blob: fc2a401d561d38a2ff81e070dd6b08094dc118d6 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * e100.c: Intel(R) PRO/100 ethernet driver
31 *
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35 *
36 * References:
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
40 *
41 *
42 * Theory of Operation
43 *
44 * I. General
45 *
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
54 *
55 * II. Driver Operation
56 *
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
63 *
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
67 * devices.
68 *
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
72 *
73 * III. Transmit
74 *
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
82 *
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
86 *
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
92 *
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
95 * with 00h.
96 *
97 * IV. Recieve
98 *
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
108 *
109 * Under typical operation, the receive unit (RU) is start once,
110 * and the controller happily fills RFDs as frames arrive. If
111 * replacement RFDs cannot be allocated, or the RU goes non-active,
112 * the RU must be restarted. Frame arrival generates an interrupt,
113 * and Rx indication and re-allocation happen in the same context,
114 * therefore no locking is required. A software-generated interrupt
115 * is generated from the watchdog to recover from a failed allocation
116 * senario where all Rx resources have been indicated and none re-
117 * placed.
118 *
119 * V. Miscellaneous
120 *
121 * VLAN offloading of tagging, stripping and filtering is not
122 * supported, but driver will accommodate the extra 4-byte VLAN tag
123 * for processing by upper layers. Tx/Rx Checksum offloading is not
124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
125 * not supported (hardware limitation).
126 *
127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
128 *
129 * Thanks to JC (jchapman@katalix.com) for helping with
130 * testing/troubleshooting the development driver.
131 *
132 * TODO:
133 * o several entry points race with dev->close
134 * o check for tx-no-resources/stop Q races with tx clean/wake Q
135 */
136
137#include <linux/config.h>
138#include <linux/module.h>
139#include <linux/moduleparam.h>
140#include <linux/kernel.h>
141#include <linux/types.h>
142#include <linux/slab.h>
143#include <linux/delay.h>
144#include <linux/init.h>
145#include <linux/pci.h>
146#include <linux/netdevice.h>
147#include <linux/etherdevice.h>
148#include <linux/mii.h>
149#include <linux/if_vlan.h>
150#include <linux/skbuff.h>
151#include <linux/ethtool.h>
152#include <linux/string.h>
153#include <asm/unaligned.h>
154
155
156#define DRV_NAME "e100"
157#define DRV_EXT "-NAPI"
158#define DRV_VERSION "3.3.6-k2"DRV_EXT
159#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
160#define DRV_COPYRIGHT "Copyright(c) 1999-2004 Intel Corporation"
161#define PFX DRV_NAME ": "
162
163#define E100_WATCHDOG_PERIOD (2 * HZ)
164#define E100_NAPI_WEIGHT 16
165
166MODULE_DESCRIPTION(DRV_DESCRIPTION);
167MODULE_AUTHOR(DRV_COPYRIGHT);
168MODULE_LICENSE("GPL");
169MODULE_VERSION(DRV_VERSION);
170
171static int debug = 3;
172module_param(debug, int, 0);
173MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
174#define DPRINTK(nlevel, klevel, fmt, args...) \
175 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
176 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
177 __FUNCTION__ , ## args))
178
179#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
180 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
181 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
182static struct pci_device_id e100_id_table[] = {
183 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
184 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
186 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
191 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
197 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
205 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
206 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
214 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
215 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
216 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
217 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
218 { 0, }
219};
220MODULE_DEVICE_TABLE(pci, e100_id_table);
221
222enum mac {
223 mac_82557_D100_A = 0,
224 mac_82557_D100_B = 1,
225 mac_82557_D100_C = 2,
226 mac_82558_D101_A4 = 4,
227 mac_82558_D101_B0 = 5,
228 mac_82559_D101M = 8,
229 mac_82559_D101S = 9,
230 mac_82550_D102 = 12,
231 mac_82550_D102_C = 13,
232 mac_82551_E = 14,
233 mac_82551_F = 15,
234 mac_82551_10 = 16,
235 mac_unknown = 0xFF,
236};
237
238enum phy {
239 phy_100a = 0x000003E0,
240 phy_100c = 0x035002A8,
241 phy_82555_tx = 0x015002A8,
242 phy_nsc_tx = 0x5C002000,
243 phy_82562_et = 0x033002A8,
244 phy_82562_em = 0x032002A8,
245 phy_82562_ek = 0x031002A8,
246 phy_82562_eh = 0x017002A8,
247 phy_unknown = 0xFFFFFFFF,
248};
249
250/* CSR (Control/Status Registers) */
251struct csr {
252 struct {
253 u8 status;
254 u8 stat_ack;
255 u8 cmd_lo;
256 u8 cmd_hi;
257 u32 gen_ptr;
258 } scb;
259 u32 port;
260 u16 flash_ctrl;
261 u8 eeprom_ctrl_lo;
262 u8 eeprom_ctrl_hi;
263 u32 mdi_ctrl;
264 u32 rx_dma_count;
265};
266
267enum scb_status {
268 rus_ready = 0x10,
269 rus_mask = 0x3C,
270};
271
Malli Chilakala1f533672005-04-28 19:17:20 -0700272enum ru_state {
273 RU_SUSPENDED = 0,
274 RU_RUNNING = 1,
275 RU_UNINITIALIZED = -1,
276};
277
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278enum scb_stat_ack {
279 stat_ack_not_ours = 0x00,
280 stat_ack_sw_gen = 0x04,
281 stat_ack_rnr = 0x10,
282 stat_ack_cu_idle = 0x20,
283 stat_ack_frame_rx = 0x40,
284 stat_ack_cu_cmd_done = 0x80,
285 stat_ack_not_present = 0xFF,
286 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
287 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
288};
289
290enum scb_cmd_hi {
291 irq_mask_none = 0x00,
292 irq_mask_all = 0x01,
293 irq_sw_gen = 0x02,
294};
295
296enum scb_cmd_lo {
297 cuc_nop = 0x00,
298 ruc_start = 0x01,
299 ruc_load_base = 0x06,
300 cuc_start = 0x10,
301 cuc_resume = 0x20,
302 cuc_dump_addr = 0x40,
303 cuc_dump_stats = 0x50,
304 cuc_load_base = 0x60,
305 cuc_dump_reset = 0x70,
306};
307
308enum cuc_dump {
309 cuc_dump_complete = 0x0000A005,
310 cuc_dump_reset_complete = 0x0000A007,
311};
312
313enum port {
314 software_reset = 0x0000,
315 selftest = 0x0001,
316 selective_reset = 0x0002,
317};
318
319enum eeprom_ctrl_lo {
320 eesk = 0x01,
321 eecs = 0x02,
322 eedi = 0x04,
323 eedo = 0x08,
324};
325
326enum mdi_ctrl {
327 mdi_write = 0x04000000,
328 mdi_read = 0x08000000,
329 mdi_ready = 0x10000000,
330};
331
332enum eeprom_op {
333 op_write = 0x05,
334 op_read = 0x06,
335 op_ewds = 0x10,
336 op_ewen = 0x13,
337};
338
339enum eeprom_offsets {
340 eeprom_cnfg_mdix = 0x03,
341 eeprom_id = 0x0A,
342 eeprom_config_asf = 0x0D,
343 eeprom_smbus_addr = 0x90,
344};
345
346enum eeprom_cnfg_mdix {
347 eeprom_mdix_enabled = 0x0080,
348};
349
350enum eeprom_id {
351 eeprom_id_wol = 0x0020,
352};
353
354enum eeprom_config_asf {
355 eeprom_asf = 0x8000,
356 eeprom_gcl = 0x4000,
357};
358
359enum cb_status {
360 cb_complete = 0x8000,
361 cb_ok = 0x2000,
362};
363
364enum cb_command {
365 cb_nop = 0x0000,
366 cb_iaaddr = 0x0001,
367 cb_config = 0x0002,
368 cb_multi = 0x0003,
369 cb_tx = 0x0004,
370 cb_ucode = 0x0005,
371 cb_dump = 0x0006,
372 cb_tx_sf = 0x0008,
373 cb_cid = 0x1f00,
374 cb_i = 0x2000,
375 cb_s = 0x4000,
376 cb_el = 0x8000,
377};
378
379struct rfd {
380 u16 status;
381 u16 command;
382 u32 link;
383 u32 rbd;
384 u16 actual_size;
385 u16 size;
386};
387
388struct rx {
389 struct rx *next, *prev;
390 struct sk_buff *skb;
391 dma_addr_t dma_addr;
392};
393
394#if defined(__BIG_ENDIAN_BITFIELD)
