blob: 57749eb438e476824457229b845eaab91badb734 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
Auke Kok3d41e302006-04-14 19:05:31 -07004 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
Auke Kok3d41e302006-04-14 19:05:31 -070025 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Linus Torvalds1da177e2005-04-16 15:20:36 -070026 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28*******************************************************************************/
29
30/* e1000_hw.c
31 * Shared functions for accessing and configuring the MAC
32 */
33
Auke Kok8fc897b2006-08-28 14:56:16 -070034
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "e1000_hw.h"
36
37static int32_t e1000_set_phy_type(struct e1000_hw *hw);
38static void e1000_phy_init_script(struct e1000_hw *hw);
39static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
40static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
41static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
42static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
43static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
44static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
45static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
46static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
47 uint16_t count);
48static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
49static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
50static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
51 uint16_t words, uint16_t *data);
52static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
53 uint16_t offset, uint16_t words,
54 uint16_t *data);
55static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
56static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
57static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
58static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
59 uint16_t count);
60static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
61 uint16_t phy_data);
62static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
63 uint16_t *phy_data);
64static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
65static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
66static void e1000_release_eeprom(struct e1000_hw *hw);
67static void e1000_standby_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070068static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
69static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
70static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -070071static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
72static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
Adrian Bunk3ad2cc62005-10-30 16:53:34 +010073static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
74static int32_t e1000_check_downshift(struct e1000_hw *hw);
75static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity);
76static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
77static void e1000_clear_vfta(struct e1000_hw *hw);
78static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
79static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw,
80 boolean_t link_up);
81static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
82static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
83static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
84static int32_t e1000_get_cable_length(struct e1000_hw *hw,
85 uint16_t *min_length,
86 uint16_t *max_length);
87static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
88static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
89static int32_t e1000_id_led_init(struct e1000_hw * hw);
90static void e1000_init_rx_addrs(struct e1000_hw *hw);
91static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
92static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
93static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
94static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
95 uint16_t words, uint16_t *data);
96static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
97static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
98static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
99
100static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
101 uint32_t value);
102
103#define E1000_WRITE_REG_IO(a, reg, val) \
104 e1000_write_reg_io((a), E1000_##reg, val)
Auke Kokcd94dd02006-06-27 09:08:22 -0700105static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
106 uint16_t duplex);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800107static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
Adrian Bunke4c780b2006-08-14 23:00:10 -0700109static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw,
110 uint32_t segment);
111static int32_t e1000_get_software_flag(struct e1000_hw *hw);
112static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
113static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
114static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
115static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
116 uint16_t words, uint16_t *data);
117static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
118 uint8_t* data);
119static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
120 uint16_t *data);
121static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
122 uint16_t *data);
123static void e1000_release_software_flag(struct e1000_hw *hw);
124static void e1000_release_software_semaphore(struct e1000_hw *hw);
125static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw,
126 uint32_t no_snoop);
127static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw,
128 uint32_t index, uint8_t byte);
129static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
130 uint16_t words, uint16_t *data);
131static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
132 uint8_t data);
133static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
134 uint16_t data);
135
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136/* IGP cable length table */
137static const
138uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
139 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
140 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
141 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
142 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
143 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
144 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
145 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
146 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
147
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700148static const
149uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400150 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
151 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
152 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
153 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
154 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
155 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
156 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
157 104, 109, 114, 118, 121, 124};
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700158
Linus Torvalds1da177e2005-04-16 15:20:36 -0700159
160/******************************************************************************
161 * Set the phy type member in the hw struct.
162 *
163 * hw - Struct containing variables accessed by shared code
164 *****************************************************************************/
165int32_t
166e1000_set_phy_type(struct e1000_hw *hw)
167{
168 DEBUGFUNC("e1000_set_phy_type");
169
Auke Kok8fc897b2006-08-28 14:56:16 -0700170 if (hw->mac_type == e1000_undefined)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700171 return -E1000_ERR_PHY_TYPE;
172
Auke Kok8fc897b2006-08-28 14:56:16 -0700173 switch (hw->phy_id) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174 case M88E1000_E_PHY_ID:
175 case M88E1000_I_PHY_ID:
176 case M88E1011_I_PHY_ID:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700177 case M88E1111_I_PHY_ID:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178 hw->phy_type = e1000_phy_m88;
179 break;
180 case IGP01E1000_I_PHY_ID:
Auke Kok8fc897b2006-08-28 14:56:16 -0700181 if (hw->mac_type == e1000_82541 ||
182 hw->mac_type == e1000_82541_rev_2 ||
183 hw->mac_type == e1000_82547 ||
184 hw->mac_type == e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185 hw->phy_type = e1000_phy_igp;
186 break;
187 }
Auke Kokcd94dd02006-06-27 09:08:22 -0700188 case IGP03E1000_E_PHY_ID:
189 hw->phy_type = e1000_phy_igp_3;
190 break;
191 case IFE_E_PHY_ID:
192 case IFE_PLUS_E_PHY_ID:
193 case IFE_C_E_PHY_ID:
194 hw->phy_type = e1000_phy_ife;
195 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800196 case GG82563_E_PHY_ID:
197 if (hw->mac_type == e1000_80003es2lan) {
198 hw->phy_type = e1000_phy_gg82563;
199 break;
200 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201 /* Fall Through */
202 default:
203 /* Should never have loaded on this device */
204 hw->phy_type = e1000_phy_undefined;
205 return -E1000_ERR_PHY_TYPE;
206 }
207
208 return E1000_SUCCESS;
209}
210
Auke Kok8fc897b2006-08-28 14:56:16 -0700211
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212/******************************************************************************
213 * IGP phy init script - initializes the GbE PHY
214 *
215 * hw - Struct containing variables accessed by shared code
216 *****************************************************************************/
217static void
218e1000_phy_init_script(struct e1000_hw *hw)
219{
220 uint32_t ret_val;
221 uint16_t phy_saved_data;
222
223 DEBUGFUNC("e1000_phy_init_script");
224
Auke Kok8fc897b2006-08-28 14:56:16 -0700225 if (hw->phy_init_script) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226 msec_delay(20);
227
228 /* Save off the current value of register 0x2F5B to be restored at
229 * the end of this routine. */
230 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
231
232 /* Disabled the PHY transmitter */
233 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
234
235 msec_delay(20);
236
237 e1000_write_phy_reg(hw,0x0000,0x0140);
238
239 msec_delay(5);
240
Auke Kok8fc897b2006-08-28 14:56:16 -0700241 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242 case e1000_82541:
243 case e1000_82547:
244 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
245
246 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
247
248 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
249
250 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
251
252 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
253
254 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
255
256 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
257
258 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
259
260 e1000_write_phy_reg(hw, 0x2010, 0x0008);
261 break;
262
263 case e1000_82541_rev_2:
264 case e1000_82547_rev_2:
265 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
266 break;
267 default:
268 break;
269 }
270
271 e1000_write_phy_reg(hw, 0x0000, 0x3300);
272
273 msec_delay(20);
274
275 /* Now enable the transmitter */
276 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
277
Auke Kok8fc897b2006-08-28 14:56:16 -0700278 if (hw->mac_type == e1000_82547) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279 uint16_t fused, fine, coarse;
280
281 /* Move to analog registers page */
282 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
283
Auke Kok8fc897b2006-08-28 14:56:16 -0700284 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
286
287 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
288 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
289
Auke Kok8fc897b2006-08-28 14:56:16 -0700290 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
292 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
Auke Kok8fc897b2006-08-28 14:56:16 -0700293 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
295
296 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
297 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
298 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
299
300 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
301 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
302 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
303 }
304 }
305 }
306}
307
308/******************************************************************************
309 * Set the mac type member in the hw struct.
310 *
311 * hw - Struct containing variables accessed by shared code
312 *****************************************************************************/
313int32_t
314e1000_set_mac_type(struct e1000_hw *hw)
315{
316 DEBUGFUNC("e1000_set_mac_type");
317
318 switch (hw->device_id) {
319 case E1000_DEV_ID_82542:
320 switch (hw->revision_id) {
321 case E1000_82542_2_0_REV_ID:
322 hw->mac_type = e1000_82542_rev2_0;
323 break;
324 case E1000_82542_2_1_REV_ID:
325 hw->mac_type = e1000_82542_rev2_1;
326 break;
327 default:
328 /* Invalid 82542 revision ID */
329 return -E1000_ERR_MAC_TYPE;
330 }
331 break;
332 case E1000_DEV_ID_82543GC_FIBER:
333 case E1000_DEV_ID_82543GC_COPPER:
334 hw->mac_type = e1000_82543;
335 break;
336 case E1000_DEV_ID_82544EI_COPPER:
337 case E1000_DEV_ID_82544EI_FIBER:
338 case E1000_DEV_ID_82544GC_COPPER:
339 case E1000_DEV_ID_82544GC_LOM:
340 hw->mac_type = e1000_82544;
341 break;
342 case E1000_DEV_ID_82540EM:
343 case E1000_DEV_ID_82540EM_LOM:
344 case E1000_DEV_ID_82540EP:
345 case E1000_DEV_ID_82540EP_LOM:
346 case E1000_DEV_ID_82540EP_LP:
347 hw->mac_type = e1000_82540;
348 break;
349 case E1000_DEV_ID_82545EM_COPPER:
350 case E1000_DEV_ID_82545EM_FIBER:
351 hw->mac_type = e1000_82545;
352 break;
353 case E1000_DEV_ID_82545GM_COPPER:
354 case E1000_DEV_ID_82545GM_FIBER:
355 case E1000_DEV_ID_82545GM_SERDES:
356 hw->mac_type = e1000_82545_rev_3;
357 break;
358 case E1000_DEV_ID_82546EB_COPPER:
359 case E1000_DEV_ID_82546EB_FIBER:
360 case E1000_DEV_ID_82546EB_QUAD_COPPER:
361 hw->mac_type = e1000_82546;
362 break;
363 case E1000_DEV_ID_82546GB_COPPER:
364 case E1000_DEV_ID_82546GB_FIBER:
365 case E1000_DEV_ID_82546GB_SERDES:
366 case E1000_DEV_ID_82546GB_PCIE:
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800367 case E1000_DEV_ID_82546GB_QUAD_COPPER:
368 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369 hw->mac_type = e1000_82546_rev_3;
370 break;
371 case E1000_DEV_ID_82541EI:
372 case E1000_DEV_ID_82541EI_MOBILE:
Auke Kokcd94dd02006-06-27 09:08:22 -0700373 case E1000_DEV_ID_82541ER_LOM:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374 hw->mac_type = e1000_82541;
375 break;
376 case E1000_DEV_ID_82541ER:
377 case E1000_DEV_ID_82541GI:
378 case E1000_DEV_ID_82541GI_LF:
379 case E1000_DEV_ID_82541GI_MOBILE:
380 hw->mac_type = e1000_82541_rev_2;
381 break;
382 case E1000_DEV_ID_82547EI:
Auke Kokcd94dd02006-06-27 09:08:22 -0700383 case E1000_DEV_ID_82547EI_MOBILE:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700384 hw->mac_type = e1000_82547;
385 break;
386 case E1000_DEV_ID_82547GI:
387 hw->mac_type = e1000_82547_rev_2;
388 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400389 case E1000_DEV_ID_82571EB_COPPER:
390 case E1000_DEV_ID_82571EB_FIBER:
391 case E1000_DEV_ID_82571EB_SERDES:
392 hw->mac_type = e1000_82571;
393 break;
394 case E1000_DEV_ID_82572EI_COPPER:
395 case E1000_DEV_ID_82572EI_FIBER:
396 case E1000_DEV_ID_82572EI_SERDES:
Auke Kokcd94dd02006-06-27 09:08:22 -0700397 case E1000_DEV_ID_82572EI:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400398 hw->mac_type = e1000_82572;
399 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700400 case E1000_DEV_ID_82573E:
401 case E1000_DEV_ID_82573E_IAMT:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400402 case E1000_DEV_ID_82573L:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700403 hw->mac_type = e1000_82573;
404 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700405 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
406 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800407 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
408 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
409 hw->mac_type = e1000_80003es2lan;
410 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700411 case E1000_DEV_ID_ICH8_IGP_M_AMT:
412 case E1000_DEV_ID_ICH8_IGP_AMT:
413 case E1000_DEV_ID_ICH8_IGP_C:
414 case E1000_DEV_ID_ICH8_IFE:
415 case E1000_DEV_ID_ICH8_IGP_M:
416 hw->mac_type = e1000_ich8lan;
417 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418 default:
419 /* Should never have loaded on this device */
420 return -E1000_ERR_MAC_TYPE;
421 }
422
Auke Kok8fc897b2006-08-28 14:56:16 -0700423 switch (hw->mac_type) {
Auke Kokcd94dd02006-06-27 09:08:22 -0700424 case e1000_ich8lan:
425 hw->swfwhw_semaphore_present = TRUE;
426 hw->asf_firmware_present = TRUE;
427 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800428 case e1000_80003es2lan:
429 hw->swfw_sync_present = TRUE;
430 /* fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400431 case e1000_82571:
432 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700433 case e1000_82573:
434 hw->eeprom_semaphore_present = TRUE;
435 /* fall through */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436 case e1000_82541:
437 case e1000_82547:
438 case e1000_82541_rev_2:
439 case e1000_82547_rev_2:
440 hw->asf_firmware_present = TRUE;
441 break;
442 default:
443 break;
444 }
445
446 return E1000_SUCCESS;
447}
448
449/*****************************************************************************
450 * Set media type and TBI compatibility.
451 *
452 * hw - Struct containing variables accessed by shared code
453 * **************************************************************************/
454void
455e1000_set_media_type(struct e1000_hw *hw)
456{
457 uint32_t status;
458
459 DEBUGFUNC("e1000_set_media_type");
460
Auke Kok8fc897b2006-08-28 14:56:16 -0700461 if (hw->mac_type != e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700462 /* tbi_compatibility is only valid on 82543 */
463 hw->tbi_compatibility_en = FALSE;
464 }
465
466 switch (hw->device_id) {
467 case E1000_DEV_ID_82545GM_SERDES:
468 case E1000_DEV_ID_82546GB_SERDES:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400469 case E1000_DEV_ID_82571EB_SERDES:
470 case E1000_DEV_ID_82572EI_SERDES:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800471 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700472 hw->media_type = e1000_media_type_internal_serdes;
473 break;
474 default:
Malli Chilakala3893d542005-06-17 17:44:49 -0700475 switch (hw->mac_type) {
476 case e1000_82542_rev2_0:
477 case e1000_82542_rev2_1:
478 hw->media_type = e1000_media_type_fiber;
479 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700480 case e1000_ich8lan:
Malli Chilakala3893d542005-06-17 17:44:49 -0700481 case e1000_82573:
482 /* The STATUS_TBIMODE bit is reserved or reused for the this
483 * device.
484 */
485 hw->media_type = e1000_media_type_copper;
486 break;
487 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700488 status = E1000_READ_REG(hw, STATUS);
Malli Chilakala3893d542005-06-17 17:44:49 -0700489 if (status & E1000_STATUS_TBIMODE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700490 hw->media_type = e1000_media_type_fiber;
491 /* tbi_compatibility not valid on fiber */
492 hw->tbi_compatibility_en = FALSE;
493 } else {
494 hw->media_type = e1000_media_type_copper;
495 }
Malli Chilakala3893d542005-06-17 17:44:49 -0700496 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497 }
498 }
499}
500
501/******************************************************************************
502 * Reset the transmit and receive units; mask and clear all interrupts.
503 *
504 * hw - Struct containing variables accessed by shared code
505 *****************************************************************************/
506int32_t
507e1000_reset_hw(struct e1000_hw *hw)
508{
509 uint32_t ctrl;
510 uint32_t ctrl_ext;
511 uint32_t icr;
512 uint32_t manc;
513 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700514 uint32_t timeout;
515 uint32_t extcnf_ctrl;
516 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517
518 DEBUGFUNC("e1000_reset_hw");
519
520 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
Auke Kok8fc897b2006-08-28 14:56:16 -0700521 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
523 e1000_pci_clear_mwi(hw);
524 }
525
Auke Kok8fc897b2006-08-28 14:56:16 -0700526 if (hw->bus_type == e1000_bus_type_pci_express) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700527 /* Prevent the PCI-E bus from sticking if there is no TLP connection
528 * on the last TLP read/write transaction when MAC is reset.
529 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700530 if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700531 DEBUGOUT("PCI-E Master disable polling has failed.\n");
532 }
533 }
534
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535 /* Clear interrupt mask to stop board from generating interrupts */
536 DEBUGOUT("Masking off all interrupts\n");
537 E1000_WRITE_REG(hw, IMC, 0xffffffff);
538
539 /* Disable the Transmit and Receive units. Then delay to allow
540 * any pending transactions to complete before we hit the MAC with
541 * the global reset.
542 */
543 E1000_WRITE_REG(hw, RCTL, 0);
544 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
545 E1000_WRITE_FLUSH(hw);
546
547 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
548 hw->tbi_compatibility_on = FALSE;
549
550 /* Delay to allow any outstanding PCI transactions to complete before
551 * resetting the device
552 */
553 msec_delay(10);
554
555 ctrl = E1000_READ_REG(hw, CTRL);
556
557 /* Must reset the PHY before resetting the MAC */
Auke Kok8fc897b2006-08-28 14:56:16 -0700558 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700559 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700560 msec_delay(5);
561 }
562
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700563 /* Must acquire the MDIO ownership before MAC reset.
564 * Ownership defaults to firmware after a reset. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700565 if (hw->mac_type == e1000_82573) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700566 timeout = 10;
567
568 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
569 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
570
571 do {
572 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
573 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
574
Auke Kok8fc897b2006-08-28 14:56:16 -0700575 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700576 break;
577 else
578 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
579
580 msec_delay(2);
581 timeout--;
Auke Kok8fc897b2006-08-28 14:56:16 -0700582 } while (timeout);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700583 }
584
Auke Kokcd94dd02006-06-27 09:08:22 -0700585 /* Workaround for ICH8 bit corruption issue in FIFO memory */
586 if (hw->mac_type == e1000_ich8lan) {
587 /* Set Tx and Rx buffer allocation to 8k apiece. */
588 E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
589 /* Set Packet Buffer Size to 16k. */
590 E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
591 }
592
Linus Torvalds1da177e2005-04-16 15:20:36 -0700593 /* Issue a global reset to the MAC. This will reset the chip's
594 * transmit, receive, DMA, and link units. It will not effect
595 * the current PCI configuration. The global reset bit is self-
596 * clearing, and should clear within a microsecond.
597 */
598 DEBUGOUT("Issuing a global reset to MAC\n");
599
Auke Kok8fc897b2006-08-28 14:56:16 -0700600 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700601 case e1000_82544:
602 case e1000_82540:
603 case e1000_82545:
604 case e1000_82546:
605 case e1000_82541:
606 case e1000_82541_rev_2:
607 /* These controllers can't ack the 64-bit write when issuing the
608 * reset, so use IO-mapping as a workaround to issue the reset */
609 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
610 break;
611 case e1000_82545_rev_3:
612 case e1000_82546_rev_3:
613 /* Reset is performed on a shadow of the control register */
614 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
615 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700616 case e1000_ich8lan:
617 if (!hw->phy_reset_disable &&
618 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
619 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
620 * at the same time to make sure the interface between
621 * MAC and the external PHY is reset.
622 */
623 ctrl |= E1000_CTRL_PHY_RST;
624 }
625
626 e1000_get_software_flag(hw);
627 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
628 msec_delay(5);
629 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630 default:
631 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
632 break;
633 }
634
635 /* After MAC reset, force reload of EEPROM to restore power-on settings to
636 * device. Later controllers reload the EEPROM automatically, so just wait
637 * for reload to complete.
638 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700639 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700640 case e1000_82542_rev2_0:
641 case e1000_82542_rev2_1:
642 case e1000_82543:
643 case e1000_82544:
644 /* Wait for reset to complete */
645 udelay(10);
646 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
647 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
648 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
649 E1000_WRITE_FLUSH(hw);
650 /* Wait for EEPROM reload */
651 msec_delay(2);
652 break;
653 case e1000_82541:
654 case e1000_82541_rev_2:
655 case e1000_82547:
656 case e1000_82547_rev_2:
657 /* Wait for EEPROM reload */
658 msec_delay(20);
659 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700660 case e1000_82573:
Jeff Kirsherfd803242005-12-13 00:06:22 -0500661 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
662 udelay(10);
663 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
664 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
665 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
666 E1000_WRITE_FLUSH(hw);
667 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700668 /* fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400669 case e1000_82571:
670 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -0700671 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800672 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700673 ret_val = e1000_get_auto_rd_done(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -0700674 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700675 /* We don't want to continue accessing MAC registers. */
676 return ret_val;
677 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678 default:
679 /* Wait for EEPROM reload (it happens automatically) */
680 msec_delay(5);
681 break;
682 }
683
684 /* Disable HW ARPs on ASF enabled adapters */
Auke Kok8fc897b2006-08-28 14:56:16 -0700685 if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686 manc = E1000_READ_REG(hw, MANC);
687 manc &= ~(E1000_MANC_ARP_EN);
688 E1000_WRITE_REG(hw, MANC, manc);
689 }
690
Auke Kok8fc897b2006-08-28 14:56:16 -0700691 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700692 e1000_phy_init_script(hw);
693
694 /* Configure activity LED after PHY reset */
695 led_ctrl = E1000_READ_REG(hw, LEDCTL);
696 led_ctrl &= IGP_ACTIVITY_LED_MASK;
697 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
698 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
699 }
700
701 /* Clear interrupt mask to stop board from generating interrupts */
702 DEBUGOUT("Masking off all interrupts\n");
703 E1000_WRITE_REG(hw, IMC, 0xffffffff);
704
705 /* Clear any pending interrupt events. */
706 icr = E1000_READ_REG(hw, ICR);
707
708 /* If MWI was previously enabled, reenable it. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700709 if (hw->mac_type == e1000_82542_rev2_0) {
710 if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700711 e1000_pci_set_mwi(hw);
712 }
713
Auke Kokcd94dd02006-06-27 09:08:22 -0700714 if (hw->mac_type == e1000_ich8lan) {
715 uint32_t kab = E1000_READ_REG(hw, KABGTXD);
716 kab |= E1000_KABGTXD_BGSQLBIAS;
717 E1000_WRITE_REG(hw, KABGTXD, kab);
718 }
719
Linus Torvalds1da177e2005-04-16 15:20:36 -0700720 return E1000_SUCCESS;
721}
722
723/******************************************************************************
724 * Performs basic configuration of the adapter.
725 *
726 * hw - Struct containing variables accessed by shared code
727 *
728 * Assumes that the controller has previously been reset and is in a
729 * post-reset uninitialized state. Initializes the receive address registers,
730 * multicast table, and VLAN filter table. Calls routines to setup link
731 * configuration and flow control settings. Clears all on-chip counters. Leaves
732 * the transmit and receive units disabled and uninitialized.
733 *****************************************************************************/
734int32_t
735e1000_init_hw(struct e1000_hw *hw)
736{
737 uint32_t ctrl;
738 uint32_t i;
739 int32_t ret_val;
740 uint16_t pcix_cmd_word;
741 uint16_t pcix_stat_hi_word;
742 uint16_t cmd_mmrbc;
743 uint16_t stat_mmrbc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700744 uint32_t mta_size;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800745 uint32_t reg_data;
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800746 uint32_t ctrl_ext;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700747
Linus Torvalds1da177e2005-04-16 15:20:36 -0700748 DEBUGFUNC("e1000_init_hw");
749
Jeff Kirsher7820d422006-08-16 13:39:00 -0700750 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
751 if (hw->mac_type == e1000_ich8lan) {
752 reg_data = E1000_READ_REG(hw, TARC0);
753 reg_data |= 0x30000000;
754 E1000_WRITE_REG(hw, TARC0, reg_data);
755
756 reg_data = E1000_READ_REG(hw, STATUS);
757 reg_data &= ~0x80000000;
758 E1000_WRITE_REG(hw, STATUS, reg_data);
759 }
760
Linus Torvalds1da177e2005-04-16 15:20:36 -0700761 /* Initialize Identification LED */
762 ret_val = e1000_id_led_init(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -0700763 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700764 DEBUGOUT("Error Initializing Identification LED\n");
765 return ret_val;
766 }
767
768 /* Set the media type and TBI compatibility */
769 e1000_set_media_type(hw);
770
771 /* Disabling VLAN filtering. */
772 DEBUGOUT("Initializing the IEEE VLAN\n");
Auke Kokcd94dd02006-06-27 09:08:22 -0700773 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
774 if (hw->mac_type != e1000_ich8lan) {
775 if (hw->mac_type < e1000_82545_rev_3)
776 E1000_WRITE_REG(hw, VET, 0);
777 e1000_clear_vfta(hw);
778 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700779
780 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
Auke Kok8fc897b2006-08-28 14:56:16 -0700781 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
783 e1000_pci_clear_mwi(hw);
784 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
785 E1000_WRITE_FLUSH(hw);
786 msec_delay(5);
787 }
788
789 /* Setup the receive address. This involves initializing all of the Receive
790 * Address Registers (RARs 0 - 15).
791 */
792 e1000_init_rx_addrs(hw);
793
794 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
Auke Kok8fc897b2006-08-28 14:56:16 -0700795 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796 E1000_WRITE_REG(hw, RCTL, 0);
797 E1000_WRITE_FLUSH(hw);
798 msec_delay(1);
Auke Kok8fc897b2006-08-28 14:56:16 -0700799 if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 e1000_pci_set_mwi(hw);
801 }
802
803 /* Zero out the Multicast HASH table */
804 DEBUGOUT("Zeroing the MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700805 mta_size = E1000_MC_TBL_SIZE;
Auke Kokcd94dd02006-06-27 09:08:22 -0700806 if (hw->mac_type == e1000_ich8lan)
807 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
Auke Kok8fc897b2006-08-28 14:56:16 -0700808 for (i = 0; i < mta_size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Auke Kok4ca213a2006-06-27 09:07:08 -0700810 /* use write flush to prevent Memory Write Block (MWB) from
811 * occuring when accessing our register space */
812 E1000_WRITE_FLUSH(hw);
813 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814
815 /* Set the PCI priority bit correctly in the CTRL register. This
816 * determines if the adapter gives priority to receives, or if it
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700817 * gives equal priority to transmits and receives. Valid only on
818 * 82542 and 82543 silicon.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700819 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700820 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700821 ctrl = E1000_READ_REG(hw, CTRL);
822 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
823 }
824
Auke Kok8fc897b2006-08-28 14:56:16 -0700825 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700826 case e1000_82545_rev_3:
827 case e1000_82546_rev_3:
828 break;
829 default:
830 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700831 if (hw->bus_type == e1000_bus_type_pcix) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700832 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
833 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
834 &pcix_stat_hi_word);
835 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
836 PCIX_COMMAND_MMRBC_SHIFT;
837 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
838 PCIX_STATUS_HI_MMRBC_SHIFT;
Auke Kok8fc897b2006-08-28 14:56:16 -0700839 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
Auke Kok8fc897b2006-08-28 14:56:16 -0700841 if (cmd_mmrbc > stat_mmrbc) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700842 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
843 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
844 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
845 &pcix_cmd_word);
846 }
847 }
848 break;
849 }
850
Auke Kokcd94dd02006-06-27 09:08:22 -0700851 /* More time needed for PHY to initialize */
852 if (hw->mac_type == e1000_ich8lan)
853 msec_delay(15);
854
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855 /* Call a subroutine to configure the link and setup flow control. */
856 ret_val = e1000_setup_link(hw);
857
858 /* Set the transmit descriptor write-back policy */
Auke Kok8fc897b2006-08-28 14:56:16 -0700859 if (hw->mac_type > e1000_82544) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700860 ctrl = E1000_READ_REG(hw, TXDCTL);
861 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700862 switch (hw->mac_type) {
863 default:
864 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400865 case e1000_82571:
866 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700867 case e1000_82573:
Auke Kokcd94dd02006-06-27 09:08:22 -0700868 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800869 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700870 ctrl |= E1000_TXDCTL_COUNT_DESC;
871 break;
872 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700873 E1000_WRITE_REG(hw, TXDCTL, ctrl);
874 }
875
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700876 if (hw->mac_type == e1000_82573) {
Auke Kok76c224b2006-05-23 13:36:06 -0700877 e1000_enable_tx_pkt_filtering(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700878 }
879
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400880 switch (hw->mac_type) {
881 default:
882 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800883 case e1000_80003es2lan:
884 /* Enable retransmit on late collisions */
885 reg_data = E1000_READ_REG(hw, TCTL);
886 reg_data |= E1000_TCTL_RTLC;
887 E1000_WRITE_REG(hw, TCTL, reg_data);
888
889 /* Configure Gigabit Carry Extend Padding */
890 reg_data = E1000_READ_REG(hw, TCTL_EXT);
891 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
892 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
893 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
894
895 /* Configure Transmit Inter-Packet Gap */
896 reg_data = E1000_READ_REG(hw, TIPG);
897 reg_data &= ~E1000_TIPG_IPGT_MASK;
898 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
899 E1000_WRITE_REG(hw, TIPG, reg_data);
900
901 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
902 reg_data &= ~0x00100000;
903 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
904 /* Fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400905 case e1000_82571:
Mallikarjuna R Chilakalaa7990ba2005-10-04 07:08:19 -0400906 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -0700907 case e1000_ich8lan:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400908 ctrl = E1000_READ_REG(hw, TXDCTL1);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800909 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
Auke Kok8fc897b2006-08-28 14:56:16 -0700910 if (hw->mac_type >= e1000_82571)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800911 ctrl |= E1000_TXDCTL_COUNT_DESC;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400912 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
913 break;
914 }
915
916
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400917 if (hw->mac_type == e1000_82573) {
918 uint32_t gcr = E1000_READ_REG(hw, GCR);
919 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
920 E1000_WRITE_REG(hw, GCR, gcr);
921 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700922
Linus Torvalds1da177e2005-04-16 15:20:36 -0700923 /* Clear all of the statistics registers (clear on read). It is
924 * important that we do this after we have tried to establish link
925 * because the symbol error count will increment wildly if there
926 * is no link.
927 */
928 e1000_clear_hw_cntrs(hw);
929
Auke Kokcd94dd02006-06-27 09:08:22 -0700930 /* ICH8 No-snoop bits are opposite polarity.
931 * Set to snoop by default after reset. */
932 if (hw->mac_type == e1000_ich8lan)
933 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
934
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800935 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
936 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
937 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
938 /* Relaxed ordering must be disabled to avoid a parity
939 * error crash in a PCI slot. */
940 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
941 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
942 }
943
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 return ret_val;
945}
946
947/******************************************************************************
948 * Adjust SERDES output amplitude based on EEPROM setting.
949 *
950 * hw - Struct containing variables accessed by shared code.
951 *****************************************************************************/
952static int32_t
953e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
954{
955 uint16_t eeprom_data;
956 int32_t ret_val;
957
958 DEBUGFUNC("e1000_adjust_serdes_amplitude");
959
Auke Kok8fc897b2006-08-28 14:56:16 -0700960 if (hw->media_type != e1000_media_type_internal_serdes)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700961 return E1000_SUCCESS;
962
Auke Kok8fc897b2006-08-28 14:56:16 -0700963 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964 case e1000_82545_rev_3:
965 case e1000_82546_rev_3:
966 break;
967 default:
968 return E1000_SUCCESS;
969 }
970
971 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
972 if (ret_val) {
973 return ret_val;
974 }
975
Auke Kok8fc897b2006-08-28 14:56:16 -0700976 if (eeprom_data != EEPROM_RESERVED_WORD) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977 /* Adjust SERDES output amplitude only. */
Auke Kok76c224b2006-05-23 13:36:06 -0700978 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700979 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
Auke Kok8fc897b2006-08-28 14:56:16 -0700980 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981 return ret_val;
982 }
983
984 return E1000_SUCCESS;
985}
986
987/******************************************************************************
988 * Configures flow control and link settings.
989 *
990 * hw - Struct containing variables accessed by shared code
991 *
992 * Determines which flow control settings to use. Calls the apropriate media-
993 * specific link configuration function. Configures the flow control settings.
994 * Assuming the adapter has a valid link partner, a valid link should be
995 * established. Assumes the hardware has previously been reset and the
996 * transmitter and receiver are not enabled.
997 *****************************************************************************/
998int32_t
999e1000_setup_link(struct e1000_hw *hw)
1000{
1001 uint32_t ctrl_ext;
1002 int32_t ret_val;
1003 uint16_t eeprom_data;
1004
1005 DEBUGFUNC("e1000_setup_link");
1006
Jeff Kirsher526f9952006-01-12 16:50:46 -08001007 /* In the case of the phy reset being blocked, we already have a link.
1008 * We do not have to set it up again. */
1009 if (e1000_check_phy_reset_block(hw))
1010 return E1000_SUCCESS;
1011
Linus Torvalds1da177e2005-04-16 15:20:36 -07001012 /* Read and store word 0x0F of the EEPROM. This word contains bits
1013 * that determine the hardware's default PAUSE (flow control) mode,
1014 * a bit that determines whether the HW defaults to enabling or
1015 * disabling auto-negotiation, and the direction of the
1016 * SW defined pins. If there is no SW over-ride of the flow
1017 * control setting, then the variable hw->fc will
1018 * be initialized based on a value in the EEPROM.
1019 */
Jeff Kirsherfd803242005-12-13 00:06:22 -05001020 if (hw->fc == e1000_fc_default) {
1021 switch (hw->mac_type) {
Auke Kokcd94dd02006-06-27 09:08:22 -07001022 case e1000_ich8lan:
Jeff Kirsherfd803242005-12-13 00:06:22 -05001023 case e1000_82573:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024 hw->fc = e1000_fc_full;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001025 break;
1026 default:
1027 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1028 1, &eeprom_data);
1029 if (ret_val) {
1030 DEBUGOUT("EEPROM Read Error\n");
1031 return -E1000_ERR_EEPROM;
1032 }
1033 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
1034 hw->fc = e1000_fc_none;
1035 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1036 EEPROM_WORD0F_ASM_DIR)
1037 hw->fc = e1000_fc_tx_pause;
1038 else
1039 hw->fc = e1000_fc_full;
1040 break;
1041 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001042 }
1043
1044 /* We want to save off the original Flow Control configuration just
1045 * in case we get disconnected and then reconnected into a different
1046 * hub or switch with different Flow Control capabilities.
1047 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001048 if (hw->mac_type == e1000_82542_rev2_0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001049 hw->fc &= (~e1000_fc_tx_pause);
1050
Auke Kok8fc897b2006-08-28 14:56:16 -07001051 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052 hw->fc &= (~e1000_fc_rx_pause);
1053
1054 hw->original_fc = hw->fc;
1055
1056 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1057
1058 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1059 * polarity value for the SW controlled pins, and setup the
1060 * Extended Device Control reg with that info.
1061 * This is needed because one of the SW controlled pins is used for
1062 * signal detection. So this should be done before e1000_setup_pcs_link()
1063 * or e1000_phy_setup() is called.
1064 */
Jeff Kirsher497fce52006-03-02 18:18:20 -08001065 if (hw->mac_type == e1000_82543) {
Auke Kok8fc897b2006-08-28 14:56:16 -07001066 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1067 1, &eeprom_data);
1068 if (ret_val) {
1069 DEBUGOUT("EEPROM Read Error\n");
1070 return -E1000_ERR_EEPROM;
1071 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1073 SWDPIO__EXT_SHIFT);
1074 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1075 }
1076
1077 /* Call the necessary subroutine to configure the link. */
1078 ret_val = (hw->media_type == e1000_media_type_copper) ?
1079 e1000_setup_copper_link(hw) :
1080 e1000_setup_fiber_serdes_link(hw);
1081
1082 /* Initialize the flow control address, type, and PAUSE timer
1083 * registers to their default values. This is done even if flow
1084 * control is disabled, because it does not hurt anything to
1085 * initialize these registers.
1086 */
1087 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1088
Auke Kokcd94dd02006-06-27 09:08:22 -07001089 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1090 if (hw->mac_type != e1000_ich8lan) {
1091 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1092 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1093 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1094 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001095
Linus Torvalds1da177e2005-04-16 15:20:36 -07001096 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1097
1098 /* Set the flow control receive threshold registers. Normally,
1099 * these registers will be set to a default threshold that may be
1100 * adjusted later by the driver's runtime code. However, if the
1101 * ability to transmit pause frames in not enabled, then these
1102 * registers will be set to 0.
1103 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001104 if (!(hw->fc & e1000_fc_tx_pause)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001105 E1000_WRITE_REG(hw, FCRTL, 0);
1106 E1000_WRITE_REG(hw, FCRTH, 0);
1107 } else {
1108 /* We need to set up the Receive Threshold high and low water marks
1109 * as well as (optionally) enabling the transmission of XON frames.
1110 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001111 if (hw->fc_send_xon) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001112 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1113 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1114 } else {
1115 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1116 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1117 }
1118 }
1119 return ret_val;
1120}
1121
1122/******************************************************************************
1123 * Sets up link for a fiber based or serdes based adapter
1124 *
1125 * hw - Struct containing variables accessed by shared code
1126 *
1127 * Manipulates Physical Coding Sublayer functions in order to configure
1128 * link. Assumes the hardware has been previously reset and the transmitter
1129 * and receiver are not enabled.
1130 *****************************************************************************/
1131static int32_t
1132e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1133{
1134 uint32_t ctrl;
1135 uint32_t status;
1136 uint32_t txcw = 0;
1137 uint32_t i;
1138 uint32_t signal = 0;
1139 int32_t ret_val;
1140
1141 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1142
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04001143 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1144 * until explicitly turned off or a power cycle is performed. A read to
1145 * the register does not indicate its status. Therefore, we ensure
1146 * loopback mode is disabled during initialization.
