blob: 45b7aec55458f5d966b09c209856c3b87fb92037 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090018#include <linux/slab.h>
Frederic Weisbecker76e1d902010-04-05 15:35:57 +020019#include <linux/hash.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020020#include <linux/sysfs.h>
21#include <linux/dcache.h>
22#include <linux/percpu.h>
23#include <linux/ptrace.h>
24#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020025#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020026#include <linux/hardirq.h>
27#include <linux/rculist.h>
28#include <linux/uaccess.h>
29#include <linux/syscalls.h>
30#include <linux/anon_inodes.h>
31#include <linux/kernel_stat.h>
32#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080033#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020034#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020035
36#include <asm/irq_regs.h>
37
38/*
39 * Each CPU has a list of per CPU events:
40 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080041static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020042
43int perf_max_events __read_mostly = 1;
44static int perf_reserved_percpu __read_mostly;
45static int perf_overcommit __read_mostly = 1;
46
47static atomic_t nr_events __read_mostly;
48static atomic_t nr_mmap_events __read_mostly;
49static atomic_t nr_comm_events __read_mostly;
50static atomic_t nr_task_events __read_mostly;
51
52/*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59int sysctl_perf_event_paranoid __read_mostly = 1;
60
Ingo Molnarcdd6c482009-09-21 12:02:48 +020061int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63/*
64 * max perf event sample rate
65 */
66int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68static atomic64_t perf_event_id;
69
70/*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73static DEFINE_SPINLOCK(perf_resource_lock);
74
75/*
76 * Architecture provided APIs - weak aliases:
77 */
78extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79{
80 return NULL;
81}
82
83void __weak hw_perf_disable(void) { barrier(); }
84void __weak hw_perf_enable(void) { barrier(); }
85
Ingo Molnarcdd6c482009-09-21 12:02:48 +020086void __weak perf_event_print_debug(void) { }
87
88static DEFINE_PER_CPU(int, perf_disable_count);
89
Ingo Molnarcdd6c482009-09-21 12:02:48 +020090void perf_disable(void)
91{
Peter Zijlstra32975a42010-03-06 19:49:19 +010092 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +020094}
95
96void perf_enable(void)
97{
Peter Zijlstra32975a42010-03-06 19:49:19 +010098 if (!--__get_cpu_var(perf_disable_count))
Ingo Molnarcdd6c482009-09-21 12:02:48 +020099 hw_perf_enable();
100}
101
102static void get_ctx(struct perf_event_context *ctx)
103{
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105}
106
107static void free_ctx(struct rcu_head *head)
108{
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113}
114
115static void put_ctx(struct perf_event_context *ctx)
116{
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124}
125
126static void unclone_ctx(struct perf_event_context *ctx)
127{
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132}
133
134/*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138static u64 primary_event_id(struct perf_event *event)
139{
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146}
147
148/*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153static struct perf_event_context *
154perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155{
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100172 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185}
186
187/*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193{
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200201 }
202 return ctx;
203}
204
205static void perf_unpin_context(struct perf_event_context *ctx)
206{
207 unsigned long flags;
208
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100209 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200210 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200212 put_ctx(ctx);
213}
214
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100215static inline u64 perf_clock(void)
216{
Peter Zijlstra24691ea2010-02-26 16:36:23 +0100217 return cpu_clock(raw_smp_processor_id());
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100218}
219
220/*
221 * Update the record of the current time in a context.
222 */
223static void update_context_time(struct perf_event_context *ctx)
224{
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229}
230
231/*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234static void update_event_times(struct perf_event *event)
235{
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256}
257
Peter Zijlstra96c21a42010-05-11 16:19:10 +0200258/*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261static void update_group_times(struct perf_event *leader)
262{
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268}
269
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100270static struct list_head *
271ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272{
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277}
278
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200279/*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283static void
284list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285{
286 struct perf_event *group_leader = event->group_leader;
287
288 /*
289 * Depending on whether it is a standalone or sibling event,
290 * add it straight to the context's event list, or to the group
291 * leader's sibling list:
292 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100293 if (group_leader == event) {
294 struct list_head *list;
295
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100296 if (is_software_event(event))
297 event->group_flags |= PERF_GROUP_SOFTWARE;
298
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100299 list = ctx_group_list(event, ctx);
300 list_add_tail(&event->group_entry, list);
301 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100302 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
303 !is_software_event(event))
304 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
305
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200306 list_add_tail(&event->group_entry, &group_leader->sibling_list);
307 group_leader->nr_siblings++;
308 }
309
310 list_add_rcu(&event->event_entry, &ctx->event_list);
311 ctx->nr_events++;
312 if (event->attr.inherit_stat)
313 ctx->nr_stat++;
314}
315
316/*
317 * Remove a event from the lists for its context.