395#define X(a,b) b,a
396#else
397#define X(a,b) a,b
398#endif
399struct config {
400/*0*/ u8 X(byte_count:6, pad0:2);
401/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
402/*2*/ u8 adaptive_ifs;
403/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
404 term_write_cache_line:1), pad3:4);
405/*4*/ u8 X(rx_dma_max_count:7, pad4:1);
406/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
407/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
408 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
409 rx_discard_overruns:1), rx_save_bad_frames:1);
410/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
411 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
412 tx_dynamic_tbd:1);
413/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
414/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
415 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
416/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
417 loopback:2);
418/*11*/ u8 X(linear_priority:3, pad11:5);
419/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
420/*13*/ u8 ip_addr_lo;
421/*14*/ u8 ip_addr_hi;
422/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
423 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
424 pad15_2:1), crs_or_cdt:1);
425/*16*/ u8 fc_delay_lo;
426/*17*/ u8 fc_delay_hi;
427/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
428 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
429/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
430 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
431 full_duplex_force:1), full_duplex_pin:1);
432/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
433/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
434/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
435 u8 pad_d102[9];
436};
437
438#define E100_MAX_MULTICAST_ADDRS 64
439struct multi {
440 u16 count;
441 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
442};
443
444/* Important: keep total struct u32-aligned */
445#define UCODE_SIZE 134
446struct cb {
447 u16 status;
448 u16 command;
449 u32 link;
450 union {
451 u8 iaaddr[ETH_ALEN];
452 u32 ucode[UCODE_SIZE];
453 struct config config;
454 struct multi multi;
455 struct {
456 u32 tbd_array;
457 u16 tcb_byte_count;
458 u8 threshold;
459 u8 tbd_count;
460 struct {
461 u32 buf_addr;
462 u16 size;
463 u16 eol;
464 } tbd;
465 } tcb;
466 u32 dump_buffer_addr;
467 } u;
468 struct cb *next, *prev;
469 dma_addr_t dma_addr;
470 struct sk_buff *skb;
471};
472
473enum loopback {
474 lb_none = 0, lb_mac = 1, lb_phy = 3,
475};
476
477struct stats {
478 u32 tx_good_frames, tx_max_collisions, tx_late_collisions,
479 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
480 tx_multiple_collisions, tx_total_collisions;
481 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
482 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
483 rx_short_frame_errors;
484 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
485 u16 xmt_tco_frames, rcv_tco_frames;
486 u32 complete;
487};
488
489struct mem {
490 struct {
491 u32 signature;
492 u32 result;
493 } selftest;
494 struct stats stats;
495 u8 dump_buf[596];
496};
497
498struct param_range {
499 u32 min;
500 u32 max;
501 u32 count;
502};
503
504struct params {
505 struct param_range rfds;
506 struct param_range cbs;
507};
508
509struct nic {
510 /* Begin: frequently used values: keep adjacent for cache effect */
511 u32 msg_enable ____cacheline_aligned;
512 struct net_device *netdev;
513 struct pci_dev *pdev;
514
515 struct rx *rxs ____cacheline_aligned;
516 struct rx *rx_to_use;
517 struct rx *rx_to_clean;
518 struct rfd blank_rfd;
Malli Chilakala1f533672005-04-28 19:17:20 -0700519 enum ru_state ru_running;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700520
521 spinlock_t cb_lock ____cacheline_aligned;
522 spinlock_t cmd_lock;
523 struct csr __iomem *csr;
524 enum scb_cmd_lo cuc_cmd;
525 unsigned int cbs_avail;
526 struct cb *cbs;
527 struct cb *cb_to_use;
528 struct cb *cb_to_send;
529 struct cb *cb_to_clean;
530 u16 tx_command;
531 /* End: frequently used values: keep adjacent for cache effect */
532
533 enum {
534 ich = (1 << 0),
535 promiscuous = (1 << 1),
536 multicast_all = (1 << 2),
537 wol_magic = (1 << 3),
538 ich_10h_workaround = (1 << 4),
539 } flags ____cacheline_aligned;
540
541 enum mac mac;
542 enum phy phy;
543 struct params params;
544 struct net_device_stats net_stats;
545 struct timer_list watchdog;
546 struct timer_list blink_timer;
547 struct mii_if_info mii;
Malli Chilakala2acdb1e2005-04-28 19:16:58 -0700548 struct work_struct tx_timeout_task;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549 enum loopback loopback;
550
551 struct mem *mem;
552 dma_addr_t dma_addr;
553
554 dma_addr_t cbs_dma_addr;
555 u8 adaptive_ifs;
556 u8 tx_threshold;
557 u32 tx_frames;
558 u32 tx_collisions;
559 u32 tx_deferred;
560 u32 tx_single_collisions;
561 u32 tx_multiple_collisions;
562 u32 tx_fc_pause;
563 u32 tx_tco_frames;
564
565 u32 rx_fc_pause;
566 u32 rx_fc_unsupported;
567 u32 rx_tco_frames;
568 u32 rx_over_length_errors;
569
570 u8 rev_id;
571 u16 leds;
572 u16 eeprom_wc;
573 u16 eeprom[256];
574};
575
576static inline void e100_write_flush(struct nic *nic)
577{
578 /* Flush previous PCI writes through intermediate bridges
579 * by doing a benign read */
580 (void)readb(&nic->csr->scb.status);
581}
582
583static inline void e100_enable_irq(struct nic *nic)
584{
585 unsigned long flags;
586
587 spin_lock_irqsave(&nic->cmd_lock, flags);
588 writeb(irq_mask_none, &nic->csr->scb.cmd_hi);
589 spin_unlock_irqrestore(&nic->cmd_lock, flags);
590 e100_write_flush(nic);
591}
592
593static inline void e100_disable_irq(struct nic *nic)
594{
595 unsigned long flags;
596
597 spin_lock_irqsave(&nic->cmd_lock, flags);
598 writeb(irq_mask_all, &nic->csr->scb.cmd_hi);
599 spin_unlock_irqrestore(&nic->cmd_lock, flags);
600 e100_write_flush(nic);
601}
602
603static void e100_hw_reset(struct nic *nic)
604{
605 /* Put CU and RU into idle with a selective reset to get
606 * device off of PCI bus */
607 writel(selective_reset, &nic->csr->port);
608 e100_write_flush(nic); udelay(20);
609
610 /* Now fully reset device */
611 writel(software_reset, &nic->csr->port);
612 e100_write_flush(nic); udelay(20);
613
614 /* Mask off our interrupt line - it's unmasked after reset */
615 e100_disable_irq(nic);
616}
617
618static int e100_self_test(struct nic *nic)
619{
620 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
621
622 /* Passing the self-test is a pretty good indication
623 * that the device can DMA to/from host memory */
624
625 nic->mem->selftest.signature = 0;
626 nic->mem->selftest.result = 0xFFFFFFFF;
627
628 writel(selftest | dma_addr, &nic->csr->port);
629 e100_write_flush(nic);
630 /* Wait 10 msec for self-test to complete */
631 msleep(10);
632
633 /* Interrupts are enabled after self-test */
634 e100_disable_irq(nic);
635
636 /* Check results of self-test */
637 if(nic->mem->selftest.result != 0) {
638 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n",
639 nic->mem->selftest.result);
640 return -ETIMEDOUT;
641 }
642 if(nic->mem->selftest.signature == 0) {
643 DPRINTK(HW, ERR, "Self-test failed: timed out\n");
644 return -ETIMEDOUT;
645 }
646
647 return 0;
648}
649
650static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data)
651{
652 u32 cmd_addr_data[3];
653 u8 ctrl;
654 int i, j;
655
656 /* Three cmds: write/erase enable, write data, write/erase disable */
657 cmd_addr_data[0] = op_ewen << (addr_len - 2);
658 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
659 cpu_to_le16(data);
660 cmd_addr_data[2] = op_ewds << (addr_len - 2);
661
662 /* Bit-bang cmds to write word to eeprom */
663 for(j = 0; j < 3; j++) {
664
665 /* Chip select */
666 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
667 e100_write_flush(nic); udelay(4);
668
669 for(i = 31; i >= 0; i--) {
670 ctrl = (cmd_addr_data[j] & (1 << i)) ?