1147 */
1148 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1149 E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1150
Linus Torvalds1da177e2005-04-16 15:20:36 -07001151 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
1152 * set when the optics detect a signal. On older adapters, it will be
1153 * cleared when there is a signal. This applies to fiber media only.
1154 * If we're on serdes media, adjust the output amplitude to value set in
1155 * the EEPROM.
1156 */
1157 ctrl = E1000_READ_REG(hw, CTRL);
Auke Kok8fc897b2006-08-28 14:56:16 -07001158 if (hw->media_type == e1000_media_type_fiber)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1160
1161 ret_val = e1000_adjust_serdes_amplitude(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001162 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001163 return ret_val;
1164
1165 /* Take the link out of reset */
1166 ctrl &= ~(E1000_CTRL_LRST);
1167
1168 /* Adjust VCO speed to improve BER performance */
1169 ret_val = e1000_set_vco_speed(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001170 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171 return ret_val;
1172
1173 e1000_config_collision_dist(hw);
1174
1175 /* Check for a software override of the flow control settings, and setup
1176 * the device accordingly. If auto-negotiation is enabled, then software
1177 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1178 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1179 * auto-negotiation is disabled, then software will have to manually
1180 * configure the two flow control enable bits in the CTRL register.
1181 *
1182 * The possible values of the "fc" parameter are:
1183 * 0: Flow control is completely disabled
1184 * 1: Rx flow control is enabled (we can receive pause frames, but
1185 * not send pause frames).
1186 * 2: Tx flow control is enabled (we can send pause frames but we do
1187 * not support receiving pause frames).
1188 * 3: Both Rx and TX flow control (symmetric) are enabled.
1189 */
1190 switch (hw->fc) {
1191 case e1000_fc_none:
1192 /* Flow control is completely disabled by a software over-ride. */
1193 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1194 break;
1195 case e1000_fc_rx_pause:
1196 /* RX Flow control is enabled and TX Flow control is disabled by a
1197 * software over-ride. Since there really isn't a way to advertise
1198 * that we are capable of RX Pause ONLY, we will advertise that we
1199 * support both symmetric and asymmetric RX PAUSE. Later, we will
1200 * disable the adapter's ability to send PAUSE frames.
1201 */
1202 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1203 break;
1204 case e1000_fc_tx_pause:
1205 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1206 * software over-ride.
1207 */
1208 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1209 break;
1210 case e1000_fc_full:
1211 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1212 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1213 break;
1214 default:
1215 DEBUGOUT("Flow control param set incorrectly\n");
1216 return -E1000_ERR_CONFIG;
1217 break;
1218 }
1219
1220 /* Since auto-negotiation is enabled, take the link out of reset (the link
1221 * will be in reset, because we previously reset the chip). This will
1222 * restart auto-negotiation. If auto-neogtiation is successful then the
1223 * link-up status bit will be set and the flow control enable bits (RFCE
1224 * and TFCE) will be set according to their negotiated value.
1225 */
1226 DEBUGOUT("Auto-negotiation enabled\n");
1227
1228 E1000_WRITE_REG(hw, TXCW, txcw);
1229 E1000_WRITE_REG(hw, CTRL, ctrl);
1230 E1000_WRITE_FLUSH(hw);
1231
1232 hw->txcw = txcw;
1233 msec_delay(1);
1234
1235 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1236 * indication in the Device Status Register. Time-out if a link isn't
1237 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1238 * less than 500 milliseconds even if the other end is doing it in SW).
1239 * For internal serdes, we just assume a signal is present, then poll.
1240 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001241 if (hw->media_type == e1000_media_type_internal_serdes ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07001242 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1243 DEBUGOUT("Looking for Link\n");
Auke Kok8fc897b2006-08-28 14:56:16 -07001244 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 msec_delay(10);
1246 status = E1000_READ_REG(hw, STATUS);
Auke Kok8fc897b2006-08-28 14:56:16 -07001247 if (status & E1000_STATUS_LU) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001248 }
Auke Kok8fc897b2006-08-28 14:56:16 -07001249 if (i == (LINK_UP_TIMEOUT / 10)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1251 hw->autoneg_failed = 1;
1252 /* AutoNeg failed to achieve a link, so we'll call
1253 * e1000_check_for_link. This routine will force the link up if
1254 * we detect a signal. This will allow us to communicate with
1255 * non-autonegotiating link partners.
1256 */
1257 ret_val = e1000_check_for_link(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001258 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001259 DEBUGOUT("Error while checking for link\n");
1260 return ret_val;
1261 }
1262 hw->autoneg_failed = 0;
1263 } else {
1264 hw->autoneg_failed = 0;
1265 DEBUGOUT("Valid Link Found\n");
1266 }
1267 } else {
1268 DEBUGOUT("No Signal Detected\n");
1269 }
1270 return E1000_SUCCESS;
1271}
1272
1273/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001274* Make sure we have a valid PHY and change PHY mode before link setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275*
1276* hw - Struct containing variables accessed by shared code
1277******************************************************************************/
1278static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001279e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280{
1281 uint32_t ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001282 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001283 uint16_t phy_data;
1284
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001285 DEBUGFUNC("e1000_copper_link_preconfig");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001286
1287 ctrl = E1000_READ_REG(hw, CTRL);
1288 /* With 82543, we need to force speed and duplex on the MAC equal to what
1289 * the PHY speed and duplex configuration is. In addition, we need to
1290 * perform a hardware reset on the PHY to take it out of reset.
1291 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001292 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 ctrl |= E1000_CTRL_SLU;
1294 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1295 E1000_WRITE_REG(hw, CTRL, ctrl);
1296 } else {
1297 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1298 E1000_WRITE_REG(hw, CTRL, ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001299 ret_val = e1000_phy_hw_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001300 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001301 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302 }
1303
1304 /* Make sure we have a valid PHY */
1305 ret_val = e1000_detect_gig_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001306 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001307 DEBUGOUT("Error, did not detect valid phy.\n");
1308 return ret_val;
1309 }
1310 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1311
1312 /* Set PHY to class A mode (if necessary) */
1313 ret_val = e1000_set_phy_mode(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001314 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001315 return ret_val;
1316
Auke Kok8fc897b2006-08-28 14:56:16 -07001317 if ((hw->mac_type == e1000_82545_rev_3) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318 (hw->mac_type == e1000_82546_rev_3)) {
1319 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1320 phy_data |= 0x00000008;
1321 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1322 }
1323
Auke Kok8fc897b2006-08-28 14:56:16 -07001324 if (hw->mac_type <= e1000_82543 ||
1325 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1326 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001327 hw->phy_reset_disable = FALSE;
1328
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001329 return E1000_SUCCESS;
1330}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331
Linus Torvalds1da177e2005-04-16 15:20:36 -07001332
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001333/********************************************************************
1334* Copper link setup for e1000_phy_igp series.
1335*
1336* hw - Struct containing variables accessed by shared code
1337*********************************************************************/
1338static int32_t
1339e1000_copper_link_igp_setup(struct e1000_hw *hw)
1340{
1341 uint32_t led_ctrl;
1342 int32_t ret_val;
1343 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001345 DEBUGFUNC("e1000_copper_link_igp_setup");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001346
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001347 if (hw->phy_reset_disable)
1348 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001349
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001350 ret_val = e1000_phy_reset(hw);
1351 if (ret_val) {
1352 DEBUGOUT("Error Resetting the PHY\n");
1353 return ret_val;
1354 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001355
Auke Kok8fc897b2006-08-28 14:56:16 -07001356 /* Wait 15ms for MAC to configure PHY from eeprom settings */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001357 msec_delay(15);
Auke Kokcd94dd02006-06-27 09:08:22 -07001358 if (hw->mac_type != e1000_ich8lan) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001359 /* Configure activity LED after PHY reset */
1360 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1361 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1362 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1363 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
Auke Kokcd94dd02006-06-27 09:08:22 -07001364 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001365
Jeff Kirsherc9c1b832006-08-16 13:38:54 -07001366 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1367 if (hw->phy_type == e1000_phy_igp) {
1368 /* disable lplu d3 during driver init */
1369 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1370 if (ret_val) {
1371 DEBUGOUT("Error Disabling LPLU D3\n");
1372 return ret_val;
1373 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001374 }
1375
1376 /* disable lplu d0 during driver init */
1377 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1378 if (ret_val) {
1379 DEBUGOUT("Error Disabling LPLU D0\n");
1380 return ret_val;
1381 }
1382 /* Configure mdi-mdix settings */
1383 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1384 if (ret_val)
1385 return ret_val;
1386
1387 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1388 hw->dsp_config_state = e1000_dsp_config_disabled;
1389 /* Force MDI for earlier revs of the IGP PHY */
1390 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1391 hw->mdix = 1;
1392
1393 } else {
1394 hw->dsp_config_state = e1000_dsp_config_enabled;
1395 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1396
1397 switch (hw->mdix) {
1398 case 1:
1399 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1400 break;
1401 case 2:
1402 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1403 break;
1404 case 0:
1405 default:
1406 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1407 break;
1408 }
1409 }
1410 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001411 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001412 return ret_val;
1413
1414 /* set auto-master slave resolution settings */
Auke Kok8fc897b2006-08-28 14:56:16 -07001415 if (hw->autoneg) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001416 e1000_ms_type phy_ms_setting = hw->master_slave;
1417
Auke Kok8fc897b2006-08-28 14:56:16 -07001418 if (hw->ffe_config_state == e1000_ffe_config_active)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001419 hw->ffe_config_state = e1000_ffe_config_enabled;
1420
Auke Kok8fc897b2006-08-28 14:56:16 -07001421 if (hw->dsp_config_state == e1000_dsp_config_activated)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001422 hw->dsp_config_state = e1000_dsp_config_enabled;
1423
1424 /* when autonegotiation advertisment is only 1000Mbps then we
1425 * should disable SmartSpeed and enable Auto MasterSlave
1426 * resolution as hardware default. */
Auke Kok8fc897b2006-08-28 14:56:16 -07001427 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001428 /* Disable SmartSpeed */
Auke Kok8fc897b2006-08-28 14:56:16 -07001429 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1430 &phy_data);
1431 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001433 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Auke Kok8fc897b2006-08-28 14:56:16 -07001434 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1435 phy_data);
1436 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001438 /* Set auto Master/Slave resolution process */
1439 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001440 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001441 return ret_val;
1442 phy_data &= ~CR_1000T_MS_ENABLE;
1443 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001444 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001445 return ret_val;
1446 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001448 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001449 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001450 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001452 /* load defaults for future use */
1453 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1454 ((phy_data & CR_1000T_MS_VALUE) ?
1455 e1000_ms_force_master :
1456 e1000_ms_force_slave) :
1457 e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001459 switch (phy_ms_setting) {
1460 case e1000_ms_force_master:
1461 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1462 break;
1463 case e1000_ms_force_slave:
1464 phy_data |= CR_1000T_MS_ENABLE;
1465 phy_data &= ~(CR_1000T_MS_VALUE);
1466 break;
1467 case e1000_ms_auto:
1468 phy_data &= ~CR_1000T_MS_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469 default:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001470 break;
1471 }
1472 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001473 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001474 return ret_val;
Malli Chilakala2b028932005-06-17 17:46:06 -07001475 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001476
Malli Chilakala2b028932005-06-17 17:46:06 -07001477 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001478}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001480/********************************************************************
1481* Copper link setup for e1000_phy_gg82563 series.
1482*
1483* hw - Struct containing variables accessed by shared code
1484*********************************************************************/
1485static int32_t
1486e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1487{
1488 int32_t ret_val;
1489 uint16_t phy_data;
1490 uint32_t reg_data;
1491
1492 DEBUGFUNC("e1000_copper_link_ggp_setup");
1493
Auke Kok8fc897b2006-08-28 14:56:16 -07001494 if (!hw->phy_reset_disable) {
Auke Kok76c224b2006-05-23 13:36:06 -07001495
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001496 /* Enable CRS on TX for half-duplex operation. */
1497 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1498 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001499 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001500 return ret_val;
1501
1502 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1503 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1504 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1505
1506 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1507 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001508 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001509 return ret_val;
1510
1511 /* Options:
1512 * MDI/MDI-X = 0 (default)
1513 * 0 - Auto for all speeds
1514 * 1 - MDI mode
1515 * 2 - MDI-X mode
1516 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1517 */
1518 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001519 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001520 return ret_val;
1521
1522 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1523
1524 switch (hw->mdix) {
1525 case 1:
1526 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1527 break;
1528 case 2:
1529 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1530 break;
1531 case 0:
1532 default:
1533 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1534 break;
1535 }
1536
1537 /* Options:
1538 * disable_polarity_correction = 0 (default)
1539 * Automatic Correction for Reversed Cable Polarity
1540 * 0 - Disabled
1541 * 1 - Enabled
1542 */
1543 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
Auke Kok8fc897b2006-08-28 14:56:16 -07001544 if (hw->disable_polarity_correction == 1)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001545 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1546 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1547
Auke Kok8fc897b2006-08-28 14:56:16 -07001548 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001549 return ret_val;
1550
1551 /* SW Reset the PHY so all changes take effect */
1552 ret_val = e1000_phy_reset(hw);
1553 if (ret_val) {
1554 DEBUGOUT("Error Resetting the PHY\n");
1555 return ret_val;
1556 }
1557 } /* phy_reset_disable */
1558
1559 if (hw->mac_type == e1000_80003es2lan) {
1560 /* Bypass RX and TX FIFO's */
1561 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1562 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1563 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1564 if (ret_val)
1565 return ret_val;
1566
1567 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1568 if (ret_val)
1569 return ret_val;
1570
1571 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1572 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1573
1574 if (ret_val)
1575 return ret_val;
1576
1577 reg_data = E1000_READ_REG(hw, CTRL_EXT);
1578 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1579 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1580
1581 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1582 &phy_data);
1583 if (ret_val)
1584 return ret_val;
1585
1586 /* Do not init these registers when the HW is in IAMT mode, since the
1587 * firmware will have already initialized them. We only initialize
1588 * them if the HW is not in IAMT mode.
1589 */
1590 if (e1000_check_mng_mode(hw) == FALSE) {
1591 /* Enable Electrical Idle on the PHY */
1592 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1593 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1594 phy_data);
1595 if (ret_val)
1596 return ret_val;
1597
1598 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1599 &phy_data);
1600 if (ret_val)
1601 return ret_val;
1602
Auke Kokcd94dd02006-06-27 09:08:22 -07001603 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001604 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1605 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001606
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001607 if (ret_val)
1608 return ret_val;
1609 }
1610
1611 /* Workaround: Disable padding in Kumeran interface in the MAC
1612 * and in the PHY to avoid CRC errors.
1613 */
1614 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1615 &phy_data);
1616 if (ret_val)
1617 return ret_val;
1618 phy_data |= GG82563_ICR_DIS_PADDING;
1619 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1620 phy_data);
1621 if (ret_val)
1622 return ret_val;
1623 }
1624
1625 return E1000_SUCCESS;
1626}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001627
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001628/********************************************************************
1629* Copper link setup for e1000_phy_m88 series.
1630*
1631* hw - Struct containing variables accessed by shared code
1632*********************************************************************/
1633static int32_t
1634e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1635{
1636 int32_t ret_val;
1637 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001638
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001639 DEBUGFUNC("e1000_copper_link_mgp_setup");
1640
Auke Kok8fc897b2006-08-28 14:56:16 -07001641 if (hw->phy_reset_disable)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001642 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001643
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001644 /* Enable CRS on TX. This must be set for half-duplex operation. */
1645 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001646 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001647 return ret_val;
1648
1649 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1650
1651 /* Options:
1652 * MDI/MDI-X = 0 (default)
1653 * 0 - Auto for all speeds
1654 * 1 - MDI mode
1655 * 2 - MDI-X mode
1656 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1657 */
1658 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1659
1660 switch (hw->mdix) {
1661 case 1:
1662 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1663 break;
1664 case 2:
1665 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1666 break;
1667 case 3:
1668 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1669 break;
1670 case 0:
1671 default:
1672 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1673 break;
1674 }
1675
1676 /* Options:
1677 * disable_polarity_correction = 0 (default)
1678 * Automatic Correction for Reversed Cable Polarity
1679 * 0 - Disabled
1680 * 1 - Enabled
1681 */
1682 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Auke Kok8fc897b2006-08-28 14:56:16 -07001683 if (hw->disable_polarity_correction == 1)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001684 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
Auke Kokee040222006-06-27 09:08:03 -07001685 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1686 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001687 return ret_val;
1688
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001689 if (hw->phy_revision < M88E1011_I_REV_4) {
Auke Kokee040222006-06-27 09:08:03 -07001690 /* Force TX_CLK in the Extended PHY Specific Control Register
1691 * to 25MHz clock.
1692 */
1693 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1694 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001695 return ret_val;
Auke Kokee040222006-06-27 09:08:03 -07001696
1697 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1698
1699 if ((hw->phy_revision == E1000_REVISION_2) &&
1700 (hw->phy_id == M88E1111_I_PHY_ID)) {
1701 /* Vidalia Phy, set the downshift counter to 5x */
1702 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1703 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1704 ret_val = e1000_write_phy_reg(hw,
1705 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1706 if (ret_val)
1707 return ret_val;
1708 } else {
1709 /* Configure Master and Slave downshift values */
1710 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1711 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1712 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1713 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1714 ret_val = e1000_write_phy_reg(hw,
1715 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1716 if (ret_val)
1717 return ret_val;
1718 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001719 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001720
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001721 /* SW Reset the PHY so all changes take effect */
1722 ret_val = e1000_phy_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001723 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001724 DEBUGOUT("Error Resetting the PHY\n");
1725 return ret_val;
1726 }
1727
1728 return E1000_SUCCESS;
1729}
1730
1731/********************************************************************
1732* Setup auto-negotiation and flow control advertisements,
1733* and then perform auto-negotiation.
1734*
1735* hw - Struct containing variables accessed by shared code
1736*********************************************************************/
1737static int32_t
1738e1000_copper_link_autoneg(struct e1000_hw *hw)
1739{
1740 int32_t ret_val;
1741 uint16_t phy_data;
1742
1743 DEBUGFUNC("e1000_copper_link_autoneg");
1744
1745 /* Perform some bounds checking on the hw->autoneg_advertised
1746 * parameter. If this variable is zero, then set it to the default.
1747 */
1748 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1749
1750 /* If autoneg_advertised is zero, we assume it was not defaulted
1751 * by the calling code so we set to advertise full capability.
1752 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001753 if (hw->autoneg_advertised == 0)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001754 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1755
Auke Kokcd94dd02006-06-27 09:08:22 -07001756 /* IFE phy only supports 10/100 */
1757 if (hw->phy_type == e1000_phy_ife)
1758 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1759
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001760 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1761 ret_val = e1000_phy_setup_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001762 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001763 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1764 return ret_val;
1765 }
1766 DEBUGOUT("Restarting Auto-Neg\n");
1767
1768 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1769 * the Auto Neg Restart bit in the PHY control register.
1770 */
1771 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001772 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001773 return ret_val;
1774
1775 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1776 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001777 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001778 return ret_val;
1779
1780 /* Does the user want to wait for Auto-Neg to complete here, or
1781 * check at a later time (for example, callback routine).
1782 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001783 if (hw->wait_autoneg_complete) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001784 ret_val = e1000_wait_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001785 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001786 DEBUGOUT("Error while waiting for autoneg to complete\n");
1787 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001789 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001791 hw->get_link_status = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001792
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001793 return E1000_SUCCESS;
1794}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001796/******************************************************************************
1797* Config the MAC and the PHY after link is up.
1798* 1) Set up the MAC to the current PHY speed/duplex
1799* if we are on 82543. If we
1800* are on newer silicon, we only need to configure
1801* collision distance in the Transmit Control Register.
1802* 2) Set up flow control on the MAC to that established with
1803* the link partner.
Auke Kok76c224b2006-05-23 13:36:06 -07001804* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001805*
1806* hw - Struct containing variables accessed by shared code
1807******************************************************************************/
1808static int32_t
1809e1000_copper_link_postconfig(struct e1000_hw *hw)
1810{
1811 int32_t ret_val;
1812 DEBUGFUNC("e1000_copper_link_postconfig");
Auke Kok76c224b2006-05-23 13:36:06 -07001813
Auke Kok8fc897b2006-08-28 14:56:16 -07001814 if (hw->mac_type >= e1000_82544) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001815 e1000_config_collision_dist(hw);
1816 } else {
1817 ret_val = e1000_config_mac_to_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001818 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001819 DEBUGOUT("Error configuring MAC to PHY settings\n");
1820 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001821 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001822 }
1823 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001824 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001825 DEBUGOUT("Error Configuring Flow Control\n");
1826 return ret_val;
1827 }
1828
1829 /* Config DSP to improve Giga link quality */
Auke Kok8fc897b2006-08-28 14:56:16 -07001830 if (hw->phy_type == e1000_phy_igp) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001831 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
Auke Kok8fc897b2006-08-28 14:56:16 -07001832 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001833 DEBUGOUT("Error Configuring DSP after link up\n");
1834 return ret_val;
1835 }
1836 }
Auke Kok76c224b2006-05-23 13:36:06 -07001837
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001838 return E1000_SUCCESS;
1839}
1840
1841/******************************************************************************
1842* Detects which PHY is present and setup the speed and duplex
1843*
1844* hw - Struct containing variables accessed by shared code
1845******************************************************************************/
1846static int32_t
1847e1000_setup_copper_link(struct e1000_hw *hw)
1848{
1849 int32_t ret_val;
1850 uint16_t i;
1851 uint16_t phy_data;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001852 uint16_t reg_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001853
1854 DEBUGFUNC("e1000_setup_copper_link");
1855
Auke Kokcd94dd02006-06-27 09:08:22 -07001856 switch (hw->mac_type) {
1857 case e1000_80003es2lan:
1858 case e1000_ich8lan:
1859 /* Set the mac to wait the maximum time between each
1860 * iteration and increase the max iterations when
1861 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1862 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1863 if (ret_val)
1864 return ret_val;
1865 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1866 if (ret_val)
1867 return ret_val;
1868 reg_data |= 0x3F;
1869 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1870 if (ret_val)
1871 return ret_val;
1872 default:
1873 break;
1874 }
1875
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001876 /* Check if it is a valid PHY and set PHY mode if necessary. */
1877 ret_val = e1000_copper_link_preconfig(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001878 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001879 return ret_val;
1880
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001881 switch (hw->mac_type) {
1882 case e1000_80003es2lan:
Auke Kokcd94dd02006-06-27 09:08:22 -07001883 /* Kumeran registers are written-only */
1884 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001885 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1886 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1887 reg_data);
1888 if (ret_val)
1889 return ret_val;
1890 break;
1891 default:
1892 break;
1893 }
1894
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001895 if (hw->phy_type == e1000_phy_igp ||
Auke Kokcd94dd02006-06-27 09:08:22 -07001896 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001897 hw->phy_type == e1000_phy_igp_2) {
1898 ret_val = e1000_copper_link_igp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001899 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001900 return ret_val;
1901 } else if (hw->phy_type == e1000_phy_m88) {
1902 ret_val = e1000_copper_link_mgp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001903 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001904 return ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001905 } else if (hw->phy_type == e1000_phy_gg82563) {
1906 ret_val = e1000_copper_link_ggp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001907 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001908 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001909 }
1910
Auke Kok8fc897b2006-08-28 14:56:16 -07001911 if (hw->autoneg) {
Auke Kok76c224b2006-05-23 13:36:06 -07001912 /* Setup autoneg and flow control advertisement
1913 * and perform autonegotiation */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001914 ret_val = e1000_copper_link_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001915 if (ret_val)
Auke Kok76c224b2006-05-23 13:36:06 -07001916 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001917 } else {
1918 /* PHY will be set to 10H, 10F, 100H,or 100F
1919 * depending on value from forced_speed_duplex. */
1920 DEBUGOUT("Forcing speed and duplex\n");
1921 ret_val = e1000_phy_force_speed_duplex(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001922 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001923 DEBUGOUT("Error Forcing Speed and Duplex\n");
1924 return ret_val;
1925 }
1926 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001927
1928 /* Check link status. Wait up to 100 microseconds for link to become
1929 * valid.
1930 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001931 for (i = 0; i < 10; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001933 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934 return ret_val;
1935 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001936 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001937 return ret_val;
1938
Auke Kok8fc897b2006-08-28 14:56:16 -07001939 if (phy_data & MII_SR_LINK_STATUS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001940 /* Config the MAC and PHY after link is up */
1941 ret_val = e1000_copper_link_postconfig(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001942 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943 return ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07001944
Linus Torvalds1da177e2005-04-16 15:20:36 -07001945 DEBUGOUT("Valid link established!!!\n");
1946 return E1000_SUCCESS;
1947 }
1948 udelay(10);
1949 }
1950
1951 DEBUGOUT("Unable to establish link!!!\n");
1952 return E1000_SUCCESS;
1953}
1954
1955/******************************************************************************
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001956* Configure the MAC-to-PHY interface for 10/100Mbps
1957*
1958* hw - Struct containing variables accessed by shared code
1959******************************************************************************/
1960static int32_t
Auke Kokcd94dd02006-06-27 09:08:22 -07001961e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001962{
1963 int32_t ret_val = E1000_SUCCESS;
1964 uint32_t tipg;
1965 uint16_t reg_data;
1966
1967 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
1968
1969 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
1970 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
1971 reg_data);
1972 if (ret_val)
1973 return ret_val;
1974
1975 /* Configure Transmit Inter-Packet Gap */
1976 tipg = E1000_READ_REG(hw, TIPG);
1977 tipg &= ~E1000_TIPG_IPGT_MASK;
1978 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
1979 E1000_WRITE_REG(hw, TIPG, tipg);
1980
Auke Kokcd94dd02006-06-27 09:08:22 -07001981 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1982
1983 if (ret_val)
1984 return ret_val;
1985
1986 if (duplex == HALF_DUPLEX)
1987 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1988 else
1989 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1990
1991 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1992
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001993 return ret_val;
1994}
1995
1996static int32_t
1997e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
1998{
1999 int32_t ret_val = E1000_SUCCESS;
2000 uint16_t reg_data;
2001 uint32_t tipg;
2002
2003 DEBUGFUNC("e1000_configure_kmrn_for_1000");
2004
2005 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2006 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2007 reg_data);
2008 if (ret_val)
2009 return ret_val;
2010
2011 /* Configure Transmit Inter-Packet Gap */
2012 tipg = E1000_READ_REG(hw, TIPG);
2013 tipg &= ~E1000_TIPG_IPGT_MASK;
2014 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2015 E1000_WRITE_REG(hw, TIPG, tipg);
2016
Auke Kokcd94dd02006-06-27 09:08:22 -07002017 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2018
2019 if (ret_val)
2020 return ret_val;
2021
2022 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2023 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2024
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002025 return ret_val;
2026}
2027
2028/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029* Configures PHY autoneg and flow control advertisement settings
2030*
2031* hw - Struct containing variables accessed by shared code
2032******************************************************************************/
2033int32_t
2034e1000_phy_setup_autoneg(struct e1000_hw *hw)
2035{
2036 int32_t ret_val;
2037 uint16_t mii_autoneg_adv_reg;
2038 uint16_t mii_1000t_ctrl_reg;
2039
2040 DEBUGFUNC("e1000_phy_setup_autoneg");
2041
2042 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2043 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002044 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002045 return ret_val;
2046
Auke Kokcd94dd02006-06-27 09:08:22 -07002047 if (hw->phy_type != e1000_phy_ife) {
2048 /* Read the MII 1000Base-T Control Register (Address 9). */
2049 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2050 if (ret_val)
2051 return ret_val;
2052 } else
2053 mii_1000t_ctrl_reg=0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002054
2055 /* Need to parse both autoneg_advertised and fc and set up
2056 * the appropriate PHY registers. First we will parse for
2057 * autoneg_advertised software override. Since we can advertise
2058 * a plethora of combinations, we need to check each bit
2059 * individually.
2060 */
2061
2062 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2063 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2064 * the 1000Base-T Control Register (Address 9).
2065 */
2066 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2067 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2068
2069 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2070
2071 /* Do we want to advertise 10 Mb Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002072 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002073 DEBUGOUT("Advertise 10mb Half duplex\n");
2074 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2075 }
2076
2077 /* Do we want to advertise 10 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002078 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002079 DEBUGOUT("Advertise 10mb Full duplex\n");
2080 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2081 }
2082
2083 /* Do we want to advertise 100 Mb Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002084 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002085 DEBUGOUT("Advertise 100mb Half duplex\n");
2086 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2087 }
2088
2089 /* Do we want to advertise 100 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002090 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002091 DEBUGOUT("Advertise 100mb Full duplex\n");
2092 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2093 }
2094
2095 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
Auke Kok8fc897b2006-08-28 14:56:16 -07002096 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2098 }
2099
2100 /* Do we want to advertise 1000 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002101 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002102 DEBUGOUT("Advertise 1000mb Full duplex\n");
2103 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
Auke Kokcd94dd02006-06-27 09:08:22 -07002104 if (hw->phy_type == e1000_phy_ife) {
2105 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2106 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002107 }
2108
2109 /* Check for a software override of the flow control settings, and
2110 * setup the PHY advertisement registers accordingly. If
2111 * auto-negotiation is enabled, then software will have to set the
2112 * "PAUSE" bits to the correct value in the Auto-Negotiation
2113 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2114 *
2115 * The possible values of the "fc" parameter are:
2116 * 0: Flow control is completely disabled
2117 * 1: Rx flow control is enabled (we can receive pause frames
2118 * but not send pause frames).
2119 * 2: Tx flow control is enabled (we can send pause frames
2120 * but we do not support receiving pause frames).
2121 * 3: Both Rx and TX flow control (symmetric) are enabled.
2122 * other: No software override. The flow control configuration
2123 * in the EEPROM is used.
2124 */
2125 switch (hw->fc) {
2126 case e1000_fc_none: /* 0 */
2127 /* Flow control (RX & TX) is completely disabled by a
2128 * software over-ride.
2129 */
2130 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2131 break;
2132 case e1000_fc_rx_pause: /* 1 */
2133 /* RX Flow control is enabled, and TX Flow control is
2134 * disabled, by a software over-ride.
2135 */
2136 /* Since there really isn't a way to advertise that we are
2137 * capable of RX Pause ONLY, we will advertise that we
2138 * support both symmetric and asymmetric RX PAUSE. Later
2139 * (in e1000_config_fc_after_link_up) we will disable the
2140 *hw's ability to send PAUSE frames.
2141 */
2142 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2143 break;
2144 case e1000_fc_tx_pause: /* 2 */
2145 /* TX Flow control is enabled, and RX Flow control is
2146 * disabled, by a software over-ride.
2147 */
2148 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2149 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2150 break;
2151 case e1000_fc_full: /* 3 */
2152 /* Flow control (both RX and TX) is enabled by a software
2153 * over-ride.
2154 */
2155 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2156 break;
2157 default:
2158 DEBUGOUT("Flow control param set incorrectly\n");
2159 return -E1000_ERR_CONFIG;
2160 }
2161
2162 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002163 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164 return ret_val;
2165
2166 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2167
Auke Kokcd94dd02006-06-27 09:08:22 -07002168 if (hw->phy_type != e1000_phy_ife) {
2169 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2170 if (ret_val)
2171 return ret_val;
2172 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002173
2174 return E1000_SUCCESS;
2175}
2176
2177/******************************************************************************
2178* Force PHY speed and duplex settings to hw->forced_speed_duplex
2179*
2180* hw - Struct containing variables accessed by shared code
2181******************************************************************************/
2182static int32_t
2183e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2184{
2185 uint32_t ctrl;
2186 int32_t ret_val;
2187 uint16_t mii_ctrl_reg;
2188 uint16_t mii_status_reg;
2189 uint16_t phy_data;
2190 uint16_t i;
2191
2192 DEBUGFUNC("e1000_phy_force_speed_duplex");
2193
2194 /* Turn off Flow control if we are forcing speed and duplex. */
2195 hw->fc = e1000_fc_none;
2196
2197 DEBUGOUT1("hw->fc = %d\n", hw->fc);
2198
2199 /* Read the Device Control Register. */
2200 ctrl = E1000_READ_REG(hw, CTRL);
2201
2202 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2203 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2204 ctrl &= ~(DEVICE_SPEED_MASK);
2205
2206 /* Clear the Auto Speed Detect Enable bit. */
2207 ctrl &= ~E1000_CTRL_ASDE;
2208
2209 /* Read the MII Control Register. */
2210 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002211 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002212 return ret_val;
2213
2214 /* We need to disable autoneg in order to force link and duplex. */
2215
2216 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2217
2218 /* Are we forcing Full or Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002219 if (hw->forced_speed_duplex == e1000_100_full ||
2220 hw->forced_speed_duplex == e1000_10_full) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002221 /* We want to force full duplex so we SET the full duplex bits in the
2222 * Device and MII Control Registers.
2223 */
2224 ctrl |= E1000_CTRL_FD;
2225 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2226 DEBUGOUT("Full Duplex\n");
2227 } else {
2228 /* We want to force half duplex so we CLEAR the full duplex bits in
2229 * the Device and MII Control Registers.
2230 */
2231 ctrl &= ~E1000_CTRL_FD;
2232 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2233 DEBUGOUT("Half Duplex\n");
2234 }
2235
2236 /* Are we forcing 100Mbps??? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002237 if (hw->forced_speed_duplex == e1000_100_full ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07002238 hw->forced_speed_duplex == e1000_100_half) {
2239 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2240 ctrl |= E1000_CTRL_SPD_100;
2241 mii_ctrl_reg |= MII_CR_SPEED_100;
2242 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2243 DEBUGOUT("Forcing 100mb ");
2244 } else {
2245 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2246 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2247 mii_ctrl_reg |= MII_CR_SPEED_10;
2248 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2249 DEBUGOUT("Forcing 10mb ");
2250 }
2251
2252 e1000_config_collision_dist(hw);
2253
2254 /* Write the configured values back to the Device Control Reg. */
2255 E1000_WRITE_REG(hw, CTRL, ctrl);
2256
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002257 if ((hw->phy_type == e1000_phy_m88) ||
2258 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002260 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261 return ret_val;
2262
2263 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2264 * forced whenever speed are duplex are forced.
2265 */
2266 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2267 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002268 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002269 return ret_val;
2270
2271 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2272
2273 /* Need to reset the PHY or these changes will be ignored */
2274 mii_ctrl_reg |= MII_CR_RESET;
Auke Kokcd94dd02006-06-27 09:08:22 -07002275 /* Disable MDI-X support for 10/100 */
2276 } else if (hw->phy_type == e1000_phy_ife) {
2277 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2278 if (ret_val)
2279 return ret_val;
2280
2281 phy_data &= ~IFE_PMC_AUTO_MDIX;
2282 phy_data &= ~IFE_PMC_FORCE_MDIX;
2283
2284 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2285 if (ret_val)
2286 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002287 } else {
2288 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2289 * forced whenever speed or duplex are forced.
2290 */
2291 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002292 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002293 return ret_val;
2294
2295 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2296 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2297
2298 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002299 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002300 return ret_val;
2301 }
2302
2303 /* Write back the modified PHY MII control register. */
2304 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002305 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002306 return ret_val;
2307
2308 udelay(1);
2309
2310 /* The wait_autoneg_complete flag may be a little misleading here.
2311 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2312 * But we do want to delay for a period while forcing only so we
2313 * don't generate false No Link messages. So we will wait here
2314 * only if the user has set wait_autoneg_complete to 1, which is
2315 * the default.
2316 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002317 if (hw->wait_autoneg_complete) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002318 /* We will wait for autoneg to complete. */
2319 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2320 mii_status_reg = 0;
2321
2322 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
Auke Kok8fc897b2006-08-28 14:56:16 -07002323 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002324 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2325 * to be set.
2326 */
2327 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002328 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329 return ret_val;
2330
2331 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002332 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333 return ret_val;
2334
Auke Kok8fc897b2006-08-28 14:56:16 -07002335 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336 msec_delay(100);
2337 }
Auke Kok8fc897b2006-08-28 14:56:16 -07002338 if ((i == 0) &&
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002339 ((hw->phy_type == e1000_phy_m88) ||
2340 (hw->phy_type == e1000_phy_gg82563))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002341 /* We didn't get link. Reset the DSP and wait again for link. */
2342 ret_val = e1000_phy_reset_dsp(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002343 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344 DEBUGOUT("Error Resetting PHY DSP\n");
2345 return ret_val;
2346 }
2347 }
2348 /* This loop will early-out if the link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07002349 for (i = PHY_FORCE_TIME; i > 0; i--) {
2350 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351 msec_delay(100);
2352 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2353 * to be set.
2354 */
2355 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002356 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357 return ret_val;
2358
2359 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002360 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002361 return ret_val;
2362 }
2363 }
2364
2365 if (hw->phy_type == e1000_phy_m88) {
2366 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2367 * Extended PHY Specific Control Register to 25MHz clock. This value
2368 * defaults back to a 2.5MHz clock when the PHY is reset.
2369 */
2370 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002371 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002372 return ret_val;
2373
2374 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2375 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002376 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377 return ret_val;
2378
2379 /* In addition, because of the s/w reset above, we need to enable CRS on
2380 * TX. This must be set for both full and half duplex operation.