318 * Must be called with ctx->mutex and ctx->lock held.
319 */
320static void
321list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322{
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200323 if (list_empty(&event->group_entry))
324 return;
325 ctx->nr_events--;
326 if (event->attr.inherit_stat)
327 ctx->nr_stat--;
328
329 list_del_init(&event->group_entry);
330 list_del_rcu(&event->event_entry);
331
332 if (event->group_leader != event)
333 event->group_leader->nr_siblings--;
334
Peter Zijlstra96c21a42010-05-11 16:19:10 +0200335 update_group_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800336
337 /*
338 * If event was in error state, then keep it
339 * that way, otherwise bogus counts will be
340 * returned on read(). The only way to get out
341 * of error state is by explicit re-enabling
342 * of the event
343 */
344 if (event->state > PERF_EVENT_STATE_OFF)
345 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra050735b2010-05-11 11:51:53 +0200346}
347
348static void
349perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
350{
351 struct perf_event *sibling, *tmp;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100352
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200353 /*
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
357 */
358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100359 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200360
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100361 list = ctx_group_list(event, ctx);
362 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200363 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100364
365 /* Inherit group flags from the previous leader */
366 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200367 }
368}
369
370static void
371event_sched_out(struct perf_event *event,
372 struct perf_cpu_context *cpuctx,
373 struct perf_event_context *ctx)
374{
375 if (event->state != PERF_EVENT_STATE_ACTIVE)
376 return;
377
378 event->state = PERF_EVENT_STATE_INACTIVE;
379 if (event->pending_disable) {
380 event->pending_disable = 0;
381 event->state = PERF_EVENT_STATE_OFF;
382 }
383 event->tstamp_stopped = ctx->time;
384 event->pmu->disable(event);
385 event->oncpu = -1;
386
387 if (!is_software_event(event))
388 cpuctx->active_oncpu--;
389 ctx->nr_active--;
390 if (event->attr.exclusive || !cpuctx->active_oncpu)
391 cpuctx->exclusive = 0;
392}
393
394static void
395group_sched_out(struct perf_event *group_event,
396 struct perf_cpu_context *cpuctx,
397 struct perf_event_context *ctx)
398{
399 struct perf_event *event;
400
401 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402 return;
403
404 event_sched_out(group_event, cpuctx, ctx);
405
406 /*
407 * Schedule out siblings (if any):
408 */
409 list_for_each_entry(event, &group_event->sibling_list, group_entry)
410 event_sched_out(event, cpuctx, ctx);
411
412 if (group_event->attr.exclusive)
413 cpuctx->exclusive = 0;
414}
415
416/*
417 * Cross CPU call to remove a performance event
418 *
419 * We disable the event on the hardware level first. After that we
420 * remove it from the context list.
421 */
422static void __perf_event_remove_from_context(void *info)
423{
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_event *event = info;
426 struct perf_event_context *ctx = event->ctx;
427
428 /*
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
432 */
433 if (ctx->task && cpuctx->task_ctx != ctx)
434 return;
435
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100436 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200437 /*
438 * Protect the list operation against NMI by disabling the
439 * events on a global level.
440 */
441 perf_disable();
442
443 event_sched_out(event, cpuctx, ctx);
444
445 list_del_event(event, ctx);
446
447 if (!ctx->task) {
448 /*
449 * Allow more per task events with respect to the
450 * reservation:
451 */
452 cpuctx->max_pertask =
453 min(perf_max_events - ctx->nr_events,
454 perf_max_events - perf_reserved_percpu);
455 }
456
457 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100458 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200459}
460
461
462/*
463 * Remove the event from a task's (or a CPU's) list of events.
464 *
465 * Must be called with ctx->mutex held.
466 *
467 * CPU events are removed with a smp call. For task events we only
468 * call when the task is on a CPU.
469 *
470 * If event->ctx is a cloned context, callers must make sure that
471 * every task struct that event->ctx->task could possibly point to
472 * remains valid. This is OK when called from perf_release since
473 * that only calls us on the top-level context, which can't be a clone.