671 eecs | eedi : eecs;
672 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
673 e100_write_flush(nic); udelay(4);
674
675 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
676 e100_write_flush(nic); udelay(4);
677 }
678 /* Wait 10 msec for cmd to complete */
679 msleep(10);
680
681 /* Chip deselect */
682 writeb(0, &nic->csr->eeprom_ctrl_lo);
683 e100_write_flush(nic); udelay(4);
684 }
685};
686
687/* General technique stolen from the eepro100 driver - very clever */
688static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
689{
690 u32 cmd_addr_data;
691 u16 data = 0;
692 u8 ctrl;
693 int i;
694
695 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
696
697 /* Chip select */
698 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
699 e100_write_flush(nic); udelay(4);
700
701 /* Bit-bang to read word from eeprom */
702 for(i = 31; i >= 0; i--) {
703 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
704 writeb(ctrl, &nic->csr->eeprom_ctrl_lo);
705 e100_write_flush(nic); udelay(4);
706
707 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
708 e100_write_flush(nic); udelay(4);
709
710 /* Eeprom drives a dummy zero to EEDO after receiving
711 * complete address. Use this to adjust addr_len. */
712 ctrl = readb(&nic->csr->eeprom_ctrl_lo);
713 if(!(ctrl & eedo) && i > 16) {
714 *addr_len -= (i - 16);
715 i = 17;
716 }
717
718 data = (data << 1) | (ctrl & eedo ? 1 : 0);
719 }
720
721 /* Chip deselect */
722 writeb(0, &nic->csr->eeprom_ctrl_lo);
723 e100_write_flush(nic); udelay(4);
724
725 return le16_to_cpu(data);
726};
727
728/* Load entire EEPROM image into driver cache and validate checksum */
729static int e100_eeprom_load(struct nic *nic)
730{
731 u16 addr, addr_len = 8, checksum = 0;
732
733 /* Try reading with an 8-bit addr len to discover actual addr len */
734 e100_eeprom_read(nic, &addr_len, 0);
735 nic->eeprom_wc = 1 << addr_len;
736
737 for(addr = 0; addr < nic->eeprom_wc; addr++) {
738 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
739 if(addr < nic->eeprom_wc - 1)
740 checksum += cpu_to_le16(nic->eeprom[addr]);
741 }
742
743 /* The checksum, stored in the last word, is calculated such that
744 * the sum of words should be 0xBABA */
745 checksum = le16_to_cpu(0xBABA - checksum);
746 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) {
747 DPRINTK(PROBE, ERR, "EEPROM corrupted\n");
748 return -EAGAIN;
749 }
750
751 return 0;
752}
753
754/* Save (portion of) driver EEPROM cache to device and update checksum */
755static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
756{
757 u16 addr, addr_len = 8, checksum = 0;
758
759 /* Try reading with an 8-bit addr len to discover actual addr len */
760 e100_eeprom_read(nic, &addr_len, 0);
761 nic->eeprom_wc = 1 << addr_len;
762
763 if(start + count >= nic->eeprom_wc)
764 return -EINVAL;
765
766 for(addr = start; addr < start + count; addr++)
767 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
768
769 /* The checksum, stored in the last word, is calculated such that
770 * the sum of words should be 0xBABA */
771 for(addr = 0; addr < nic->eeprom_wc - 1; addr++)
772 checksum += cpu_to_le16(nic->eeprom[addr]);
773 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum);
774 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
775 nic->eeprom[nic->eeprom_wc - 1]);
776
777 return 0;
778}
779
Malli Chilakala962082b2005-04-28 19:19:46 -0700780#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700781static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
782{
783 unsigned long flags;
784 unsigned int i;
785 int err = 0;
786
787 spin_lock_irqsave(&nic->cmd_lock, flags);
788
789 /* Previous command is accepted when SCB clears */
790 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
791 if(likely(!readb(&nic->csr->scb.cmd_lo)))
792 break;
793 cpu_relax();
794 if(unlikely(i > (E100_WAIT_SCB_TIMEOUT >> 1)))
795 udelay(5);
796 }
797 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
798 err = -EAGAIN;
799 goto err_unlock;
800 }
801
802 if(unlikely(cmd != cuc_resume))
803 writel(dma_addr, &nic->csr->scb.gen_ptr);
804 writeb(cmd, &nic->csr->scb.cmd_lo);
805
806err_unlock:
807 spin_unlock_irqrestore(&nic->cmd_lock, flags);
808
809 return err;
810}
811
812static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
813 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
814{
815 struct cb *cb;
816 unsigned long flags;
817 int err = 0;
818
819 spin_lock_irqsave(&nic->cb_lock, flags);
820
821 if(unlikely(!nic->cbs_avail)) {
822 err = -ENOMEM;
823 goto err_unlock;
824 }
825
826 cb = nic->cb_to_use;
827 nic->cb_to_use = cb->next;
828 nic->cbs_avail--;
829 cb->skb = skb;
830
831 if(unlikely(!nic->cbs_avail))
832 err = -ENOSPC;
833
834 cb_prepare(nic, cb, skb);
835
836 /* Order is important otherwise we'll be in a race with h/w:
837 * set S-bit in current first, then clear S-bit in previous. */
838 cb->command |= cpu_to_le16(cb_s);
839 wmb();
840 cb->prev->command &= cpu_to_le16(~cb_s);
841
842 while(nic->cb_to_send != nic->cb_to_use) {
843 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
844 nic->cb_to_send->dma_addr))) {
845 /* Ok, here's where things get sticky. It's
846 * possible that we can't schedule the command
847 * because the controller is too busy, so
848 * let's just queue the command and try again
849 * when another command is scheduled. */
Malli Chilakala962082b2005-04-28 19:19:46 -0700850 if(err == -ENOSPC) {
851 //request a reset
852 schedule_work(&nic->tx_timeout_task);
853 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854 break;
855 } else {
856 nic->cuc_cmd = cuc_resume;
857 nic->cb_to_send = nic->cb_to_send->next;
858 }
859 }
860
861err_unlock:
862 spin_unlock_irqrestore(&nic->cb_lock, flags);
863
864 return err;
865}
866
867static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
868{
869 u32 data_out = 0;
870 unsigned int i;
871
872 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
873
874 for(i = 0; i < 100; i++) {
875 udelay(20);
876 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready)
877 break;
878 }
879
880 DPRINTK(HW, DEBUG,
881 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
882 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out);
883 return (u16)data_out;
884}
885
886static int mdio_read(struct net_device *netdev, int addr, int reg)
887{
888 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0);
889}
890
891static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
892{
893 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data);
894}
895
896static void e100_get_defaults(struct nic *nic)
897{
Malli Chilakala962082b2005-04-28 19:19:46 -0700898 struct param_range rfds = { .min = 16, .max = 256, .count = 64 };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700899 struct param_range cbs = { .min = 64, .max = 256, .count = 64 };
900
901 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id);
902 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
903 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id;
904 if(nic->mac == mac_unknown)
905 nic->mac = mac_82557_D100_A;
906
907 nic->params.rfds = rfds;
908 nic->params.cbs = cbs;
909
910 /* Quadwords to DMA into FIFO before starting frame transmit */
911 nic->tx_threshold = 0xE0;
912
Malli Chilakala962082b2005-04-28 19:19:46 -0700913 /* no interrupt for every tx completion, delay = 256us if not 557*/
914 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
915 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700916
917 /* Template for a freshly allocated RFD */
918 nic->blank_rfd.command = cpu_to_le16(cb_el);
919 nic->blank_rfd.rbd = 0xFFFFFFFF;
920 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN);
921
922 /* MII setup */
923 nic->mii.phy_id_mask = 0x1F;
924 nic->mii.reg_num_mask = 0x1F;
925 nic->mii.dev = nic->netdev;
926 nic->mii.mdio_read = mdio_read;
927 nic->mii.mdio_write = mdio_write;
928}
929
930static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
931{
932 struct config *config = &cb->u.config;
933 u8 *c = (u8 *)config;
934
935 cb->command = cpu_to_le16(cb_config);
936
937 memset(config, 0, sizeof(struct config));
938
939 config->byte_count = 0x16; /* bytes in this struct */
940 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
941 config->direct_rx_dma = 0x1; /* reserved */
942 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
943 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
944 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
945 config->tx_underrun_retry = 0x3; /* # of underrun retries */
946 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */
947 config->pad10 = 0x6;
948 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
949 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
950 config->ifs = 0x6; /* x16 = inter frame spacing */
951 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
952 config->pad15_1 = 0x1;
953 config->pad15_2 = 0x1;
954 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
955 config->fc_delay_hi = 0x40; /* time delay for fc frame */
956 config->tx_padding = 0x1; /* 1=pad short frames */
957 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
958 config->pad18 = 0x1;
959 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
960 config->pad20_1 = 0x1F;
961 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
962 config->pad21_1 = 0x5;
963
964 config->adaptive_ifs = nic->adaptive_ifs;
965 config->loopback = nic->loopback;
966
967 if(nic->mii.force_media && nic->mii.full_duplex)
968 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
969
970 if(nic->flags & promiscuous || nic->loopback) {
971 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
972 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
973 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
974 }
975
976 if(nic->flags & multicast_all)
977 config->multicast_all = 0x1; /* 1=accept, 0=no */
978
Malli Chilakala6bdacb12005-04-28 19:17:54 -0700979 /* disable WoL when up */
980 if(netif_running(nic->netdev) || !(nic->flags & wol_magic))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
982
983 if(nic->mac >= mac_82558_D101_A4) {
984 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
985 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
986 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
987 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
988 if(nic->mac >= mac_82559_D101M)
989 config->tno_intr = 0x1; /* TCO stats enable */
990 else
991 config->standard_stat_counter = 0x0;
992 }
993
994 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
995 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]);
996 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
997 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]);
998 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
999 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]);
1000}
1001
1002static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1003{