2381 */
2382 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002383 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384 return ret_val;
2385
2386 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2387 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002388 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389 return ret_val;
2390
Auke Kok8fc897b2006-08-28 14:56:16 -07002391 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2392 (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2393 hw->forced_speed_duplex == e1000_10_half)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002394 ret_val = e1000_polarity_reversal_workaround(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002395 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002396 return ret_val;
2397 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002398 } else if (hw->phy_type == e1000_phy_gg82563) {
2399 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2400 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2401 * we're not in a forced 10/duplex configuration. */
2402 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2403 if (ret_val)
2404 return ret_val;
2405
2406 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2407 if ((hw->forced_speed_duplex == e1000_10_full) ||
2408 (hw->forced_speed_duplex == e1000_10_half))
2409 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2410 else
2411 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2412
2413 /* Also due to the reset, we need to enable CRS on Tx. */
2414 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2415
2416 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2417 if (ret_val)
2418 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002419 }
2420 return E1000_SUCCESS;
2421}
2422
2423/******************************************************************************
2424* Sets the collision distance in the Transmit Control register
2425*
2426* hw - Struct containing variables accessed by shared code
2427*
2428* Link should have been established previously. Reads the speed and duplex
2429* information from the Device Status register.
2430******************************************************************************/
2431void
2432e1000_config_collision_dist(struct e1000_hw *hw)
2433{
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002434 uint32_t tctl, coll_dist;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002435
2436 DEBUGFUNC("e1000_config_collision_dist");
2437
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002438 if (hw->mac_type < e1000_82543)
2439 coll_dist = E1000_COLLISION_DISTANCE_82542;
2440 else
2441 coll_dist = E1000_COLLISION_DISTANCE;
2442
Linus Torvalds1da177e2005-04-16 15:20:36 -07002443 tctl = E1000_READ_REG(hw, TCTL);
2444
2445 tctl &= ~E1000_TCTL_COLD;
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002446 tctl |= coll_dist << E1000_COLD_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002447
2448 E1000_WRITE_REG(hw, TCTL, tctl);
2449 E1000_WRITE_FLUSH(hw);
2450}
2451
2452/******************************************************************************
2453* Sets MAC speed and duplex settings to reflect the those in the PHY
2454*
2455* hw - Struct containing variables accessed by shared code
2456* mii_reg - data to write to the MII control register
2457*
2458* The contents of the PHY register containing the needed information need to
2459* be passed in.
2460******************************************************************************/
2461static int32_t
2462e1000_config_mac_to_phy(struct e1000_hw *hw)
2463{
2464 uint32_t ctrl;
2465 int32_t ret_val;
2466 uint16_t phy_data;
2467
2468 DEBUGFUNC("e1000_config_mac_to_phy");
2469
Auke Kok76c224b2006-05-23 13:36:06 -07002470 /* 82544 or newer MAC, Auto Speed Detection takes care of
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002471 * MAC speed/duplex configuration.*/
2472 if (hw->mac_type >= e1000_82544)
2473 return E1000_SUCCESS;
2474
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475 /* Read the Device Control Register and set the bits to Force Speed
2476 * and Duplex.
2477 */
2478 ctrl = E1000_READ_REG(hw, CTRL);
2479 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2480 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2481
2482 /* Set up duplex in the Device Control and Transmit Control
2483 * registers depending on negotiated values.
2484 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002485 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002486 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002487 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002488
Auke Kok8fc897b2006-08-28 14:56:16 -07002489 if (phy_data & M88E1000_PSSR_DPLX)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002490 ctrl |= E1000_CTRL_FD;
Auke Kok76c224b2006-05-23 13:36:06 -07002491 else
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002492 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002493
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002494 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002495
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002496 /* Set up speed in the Device Control register depending on
2497 * negotiated values.
2498 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002499 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002500 ctrl |= E1000_CTRL_SPD_1000;
Auke Kok8fc897b2006-08-28 14:56:16 -07002501 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002502 ctrl |= E1000_CTRL_SPD_100;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002503
Linus Torvalds1da177e2005-04-16 15:20:36 -07002504 /* Write the configured values back to the Device Control Reg. */
2505 E1000_WRITE_REG(hw, CTRL, ctrl);
2506 return E1000_SUCCESS;
2507}
2508
2509/******************************************************************************
2510 * Forces the MAC's flow control settings.
2511 *
2512 * hw - Struct containing variables accessed by shared code
2513 *
2514 * Sets the TFCE and RFCE bits in the device control register to reflect
2515 * the adapter settings. TFCE and RFCE need to be explicitly set by
2516 * software when a Copper PHY is used because autonegotiation is managed
2517 * by the PHY rather than the MAC. Software must also configure these
2518 * bits when link is forced on a fiber connection.
2519 *****************************************************************************/
2520int32_t
2521e1000_force_mac_fc(struct e1000_hw *hw)
2522{
2523 uint32_t ctrl;
2524
2525 DEBUGFUNC("e1000_force_mac_fc");
2526
2527 /* Get the current configuration of the Device Control Register */
2528 ctrl = E1000_READ_REG(hw, CTRL);
2529
2530 /* Because we didn't get link via the internal auto-negotiation
2531 * mechanism (we either forced link or we got link via PHY
2532 * auto-neg), we have to manually enable/disable transmit an
2533 * receive flow control.
2534 *
2535 * The "Case" statement below enables/disable flow control
2536 * according to the "hw->fc" parameter.
2537 *
2538 * The possible values of the "fc" parameter are:
2539 * 0: Flow control is completely disabled
2540 * 1: Rx flow control is enabled (we can receive pause
2541 * frames but not send pause frames).
2542 * 2: Tx flow control is enabled (we can send pause frames
2543 * frames but we do not receive pause frames).
2544 * 3: Both Rx and TX flow control (symmetric) is enabled.
2545 * other: No other values should be possible at this point.
2546 */
2547
2548 switch (hw->fc) {
2549 case e1000_fc_none:
2550 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2551 break;
2552 case e1000_fc_rx_pause:
2553 ctrl &= (~E1000_CTRL_TFCE);
2554 ctrl |= E1000_CTRL_RFCE;
2555 break;
2556 case e1000_fc_tx_pause:
2557 ctrl &= (~E1000_CTRL_RFCE);
2558 ctrl |= E1000_CTRL_TFCE;
2559 break;
2560 case e1000_fc_full:
2561 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2562 break;
2563 default:
2564 DEBUGOUT("Flow control param set incorrectly\n");
2565 return -E1000_ERR_CONFIG;
2566 }
2567
2568 /* Disable TX Flow Control for 82542 (rev 2.0) */
Auke Kok8fc897b2006-08-28 14:56:16 -07002569 if (hw->mac_type == e1000_82542_rev2_0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570 ctrl &= (~E1000_CTRL_TFCE);
2571
2572 E1000_WRITE_REG(hw, CTRL, ctrl);
2573 return E1000_SUCCESS;
2574}
2575
2576/******************************************************************************
2577 * Configures flow control settings after link is established
2578 *
2579 * hw - Struct containing variables accessed by shared code
2580 *
2581 * Should be called immediately after a valid link has been established.
2582 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2583 * and autonegotiation is enabled, the MAC flow control settings will be set
2584 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2585 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2586 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01002587static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588e1000_config_fc_after_link_up(struct e1000_hw *hw)
2589{
2590 int32_t ret_val;
2591 uint16_t mii_status_reg;
2592 uint16_t mii_nway_adv_reg;
2593 uint16_t mii_nway_lp_ability_reg;
2594 uint16_t speed;
2595 uint16_t duplex;
2596
2597 DEBUGFUNC("e1000_config_fc_after_link_up");
2598
2599 /* Check for the case where we have fiber media and auto-neg failed
2600 * so we had to force link. In this case, we need to force the
2601 * configuration of the MAC to match the "fc" parameter.
2602 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002603 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2604 ((hw->media_type == e1000_media_type_internal_serdes) &&
2605 (hw->autoneg_failed)) ||
2606 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002607 ret_val = e1000_force_mac_fc(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002608 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002609 DEBUGOUT("Error forcing flow control settings\n");
2610 return ret_val;
2611 }
2612 }
2613
2614 /* Check for the case where we have copper media and auto-neg is
2615 * enabled. In this case, we need to check and see if Auto-Neg
2616 * has completed, and if so, how the PHY and link partner has
2617 * flow control configured.
2618 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002619 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002620 /* Read the MII Status Register and check to see if AutoNeg
2621 * has completed. We read this twice because this reg has
2622 * some "sticky" (latched) bits.
2623 */
2624 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002625 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002626 return ret_val;
2627 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002628 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002629 return ret_val;
2630
Auke Kok8fc897b2006-08-28 14:56:16 -07002631 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632 /* The AutoNeg process has completed, so we now need to
2633 * read both the Auto Negotiation Advertisement Register
2634 * (Address 4) and the Auto_Negotiation Base Page Ability
2635 * Register (Address 5) to determine how flow control was
2636 * negotiated.
2637 */
2638 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2639 &mii_nway_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002640 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002641 return ret_val;
2642 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2643 &mii_nway_lp_ability_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002644 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002645 return ret_val;
2646
2647 /* Two bits in the Auto Negotiation Advertisement Register
2648 * (Address 4) and two bits in the Auto Negotiation Base
2649 * Page Ability Register (Address 5) determine flow control
2650 * for both the PHY and the link partner. The following
2651 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2652 * 1999, describes these PAUSE resolution bits and how flow
2653 * control is determined based upon these settings.
2654 * NOTE: DC = Don't Care
2655 *
2656 * LOCAL DEVICE | LINK PARTNER
2657 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2658 *-------|---------|-------|---------|--------------------
2659 * 0 | 0 | DC | DC | e1000_fc_none
2660 * 0 | 1 | 0 | DC | e1000_fc_none
2661 * 0 | 1 | 1 | 0 | e1000_fc_none
2662 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2663 * 1 | 0 | 0 | DC | e1000_fc_none
2664 * 1 | DC | 1 | DC | e1000_fc_full
2665 * 1 | 1 | 0 | 0 | e1000_fc_none
2666 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2667 *
2668 */
2669 /* Are both PAUSE bits set to 1? If so, this implies
2670 * Symmetric Flow Control is enabled at both ends. The
2671 * ASM_DIR bits are irrelevant per the spec.
2672 *
2673 * For Symmetric Flow Control:
2674 *
2675 * LOCAL DEVICE | LINK PARTNER
2676 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2677 *-------|---------|-------|---------|--------------------
2678 * 1 | DC | 1 | DC | e1000_fc_full
2679 *
2680 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002681 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2682 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683 /* Now we need to check if the user selected RX ONLY
2684 * of pause frames. In this case, we had to advertise
2685 * FULL flow control because we could not advertise RX
2686 * ONLY. Hence, we must now check to see if we need to
2687 * turn OFF the TRANSMISSION of PAUSE frames.
2688 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002689 if (hw->original_fc == e1000_fc_full) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690 hw->fc = e1000_fc_full;
Auke Koka42a5072006-05-23 13:36:01 -07002691 DEBUGOUT("Flow Control = FULL.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002692 } else {
2693 hw->fc = e1000_fc_rx_pause;
Auke Koka42a5072006-05-23 13:36:01 -07002694 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002695 }
2696 }
2697 /* For receiving PAUSE frames ONLY.
2698 *
2699 * LOCAL DEVICE | LINK PARTNER
2700 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2701 *-------|---------|-------|---------|--------------------
2702 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2703 *
2704 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002705 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2706 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2707 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2708 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002709 hw->fc = e1000_fc_tx_pause;
Auke Koka42a5072006-05-23 13:36:01 -07002710 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711 }
2712 /* For transmitting PAUSE frames ONLY.
2713 *
2714 * LOCAL DEVICE | LINK PARTNER
2715 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2716 *-------|---------|-------|---------|--------------------
2717 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2718 *
2719 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002720 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2721 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2722 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2723 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002724 hw->fc = e1000_fc_rx_pause;
Auke Koka42a5072006-05-23 13:36:01 -07002725 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 }
2727 /* Per the IEEE spec, at this point flow control should be
2728 * disabled. However, we want to consider that we could
2729 * be connected to a legacy switch that doesn't advertise
2730 * desired flow control, but can be forced on the link
2731 * partner. So if we advertised no flow control, that is
2732 * what we will resolve to. If we advertised some kind of
2733 * receive capability (Rx Pause Only or Full Flow Control)
2734 * and the link partner advertised none, we will configure
2735 * ourselves to enable Rx Flow Control only. We can do
2736 * this safely for two reasons: If the link partner really
2737 * didn't want flow control enabled, and we enable Rx, no
2738 * harm done since we won't be receiving any PAUSE frames
2739 * anyway. If the intent on the link partner was to have
2740 * flow control enabled, then by us enabling RX only, we
2741 * can at least receive pause frames and process them.
2742 * This is a good idea because in most cases, since we are
2743 * predominantly a server NIC, more times than not we will
2744 * be asked to delay transmission of packets than asking
2745 * our link partner to pause transmission of frames.
2746 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002747 else if ((hw->original_fc == e1000_fc_none ||
2748 hw->original_fc == e1000_fc_tx_pause) ||
2749 hw->fc_strict_ieee) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750 hw->fc = e1000_fc_none;
Auke Koka42a5072006-05-23 13:36:01 -07002751 DEBUGOUT("Flow Control = NONE.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752 } else {
2753 hw->fc = e1000_fc_rx_pause;
Auke Koka42a5072006-05-23 13:36:01 -07002754 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755 }
2756
2757 /* Now we need to do one last check... If we auto-
2758 * negotiated to HALF DUPLEX, flow control should not be
2759 * enabled per IEEE 802.3 spec.
2760 */
2761 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
Auke Kok8fc897b2006-08-28 14:56:16 -07002762 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763 DEBUGOUT("Error getting link speed and duplex\n");
2764 return ret_val;
2765 }
2766
Auke Kok8fc897b2006-08-28 14:56:16 -07002767 if (duplex == HALF_DUPLEX)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768 hw->fc = e1000_fc_none;
2769
2770 /* Now we call a subroutine to actually force the MAC
2771 * controller to use the correct flow control settings.
2772 */
2773 ret_val = e1000_force_mac_fc(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002774 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002775 DEBUGOUT("Error forcing flow control settings\n");
2776 return ret_val;
2777 }
2778 } else {
Auke Koka42a5072006-05-23 13:36:01 -07002779 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780 }
2781 }
2782 return E1000_SUCCESS;
2783}
2784
2785/******************************************************************************
2786 * Checks to see if the link status of the hardware has changed.
2787 *
2788 * hw - Struct containing variables accessed by shared code
2789 *
2790 * Called by any function that needs to check the link status of the adapter.
2791 *****************************************************************************/
2792int32_t
2793e1000_check_for_link(struct e1000_hw *hw)
2794{
2795 uint32_t rxcw = 0;
2796 uint32_t ctrl;
2797 uint32_t status;
2798 uint32_t rctl;
2799 uint32_t icr;
2800 uint32_t signal = 0;
2801 int32_t ret_val;
2802 uint16_t phy_data;
2803
2804 DEBUGFUNC("e1000_check_for_link");
2805
2806 ctrl = E1000_READ_REG(hw, CTRL);
2807 status = E1000_READ_REG(hw, STATUS);
2808
2809 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2810 * set when the optics detect a signal. On older adapters, it will be
2811 * cleared when there is a signal. This applies to fiber media only.
2812 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002813 if ((hw->media_type == e1000_media_type_fiber) ||
2814 (hw->media_type == e1000_media_type_internal_serdes)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 rxcw = E1000_READ_REG(hw, RXCW);
2816
Auke Kok8fc897b2006-08-28 14:56:16 -07002817 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002818 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
Auke Kok8fc897b2006-08-28 14:56:16 -07002819 if (status & E1000_STATUS_LU)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002820 hw->get_link_status = FALSE;
2821 }
2822 }
2823
2824 /* If we have a copper PHY then we only want to go out to the PHY
2825 * registers to see if Auto-Neg has completed and/or if our link
2826 * status has changed. The get_link_status flag will be set if we
2827 * receive a Link Status Change interrupt or we have Rx Sequence
2828 * Errors.
2829 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002830 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831 /* First we want to see if the MII Status Register reports
2832 * link. If so, then we want to get the current speed/duplex
2833 * of the PHY.
2834 * Read the register twice since the link bit is sticky.
2835 */
2836 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002837 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002838 return ret_val;
2839 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002840 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841 return ret_val;
2842
Auke Kok8fc897b2006-08-28 14:56:16 -07002843 if (phy_data & MII_SR_LINK_STATUS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002844 hw->get_link_status = FALSE;
2845 /* Check if there was DownShift, must be checked immediately after
2846 * link-up */
2847 e1000_check_downshift(hw);
2848
2849 /* If we are on 82544 or 82543 silicon and speed/duplex
2850 * are forced to 10H or 10F, then we will implement the polarity
2851 * reversal workaround. We disable interrupts first, and upon
2852 * returning, place the devices interrupt state to its previous
2853 * value except for the link status change interrupt which will
2854 * happen due to the execution of this workaround.
2855 */
2856
Auke Kok8fc897b2006-08-28 14:56:16 -07002857 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2858 (!hw->autoneg) &&
2859 (hw->forced_speed_duplex == e1000_10_full ||
2860 hw->forced_speed_duplex == e1000_10_half)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002861 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2862 ret_val = e1000_polarity_reversal_workaround(hw);
2863 icr = E1000_READ_REG(hw, ICR);
2864 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2865 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2866 }
2867
2868 } else {
2869 /* No link detected */
2870 e1000_config_dsp_after_link_change(hw, FALSE);
2871 return 0;
2872 }
2873
2874 /* If we are forcing speed/duplex, then we simply return since
2875 * we have already determined whether we have link or not.
2876 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002877 if (!hw->autoneg) return -E1000_ERR_CONFIG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002878
2879 /* optimize the dsp settings for the igp phy */
2880 e1000_config_dsp_after_link_change(hw, TRUE);
2881
2882 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2883 * have Si on board that is 82544 or newer, Auto
2884 * Speed Detection takes care of MAC speed/duplex
2885 * configuration. So we only need to configure Collision
2886 * Distance in the MAC. Otherwise, we need to force
2887 * speed/duplex on the MAC to the current PHY speed/duplex
2888 * settings.
2889 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002890 if (hw->mac_type >= e1000_82544)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002891 e1000_config_collision_dist(hw);
2892 else {
2893 ret_val = e1000_config_mac_to_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002894 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002895 DEBUGOUT("Error configuring MAC to PHY settings\n");
2896 return ret_val;
2897 }
2898 }
2899
2900 /* Configure Flow Control now that Auto-Neg has completed. First, we
2901 * need to restore the desired flow control settings because we may
2902 * have had to re-autoneg with a different link partner.
2903 */
2904 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002905 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002906 DEBUGOUT("Error configuring flow control\n");
2907 return ret_val;
2908 }
2909
2910 /* At this point we know that we are on copper and we have
2911 * auto-negotiated link. These are conditions for checking the link
2912 * partner capability register. We use the link speed to determine if
2913 * TBI compatibility needs to be turned on or off. If the link is not
2914 * at gigabit speed, then TBI compatibility is not needed. If we are
2915 * at gigabit speed, we turn on TBI compatibility.
2916 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002917 if (hw->tbi_compatibility_en) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918 uint16_t speed, duplex;
Auke Kok592600a2006-06-27 09:08:09 -07002919 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2920 if (ret_val) {
2921 DEBUGOUT("Error getting link speed and duplex\n");
2922 return ret_val;
2923 }
2924 if (speed != SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002925 /* If link speed is not set to gigabit speed, we do not need
2926 * to enable TBI compatibility.
2927 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002928 if (hw->tbi_compatibility_on) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002929 /* If we previously were in the mode, turn it off. */
2930 rctl = E1000_READ_REG(hw, RCTL);
2931 rctl &= ~E1000_RCTL_SBP;
2932 E1000_WRITE_REG(hw, RCTL, rctl);
2933 hw->tbi_compatibility_on = FALSE;
2934 }
2935 } else {
2936 /* If TBI compatibility is was previously off, turn it on. For
2937 * compatibility with a TBI link partner, we will store bad
2938 * packets. Some frames have an additional byte on the end and
2939 * will look like CRC errors to to the hardware.
2940 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002941 if (!hw->tbi_compatibility_on) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942 hw->tbi_compatibility_on = TRUE;
2943 rctl = E1000_READ_REG(hw, RCTL);
2944 rctl |= E1000_RCTL_SBP;
2945 E1000_WRITE_REG(hw, RCTL, rctl);
2946 }
2947 }
2948 }
2949 }
2950 /* If we don't have link (auto-negotiation failed or link partner cannot
2951 * auto-negotiate), the cable is plugged in (we have signal), and our
2952 * link partner is not trying to auto-negotiate with us (we are receiving
2953 * idles or data), we need to force link up. We also need to give
2954 * auto-negotiation time to complete, in case the cable was just plugged
2955 * in. The autoneg_failed flag does this.
2956 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002957 else if ((((hw->media_type == e1000_media_type_fiber) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07002958 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
Auke Kok8fc897b2006-08-28 14:56:16 -07002959 (hw->media_type == e1000_media_type_internal_serdes)) &&
2960 (!(status & E1000_STATUS_LU)) &&
2961 (!(rxcw & E1000_RXCW_C))) {
2962 if (hw->autoneg_failed == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002963 hw->autoneg_failed = 1;
2964 return 0;
2965 }
Auke Koka42a5072006-05-23 13:36:01 -07002966 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002967
2968 /* Disable auto-negotiation in the TXCW register */
2969 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2970
2971 /* Force link-up and also force full-duplex. */
2972 ctrl = E1000_READ_REG(hw, CTRL);
2973 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2974 E1000_WRITE_REG(hw, CTRL, ctrl);
2975
2976 /* Configure Flow Control after forcing link up. */
2977 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002978 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002979 DEBUGOUT("Error configuring flow control\n");
2980 return ret_val;
2981 }
2982 }
2983 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2984 * auto-negotiation in the TXCW register and disable forced link in the
2985 * Device Control register in an attempt to auto-negotiate with our link
2986 * partner.
2987 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002988 else if (((hw->media_type == e1000_media_type_fiber) ||
2989 (hw->media_type == e1000_media_type_internal_serdes)) &&
2990 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Auke Koka42a5072006-05-23 13:36:01 -07002991 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002992 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2993 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2994
2995 hw->serdes_link_down = FALSE;
2996 }
2997 /* If we force link for non-auto-negotiation switch, check link status
2998 * based on MAC synchronization for internal serdes media type.
2999 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003000 else if ((hw->media_type == e1000_media_type_internal_serdes) &&
3001 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003002 /* SYNCH bit and IV bit are sticky. */
3003 udelay(10);
Auke Kok8fc897b2006-08-28 14:56:16 -07003004 if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
3005 if (!(rxcw & E1000_RXCW_IV)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003006 hw->serdes_link_down = FALSE;
3007 DEBUGOUT("SERDES: Link is up.\n");
3008 }
3009 } else {
3010 hw->serdes_link_down = TRUE;
3011 DEBUGOUT("SERDES: Link is down.\n");
3012 }
3013 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003014 if ((hw->media_type == e1000_media_type_internal_serdes) &&
3015 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003016 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
3017 }
3018 return E1000_SUCCESS;
3019}
3020
3021/******************************************************************************
3022 * Detects the current speed and duplex settings of the hardware.
3023 *
3024 * hw - Struct containing variables accessed by shared code
3025 * speed - Speed of the connection
3026 * duplex - Duplex setting of the connection
3027 *****************************************************************************/
3028int32_t
3029e1000_get_speed_and_duplex(struct e1000_hw *hw,
3030 uint16_t *speed,
3031 uint16_t *duplex)
3032{
3033 uint32_t status;
3034 int32_t ret_val;
3035 uint16_t phy_data;
3036
3037 DEBUGFUNC("e1000_get_speed_and_duplex");
3038
Auke Kok8fc897b2006-08-28 14:56:16 -07003039 if (hw->mac_type >= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003040 status = E1000_READ_REG(hw, STATUS);
Auke Kok8fc897b2006-08-28 14:56:16 -07003041 if (status & E1000_STATUS_SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003042 *speed = SPEED_1000;
3043 DEBUGOUT("1000 Mbs, ");
Auke Kok8fc897b2006-08-28 14:56:16 -07003044 } else if (status & E1000_STATUS_SPEED_100) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045 *speed = SPEED_100;
3046 DEBUGOUT("100 Mbs, ");
3047 } else {
3048 *speed = SPEED_10;
3049 DEBUGOUT("10 Mbs, ");
3050 }
3051
Auke Kok8fc897b2006-08-28 14:56:16 -07003052 if (status & E1000_STATUS_FD) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003053 *duplex = FULL_DUPLEX;
Auke Koka42a5072006-05-23 13:36:01 -07003054 DEBUGOUT("Full Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003055 } else {
3056 *duplex = HALF_DUPLEX;
Auke Koka42a5072006-05-23 13:36:01 -07003057 DEBUGOUT(" Half Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003058 }
3059 } else {
Auke Koka42a5072006-05-23 13:36:01 -07003060 DEBUGOUT("1000 Mbs, Full Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003061 *speed = SPEED_1000;
3062 *duplex = FULL_DUPLEX;
3063 }
3064
3065 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3066 * if it is operating at half duplex. Here we set the duplex settings to
3067 * match the duplex in the link partner's capabilities.
3068 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003069 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003071 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003072 return ret_val;
3073
Auke Kok8fc897b2006-08-28 14:56:16 -07003074 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003075 *duplex = HALF_DUPLEX;
3076 else {
3077 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003078 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003079 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07003080 if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07003081 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3082 *duplex = HALF_DUPLEX;
3083 }
3084 }
3085
Auke Kok76c224b2006-05-23 13:36:06 -07003086 if ((hw->mac_type == e1000_80003es2lan) &&
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003087 (hw->media_type == e1000_media_type_copper)) {
3088 if (*speed == SPEED_1000)
3089 ret_val = e1000_configure_kmrn_for_1000(hw);
3090 else
Auke Kokcd94dd02006-06-27 09:08:22 -07003091 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3092 if (ret_val)
3093 return ret_val;
3094 }
3095
3096 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3097 ret_val = e1000_kumeran_lock_loss_workaround(hw);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003098 if (ret_val)
3099 return ret_val;
3100 }
3101
Linus Torvalds1da177e2005-04-16 15:20:36 -07003102 return E1000_SUCCESS;
3103}
3104
3105/******************************************************************************
3106* Blocks until autoneg completes or times out (~4.5 seconds)
3107*
3108* hw - Struct containing variables accessed by shared code
3109******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003110static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003111e1000_wait_autoneg(struct e1000_hw *hw)
3112{
3113 int32_t ret_val;
3114 uint16_t i;
3115 uint16_t phy_data;
3116
3117 DEBUGFUNC("e1000_wait_autoneg");
3118 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3119
3120 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
Auke Kok8fc897b2006-08-28 14:56:16 -07003121 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003122 /* Read the MII Status Register and wait for Auto-Neg
3123 * Complete bit to be set.
3124 */
3125 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003126 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003127 return ret_val;
3128 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003129 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003130 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07003131 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003132 return E1000_SUCCESS;
3133 }
3134 msec_delay(100);
3135 }
3136 return E1000_SUCCESS;
3137}
3138
3139/******************************************************************************
3140* Raises the Management Data Clock
3141*
3142* hw - Struct containing variables accessed by shared code
3143* ctrl - Device control register's current value
3144******************************************************************************/
3145static void
3146e1000_raise_mdi_clk(struct e1000_hw *hw,
3147 uint32_t *ctrl)
3148{
3149 /* Raise the clock input to the Management Data Clock (by setting the MDC
3150 * bit), and then delay 10 microseconds.
3151 */
3152 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3153 E1000_WRITE_FLUSH(hw);
3154 udelay(10);
3155}
3156
3157/******************************************************************************
3158* Lowers the Management Data Clock
3159*
3160* hw - Struct containing variables accessed by shared code
3161* ctrl - Device control register's current value
3162******************************************************************************/
3163static void
3164e1000_lower_mdi_clk(struct e1000_hw *hw,
3165 uint32_t *ctrl)
3166{
3167 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3168 * bit), and then delay 10 microseconds.
3169 */
3170 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3171 E1000_WRITE_FLUSH(hw);
3172 udelay(10);
3173}
3174
3175/******************************************************************************
3176* Shifts data bits out to the PHY
3177*
3178* hw - Struct containing variables accessed by shared code
3179* data - Data to send out to the PHY
3180* count - Number of bits to shift out
3181*
3182* Bits are shifted out in MSB to LSB order.
3183******************************************************************************/
3184static void
3185e1000_shift_out_mdi_bits(struct e1000_hw *hw,
3186 uint32_t data,
3187 uint16_t count)
3188{
3189 uint32_t ctrl;
3190 uint32_t mask;
3191
3192 /* We need to shift "count" number of bits out to the PHY. So, the value
3193 * in the "data" parameter will be shifted out to the PHY one bit at a
3194 * time. In order to do this, "data" must be broken down into bits.
3195 */
3196 mask = 0x01;
3197 mask <<= (count - 1);
3198
3199 ctrl = E1000_READ_REG(hw, CTRL);
3200
3201 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3202 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3203
Auke Kok8fc897b2006-08-28 14:56:16 -07003204 while (mask) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003205 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3206 * then raising and lowering the Management Data Clock. A "0" is
3207 * shifted out to the PHY by setting the MDIO bit to "0" and then
3208 * raising and lowering the clock.
3209 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003210 if (data & mask)
3211 ctrl |= E1000_CTRL_MDIO;
3212 else
3213 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003214
3215 E1000_WRITE_REG(hw, CTRL, ctrl);
3216 E1000_WRITE_FLUSH(hw);
3217
3218 udelay(10);
3219
3220 e1000_raise_mdi_clk(hw, &ctrl);
3221 e1000_lower_mdi_clk(hw, &ctrl);
3222
3223 mask = mask >> 1;
3224 }
3225}
3226
3227/******************************************************************************
3228* Shifts data bits in from the PHY
3229*
3230* hw - Struct containing variables accessed by shared code
3231*
3232* Bits are shifted in in MSB to LSB order.
3233******************************************************************************/
3234static uint16_t
3235e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3236{
3237 uint32_t ctrl;
3238 uint16_t data = 0;
3239 uint8_t i;
3240
3241 /* In order to read a register from the PHY, we need to shift in a total
3242 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3243 * to avoid contention on the MDIO pin when a read operation is performed.
3244 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3245 * by raising the input to the Management Data Clock (setting the MDC bit),
3246 * and then reading the value of the MDIO bit.
3247 */
3248 ctrl = E1000_READ_REG(hw, CTRL);
3249
3250 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3251 ctrl &= ~E1000_CTRL_MDIO_DIR;
3252 ctrl &= ~E1000_CTRL_MDIO;
3253
3254 E1000_WRITE_REG(hw, CTRL, ctrl);
3255 E1000_WRITE_FLUSH(hw);
3256
3257 /* Raise and Lower the clock before reading in the data. This accounts for
3258 * the turnaround bits. The first clock occurred when we clocked out the
3259 * last bit of the Register Address.
3260 */
3261 e1000_raise_mdi_clk(hw, &ctrl);
3262 e1000_lower_mdi_clk(hw, &ctrl);
3263
Auke Kok8fc897b2006-08-28 14:56:16 -07003264 for (data = 0, i = 0; i < 16; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003265 data = data << 1;
3266 e1000_raise_mdi_clk(hw, &ctrl);
3267 ctrl = E1000_READ_REG(hw, CTRL);
3268 /* Check to see if we shifted in a "1". */
Auke Kok8fc897b2006-08-28 14:56:16 -07003269 if (ctrl & E1000_CTRL_MDIO)
3270 data |= 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003271 e1000_lower_mdi_clk(hw, &ctrl);
3272 }
3273
3274 e1000_raise_mdi_clk(hw, &ctrl);
3275 e1000_lower_mdi_clk(hw, &ctrl);
3276
3277 return data;
3278}
3279
Adrian Bunke4c780b2006-08-14 23:00:10 -07003280static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003281e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3282{
3283 uint32_t swfw_sync = 0;
3284 uint32_t swmask = mask;
3285 uint32_t fwmask = mask << 16;
3286 int32_t timeout = 200;
3287
3288 DEBUGFUNC("e1000_swfw_sync_acquire");
3289
Auke Kokcd94dd02006-06-27 09:08:22 -07003290 if (hw->swfwhw_semaphore_present)
3291 return e1000_get_software_flag(hw);
3292
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003293 if (!hw->swfw_sync_present)
3294 return e1000_get_hw_eeprom_semaphore(hw);
3295
Auke Kok8fc897b2006-08-28 14:56:16 -07003296 while (timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003297 if (e1000_get_hw_eeprom_semaphore(hw))
3298 return -E1000_ERR_SWFW_SYNC;
3299
3300 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3301 if (!(swfw_sync & (fwmask | swmask))) {
3302 break;
3303 }
3304
3305 /* firmware currently using resource (fwmask) */
3306 /* or other software thread currently using resource (swmask) */
3307 e1000_put_hw_eeprom_semaphore(hw);
3308 msec_delay_irq(5);
3309 timeout--;
3310 }
3311
3312 if (!timeout) {
3313 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3314 return -E1000_ERR_SWFW_SYNC;
3315 }
3316
3317 swfw_sync |= swmask;
3318 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3319
3320 e1000_put_hw_eeprom_semaphore(hw);
3321 return E1000_SUCCESS;
3322}
3323
Adrian Bunke4c780b2006-08-14 23:00:10 -07003324static void
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003325e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3326{
3327 uint32_t swfw_sync;
3328 uint32_t swmask = mask;
3329
3330 DEBUGFUNC("e1000_swfw_sync_release");
3331
Auke Kokcd94dd02006-06-27 09:08:22 -07003332 if (hw->swfwhw_semaphore_present) {
3333 e1000_release_software_flag(hw);
3334 return;
3335 }
3336
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003337 if (!hw->swfw_sync_present) {
3338 e1000_put_hw_eeprom_semaphore(hw);
3339 return;
3340 }
3341
3342 /* if (e1000_get_hw_eeprom_semaphore(hw))
3343 * return -E1000_ERR_SWFW_SYNC; */
3344 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3345 /* empty */
3346
3347 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3348 swfw_sync &= ~swmask;
3349 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3350
3351 e1000_put_hw_eeprom_semaphore(hw);
3352}
3353
Linus Torvalds1da177e2005-04-16 15:20:36 -07003354/*****************************************************************************
3355* Reads the value from a PHY register, if the value is on a specific non zero
3356* page, sets the page first.
3357* hw - Struct containing variables accessed by shared code
3358* reg_addr - address of the PHY register to read
3359******************************************************************************/
3360int32_t
3361e1000_read_phy_reg(struct e1000_hw *hw,
3362 uint32_t reg_addr,
3363 uint16_t *phy_data)
3364{
3365 uint32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003366 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003367
3368 DEBUGFUNC("e1000_read_phy_reg");
3369
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003370 if ((hw->mac_type == e1000_80003es2lan) &&
3371 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3372 swfw = E1000_SWFW_PHY1_SM;
3373 } else {
3374 swfw = E1000_SWFW_PHY0_SM;
3375 }
3376 if (e1000_swfw_sync_acquire(hw, swfw))
3377 return -E1000_ERR_SWFW_SYNC;
3378
Auke Kokcd94dd02006-06-27 09:08:22 -07003379 if ((hw->phy_type == e1000_phy_igp ||
3380 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003381 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003382 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3383 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3384 (uint16_t)reg_addr);
Auke Kok8fc897b2006-08-28 14:56:16 -07003385 if (ret_val) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003386 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387 return ret_val;
3388 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003389 } else if (hw->phy_type == e1000_phy_gg82563) {
3390 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3391 (hw->mac_type == e1000_80003es2lan)) {
3392 /* Select Configuration Page */
3393 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3394 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3395 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3396 } else {
3397 /* Use Alternative Page Select register to access
3398 * registers 30 and 31
3399 */
3400 ret_val = e1000_write_phy_reg_ex(hw,
3401 GG82563_PHY_PAGE_SELECT_ALT,
3402 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3403 }
3404
3405 if (ret_val) {
3406 e1000_swfw_sync_release(hw, swfw);
3407 return ret_val;
3408 }
3409 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003410 }
3411
3412 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3413 phy_data);
3414
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003415 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416 return ret_val;
3417}
3418
3419int32_t
3420e1000_read_phy_reg_ex(struct e1000_hw *hw,
3421 uint32_t reg_addr,
3422 uint16_t *phy_data)
3423{
3424 uint32_t i;
3425 uint32_t mdic = 0;
3426 const uint32_t phy_addr = 1;
3427
3428 DEBUGFUNC("e1000_read_phy_reg_ex");
3429
Auke Kok8fc897b2006-08-28 14:56:16 -07003430 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003431 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3432 return -E1000_ERR_PARAM;
3433 }
3434
Auke Kok8fc897b2006-08-28 14:56:16 -07003435 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003436 /* Set up Op-code, Phy Address, and register address in the MDI
3437 * Control register. The MAC will take care of interfacing with the
3438 * PHY to retrieve the desired data.
3439 */
3440 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3441 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3442 (E1000_MDIC_OP_READ));
3443
3444 E1000_WRITE_REG(hw, MDIC, mdic);
3445
3446 /* Poll the ready bit to see if the MDI read completed */
Auke Kok8fc897b2006-08-28 14:56:16 -07003447 for (i = 0; i < 64; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003448 udelay(50);
3449 mdic = E1000_READ_REG(hw, MDIC);
Auke Kok8fc897b2006-08-28 14:56:16 -07003450 if (mdic & E1000_MDIC_READY) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003451 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003452 if (!(mdic & E1000_MDIC_READY)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003453 DEBUGOUT("MDI Read did not complete\n");
3454 return -E1000_ERR_PHY;
3455 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003456 if (mdic & E1000_MDIC_ERROR) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003457 DEBUGOUT("MDI Error\n");
3458 return -E1000_ERR_PHY;
3459 }
3460 *phy_data = (uint16_t) mdic;
3461 } else {
3462 /* We must first send a preamble through the MDIO pin to signal the
3463 * beginning of an MII instruction. This is done by sending 32
3464 * consecutive "1" bits.