474 * When called from perf_event_exit_task, it's OK because the
475 * context has been detached from its task.
476 */
477static void perf_event_remove_from_context(struct perf_event *event)
478{
479 struct perf_event_context *ctx = event->ctx;
480 struct task_struct *task = ctx->task;
481
482 if (!task) {
483 /*
484 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200485 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200486 */
487 smp_call_function_single(event->cpu,
488 __perf_event_remove_from_context,
489 event, 1);
490 return;
491 }
492
493retry:
494 task_oncpu_function_call(task, __perf_event_remove_from_context,
495 event);
496
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100497 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200498 /*
499 * If the context is active we need to retry the smp call.
500 */
501 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100502 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200503 goto retry;
504 }
505
506 /*
507 * The lock prevents that this context is scheduled in so we
508 * can remove the event safely, if the call above did not
509 * succeed.
510 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100511 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200512 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100513 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200514}
515
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200516/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200517 * Cross CPU call to disable a performance event
518 */
519static void __perf_event_disable(void *info)
520{
521 struct perf_event *event = info;
522 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523 struct perf_event_context *ctx = event->ctx;
524
525 /*
526 * If this is a per-task event, need to check whether this
527 * event's task is the current task on this cpu.
528 */
529 if (ctx->task && cpuctx->task_ctx != ctx)
530 return;
531
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100532 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200533
534 /*
535 * If the event is on, turn it off.
536 * If it is in error state, leave it in error state.
537 */
538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539 update_context_time(ctx);
540 update_group_times(event);
541 if (event == event->group_leader)
542 group_sched_out(event, cpuctx, ctx);
543 else
544 event_sched_out(event, cpuctx, ctx);
545 event->state = PERF_EVENT_STATE_OFF;
546 }
547
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100548 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200549}
550
551/*
552 * Disable a event.
553 *
554 * If event->ctx is a cloned context, callers must make sure that
555 * every task struct that event->ctx->task could possibly point to
556 * remains valid. This condition is satisifed when called through
557 * perf_event_for_each_child or perf_event_for_each because they
558 * hold the top-level event's child_mutex, so any descendant that
559 * goes to exit will block in sync_child_event.
560 * When called from perf_pending_event it's OK because event->ctx
561 * is the current context on this CPU and preemption is disabled,
562 * hence we can't get into perf_event_task_sched_out for this context.
563 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100564void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200565{
566 struct perf_event_context *ctx = event->ctx;
567 struct task_struct *task = ctx->task;
568
569 if (!task) {
570 /*
571 * Disable the event on the cpu that it's on
572 */
573 smp_call_function_single(event->cpu, __perf_event_disable,
574 event, 1);
575 return;
576 }
577
578 retry:
579 task_oncpu_function_call(task, __perf_event_disable, event);
580
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100581 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200582 /*
583 * If the event is still active, we need to retry the cross-call.
584 */
585 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100586 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200587 goto retry;
588 }
589
590 /*
591 * Since we have the lock this context can't be scheduled
592 * in, so we can change the state safely.
593 */
594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
595 update_group_times(event);
596 event->state = PERF_EVENT_STATE_OFF;
597 }
598
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100599 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200600}
601
602static int
603event_sched_in(struct perf_event *event,
604 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100605 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200606{
607 if (event->state <= PERF_EVENT_STATE_OFF)
608 return 0;
609
610 event->state = PERF_EVENT_STATE_ACTIVE;
Peter Zijlstra6e377382010-02-11 13:21:58 +0100611 event->oncpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612 /*
613 * The new state must be visible before we turn it on in the hardware:
614 */
615 smp_wmb();
616
617 if (event->pmu->enable(event)) {
618 event->state = PERF_EVENT_STATE_INACTIVE;
619 event->oncpu = -1;
620 return -EAGAIN;
621 }
622
623 event->tstamp_running += ctx->time - event->tstamp_stopped;
624
625 if (!is_software_event(event))