1004 int i;
1005 static const u32 ucode[UCODE_SIZE] = {
1006 /* NFS packets are misinterpreted as TCO packets and
1007 * incorrectly routed to the BMC over SMBus. This
1008 * microcode patch checks the fragmented IP bit in the
1009 * NFS/UDP header to distinguish between NFS and TCO. */
1010 0x0EF70E36, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF, 0x1FFF1FFF,
1011 0x1FFF1FFF, 0x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000,
1012 0x00906EFD, 0x00900EFD, 0x00E00EF8,
1013 };
1014
1015 if(nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1016 for(i = 0; i < UCODE_SIZE; i++)
1017 cb->u.ucode[i] = cpu_to_le32(ucode[i]);
1018 cb->command = cpu_to_le16(cb_ucode);
1019 } else
1020 cb->command = cpu_to_le16(cb_nop);
1021}
1022
1023static void e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1024 struct sk_buff *skb)
1025{
1026 cb->command = cpu_to_le16(cb_iaaddr);
1027 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1028}
1029
1030static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1031{
1032 cb->command = cpu_to_le16(cb_dump);
1033 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1034 offsetof(struct mem, dump_buf));
1035}
1036
1037#define NCONFIG_AUTO_SWITCH 0x0080
1038#define MII_NSC_CONG MII_RESV1
1039#define NSC_CONG_ENABLE 0x0100
1040#define NSC_CONG_TXREADY 0x0400
1041#define ADVERTISE_FC_SUPPORTED 0x0400
1042static int e100_phy_init(struct nic *nic)
1043{
1044 struct net_device *netdev = nic->netdev;
1045 u32 addr;
1046 u16 bmcr, stat, id_lo, id_hi, cong;
1047
1048 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1049 for(addr = 0; addr < 32; addr++) {
1050 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1051 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1052 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1053 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1054 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1055 break;
1056 }
1057 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id);
1058 if(addr == 32)
1059 return -EAGAIN;
1060
1061 /* Selected the phy and isolate the rest */
1062 for(addr = 0; addr < 32; addr++) {
1063 if(addr != nic->mii.phy_id) {
1064 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1065 } else {
1066 bmcr = mdio_read(netdev, addr, MII_BMCR);
1067 mdio_write(netdev, addr, MII_BMCR,
1068 bmcr & ~BMCR_ISOLATE);
1069 }
1070 }
1071
1072 /* Get phy ID */
1073 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1074 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1075 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1076 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy);
1077
1078 /* Handle National tx phys */
1079#define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1080 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1081 /* Disable congestion control */
1082 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1083 cong |= NSC_CONG_TXREADY;
1084 cong &= ~NSC_CONG_ENABLE;
1085 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1086 }
1087
1088 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1089 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1090 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)))
1091 /* enable/disable MDI/MDI-X auto-switching */
1092 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1093 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1094
1095 return 0;
1096}
1097
1098static int e100_hw_init(struct nic *nic)
1099{
1100 int err;
1101
1102 e100_hw_reset(nic);
1103
1104 DPRINTK(HW, ERR, "e100_hw_init\n");
1105 if(!in_interrupt() && (err = e100_self_test(nic)))
1106 return err;
1107
1108 if((err = e100_phy_init(nic)))
1109 return err;
1110 if((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1111 return err;
1112 if((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1113 return err;
1114 if((err = e100_exec_cb(nic, NULL, e100_load_ucode)))
1115 return err;
1116 if((err = e100_exec_cb(nic, NULL, e100_configure)))
1117 return err;
1118 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1119 return err;
1120 if((err = e100_exec_cmd(nic, cuc_dump_addr,
1121 nic->dma_addr + offsetof(struct mem, stats))))
1122 return err;
1123 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1124 return err;
1125
1126 e100_disable_irq(nic);
1127
1128 return 0;
1129}
1130
1131static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1132{
1133 struct net_device *netdev = nic->netdev;
1134 struct dev_mc_list *list = netdev->mc_list;
1135 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS);
1136
1137 cb->command = cpu_to_le16(cb_multi);
1138 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1139 for(i = 0; list && i < count; i++, list = list->next)
1140 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr,
1141 ETH_ALEN);
1142}
1143
1144static void e100_set_multicast_list(struct net_device *netdev)
1145{
1146 struct nic *nic = netdev_priv(netdev);
1147
1148 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n",
1149 netdev->mc_count, netdev->flags);
1150
1151 if(netdev->flags & IFF_PROMISC)
1152 nic->flags |= promiscuous;
1153 else
1154 nic->flags &= ~promiscuous;
1155
1156 if(netdev->flags & IFF_ALLMULTI ||
1157 netdev->mc_count > E100_MAX_MULTICAST_ADDRS)
1158 nic->flags |= multicast_all;
1159 else
1160 nic->flags &= ~multicast_all;
1161
1162 e100_exec_cb(nic, NULL, e100_configure);
1163 e100_exec_cb(nic, NULL, e100_multi);
1164}
1165
1166static void e100_update_stats(struct nic *nic)
1167{
1168 struct net_device_stats *ns = &nic->net_stats;
1169 struct stats *s = &nic->mem->stats;
1170 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1171 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames :
1172 &s->complete;
1173
1174 /* Device's stats reporting may take several microseconds to
1175 * complete, so where always waiting for results of the
1176 * previous command. */
1177
1178 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) {
1179 *complete = 0;
1180 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1181 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1182 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1183 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1184 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1185 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1186 ns->collisions += nic->tx_collisions;
1187 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1188 le32_to_cpu(s->tx_lost_crs);
1189 ns->rx_dropped += le32_to_cpu(s->rx_resource_errors);
1190 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) +
1191 nic->rx_over_length_errors;
1192 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1193 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1194 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1195 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1196 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1197 le32_to_cpu(s->rx_alignment_errors) +
1198 le32_to_cpu(s->rx_short_frame_errors) +
1199 le32_to_cpu(s->rx_cdt_errors);
1200 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1201 nic->tx_single_collisions +=
1202 le32_to_cpu(s->tx_single_collisions);
1203 nic->tx_multiple_collisions +=
1204 le32_to_cpu(s->tx_multiple_collisions);
1205 if(nic->mac >= mac_82558_D101_A4) {
1206 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1207 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1208 nic->rx_fc_unsupported +=
1209 le32_to_cpu(s->fc_rcv_unsupported);
1210 if(nic->mac >= mac_82559_D101M) {
1211 nic->tx_tco_frames +=
1212 le16_to_cpu(s->xmt_tco_frames);
1213 nic->rx_tco_frames +=
1214 le16_to_cpu(s->rcv_tco_frames);
1215 }
1216 }
1217 }
1218
Malli Chilakala1f533672005-04-28 19:17:20 -07001219
1220 if(e100_exec_cmd(nic, cuc_dump_reset, 0))
1221 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001222}
1223
1224static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1225{
1226 /* Adjust inter-frame-spacing (IFS) between two transmits if
1227 * we're getting collisions on a half-duplex connection. */
1228
1229 if(duplex == DUPLEX_HALF) {
1230 u32 prev = nic->adaptive_ifs;
1231 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1232
1233 if((nic->tx_frames / 32 < nic->tx_collisions) &&
1234 (nic->tx_frames > min_frames)) {
1235 if(nic->adaptive_ifs < 60)
1236 nic->adaptive_ifs += 5;
1237 } else if (nic->tx_frames < min_frames) {
1238 if(nic->adaptive_ifs >= 5)
1239 nic->adaptive_ifs -= 5;
1240 }
1241 if(nic->adaptive_ifs != prev)
1242 e100_exec_cb(nic, NULL, e100_configure);
1243 }
1244}
1245
1246static void e100_watchdog(unsigned long data)
1247{
1248 struct nic *nic = (struct nic *)data;
1249 struct ethtool_cmd cmd;
1250
1251 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies);
1252
1253 /* mii library handles link maintenance tasks */
1254
1255 mii_ethtool_gset(&nic->mii, &cmd);
1256
1257 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1258 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n",
1259 cmd.speed == SPEED_100 ? "100" : "10",
1260 cmd.duplex == DUPLEX_FULL ? "full" : "half");
1261 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1262 DPRINTK(LINK, INFO, "link down\n");
1263 }
1264
1265 mii_check_link(&nic->mii);
1266
1267 /* Software generated interrupt to recover from (rare) Rx
1268 * allocation failure.
1269 * Unfortunately have to use a spinlock to not re-enable interrupts
1270 * accidentally, due to hardware that shares a register between the
1271 * interrupt mask bit and the SW Interrupt generation bit */
1272 spin_lock_irq(&nic->cmd_lock);
1273 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1274 spin_unlock_irq(&nic->cmd_lock);
1275 e100_write_flush(nic);
1276
1277 e100_update_stats(nic);
1278 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex);
1279
1280 if(nic->mac <= mac_82557_D100_C)
1281 /* Issue a multicast command to workaround a 557 lock up */
1282 e100_set_multicast_list(nic->netdev);
1283
1284 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF)
1285 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1286 nic->flags |= ich_10h_workaround;
1287 else
1288 nic->flags &= ~ich_10h_workaround;
1289
1290 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD);
1291}
1292
1293static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb,
1294 struct sk_buff *skb)
1295{
1296 cb->command = nic->tx_command;
Malli Chilakala962082b2005-04-28 19:19:46 -07001297 /* interrupt every 16 packets regardless of delay */
1298 if((nic->cbs_avail & ~15) == nic->cbs_avail) cb->command |= cb_i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001299 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1300 cb->u.tcb.tcb_byte_count = 0;
1301 cb->u.tcb.threshold = nic->tx_threshold;
1302 cb->u.tcb.tbd_count = 1;
1303 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev,
1304 skb->data, skb->len, PCI_DMA_TODEVICE));
Malli Chilakala962082b2005-04-28 19:19:46 -07001305 // check for mapping failure?