3465 */
3466 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3467
3468 /* Now combine the next few fields that are required for a read
3469 * operation. We use this method instead of calling the
3470 * e1000_shift_out_mdi_bits routine five different times. The format of
3471 * a MII read instruction consists of a shift out of 14 bits and is
3472 * defined as follows:
3473 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3474 * followed by a shift in of 18 bits. This first two bits shifted in
3475 * are TurnAround bits used to avoid contention on the MDIO pin when a
3476 * READ operation is performed. These two bits are thrown away
3477 * followed by a shift in of 16 bits which contains the desired data.
3478 */
3479 mdic = ((reg_addr) | (phy_addr << 5) |
3480 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3481
3482 e1000_shift_out_mdi_bits(hw, mdic, 14);
3483
3484 /* Now that we've shifted out the read command to the MII, we need to
3485 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3486 * register address.
3487 */
3488 *phy_data = e1000_shift_in_mdi_bits(hw);
3489 }
3490 return E1000_SUCCESS;
3491}
3492
3493/******************************************************************************
3494* Writes a value to a PHY register
3495*
3496* hw - Struct containing variables accessed by shared code
3497* reg_addr - address of the PHY register to write
3498* data - data to write to the PHY
3499******************************************************************************/
3500int32_t
3501e1000_write_phy_reg(struct e1000_hw *hw,
3502 uint32_t reg_addr,
3503 uint16_t phy_data)
3504{
3505 uint32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003506 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003507
3508 DEBUGFUNC("e1000_write_phy_reg");
3509
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003510 if ((hw->mac_type == e1000_80003es2lan) &&
3511 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3512 swfw = E1000_SWFW_PHY1_SM;
3513 } else {
3514 swfw = E1000_SWFW_PHY0_SM;
3515 }
3516 if (e1000_swfw_sync_acquire(hw, swfw))
3517 return -E1000_ERR_SWFW_SYNC;
3518
Auke Kokcd94dd02006-06-27 09:08:22 -07003519 if ((hw->phy_type == e1000_phy_igp ||
3520 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003521 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003522 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3523 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3524 (uint16_t)reg_addr);
Auke Kok8fc897b2006-08-28 14:56:16 -07003525 if (ret_val) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003526 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527 return ret_val;
3528 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003529 } else if (hw->phy_type == e1000_phy_gg82563) {
3530 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3531 (hw->mac_type == e1000_80003es2lan)) {
3532 /* Select Configuration Page */
3533 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3534 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3535 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3536 } else {
3537 /* Use Alternative Page Select register to access
3538 * registers 30 and 31
3539 */
3540 ret_val = e1000_write_phy_reg_ex(hw,
3541 GG82563_PHY_PAGE_SELECT_ALT,
3542 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3543 }
3544
3545 if (ret_val) {
3546 e1000_swfw_sync_release(hw, swfw);
3547 return ret_val;
3548 }
3549 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003550 }
3551
3552 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3553 phy_data);
3554
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003555 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003556 return ret_val;
3557}
3558
3559int32_t
3560e1000_write_phy_reg_ex(struct e1000_hw *hw,
3561 uint32_t reg_addr,
3562 uint16_t phy_data)
3563{
3564 uint32_t i;
3565 uint32_t mdic = 0;
3566 const uint32_t phy_addr = 1;
3567
3568 DEBUGFUNC("e1000_write_phy_reg_ex");
3569
Auke Kok8fc897b2006-08-28 14:56:16 -07003570 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003571 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3572 return -E1000_ERR_PARAM;
3573 }
3574
Auke Kok8fc897b2006-08-28 14:56:16 -07003575 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576 /* Set up Op-code, Phy Address, register address, and data intended
3577 * for the PHY register in the MDI Control register. The MAC will take
3578 * care of interfacing with the PHY to send the desired data.
3579 */
3580 mdic = (((uint32_t) phy_data) |
3581 (reg_addr << E1000_MDIC_REG_SHIFT) |
3582 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3583 (E1000_MDIC_OP_WRITE));
3584
3585 E1000_WRITE_REG(hw, MDIC, mdic);
3586
3587 /* Poll the ready bit to see if the MDI read completed */
Auke Kok8fc897b2006-08-28 14:56:16 -07003588 for (i = 0; i < 641; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003589 udelay(5);
3590 mdic = E1000_READ_REG(hw, MDIC);
Auke Kok8fc897b2006-08-28 14:56:16 -07003591 if (mdic & E1000_MDIC_READY) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003592 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003593 if (!(mdic & E1000_MDIC_READY)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594 DEBUGOUT("MDI Write did not complete\n");
3595 return -E1000_ERR_PHY;
3596 }
3597 } else {
3598 /* We'll need to use the SW defined pins to shift the write command
3599 * out to the PHY. We first send a preamble to the PHY to signal the
3600 * beginning of the MII instruction. This is done by sending 32
3601 * consecutive "1" bits.
3602 */
3603 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3604
3605 /* Now combine the remaining required fields that will indicate a
3606 * write operation. We use this method instead of calling the
3607 * e1000_shift_out_mdi_bits routine for each field in the command. The
3608 * format of a MII write instruction is as follows:
3609 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3610 */
3611 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3612 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3613 mdic <<= 16;
3614 mdic |= (uint32_t) phy_data;
3615
3616 e1000_shift_out_mdi_bits(hw, mdic, 32);
3617 }
3618
3619 return E1000_SUCCESS;
3620}
3621
Adrian Bunke4c780b2006-08-14 23:00:10 -07003622static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003623e1000_read_kmrn_reg(struct e1000_hw *hw,
3624 uint32_t reg_addr,
3625 uint16_t *data)
3626{
3627 uint32_t reg_val;
3628 uint16_t swfw;
3629 DEBUGFUNC("e1000_read_kmrn_reg");
3630
3631 if ((hw->mac_type == e1000_80003es2lan) &&
3632 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3633 swfw = E1000_SWFW_PHY1_SM;
3634 } else {
3635 swfw = E1000_SWFW_PHY0_SM;
3636 }
3637 if (e1000_swfw_sync_acquire(hw, swfw))
3638 return -E1000_ERR_SWFW_SYNC;
3639
3640 /* Write register address */
3641 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3642 E1000_KUMCTRLSTA_OFFSET) |
3643 E1000_KUMCTRLSTA_REN;
3644 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3645 udelay(2);
3646
3647 /* Read the data returned */
3648 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
3649 *data = (uint16_t)reg_val;
3650
3651 e1000_swfw_sync_release(hw, swfw);
3652 return E1000_SUCCESS;
3653}
3654
Adrian Bunke4c780b2006-08-14 23:00:10 -07003655static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003656e1000_write_kmrn_reg(struct e1000_hw *hw,
3657 uint32_t reg_addr,
3658 uint16_t data)
3659{
3660 uint32_t reg_val;
3661 uint16_t swfw;
3662 DEBUGFUNC("e1000_write_kmrn_reg");
3663
3664 if ((hw->mac_type == e1000_80003es2lan) &&
3665 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3666 swfw = E1000_SWFW_PHY1_SM;
3667 } else {
3668 swfw = E1000_SWFW_PHY0_SM;
3669 }
3670 if (e1000_swfw_sync_acquire(hw, swfw))
3671 return -E1000_ERR_SWFW_SYNC;
3672
3673 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3674 E1000_KUMCTRLSTA_OFFSET) | data;
3675 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3676 udelay(2);
3677
3678 e1000_swfw_sync_release(hw, swfw);
3679 return E1000_SUCCESS;
3680}
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003681
Linus Torvalds1da177e2005-04-16 15:20:36 -07003682/******************************************************************************
3683* Returns the PHY to the power-on reset state
3684*
3685* hw - Struct containing variables accessed by shared code
3686******************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003687int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003688e1000_phy_hw_reset(struct e1000_hw *hw)
3689{
3690 uint32_t ctrl, ctrl_ext;
3691 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003692 int32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003693 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003694
3695 DEBUGFUNC("e1000_phy_hw_reset");
3696
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003697 /* In the case of the phy reset being blocked, it's not an error, we
3698 * simply return success without performing the reset. */
3699 ret_val = e1000_check_phy_reset_block(hw);
3700 if (ret_val)
3701 return E1000_SUCCESS;
3702
Linus Torvalds1da177e2005-04-16 15:20:36 -07003703 DEBUGOUT("Resetting Phy...\n");
3704
Auke Kok8fc897b2006-08-28 14:56:16 -07003705 if (hw->mac_type > e1000_82543) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003706 if ((hw->mac_type == e1000_80003es2lan) &&
3707 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3708 swfw = E1000_SWFW_PHY1_SM;
3709 } else {
3710 swfw = E1000_SWFW_PHY0_SM;
3711 }
3712 if (e1000_swfw_sync_acquire(hw, swfw)) {
3713 e1000_release_software_semaphore(hw);
3714 return -E1000_ERR_SWFW_SYNC;
3715 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003716 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3717 * bit. Then, take it out of reset.
Auke Kok76c224b2006-05-23 13:36:06 -07003718 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
Jeff Kirsherfd803242005-12-13 00:06:22 -05003719 * and deassert. For e1000_82571 hardware and later, we instead delay
Jeff Kirsher0f15a8f2006-03-02 18:46:29 -08003720 * for 50us between and 10ms after the deassertion.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003721 */
3722 ctrl = E1000_READ_REG(hw, CTRL);
3723 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3724 E1000_WRITE_FLUSH(hw);
Auke Kok76c224b2006-05-23 13:36:06 -07003725
3726 if (hw->mac_type < e1000_82571)
Jeff Kirsherfd803242005-12-13 00:06:22 -05003727 msec_delay(10);
Jeff Kirsherb55ccb32006-01-12 16:50:30 -08003728 else
3729 udelay(100);
Auke Kok76c224b2006-05-23 13:36:06 -07003730
Linus Torvalds1da177e2005-04-16 15:20:36 -07003731 E1000_WRITE_REG(hw, CTRL, ctrl);
3732 E1000_WRITE_FLUSH(hw);
Auke Kok76c224b2006-05-23 13:36:06 -07003733
Jeff Kirsherfd803242005-12-13 00:06:22 -05003734 if (hw->mac_type >= e1000_82571)
Auke Kokcd94dd02006-06-27 09:08:22 -07003735 msec_delay_irq(10);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003736 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003737 } else {
3738 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3739 * bit to put the PHY into reset. Then, take it out of reset.
3740 */
3741 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3742 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3743 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3744 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3745 E1000_WRITE_FLUSH(hw);
3746 msec_delay(10);
3747 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3748 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3749 E1000_WRITE_FLUSH(hw);
3750 }
3751 udelay(150);
3752
Auke Kok8fc897b2006-08-28 14:56:16 -07003753 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003754 /* Configure activity LED after PHY reset */
3755 led_ctrl = E1000_READ_REG(hw, LEDCTL);
3756 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3757 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3758 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3759 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003760
3761 /* Wait for FW to finish PHY configuration. */
3762 ret_val = e1000_get_phy_cfg_done(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07003763 if (ret_val != E1000_SUCCESS)
3764 return ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003765 e1000_release_software_semaphore(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003766
Auke Kok8fc897b2006-08-28 14:56:16 -07003767 if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3768 ret_val = e1000_init_lcd_from_nvm(hw);
3769
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003770 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003771}
3772
3773/******************************************************************************
3774* Resets the PHY
3775*
3776* hw - Struct containing variables accessed by shared code
3777*
3778* Sets bit 15 of the MII Control regiser
3779******************************************************************************/
3780int32_t
3781e1000_phy_reset(struct e1000_hw *hw)
3782{
3783 int32_t ret_val;
3784 uint16_t phy_data;
3785
3786 DEBUGFUNC("e1000_phy_reset");
3787
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003788 /* In the case of the phy reset being blocked, it's not an error, we
3789 * simply return success without performing the reset. */
3790 ret_val = e1000_check_phy_reset_block(hw);
3791 if (ret_val)
3792 return E1000_SUCCESS;
3793
3794 switch (hw->mac_type) {
3795 case e1000_82541_rev_2:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003796 case e1000_82571:
3797 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -07003798 case e1000_ich8lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003799 ret_val = e1000_phy_hw_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07003800 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003801 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07003802
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003803 break;
3804 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003805 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003806 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003807 return ret_val;
3808
3809 phy_data |= MII_CR_RESET;
3810 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003811 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003812 return ret_val;
3813
3814 udelay(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003815 break;
3816 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003817
Auke Kok8fc897b2006-08-28 14:56:16 -07003818 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003819 e1000_phy_init_script(hw);
3820
3821 return E1000_SUCCESS;
3822}
3823
3824/******************************************************************************
Auke Kokd37ea5d2006-06-27 09:08:17 -07003825* Work-around for 82566 power-down: on D3 entry-
3826* 1) disable gigabit link
3827* 2) write VR power-down enable
3828* 3) read it back
3829* if successful continue, else issue LCD reset and repeat
3830*
3831* hw - struct containing variables accessed by shared code
3832******************************************************************************/
3833void
3834e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3835{
3836 int32_t reg;
3837 uint16_t phy_data;
3838 int32_t retry = 0;
3839
3840 DEBUGFUNC("e1000_phy_powerdown_workaround");
3841
3842 if (hw->phy_type != e1000_phy_igp_3)
3843 return;
3844
3845 do {
3846 /* Disable link */
3847 reg = E1000_READ_REG(hw, PHY_CTRL);
3848 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3849 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3850
3851 /* Write VR power-down enable */
3852 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3853 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
3854 IGP3_VR_CTRL_MODE_SHUT);
3855
3856 /* Read it back and test */
3857 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3858 if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
3859 break;
3860
3861 /* Issue PHY reset and repeat at most one more time */
3862 reg = E1000_READ_REG(hw, CTRL);
3863 E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3864 retry++;
3865 } while (retry);
3866
3867 return;
3868
3869}
3870
3871/******************************************************************************
3872* Work-around for 82566 Kumeran PCS lock loss:
3873* On link status change (i.e. PCI reset, speed change) and link is up and
3874* speed is gigabit-
3875* 0) if workaround is optionally disabled do nothing
3876* 1) wait 1ms for Kumeran link to come up
3877* 2) check Kumeran Diagnostic register PCS lock loss bit
3878* 3) if not set the link is locked (all is good), otherwise...
3879* 4) reset the PHY
3880* 5) repeat up to 10 times
3881* Note: this is only called for IGP3 copper when speed is 1gb.
3882*
3883* hw - struct containing variables accessed by shared code
3884******************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07003885static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07003886e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3887{
3888 int32_t ret_val;
3889 int32_t reg;
3890 int32_t cnt;
3891 uint16_t phy_data;
3892
3893 if (hw->kmrn_lock_loss_workaround_disabled)
3894 return E1000_SUCCESS;
3895
Auke Kok8fc897b2006-08-28 14:56:16 -07003896 /* Make sure link is up before proceeding. If not just return.
3897 * Attempting this while link is negotiating fouled up link
Auke Kokd37ea5d2006-06-27 09:08:17 -07003898 * stability */
3899 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3900 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3901
3902 if (phy_data & MII_SR_LINK_STATUS) {
3903 for (cnt = 0; cnt < 10; cnt++) {
3904 /* read once to clear */
3905 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3906 if (ret_val)
3907 return ret_val;
3908 /* and again to get new status */
3909 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3910 if (ret_val)
3911 return ret_val;
3912
3913 /* check for PCS lock */
3914 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3915 return E1000_SUCCESS;
3916
3917 /* Issue PHY reset */
3918 e1000_phy_hw_reset(hw);
3919 msec_delay_irq(5);
3920 }
3921 /* Disable GigE link negotiation */
3922 reg = E1000_READ_REG(hw, PHY_CTRL);
3923 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3924 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3925
3926 /* unable to acquire PCS lock */
3927 return E1000_ERR_PHY;
3928 }
3929
3930 return E1000_SUCCESS;
3931}
3932
3933/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07003934* Probes the expected PHY address for known PHY IDs
3935*
3936* hw - Struct containing variables accessed by shared code
3937******************************************************************************/
Auke Kokd37ea5d2006-06-27 09:08:17 -07003938int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003939e1000_detect_gig_phy(struct e1000_hw *hw)
3940{
3941 int32_t phy_init_status, ret_val;
3942 uint16_t phy_id_high, phy_id_low;
3943 boolean_t match = FALSE;
3944
3945 DEBUGFUNC("e1000_detect_gig_phy");
3946
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003947 /* The 82571 firmware may still be configuring the PHY. In this
3948 * case, we cannot access the PHY until the configuration is done. So
3949 * we explicitly set the PHY values. */
Auke Kokcd94dd02006-06-27 09:08:22 -07003950 if (hw->mac_type == e1000_82571 ||
3951 hw->mac_type == e1000_82572) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003952 hw->phy_id = IGP01E1000_I_PHY_ID;
3953 hw->phy_type = e1000_phy_igp_2;
3954 return E1000_SUCCESS;
3955 }
3956
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003957 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
3958 * around that forces PHY page 0 to be set or the reads fail. The rest of
3959 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
3960 * So for ESB-2 we need to have this set so our reads won't fail. If the
3961 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
3962 * this out as well. */
3963 if (hw->mac_type == e1000_80003es2lan)
3964 hw->phy_type = e1000_phy_gg82563;
3965
Linus Torvalds1da177e2005-04-16 15:20:36 -07003966 /* Read the PHY ID Registers to identify which PHY is onboard. */
3967 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
Auke Kokcd94dd02006-06-27 09:08:22 -07003968 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003969 return ret_val;
3970
3971 hw->phy_id = (uint32_t) (phy_id_high << 16);
3972 udelay(20);
3973 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
Auke Kok8fc897b2006-08-28 14:56:16 -07003974 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003975 return ret_val;
3976
3977 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
3978 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
3979
Auke Kok8fc897b2006-08-28 14:56:16 -07003980 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003981 case e1000_82543:
Auke Kok8fc897b2006-08-28 14:56:16 -07003982 if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003983 break;
3984 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07003985 if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003986 break;
3987 case e1000_82540:
3988 case e1000_82545:
3989 case e1000_82545_rev_3:
3990 case e1000_82546:
3991 case e1000_82546_rev_3:
Auke Kok8fc897b2006-08-28 14:56:16 -07003992 if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003993 break;
3994 case e1000_82541:
3995 case e1000_82541_rev_2:
3996 case e1000_82547:
3997 case e1000_82547_rev_2:
Auke Kok8fc897b2006-08-28 14:56:16 -07003998 if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003999 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004000 case e1000_82573:
Auke Kok8fc897b2006-08-28 14:56:16 -07004001 if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004002 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004003 case e1000_80003es2lan:
4004 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
4005 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07004006 case e1000_ich8lan:
4007 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
4008 if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
4009 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
4010 if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
4011 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004012 default:
4013 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4014 return -E1000_ERR_CONFIG;
4015 }
4016 phy_init_status = e1000_set_phy_type(hw);
4017
4018 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4019 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4020 return E1000_SUCCESS;
4021 }
4022 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4023 return -E1000_ERR_PHY;
4024}
4025
4026/******************************************************************************
4027* Resets the PHY's DSP
4028*
4029* hw - Struct containing variables accessed by shared code
4030******************************************************************************/
4031static int32_t
4032e1000_phy_reset_dsp(struct e1000_hw *hw)
4033{
4034 int32_t ret_val;
4035 DEBUGFUNC("e1000_phy_reset_dsp");
4036
4037 do {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004038 if (hw->phy_type != e1000_phy_gg82563) {
4039 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
Auke Kok8fc897b2006-08-28 14:56:16 -07004040 if (ret_val) break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004041 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004042 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
Auke Kok8fc897b2006-08-28 14:56:16 -07004043 if (ret_val) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004044 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07004045 if (ret_val) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004046 ret_val = E1000_SUCCESS;
Auke Kok8fc897b2006-08-28 14:56:16 -07004047 } while (0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004048
4049 return ret_val;
4050}
4051
4052/******************************************************************************
4053* Get PHY information from various PHY registers for igp PHY only.
4054*
4055* hw - Struct containing variables accessed by shared code
4056* phy_info - PHY information structure
4057******************************************************************************/
Auke Kok8fc897b2006-08-28 14:56:16 -07004058int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004059e1000_phy_igp_get_info(struct e1000_hw *hw,
4060 struct e1000_phy_info *phy_info)
4061{
4062 int32_t ret_val;
4063 uint16_t phy_data, polarity, min_length, max_length, average;
4064
4065 DEBUGFUNC("e1000_phy_igp_get_info");
4066
4067 /* The downshift status is checked only once, after link is established,
4068 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004069 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004070
4071 /* IGP01E1000 does not need to support it. */
4072 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4073
4074 /* IGP01E1000 always correct polarity reversal */
4075 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4076
4077 /* Check polarity status */
4078 ret_val = e1000_check_polarity(hw, &polarity);
Auke Kok8fc897b2006-08-28 14:56:16 -07004079 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004080 return ret_val;
4081
4082 phy_info->cable_polarity = polarity;
4083
4084 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004085 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004086 return ret_val;
4087
4088 phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
4089 IGP01E1000_PSSR_MDIX_SHIFT;
4090
Auke Kok8fc897b2006-08-28 14:56:16 -07004091 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
Linus Torvalds1da177e2005-04-16 15:20:36 -07004092 IGP01E1000_PSSR_SPEED_1000MBPS) {
4093 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4094 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004095 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004096 return ret_val;
4097
4098 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4099 SR_1000T_LOCAL_RX_STATUS_SHIFT;
4100 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4101 SR_1000T_REMOTE_RX_STATUS_SHIFT;
4102
4103 /* Get cable length */
4104 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
Auke Kok8fc897b2006-08-28 14:56:16 -07004105 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004106 return ret_val;
4107
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004108 /* Translate to old method */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004109 average = (max_length + min_length) / 2;
4110
Auke Kok8fc897b2006-08-28 14:56:16 -07004111 if (average <= e1000_igp_cable_length_50)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004112 phy_info->cable_length = e1000_cable_length_50;
Auke Kok8fc897b2006-08-28 14:56:16 -07004113 else if (average <= e1000_igp_cable_length_80)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004114 phy_info->cable_length = e1000_cable_length_50_80;
Auke Kok8fc897b2006-08-28 14:56:16 -07004115 else if (average <= e1000_igp_cable_length_110)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004116 phy_info->cable_length = e1000_cable_length_80_110;
Auke Kok8fc897b2006-08-28 14:56:16 -07004117 else if (average <= e1000_igp_cable_length_140)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004118 phy_info->cable_length = e1000_cable_length_110_140;
4119 else
4120 phy_info->cable_length = e1000_cable_length_140;
4121 }
4122
4123 return E1000_SUCCESS;
4124}
4125
4126/******************************************************************************
Auke Kokd37ea5d2006-06-27 09:08:17 -07004127* Get PHY information from various PHY registers for ife PHY only.
4128*
4129* hw - Struct containing variables accessed by shared code
4130* phy_info - PHY information structure
4131******************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07004132static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07004133e1000_phy_ife_get_info(struct e1000_hw *hw,
4134 struct e1000_phy_info *phy_info)
4135{
4136 int32_t ret_val;
4137 uint16_t phy_data, polarity;
4138
4139 DEBUGFUNC("e1000_phy_ife_get_info");
4140
4141 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4142 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4143
4144 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4145 if (ret_val)
4146 return ret_val;
4147 phy_info->polarity_correction =
4148 (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4149 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
4150
4151 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4152 ret_val = e1000_check_polarity(hw, &polarity);
4153 if (ret_val)
4154 return ret_val;
4155 } else {
4156 /* Polarity is forced. */
4157 polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
4158 IFE_PSC_FORCE_POLARITY_SHIFT;
4159 }
4160 phy_info->cable_polarity = polarity;
4161
4162 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4163 if (ret_val)
4164 return ret_val;
4165
4166 phy_info->mdix_mode =
4167 (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4168 IFE_PMC_MDIX_MODE_SHIFT;
4169
4170 return E1000_SUCCESS;
4171}
4172
4173/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07004174* Get PHY information from various PHY registers fot m88 PHY only.
4175*
4176* hw - Struct containing variables accessed by shared code
4177* phy_info - PHY information structure
4178******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004179static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004180e1000_phy_m88_get_info(struct e1000_hw *hw,
4181 struct e1000_phy_info *phy_info)
4182{
4183 int32_t ret_val;
4184 uint16_t phy_data, polarity;
4185
4186 DEBUGFUNC("e1000_phy_m88_get_info");
4187
4188 /* The downshift status is checked only once, after link is established,
4189 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004190 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004191
4192 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004193 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004194 return ret_val;
4195
4196 phy_info->extended_10bt_distance =
4197 (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4198 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
4199 phy_info->polarity_correction =
4200 (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4201 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
4202
4203 /* Check polarity status */
4204 ret_val = e1000_check_polarity(hw, &polarity);
Auke Kok8fc897b2006-08-28 14:56:16 -07004205 if (ret_val)
Auke Kok76c224b2006-05-23 13:36:06 -07004206 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004207 phy_info->cable_polarity = polarity;
4208
4209 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004210 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004211 return ret_val;
4212
4213 phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
4214 M88E1000_PSSR_MDIX_SHIFT;
4215
4216 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4217 /* Cable Length Estimation and Local/Remote Receiver Information
4218 * are only valid at 1000 Mbps.
4219 */
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004220 if (hw->phy_type != e1000_phy_gg82563) {
4221 phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4222 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4223 } else {
4224 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4225 &phy_data);
4226 if (ret_val)
4227 return ret_val;
4228
4229 phy_info->cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
4230 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004231
4232 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004233 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004234 return ret_val;
4235
4236 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4237 SR_1000T_LOCAL_RX_STATUS_SHIFT;
4238
4239 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4240 SR_1000T_REMOTE_RX_STATUS_SHIFT;
4241 }
4242
4243 return E1000_SUCCESS;
4244}
4245
4246/******************************************************************************
4247* Get PHY information from various PHY registers
4248*
4249* hw - Struct containing variables accessed by shared code
4250* phy_info - PHY information structure
4251******************************************************************************/
4252int32_t
4253e1000_phy_get_info(struct e1000_hw *hw,
4254 struct e1000_phy_info *phy_info)
4255{
4256 int32_t ret_val;
4257 uint16_t phy_data;
4258
4259 DEBUGFUNC("e1000_phy_get_info");
4260
4261 phy_info->cable_length = e1000_cable_length_undefined;
4262 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4263 phy_info->cable_polarity = e1000_rev_polarity_undefined;
4264 phy_info->downshift = e1000_downshift_undefined;
4265 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4266 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4267 phy_info->local_rx = e1000_1000t_rx_status_undefined;
4268 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4269
Auke Kok8fc897b2006-08-28 14:56:16 -07004270 if (hw->media_type != e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004271 DEBUGOUT("PHY info is only valid for copper media\n");
4272 return -E1000_ERR_CONFIG;
4273 }
4274
4275 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004276 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277 return ret_val;
4278
4279 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004280 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004281 return ret_val;
4282
Auke Kok8fc897b2006-08-28 14:56:16 -07004283 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004284 DEBUGOUT("PHY info is only valid if link is up\n");
4285 return -E1000_ERR_CONFIG;
4286 }
4287
Auke Kokcd94dd02006-06-27 09:08:22 -07004288 if (hw->phy_type == e1000_phy_igp ||
4289 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004290 hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004291 return e1000_phy_igp_get_info(hw, phy_info);
Auke Kokcd94dd02006-06-27 09:08:22 -07004292 else if (hw->phy_type == e1000_phy_ife)
4293 return e1000_phy_ife_get_info(hw, phy_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004294 else
4295 return e1000_phy_m88_get_info(hw, phy_info);
4296}
4297
4298int32_t
4299e1000_validate_mdi_setting(struct e1000_hw *hw)
4300{
4301 DEBUGFUNC("e1000_validate_mdi_settings");
4302
Auke Kok8fc897b2006-08-28 14:56:16 -07004303 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004304 DEBUGOUT("Invalid MDI setting detected\n");
4305 hw->mdix = 1;
4306 return -E1000_ERR_CONFIG;
4307 }
4308 return E1000_SUCCESS;
4309}
4310
4311
4312/******************************************************************************
4313 * Sets up eeprom variables in the hw struct. Must be called after mac_type
Jeff Kirsher0f15a8f2006-03-02 18:46:29 -08004314 * is configured. Additionally, if this is ICH8, the flash controller GbE
4315 * registers must be mapped, or this will crash.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004316 *
4317 * hw - Struct containing variables accessed by shared code
4318 *****************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004319int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004320e1000_init_eeprom_params(struct e1000_hw *hw)
4321{
4322 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4323 uint32_t eecd = E1000_READ_REG(hw, EECD);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004324 int32_t ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004325 uint16_t eeprom_size;
4326
4327 DEBUGFUNC("e1000_init_eeprom_params");
4328
4329 switch (hw->mac_type) {
4330 case e1000_82542_rev2_0:
4331 case e1000_82542_rev2_1:
4332 case e1000_82543:
4333 case e1000_82544:
4334 eeprom->type = e1000_eeprom_microwire;
4335 eeprom->word_size = 64;
4336 eeprom->opcode_bits = 3;
4337 eeprom->address_bits = 6;
4338 eeprom->delay_usec = 50;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004339 eeprom->use_eerd = FALSE;
4340 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004341 break;
4342 case e1000_82540:
4343 case e1000_82545:
4344 case e1000_82545_rev_3:
4345 case e1000_82546:
4346 case e1000_82546_rev_3:
4347 eeprom->type = e1000_eeprom_microwire;
4348 eeprom->opcode_bits = 3;
4349 eeprom->delay_usec = 50;
Auke Kok8fc897b2006-08-28 14:56:16 -07004350 if (eecd & E1000_EECD_SIZE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004351 eeprom->word_size = 256;
4352 eeprom->address_bits = 8;
4353 } else {
4354 eeprom->word_size = 64;
4355 eeprom->address_bits = 6;
4356 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004357 eeprom->use_eerd = FALSE;
4358 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004359 break;
4360 case e1000_82541:
4361 case e1000_82541_rev_2:
4362 case e1000_82547:
4363 case e1000_82547_rev_2:
4364 if (eecd & E1000_EECD_TYPE) {
4365 eeprom->type = e1000_eeprom_spi;
4366 eeprom->opcode_bits = 8;
4367 eeprom->delay_usec = 1;
4368 if (eecd & E1000_EECD_ADDR_BITS) {
4369 eeprom->page_size = 32;
4370 eeprom->address_bits = 16;
4371 } else {
4372 eeprom->page_size = 8;
4373 eeprom->address_bits = 8;
4374 }
4375 } else {
4376 eeprom->type = e1000_eeprom_microwire;
4377 eeprom->opcode_bits = 3;
4378 eeprom->delay_usec = 50;
4379 if (eecd & E1000_EECD_ADDR_BITS) {
4380 eeprom->word_size = 256;
4381 eeprom->address_bits = 8;
4382 } else {
4383 eeprom->word_size = 64;
4384 eeprom->address_bits = 6;
4385 }
4386 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004387 eeprom->use_eerd = FALSE;
4388 eeprom->use_eewr = FALSE;
4389 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004390 case e1000_82571:
4391 case e1000_82572:
4392 eeprom->type = e1000_eeprom_spi;
4393 eeprom->opcode_bits = 8;
4394 eeprom->delay_usec = 1;
4395 if (eecd & E1000_EECD_ADDR_BITS) {
4396 eeprom->page_size = 32;
4397 eeprom->address_bits = 16;
4398 } else {
4399 eeprom->page_size = 8;
4400 eeprom->address_bits = 8;
4401 }
4402 eeprom->use_eerd = FALSE;
4403 eeprom->use_eewr = FALSE;
4404 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004405 case e1000_82573:
4406 eeprom->type = e1000_eeprom_spi;
4407 eeprom->opcode_bits = 8;
4408 eeprom->delay_usec = 1;
4409 if (eecd & E1000_EECD_ADDR_BITS) {
4410 eeprom->page_size = 32;
4411 eeprom->address_bits = 16;
4412 } else {
4413 eeprom->page_size = 8;
4414 eeprom->address_bits = 8;
4415 }
4416 eeprom->use_eerd = TRUE;
4417 eeprom->use_eewr = TRUE;
Auke Kok8fc897b2006-08-28 14:56:16 -07004418 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004419 eeprom->type = e1000_eeprom_flash;
4420 eeprom->word_size = 2048;
4421
4422 /* Ensure that the Autonomous FLASH update bit is cleared due to
4423 * Flash update issue on parts which use a FLASH for NVM. */
4424 eecd &= ~E1000_EECD_AUPDEN;
4425 E1000_WRITE_REG(hw, EECD, eecd);
4426 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004427 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004428 case e1000_80003es2lan:
4429 eeprom->type = e1000_eeprom_spi;
4430 eeprom->opcode_bits = 8;
4431 eeprom->delay_usec = 1;
4432 if (eecd & E1000_EECD_ADDR_BITS) {
4433 eeprom->page_size = 32;
4434 eeprom->address_bits = 16;
4435 } else {
4436 eeprom->page_size = 8;
4437 eeprom->address_bits = 8;
4438 }
4439 eeprom->use_eerd = TRUE;
4440 eeprom->use_eewr = FALSE;
4441 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07004442 case e1000_ich8lan:
4443 {
4444 int32_t i = 0;
4445 uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
4446
4447 eeprom->type = e1000_eeprom_ich8;
4448 eeprom->use_eerd = FALSE;
4449 eeprom->use_eewr = FALSE;
4450 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4451
4452 /* Zero the shadow RAM structure. But don't load it from NVM
4453 * so as to save time for driver init */
4454 if (hw->eeprom_shadow_ram != NULL) {
4455 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4456 hw->eeprom_shadow_ram[i].modified = FALSE;
4457 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4458 }
4459 }
4460
4461 hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
4462 ICH8_FLASH_SECTOR_SIZE;
4463
4464 hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
4465 hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
4466 hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
4467 hw->flash_bank_size /= 2 * sizeof(uint16_t);
4468
4469 break;
4470 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004471 default:
4472 break;
4473 }
4474
4475 if (eeprom->type == e1000_eeprom_spi) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004476 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4477 * 32KB (incremented by powers of 2).
4478 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004479 if (hw->mac_type <= e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004480 /* Set to default value for initial eeprom read. */
4481 eeprom->word_size = 64;
4482 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
Auke Kok8fc897b2006-08-28 14:56:16 -07004483 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004484 return ret_val;
4485 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4486 /* 256B eeprom size was not supported in earlier hardware, so we
4487 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4488 * is never the result used in the shifting logic below. */
Auke Kok8fc897b2006-08-28 14:56:16 -07004489 if (eeprom_size)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004490 eeprom_size++;
4491 } else {
4492 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4493 E1000_EECD_SIZE_EX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004494 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004495
4496 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004497 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004498 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004499}
4500
4501/******************************************************************************
4502 * Raises the EEPROM's clock input.
4503 *
4504 * hw - Struct containing variables accessed by shared code
4505 * eecd - EECD's current value
4506 *****************************************************************************/
4507static void
4508e1000_raise_ee_clk(struct e1000_hw *hw,
4509 uint32_t *eecd)
4510{
4511 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4512 * wait <delay> microseconds.
4513 */
4514 *eecd = *eecd | E1000_EECD_SK;
4515 E1000_WRITE_REG(hw, EECD, *eecd);
4516 E1000_WRITE_FLUSH(hw);
4517 udelay(hw->eeprom.delay_usec);
4518}
4519
4520/******************************************************************************
4521 * Lowers the EEPROM's clock input.
4522 *
4523 * hw - Struct containing variables accessed by shared code
4524 * eecd - EECD's current value
4525 *****************************************************************************/
4526static void
4527e1000_lower_ee_clk(struct e1000_hw *hw,
4528 uint32_t *eecd)
4529{
4530 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4531 * wait 50 microseconds.
4532 */
4533 *eecd = *eecd & ~E1000_EECD_SK;
4534 E1000_WRITE_REG(hw, EECD, *eecd);
4535 E1000_WRITE_FLUSH(hw);
4536 udelay(hw->eeprom.delay_usec);
4537}
4538
4539/******************************************************************************
4540 * Shift data bits out to the EEPROM.
4541 *
4542 * hw - Struct containing variables accessed by shared code
4543 * data - data to send to the EEPROM
4544 * count - number of bits to shift out
4545 *****************************************************************************/
4546static void
4547e1000_shift_out_ee_bits(struct e1000_hw *hw,
4548 uint16_t data,
4549 uint16_t count)
4550{
4551 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4552 uint32_t eecd;
4553 uint32_t mask;
4554
4555 /* We need to shift "count" bits out to the EEPROM. So, value in the
4556 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4557 * In order to do this, "data" must be broken down into bits.
4558 */
4559 mask = 0x01 << (count - 1);
4560 eecd = E1000_READ_REG(hw, EECD);
4561 if (eeprom->type == e1000_eeprom_microwire) {
4562 eecd &= ~E1000_EECD_DO;
4563 } else if (eeprom->type == e1000_eeprom_spi) {
4564 eecd |= E1000_EECD_DO;
4565 }
4566 do {
4567 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4568 * and then raising and then lowering the clock (the SK bit controls
4569 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4570 * by setting "DI" to "0" and then raising and then lowering the clock.