626 cpuctx->active_oncpu++;
627 ctx->nr_active++;
628
629 if (event->attr.exclusive)
630 cpuctx->exclusive = 1;
631
632 return 0;
633}
634
635static int
636group_sched_in(struct perf_event *group_event,
637 struct perf_cpu_context *cpuctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +0100638 struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200639{
Lin Ming6bde9b62010-04-23 13:56:00 +0800640 struct perf_event *event, *partial_group = NULL;
641 const struct pmu *pmu = group_event->pmu;
642 bool txn = false;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
Lin Ming6bde9b62010-04-23 13:56:00 +0800648 /* Check if group transaction availabe */
649 if (pmu->start_txn)
650 txn = true;
651
652 if (txn)
653 pmu->start_txn(pmu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200654
Peter Zijlstra6e377382010-02-11 13:21:58 +0100655 if (event_sched_in(group_event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200656 return -EAGAIN;
657
658 /*
659 * Schedule in siblings as one group (if any):
660 */
661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
Peter Zijlstra6e377382010-02-11 13:21:58 +0100662 if (event_sched_in(event, cpuctx, ctx)) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200663 partial_group = event;
664 goto group_error;
665 }
666 }
667
Paul Mackerras6e851582010-05-08 20:58:00 +1000668 if (!txn)
669 return 0;
Lin Ming6bde9b62010-04-23 13:56:00 +0800670
Paul Mackerras6e851582010-05-08 20:58:00 +1000671 ret = pmu->commit_txn(pmu);
672 if (!ret) {
673 pmu->cancel_txn(pmu);
674 return 0;
Lin Ming6bde9b62010-04-23 13:56:00 +0800675 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200676
677group_error:
Lin Ming6bde9b62010-04-23 13:56:00 +0800678 if (txn)
679 pmu->cancel_txn(pmu);
680
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200681 /*
682 * Groups can be scheduled in as one unit only, so undo any
683 * partial group before returning:
684 */
685 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
686 if (event == partial_group)
687 break;
688 event_sched_out(event, cpuctx, ctx);
689 }
690 event_sched_out(group_event, cpuctx, ctx);
691
692 return -EAGAIN;
693}
694
695/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200696 * Work out whether we can put this event group on the CPU now.
697 */
698static int group_can_go_on(struct perf_event *event,
699 struct perf_cpu_context *cpuctx,
700 int can_add_hw)
701{
702 /*
703 * Groups consisting entirely of software events can always go on.
704 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100705 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200706 return 1;
707 /*
708 * If an exclusive group is already on, no other hardware
709 * events can go on.
710 */
711 if (cpuctx->exclusive)
712 return 0;
713 /*
714 * If this group is exclusive and there are already
715 * events on the CPU, it can't go on.
716 */
717 if (event->attr.exclusive && cpuctx->active_oncpu)
718 return 0;
719 /*
720 * Otherwise, try to add it if all previous groups were able
721 * to go on.
722 */
723 return can_add_hw;
724}
725
726static void add_event_to_ctx(struct perf_event *event,
727 struct perf_event_context *ctx)
728{
729 list_add_event(event, ctx);
730 event->tstamp_enabled = ctx->time;
731 event->tstamp_running = ctx->time;
732 event->tstamp_stopped = ctx->time;
733}
734
735/*
736 * Cross CPU call to install and enable a performance event
737 *
738 * Must be called with ctx->mutex held
739 */
740static void __perf_install_in_context(void *info)
741{
742 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743 struct perf_event *event = info;
744 struct perf_event_context *ctx = event->ctx;
745 struct perf_event *leader = event->group_leader;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200746 int err;
747
748 /*
749 * If this is a task context, we need to check whether it is
750 * the current task context of this cpu. If not it has been
751 * scheduled out before the smp call arrived.
752 * Or possibly this is the right context but it isn't
753 * on this cpu because it had no events.
754 */
755 if (ctx->task && cpuctx->task_ctx != ctx) {
756 if (cpuctx->task_ctx || ctx->task != current)
757 return;
758 cpuctx->task_ctx = ctx;
759 }
760
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100761 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200762 ctx->is_active = 1;
763 update_context_time(ctx);
764
765 /*
766 * Protect the list operation against NMI by disabling the
767 * events on a global level. NOP for non NMI based events.
768 */
769 perf_disable();
770
771 add_event_to_ctx(event, ctx);
772
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100773 if (event->cpu != -1 && event->cpu != smp_processor_id())
774 goto unlock;
775
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200776 /*
777 * Don't put the event on if it is disabled or if
778 * it is in a group and the group isn't on.
779 */
780 if (event->state != PERF_EVENT_STATE_INACTIVE ||
781 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 goto unlock;
783
784 /*
785 * An exclusive event can't go on if there are already active
786 * hardware events, and no hardware event can go on if there
787 * is already an exclusive event on.