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1307}
1308
1309static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1310{
1311 struct nic *nic = netdev_priv(netdev);
1312 int err;
1313
1314 if(nic->flags & ich_10h_workaround) {
1315 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1316 Issue a NOP command followed by a 1us delay before
1317 issuing the Tx command. */
Malli Chilakala1f533672005-04-28 19:17:20 -07001318 if(e100_exec_cmd(nic, cuc_nop, 0))
1319 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001320 udelay(1);
1321 }
1322
1323 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1324
1325 switch(err) {
1326 case -ENOSPC:
1327 /* We queued the skb, but now we're out of space. */
1328 DPRINTK(TX_ERR, DEBUG, "No space for CB\n");
1329 netif_stop_queue(netdev);
1330 break;
1331 case -ENOMEM:
1332 /* This is a hard error - log it. */
1333 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n");
1334 netif_stop_queue(netdev);
1335 return 1;
1336 }
1337
1338 netdev->trans_start = jiffies;
1339 return 0;
1340}
1341
1342static inline int e100_tx_clean(struct nic *nic)
1343{
1344 struct cb *cb;
1345 int tx_cleaned = 0;
1346
1347 spin_lock(&nic->cb_lock);
1348
1349 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n",
1350 nic->cb_to_clean->status);
1351
1352 /* Clean CBs marked complete */
1353 for(cb = nic->cb_to_clean;
1354 cb->status & cpu_to_le16(cb_complete);
1355 cb = nic->cb_to_clean = cb->next) {
1356 if(likely(cb->skb != NULL)) {
1357 nic->net_stats.tx_packets++;
1358 nic->net_stats.tx_bytes += cb->skb->len;
1359
1360 pci_unmap_single(nic->pdev,
1361 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1362 le16_to_cpu(cb->u.tcb.tbd.size),
1363 PCI_DMA_TODEVICE);
1364 dev_kfree_skb_any(cb->skb);
1365 cb->skb = NULL;
1366 tx_cleaned = 1;
1367 }
1368 cb->status = 0;
1369 nic->cbs_avail++;
1370 }
1371
1372 spin_unlock(&nic->cb_lock);
1373
1374 /* Recover from running out of Tx resources in xmit_frame */
1375 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1376 netif_wake_queue(nic->netdev);
1377
1378 return tx_cleaned;
1379}
1380
1381static void e100_clean_cbs(struct nic *nic)
1382{
1383 if(nic->cbs) {
1384 while(nic->cbs_avail != nic->params.cbs.count) {
1385 struct cb *cb = nic->cb_to_clean;
1386 if(cb->skb) {
1387 pci_unmap_single(nic->pdev,
1388 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1389 le16_to_cpu(cb->u.tcb.tbd.size),
1390 PCI_DMA_TODEVICE);
1391 dev_kfree_skb(cb->skb);
1392 }
1393 nic->cb_to_clean = nic->cb_to_clean->next;
1394 nic->cbs_avail++;
1395 }
1396 pci_free_consistent(nic->pdev,
1397 sizeof(struct cb) * nic->params.cbs.count,
1398 nic->cbs, nic->cbs_dma_addr);
1399 nic->cbs = NULL;
1400 nic->cbs_avail = 0;
1401 }
1402 nic->cuc_cmd = cuc_start;
1403 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1404 nic->cbs;
1405}
1406
1407static int e100_alloc_cbs(struct nic *nic)
1408{
1409 struct cb *cb;
1410 unsigned int i, count = nic->params.cbs.count;
1411
1412 nic->cuc_cmd = cuc_start;
1413 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1414 nic->cbs_avail = 0;
1415
1416 nic->cbs = pci_alloc_consistent(nic->pdev,
1417 sizeof(struct cb) * count, &nic->cbs_dma_addr);
1418 if(!nic->cbs)
1419 return -ENOMEM;
1420
1421 for(cb = nic->cbs, i = 0; i < count; cb++, i++) {
1422 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1423 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1424
1425 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1426 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1427 ((i+1) % count) * sizeof(struct cb));
1428 cb->skb = NULL;
1429 }
1430
1431 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1432 nic->cbs_avail = count;
1433
1434 return 0;
1435}
1436
Malli Chilakala1f533672005-04-28 19:17:20 -07001437static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438{
Malli Chilakala1f533672005-04-28 19:17:20 -07001439 if(!nic->rxs) return;
1440 if(RU_SUSPENDED != nic->ru_running) return;
1441
1442 /* handle init time starts */
1443 if(!rx) rx = nic->rxs;
1444
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445 /* (Re)start RU if suspended or idle and RFA is non-NULL */
Malli Chilakala1f533672005-04-28 19:17:20 -07001446 if(rx->skb) {
1447 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1448 nic->ru_running = RU_RUNNING;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001449 }
1450}
1451
1452#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1453static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1454{
1455 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN)))
1456 return -ENOMEM;
1457
1458 /* Align, init, and map the RFD. */
1459 rx->skb->dev = nic->netdev;
1460 skb_reserve(rx->skb, NET_IP_ALIGN);
1461 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd));
1462 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1463 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1464
Malli Chilakala1f533672005-04-28 19:17:20 -07001465 if(pci_dma_mapping_error(rx->dma_addr)) {
1466 dev_kfree_skb_any(rx->skb);
1467 rx->skb = 0;
1468 rx->dma_addr = 0;
1469 return -ENOMEM;
1470 }
1471
Linus Torvalds1da177e2005-04-16 15:20:36 -07001472 /* Link the RFD to end of RFA by linking previous RFD to
1473 * this one, and clearing EL bit of previous. */
1474 if(rx->prev->skb) {
1475 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1476 put_unaligned(cpu_to_le32(rx->dma_addr),
1477 (u32 *)&prev_rfd->link);
1478 wmb();
1479 prev_rfd->command &= ~cpu_to_le16(cb_el);
1480 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1481 sizeof(struct rfd), PCI_DMA_TODEVICE);
1482 }
1483
1484 return 0;
1485}
1486
1487static inline int e100_rx_indicate(struct nic *nic, struct rx *rx,
1488 unsigned int *work_done, unsigned int work_to_do)
1489{
1490 struct sk_buff *skb = rx->skb;
1491 struct rfd *rfd = (struct rfd *)skb->data;
1492 u16 rfd_status, actual_size;
1493
1494 if(unlikely(work_done && *work_done >= work_to_do))
1495 return -EAGAIN;
1496
1497 /* Need to sync before taking a peek at cb_complete bit */
1498 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1499 sizeof(struct rfd), PCI_DMA_FROMDEVICE);
1500 rfd_status = le16_to_cpu(rfd->status);
1501
1502 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status);
1503
1504 /* If data isn't ready, nothing to indicate */
1505 if(unlikely(!(rfd_status & cb_complete)))
Malli Chilakala1f533672005-04-28 19:17:20 -07001506 return -ENODATA;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507
1508 /* Get actual data size */
1509 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1510 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1511 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1512
1513 /* Get data */
1514 pci_unmap_single(nic->pdev, rx->dma_addr,
1515 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1516
Malli Chilakala1f533672005-04-28 19:17:20 -07001517 /* this allows for a fast restart without re-enabling interrupts */
1518 if(le16_to_cpu(rfd->command) & cb_el)
1519 nic->ru_running = RU_SUSPENDED;
1520
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521 /* Pull off the RFD and put the actual data (minus eth hdr) */
1522 skb_reserve(skb, sizeof(struct rfd));
1523 skb_put(skb, actual_size);
1524 skb->protocol = eth_type_trans(skb, nic->netdev);
1525
1526 if(unlikely(!(rfd_status & cb_ok))) {
1527 /* Don't indicate if hardware indicates errors */
1528 nic->net_stats.rx_dropped++;
1529 dev_kfree_skb_any(skb);
1530 } else if(actual_size > nic->netdev->mtu + VLAN_ETH_HLEN) {
1531 /* Don't indicate oversized frames */
1532 nic->rx_over_length_errors++;
1533 nic->net_stats.rx_dropped++;
1534 dev_kfree_skb_any(skb);
1535 } else {
1536 nic->net_stats.rx_packets++;
1537 nic->net_stats.rx_bytes += actual_size;
1538 nic->netdev->last_rx = jiffies;
1539 netif_receive_skb(skb);
1540 if(work_done)
1541 (*work_done)++;
1542 }
1543
1544 rx->skb = NULL;
1545
1546 return 0;
1547}
1548
1549static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done,
1550 unsigned int work_to_do)
1551{
1552 struct rx *rx;
Malli Chilakala1f533672005-04-28 19:17:20 -07001553 int restart_required = 0;
1554 struct rx *rx_to_start = NULL;
1555
1556 /* are we already rnr? then pay attention!!! this ensures that
1557 * the state machine progression never allows a start with a
1558 * partially cleaned list, avoiding a race between hardware
1559 * and rx_to_clean when in NAPI mode */
1560 if(RU_SUSPENDED == nic->ru_running)
1561 restart_required = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562
1563 /* Indicate newly arrived packets */
1564 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
Malli Chilakala1f533672005-04-28 19:17:20 -07001565 int err = e100_rx_indicate(nic, rx, work_done, work_to_do);
1566 if(-EAGAIN == err) {
1567 /* hit quota so have more work to do, restart once
1568 * cleanup is complete */
1569 restart_required = 0;
1570 break;
1571 } else if(-ENODATA == err)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001572 break; /* No more to clean */
1573 }
1574
Malli Chilakala1f533672005-04-28 19:17:20 -07001575 /* save our starting point as the place we'll restart the receiver */
1576 if(restart_required)
1577 rx_to_start = nic->rx_to_clean;
1578
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579 /* Alloc new skbs to refill list */
1580 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
1581 if(unlikely(e100_rx_alloc_skb(nic, rx)))
1582 break; /* Better luck next time (see watchdog) */
1583 }
1584
Malli Chilakala1f533672005-04-28 19:17:20 -07001585 if(restart_required) {
1586 // ack the rnr?