4571 */
4572 eecd &= ~E1000_EECD_DI;
4573
Auke Kok8fc897b2006-08-28 14:56:16 -07004574 if (data & mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004575 eecd |= E1000_EECD_DI;
4576
4577 E1000_WRITE_REG(hw, EECD, eecd);
4578 E1000_WRITE_FLUSH(hw);
4579
4580 udelay(eeprom->delay_usec);
4581
4582 e1000_raise_ee_clk(hw, &eecd);
4583 e1000_lower_ee_clk(hw, &eecd);
4584
4585 mask = mask >> 1;
4586
Auke Kok8fc897b2006-08-28 14:56:16 -07004587 } while (mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004588
4589 /* We leave the "DI" bit set to "0" when we leave this routine. */
4590 eecd &= ~E1000_EECD_DI;
4591 E1000_WRITE_REG(hw, EECD, eecd);
4592}
4593
4594/******************************************************************************
4595 * Shift data bits in from the EEPROM
4596 *
4597 * hw - Struct containing variables accessed by shared code
4598 *****************************************************************************/
4599static uint16_t
4600e1000_shift_in_ee_bits(struct e1000_hw *hw,
4601 uint16_t count)
4602{
4603 uint32_t eecd;
4604 uint32_t i;
4605 uint16_t data;
4606
4607 /* In order to read a register from the EEPROM, we need to shift 'count'
4608 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4609 * input to the EEPROM (setting the SK bit), and then reading the value of
4610 * the "DO" bit. During this "shifting in" process the "DI" bit should
4611 * always be clear.
4612 */
4613
4614 eecd = E1000_READ_REG(hw, EECD);
4615
4616 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4617 data = 0;
4618
Auke Kok8fc897b2006-08-28 14:56:16 -07004619 for (i = 0; i < count; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004620 data = data << 1;
4621 e1000_raise_ee_clk(hw, &eecd);
4622
4623 eecd = E1000_READ_REG(hw, EECD);
4624
4625 eecd &= ~(E1000_EECD_DI);
Auke Kok8fc897b2006-08-28 14:56:16 -07004626 if (eecd & E1000_EECD_DO)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004627 data |= 1;
4628
4629 e1000_lower_ee_clk(hw, &eecd);
4630 }
4631
4632 return data;
4633}
4634
4635/******************************************************************************
4636 * Prepares EEPROM for access
4637 *
4638 * hw - Struct containing variables accessed by shared code
4639 *
4640 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4641 * function should be called before issuing a command to the EEPROM.
4642 *****************************************************************************/
4643static int32_t
4644e1000_acquire_eeprom(struct e1000_hw *hw)
4645{
4646 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4647 uint32_t eecd, i=0;
4648
4649 DEBUGFUNC("e1000_acquire_eeprom");
4650
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004651 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4652 return -E1000_ERR_SWFW_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004653 eecd = E1000_READ_REG(hw, EECD);
4654
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004655 if (hw->mac_type != e1000_82573) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004656 /* Request EEPROM Access */
Auke Kok8fc897b2006-08-28 14:56:16 -07004657 if (hw->mac_type > e1000_82544) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004658 eecd |= E1000_EECD_REQ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004659 E1000_WRITE_REG(hw, EECD, eecd);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004660 eecd = E1000_READ_REG(hw, EECD);
Auke Kok8fc897b2006-08-28 14:56:16 -07004661 while ((!(eecd & E1000_EECD_GNT)) &&
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004662 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4663 i++;
4664 udelay(5);
4665 eecd = E1000_READ_REG(hw, EECD);
4666 }
Auke Kok8fc897b2006-08-28 14:56:16 -07004667 if (!(eecd & E1000_EECD_GNT)) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004668 eecd &= ~E1000_EECD_REQ;
4669 E1000_WRITE_REG(hw, EECD, eecd);
4670 DEBUGOUT("Could not acquire EEPROM grant\n");
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004671 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004672 return -E1000_ERR_EEPROM;
4673 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004674 }
4675 }
4676
4677 /* Setup EEPROM for Read/Write */
4678
4679 if (eeprom->type == e1000_eeprom_microwire) {
4680 /* Clear SK and DI */
4681 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4682 E1000_WRITE_REG(hw, EECD, eecd);
4683
4684 /* Set CS */
4685 eecd |= E1000_EECD_CS;
4686 E1000_WRITE_REG(hw, EECD, eecd);
4687 } else if (eeprom->type == e1000_eeprom_spi) {
4688 /* Clear SK and CS */
4689 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4690 E1000_WRITE_REG(hw, EECD, eecd);
4691 udelay(1);
4692 }
4693
4694 return E1000_SUCCESS;
4695}
4696
4697/******************************************************************************
4698 * Returns EEPROM to a "standby" state
4699 *
4700 * hw - Struct containing variables accessed by shared code
4701 *****************************************************************************/
4702static void
4703e1000_standby_eeprom(struct e1000_hw *hw)
4704{
4705 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4706 uint32_t eecd;
4707
4708 eecd = E1000_READ_REG(hw, EECD);
4709
Auke Kok8fc897b2006-08-28 14:56:16 -07004710 if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004711 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4712 E1000_WRITE_REG(hw, EECD, eecd);
4713 E1000_WRITE_FLUSH(hw);
4714 udelay(eeprom->delay_usec);
4715
4716 /* Clock high */
4717 eecd |= E1000_EECD_SK;
4718 E1000_WRITE_REG(hw, EECD, eecd);
4719 E1000_WRITE_FLUSH(hw);
4720 udelay(eeprom->delay_usec);
4721
4722 /* Select EEPROM */
4723 eecd |= E1000_EECD_CS;
4724 E1000_WRITE_REG(hw, EECD, eecd);
4725 E1000_WRITE_FLUSH(hw);
4726 udelay(eeprom->delay_usec);
4727
4728 /* Clock low */
4729 eecd &= ~E1000_EECD_SK;
4730 E1000_WRITE_REG(hw, EECD, eecd);
4731 E1000_WRITE_FLUSH(hw);
4732 udelay(eeprom->delay_usec);
Auke Kok8fc897b2006-08-28 14:56:16 -07004733 } else if (eeprom->type == e1000_eeprom_spi) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004734 /* Toggle CS to flush commands */
4735 eecd |= E1000_EECD_CS;
4736 E1000_WRITE_REG(hw, EECD, eecd);
4737 E1000_WRITE_FLUSH(hw);
4738 udelay(eeprom->delay_usec);
4739 eecd &= ~E1000_EECD_CS;
4740 E1000_WRITE_REG(hw, EECD, eecd);
4741 E1000_WRITE_FLUSH(hw);
4742 udelay(eeprom->delay_usec);
4743 }
4744}
4745
4746/******************************************************************************
4747 * Terminates a command by inverting the EEPROM's chip select pin
4748 *
4749 * hw - Struct containing variables accessed by shared code
4750 *****************************************************************************/
4751static void
4752e1000_release_eeprom(struct e1000_hw *hw)
4753{
4754 uint32_t eecd;
4755
4756 DEBUGFUNC("e1000_release_eeprom");
4757
4758 eecd = E1000_READ_REG(hw, EECD);
4759
4760 if (hw->eeprom.type == e1000_eeprom_spi) {
4761 eecd |= E1000_EECD_CS; /* Pull CS high */
4762 eecd &= ~E1000_EECD_SK; /* Lower SCK */
4763
4764 E1000_WRITE_REG(hw, EECD, eecd);
4765
4766 udelay(hw->eeprom.delay_usec);
Auke Kok8fc897b2006-08-28 14:56:16 -07004767 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004768 /* cleanup eeprom */
4769
4770 /* CS on Microwire is active-high */
4771 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4772
4773 E1000_WRITE_REG(hw, EECD, eecd);
4774
4775 /* Rising edge of clock */
4776 eecd |= E1000_EECD_SK;
4777 E1000_WRITE_REG(hw, EECD, eecd);
4778 E1000_WRITE_FLUSH(hw);
4779 udelay(hw->eeprom.delay_usec);
4780
4781 /* Falling edge of clock */
4782 eecd &= ~E1000_EECD_SK;
4783 E1000_WRITE_REG(hw, EECD, eecd);
4784 E1000_WRITE_FLUSH(hw);
4785 udelay(hw->eeprom.delay_usec);
4786 }
4787
4788 /* Stop requesting EEPROM access */
Auke Kok8fc897b2006-08-28 14:56:16 -07004789 if (hw->mac_type > e1000_82544) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004790 eecd &= ~E1000_EECD_REQ;
4791 E1000_WRITE_REG(hw, EECD, eecd);
4792 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004793
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004794 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004795}
4796
4797/******************************************************************************
4798 * Reads a 16 bit word from the EEPROM.
4799 *
4800 * hw - Struct containing variables accessed by shared code
4801 *****************************************************************************/
4802int32_t
4803e1000_spi_eeprom_ready(struct e1000_hw *hw)
4804{
4805 uint16_t retry_count = 0;
4806 uint8_t spi_stat_reg;
4807
4808 DEBUGFUNC("e1000_spi_eeprom_ready");
4809
4810 /* Read "Status Register" repeatedly until the LSB is cleared. The
4811 * EEPROM will signal that the command has been completed by clearing
4812 * bit 0 of the internal status register. If it's not cleared within
4813 * 5 milliseconds, then error out.
4814 */
4815 retry_count = 0;
4816 do {
4817 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4818 hw->eeprom.opcode_bits);
4819 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
4820 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4821 break;
4822
4823 udelay(5);
4824 retry_count += 5;
4825
4826 e1000_standby_eeprom(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07004827 } while (retry_count < EEPROM_MAX_RETRY_SPI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004828
4829 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4830 * only 0-5mSec on 5V devices)
4831 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004832 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004833 DEBUGOUT("SPI EEPROM Status error\n");
4834 return -E1000_ERR_EEPROM;
4835 }
4836
4837 return E1000_SUCCESS;
4838}
4839
4840/******************************************************************************
4841 * Reads a 16 bit word from the EEPROM.
4842 *
4843 * hw - Struct containing variables accessed by shared code
4844 * offset - offset of word in the EEPROM to read
4845 * data - word read from the EEPROM
4846 * words - number of words to read
4847 *****************************************************************************/
4848int32_t
4849e1000_read_eeprom(struct e1000_hw *hw,
4850 uint16_t offset,
4851 uint16_t words,
4852 uint16_t *data)
4853{
4854 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4855 uint32_t i = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004856 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004857
4858 DEBUGFUNC("e1000_read_eeprom");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004859
Linus Torvalds1da177e2005-04-16 15:20:36 -07004860 /* A check for invalid values: offset too large, too many words, and not
4861 * enough words.
4862 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004863 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07004864 (words == 0)) {
4865 DEBUGOUT("\"words\" parameter out of bounds\n");
4866 return -E1000_ERR_EEPROM;
4867 }
4868
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004869 /* FLASH reads without acquiring the semaphore are safe */
4870 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
Auke Kok8fc897b2006-08-28 14:56:16 -07004871 hw->eeprom.use_eerd == FALSE) {
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004872 switch (hw->mac_type) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004873 case e1000_80003es2lan:
4874 break;
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004875 default:
4876 /* Prepare the EEPROM for reading */
4877 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4878 return -E1000_ERR_EEPROM;
4879 break;
4880 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004881 }
4882
Jesse Brandeburg96838a42006-01-18 13:01:39 -08004883 if (eeprom->use_eerd == TRUE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004884 ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
4885 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
4886 (hw->mac_type != e1000_82573))
4887 e1000_release_eeprom(hw);
4888 return ret_val;
4889 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004890
Auke Kokcd94dd02006-06-27 09:08:22 -07004891 if (eeprom->type == e1000_eeprom_ich8)
4892 return e1000_read_eeprom_ich8(hw, offset, words, data);
4893
4894 if (eeprom->type == e1000_eeprom_spi) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004895 uint16_t word_in;
4896 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
4897
Auke Kok8fc897b2006-08-28 14:56:16 -07004898 if (e1000_spi_eeprom_ready(hw)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004899 e1000_release_eeprom(hw);
4900 return -E1000_ERR_EEPROM;
4901 }
4902
4903 e1000_standby_eeprom(hw);
4904
4905 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
Auke Kok8fc897b2006-08-28 14:56:16 -07004906 if ((eeprom->address_bits == 8) && (offset >= 128))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004907 read_opcode |= EEPROM_A8_OPCODE_SPI;
4908
4909 /* Send the READ command (opcode + addr) */
4910 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
4911 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
4912
4913 /* Read the data. The address of the eeprom internally increments with
4914 * each byte (spi) being read, saving on the overhead of eeprom setup
4915 * and tear-down. The address counter will roll over if reading beyond
4916 * the size of the eeprom, thus allowing the entire memory to be read
4917 * starting from any offset. */
4918 for (i = 0; i < words; i++) {
4919 word_in = e1000_shift_in_ee_bits(hw, 16);
4920 data[i] = (word_in >> 8) | (word_in << 8);
4921 }
Auke Kok8fc897b2006-08-28 14:56:16 -07004922 } else if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004923 for (i = 0; i < words; i++) {
4924 /* Send the READ command (opcode + addr) */
4925 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
4926 eeprom->opcode_bits);
4927 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
4928 eeprom->address_bits);
4929
4930 /* Read the data. For microwire, each word requires the overhead
4931 * of eeprom setup and tear-down. */
4932 data[i] = e1000_shift_in_ee_bits(hw, 16);
4933 e1000_standby_eeprom(hw);
4934 }
4935 }
4936
4937 /* End this read operation */
4938 e1000_release_eeprom(hw);
4939
4940 return E1000_SUCCESS;
4941}
4942
4943/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004944 * Reads a 16 bit word from the EEPROM using the EERD register.
4945 *
4946 * hw - Struct containing variables accessed by shared code
4947 * offset - offset of word in the EEPROM to read
4948 * data - word read from the EEPROM
4949 * words - number of words to read
4950 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004951static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004952e1000_read_eeprom_eerd(struct e1000_hw *hw,
4953 uint16_t offset,
4954 uint16_t words,
4955 uint16_t *data)
4956{
4957 uint32_t i, eerd = 0;
4958 int32_t error = 0;
4959
4960 for (i = 0; i < words; i++) {
4961 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
4962 E1000_EEPROM_RW_REG_START;
4963
4964 E1000_WRITE_REG(hw, EERD, eerd);
4965 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
Auke Kok76c224b2006-05-23 13:36:06 -07004966
Auke Kok8fc897b2006-08-28 14:56:16 -07004967 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004968 break;
4969 }
4970 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
Auke Kok76c224b2006-05-23 13:36:06 -07004971
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004972 }
Auke Kok76c224b2006-05-23 13:36:06 -07004973
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004974 return error;
4975}
4976
4977/******************************************************************************
4978 * Writes a 16 bit word from the EEPROM using the EEWR register.
4979 *
4980 * hw - Struct containing variables accessed by shared code
4981 * offset - offset of word in the EEPROM to read
4982 * data - word read from the EEPROM
4983 * words - number of words to read
4984 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004985static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004986e1000_write_eeprom_eewr(struct e1000_hw *hw,
4987 uint16_t offset,
4988 uint16_t words,
4989 uint16_t *data)
4990{
4991 uint32_t register_value = 0;
4992 uint32_t i = 0;
4993 int32_t error = 0;
4994
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004995 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4996 return -E1000_ERR_SWFW_SYNC;
4997
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004998 for (i = 0; i < words; i++) {
Auke Kok76c224b2006-05-23 13:36:06 -07004999 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5000 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005001 E1000_EEPROM_RW_REG_START;
5002
5003 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
Auke Kok8fc897b2006-08-28 14:56:16 -07005004 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005005 break;
Auke Kok76c224b2006-05-23 13:36:06 -07005006 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005007
5008 E1000_WRITE_REG(hw, EEWR, register_value);
Auke Kok76c224b2006-05-23 13:36:06 -07005009
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005010 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
Auke Kok76c224b2006-05-23 13:36:06 -07005011
Auke Kok8fc897b2006-08-28 14:56:16 -07005012 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005013 break;
Auke Kok76c224b2006-05-23 13:36:06 -07005014 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005015 }
Auke Kok76c224b2006-05-23 13:36:06 -07005016
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005017 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005018 return error;
5019}
5020
5021/******************************************************************************
5022 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5023 *
5024 * hw - Struct containing variables accessed by shared code
5025 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005026static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005027e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5028{
5029 uint32_t attempts = 100000;
5030 uint32_t i, reg = 0;
5031 int32_t done = E1000_ERR_EEPROM;
5032
Auke Kok8fc897b2006-08-28 14:56:16 -07005033 for (i = 0; i < attempts; i++) {
5034 if (eerd == E1000_EEPROM_POLL_READ)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005035 reg = E1000_READ_REG(hw, EERD);
Auke Kok76c224b2006-05-23 13:36:06 -07005036 else
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005037 reg = E1000_READ_REG(hw, EEWR);
5038
Auke Kok8fc897b2006-08-28 14:56:16 -07005039 if (reg & E1000_EEPROM_RW_REG_DONE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005040 done = E1000_SUCCESS;
5041 break;
5042 }
5043 udelay(5);
5044 }
5045
5046 return done;
5047}
5048
5049/***************************************************************************
5050* Description: Determines if the onboard NVM is FLASH or EEPROM.
5051*
5052* hw - Struct containing variables accessed by shared code
5053****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005054static boolean_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005055e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5056{
5057 uint32_t eecd = 0;
5058
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005059 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5060
Auke Kokcd94dd02006-06-27 09:08:22 -07005061 if (hw->mac_type == e1000_ich8lan)
5062 return FALSE;
5063
5064 if (hw->mac_type == e1000_82573) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005065 eecd = E1000_READ_REG(hw, EECD);
5066
5067 /* Isolate bits 15 & 16 */
5068 eecd = ((eecd >> 15) & 0x03);
5069
5070 /* If both bits are set, device is Flash type */
Auke Kok8fc897b2006-08-28 14:56:16 -07005071 if (eecd == 0x03) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005072 return FALSE;
5073 }
5074 }
5075 return TRUE;
5076}
5077
5078/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005079 * Verifies that the EEPROM has a valid checksum
5080 *
5081 * hw - Struct containing variables accessed by shared code
5082 *
5083 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5084 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5085 * valid.
5086 *****************************************************************************/
5087int32_t
5088e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5089{
5090 uint16_t checksum = 0;
5091 uint16_t i, eeprom_data;
5092
5093 DEBUGFUNC("e1000_validate_eeprom_checksum");
5094
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005095 if ((hw->mac_type == e1000_82573) &&
5096 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
5097 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5098 * 10h-12h. Checksum may need to be fixed. */
5099 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5100 if ((eeprom_data & 0x10) == 0) {
5101 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5102 * has already been fixed. If the checksum is still wrong and this
5103 * bit is a 1, we need to return bad checksum. Otherwise, we need
5104 * to set this bit to a 1 and update the checksum. */
5105 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5106 if ((eeprom_data & 0x8000) == 0) {
5107 eeprom_data |= 0x8000;
5108 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5109 e1000_update_eeprom_checksum(hw);
5110 }
5111 }
5112 }
5113
Auke Kokcd94dd02006-06-27 09:08:22 -07005114 if (hw->mac_type == e1000_ich8lan) {
5115 /* Drivers must allocate the shadow ram structure for the
5116 * EEPROM checksum to be updated. Otherwise, this bit as well
5117 * as the checksum must both be set correctly for this
5118 * validation to pass.
5119 */
5120 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5121 if ((eeprom_data & 0x40) == 0) {
5122 eeprom_data |= 0x40;
5123 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5124 e1000_update_eeprom_checksum(hw);
5125 }
5126 }
5127
5128 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5129 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005130 DEBUGOUT("EEPROM Read Error\n");
5131 return -E1000_ERR_EEPROM;
5132 }
5133 checksum += eeprom_data;
5134 }
5135
Auke Kok8fc897b2006-08-28 14:56:16 -07005136 if (checksum == (uint16_t) EEPROM_SUM)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005137 return E1000_SUCCESS;
5138 else {
5139 DEBUGOUT("EEPROM Checksum Invalid\n");
5140 return -E1000_ERR_EEPROM;
5141 }
5142}
5143
5144/******************************************************************************
5145 * Calculates the EEPROM checksum and writes it to the EEPROM
5146 *
5147 * hw - Struct containing variables accessed by shared code
5148 *
5149 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5150 * Writes the difference to word offset 63 of the EEPROM.
5151 *****************************************************************************/
5152int32_t
5153e1000_update_eeprom_checksum(struct e1000_hw *hw)
5154{
Auke Kokcd94dd02006-06-27 09:08:22 -07005155 uint32_t ctrl_ext;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005156 uint16_t checksum = 0;
5157 uint16_t i, eeprom_data;
5158
5159 DEBUGFUNC("e1000_update_eeprom_checksum");
5160
Auke Kok8fc897b2006-08-28 14:56:16 -07005161 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5162 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005163 DEBUGOUT("EEPROM Read Error\n");
5164 return -E1000_ERR_EEPROM;
5165 }
5166 checksum += eeprom_data;
5167 }
5168 checksum = (uint16_t) EEPROM_SUM - checksum;
Auke Kok8fc897b2006-08-28 14:56:16 -07005169 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005170 DEBUGOUT("EEPROM Write Error\n");
5171 return -E1000_ERR_EEPROM;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005172 } else if (hw->eeprom.type == e1000_eeprom_flash) {
5173 e1000_commit_shadow_ram(hw);
Auke Kokcd94dd02006-06-27 09:08:22 -07005174 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5175 e1000_commit_shadow_ram(hw);
5176 /* Reload the EEPROM, or else modifications will not appear
5177 * until after next adapter reset. */
5178 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5179 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5180 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5181 msec_delay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005182 }
5183 return E1000_SUCCESS;
5184}
5185
5186/******************************************************************************
5187 * Parent function for writing words to the different EEPROM types.
5188 *
5189 * hw - Struct containing variables accessed by shared code
5190 * offset - offset within the EEPROM to be written to
5191 * words - number of words to write
5192 * data - 16 bit word to be written to the EEPROM
5193 *
5194 * If e1000_update_eeprom_checksum is not called after this function, the
5195 * EEPROM will most likely contain an invalid checksum.
5196 *****************************************************************************/
5197int32_t
5198e1000_write_eeprom(struct e1000_hw *hw,
5199 uint16_t offset,
5200 uint16_t words,
5201 uint16_t *data)
5202{
5203 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5204 int32_t status = 0;
5205
5206 DEBUGFUNC("e1000_write_eeprom");
5207
5208 /* A check for invalid values: offset too large, too many words, and not
5209 * enough words.
5210 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005211 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07005212 (words == 0)) {
5213 DEBUGOUT("\"words\" parameter out of bounds\n");
5214 return -E1000_ERR_EEPROM;
5215 }
5216
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005217 /* 82573 writes only through eewr */
Auke Kok8fc897b2006-08-28 14:56:16 -07005218 if (eeprom->use_eewr == TRUE)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005219 return e1000_write_eeprom_eewr(hw, offset, words, data);
5220
Auke Kokcd94dd02006-06-27 09:08:22 -07005221 if (eeprom->type == e1000_eeprom_ich8)
5222 return e1000_write_eeprom_ich8(hw, offset, words, data);
5223
Linus Torvalds1da177e2005-04-16 15:20:36 -07005224 /* Prepare the EEPROM for writing */
5225 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5226 return -E1000_ERR_EEPROM;
5227
Auke Kok8fc897b2006-08-28 14:56:16 -07005228 if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005229 status = e1000_write_eeprom_microwire(hw, offset, words, data);
5230 } else {
5231 status = e1000_write_eeprom_spi(hw, offset, words, data);
5232 msec_delay(10);
5233 }
5234
5235 /* Done with writing */
5236 e1000_release_eeprom(hw);
5237
5238 return status;
5239}
5240
5241/******************************************************************************
5242 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5243 *
5244 * hw - Struct containing variables accessed by shared code
5245 * offset - offset within the EEPROM to be written to
5246 * words - number of words to write
5247 * data - pointer to array of 8 bit words to be written to the EEPROM
5248 *
5249 *****************************************************************************/
5250int32_t
5251e1000_write_eeprom_spi(struct e1000_hw *hw,
5252 uint16_t offset,
5253 uint16_t words,
5254 uint16_t *data)
5255{
5256 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5257 uint16_t widx = 0;
5258
5259 DEBUGFUNC("e1000_write_eeprom_spi");
5260
5261 while (widx < words) {
5262 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
5263
Auke Kok8fc897b2006-08-28 14:56:16 -07005264 if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005265
5266 e1000_standby_eeprom(hw);
5267
5268 /* Send the WRITE ENABLE command (8 bit opcode ) */
5269 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5270 eeprom->opcode_bits);
5271
5272 e1000_standby_eeprom(hw);
5273
5274 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
Auke Kok8fc897b2006-08-28 14:56:16 -07005275 if ((eeprom->address_bits == 8) && (offset >= 128))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005276 write_opcode |= EEPROM_A8_OPCODE_SPI;
5277
5278 /* Send the Write command (8-bit opcode + addr) */
5279 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5280
5281 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
5282 eeprom->address_bits);
5283
5284 /* Send the data */
5285
5286 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5287 while (widx < words) {
5288 uint16_t word_out = data[widx];
5289 word_out = (word_out >> 8) | (word_out << 8);
5290 e1000_shift_out_ee_bits(hw, word_out, 16);
5291 widx++;
5292
5293 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5294 * operation, while the smaller eeproms are capable of an 8-byte
5295 * PAGE WRITE operation. Break the inner loop to pass new address
5296 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005297 if ((((offset + widx)*2) % eeprom->page_size) == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005298 e1000_standby_eeprom(hw);
5299 break;
5300 }
5301 }
5302 }
5303
5304 return E1000_SUCCESS;
5305}
5306
5307/******************************************************************************
5308 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5309 *
5310 * hw - Struct containing variables accessed by shared code
5311 * offset - offset within the EEPROM to be written to
5312 * words - number of words to write
5313 * data - pointer to array of 16 bit words to be written to the EEPROM
5314 *
5315 *****************************************************************************/
5316int32_t
5317e1000_write_eeprom_microwire(struct e1000_hw *hw,
5318 uint16_t offset,
5319 uint16_t words,
5320 uint16_t *data)
5321{
5322 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5323 uint32_t eecd;
5324 uint16_t words_written = 0;
5325 uint16_t i = 0;
5326
5327 DEBUGFUNC("e1000_write_eeprom_microwire");
5328
5329 /* Send the write enable command to the EEPROM (3-bit opcode plus
5330 * 6/8-bit dummy address beginning with 11). It's less work to include
5331 * the 11 of the dummy address as part of the opcode than it is to shift
5332 * it over the correct number of bits for the address. This puts the
5333 * EEPROM into write/erase mode.
5334 */
5335 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5336 (uint16_t)(eeprom->opcode_bits + 2));
5337
5338 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5339
5340 /* Prepare the EEPROM */
5341 e1000_standby_eeprom(hw);
5342
5343 while (words_written < words) {
5344 /* Send the Write command (3-bit opcode + addr) */
5345 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5346 eeprom->opcode_bits);
5347
5348 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
5349 eeprom->address_bits);
5350
5351 /* Send the data */
5352 e1000_shift_out_ee_bits(hw, data[words_written], 16);
5353
5354 /* Toggle the CS line. This in effect tells the EEPROM to execute
5355 * the previous command.
5356 */
5357 e1000_standby_eeprom(hw);
5358
5359 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5360 * signal that the command has been completed by raising the DO signal.
5361 * If DO does not go high in 10 milliseconds, then error out.
5362 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005363 for (i = 0; i < 200; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005364 eecd = E1000_READ_REG(hw, EECD);
Auke Kok8fc897b2006-08-28 14:56:16 -07005365 if (eecd & E1000_EECD_DO) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005366 udelay(50);
5367 }
Auke Kok8fc897b2006-08-28 14:56:16 -07005368 if (i == 200) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005369 DEBUGOUT("EEPROM Write did not complete\n");
5370 return -E1000_ERR_EEPROM;
5371 }
5372
5373 /* Recover from write */
5374 e1000_standby_eeprom(hw);
5375
5376 words_written++;
5377 }
5378
5379 /* Send the write disable command to the EEPROM (3-bit opcode plus
5380 * 6/8-bit dummy address beginning with 10). It's less work to include
5381 * the 10 of the dummy address as part of the opcode than it is to shift
5382 * it over the correct number of bits for the address. This takes the
5383 * EEPROM out of write/erase mode.
5384 */
5385 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5386 (uint16_t)(eeprom->opcode_bits + 2));
5387
5388 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5389
5390 return E1000_SUCCESS;
5391}
5392
5393/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005394 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5395 * in the eeprom cache and the non modified values in the currently active bank
5396 * to the new bank.
5397 *
5398 * hw - Struct containing variables accessed by shared code
5399 * offset - offset of word in the EEPROM to read
5400 * data - word read from the EEPROM
5401 * words - number of words to read
5402 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005403static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005404e1000_commit_shadow_ram(struct e1000_hw *hw)
5405{
5406 uint32_t attempts = 100000;
5407 uint32_t eecd = 0;
5408 uint32_t flop = 0;
5409 uint32_t i = 0;
5410 int32_t error = E1000_SUCCESS;
Auke Kokcd94dd02006-06-27 09:08:22 -07005411 uint32_t old_bank_offset = 0;
5412 uint32_t new_bank_offset = 0;
5413 uint32_t sector_retries = 0;
5414 uint8_t low_byte = 0;
5415 uint8_t high_byte = 0;
5416 uint8_t temp_byte = 0;
5417 boolean_t sector_write_failed = FALSE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005418
5419 if (hw->mac_type == e1000_82573) {
Auke Kokcd94dd02006-06-27 09:08:22 -07005420 /* The flop register will be used to determine if flash type is STM */
5421 flop = E1000_READ_REG(hw, FLOP);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005422 for (i=0; i < attempts; i++) {
5423 eecd = E1000_READ_REG(hw, EECD);
5424 if ((eecd & E1000_EECD_FLUPD) == 0) {
5425 break;
5426 }
5427 udelay(5);
5428 }
5429
5430 if (i == attempts) {
5431 return -E1000_ERR_EEPROM;
5432 }
5433
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005434 /* If STM opcode located in bits 15:8 of flop, reset firmware */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005435 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5436 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
5437 }
5438
5439 /* Perform the flash update */
5440 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
5441
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005442 for (i=0; i < attempts; i++) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005443 eecd = E1000_READ_REG(hw, EECD);
5444 if ((eecd & E1000_EECD_FLUPD) == 0) {
5445 break;
5446 }
5447 udelay(5);
5448 }
5449
5450 if (i == attempts) {
5451 return -E1000_ERR_EEPROM;
5452 }
5453 }
5454
Auke Kokcd94dd02006-06-27 09:08:22 -07005455 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5456 /* We're writing to the opposite bank so if we're on bank 1,
5457 * write to bank 0 etc. We also need to erase the segment that
5458 * is going to be written */
5459 if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5460 new_bank_offset = hw->flash_bank_size * 2;
5461 old_bank_offset = 0;
5462 e1000_erase_ich8_4k_segment(hw, 1);
5463 } else {
5464 old_bank_offset = hw->flash_bank_size * 2;
5465 new_bank_offset = 0;
5466 e1000_erase_ich8_4k_segment(hw, 0);
5467 }
5468
5469 do {
5470 sector_write_failed = FALSE;
5471 /* Loop for every byte in the shadow RAM,
5472 * which is in units of words. */
5473 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5474 /* Determine whether to write the value stored
5475 * in the other NVM bank or a modified value stored
5476 * in the shadow RAM */
5477 if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5478 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5479 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5480 &temp_byte);
5481 udelay(100);
5482 error = e1000_verify_write_ich8_byte(hw,
5483 (i << 1) + new_bank_offset,
5484 low_byte);
5485 if (error != E1000_SUCCESS)
5486 sector_write_failed = TRUE;
5487 high_byte =
5488 (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5489 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5490 &temp_byte);
5491 udelay(100);
5492 } else {
5493 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5494 &low_byte);
5495 udelay(100);
5496 error = e1000_verify_write_ich8_byte(hw,
5497 (i << 1) + new_bank_offset, low_byte);
5498 if (error != E1000_SUCCESS)
5499 sector_write_failed = TRUE;
5500 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5501 &high_byte);
5502 }
5503
5504 /* If the word is 0x13, then make sure the signature bits
5505 * (15:14) are 11b until the commit has completed.
5506 * This will allow us to write 10b which indicates the
5507 * signature is valid. We want to do this after the write
5508 * has completed so that we don't mark the segment valid
5509 * while the write is still in progress */
5510 if (i == E1000_ICH8_NVM_SIG_WORD)
5511 high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
5512
5513 error = e1000_verify_write_ich8_byte(hw,
5514 (i << 1) + new_bank_offset + 1, high_byte);
5515 if (error != E1000_SUCCESS)
5516 sector_write_failed = TRUE;
5517
5518 if (sector_write_failed == FALSE) {
5519 /* Clear the now not used entry in the cache */
5520 hw->eeprom_shadow_ram[i].modified = FALSE;
5521 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5522 }
5523 }
5524
5525 /* Don't bother writing the segment valid bits if sector
5526 * programming failed. */
5527 if (sector_write_failed == FALSE) {
5528 /* Finally validate the new segment by setting bit 15:14
5529 * to 10b in word 0x13 , this can be done without an
5530 * erase as well since these bits are 11 to start with
5531 * and we need to change bit 14 to 0b */
5532 e1000_read_ich8_byte(hw,
5533 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5534 &high_byte);
5535 high_byte &= 0xBF;
5536 error = e1000_verify_write_ich8_byte(hw,
5537 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5538 high_byte);
5539 if (error != E1000_SUCCESS)
5540 sector_write_failed = TRUE;
5541
5542 /* And invalidate the previously valid segment by setting
5543 * its signature word (0x13) high_byte to 0b. This can be
5544 * done without an erase because flash erase sets all bits
5545 * to 1's. We can write 1's to 0's without an erase */
5546 error = e1000_verify_write_ich8_byte(hw,
5547 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
5548 0);
5549 if (error != E1000_SUCCESS)
5550 sector_write_failed = TRUE;
5551 }
5552 } while (++sector_retries < 10 && sector_write_failed == TRUE);
5553 }
5554
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005555 return error;
5556}
5557
5558/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005559 * Reads the adapter's part number from the EEPROM
5560 *
5561 * hw - Struct containing variables accessed by shared code
5562 * part_num - Adapter's part number
5563 *****************************************************************************/
5564int32_t
5565e1000_read_part_num(struct e1000_hw *hw,
5566 uint32_t *part_num)
5567{
5568 uint16_t offset = EEPROM_PBA_BYTE_1;
5569 uint16_t eeprom_data;
5570
5571 DEBUGFUNC("e1000_read_part_num");
5572
5573 /* Get word 0 from EEPROM */
Auke Kok8fc897b2006-08-28 14:56:16 -07005574 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005575 DEBUGOUT("EEPROM Read Error\n");
5576 return -E1000_ERR_EEPROM;
5577 }
5578 /* Save word 0 in upper half of part_num */
5579 *part_num = (uint32_t) (eeprom_data << 16);
5580
5581 /* Get word 1 from EEPROM */
Auke Kok8fc897b2006-08-28 14:56:16 -07005582 if (e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005583 DEBUGOUT("EEPROM Read Error\n");
5584 return -E1000_ERR_EEPROM;
5585 }
5586 /* Save word 1 in lower half of part_num */
5587 *part_num |= eeprom_data;
5588
5589 return E1000_SUCCESS;
5590}
5591
5592/******************************************************************************
5593 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5594 * second function of dual function devices
5595 *
5596 * hw - Struct containing variables accessed by shared code
5597 *****************************************************************************/
5598int32_t
5599e1000_read_mac_addr(struct e1000_hw * hw)
5600{
5601 uint16_t offset;
5602 uint16_t eeprom_data, i;
5603
5604 DEBUGFUNC("e1000_read_mac_addr");
5605
Auke Kok8fc897b2006-08-28 14:56:16 -07005606 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005607 offset = i >> 1;
Auke Kok8fc897b2006-08-28 14:56:16 -07005608 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005609 DEBUGOUT("EEPROM Read Error\n");
5610 return -E1000_ERR_EEPROM;
5611 }
5612 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
5613 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
5614 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005615
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005616 switch (hw->mac_type) {
5617 default:
5618 break;
5619 case e1000_82546:
5620 case e1000_82546_rev_3:
5621 case e1000_82571:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005622 case e1000_80003es2lan:
Auke Kok8fc897b2006-08-28 14:56:16 -07005623 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005624 hw->perm_mac_addr[5] ^= 0x01;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005625 break;
5626 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005627
Auke Kok8fc897b2006-08-28 14:56:16 -07005628 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005629 hw->mac_addr[i] = hw->perm_mac_addr[i];
5630 return E1000_SUCCESS;
5631}
5632
5633/******************************************************************************
5634 * Initializes receive address filters.
5635 *
5636 * hw - Struct containing variables accessed by shared code
5637 *
5638 * Places the MAC address in receive address register 0 and clears the rest
5639 * of the receive addresss registers. Clears the multicast table. Assumes
5640 * the receiver is in reset when the routine is called.
5641 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005642static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005643e1000_init_rx_addrs(struct e1000_hw *hw)
5644{
5645 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005646 uint32_t rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005647
5648 DEBUGFUNC("e1000_init_rx_addrs");
5649
5650 /* Setup the receive address. */
5651 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5652
5653 e1000_rar_set(hw, hw->mac_addr, 0);
5654
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005655 rar_num = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005656
5657 /* Reserve a spot for the Locally Administered Address to work around
5658 * an 82571 issue in which a reset on one port will reload the MAC on
5659 * the other port. */
5660 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5661 rar_num -= 1;
Auke Kokcd94dd02006-06-27 09:08:22 -07005662 if (hw->mac_type == e1000_ich8lan)
5663 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5664
Linus Torvalds1da177e2005-04-16 15:20:36 -07005665 /* Zero out the other 15 receive addresses. */
5666 DEBUGOUT("Clearing RAR[1-15]\n");
Auke Kok8fc897b2006-08-28 14:56:16 -07005667 for (i = 1; i < rar_num; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005668 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005669 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005670 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005671 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005672 }
5673}
5674
5675/******************************************************************************
5676 * Updates the MAC's list of multicast addresses.
