-14 01:58:43 +0900884 kfree(fde);
Matt Flemingfb3f3e72009-08-16 15:44:08 +0100885
886 kmem_cache_destroy(dwarf_reg_cachep);
887 kmem_cache_destroy(dwarf_frame_cachep);
Matt Flemingbd353862009-08-14 01:58:43 +0900888}
889
890/**
Matt Fleminga6a2f2a2009-10-09 23:20:54 +0100891 * dwarf_parse_section - parse DWARF section
892 * @eh_frame_start: start address of the .eh_frame section
893 * @eh_frame_end: end address of the .eh_frame section
894 * @mod: the kernel module containing the .eh_frame section
895 *
896 * Parse the information in a .eh_frame section.
897 */
898int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
899 struct module *mod)
900{
901 u32 entry_type;
902 void *p, *entry;
Paul Mundt8ec006c2009-10-12 08:50:07 +0900903 int count, err = 0;
Matt Fleminga6a2f2a2009-10-09 23:20:54 +0100904 unsigned long len;
905 unsigned int c_entries, f_entries;
906 unsigned char *end;
907
908 c_entries = 0;
909 f_entries = 0;
910 entry = eh_frame_start;
911
912 while ((char *)entry < eh_frame_end) {
913 p = entry;
914
915 count = dwarf_entry_len(p, &len);
916 if (count == 0) {
917 /*
918 * We read a bogus length field value. There is
919 * nothing we can do here apart from disabling
920 * the DWARF unwinder. We can't even skip this
921 * entry and move to the next one because 'len'
922 * tells us where our next entry is.
923 */
924 err = -EINVAL;
925 goto out;
926 } else
927 p += count;
928
929 /* initial length does not include itself */
930 end = p + len;
931
932 entry_type = get_unaligned((u32 *)p);
933 p += 4;
934
935 if (entry_type == DW_EH_FRAME_CIE) {
936 err = dwarf_parse_cie(entry, p, len, end, mod);
937 if (err < 0)
938 goto out;
939 else
940 c_entries++;
941 } else {
942 err = dwarf_parse_fde(entry, entry_type, p, len,
943 end, mod);
944 if (err < 0)
945 goto out;
946 else
947 f_entries++;
948 }
949
950 entry = (char *)entry + len + 4;
951 }
952
953 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
954 c_entries, f_entries);
955
956 return 0;
957
958out:
959 return err;
960}
961
962/**
963 * dwarf_module_unload - remove FDE/CIEs associated with @mod
964 * @mod: the module that is being unloaded
965 *
966 * Remove any FDEs and CIEs from the global lists that came from
967 * @mod's .eh_frame section because @mod is being unloaded.
968 */
969void dwarf_module_unload(struct module *mod)
970{
971 struct dwarf_fde *fde;
972 struct dwarf_cie *cie;
973 unsigned long flags;
974
975 spin_lock_irqsave(&dwarf_cie_lock, flags);
976
977again_cie:
978 list_for_each_entry(cie, &dwarf_cie_list, link) {
979 if (cie->mod == mod)
980 break;
981 }
982
983 if (&cie->link != &dwarf_cie_list) {
984 list_del(&cie->link);
985 kfree(cie);
986 goto again_cie;
987 }
988
989 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
990
991 spin_lock_irqsave(&dwarf_fde_lock, flags);
992
993again_fde:
994 list_for_each_entry(fde, &dwarf_fde_list, link) {
995 if (fde->mod == mod)
996 break;
997 }
998
999 if (&fde->link != &dwarf_fde_list) {
1000 list_del(&fde->link);
1001 kfree(fde);
1002 goto again_fde;
1003 }
1004
1005 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
1006}
1007
1008/**
Matt Flemingbd353862009-08-14 01:58:43 +09001009 * dwarf_unwinder_init - initialise the dwarf unwinder
1010 *
1011 * Build the data structures describing the .dwarf_frame section to
1012 * make it easier to lookup CIE and FDE entries. Because the
1013 * .eh_frame section is packed as tightly as possible it is not
1014 * easy to lookup the FDE for a given PC, so we build a list of FDE
1015 * and CIE entries that make it easier.
1016 */
Paul Mundt97f361e2009-08-17 05:07:38 +09001017static int __init dwarf_unwinder_init(void)
Matt Flemingbd353862009-08-14 01:58:43 +09001018{
Matt Fleminga6a2f2a2009-10-09 23:20:54 +01001019 int err;
Matt Flemingbd353862009-08-14 01:58:43 +09001020 INIT_LIST_HEAD(&dwarf_cie_list);
1021 INIT_LIST_HEAD(&dwarf_fde_list);
1022
Matt Flemingfb3f3e72009-08-16 15:44:08 +01001023 dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
Paul Mundt4f896ff2009-08-22 19:03:25 +09001024 sizeof(struct dwarf_frame), 0,
1025 SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1026
Matt Flemingfb3f3e72009-08-16 15:44:08 +01001027 dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
Paul Mundt4f896ff2009-08-22 19:03:25 +09001028 sizeof(struct dwarf_reg), 0,
1029 SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
Matt Flemingfb3f3e72009-08-16 15:44:08 +01001030
1031 dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
1032 mempool_alloc_slab,
1033 mempool_free_slab,
1034 dwarf_frame_cachep);
1035
1036 dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
1037 mempool_alloc_slab,
1038 mempool_free_slab,
1039 dwarf_reg_cachep);
1040
Matt Fleminga6a2f2a2009-10-09 23:20:54 +01001041 err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
1042 if (err)
1043 goto out;
Matt Flemingbd353862009-08-14 01:58:43 +09001044
1045 err = unwinder_register(&dwarf_unwinder);
1046 if (err)
1047 goto out;
1048
Paul Mundt97f361e2009-08-17 05:07:38 +09001049 return 0;
Matt Flemingbd353862009-08-14 01:58:43 +09001050
1051out:
1052 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
1053 dwarf_unwinder_cleanup();
Paul Mundt97f361e2009-08-17 05:07:38 +09001054 return -EINVAL;
Matt Flemingbd353862009-08-14 01:58:43 +09001055}
Paul Mundt97f361e2009-08-17 05:07:38 +09001056early_initcall(dwarf_unwinder_init);