1587 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack);
1588 e100_start_receiver(nic, rx_to_start);
1589 if(work_done)
1590 (*work_done)++;
1591 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592}
1593
1594static void e100_rx_clean_list(struct nic *nic)
1595{
1596 struct rx *rx;
1597 unsigned int i, count = nic->params.rfds.count;
1598
Malli Chilakala1f533672005-04-28 19:17:20 -07001599 nic->ru_running = RU_UNINITIALIZED;
1600
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601 if(nic->rxs) {
1602 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1603 if(rx->skb) {
1604 pci_unmap_single(nic->pdev, rx->dma_addr,
1605 RFD_BUF_LEN, PCI_DMA_FROMDEVICE);
1606 dev_kfree_skb(rx->skb);
1607 }
1608 }
1609 kfree(nic->rxs);
1610 nic->rxs = NULL;
1611 }
1612
1613 nic->rx_to_use = nic->rx_to_clean = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614}
1615
1616static int e100_rx_alloc_list(struct nic *nic)
1617{
1618 struct rx *rx;
1619 unsigned int i, count = nic->params.rfds.count;
1620
1621 nic->rx_to_use = nic->rx_to_clean = NULL;
Malli Chilakala1f533672005-04-28 19:17:20 -07001622 nic->ru_running = RU_UNINITIALIZED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001623
1624 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC)))
1625 return -ENOMEM;
1626 memset(nic->rxs, 0, sizeof(struct rx) * count);
1627
1628 for(rx = nic->rxs, i = 0; i < count; rx++, i++) {
1629 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
1630 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
1631 if(e100_rx_alloc_skb(nic, rx)) {
1632 e100_rx_clean_list(nic);
1633 return -ENOMEM;
1634 }
1635 }
1636
1637 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
Malli Chilakala1f533672005-04-28 19:17:20 -07001638 nic->ru_running = RU_SUSPENDED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639
1640 return 0;
1641}
1642
1643static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs)
1644{
1645 struct net_device *netdev = dev_id;
1646 struct nic *nic = netdev_priv(netdev);
1647 u8 stat_ack = readb(&nic->csr->scb.stat_ack);
1648
1649 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack);
1650
1651 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */
1652 stat_ack == stat_ack_not_present) /* Hardware is ejected */
1653 return IRQ_NONE;
1654
1655 /* Ack interrupt(s) */
1656 writeb(stat_ack, &nic->csr->scb.stat_ack);
1657
1658 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1659 if(stat_ack & stat_ack_rnr)
Malli Chilakala1f533672005-04-28 19:17:20 -07001660 nic->ru_running = RU_SUSPENDED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661
1662 e100_disable_irq(nic);
1663 netif_rx_schedule(netdev);
1664
1665 return IRQ_HANDLED;
1666}
1667
1668static int e100_poll(struct net_device *netdev, int *budget)
1669{
1670 struct nic *nic = netdev_priv(netdev);
1671 unsigned int work_to_do = min(netdev->quota, *budget);
1672 unsigned int work_done = 0;
1673 int tx_cleaned;
1674
1675 e100_rx_clean(nic, &work_done, work_to_do);
1676 tx_cleaned = e100_tx_clean(nic);
1677
1678 /* If no Rx and Tx cleanup work was done, exit polling mode. */
1679 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) {
1680 netif_rx_complete(netdev);
1681 e100_enable_irq(nic);
1682 return 0;
1683 }
1684
1685 *budget -= work_done;
1686 netdev->quota -= work_done;
1687
1688 return 1;
1689}
1690
1691#ifdef CONFIG_NET_POLL_CONTROLLER
1692static void e100_netpoll(struct net_device *netdev)
1693{
1694 struct nic *nic = netdev_priv(netdev);
1695 e100_disable_irq(nic);
1696 e100_intr(nic->pdev->irq, netdev, NULL);
1697 e100_tx_clean(nic);
1698 e100_enable_irq(nic);
1699}
1700#endif
1701
1702static struct net_device_stats *e100_get_stats(struct net_device *netdev)
1703{
1704 struct nic *nic = netdev_priv(netdev);
1705 return &nic->net_stats;
1706}
1707
1708static int e100_set_mac_address(struct net_device *netdev, void *p)
1709{
1710 struct nic *nic = netdev_priv(netdev);
1711 struct sockaddr *addr = p;
1712
1713 if (!is_valid_ether_addr(addr->sa_data))
1714 return -EADDRNOTAVAIL;
1715
1716 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1717 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
1718
1719 return 0;
1720}
1721
1722static int e100_change_mtu(struct net_device *netdev, int new_mtu)
1723{
1724 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
1725 return -EINVAL;
1726 netdev->mtu = new_mtu;
1727 return 0;
1728}
1729
Malli Chilakala6bdacb12005-04-28 19:17:54 -07001730#ifdef CONFIG_PM
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731static int e100_asf(struct nic *nic)
1732{
1733 /* ASF can be enabled from eeprom */
1734 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
1735 (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
1736 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
1737 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE));
1738}
Malli Chilakala6bdacb12005-04-28 19:17:54 -07001739#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740
1741static int e100_up(struct nic *nic)
1742{
1743 int err;
1744
1745 if((err = e100_rx_alloc_list(nic)))
1746 return err;
1747 if((err = e100_alloc_cbs(nic)))
1748 goto err_rx_clean_list;
1749 if((err = e100_hw_init(nic)))
1750 goto err_clean_cbs;
1751 e100_set_multicast_list(nic->netdev);
Malli Chilakala1f533672005-04-28 19:17:20 -07001752 e100_start_receiver(nic, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001753 mod_timer(&nic->watchdog, jiffies);
1754 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ,
1755 nic->netdev->name, nic->netdev)))
1756 goto err_no_irq;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757 netif_wake_queue(nic->netdev);
Malli Chilakala0236ebb2005-04-28 19:17:42 -07001758 netif_poll_enable(nic->netdev);
1759 /* enable ints _after_ enabling poll, preventing a race between
1760 * disable ints+schedule */
1761 e100_enable_irq(nic);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001762 return 0;
1763
1764err_no_irq:
1765 del_timer_sync(&nic->watchdog);
1766err_clean_cbs:
1767 e100_clean_cbs(nic);
1768err_rx_clean_list:
1769 e100_rx_clean_list(nic);
1770 return err;
1771}
1772
1773static void e100_down(struct nic *nic)
1774{
Malli Chilakala0236ebb2005-04-28 19:17:42 -07001775 /* wait here for poll to complete */
1776 netif_poll_disable(nic->netdev);
1777 netif_stop_queue(nic->netdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778 e100_hw_reset(nic);
1779 free_irq(nic->pdev->irq, nic->netdev);
1780 del_timer_sync(&nic->watchdog);
1781 netif_carrier_off(nic->netdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001782 e100_clean_cbs(nic);
1783 e100_rx_clean_list(nic);
1784}
1785
1786static void e100_tx_timeout(struct net_device *netdev)
1787{
1788 struct nic *nic = netdev_priv(netdev);
1789
Malli Chilakala2acdb1e2005-04-28 19:16:58 -07001790 /* Reset outside of interrupt context, to avoid request_irq
1791 * in interrupt context */
1792 schedule_work(&nic->tx_timeout_task);
1793}
1794
1795static void e100_tx_timeout_task(struct net_device *netdev)
1796{
1797 struct nic *nic = netdev_priv(netdev);
1798
Linus Torvalds1da177e2005-04-16 15:20:36 -07001799 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n",
1800 readb(&nic->csr->scb.status));
1801 e100_down(netdev_priv(netdev));
1802 e100_up(netdev_priv(netdev));
1803}
1804
1805static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
1806{
1807 int err;
1808 struct sk_buff *skb;
1809
1810 /* Use driver resources to perform internal MAC or PHY
1811 * loopback test. A single packet is prepared and transmitted
1812 * in loopback mode, and the test passes if the received
1813 * packet compares byte-for-byte to the transmitted packet. */
1814
1815 if((err = e100_rx_alloc_list(nic)))
1816 return err;
1817 if((err = e100_alloc_cbs(nic)))
1818 goto err_clean_rx;
1819
1820 /* ICH PHY loopback is broken so do MAC loopback instead */
1821 if(nic->flags & ich && loopback_mode == lb_phy)
1822 loopback_mode = lb_mac;
1823
1824 nic->loopback = loopback_mode;
1825 if((err = e100_hw_init(nic)))
1826 goto err_loopback_none;
1827
1828 if(loopback_mode == lb_phy)
1829 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
1830 BMCR_LOOPBACK);
1831
Malli Chilakala1f533672005-04-28 19:17:20 -07001832 e100_start_receiver(nic, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001833
1834 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) {
1835 err = -ENOMEM;
1836 goto err_loopback_none;
1837 }
1838 skb_put(skb, ETH_DATA_LEN);
1839 memset(skb->data, 0xFF, ETH_DATA_LEN);
1840 e100_xmit_frame(skb, nic->netdev);
1841
1842 msleep(10);
1843
1844 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
1845 skb->data, ETH_DATA_LEN))
1846 err = -EAGAIN;
1847
1848err_loopback_none:
1849 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
1850 nic->loopback = lb_none;
1851 e100_hw_init(nic);
1852 e100_clean_cbs(nic);
1853err_clean_rx:
1854 e100_rx_clean_list(nic);
1855 return err;
1856}
1857
1858#define MII_LED_CONTROL 0x1B
1859static void e100_blink_led(unsigned long data)
1860{
1861 struct nic *nic = (struct nic *)data;
1862 enum led_state {
1863 led_on = 0x01,
1864 led_off = 0x04,
1865 led_on_559 = 0x05,
1866 led_on_557 = 0x07,
1867 };
1868
1869 nic->leds = (nic->leds & led_on) ? led_off :
1870 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
1871 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds);