5677 *
5678 * hw - Struct containing variables accessed by shared code
5679 * mc_addr_list - the list of new multicast addresses
5680 * mc_addr_count - number of addresses
5681 * pad - number of bytes between addresses in the list
5682 * rar_used_count - offset where to start adding mc addresses into the RAR's
5683 *
5684 * The given list replaces any existing list. Clears the last 15 receive
5685 * address registers and the multicast table. Uses receive address registers
5686 * for the first 15 multicast addresses, and hashes the rest into the
5687 * multicast table.
5688 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07005689#if 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07005690void
5691e1000_mc_addr_list_update(struct e1000_hw *hw,
5692 uint8_t *mc_addr_list,
5693 uint32_t mc_addr_count,
5694 uint32_t pad,
5695 uint32_t rar_used_count)
5696{
5697 uint32_t hash_value;
5698 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005699 uint32_t num_rar_entry;
5700 uint32_t num_mta_entry;
Auke Kok76c224b2006-05-23 13:36:06 -07005701
Linus Torvalds1da177e2005-04-16 15:20:36 -07005702 DEBUGFUNC("e1000_mc_addr_list_update");
5703
5704 /* Set the new number of MC addresses that we are being requested to use. */
5705 hw->num_mc_addrs = mc_addr_count;
5706
5707 /* Clear RAR[1-15] */
5708 DEBUGOUT(" Clearing RAR[1-15]\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005709 num_rar_entry = E1000_RAR_ENTRIES;
Auke Kokcd94dd02006-06-27 09:08:22 -07005710 if (hw->mac_type == e1000_ich8lan)
5711 num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005712 /* Reserve a spot for the Locally Administered Address to work around
5713 * an 82571 issue in which a reset on one port will reload the MAC on
5714 * the other port. */
5715 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5716 num_rar_entry -= 1;
5717
Auke Kok8fc897b2006-08-28 14:56:16 -07005718 for (i = rar_used_count; i < num_rar_entry; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005719 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005720 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005721 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005722 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005723 }
5724
5725 /* Clear the MTA */
5726 DEBUGOUT(" Clearing MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005727 num_mta_entry = E1000_NUM_MTA_REGISTERS;
Auke Kokcd94dd02006-06-27 09:08:22 -07005728 if (hw->mac_type == e1000_ich8lan)
5729 num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
Auke Kok8fc897b2006-08-28 14:56:16 -07005730 for (i = 0; i < num_mta_entry; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005731 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005732 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005733 }
5734
5735 /* Add the new addresses */
Auke Kok8fc897b2006-08-28 14:56:16 -07005736 for (i = 0; i < mc_addr_count; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005737 DEBUGOUT(" Adding the multicast addresses:\n");
5738 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
5739 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
5740 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
5741 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
5742 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
5743 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
5744 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
5745
5746 hash_value = e1000_hash_mc_addr(hw,
5747 mc_addr_list +
5748 (i * (ETH_LENGTH_OF_ADDRESS + pad)));
5749
5750 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
5751
5752 /* Place this multicast address in the RAR if there is room, *
5753 * else put it in the MTA
5754 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005755 if (rar_used_count < num_rar_entry) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005756 e1000_rar_set(hw,
5757 mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
5758 rar_used_count);
5759 rar_used_count++;
5760 } else {
5761 e1000_mta_set(hw, hash_value);
5762 }
5763 }
5764 DEBUGOUT("MC Update Complete\n");
5765}
Adrian Bunke4c780b2006-08-14 23:00:10 -07005766#endif /* 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005767
5768/******************************************************************************
5769 * Hashes an address to determine its location in the multicast table
5770 *
5771 * hw - Struct containing variables accessed by shared code
5772 * mc_addr - the multicast address to hash
5773 *****************************************************************************/
5774uint32_t
5775e1000_hash_mc_addr(struct e1000_hw *hw,
5776 uint8_t *mc_addr)
5777{
5778 uint32_t hash_value = 0;
5779
5780 /* The portion of the address that is used for the hash table is
5781 * determined by the mc_filter_type setting.
5782 */
5783 switch (hw->mc_filter_type) {
5784 /* [0] [1] [2] [3] [4] [5]
5785 * 01 AA 00 12 34 56
5786 * LSB MSB
5787 */
5788 case 0:
Auke Kokcd94dd02006-06-27 09:08:22 -07005789 if (hw->mac_type == e1000_ich8lan) {
5790 /* [47:38] i.e. 0x158 for above example address */
5791 hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5792 } else {
5793 /* [47:36] i.e. 0x563 for above example address */
5794 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5795 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005796 break;
5797 case 1:
Auke Kokcd94dd02006-06-27 09:08:22 -07005798 if (hw->mac_type == e1000_ich8lan) {
5799 /* [46:37] i.e. 0x2B1 for above example address */
5800 hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5801 } else {
5802 /* [46:35] i.e. 0xAC6 for above example address */
5803 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5804 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005805 break;
5806 case 2:
Auke Kokcd94dd02006-06-27 09:08:22 -07005807 if (hw->mac_type == e1000_ich8lan) {
5808 /*[45:36] i.e. 0x163 for above example address */
5809 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5810 } else {
5811 /* [45:34] i.e. 0x5D8 for above example address */
5812 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5813 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005814 break;
5815 case 3:
Auke Kokcd94dd02006-06-27 09:08:22 -07005816 if (hw->mac_type == e1000_ich8lan) {
5817 /* [43:34] i.e. 0x18D for above example address */
5818 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5819 } else {
5820 /* [43:32] i.e. 0x634 for above example address */
5821 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5822 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005823 break;
5824 }
5825
5826 hash_value &= 0xFFF;
Auke Kokcd94dd02006-06-27 09:08:22 -07005827 if (hw->mac_type == e1000_ich8lan)
5828 hash_value &= 0x3FF;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005829
Linus Torvalds1da177e2005-04-16 15:20:36 -07005830 return hash_value;
5831}
5832
5833/******************************************************************************
5834 * Sets the bit in the multicast table corresponding to the hash value.
5835 *
5836 * hw - Struct containing variables accessed by shared code
5837 * hash_value - Multicast address hash value
5838 *****************************************************************************/
5839void
5840e1000_mta_set(struct e1000_hw *hw,
5841 uint32_t hash_value)
5842{
5843 uint32_t hash_bit, hash_reg;
5844 uint32_t mta;
5845 uint32_t temp;
5846
5847 /* The MTA is a register array of 128 32-bit registers.
5848 * It is treated like an array of 4096 bits. We want to set
5849 * bit BitArray[hash_value]. So we figure out what register
5850 * the bit is in, read it, OR in the new bit, then write
5851 * back the new value. The register is determined by the
5852 * upper 7 bits of the hash value and the bit within that
5853 * register are determined by the lower 5 bits of the value.
5854 */
5855 hash_reg = (hash_value >> 5) & 0x7F;
Auke Kokcd94dd02006-06-27 09:08:22 -07005856 if (hw->mac_type == e1000_ich8lan)
5857 hash_reg &= 0x1F;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005858 hash_bit = hash_value & 0x1F;
5859
5860 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5861
5862 mta |= (1 << hash_bit);
5863
5864 /* If we are on an 82544 and we are trying to write an odd offset
5865 * in the MTA, save off the previous entry before writing and
5866 * restore the old value after writing.
5867 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005868 if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005869 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5870 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
Auke Kok4ca213a2006-06-27 09:07:08 -07005871 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005872 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
Auke Kok4ca213a2006-06-27 09:07:08 -07005873 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005874 } else {
5875 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
Auke Kok4ca213a2006-06-27 09:07:08 -07005876 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005877 }
5878}
5879
5880/******************************************************************************
5881 * Puts an ethernet address into a receive address register.
5882 *
5883 * hw - Struct containing variables accessed by shared code
5884 * addr - Address to put into receive address register
5885 * index - Receive address register to write
5886 *****************************************************************************/
5887void
5888e1000_rar_set(struct e1000_hw *hw,
5889 uint8_t *addr,
5890 uint32_t index)
5891{
5892 uint32_t rar_low, rar_high;
5893
5894 /* HW expects these in little endian so we reverse the byte order
5895 * from network order (big endian) to little endian
5896 */
5897 rar_low = ((uint32_t) addr[0] |
5898 ((uint32_t) addr[1] << 8) |
5899 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005900 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005901
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005902 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5903 * unit hang.
5904 *
5905 * Description:
5906 * If there are any Rx frames queued up or otherwise present in the HW
5907 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5908 * hang. To work around this issue, we have to disable receives and
5909 * flush out all Rx frames before we enable RSS. To do so, we modify we
5910 * redirect all Rx traffic to manageability and then reset the HW.
5911 * This flushes away Rx frames, and (since the redirections to
5912 * manageability persists across resets) keeps new ones from coming in
5913 * while we work. Then, we clear the Address Valid AV bit for all MAC
5914 * addresses and undo the re-direction to manageability.
5915 * Now, frames are coming in again, but the MAC won't accept them, so
5916 * far so good. We now proceed to initialize RSS (if necessary) and
5917 * configure the Rx unit. Last, we re-enable the AV bits and continue
5918 * on our merry way.
5919 */
5920 switch (hw->mac_type) {
5921 case e1000_82571:
5922 case e1000_82572:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005923 case e1000_80003es2lan:
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005924 if (hw->leave_av_bit_off == TRUE)
5925 break;
5926 default:
5927 /* Indicate to hardware the Address is Valid. */
5928 rar_high |= E1000_RAH_AV;
5929 break;
5930 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005931
5932 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
Auke Kok4ca213a2006-06-27 09:07:08 -07005933 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005934 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
Auke Kok4ca213a2006-06-27 09:07:08 -07005935 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005936}
5937
5938/******************************************************************************
5939 * Writes a value to the specified offset in the VLAN filter table.
5940 *
5941 * hw - Struct containing variables accessed by shared code
5942 * offset - Offset in VLAN filer table to write
5943 * value - Value to write into VLAN filter table
5944 *****************************************************************************/
5945void
5946e1000_write_vfta(struct e1000_hw *hw,
5947 uint32_t offset,
5948 uint32_t value)
5949{
5950 uint32_t temp;
5951
Auke Kokcd94dd02006-06-27 09:08:22 -07005952 if (hw->mac_type == e1000_ich8lan)
5953 return;
5954
5955 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005956 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5957 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005958 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005959 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
Auke Kok4ca213a2006-06-27 09:07:08 -07005960 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005961 } else {
5962 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005963 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005964 }
5965}
5966
5967/******************************************************************************
5968 * Clears the VLAN filer table
5969 *
5970 * hw - Struct containing variables accessed by shared code
5971 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005972static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005973e1000_clear_vfta(struct e1000_hw *hw)
5974{
5975 uint32_t offset;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005976 uint32_t vfta_value = 0;
5977 uint32_t vfta_offset = 0;
5978 uint32_t vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005979
Auke Kokcd94dd02006-06-27 09:08:22 -07005980 if (hw->mac_type == e1000_ich8lan)
5981 return;
5982
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005983 if (hw->mac_type == e1000_82573) {
5984 if (hw->mng_cookie.vlan_id != 0) {
5985 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5986 * ID. The following operations determine which 32b entry
5987 * (i.e. offset) into the array we want to set the VLAN ID
5988 * (i.e. bit) of the manageability unit. */
5989 vfta_offset = (hw->mng_cookie.vlan_id >>
5990 E1000_VFTA_ENTRY_SHIFT) &
5991 E1000_VFTA_ENTRY_MASK;
5992 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5993 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5994 }
5995 }
5996 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5997 /* If the offset we want to clear is the same offset of the
5998 * manageability VLAN ID, then clear all bits except that of the
5999 * manageability unit */
6000 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
6001 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
Auke Kok4ca213a2006-06-27 09:07:08 -07006002 E1000_WRITE_FLUSH(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006003 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006004}
6005
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006006static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006007e1000_id_led_init(struct e1000_hw * hw)
6008{
6009 uint32_t ledctl;
6010 const uint32_t ledctl_mask = 0x000000FF;
6011 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
6012 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
6013 uint16_t eeprom_data, i, temp;
6014 const uint16_t led_mask = 0x0F;
6015
6016 DEBUGFUNC("e1000_id_led_init");
6017
Auke Kok8fc897b2006-08-28 14:56:16 -07006018 if (hw->mac_type < e1000_82540) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006019 /* Nothing to do */
6020 return E1000_SUCCESS;
6021 }
6022
6023 ledctl = E1000_READ_REG(hw, LEDCTL);
6024 hw->ledctl_default = ledctl;
6025 hw->ledctl_mode1 = hw->ledctl_default;
6026 hw->ledctl_mode2 = hw->ledctl_default;
6027
Auke Kok8fc897b2006-08-28 14:56:16 -07006028 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006029 DEBUGOUT("EEPROM Read Error\n");
6030 return -E1000_ERR_EEPROM;
6031 }
Auke Kokcd94dd02006-06-27 09:08:22 -07006032
6033 if ((hw->mac_type == e1000_82573) &&
6034 (eeprom_data == ID_LED_RESERVED_82573))
6035 eeprom_data = ID_LED_DEFAULT_82573;
6036 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
6037 (eeprom_data == ID_LED_RESERVED_FFFF)) {
6038 if (hw->mac_type == e1000_ich8lan)
6039 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
6040 else
6041 eeprom_data = ID_LED_DEFAULT;
6042 }
6043 for (i = 0; i < 4; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006044 temp = (eeprom_data >> (i << 2)) & led_mask;
Auke Kok8fc897b2006-08-28 14:56:16 -07006045 switch (temp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006046 case ID_LED_ON1_DEF2:
6047 case ID_LED_ON1_ON2:
6048 case ID_LED_ON1_OFF2:
6049 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6050 hw->ledctl_mode1 |= ledctl_on << (i << 3);
6051 break;
6052 case ID_LED_OFF1_DEF2:
6053 case ID_LED_OFF1_ON2:
6054 case ID_LED_OFF1_OFF2:
6055 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6056 hw->ledctl_mode1 |= ledctl_off << (i << 3);
6057 break;
6058 default:
6059 /* Do nothing */
6060 break;
6061 }
Auke Kok8fc897b2006-08-28 14:56:16 -07006062 switch (temp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006063 case ID_LED_DEF1_ON2:
6064 case ID_LED_ON1_ON2:
6065 case ID_LED_OFF1_ON2:
6066 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6067 hw->ledctl_mode2 |= ledctl_on << (i << 3);
6068 break;
6069 case ID_LED_DEF1_OFF2:
6070 case ID_LED_ON1_OFF2:
6071 case ID_LED_OFF1_OFF2:
6072 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6073 hw->ledctl_mode2 |= ledctl_off << (i << 3);
6074 break;
6075 default:
6076 /* Do nothing */
6077 break;
6078 }
6079 }
6080 return E1000_SUCCESS;
6081}
6082
6083/******************************************************************************
6084 * Prepares SW controlable LED for use and saves the current state of the LED.
6085 *
6086 * hw - Struct containing variables accessed by shared code
6087 *****************************************************************************/
6088int32_t
6089e1000_setup_led(struct e1000_hw *hw)
6090{
6091 uint32_t ledctl;
6092 int32_t ret_val = E1000_SUCCESS;
6093
6094 DEBUGFUNC("e1000_setup_led");
6095
Auke Kok8fc897b2006-08-28 14:56:16 -07006096 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006097 case e1000_82542_rev2_0:
6098 case e1000_82542_rev2_1:
6099 case e1000_82543:
6100 case e1000_82544:
6101 /* No setup necessary */
6102 break;
6103 case e1000_82541:
6104 case e1000_82547:
6105 case e1000_82541_rev_2:
6106 case e1000_82547_rev_2:
6107 /* Turn off PHY Smart Power Down (if enabled) */
6108 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6109 &hw->phy_spd_default);
Auke Kok8fc897b2006-08-28 14:56:16 -07006110 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006111 return ret_val;
6112 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6113 (uint16_t)(hw->phy_spd_default &
6114 ~IGP01E1000_GMII_SPD));
Auke Kok8fc897b2006-08-28 14:56:16 -07006115 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006116 return ret_val;
6117 /* Fall Through */
6118 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07006119 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006120 ledctl = E1000_READ_REG(hw, LEDCTL);
6121 /* Save current LEDCTL settings */
6122 hw->ledctl_default = ledctl;
6123 /* Turn off LED0 */
6124 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6125 E1000_LEDCTL_LED0_BLINK |
6126 E1000_LEDCTL_LED0_MODE_MASK);
6127 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6128 E1000_LEDCTL_LED0_MODE_SHIFT);
6129 E1000_WRITE_REG(hw, LEDCTL, ledctl);
Auke Kok8fc897b2006-08-28 14:56:16 -07006130 } else if (hw->media_type == e1000_media_type_copper)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006131 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6132 break;
6133 }
6134
6135 return E1000_SUCCESS;
6136}
6137
Auke Kok8fc897b2006-08-28 14:56:16 -07006138
Linus Torvalds1da177e2005-04-16 15:20:36 -07006139/******************************************************************************
Auke Kokf1b3a852006-06-27 09:07:56 -07006140 * Used on 82571 and later Si that has LED blink bits.
6141 * Callers must use their own timer and should have already called
6142 * e1000_id_led_init()
6143 * Call e1000_cleanup led() to stop blinking
6144 *
6145 * hw - Struct containing variables accessed by shared code
6146 *****************************************************************************/
6147int32_t
6148e1000_blink_led_start(struct e1000_hw *hw)
6149{
6150 int16_t i;
6151 uint32_t ledctl_blink = 0;
6152
6153 DEBUGFUNC("e1000_id_led_blink_on");
6154
6155 if (hw->mac_type < e1000_82571) {
6156 /* Nothing to do */
6157 return E1000_SUCCESS;
6158 }
6159 if (hw->media_type == e1000_media_type_fiber) {
6160 /* always blink LED0 for PCI-E fiber */
6161 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6162 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6163 } else {
6164 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6165 ledctl_blink = hw->ledctl_mode2;
6166 for (i=0; i < 4; i++)
6167 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6168 E1000_LEDCTL_MODE_LED_ON)
6169 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6170 }
6171
6172 E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6173
6174 return E1000_SUCCESS;
6175}
6176
6177/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07006178 * Restores the saved state of the SW controlable LED.
6179 *
6180 * hw - Struct containing variables accessed by shared code
6181 *****************************************************************************/
6182int32_t
6183e1000_cleanup_led(struct e1000_hw *hw)
6184{
6185 int32_t ret_val = E1000_SUCCESS;
6186
6187 DEBUGFUNC("e1000_cleanup_led");
6188
Auke Kok8fc897b2006-08-28 14:56:16 -07006189 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006190 case e1000_82542_rev2_0:
6191 case e1000_82542_rev2_1:
6192 case e1000_82543:
6193 case e1000_82544:
6194 /* No cleanup necessary */
6195 break;
6196 case e1000_82541:
6197 case e1000_82547:
6198 case e1000_82541_rev_2:
6199 case e1000_82547_rev_2:
6200 /* Turn on PHY Smart Power Down (if previously enabled) */
6201 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6202 hw->phy_spd_default);
Auke Kok8fc897b2006-08-28 14:56:16 -07006203 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006204 return ret_val;
6205 /* Fall Through */
6206 default:
Auke Kokcd94dd02006-06-27 09:08:22 -07006207 if (hw->phy_type == e1000_phy_ife) {
6208 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6209 break;
6210 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006211 /* Restore LEDCTL settings */
6212 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
6213 break;
6214 }
6215
6216 return E1000_SUCCESS;
6217}
6218
6219/******************************************************************************
6220 * Turns on the software controllable LED
6221 *
6222 * hw - Struct containing variables accessed by shared code
6223 *****************************************************************************/
6224int32_t
6225e1000_led_on(struct e1000_hw *hw)
6226{
6227 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6228
6229 DEBUGFUNC("e1000_led_on");
6230
Auke Kok8fc897b2006-08-28 14:56:16 -07006231 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006232 case e1000_82542_rev2_0:
6233 case e1000_82542_rev2_1:
6234 case e1000_82543:
6235 /* Set SW Defineable Pin 0 to turn on the LED */
6236 ctrl |= E1000_CTRL_SWDPIN0;
6237 ctrl |= E1000_CTRL_SWDPIO0;
6238 break;
6239 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07006240 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006241 /* Set SW Defineable Pin 0 to turn on the LED */
6242 ctrl |= E1000_CTRL_SWDPIN0;
6243 ctrl |= E1000_CTRL_SWDPIO0;
6244 } else {
6245 /* Clear SW Defineable Pin 0 to turn on the LED */
6246 ctrl &= ~E1000_CTRL_SWDPIN0;
6247 ctrl |= E1000_CTRL_SWDPIO0;
6248 }
6249 break;
6250 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07006251 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006252 /* Clear SW Defineable Pin 0 to turn on the LED */
6253 ctrl &= ~E1000_CTRL_SWDPIN0;
6254 ctrl |= E1000_CTRL_SWDPIO0;
Auke Kokcd94dd02006-06-27 09:08:22 -07006255 } else if (hw->phy_type == e1000_phy_ife) {
6256 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6257 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6258 } else if (hw->media_type == e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006259 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
6260 return E1000_SUCCESS;
6261 }
6262 break;
6263 }
6264
6265 E1000_WRITE_REG(hw, CTRL, ctrl);
6266
6267 return E1000_SUCCESS;
6268}
6269
6270/******************************************************************************
6271 * Turns off the software controllable LED
6272 *
6273 * hw - Struct containing variables accessed by shared code
6274 *****************************************************************************/
6275int32_t
6276e1000_led_off(struct e1000_hw *hw)
6277{
6278 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6279
6280 DEBUGFUNC("e1000_led_off");
6281
Auke Kok8fc897b2006-08-28 14:56:16 -07006282 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006283 case e1000_82542_rev2_0:
6284 case e1000_82542_rev2_1:
6285 case e1000_82543:
6286 /* Clear SW Defineable Pin 0 to turn off the LED */
6287 ctrl &= ~E1000_CTRL_SWDPIN0;
6288 ctrl |= E1000_CTRL_SWDPIO0;
6289 break;
6290 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07006291 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006292 /* Clear SW Defineable Pin 0 to turn off the LED */
6293 ctrl &= ~E1000_CTRL_SWDPIN0;
6294 ctrl |= E1000_CTRL_SWDPIO0;
6295 } else {
6296 /* Set SW Defineable Pin 0 to turn off the LED */
6297 ctrl |= E1000_CTRL_SWDPIN0;
6298 ctrl |= E1000_CTRL_SWDPIO0;
6299 }
6300 break;
6301 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07006302 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006303 /* Set SW Defineable Pin 0 to turn off the LED */
6304 ctrl |= E1000_CTRL_SWDPIN0;
6305 ctrl |= E1000_CTRL_SWDPIO0;
Auke Kokcd94dd02006-06-27 09:08:22 -07006306 } else if (hw->phy_type == e1000_phy_ife) {
6307 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6308 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6309 } else if (hw->media_type == e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006310 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6311 return E1000_SUCCESS;
6312 }
6313 break;
6314 }
6315
6316 E1000_WRITE_REG(hw, CTRL, ctrl);
6317
6318 return E1000_SUCCESS;
6319}
6320
6321/******************************************************************************
6322 * Clears all hardware statistics counters.
6323 *
6324 * hw - Struct containing variables accessed by shared code
6325 *****************************************************************************/
Auke Kok8fc897b2006-08-28 14:56:16 -07006326void
Linus Torvalds1da177e2005-04-16 15:20:36 -07006327e1000_clear_hw_cntrs(struct e1000_hw *hw)
6328{
6329 volatile uint32_t temp;
6330
6331 temp = E1000_READ_REG(hw, CRCERRS);
6332 temp = E1000_READ_REG(hw, SYMERRS);
6333 temp = E1000_READ_REG(hw, MPC);
6334 temp = E1000_READ_REG(hw, SCC);
6335 temp = E1000_READ_REG(hw, ECOL);
6336 temp = E1000_READ_REG(hw, MCC);
6337 temp = E1000_READ_REG(hw, LATECOL);
6338 temp = E1000_READ_REG(hw, COLC);
6339 temp = E1000_READ_REG(hw, DC);
6340 temp = E1000_READ_REG(hw, SEC);
6341 temp = E1000_READ_REG(hw, RLEC);
6342 temp = E1000_READ_REG(hw, XONRXC);
6343 temp = E1000_READ_REG(hw, XONTXC);
6344 temp = E1000_READ_REG(hw, XOFFRXC);
6345 temp = E1000_READ_REG(hw, XOFFTXC);
6346 temp = E1000_READ_REG(hw, FCRUC);
Auke Kokcd94dd02006-06-27 09:08:22 -07006347
6348 if (hw->mac_type != e1000_ich8lan) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006349 temp = E1000_READ_REG(hw, PRC64);
6350 temp = E1000_READ_REG(hw, PRC127);
6351 temp = E1000_READ_REG(hw, PRC255);
6352 temp = E1000_READ_REG(hw, PRC511);
6353 temp = E1000_READ_REG(hw, PRC1023);
6354 temp = E1000_READ_REG(hw, PRC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07006355 }
6356
Linus Torvalds1da177e2005-04-16 15:20:36 -07006357 temp = E1000_READ_REG(hw, GPRC);
6358 temp = E1000_READ_REG(hw, BPRC);
6359 temp = E1000_READ_REG(hw, MPRC);
6360 temp = E1000_READ_REG(hw, GPTC);
6361 temp = E1000_READ_REG(hw, GORCL);
6362 temp = E1000_READ_REG(hw, GORCH);
6363 temp = E1000_READ_REG(hw, GOTCL);
6364 temp = E1000_READ_REG(hw, GOTCH);
6365 temp = E1000_READ_REG(hw, RNBC);
6366 temp = E1000_READ_REG(hw, RUC);
6367 temp = E1000_READ_REG(hw, RFC);
6368 temp = E1000_READ_REG(hw, ROC);
6369 temp = E1000_READ_REG(hw, RJC);
6370 temp = E1000_READ_REG(hw, TORL);
6371 temp = E1000_READ_REG(hw, TORH);
6372 temp = E1000_READ_REG(hw, TOTL);
6373 temp = E1000_READ_REG(hw, TOTH);
6374 temp = E1000_READ_REG(hw, TPR);
6375 temp = E1000_READ_REG(hw, TPT);
Auke Kokcd94dd02006-06-27 09:08:22 -07006376
6377 if (hw->mac_type != e1000_ich8lan) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006378 temp = E1000_READ_REG(hw, PTC64);
6379 temp = E1000_READ_REG(hw, PTC127);
6380 temp = E1000_READ_REG(hw, PTC255);
6381 temp = E1000_READ_REG(hw, PTC511);
6382 temp = E1000_READ_REG(hw, PTC1023);
6383 temp = E1000_READ_REG(hw, PTC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07006384 }
6385
Linus Torvalds1da177e2005-04-16 15:20:36 -07006386 temp = E1000_READ_REG(hw, MPTC);
6387 temp = E1000_READ_REG(hw, BPTC);
6388
Auke Kok8fc897b2006-08-28 14:56:16 -07006389 if (hw->mac_type < e1000_82543) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006390
6391 temp = E1000_READ_REG(hw, ALGNERRC);
6392 temp = E1000_READ_REG(hw, RXERRC);
6393 temp = E1000_READ_REG(hw, TNCRS);
6394 temp = E1000_READ_REG(hw, CEXTERR);
6395 temp = E1000_READ_REG(hw, TSCTC);
6396 temp = E1000_READ_REG(hw, TSCTFC);
6397
Auke Kok8fc897b2006-08-28 14:56:16 -07006398 if (hw->mac_type <= e1000_82544) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006399
6400 temp = E1000_READ_REG(hw, MGTPRC);
6401 temp = E1000_READ_REG(hw, MGTPDC);
6402 temp = E1000_READ_REG(hw, MGTPTC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006403
Auke Kok8fc897b2006-08-28 14:56:16 -07006404 if (hw->mac_type <= e1000_82547_rev_2) return;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006405
6406 temp = E1000_READ_REG(hw, IAC);
6407 temp = E1000_READ_REG(hw, ICRXOC);
Auke Kokcd94dd02006-06-27 09:08:22 -07006408
6409 if (hw->mac_type == e1000_ich8lan) return;
6410
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006411 temp = E1000_READ_REG(hw, ICRXPTC);
6412 temp = E1000_READ_REG(hw, ICRXATC);
6413 temp = E1000_READ_REG(hw, ICTXPTC);
6414 temp = E1000_READ_REG(hw, ICTXATC);
6415 temp = E1000_READ_REG(hw, ICTXQEC);
6416 temp = E1000_READ_REG(hw, ICTXQMTC);
6417 temp = E1000_READ_REG(hw, ICRXDMTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006418}
6419
6420/******************************************************************************
6421 * Resets Adaptive IFS to its default state.
6422 *
6423 * hw - Struct containing variables accessed by shared code
6424 *
6425 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6426 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
6427 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6428 * before calling this function.
6429 *****************************************************************************/
6430void
6431e1000_reset_adaptive(struct e1000_hw *hw)
6432{
6433 DEBUGFUNC("e1000_reset_adaptive");
6434
Auke Kok8fc897b2006-08-28 14:56:16 -07006435 if (hw->adaptive_ifs) {
6436 if (!hw->ifs_params_forced) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006437 hw->current_ifs_val = 0;
6438 hw->ifs_min_val = IFS_MIN;
6439 hw->ifs_max_val = IFS_MAX;
6440 hw->ifs_step_size = IFS_STEP;
6441 hw->ifs_ratio = IFS_RATIO;
6442 }
6443 hw->in_ifs_mode = FALSE;
6444 E1000_WRITE_REG(hw, AIT, 0);
6445 } else {
6446 DEBUGOUT("Not in Adaptive IFS mode!\n");
6447 }
6448}
6449
6450/******************************************************************************
6451 * Called during the callback/watchdog routine to update IFS value based on
6452 * the ratio of transmits to collisions.
6453 *
6454 * hw - Struct containing variables accessed by shared code
6455 * tx_packets - Number of transmits since last callback
6456 * total_collisions - Number of collisions since last callback
6457 *****************************************************************************/
6458void
6459e1000_update_adaptive(struct e1000_hw *hw)
6460{
6461 DEBUGFUNC("e1000_update_adaptive");
6462
Auke Kok8fc897b2006-08-28 14:56:16 -07006463 if (hw->adaptive_ifs) {
6464 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6465 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006466 hw->in_ifs_mode = TRUE;
Auke Kok8fc897b2006-08-28 14:56:16 -07006467 if (hw->current_ifs_val < hw->ifs_max_val) {
6468 if (hw->current_ifs_val == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006469 hw->current_ifs_val = hw->ifs_min_val;
6470 else
6471 hw->current_ifs_val += hw->ifs_step_size;
6472 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
6473 }
6474 }
6475 } else {
Auke Kok8fc897b2006-08-28 14:56:16 -07006476 if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006477 hw->current_ifs_val = 0;
6478 hw->in_ifs_mode = FALSE;
6479 E1000_WRITE_REG(hw, AIT, 0);
6480 }
6481 }
6482 } else {
6483 DEBUGOUT("Not in Adaptive IFS mode!\n");
6484 }
6485}
6486
6487/******************************************************************************
6488 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6489 *
6490 * hw - Struct containing variables accessed by shared code
6491 * frame_len - The length of the frame in question
6492 * mac_addr - The Ethernet destination address of the frame in question
6493 *****************************************************************************/
6494void
6495e1000_tbi_adjust_stats(struct e1000_hw *hw,
6496 struct e1000_hw_stats *stats,
6497 uint32_t frame_len,
6498 uint8_t *mac_addr)
6499{
6500 uint64_t carry_bit;
6501
6502 /* First adjust the frame length. */
6503 frame_len--;
6504 /* We need to adjust the statistics counters, since the hardware
6505 * counters overcount this packet as a CRC error and undercount
6506 * the packet as a good packet
6507 */
6508 /* This packet should not be counted as a CRC error. */
6509 stats->crcerrs--;
6510 /* This packet does count as a Good Packet Received. */
6511 stats->gprc++;
6512
6513 /* Adjust the Good Octets received counters */
6514 carry_bit = 0x80000000 & stats->gorcl;
6515 stats->gorcl += frame_len;
6516 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6517 * Received Count) was one before the addition,
6518 * AND it is zero after, then we lost the carry out,
6519 * need to add one to Gorch (Good Octets Received Count High).
6520 * This could be simplified if all environments supported
6521 * 64-bit integers.
6522 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006523 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006524 stats->gorch++;
6525 /* Is this a broadcast or multicast? Check broadcast first,
6526 * since the test for a multicast frame will test positive on
6527 * a broadcast frame.
6528 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006529 if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006530 /* Broadcast packet */
6531 stats->bprc++;
Auke Kok8fc897b2006-08-28 14:56:16 -07006532 else if (*mac_addr & 0x01)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006533 /* Multicast packet */
6534 stats->mprc++;
6535
Auke Kok8fc897b2006-08-28 14:56:16 -07006536 if (frame_len == hw->max_frame_size) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006537 /* In this case, the hardware has overcounted the number of
6538 * oversize frames.
6539 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006540 if (stats->roc > 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006541 stats->roc--;
6542 }
6543
6544 /* Adjust the bin counters when the extra byte put the frame in the
6545 * wrong bin. Remember that the frame_len was adjusted above.
6546 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006547 if (frame_len == 64) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006548 stats->prc64++;
6549 stats->prc127--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006550 } else if (frame_len == 127) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006551 stats->prc127++;
6552 stats->prc255--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006553 } else if (frame_len == 255) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006554 stats->prc255++;
6555 stats->prc511--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006556 } else if (frame_len == 511) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006557 stats->prc511++;
6558 stats->prc1023--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006559 } else if (frame_len == 1023) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006560 stats->prc1023++;
6561 stats->prc1522--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006562 } else if (frame_len == 1522) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006563 stats->prc1522++;
6564 }
6565}
6566
6567/******************************************************************************
6568 * Gets the current PCI bus type, speed, and width of the hardware
6569 *
6570 * hw - Struct containing variables accessed by shared code
6571 *****************************************************************************/
6572void
6573e1000_get_bus_info(struct e1000_hw *hw)
6574{
6575 uint32_t status;
6576
6577 switch (hw->mac_type) {
6578 case e1000_82542_rev2_0:
6579 case e1000_82542_rev2_1:
6580 hw->bus_type = e1000_bus_type_unknown;
6581 hw->bus_speed = e1000_bus_speed_unknown;
6582 hw->bus_width = e1000_bus_width_unknown;
6583 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006584 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006585 case e1000_82573:
6586 hw->bus_type = e1000_bus_type_pci_express;
6587 hw->bus_speed = e1000_bus_speed_2500;
Jeff Kirsherfd803242005-12-13 00:06:22 -05006588 hw->bus_width = e1000_bus_width_pciex_1;
6589 break;
6590 case e1000_82571:
Auke Kokcd94dd02006-06-27 09:08:22 -07006591 case e1000_ich8lan:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006592 case e1000_80003es2lan:
Jeff Kirsherfd803242005-12-13 00:06:22 -05006593 hw->bus_type = e1000_bus_type_pci_express;
6594 hw->bus_speed = e1000_bus_speed_2500;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006595 hw->bus_width = e1000_bus_width_pciex_4;
6596 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006597 default:
6598 status = E1000_READ_REG(hw, STATUS);
6599 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6600 e1000_bus_type_pcix : e1000_bus_type_pci;
6601
Auke Kok8fc897b2006-08-28 14:56:16 -07006602 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006603 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6604 e1000_bus_speed_66 : e1000_bus_speed_120;
Auke Kok8fc897b2006-08-28 14:56:16 -07006605 } else if (hw->bus_type == e1000_bus_type_pci) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006606 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6607 e1000_bus_speed_66 : e1000_bus_speed_33;
6608 } else {
6609 switch (status & E1000_STATUS_PCIX_SPEED) {
6610 case E1000_STATUS_PCIX_SPEED_66:
6611 hw->bus_speed = e1000_bus_speed_66;
6612 break;
6613 case E1000_STATUS_PCIX_SPEED_100:
6614 hw->bus_speed = e1000_bus_speed_100;
6615 break;
6616 case E1000_STATUS_PCIX_SPEED_133:
6617 hw->bus_speed = e1000_bus_speed_133;
6618 break;
6619 default:
6620 hw->bus_speed = e1000_bus_speed_reserved;
6621 break;
6622 }
6623 }
6624 hw->bus_width = (status & E1000_STATUS_BUS64) ?