788 */
789 if (!group_can_go_on(event, cpuctx, 1))
790 err = -EEXIST;
791 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100792 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200793
794 if (err) {
795 /*
796 * This event couldn't go on. If it is in a group
797 * then we have to pull the whole group off.
798 * If the event group is pinned then put it in error state.
799 */
800 if (leader != event)
801 group_sched_out(leader, cpuctx, ctx);
802 if (leader->attr.pinned) {
803 update_group_times(leader);
804 leader->state = PERF_EVENT_STATE_ERROR;
805 }
806 }
807
808 if (!err && !ctx->task && cpuctx->max_pertask)
809 cpuctx->max_pertask--;
810
811 unlock:
812 perf_enable();
813
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100814 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200815}
816
817/*
818 * Attach a performance event to a context
819 *
820 * First we add the event to the list with the hardware enable bit
821 * in event->hw_config cleared.
822 *
823 * If the event is attached to a task which is on a CPU we use a smp
824 * call to enable it in the task context. The task might have been
825 * scheduled away, but we check this in the smp call again.
826 *
827 * Must be called with ctx->mutex held.
828 */
829static void
830perf_install_in_context(struct perf_event_context *ctx,
831 struct perf_event *event,
832 int cpu)
833{
834 struct task_struct *task = ctx->task;
835
836 if (!task) {
837 /*
838 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200839 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200840 */
841 smp_call_function_single(cpu, __perf_install_in_context,
842 event, 1);
843 return;
844 }
845
846retry:
847 task_oncpu_function_call(task, __perf_install_in_context,
848 event);
849
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100850 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200851 /*
852 * we need to retry the smp call.
853 */
854 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100855 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200856 goto retry;
857 }
858
859 /*
860 * The lock prevents that this context is scheduled in so we
861 * can add the event safely, if it the call above did not
862 * succeed.
863 */
864 if (list_empty(&event->group_entry))
865 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100866 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200867}
868
869/*
870 * Put a event into inactive state and update time fields.
871 * Enabling the leader of a group effectively enables all
872 * the group members that aren't explicitly disabled, so we
873 * have to update their ->tstamp_enabled also.
874 * Note: this works for group members as well as group leaders
875 * since the non-leader members' sibling_lists will be empty.
876 */
877static void __perf_event_mark_enabled(struct perf_event *event,
878 struct perf_event_context *ctx)
879{
880 struct perf_event *sub;
881
882 event->state = PERF_EVENT_STATE_INACTIVE;
883 event->tstamp_enabled = ctx->time - event->total_time_enabled;
884 list_for_each_entry(sub, &event->sibling_list, group_entry)
885 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 sub->tstamp_enabled =
887 ctx->time - sub->total_time_enabled;
888}
889
890/*
891 * Cross CPU call to enable a performance event
892 */
893static void __perf_event_enable(void *info)
894{
895 struct perf_event *event = info;
896 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 struct perf_event_context *ctx = event->ctx;
898 struct perf_event *leader = event->group_leader;
899 int err;
900
901 /*
902 * If this is a per-task event, need to check whether this
903 * event's task is the current task on this cpu.
904 */
905 if (ctx->task && cpuctx->task_ctx != ctx) {
906 if (cpuctx->task_ctx || ctx->task != current)
907 return;
908 cpuctx->task_ctx = ctx;
909 }
910
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100911 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200912 ctx->is_active = 1;
913 update_context_time(ctx);
914
915 if (event->state >= PERF_EVENT_STATE_INACTIVE)
916 goto unlock;
917 __perf_event_mark_enabled(event, ctx);
918
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100919 if (event->cpu != -1 && event->cpu != smp_processor_id())
920 goto unlock;
921
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200922 /*
923 * If the event is in a group and isn't the group leader,
924 * then don't put it on unless the group is on.
925 */
926 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927 goto unlock;
928
929 if (!group_can_go_on(event, cpuctx, 1)) {
930 err = -EEXIST;
931 } else {
932 perf_disable();
933 if (event == leader)
Peter Zijlstra6e377382010-02-11 13:21:58 +0100934 err = group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200935 else
Peter Zijlstra6e377382010-02-11 13:21:58 +0100936 err = event_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200937 perf_enable();
938 }
939
940 if (err) {
941 /*
942 * If this event can't go on and it's part of a
943 * group, then the whole group has to come off.
944 */
945 if (leader != event)
946 group_sched_out(leader, cpuctx, ctx);
947 if (leader->attr.pinned) {
948 update_group_times(leader);
949 leader->state = PERF_EVENT_STATE_ERROR;
950 }
951 }
952
953 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100954 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200955}
956
957/*
958 * Enable a event.