1872 mod_timer(&nic->blink_timer, jiffies + HZ / 4);
1873}
1874
1875static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1876{
1877 struct nic *nic = netdev_priv(netdev);
1878 return mii_ethtool_gset(&nic->mii, cmd);
1879}
1880
1881static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
1882{
1883 struct nic *nic = netdev_priv(netdev);
1884 int err;
1885
1886 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
1887 err = mii_ethtool_sset(&nic->mii, cmd);
1888 e100_exec_cb(nic, NULL, e100_configure);
1889
1890 return err;
1891}
1892
1893static void e100_get_drvinfo(struct net_device *netdev,
1894 struct ethtool_drvinfo *info)
1895{
1896 struct nic *nic = netdev_priv(netdev);
1897 strcpy(info->driver, DRV_NAME);
1898 strcpy(info->version, DRV_VERSION);
1899 strcpy(info->fw_version, "N/A");
1900 strcpy(info->bus_info, pci_name(nic->pdev));
1901}
1902
1903static int e100_get_regs_len(struct net_device *netdev)
1904{
1905 struct nic *nic = netdev_priv(netdev);
1906#define E100_PHY_REGS 0x1C
1907#define E100_REGS_LEN 1 + E100_PHY_REGS + \
1908 sizeof(nic->mem->dump_buf) / sizeof(u32)
1909 return E100_REGS_LEN * sizeof(u32);
1910}
1911
1912static void e100_get_regs(struct net_device *netdev,
1913 struct ethtool_regs *regs, void *p)
1914{
1915 struct nic *nic = netdev_priv(netdev);
1916 u32 *buff = p;
1917 int i;
1918
1919 regs->version = (1 << 24) | nic->rev_id;
1920 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 |
1921 readb(&nic->csr->scb.cmd_lo) << 16 |
1922 readw(&nic->csr->scb.status);
1923 for(i = E100_PHY_REGS; i >= 0; i--)
1924 buff[1 + E100_PHY_REGS - i] =
1925 mdio_read(netdev, nic->mii.phy_id, i);
1926 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
1927 e100_exec_cb(nic, NULL, e100_dump);
1928 msleep(10);
1929 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
1930 sizeof(nic->mem->dump_buf));
1931}
1932
1933static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1934{
1935 struct nic *nic = netdev_priv(netdev);
1936 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
1937 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
1938}
1939
1940static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1941{
1942 struct nic *nic = netdev_priv(netdev);
1943
1944 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
1945 return -EOPNOTSUPP;
1946
1947 if(wol->wolopts)
1948 nic->flags |= wol_magic;
1949 else
1950 nic->flags &= ~wol_magic;
1951
Linus Torvalds1da177e2005-04-16 15:20:36 -07001952 e100_exec_cb(nic, NULL, e100_configure);
1953
1954 return 0;
1955}
1956
1957static u32 e100_get_msglevel(struct net_device *netdev)
1958{
1959 struct nic *nic = netdev_priv(netdev);
1960 return nic->msg_enable;
1961}
1962
1963static void e100_set_msglevel(struct net_device *netdev, u32 value)
1964{
1965 struct nic *nic = netdev_priv(netdev);
1966 nic->msg_enable = value;
1967}
1968
1969static int e100_nway_reset(struct net_device *netdev)
1970{
1971 struct nic *nic = netdev_priv(netdev);
1972 return mii_nway_restart(&nic->mii);
1973}
1974
1975static u32 e100_get_link(struct net_device *netdev)
1976{
1977 struct nic *nic = netdev_priv(netdev);
1978 return mii_link_ok(&nic->mii);
1979}
1980
1981static int e100_get_eeprom_len(struct net_device *netdev)
1982{
1983 struct nic *nic = netdev_priv(netdev);
1984 return nic->eeprom_wc << 1;
1985}
1986
1987#define E100_EEPROM_MAGIC 0x1234
1988static int e100_get_eeprom(struct net_device *netdev,
1989 struct ethtool_eeprom *eeprom, u8 *bytes)
1990{
1991 struct nic *nic = netdev_priv(netdev);
1992
1993 eeprom->magic = E100_EEPROM_MAGIC;
1994 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
1995
1996 return 0;
1997}
1998
1999static int e100_set_eeprom(struct net_device *netdev,
2000 struct ethtool_eeprom *eeprom, u8 *bytes)
2001{
2002 struct nic *nic = netdev_priv(netdev);
2003
2004 if(eeprom->magic != E100_EEPROM_MAGIC)
2005 return -EINVAL;
2006
2007 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2008
2009 return e100_eeprom_save(nic, eeprom->offset >> 1,
2010 (eeprom->len >> 1) + 1);
2011}
2012
2013static void e100_get_ringparam(struct net_device *netdev,
2014 struct ethtool_ringparam *ring)
2015{
2016 struct nic *nic = netdev_priv(netdev);
2017 struct param_range *rfds = &nic->params.rfds;
2018 struct param_range *cbs = &nic->params.cbs;
2019
2020 ring->rx_max_pending = rfds->max;
2021 ring->tx_max_pending = cbs->max;
2022 ring->rx_mini_max_pending = 0;
2023 ring->rx_jumbo_max_pending = 0;
2024 ring->rx_pending = rfds->count;
2025 ring->tx_pending = cbs->count;
2026 ring->rx_mini_pending = 0;
2027 ring->rx_jumbo_pending = 0;
2028}
2029
2030static int e100_set_ringparam(struct net_device *netdev,
2031 struct ethtool_ringparam *ring)
2032{
2033 struct nic *nic = netdev_priv(netdev);
2034 struct param_range *rfds = &nic->params.rfds;
2035 struct param_range *cbs = &nic->params.cbs;
2036
2037 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2038 return -EINVAL;
2039
2040 if(netif_running(netdev))
2041 e100_down(nic);
2042 rfds->count = max(ring->rx_pending, rfds->min);
2043 rfds->count = min(rfds->count, rfds->max);
2044 cbs->count = max(ring->tx_pending, cbs->min);
2045 cbs->count = min(cbs->count, cbs->max);
2046 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n",
2047 rfds->count, cbs->count);
2048 if(netif_running(netdev))
2049 e100_up(nic);
2050
2051 return 0;
2052}
2053
2054static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2055 "Link test (on/offline)",
2056 "Eeprom test (on/offline)",
2057 "Self test (offline)",
2058 "Mac loopback (offline)",
2059 "Phy loopback (offline)",
2060};
2061#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN
2062
2063static int e100_diag_test_count(struct net_device *netdev)
2064{
2065 return E100_TEST_LEN;
2066}
2067
2068static void e100_diag_test(struct net_device *netdev,
2069 struct ethtool_test *test, u64 *data)
2070{
2071 struct ethtool_cmd cmd;
2072 struct nic *nic = netdev_priv(netdev);
2073 int i, err;
2074
2075 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2076 data[0] = !mii_link_ok(&nic->mii);
2077 data[1] = e100_eeprom_load(nic);
2078 if(test->flags & ETH_TEST_FL_OFFLINE) {
2079
2080 /* save speed, duplex & autoneg settings */
2081 err = mii_ethtool_gset(&nic->mii, &cmd);
2082
2083 if(netif_running(netdev))
2084 e100_down(nic);
2085 data[2] = e100_self_test(nic);
2086 data[3] = e100_loopback_test(nic, lb_mac);
2087 data[4] = e100_loopback_test(nic, lb_phy);
2088
2089 /* restore speed, duplex & autoneg settings */
2090 err = mii_ethtool_sset(&nic->mii, &cmd);
2091
2092 if(netif_running(netdev))
2093 e100_up(nic);
2094 }
2095 for(i = 0; i < E100_TEST_LEN; i++)
2096 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2097}
2098
2099static int e100_phys_id(struct net_device *netdev, u32 data)
2100{
2101 struct nic *nic = netdev_priv(netdev);
2102
2103 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
2104 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
2105 mod_timer(&nic->blink_timer, jiffies);
2106 msleep_interruptible(data * 1000);
2107 del_timer_sync(&nic->blink_timer);
2108 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0);
2109
2110 return 0;
2111}
2112
2113static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2114 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2115 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2116 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2117 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2118 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2119 "tx_heartbeat_errors", "tx_window_errors",
2120 /* device-specific stats */
2121 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2122 "tx_flow_control_pause", "rx_flow_control_pause",
2123 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2124};
2125#define E100_NET_STATS_LEN 21
2126#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN
2127
2128static int e100_get_stats_count(struct net_device *netdev)
2129{
2130 return E100_STATS_LEN;
2131}
2132
2133static void e100_get_ethtool_stats(struct net_device *netdev,
2134 struct ethtool_stats *stats, u64 *data)
2135{
2136 struct nic *nic = netdev_priv(netdev);
2137 int i;
2138
2139 for(i = 0; i < E100_NET_STATS_LEN; i++)
2140 data[i] = ((unsigned long *)&nic->net_stats)[i];
2141
2142 data[i++] = nic->tx_deferred;
2143 data[i++] = nic->tx_single_collisions;
2144 data[i++] = nic->tx_multiple_collisions;
2145 data[i++] = nic->tx_fc_pause;
2146 data[i++] = nic->rx_fc_pause;
2147 data[i++] = nic->rx_fc_unsupported;
2148 data[i++] = nic->tx_tco_frames;
2149 data[i++] = nic->rx_tco_frames;
2150}
2151
2152static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2153{
2154 switch(stringset) {
2155 case ETH_SS_TEST:
2156 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2157 break;
2158 case ETH_SS_STATS:
2159 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2160 break;
2161 }
2162}
2163
2164static struct ethtool_ops e100_ethtool_ops = {
2165 .get_settings = e100_get_settings,
2166 .set_settings = e100_set_settings,
2167 .get_drvinfo = e100_get_drvinfo,
2168 .get_regs_len = e100_get_regs_len,
2169 .get_regs = e100_get_regs,
2170 .get_wol = e100_get_wol,
2171 .set_wol = e100_set_wol,
2172 .get_msglevel = e100_get_msglevel,
2173 .set_msglevel = e100_set_msglevel,
2174 .nway_reset = e100_nway_reset,
2175 .get_link = e100_get_link,