6625 e1000_bus_width_64 : e1000_bus_width_32;
6626 break;
6627 }
6628}
6629/******************************************************************************
6630 * Reads a value from one of the devices registers using port I/O (as opposed
6631 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6632 *
6633 * hw - Struct containing variables accessed by shared code
6634 * offset - offset to read from
6635 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07006636#if 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07006637uint32_t
6638e1000_read_reg_io(struct e1000_hw *hw,
6639 uint32_t offset)
6640{
6641 unsigned long io_addr = hw->io_base;
6642 unsigned long io_data = hw->io_base + 4;
6643
6644 e1000_io_write(hw, io_addr, offset);
6645 return e1000_io_read(hw, io_data);
6646}
Adrian Bunke4c780b2006-08-14 23:00:10 -07006647#endif /* 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07006648
6649/******************************************************************************
6650 * Writes a value to one of the devices registers using port I/O (as opposed to
6651 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6652 *
6653 * hw - Struct containing variables accessed by shared code
6654 * offset - offset to write to
6655 * value - value to write
6656 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006657static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07006658e1000_write_reg_io(struct e1000_hw *hw,
6659 uint32_t offset,
6660 uint32_t value)
6661{
6662 unsigned long io_addr = hw->io_base;
6663 unsigned long io_data = hw->io_base + 4;
6664
6665 e1000_io_write(hw, io_addr, offset);
6666 e1000_io_write(hw, io_data, value);
6667}
6668
6669
6670/******************************************************************************
6671 * Estimates the cable length.
6672 *
6673 * hw - Struct containing variables accessed by shared code
6674 * min_length - The estimated minimum length
6675 * max_length - The estimated maximum length
6676 *
6677 * returns: - E1000_ERR_XXX
6678 * E1000_SUCCESS
6679 *
6680 * This function always returns a ranged length (minimum & maximum).
6681 * So for M88 phy's, this function interprets the one value returned from the
6682 * register to the minimum and maximum range.
6683 * For IGP phy's, the function calculates the range by the AGC registers.
6684 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006685static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006686e1000_get_cable_length(struct e1000_hw *hw,
6687 uint16_t *min_length,
6688 uint16_t *max_length)
6689{
6690 int32_t ret_val;
6691 uint16_t agc_value = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006692 uint16_t i, phy_data;
6693 uint16_t cable_length;
6694
6695 DEBUGFUNC("e1000_get_cable_length");
6696
6697 *min_length = *max_length = 0;
6698
6699 /* Use old method for Phy older than IGP */
Auke Kok8fc897b2006-08-28 14:56:16 -07006700 if (hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006701
Linus Torvalds1da177e2005-04-16 15:20:36 -07006702 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6703 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006704 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006705 return ret_val;
6706 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6707 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6708
6709 /* Convert the enum value to ranged values */
6710 switch (cable_length) {
6711 case e1000_cable_length_50:
6712 *min_length = 0;
6713 *max_length = e1000_igp_cable_length_50;
6714 break;
6715 case e1000_cable_length_50_80:
6716 *min_length = e1000_igp_cable_length_50;
6717 *max_length = e1000_igp_cable_length_80;
6718 break;
6719 case e1000_cable_length_80_110:
6720 *min_length = e1000_igp_cable_length_80;
6721 *max_length = e1000_igp_cable_length_110;
6722 break;
6723 case e1000_cable_length_110_140:
6724 *min_length = e1000_igp_cable_length_110;
6725 *max_length = e1000_igp_cable_length_140;
6726 break;
6727 case e1000_cable_length_140:
6728 *min_length = e1000_igp_cable_length_140;
6729 *max_length = e1000_igp_cable_length_170;
6730 break;
6731 default:
6732 return -E1000_ERR_PHY;
6733 break;
6734 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006735 } else if (hw->phy_type == e1000_phy_gg82563) {
6736 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6737 &phy_data);
6738 if (ret_val)
6739 return ret_val;
6740 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6741
6742 switch (cable_length) {
6743 case e1000_gg_cable_length_60:
6744 *min_length = 0;
6745 *max_length = e1000_igp_cable_length_60;
6746 break;
6747 case e1000_gg_cable_length_60_115:
6748 *min_length = e1000_igp_cable_length_60;
6749 *max_length = e1000_igp_cable_length_115;
6750 break;
6751 case e1000_gg_cable_length_115_150:
6752 *min_length = e1000_igp_cable_length_115;
6753 *max_length = e1000_igp_cable_length_150;
6754 break;
6755 case e1000_gg_cable_length_150:
6756 *min_length = e1000_igp_cable_length_150;
6757 *max_length = e1000_igp_cable_length_180;
6758 break;
6759 default:
6760 return -E1000_ERR_PHY;
6761 break;
6762 }
Auke Kok8fc897b2006-08-28 14:56:16 -07006763 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
Auke Kokcd94dd02006-06-27 09:08:22 -07006764 uint16_t cur_agc_value;
6765 uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006766 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6767 {IGP01E1000_PHY_AGC_A,
6768 IGP01E1000_PHY_AGC_B,
6769 IGP01E1000_PHY_AGC_C,
6770 IGP01E1000_PHY_AGC_D};
6771 /* Read the AGC registers for all channels */
Auke Kok8fc897b2006-08-28 14:56:16 -07006772 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006773
6774 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006775 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006776 return ret_val;
6777
Auke Kokcd94dd02006-06-27 09:08:22 -07006778 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006779
Auke Kokcd94dd02006-06-27 09:08:22 -07006780 /* Value bound check. */
6781 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6782 (cur_agc_value == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006783 return -E1000_ERR_PHY;
6784
Auke Kokcd94dd02006-06-27 09:08:22 -07006785 agc_value += cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006786
6787 /* Update minimal AGC value. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006788 if (min_agc_value > cur_agc_value)
6789 min_agc_value = cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006790 }
6791
6792 /* Remove the minimal AGC result for length < 50m */
Auke Kokcd94dd02006-06-27 09:08:22 -07006793 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6794 agc_value -= min_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006795
6796 /* Get the average length of the remaining 3 channels */
6797 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6798 } else {
6799 /* Get the average length of all the 4 channels. */
6800 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6801 }
6802
6803 /* Set the range of the calculated length. */
6804 *min_length = ((e1000_igp_cable_length_table[agc_value] -
6805 IGP01E1000_AGC_RANGE) > 0) ?
6806 (e1000_igp_cable_length_table[agc_value] -
6807 IGP01E1000_AGC_RANGE) : 0;
6808 *max_length = e1000_igp_cable_length_table[agc_value] +
6809 IGP01E1000_AGC_RANGE;
Auke Kokcd94dd02006-06-27 09:08:22 -07006810 } else if (hw->phy_type == e1000_phy_igp_2 ||
6811 hw->phy_type == e1000_phy_igp_3) {
6812 uint16_t cur_agc_index, max_agc_index = 0;
6813 uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006814 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6815 {IGP02E1000_PHY_AGC_A,
6816 IGP02E1000_PHY_AGC_B,
6817 IGP02E1000_PHY_AGC_C,
6818 IGP02E1000_PHY_AGC_D};
6819 /* Read the AGC registers for all channels */
6820 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6821 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6822 if (ret_val)
6823 return ret_val;
6824
Auke Kok8fc897b2006-08-28 14:56:16 -07006825 /* Getting bits 15:9, which represent the combination of course and
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006826 * fine gain values. The result is a number that can be put into
6827 * the lookup table to obtain the approximate cable length. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006828 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6829 IGP02E1000_AGC_LENGTH_MASK;
6830
6831 /* Array index bound check. */
6832 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6833 (cur_agc_index == 0))
6834 return -E1000_ERR_PHY;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006835
6836 /* Remove min & max AGC values from calculation. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006837 if (e1000_igp_2_cable_length_table[min_agc_index] >
6838 e1000_igp_2_cable_length_table[cur_agc_index])
6839 min_agc_index = cur_agc_index;
6840 if (e1000_igp_2_cable_length_table[max_agc_index] <
6841 e1000_igp_2_cable_length_table[cur_agc_index])
6842 max_agc_index = cur_agc_index;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006843
Auke Kokcd94dd02006-06-27 09:08:22 -07006844 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006845 }
6846
Auke Kokcd94dd02006-06-27 09:08:22 -07006847 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6848 e1000_igp_2_cable_length_table[max_agc_index]);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006849 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6850
6851 /* Calculate cable length with the error range of +/- 10 meters. */
6852 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6853 (agc_value - IGP02E1000_AGC_RANGE) : 0;
6854 *max_length = agc_value + IGP02E1000_AGC_RANGE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006855 }
6856
6857 return E1000_SUCCESS;
6858}
6859
6860/******************************************************************************
6861 * Check the cable polarity
6862 *
6863 * hw - Struct containing variables accessed by shared code
6864 * polarity - output parameter : 0 - Polarity is not reversed
6865 * 1 - Polarity is reversed.
6866 *
6867 * returns: - E1000_ERR_XXX
6868 * E1000_SUCCESS
6869 *
6870 * For phy's older then IGP, this function simply reads the polarity bit in the
6871 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6872 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6873 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6874 * IGP01E1000_PHY_PCS_INIT_REG.
6875 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006876static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006877e1000_check_polarity(struct e1000_hw *hw,
6878 uint16_t *polarity)
6879{
6880 int32_t ret_val;
6881 uint16_t phy_data;
6882
6883 DEBUGFUNC("e1000_check_polarity");
6884
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006885 if ((hw->phy_type == e1000_phy_m88) ||
6886 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006887 /* return the Polarity bit in the Status register. */
6888 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6889 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006890 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006891 return ret_val;
6892 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
6893 M88E1000_PSSR_REV_POLARITY_SHIFT;
Auke Kokcd94dd02006-06-27 09:08:22 -07006894 } else if (hw->phy_type == e1000_phy_igp ||
6895 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006896 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006897 /* Read the Status register to check the speed */
6898 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6899 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006900 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006901 return ret_val;
6902
6903 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6904 * find the polarity status */
Auke Kok8fc897b2006-08-28 14:56:16 -07006905 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
Linus Torvalds1da177e2005-04-16 15:20:36 -07006906 IGP01E1000_PSSR_SPEED_1000MBPS) {
6907
6908 /* Read the GIG initialization PCS register (0x00B4) */
6909 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6910 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006911 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006912 return ret_val;
6913
6914 /* Check the polarity bits */
6915 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
6916 } else {
6917 /* For 10 Mbps, read the polarity bit in the status register. (for
6918 * 100 Mbps this bit is always 0) */
6919 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
6920 }
Auke Kokcd94dd02006-06-27 09:08:22 -07006921 } else if (hw->phy_type == e1000_phy_ife) {
6922 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6923 &phy_data);
6924 if (ret_val)
6925 return ret_val;
6926 *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
6927 IFE_PESC_POLARITY_REVERSED_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006928 }
6929 return E1000_SUCCESS;
6930}
6931
6932/******************************************************************************
6933 * Check if Downshift occured
6934 *
6935 * hw - Struct containing variables accessed by shared code
6936 * downshift - output parameter : 0 - No Downshift ocured.
6937 * 1 - Downshift ocured.
6938 *
6939 * returns: - E1000_ERR_XXX
Auke Kok76c224b2006-05-23 13:36:06 -07006940 * E1000_SUCCESS
Linus Torvalds1da177e2005-04-16 15:20:36 -07006941 *
6942 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6943 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6944 * Link Health register. In IGP this bit is latched high, so the driver must
6945 * read it immediately after link is established.
6946 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006947static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006948e1000_check_downshift(struct e1000_hw *hw)
6949{
6950 int32_t ret_val;
6951 uint16_t phy_data;
6952
6953 DEBUGFUNC("e1000_check_downshift");
6954
Auke Kokcd94dd02006-06-27 09:08:22 -07006955 if (hw->phy_type == e1000_phy_igp ||
6956 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006957 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006958 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6959 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006960 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006961 return ret_val;
6962
6963 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006964 } else if ((hw->phy_type == e1000_phy_m88) ||
6965 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006966 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6967 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006968 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006969 return ret_val;
6970
6971 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6972 M88E1000_PSSR_DOWNSHIFT_SHIFT;
Auke Kokcd94dd02006-06-27 09:08:22 -07006973 } else if (hw->phy_type == e1000_phy_ife) {
6974 /* e1000_phy_ife supports 10/100 speed only */
6975 hw->speed_downgraded = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006976 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006977
Linus Torvalds1da177e2005-04-16 15:20:36 -07006978 return E1000_SUCCESS;
6979}
6980
6981/*****************************************************************************
6982 *
6983 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6984 * gigabit link is achieved to improve link quality.
6985 *
6986 * hw: Struct containing variables accessed by shared code
6987 *
6988 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6989 * E1000_SUCCESS at any other case.
6990 *
6991 ****************************************************************************/
6992
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006993static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006994e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6995 boolean_t link_up)
6996{
6997 int32_t ret_val;
6998 uint16_t phy_data, phy_saved_data, speed, duplex, i;
6999 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
7000 {IGP01E1000_PHY_AGC_PARAM_A,
7001 IGP01E1000_PHY_AGC_PARAM_B,
7002 IGP01E1000_PHY_AGC_PARAM_C,
7003 IGP01E1000_PHY_AGC_PARAM_D};
7004 uint16_t min_length, max_length;
7005
7006 DEBUGFUNC("e1000_config_dsp_after_link_change");
7007
Auke Kok8fc897b2006-08-28 14:56:16 -07007008 if (hw->phy_type != e1000_phy_igp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007009 return E1000_SUCCESS;
7010
Auke Kok8fc897b2006-08-28 14:56:16 -07007011 if (link_up) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007012 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
Auke Kok8fc897b2006-08-28 14:56:16 -07007013 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007014 DEBUGOUT("Error getting link speed and duplex\n");
7015 return ret_val;
7016 }
7017
Auke Kok8fc897b2006-08-28 14:56:16 -07007018 if (speed == SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007019
Auke Kokcd94dd02006-06-27 09:08:22 -07007020 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
7021 if (ret_val)
7022 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007023
Auke Kok8fc897b2006-08-28 14:56:16 -07007024 if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07007025 min_length >= e1000_igp_cable_length_50) {
7026
Auke Kok8fc897b2006-08-28 14:56:16 -07007027 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007028 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
7029 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007030 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007031 return ret_val;
7032
7033 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7034
7035 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
7036 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007037 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007038 return ret_val;
7039 }
7040 hw->dsp_config_state = e1000_dsp_config_activated;
7041 }
7042
Auke Kok8fc897b2006-08-28 14:56:16 -07007043 if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07007044 (min_length < e1000_igp_cable_length_50)) {
7045
7046 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
7047 uint32_t idle_errs = 0;
7048
7049 /* clear previous idle error counts */
7050 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7051 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007052 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007053 return ret_val;
7054
Auke Kok8fc897b2006-08-28 14:56:16 -07007055 for (i = 0; i < ffe_idle_err_timeout; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007056 udelay(1000);
7057 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7058 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007059 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007060 return ret_val;
7061
7062 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
Auke Kok8fc897b2006-08-28 14:56:16 -07007063 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007064 hw->ffe_config_state = e1000_ffe_config_active;
7065
7066 ret_val = e1000_write_phy_reg(hw,
7067 IGP01E1000_PHY_DSP_FFE,
7068 IGP01E1000_PHY_DSP_FFE_CM_CP);
Auke Kok8fc897b2006-08-28 14:56:16 -07007069 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007070 return ret_val;
7071 break;
7072 }
7073
Auke Kok8fc897b2006-08-28 14:56:16 -07007074 if (idle_errs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007075 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
7076 }
7077 }
7078 }
7079 } else {
Auke Kok8fc897b2006-08-28 14:56:16 -07007080 if (hw->dsp_config_state == e1000_dsp_config_activated) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007081 /* Save off the current value of register 0x2F5B to be restored at
7082 * the end of the routines. */
7083 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7084
Auke Kok8fc897b2006-08-28 14:56:16 -07007085 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007086 return ret_val;
7087
7088 /* Disable the PHY transmitter */
7089 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7090
Auke Kok8fc897b2006-08-28 14:56:16 -07007091 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007092 return ret_val;
7093
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007094 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007095
7096 ret_val = e1000_write_phy_reg(hw, 0x0000,
7097 IGP01E1000_IEEE_FORCE_GIGA);
Auke Kok8fc897b2006-08-28 14:56:16 -07007098 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007099 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07007100 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007101 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007102 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007103 return ret_val;
7104
7105 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7106 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
7107
7108 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007109 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007110 return ret_val;
7111 }
7112
7113 ret_val = e1000_write_phy_reg(hw, 0x0000,
7114 IGP01E1000_IEEE_RESTART_AUTONEG);
Auke Kok8fc897b2006-08-28 14:56:16 -07007115 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007116 return ret_val;
7117
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007118 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007119
7120 /* Now enable the transmitter */
7121 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7122
Auke Kok8fc897b2006-08-28 14:56:16 -07007123 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007124 return ret_val;
7125
7126 hw->dsp_config_state = e1000_dsp_config_enabled;
7127 }
7128
Auke Kok8fc897b2006-08-28 14:56:16 -07007129 if (hw->ffe_config_state == e1000_ffe_config_active) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007130 /* Save off the current value of register 0x2F5B to be restored at
7131 * the end of the routines. */
7132 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7133
Auke Kok8fc897b2006-08-28 14:56:16 -07007134 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007135 return ret_val;
7136
7137 /* Disable the PHY transmitter */
7138 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7139
Auke Kok8fc897b2006-08-28 14:56:16 -07007140 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007141 return ret_val;
7142
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007143 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007144
7145 ret_val = e1000_write_phy_reg(hw, 0x0000,
7146 IGP01E1000_IEEE_FORCE_GIGA);
Auke Kok8fc897b2006-08-28 14:56:16 -07007147 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007148 return ret_val;
7149 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7150 IGP01E1000_PHY_DSP_FFE_DEFAULT);
Auke Kok8fc897b2006-08-28 14:56:16 -07007151 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007152 return ret_val;
7153
7154 ret_val = e1000_write_phy_reg(hw, 0x0000,
7155 IGP01E1000_IEEE_RESTART_AUTONEG);
Auke Kok8fc897b2006-08-28 14:56:16 -07007156 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007157 return ret_val;
7158
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007159 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007160
7161 /* Now enable the transmitter */
7162 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7163
Auke Kok8fc897b2006-08-28 14:56:16 -07007164 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007165 return ret_val;
7166
7167 hw->ffe_config_state = e1000_ffe_config_enabled;
7168 }
7169 }
7170 return E1000_SUCCESS;
7171}
7172
7173/*****************************************************************************
7174 * Set PHY to class A mode
7175 * Assumes the following operations will follow to enable the new class mode.
7176 * 1. Do a PHY soft reset
7177 * 2. Restart auto-negotiation or force link.
7178 *
7179 * hw - Struct containing variables accessed by shared code
7180 ****************************************************************************/
7181static int32_t
7182e1000_set_phy_mode(struct e1000_hw *hw)
7183{
7184 int32_t ret_val;
7185 uint16_t eeprom_data;
7186
7187 DEBUGFUNC("e1000_set_phy_mode");
7188
Auke Kok8fc897b2006-08-28 14:56:16 -07007189 if ((hw->mac_type == e1000_82545_rev_3) &&
7190 (hw->media_type == e1000_media_type_copper)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007191 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007192 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007193 return ret_val;
7194 }
7195
Auke Kok8fc897b2006-08-28 14:56:16 -07007196 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7197 (eeprom_data & EEPROM_PHY_CLASS_A)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007198 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
Auke Kok8fc897b2006-08-28 14:56:16 -07007199 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007200 return ret_val;
7201 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
Auke Kok8fc897b2006-08-28 14:56:16 -07007202 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007203 return ret_val;
7204
7205 hw->phy_reset_disable = FALSE;
7206 }
7207 }
7208
7209 return E1000_SUCCESS;
7210}
7211
7212/*****************************************************************************
7213 *
7214 * This function sets the lplu state according to the active flag. When
7215 * activating lplu this function also disables smart speed and vise versa.
7216 * lplu will not be activated unless the device autonegotiation advertisment
7217 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7218 * hw: Struct containing variables accessed by shared code
7219 * active - true to enable lplu false to disable lplu.
7220 *
7221 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7222 * E1000_SUCCESS at any other case.
7223 *
7224 ****************************************************************************/
7225
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007226static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07007227e1000_set_d3_lplu_state(struct e1000_hw *hw,
7228 boolean_t active)
7229{
Auke Kokcd94dd02006-06-27 09:08:22 -07007230 uint32_t phy_ctrl = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007231 int32_t ret_val;
7232 uint16_t phy_data;
7233 DEBUGFUNC("e1000_set_d3_lplu_state");
7234
Auke Kokcd94dd02006-06-27 09:08:22 -07007235 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7236 && hw->phy_type != e1000_phy_igp_3)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007237 return E1000_SUCCESS;
7238
7239 /* During driver activity LPLU should not be used or it will attain link
7240 * from the lowest speeds starting from 10Mbps. The capability is used for
7241 * Dx transitions and states */
Auke Kokcd94dd02006-06-27 09:08:22 -07007242 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007243 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
Auke Kokcd94dd02006-06-27 09:08:22 -07007244 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007245 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007246 } else if (hw->mac_type == e1000_ich8lan) {
7247 /* MAC writes into PHY register based on the state transition
7248 * and start auto-negotiation. SW driver can overwrite the settings
7249 * in CSR PHY power control E1000_PHY_CTRL register. */
7250 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007251 } else {
7252 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007253 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007254 return ret_val;
7255 }
7256
Auke Kok8fc897b2006-08-28 14:56:16 -07007257 if (!active) {
7258 if (hw->mac_type == e1000_82541_rev_2 ||
7259 hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007260 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7261 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007262 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007263 return ret_val;
7264 } else {
Auke Kokcd94dd02006-06-27 09:08:22 -07007265 if (hw->mac_type == e1000_ich8lan) {
7266 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7267 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7268 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007269 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7270 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7271 phy_data);
7272 if (ret_val)
7273 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007274 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007275 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07007276
7277 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7278 * Dx states where the power conservation is most important. During
7279 * driver activity we should enable SmartSpeed, so performance is
7280 * maintained. */
7281 if (hw->smart_speed == e1000_smart_speed_on) {
7282 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7283 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007284 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007285 return ret_val;
7286
7287 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7288 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7289 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007290 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007291 return ret_val;
7292 } else if (hw->smart_speed == e1000_smart_speed_off) {
7293 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7294 &phy_data);
7295 if (ret_val)
7296 return ret_val;
7297
7298 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7299 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7300 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007301 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007302 return ret_val;
7303 }
7304
Auke Kok8fc897b2006-08-28 14:56:16 -07007305 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7306 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7307 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007308
Auke Kok8fc897b2006-08-28 14:56:16 -07007309 if (hw->mac_type == e1000_82541_rev_2 ||
Auke Kokcd94dd02006-06-27 09:08:22 -07007310 hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007311 phy_data |= IGP01E1000_GMII_FLEX_SPD;
7312 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007313 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007314 return ret_val;
7315 } else {
Auke Kokcd94dd02006-06-27 09:08:22 -07007316 if (hw->mac_type == e1000_ich8lan) {
7317 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7318 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7319 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007320 phy_data |= IGP02E1000_PM_D3_LPLU;
7321 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7322 phy_data);
7323 if (ret_val)
7324 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007325 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007326 }
7327
7328 /* When LPLU is enabled we should disable SmartSpeed */
7329 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007330 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007331 return ret_val;
7332
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007333 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7334 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007335 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007336 return ret_val;
7337
7338 }
7339 return E1000_SUCCESS;
7340}
7341
7342/*****************************************************************************
7343 *
7344 * This function sets the lplu d0 state according to the active flag. When
7345 * activating lplu this function also disables smart speed and vise versa.
7346 * lplu will not be activated unless the device autonegotiation advertisment
7347 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7348 * hw: Struct containing variables accessed by shared code
7349 * active - true to enable lplu false to disable lplu.
7350 *
7351 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7352 * E1000_SUCCESS at any other case.
7353 *
7354 ****************************************************************************/
7355
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007356static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007357e1000_set_d0_lplu_state(struct e1000_hw *hw,
7358 boolean_t active)
7359{
Auke Kokcd94dd02006-06-27 09:08:22 -07007360 uint32_t phy_ctrl = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007361 int32_t ret_val;
7362 uint16_t phy_data;
7363 DEBUGFUNC("e1000_set_d0_lplu_state");
7364
Auke Kok8fc897b2006-08-28 14:56:16 -07007365 if (hw->mac_type <= e1000_82547_rev_2)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007366 return E1000_SUCCESS;
7367
Auke Kokcd94dd02006-06-27 09:08:22 -07007368 if (hw->mac_type == e1000_ich8lan) {
7369 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7370 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007371 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007372 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007373 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007374 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007375
7376 if (!active) {
Auke Kokcd94dd02006-06-27 09:08:22 -07007377 if (hw->mac_type == e1000_ich8lan) {
7378 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7379 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7380 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007381 phy_data &= ~IGP02E1000_PM_D0_LPLU;
7382 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7383 if (ret_val)
7384 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007385 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007386
7387 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7388 * Dx states where the power conservation is most important. During
7389 * driver activity we should enable SmartSpeed, so performance is
7390 * maintained. */
7391 if (hw->smart_speed == e1000_smart_speed_on) {
7392 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7393 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007394 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007395 return ret_val;
7396
7397 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7398 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7399 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007400 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007401 return ret_val;
7402 } else if (hw->smart_speed == e1000_smart_speed_off) {
7403 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7404 &phy_data);
7405 if (ret_val)
7406 return ret_val;
7407
7408 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7409 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7410 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007411 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007412 return ret_val;
7413 }
7414
7415
7416 } else {
Auke Kok76c224b2006-05-23 13:36:06 -07007417
Auke Kokcd94dd02006-06-27 09:08:22 -07007418 if (hw->mac_type == e1000_ich8lan) {
7419 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7420 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7421 } else {
Auke Kok76c224b2006-05-23 13:36:06 -07007422 phy_data |= IGP02E1000_PM_D0_LPLU;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007423 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7424 if (ret_val)
7425 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007426 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007427
Linus Torvalds1da177e2005-04-16 15:20:36 -07007428 /* When LPLU is enabled we should disable SmartSpeed */
7429 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007430 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007431 return ret_val;
7432
7433 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7434 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007435 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007436 return ret_val;
7437
7438 }
7439 return E1000_SUCCESS;
7440}
7441
7442/******************************************************************************
7443 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7444 *
7445 * hw - Struct containing variables accessed by shared code
7446 *****************************************************************************/
7447static int32_t
7448e1000_set_vco_speed(struct e1000_hw *hw)
7449{
7450 int32_t ret_val;
7451 uint16_t default_page = 0;
7452 uint16_t phy_data;
7453
7454 DEBUGFUNC("e1000_set_vco_speed");
7455
Auke Kok8fc897b2006-08-28 14:56:16 -07007456 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007457 case e1000_82545_rev_3:
7458 case e1000_82546_rev_3:
7459 break;
7460 default:
7461 return E1000_SUCCESS;
7462 }
7463
7464 /* Set PHY register 30, page 5, bit 8 to 0 */
7465
7466 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
Auke Kok8fc897b2006-08-28 14:56:16 -07007467 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007468 return ret_val;
7469
7470 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
Auke Kok8fc897b2006-08-28 14:56:16 -07007471 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007472 return ret_val;
7473
7474 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007475 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007476 return ret_val;
7477
7478 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7479 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007480 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007481 return ret_val;
7482
7483 /* Set PHY register 30, page 4, bit 11 to 1 */
7484
7485 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
Auke Kok8fc897b2006-08-28 14:56:16 -07007486 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007487 return ret_val;
7488
7489 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007490 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007491 return ret_val;
7492
7493 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7494 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007495 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007496 return ret_val;
7497
7498 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
Auke Kok8fc897b2006-08-28 14:56:16 -07007499 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007500 return ret_val;
7501
7502 return E1000_SUCCESS;
7503}
7504
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007505
7506/*****************************************************************************
7507 * This function reads the cookie from ARC ram.
7508 *
7509 * returns: - E1000_SUCCESS .
7510 ****************************************************************************/
7511int32_t
7512e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
7513{
7514 uint8_t i;
Auke Kok76c224b2006-05-23 13:36:06 -07007515 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007516 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
7517
7518 length = (length >> 2);
7519 offset = (offset >> 2);
7520
7521 for (i = 0; i < length; i++) {
7522 *((uint32_t *) buffer + i) =
7523 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7524 }
7525 return E1000_SUCCESS;
7526}
7527
7528
7529/*****************************************************************************
7530 * This function checks whether the HOST IF is enabled for command operaton
7531 * and also checks whether the previous command is completed.
7532 * It busy waits in case of previous command is not completed.
7533 *
Auke Kok76c224b2006-05-23 13:36:06 -07007534 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007535 * timeout
7536 * - E1000_SUCCESS for success.
7537 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007538static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007539e1000_mng_enable_host_if(struct e1000_hw * hw)
7540{
7541 uint32_t hicr;
7542 uint8_t i;
7543
7544 /* Check that the host interface is enabled. */
7545 hicr = E1000_READ_REG(hw, HICR);
7546 if ((hicr & E1000_HICR_EN) == 0) {
7547 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7548 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7549 }
7550 /* check the previous command is completed */
7551 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7552 hicr = E1000_READ_REG(hw, HICR);
7553 if (!(hicr & E1000_HICR_C))
7554 break;
7555 msec_delay_irq(1);
7556 }
7557
Auke Kok76c224b2006-05-23 13:36:06 -07007558 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007559 DEBUGOUT("Previous command timeout failed .\n");
7560 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7561 }
7562 return E1000_SUCCESS;
7563}
7564
7565/*****************************************************************************
7566 * This function writes the buffer content at the offset given on the host if.
7567 * It also does alignment considerations to do the writes in most efficient way.
7568 * Also fills up the sum of the buffer in *buffer parameter.
7569 *
7570 * returns - E1000_SUCCESS for success.
7571 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007572static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007573e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
7574 uint16_t length, uint16_t offset, uint8_t *sum)
7575{
7576 uint8_t *tmp;
7577 uint8_t *bufptr = buffer;
Auke Kok8fc897b2006-08-28 14:56:16 -07007578 uint32_t data = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007579 uint16_t remaining, i, j, prev_bytes;
7580
7581 /* sum = only sum of the data and it is not checksum */
7582
7583 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7584 return -E1000_ERR_PARAM;
7585 }
7586
7587 tmp = (uint8_t *)&data;
7588 prev_bytes = offset & 0x3;
7589 offset &= 0xFFFC;
7590 offset >>= 2;
7591
7592 if (prev_bytes) {
7593 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7594 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
7595 *(tmp + j) = *bufptr++;
7596 *sum += *(tmp + j);
7597 }
7598 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7599 length -= j - prev_bytes;
7600 offset++;
7601 }
7602
7603 remaining = length & 0x3;
7604 length -= remaining;
7605
7606 /* Calculate length in DWORDs */
7607 length >>= 2;
7608
7609 /* The device driver writes the relevant command block into the
7610 * ram area. */
7611 for (i = 0; i < length; i++) {
7612 for (j = 0; j < sizeof(uint32_t); j++) {
7613 *(tmp + j) = *bufptr++;
7614 *sum += *(tmp + j);
7615 }
7616
7617 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7618 }
7619 if (remaining) {
7620 for (j = 0; j < sizeof(uint32_t); j++) {
7621 if (j < remaining)
7622 *(tmp + j) = *bufptr++;
7623 else
7624 *(tmp + j) = 0;
7625
7626 *sum += *(tmp + j);
7627 }
7628 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7629 }
7630
7631 return E1000_SUCCESS;
7632}
7633
7634
7635/*****************************************************************************
7636 * This function writes the command header after does the checksum calculation.
7637 *
7638 * returns - E1000_SUCCESS for success.
7639 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007640static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007641e1000_mng_write_cmd_header(struct e1000_hw * hw,
7642 struct e1000_host_mng_command_header * hdr)
7643{
7644 uint16_t i;
7645 uint8_t sum;
7646 uint8_t *buffer;
7647
7648 /* Write the whole command header structure which includes sum of
7649 * the buffer */
7650
7651 uint16_t length = sizeof(struct e1000_host_mng_command_header);
7652
7653 sum = hdr->checksum;
7654 hdr->checksum = 0;
7655
7656 buffer = (uint8_t *) hdr;
7657 i = length;
Auke Kok8fc897b2006-08-28 14:56:16 -07007658 while (i--)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007659 sum += buffer[i];
7660
7661 hdr->checksum = 0 - sum;
7662
7663 length >>= 2;
7664 /* The device driver writes the relevant command block into the ram area. */
Auke Kok4ca213a2006-06-27 09:07:08 -07007665 for (i = 0; i < length; i++) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007666 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
Auke Kok4ca213a2006-06-27 09:07:08 -07007667 E1000_WRITE_FLUSH(hw);
7668 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007669
7670 return E1000_SUCCESS;
7671}
7672
7673
7674/*****************************************************************************
7675 * This function indicates to ARC that a new command is pending which completes
7676 * one write operation by the driver.
7677 *
7678 * returns - E1000_SUCCESS for success.
7679 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007680static int32_t
Auke Kok8fc897b2006-08-28 14:56:16 -07007681e1000_mng_write_commit(struct e1000_hw * hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007682{
7683 uint32_t hicr;
7684
7685 hicr = E1000_READ_REG(hw, HICR);
7686 /* Setting this bit tells the ARC that a new command is pending. */
7687 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
7688
7689 return E1000_SUCCESS;
7690}
7691
7692
7693/*****************************************************************************
7694 * This function checks the mode of the firmware.
7695 *
7696 * returns - TRUE when the mode is IAMT or FALSE.
7697 ****************************************************************************/
7698boolean_t
Auke Kokcd94dd02006-06-27 09:08:22 -07007699e1000_check_mng_mode(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007700{
7701 uint32_t fwsm;
7702
7703 fwsm = E1000_READ_REG(hw, FWSM);
7704
Auke Kokcd94dd02006-06-27 09:08:22 -07007705 if (hw->mac_type == e1000_ich8lan) {
7706 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7707 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7708 return TRUE;
7709 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7710 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007711 return TRUE;
7712
7713 return FALSE;
7714}
7715
7716
7717/*****************************************************************************
7718 * This function writes the dhcp info .
7719 ****************************************************************************/
7720int32_t
7721e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
7722 uint16_t length)
7723{
7724 int32_t ret_val;
7725 struct e1000_host_mng_command_header hdr;
7726
7727 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7728 hdr.command_length = length;
7729 hdr.reserved1 = 0;
7730 hdr.reserved2 = 0;
7731 hdr.checksum = 0;
7732
7733 ret_val = e1000_mng_enable_host_if(hw);
7734 if (ret_val == E1000_SUCCESS) {
7735 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7736 &(hdr.checksum));
7737 if (ret_val == E1000_SUCCESS) {
7738 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7739 if (ret_val == E1000_SUCCESS)
7740 ret_val = e1000_mng_write_commit(hw);
7741 }
7742 }
7743 return ret_val;
7744}
7745
7746
7747/*****************************************************************************
7748 * This function calculates the checksum.
7749 *
7750 * returns - checksum of buffer contents.
7751 ****************************************************************************/
7752uint8_t
7753e1000_calculate_mng_checksum(char *buffer, uint32_t length)
7754{
7755 uint8_t sum = 0;
7756 uint32_t i;
7757
7758 if (!buffer)
7759 return 0;
7760
7761 for (i=0; i < length; i++)
7762 sum += buffer[i];
7763
7764 return (uint8_t) (0 - sum);
7765}
7766
7767/*****************************************************************************
7768 * This function checks whether tx pkt filtering needs to be enabled or not.
7769 *
7770 * returns - TRUE for packet filtering or FALSE.
7771 ****************************************************************************/
7772boolean_t
7773e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7774{
7775 /* called in init as well as watchdog timer functions */
7776
7777 int32_t ret_val, checksum;
7778 boolean_t tx_filter = FALSE;
7779 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7780 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
7781
7782 if (e1000_check_mng_mode(hw)) {
7783 ret_val = e1000_mng_enable_host_if(hw);
7784 if (ret_val == E1000_SUCCESS) {
7785 ret_val = e1000_host_if_read_cookie(hw, buffer);
7786 if (ret_val == E1000_SUCCESS) {
7787 checksum = hdr->checksum;
7788 hdr->checksum = 0;
7789 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7790 checksum == e1000_calculate_mng_checksum((char *)buffer,
7791 E1000_MNG_DHCP_COOKIE_LENGTH)) {
7792 if (hdr->status &
7793 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7794 tx_filter = TRUE;
7795 } else
7796 tx_filter = TRUE;
7797 } else
7798 tx_filter = TRUE;
7799 }
7800 }
7801
7802 hw->tx_pkt_filtering = tx_filter;
7803 return tx_filter;
7804}
7805
7806/******************************************************************************
7807 * Verifies the hardware needs to allow ARPs to be processed by the host
7808 *
7809 * hw - Struct containing variables accessed by shared code
7810 *
7811 * returns: - TRUE/FALSE
7812 *
7813 *****************************************************************************/
7814uint32_t
7815e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7816{
7817 uint32_t manc;
7818 uint32_t fwsm, factps;
7819
7820 if (hw->asf_firmware_present) {
7821 manc = E1000_READ_REG(hw, MANC);
7822
7823 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7824 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7825 return FALSE;
7826 if (e1000_arc_subsystem_valid(hw) == TRUE) {
7827 fwsm = E1000_READ_REG(hw, FWSM);
7828 factps = E1000_READ_REG(hw, FACTPS);
7829
7830 if (((fwsm & E1000_FWSM_MODE_MASK) ==
7831 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
7832 (factps & E1000_FACTPS_MNGCG))
7833 return TRUE;
7834 } else
7835 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7836 return TRUE;
7837 }
7838 return FALSE;
7839}
7840
Linus Torvalds1da177e2005-04-16 15:20:36 -07007841static int32_t
7842e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7843{
7844 int32_t ret_val;
7845 uint16_t mii_status_reg;
7846 uint16_t i;
7847
7848 /* Polarity reversal workaround for forced 10F/10H links. */
7849
7850 /* Disable the transmitter on the PHY */
7851
7852 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
Auke Kok8fc897b2006-08-28 14:56:16 -07007853 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007854 return ret_val;
7855 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
Auke Kok8fc897b2006-08-28 14:56:16 -07007856 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007857 return ret_val;
7858
7859 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007860 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007861 return ret_val;
7862
7863 /* This loop will early-out if the NO link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07007864 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007865 /* Read the MII Status Register and wait for Link Status bit
7866 * to be clear.
7867 */
7868
7869 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007870 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007871 return ret_val;
7872
7873 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007874 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007875 return ret_val;
7876
Auke Kok8fc897b2006-08-28 14:56:16 -07007877 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007878 msec_delay_irq(100);
7879 }
7880
7881 /* Recommended delay time after link has been lost */
7882 msec_delay_irq(1000);
7883
7884 /* Now we will re-enable th transmitter on the PHY */
7885
7886 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
Auke Kok8fc897b2006-08-28 14:56:16 -07007887 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007888 return ret_val;
7889 msec_delay_irq(50);
7890 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
Auke Kok8fc897b2006-08-28 14:56:16 -07007891 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007892 return ret_val;
7893 msec_delay_irq(50);
7894 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
Auke Kok8fc897b2006-08-28 14:56:16 -07007895 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007896 return ret_val;
7897 msec_delay_irq(50);
7898 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007899 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007900 return ret_val;
7901
7902 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007903 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007904 return ret_val;
7905
7906 /* This loop will early-out if the link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07007907 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007908 /* Read the MII Status Register and wait for Link Status bit
7909 * to be set.
7910 */
7911
7912 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007913 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007914 return ret_val;
7915
7916 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007917 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007918 return ret_val;
7919
Auke Kok8fc897b2006-08-28 14:56:16 -07007920 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007921 msec_delay_irq(100);
7922 }
7923 return E1000_SUCCESS;
7924}
7925
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007926/***************************************************************************
7927 *
7928 * Disables PCI-Express master access.
7929 *
7930 * hw: Struct containing variables accessed by shared code
7931 *
7932 * returns: - none.
7933 *
7934 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007935static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007936e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7937{
7938 uint32_t ctrl;
7939
7940 DEBUGFUNC("e1000_set_pci_express_master_disable");
7941
7942 if (hw->bus_type != e1000_bus_type_pci_express)
7943 return;
7944
7945 ctrl = E1000_READ_REG(hw, CTRL);
7946 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7947 E1000_WRITE_REG(hw, CTRL, ctrl);
7948}
7949
7950/***************************************************************************
7951 *
7952 * Enables PCI-Express master access.
7953 *
7954 * hw: Struct containing variables accessed by shared code
7955 *
7956 * returns: - none.
7957 *
7958 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07007959#if 0
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007960void
7961e1000_enable_pciex_master(struct e1000_hw *hw)
7962{
7963 uint32_t ctrl;
7964
7965 DEBUGFUNC("e1000_enable_pciex_master");
7966
7967 if (hw->bus_type != e1000_bus_type_pci_express)
7968 return;
7969
7970 ctrl = E1000_READ_REG(hw, CTRL);
7971 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
7972 E1000_WRITE_REG(hw, CTRL, ctrl);
7973}
Adrian Bunke4c780b2006-08-14 23:00:10 -07007974#endif /* 0 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007975
7976/*******************************************************************************
7977 *
7978 * Disables PCI-Express master access and verifies there are no pending requests
7979 *
7980 * hw: Struct containing variables accessed by shared code
7981 *
7982 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7983 * caused the master requests to be disabled.
7984 * E1000_SUCCESS master requests disabled.
7985 *
7986 ******************************************************************************/
7987int32_t
7988e1000_disable_pciex_master(struct e1000_hw *hw)
7989{
7990 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
7991
7992 DEBUGFUNC("e1000_disable_pciex_master");
7993
7994 if (hw->bus_type != e1000_bus_type_pci_express)
7995 return E1000_SUCCESS;
7996
7997 e1000_set_pci_express_master_disable(hw);
7998
Auke Kok8fc897b2006-08-28 14:56:16 -07007999 while (timeout) {
8000 if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008001 break;
8002 else
8003 udelay(100);
8004 timeout--;
8005 }
8006
Auke Kok8fc897b2006-08-28 14:56:16 -07008007 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008008 DEBUGOUT("Master requests are pending.\n");
8009 return -E1000_ERR_MASTER_REQUESTS_PENDING;
8010 }
8011
8012 return E1000_SUCCESS;
8013}
8014
8015/*******************************************************************************
8016 *
8017 * Check for EEPROM Auto Read bit done.
8018 *
8019 * hw: Struct containing variables accessed by shared code
8020 *
8021 * returns: - E1000_ERR_RESET if fail to reset MAC
8022 * E1000_SUCCESS at any other case.
8023 *
8024 ******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008025static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008026e1000_get_auto_rd_done(struct e1000_hw *hw)
8027{
8028 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
8029
8030 DEBUGFUNC("e1000_get_auto_rd_done");
8031
8032 switch (hw->mac_type) {
8033 default:
8034 msec_delay(5);
8035 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008036 case e1000_82571:
8037 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008038 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008039 case e1000_80003es2lan:
Auke Kokcd94dd02006-06-27 09:08:22 -07008040 case e1000_ich8lan:
8041 while (timeout) {
8042 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
8043 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008044 else msec_delay(1);
8045 timeout--;
8046 }
8047
Auke Kok8fc897b2006-08-28 14:56:16 -07008048 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008049 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
8050 return -E1000_ERR_RESET;
8051 }
8052 break;
8053 }
8054
Jeff Kirsherfd803242005-12-13 00:06:22 -05008055 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
8056 * Need to wait for PHY configuration completion before accessing NVM
8057 * and PHY. */
8058 if (hw->mac_type == e1000_82573)
8059 msec_delay(25);
8060
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008061 return E1000_SUCCESS;
8062}
8063
8064/***************************************************************************
8065 * Checks if the PHY configuration is done
8066 *
8067 * hw: Struct containing variables accessed by shared code
8068 *
8069 * returns: - E1000_ERR_RESET if fail to reset MAC
8070 * E1000_SUCCESS at any other case.
8071 *
8072 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008073static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008074e1000_get_phy_cfg_done(struct e1000_hw *hw)
8075{
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008076 int32_t timeout = PHY_CFG_TIMEOUT;
8077 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
8078
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008079 DEBUGFUNC("e1000_get_phy_cfg_done");
8080
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008081 switch (hw->mac_type) {
8082 default:
Auke Kokcd94dd02006-06-27 09:08:22 -07008083 msec_delay_irq(10);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008084 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008085 case e1000_80003es2lan:
8086 /* Separate *_CFG_DONE_* bit for each port */
8087 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
8088 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
8089 /* Fall Through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008090 case e1000_82571:
8091 case e1000_82572:
8092 while (timeout) {
8093 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
8094 break;
8095 else
8096 msec_delay(1);
8097 timeout--;
8098 }
8099
8100 if (!timeout) {
8101 DEBUGOUT("MNG configuration cycle has not completed.\n");
8102 return -E1000_ERR_RESET;
8103 }
8104 break;
8105 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008106
8107 return E1000_SUCCESS;
8108}
8109
8110/***************************************************************************
8111 *
8112 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
8113 * adapter or Eeprom access.
8114 *
8115 * hw: Struct containing variables accessed by shared code
8116 *
8117 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
8118 * E1000_SUCCESS at any other case.
8119 *
8120 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008121static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008122e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
8123{
8124 int32_t timeout;
8125 uint32_t swsm;
8126
8127 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
8128
Auke Kok8fc897b2006-08-28 14:56:16 -07008129 if (!hw->eeprom_semaphore_present)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008130 return E1000_SUCCESS;
8131
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008132 if (hw->mac_type == e1000_80003es2lan) {
8133 /* Get the SW semaphore. */
8134 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
8135 return -E1000_ERR_EEPROM;
8136 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008137
8138 /* Get the FW semaphore. */
8139 timeout = hw->eeprom.word_size + 1;
Auke Kok8fc897b2006-08-28 14:56:16 -07008140 while (timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008141 swsm = E1000_READ_REG(hw, SWSM);
8142 swsm |= E1000_SWSM_SWESMBI;
8143 E1000_WRITE_REG(hw, SWSM, swsm);
8144 /* if we managed to set the bit we got the semaphore. */
8145 swsm = E1000_READ_REG(hw, SWSM);
Auke Kok8fc897b2006-08-28 14:56:16 -07008146 if (swsm & E1000_SWSM_SWESMBI)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008147 break;
8148
8149 udelay(50);
8150 timeout--;
8151 }
8152
Auke Kok8fc897b2006-08-28 14:56:16 -07008153 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008154 /* Release semaphores */
8155 e1000_put_hw_eeprom_semaphore(hw);
8156 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
8157 return -E1000_ERR_EEPROM;
8158 }
8159
8160 return E1000_SUCCESS;
8161}
8162
8163/***************************************************************************
8164 * This function clears HW semaphore bits.
8165 *
8166 * hw: Struct containing variables accessed by shared code
8167 *
8168 * returns: - None.
8169 *
8170 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008171static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008172e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8173{
8174 uint32_t swsm;
8175
8176 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8177
Auke Kok8fc897b2006-08-28 14:56:16 -07008178 if (!hw->eeprom_semaphore_present)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008179 return;
8180
8181 swsm = E1000_READ_REG(hw, SWSM);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008182 if (hw->mac_type == e1000_80003es2lan) {
8183 /* Release both semaphores. */
8184 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8185 } else
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008186 swsm &= ~(E1000_SWSM_SWESMBI);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008187 E1000_WRITE_REG(hw, SWSM, swsm);
8188}
8189
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008190/***************************************************************************
8191 *
8192 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8193 *
8194 * hw: Struct containing variables accessed by shared code
8195 *
8196 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8197 * E1000_SUCCESS at any other case.
8198 *
8199 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008200static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008201e1000_get_software_semaphore(struct e1000_hw *hw)
8202{
8203 int32_t timeout = hw->eeprom.word_size + 1;
8204 uint32_t swsm;
8205
8206 DEBUGFUNC("e1000_get_software_semaphore");
8207
8208 if (hw->mac_type != e1000_80003es2lan)
8209 return E1000_SUCCESS;
8210
Auke Kok8fc897b2006-08-28 14:56:16 -07008211 while (timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008212 swsm = E1000_READ_REG(hw, SWSM);
8213 /* If SMBI bit cleared, it is now set and we hold the semaphore */
Auke Kok8fc897b2006-08-28 14:56:16 -07008214 if (!(swsm & E1000_SWSM_SMBI))
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008215 break;
8216 msec_delay_irq(1);
8217 timeout--;
8218 }
8219
Auke Kok8fc897b2006-08-28 14:56:16 -07008220 if (!timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008221 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8222 return -E1000_ERR_RESET;
8223 }
8224
8225 return E1000_SUCCESS;
8226}
8227
8228/***************************************************************************
8229 *
8230 * Release semaphore bit (SMBI).
8231 *
8232 * hw: Struct containing variables accessed by shared code
8233 *
8234 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008235static void
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008236e1000_release_software_semaphore(struct e1000_hw *hw)
8237{
8238 uint32_t swsm;
8239
8240 DEBUGFUNC("e1000_release_software_semaphore");
8241
8242 if (hw->mac_type != e1000_80003es2lan)
8243 return;
8244
8245 swsm = E1000_READ_REG(hw, SWSM);
8246 /* Release the SW semaphores.*/
8247 swsm &= ~E1000_SWSM_SMBI;
8248 E1000_WRITE_REG(hw, SWSM, swsm);
8249}
8250
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008251/******************************************************************************
8252 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8253 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8254 * the caller to figure out how to deal with it.
8255 *
8256 * hw - Struct containing variables accessed by shared code
8257 *
8258 * returns: - E1000_BLK_PHY_RESET
8259 * E1000_SUCCESS
8260 *
8261 *****************************************************************************/
8262int32_t
8263e1000_check_phy_reset_block(struct e1000_hw *hw)
8264{
8265 uint32_t manc = 0;
Auke Kokcd94dd02006-06-27 09:08:22 -07008266 uint32_t fwsm = 0;
8267
8268 if (hw->mac_type == e1000_ich8lan) {
8269 fwsm = E1000_READ_REG(hw, FWSM);
8270 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8271 : E1000_BLK_PHY_RESET;
8272 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08008273
8274 if (hw->mac_type > e1000_82547_rev_2)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008275 manc = E1000_READ_REG(hw, MANC);
8276 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
8277 E1000_BLK_PHY_RESET : E1000_SUCCESS;
8278}
8279
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008280static uint8_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008281e1000_arc_subsystem_valid(struct e1000_hw *hw)
8282{
8283 uint32_t fwsm;
8284
8285 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8286 * may not be provided a DMA clock when no manageability features are
8287 * enabled. We do not want to perform any reads/writes to these registers
8288 * if this is the case. We read FWSM to determine the manageability mode.
8289 */
8290 switch (hw->mac_type) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008291 case e1000_82571:
8292 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008293 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008294 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008295 fwsm = E1000_READ_REG(hw, FWSM);
Auke Kok8fc897b2006-08-28 14:56:16 -07008296 if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008297 return TRUE;
8298 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07008299 case e1000_ich8lan:
8300 return TRUE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008301 default:
8302 break;
8303 }
8304 return FALSE;
8305}
8306
8307
Auke Kokd37ea5d2006-06-27 09:08:17 -07008308/******************************************************************************
8309 * Configure PCI-Ex no-snoop
8310 *
8311 * hw - Struct containing variables accessed by shared code.
8312 * no_snoop - Bitmap of no-snoop events.
8313 *
8314 * returns: E1000_SUCCESS
8315 *
8316 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008317static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008318e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8319{
8320 uint32_t gcr_reg = 0;
8321
8322 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8323
8324 if (hw->bus_type == e1000_bus_type_unknown)
8325 e1000_get_bus_info(hw);
8326
8327 if (hw->bus_type != e1000_bus_type_pci_express)
8328 return E1000_SUCCESS;
8329
8330 if (no_snoop) {
8331 gcr_reg = E1000_READ_REG(hw, GCR);
8332 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8333 gcr_reg |= no_snoop;
8334 E1000_WRITE_REG(hw, GCR, gcr_reg);
8335 }
8336 if (hw->mac_type == e1000_ich8lan) {
8337 uint32_t ctrl_ext;
8338
8339 E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8340
8341 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8342 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8343 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8344 }
8345
8346 return E1000_SUCCESS;
8347}
8348
8349/***************************************************************************
8350 *
8351 * Get software semaphore FLAG bit (SWFLAG).
8352 * SWFLAG is used to synchronize the access to all shared resource between
8353 * SW, FW and HW.
8354 *
8355 * hw: Struct containing variables accessed by shared code
8356 *
8357 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008358static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008359e1000_get_software_flag(struct e1000_hw *hw)
8360{
8361 int32_t timeout = PHY_CFG_TIMEOUT;
8362 uint32_t extcnf_ctrl;
8363
8364 DEBUGFUNC("e1000_get_software_flag");
8365
8366 if (hw->mac_type == e1000_ich8lan) {
8367 while (timeout) {
8368 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8369 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8370 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8371
8372 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8373 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8374 break;
8375 msec_delay_irq(1);
8376 timeout--;
8377 }
8378
8379 if (!timeout) {
8380 DEBUGOUT("FW or HW locks the resource too long.\n");
8381 return -E1000_ERR_CONFIG;
8382 }
8383 }
8384
8385 return E1000_SUCCESS;
8386}
8387
8388/***************************************************************************
8389 *
8390 * Release software semaphore FLAG bit (SWFLAG).
8391 * SWFLAG is used to synchronize the access to all shared resource between
8392 * SW, FW and HW.
8393 *
8394 * hw: Struct containing variables accessed by shared code
8395 *
8396 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008397static void
Auke Kokd37ea5d2006-06-27 09:08:17 -07008398e1000_release_software_flag(struct e1000_hw *hw)
8399{
8400 uint32_t extcnf_ctrl;
8401
8402 DEBUGFUNC("e1000_release_software_flag");
8403
8404 if (hw->mac_type == e1000_ich8lan) {
8405 extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8406 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8407 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8408 }
8409
8410 return;
8411}
8412
8413/***************************************************************************
8414 *
8415 * Disable dynamic power down mode in ife PHY.
8416 * It can be used to workaround band-gap problem.
8417 *
8418 * hw: Struct containing variables accessed by shared code
8419 *
8420 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008421#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07008422int32_t
8423e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
8424{
8425 uint16_t phy_data;
8426 int32_t ret_val = E1000_SUCCESS;
8427
8428 DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
8429
8430 if (hw->phy_type == e1000_phy_ife) {
8431 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
8432 if (ret_val)
8433 return ret_val;
8434
8435 phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
8436 ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
8437 }
8438
8439 return ret_val;
8440}
Adrian Bunke4c780b2006-08-14 23:00:10 -07008441#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07008442
8443/***************************************************************************
8444 *
8445 * Enable dynamic power down mode in ife PHY.
8446 * It can be used to workaround band-gap problem.
8447 *
8448 * hw: Struct containing variables accessed by shared code
8449 *
8450 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008451#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07008452int32_t
8453e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
8454{
8455 uint16_t phy_data;
8456 int32_t ret_val = E1000_SUCCESS;
8457
8458 DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
8459
8460 if (hw->phy_type == e1000_phy_ife) {
8461 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
8462 if (ret_val)
8463 return ret_val;
8464
8465 phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
8466 ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
8467 }
8468
8469 return ret_val;
8470}
Adrian Bunke4c780b2006-08-14 23:00:10 -07008471#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07008472
8473/******************************************************************************
8474 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8475 * register.
8476 *
8477 * hw - Struct containing variables accessed by shared code
8478 * offset - offset of word in the EEPROM to read
8479 * data - word read from the EEPROM
8480 * words - number of words to read
8481 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008482static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008483e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8484 uint16_t *data)
8485{
8486 int32_t error = E1000_SUCCESS;
8487 uint32_t flash_bank = 0;
8488 uint32_t act_offset = 0;
8489 uint32_t bank_offset = 0;
8490 uint16_t word = 0;
8491 uint16_t i = 0;
8492
8493 /* We need to know which is the valid flash bank. In the event
8494 * that we didn't allocate eeprom_shadow_ram, we may not be
8495 * managing flash_bank. So it cannot be trusted and needs
8496 * to be updated with each read.
8497 */
8498 /* Value of bit 22 corresponds to the flash bank we're on. */
8499 flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8500
8501 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8502 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8503
8504 error = e1000_get_software_flag(hw);
8505 if (error != E1000_SUCCESS)
8506 return error;
8507
8508 for (i = 0; i < words; i++) {
8509 if (hw->eeprom_shadow_ram != NULL &&
8510 hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8511 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8512 } else {
8513 /* The NVM part needs a byte offset, hence * 2 */
8514 act_offset = bank_offset + ((offset + i) * 2);
8515 error = e1000_read_ich8_word(hw, act_offset, &word);
8516 if (error != E1000_SUCCESS)
8517 break;
8518 data[i] = word;
8519 }
8520 }
8521
8522 e1000_release_software_flag(hw);
8523
8524 return error;
8525}
8526
8527/******************************************************************************
8528 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8529 * register. Actually, writes are written to the shadow ram cache in the hw
8530 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8531 * the NVM, which occurs when the NVM checksum is updated.
8532 *
8533 * hw - Struct containing variables accessed by shared code
8534 * offset - offset of word in the EEPROM to write
8535 * words - number of words to write
8536 * data - words to write to the EEPROM
8537 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008538static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008539e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8540 uint16_t *data)
8541{
8542 uint32_t i = 0;
8543 int32_t error = E1000_SUCCESS;
8544
8545 error = e1000_get_software_flag(hw);
8546 if (error != E1000_SUCCESS)
8547 return error;
8548
8549 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8550 * allocated. Subsequent reads to the modified words are read from
8551 * this cached structure as well. Writes will only go into this
8552 * cached structure unless it's followed by a call to
8553 * e1000_update_eeprom_checksum() where it will commit the changes
8554 * and clear the "modified" field.
8555 */
8556 if (hw->eeprom_shadow_ram != NULL) {
8557 for (i = 0; i < words; i++) {
8558 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8559 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8560 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8561 } else {
8562 error = -E1000_ERR_EEPROM;
8563 break;
8564 }
8565 }
8566 } else {
8567 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8568 * as they don't perform any NVM writes. An attempt in doing so
8569 * will result in this error.
8570 */
8571 error = -E1000_ERR_EEPROM;
8572 }
8573
8574 e1000_release_software_flag(hw);
8575
8576 return error;
8577}
8578
8579/******************************************************************************
8580 * This function does initial flash setup so that a new read/write/erase cycle
8581 * can be started.
8582 *
8583 * hw - The pointer to the hw structure
8584 ****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008585static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008586e1000_ich8_cycle_init(struct e1000_hw *hw)
8587{
8588 union ich8_hws_flash_status hsfsts;
8589 int32_t error = E1000_ERR_EEPROM;
8590 int32_t i = 0;
8591
8592 DEBUGFUNC("e1000_ich8_cycle_init");
8593
8594 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8595
8596 /* May be check the Flash Des Valid bit in Hw status */
8597 if (hsfsts.hsf_status.fldesvalid == 0) {
8598 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8599 return error;
8600 }
8601
8602 /* Clear FCERR in Hw status by writing 1 */
8603 /* Clear DAEL in Hw status by writing a 1 */
8604 hsfsts.hsf_status.flcerr = 1;
8605 hsfsts.hsf_status.dael = 1;
8606
8607 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8608
8609 /* Either we should have a hardware SPI cycle in progress bit to check
8610 * against, in order to start a new cycle or FDONE bit should be changed
8611 * in the hardware so that it is 1 after harware reset, which can then be
8612 * used as an indication whether a cycle is in progress or has been
8613 * completed .. we should also have some software semaphore mechanism to
8614 * guard FDONE or the cycle in progress bit so that two threads access to
8615 * those bits can be sequentiallized or a way so that 2 threads dont
8616 * start the cycle at the same time */
8617
8618 if (hsfsts.hsf_status.flcinprog == 0) {
8619 /* There is no cycle running at present, so we can start a cycle */
8620 /* Begin by setting Flash Cycle Done. */
8621 hsfsts.hsf_status.flcdone = 1;
8622 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8623 error = E1000_SUCCESS;
8624 } else {
8625 /* otherwise poll for sometime so the current cycle has a chance
8626 * to end before giving up. */
8627 for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
8628 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8629 if (hsfsts.hsf_status.flcinprog == 0) {
8630 error = E1000_SUCCESS;
8631 break;
8632 }
8633 udelay(1);
8634 }
8635 if (error == E1000_SUCCESS) {
8636 /* Successful in waiting for previous cycle to timeout,
8637 * now set the Flash Cycle Done. */
8638 hsfsts.hsf_status.flcdone = 1;
8639 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8640 } else {
8641 DEBUGOUT("Flash controller busy, cannot get access");
8642 }
8643 }
8644 return error;
8645}
8646
8647/******************************************************************************
8648 * This function starts a flash cycle and waits for its completion
8649 *
8650 * hw - The pointer to the hw structure
8651 ****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008652static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008653e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8654{
8655 union ich8_hws_flash_ctrl hsflctl;
8656 union ich8_hws_flash_status hsfsts;
8657 int32_t error = E1000_ERR_EEPROM;
8658 uint32_t i = 0;
8659
8660 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8661 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8662 hsflctl.hsf_ctrl.flcgo = 1;
8663 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8664
8665 /* wait till FDONE bit is set to 1 */
8666 do {
8667 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8668 if (hsfsts.hsf_status.flcdone == 1)
8669 break;
8670 udelay(1);
8671 i++;
8672 } while (i < timeout);
8673 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8674 error = E1000_SUCCESS;
8675 }
8676 return error;
8677}
8678
8679/******************************************************************************
8680 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8681 *
8682 * hw - The pointer to the hw structure
8683 * index - The index of the byte or word to read.
8684 * size - Size of data to read, 1=byte 2=word
8685 * data - Pointer to the word to store the value read.
8686 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008687static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008688e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8689 uint32_t size, uint16_t* data)
8690{
8691 union ich8_hws_flash_status hsfsts;
8692 union ich8_hws_flash_ctrl hsflctl;
8693 uint32_t flash_linear_address;
8694 uint32_t flash_data = 0;
8695 int32_t error = -E1000_ERR_EEPROM;
8696 int32_t count = 0;
8697
8698 DEBUGFUNC("e1000_read_ich8_data");
8699
8700 if (size < 1 || size > 2 || data == 0x0 ||
8701 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8702 return error;
8703
8704 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8705 hw->flash_base_addr;
8706
8707 do {
8708 udelay(1);
8709 /* Steps */
8710 error = e1000_ich8_cycle_init(hw);
8711 if (error != E1000_SUCCESS)
8712 break;
8713
8714 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8715 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8716 hsflctl.hsf_ctrl.fldbcount = size - 1;
8717 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
8718 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8719
8720 /* Write the last 24 bits of index into Flash Linear address field in
8721 * Flash Address */
8722 /* TODO: TBD maybe check the index against the size of flash */
8723
8724 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8725
8726 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8727
8728 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8729 * sequence a few more times, else read in (shift in) the Flash Data0,
8730 * the order is least significant byte first msb to lsb */
8731 if (error == E1000_SUCCESS) {
8732 flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
8733 if (size == 1) {
8734 *data = (uint8_t)(flash_data & 0x000000FF);
8735 } else if (size == 2) {
8736 *data = (uint16_t)(flash_data & 0x0000FFFF);
8737 }
8738 break;
8739 } else {
8740 /* If we've gotten here, then things are probably completely hosed,
8741 * but if the error condition is detected, it won't hurt to give
8742 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8743 */
8744 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8745 if (hsfsts.hsf_status.flcerr == 1) {
8746 /* Repeat for some time before giving up. */
8747 continue;
8748 } else if (hsfsts.hsf_status.flcdone == 0) {
8749 DEBUGOUT("Timeout error - flash cycle did not complete.");
8750 break;
8751 }
8752 }
8753 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8754
8755 return error;
8756}
8757
8758/******************************************************************************
8759 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8760 *
8761 * hw - The pointer to the hw structure
8762 * index - The index of the byte/word to read.
8763 * size - Size of data to read, 1=byte 2=word
8764 * data - The byte(s) to write to the NVM.
8765 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008766static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008767e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8768 uint16_t data)
8769{
8770 union ich8_hws_flash_status hsfsts;
8771 union ich8_hws_flash_ctrl hsflctl;
8772 uint32_t flash_linear_address;
8773 uint32_t flash_data = 0;
8774 int32_t error = -E1000_ERR_EEPROM;
8775 int32_t count = 0;
8776
8777 DEBUGFUNC("e1000_write_ich8_data");
8778
8779 if (size < 1 || size > 2 || data > size * 0xff ||
8780 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8781 return error;
8782
8783 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8784 hw->flash_base_addr;
8785
8786 do {
8787 udelay(1);
8788 /* Steps */
8789 error = e1000_ich8_cycle_init(hw);
8790 if (error != E1000_SUCCESS)
8791 break;
8792
8793 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8794 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8795 hsflctl.hsf_ctrl.fldbcount = size -1;
8796 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
8797 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8798
8799 /* Write the last 24 bits of index into Flash Linear address field in
8800 * Flash Address */
8801 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8802
8803 if (size == 1)
8804 flash_data = (uint32_t)data & 0x00FF;
8805 else
8806 flash_data = (uint32_t)data;
8807
8808 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
8809
8810 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8811 * sequence a few more times else done */
8812 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8813 if (error == E1000_SUCCESS) {
8814 break;
8815 } else {
8816 /* If we're here, then things are most likely completely hosed,
8817 * but if the error condition is detected, it won't hurt to give
8818 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8819 */
8820 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8821 if (hsfsts.hsf_status.flcerr == 1) {
8822 /* Repeat for some time before giving up. */
8823 continue;
8824 } else if (hsfsts.hsf_status.flcdone == 0) {
8825 DEBUGOUT("Timeout error - flash cycle did not complete.");
8826 break;
8827 }
8828 }
8829 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8830
8831 return error;
8832}
8833
8834/******************************************************************************
8835 * Reads a single byte from the NVM using the ICH8 flash access registers.
8836 *
8837 * hw - pointer to e1000_hw structure
8838 * index - The index of the byte to read.
8839 * data - Pointer to a byte to store the value read.
8840 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008841static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008842e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8843{
8844 int32_t status = E1000_SUCCESS;
8845 uint16_t word = 0;
8846
8847 status = e1000_read_ich8_data(hw, index, 1, &word);
8848 if (status == E1000_SUCCESS) {
8849 *data = (uint8_t)word;
8850 }
8851
8852 return status;
8853}
8854
8855/******************************************************************************
8856 * Writes a single byte to the NVM using the ICH8 flash access registers.
8857 * Performs verification by reading back the value and then going through
8858 * a retry algorithm before giving up.
8859 *
8860 * hw - pointer to e1000_hw structure
8861 * index - The index of the byte to write.
8862 * byte - The byte to write to the NVM.
8863 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008864static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008865e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8866{
8867 int32_t error = E1000_SUCCESS;
8868 int32_t program_retries;
8869 uint8_t temp_byte;
8870
8871 e1000_write_ich8_byte(hw, index, byte);
8872 udelay(100);
8873
8874 for (program_retries = 0; program_retries < 100; program_retries++) {
8875 e1000_read_ich8_byte(hw, index, &temp_byte);
8876 if (temp_byte == byte)
8877 break;
8878 udelay(10);
8879 e1000_write_ich8_byte(hw, index, byte);
8880 udelay(100);
8881 }
8882 if (program_retries == 100)
8883 error = E1000_ERR_EEPROM;
8884
8885 return error;
8886}
8887
8888/******************************************************************************
8889 * Writes a single byte to the NVM using the ICH8 flash access registers.
8890 *
8891 * hw - pointer to e1000_hw structure
8892 * index - The index of the byte to read.
8893 * data - The byte to write to the NVM.
8894 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008895static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008896e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8897{
8898 int32_t status = E1000_SUCCESS;
8899 uint16_t word = (uint16_t)data;
8900
8901 status = e1000_write_ich8_data(hw, index, 1, word);
8902
8903 return status;
8904}
8905
8906/******************************************************************************
8907 * Reads a word from the NVM using the ICH8 flash access registers.
8908 *
8909 * hw - pointer to e1000_hw structure
8910 * index - The starting byte index of the word to read.
8911 * data - Pointer to a word to store the value read.
8912 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008913static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008914e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8915{
8916 int32_t status = E1000_SUCCESS;
8917 status = e1000_read_ich8_data(hw, index, 2, data);
8918 return status;
8919}
8920
8921/******************************************************************************
8922 * Writes a word to the NVM using the ICH8 flash access registers.
8923 *
8924 * hw - pointer to e1000_hw structure
8925 * index - The starting byte index of the word to read.
8926 * data - The word to write to the NVM.
8927 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008928#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07008929int32_t
8930e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
8931{
8932 int32_t status = E1000_SUCCESS;
8933 status = e1000_write_ich8_data(hw, index, 2, data);
8934 return status;
8935}
Adrian Bunke4c780b2006-08-14 23:00:10 -07008936#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07008937
8938/******************************************************************************
8939 * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
8940 * segment N is 4096 * N + flash_reg_addr.
8941 *
8942 * hw - pointer to e1000_hw structure
8943 * segment - 0 for first segment, 1 for second segment, etc.
8944 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008945static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008946e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
8947{
8948 union ich8_hws_flash_status hsfsts;
8949 union ich8_hws_flash_ctrl hsflctl;
8950 uint32_t flash_linear_address;
8951 int32_t count = 0;
8952 int32_t error = E1000_ERR_EEPROM;
8953 int32_t iteration, seg_size;
8954 int32_t sector_size;
8955 int32_t j = 0;
8956 int32_t error_flag = 0;
8957
8958 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8959
8960 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8961 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8962 * consecutive sectors. The start index for the nth Hw sector can be
8963 * calculated as = segment * 4096 + n * 256
8964 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8965 * The start index for the nth Hw sector can be calculated
8966 * as = segment * 4096
8967 * 10: Error condition
8968 * 11: The Hw sector size is much bigger than the size asked to
8969 * erase...error condition */
8970 if (hsfsts.hsf_status.berasesz == 0x0) {
8971 /* Hw sector size 256 */
8972 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
8973 iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
8974 } else if (hsfsts.hsf_status.berasesz == 0x1) {
8975 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
8976 iteration = 1;
8977 } else if (hsfsts.hsf_status.berasesz == 0x3) {
8978 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
8979 iteration = 1;
8980 } else {
8981 return error;
8982 }
8983
8984 for (j = 0; j < iteration ; j++) {
8985 do {
8986 count++;
8987 /* Steps */
8988 error = e1000_ich8_cycle_init(hw);
8989 if (error != E1000_SUCCESS) {
8990 error_flag = 1;
8991 break;
8992 }
8993
8994 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8995 * Control */
8996 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8997 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
8998 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8999
9000 /* Write the last 24 bits of an index within the block into Flash
9001 * Linear address field in Flash Address. This probably needs to
9002 * be calculated here based off the on-chip segment size and the
9003 * software segment size assumed (4K) */
9004 /* TBD */
9005 flash_linear_address = segment * sector_size + j * seg_size;
9006 flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
9007 flash_linear_address += hw->flash_base_addr;
9008
9009 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
9010
9011 error = e1000_ich8_flash_cycle(hw, 1000000);
9012 /* Check if FCERR is set to 1. If 1, clear it and try the whole
9013 * sequence a few more times else Done */
9014 if (error == E1000_SUCCESS) {
9015 break;
9016 } else {
9017 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
9018 if (hsfsts.hsf_status.flcerr == 1) {
9019 /* repeat for some time before giving up */
9020 continue;
9021 } else if (hsfsts.hsf_status.flcdone == 0) {
9022 error_flag = 1;
9023 break;
9024 }
9025 }
9026 } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
9027 if (error_flag == 1)
9028 break;
9029 }
9030 if (error_flag != 1)
9031 error = E1000_SUCCESS;
9032 return error;
9033}
9034
9035/******************************************************************************
9036 *
9037 * Reverse duplex setting without breaking the link.
9038 *
9039 * hw: Struct containing variables accessed by shared code
9040 *
9041 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07009042#if 0
Auke Kokd37ea5d2006-06-27 09:08:17 -07009043int32_t
9044e1000_duplex_reversal(struct e1000_hw *hw)
9045{
9046 int32_t ret_val;
9047 uint16_t phy_data;
9048
9049 if (hw->phy_type != e1000_phy_igp_3)
9050 return E1000_SUCCESS;
9051
9052 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
9053 if (ret_val)
9054 return ret_val;
9055
9056 phy_data ^= MII_CR_FULL_DUPLEX;
9057
9058 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
9059 if (ret_val)
9060 return ret_val;
9061
9062 ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
9063 if (ret_val)
9064 return ret_val;
9065
9066 phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
9067 ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
9068
9069 return ret_val;
9070}
Adrian Bunke4c780b2006-08-14 23:00:10 -07009071#endif /* 0 */
Auke Kokd37ea5d2006-06-27 09:08:17 -07009072
Adrian Bunke4c780b2006-08-14 23:00:10 -07009073static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07009074e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
9075 uint32_t cnf_base_addr, uint32_t cnf_size)
9076{
9077 uint32_t ret_val = E1000_SUCCESS;
9078 uint16_t word_addr, reg_data, reg_addr;
9079 uint16_t i;
9080
9081 /* cnf_base_addr is in DWORD */
9082 word_addr = (uint16_t)(cnf_base_addr << 1);
9083
9084 /* cnf_size is returned in size of dwords */
9085 for (i = 0; i < cnf_size; i++) {
9086 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
9087 if (ret_val)
9088 return ret_val;
9089
9090 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
9091 if (ret_val)
9092 return ret_val;
9093
9094 ret_val = e1000_get_software_flag(hw);
9095 if (ret_val != E1000_SUCCESS)
9096 return ret_val;
9097
9098 ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
9099
9100 e1000_release_software_flag(hw);
9101 }
9102
9103 return ret_val;
9104}
9105
9106
Adrian Bunke4c780b2006-08-14 23:00:10 -07009107static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07009108e1000_init_lcd_from_nvm(struct e1000_hw *hw)
9109{
9110 uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
9111
9112 if (hw->phy_type != e1000_phy_igp_3)
9113 return E1000_SUCCESS;
9114
9115 /* Check if SW needs configure the PHY */
9116 reg_data = E1000_READ_REG(hw, FEXTNVM);
9117 if (!(reg_data & FEXTNVM_SW_CONFIG))
9118 return E1000_SUCCESS;
9119
9120 /* Wait for basic configuration completes before proceeding*/
9121 loop = 0;
9122 do {
9123 reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
9124 udelay(100);
9125 loop++;
9126 } while ((!reg_data) && (loop < 50));
9127
9128 /* Clear the Init Done bit for the next init event */
9129 reg_data = E1000_READ_REG(hw, STATUS);
9130 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
9131 E1000_WRITE_REG(hw, STATUS, reg_data);
9132
9133 /* Make sure HW does not configure LCD from PHY extended configuration
9134 before SW configuration */
9135 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9136 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
9137 reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
9138 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
9139 cnf_size >>= 16;
9140 if (cnf_size) {
9141 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9142 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
9143 /* cnf_base_addr is in DWORD */
9144 cnf_base_addr >>= 16;
9145
9146 /* Configure LCD from extended configuration region. */
9147 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
9148 cnf_size);
9149 if (ret_val)
9150 return ret_val;
9151 }
9152 }
9153
9154 return E1000_SUCCESS;
9155}
9156
9157
Malli Chilakala2d7edb92005-04-28 19:43:52 -07009158