2176 .get_eeprom_len = e100_get_eeprom_len,
2177 .get_eeprom = e100_get_eeprom,
2178 .set_eeprom = e100_set_eeprom,
2179 .get_ringparam = e100_get_ringparam,
2180 .set_ringparam = e100_set_ringparam,
2181 .self_test_count = e100_diag_test_count,
2182 .self_test = e100_diag_test,
2183 .get_strings = e100_get_strings,
2184 .phys_id = e100_phys_id,
2185 .get_stats_count = e100_get_stats_count,
2186 .get_ethtool_stats = e100_get_ethtool_stats,
2187};
2188
2189static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2190{
2191 struct nic *nic = netdev_priv(netdev);
2192
2193 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2194}
2195
2196static int e100_alloc(struct nic *nic)
2197{
2198 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2199 &nic->dma_addr);
2200 return nic->mem ? 0 : -ENOMEM;
2201}
2202
2203static void e100_free(struct nic *nic)
2204{
2205 if(nic->mem) {
2206 pci_free_consistent(nic->pdev, sizeof(struct mem),
2207 nic->mem, nic->dma_addr);
2208 nic->mem = NULL;
2209 }
2210}
2211
2212static int e100_open(struct net_device *netdev)
2213{
2214 struct nic *nic = netdev_priv(netdev);
2215 int err = 0;
2216
2217 netif_carrier_off(netdev);
2218 if((err = e100_up(nic)))
2219 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n");
2220 return err;
2221}
2222
2223static int e100_close(struct net_device *netdev)
2224{
2225 e100_down(netdev_priv(netdev));
2226 return 0;
2227}
2228
2229static int __devinit e100_probe(struct pci_dev *pdev,
2230 const struct pci_device_id *ent)
2231{
2232 struct net_device *netdev;
2233 struct nic *nic;
2234 int err;
2235
2236 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) {
2237 if(((1 << debug) - 1) & NETIF_MSG_PROBE)
2238 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n");
2239 return -ENOMEM;
2240 }
2241
2242 netdev->open = e100_open;
2243 netdev->stop = e100_close;
2244 netdev->hard_start_xmit = e100_xmit_frame;
2245 netdev->get_stats = e100_get_stats;
2246 netdev->set_multicast_list = e100_set_multicast_list;
2247 netdev->set_mac_address = e100_set_mac_address;
2248 netdev->change_mtu = e100_change_mtu;
2249 netdev->do_ioctl = e100_do_ioctl;
2250 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2251 netdev->tx_timeout = e100_tx_timeout;
2252 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2253 netdev->poll = e100_poll;
2254 netdev->weight = E100_NAPI_WEIGHT;
2255#ifdef CONFIG_NET_POLL_CONTROLLER
2256 netdev->poll_controller = e100_netpoll;
2257#endif
2258 strcpy(netdev->name, pci_name(pdev));
2259
2260 nic = netdev_priv(netdev);
2261 nic->netdev = netdev;
2262 nic->pdev = pdev;
2263 nic->msg_enable = (1 << debug) - 1;
2264 pci_set_drvdata(pdev, netdev);
2265
2266 if((err = pci_enable_device(pdev))) {
2267 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n");
2268 goto err_out_free_dev;
2269 }
2270
2271 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2272 DPRINTK(PROBE, ERR, "Cannot find proper PCI device "
2273 "base address, aborting.\n");
2274 err = -ENODEV;
2275 goto err_out_disable_pdev;
2276 }
2277
2278 if((err = pci_request_regions(pdev, DRV_NAME))) {
2279 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n");
2280 goto err_out_disable_pdev;
2281 }
2282
2283 if((err = pci_set_dma_mask(pdev, 0xFFFFFFFFULL))) {
2284 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n");
2285 goto err_out_free_res;
2286 }
2287
2288 SET_MODULE_OWNER(netdev);
2289 SET_NETDEV_DEV(netdev, &pdev->dev);
2290
2291 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr));
2292 if(!nic->csr) {
2293 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n");
2294 err = -ENOMEM;
2295 goto err_out_free_res;
2296 }
2297
2298 if(ent->driver_data)
2299 nic->flags |= ich;
2300 else
2301 nic->flags &= ~ich;
2302
2303 e100_get_defaults(nic);
2304
Malli Chilakala1f533672005-04-28 19:17:20 -07002305 /* locks must be initialized before calling hw_reset */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002306 spin_lock_init(&nic->cb_lock);
2307 spin_lock_init(&nic->cmd_lock);
2308
2309 /* Reset the device before pci_set_master() in case device is in some
2310 * funky state and has an interrupt pending - hint: we don't have the
2311 * interrupt handler registered yet. */
2312 e100_hw_reset(nic);
2313
2314 pci_set_master(pdev);
2315
2316 init_timer(&nic->watchdog);
2317 nic->watchdog.function = e100_watchdog;
2318 nic->watchdog.data = (unsigned long)nic;
2319 init_timer(&nic->blink_timer);
2320 nic->blink_timer.function = e100_blink_led;
2321 nic->blink_timer.data = (unsigned long)nic;
2322
Malli Chilakala2acdb1e2005-04-28 19:16:58 -07002323 INIT_WORK(&nic->tx_timeout_task,
2324 (void (*)(void *))e100_tx_timeout_task, netdev);
2325
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326 if((err = e100_alloc(nic))) {
2327 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n");
2328 goto err_out_iounmap;
2329 }
2330
2331 e100_phy_init(nic);
2332
2333 if((err = e100_eeprom_load(nic)))
2334 goto err_out_free;
2335
2336 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2337 if(!is_valid_ether_addr(netdev->dev_addr)) {
2338 DPRINTK(PROBE, ERR, "Invalid MAC address from "
2339 "EEPROM, aborting.\n");
2340 err = -EAGAIN;
2341 goto err_out_free;
2342 }
2343
2344 /* Wol magic packet can be enabled from eeprom */
2345 if((nic->mac >= mac_82558_D101_A4) &&
2346 (nic->eeprom[eeprom_id] & eeprom_id_wol))
2347 nic->flags |= wol_magic;
2348
Malli Chilakala6bdacb12005-04-28 19:17:54 -07002349 /* ack any pending wake events, disable PME */
2350 pci_enable_wake(pdev, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351
2352 strcpy(netdev->name, "eth%d");
2353 if((err = register_netdev(netdev))) {
2354 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n");
2355 goto err_out_free;
2356 }
2357
2358 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, "
2359 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n",
2360 pci_resource_start(pdev, 0), pdev->irq,
2361 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
2362 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
2363
2364 return 0;
2365
2366err_out_free:
2367 e100_free(nic);
2368err_out_iounmap:
2369 iounmap(nic->csr);
2370err_out_free_res:
2371 pci_release_regions(pdev);
2372err_out_disable_pdev:
2373 pci_disable_device(pdev);
2374err_out_free_dev:
2375 pci_set_drvdata(pdev, NULL);
2376 free_netdev(netdev);
2377 return err;
2378}
2379
2380static void __devexit e100_remove(struct pci_dev *pdev)
2381{
2382 struct net_device *netdev = pci_get_drvdata(pdev);
2383
2384 if(netdev) {
2385 struct nic *nic = netdev_priv(netdev);
2386 unregister_netdev(netdev);
2387 e100_free(nic);
2388 iounmap(nic->csr);
2389 free_netdev(netdev);
2390 pci_release_regions(pdev);
2391 pci_disable_device(pdev);
2392 pci_set_drvdata(pdev, NULL);
2393 }
2394}
2395
2396#ifdef CONFIG_PM
2397static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
2398{
2399 struct net_device *netdev = pci_get_drvdata(pdev);
2400 struct nic *nic = netdev_priv(netdev);
2401
2402 if(netif_running(netdev))
2403 e100_down(nic);
2404 e100_hw_reset(nic);
2405 netif_device_detach(netdev);
2406
2407 pci_save_state(pdev);
2408 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic)));
2409 pci_disable_device(pdev);
2410 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2411
2412 return 0;
2413}
2414
2415static int e100_resume(struct pci_dev *pdev)
2416{
2417 struct net_device *netdev = pci_get_drvdata(pdev);
2418 struct nic *nic = netdev_priv(netdev);
2419
2420 pci_set_power_state(pdev, PCI_D0);
2421 pci_restore_state(pdev);
Malli Chilakala6bdacb12005-04-28 19:17:54 -07002422 /* ack any pending wake events, disable PME */
2423 pci_enable_wake(pdev, 0, 0);
Malli Chilakala1f533672005-04-28 19:17:20 -07002424 if(e100_hw_init(nic))
2425 DPRINTK(HW, ERR, "e100_hw_init failed\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426
2427 netif_device_attach(netdev);
2428 if(netif_running(netdev))
2429 e100_up(nic);
2430
2431 return 0;
2432}
2433#endif
2434
Malli Chilakala6bdacb12005-04-28 19:17:54 -07002435
2436static void e100_shutdown(struct device *dev)
2437{
2438 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2439 struct net_device *netdev = pci_get_drvdata(pdev);
2440 struct nic *nic = netdev_priv(netdev);
2441
2442#ifdef CONFIG_PM
2443 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic)));
2444#else
2445 pci_enable_wake(pdev, 0, nic->flags & (wol_magic));
2446#endif
2447}
2448
2449
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450static struct pci_driver e100_driver = {
2451 .name = DRV_NAME,
2452 .id_table = e100_id_table,
2453 .probe = e100_probe,
2454 .remove = __devexit_p(e100_remove),
2455#ifdef CONFIG_PM
2456 .suspend = e100_suspend,
2457 .resume = e100_resume,
2458#endif
Malli Chilakala6bdacb12005-04-28 19:17:54 -07002459
2460 .driver = {
2461 .shutdown = e100_shutdown,
2462 }
2463
Linus Torvalds1da177e2005-04-16 15:20:36 -07002464};
2465
2466static int __init e100_init_module(void)
2467{
2468 if(((1 << debug) - 1) & NETIF_MSG_DRV) {
2469 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
2470 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT);
2471 }
2472 return pci_module_init(&e100_driver);
2473}
2474
2475static void __exit e100_cleanup_module(void)
2476{
2477 pci_unregister_driver(&e100_driver);
2478}
2479
2480module_init(e100_init_module);
2481module_exit(e100_cleanup_module);