959 *
960 * If event->ctx is a cloned context, callers must make sure that
961 * every task struct that event->ctx->task could possibly point to
962 * remains valid. This condition is satisfied when called through
963 * perf_event_for_each_child or perf_event_for_each as described
964 * for perf_event_disable.
965 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100966void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200967{
968 struct perf_event_context *ctx = event->ctx;
969 struct task_struct *task = ctx->task;
970
971 if (!task) {
972 /*
973 * Enable the event on the cpu that it's on
974 */
975 smp_call_function_single(event->cpu, __perf_event_enable,
976 event, 1);
977 return;
978 }
979
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100980 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
982 goto out;
983
984 /*
985 * If the event is in error state, clear that first.
986 * That way, if we see the event in error state below, we
987 * know that it has gone back into error state, as distinct
988 * from the task having been scheduled away before the
989 * cross-call arrived.
990 */
991 if (event->state == PERF_EVENT_STATE_ERROR)
992 event->state = PERF_EVENT_STATE_OFF;
993
994 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100995 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200996 task_oncpu_function_call(task, __perf_event_enable, event);
997
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100998 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200999
1000 /*
1001 * If the context is active and the event is still off,
1002 * we need to retry the cross-call.
1003 */
1004 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005 goto retry;
1006
1007 /*
1008 * Since we have the lock this context can't be scheduled
1009 * in, so we can change the state safely.
1010 */
1011 if (event->state == PERF_EVENT_STATE_OFF)
1012 __perf_event_mark_enabled(event, ctx);
1013
1014 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001015 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001016}
1017
1018static int perf_event_refresh(struct perf_event *event, int refresh)
1019{
1020 /*
1021 * not supported on inherited events
1022 */
1023 if (event->attr.inherit)
1024 return -EINVAL;
1025
1026 atomic_add(refresh, &event->event_limit);
1027 perf_event_enable(event);
1028
1029 return 0;
1030}
1031
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001032enum event_type_t {
1033 EVENT_FLEXIBLE = 0x1,
1034 EVENT_PINNED = 0x2,
1035 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1036};
1037
1038static void ctx_sched_out(struct perf_event_context *ctx,
1039 struct perf_cpu_context *cpuctx,
1040 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001041{
1042 struct perf_event *event;
1043
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001044 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001045 ctx->is_active = 0;
1046 if (likely(!ctx->nr_events))
1047 goto out;
1048 update_context_time(ctx);
1049
1050 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001051 if (!ctx->nr_active)
1052 goto out_enable;
1053
1054 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001055 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1056 group_sched_out(event, cpuctx, ctx);
1057
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001058 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001059 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001060 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001061
1062 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001063 perf_enable();
1064 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001065 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001066}
1067
1068/*
1069 * Test whether two contexts are equivalent, i.e. whether they
1070 * have both been cloned from the same version of the same context
1071 * and they both have the same number of enabled events.
1072 * If the number of enabled events is the same, then the set
1073 * of enabled events should be the same, because these are both
1074 * inherited contexts, therefore we can't access individual events
1075 * in them directly with an fd; we can only enable/disable all
1076 * events via prctl, or enable/disable all events in a family
1077 * via ioctl, which will have the same effect on both contexts.
1078 */
1079static int context_equiv(struct perf_event_context *ctx1,
1080 struct perf_event_context *ctx2)
1081{
1082 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083 && ctx1->parent_gen == ctx2->parent_gen
1084 && !ctx1->pin_count && !ctx2->pin_count;
1085}
1086
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001087static void __perf_event_sync_stat(struct perf_event *event,
1088 struct perf_event *next_event)
1089{
1090 u64 value;
1091
1092 if (!event->attr.inherit_stat)
1093 return;
1094
1095 /*
1096 * Update the event value, we cannot use perf_event_read()
1097 * because we're in the middle of a context switch and have IRQs
1098 * disabled, which upsets smp_call_function_single(), however
1099 * we know the event must be on the current CPU, therefore we
1100 * don't need to use it.
1101 */
1102 switch (event->state) {
1103 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001104 event->pmu->read(event);
1105 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001106
1107 case PERF_EVENT_STATE_INACTIVE:
1108 update_event_times(event);
1109 break;
1110
1111 default:
1112 break;
1113 }
1114
1115 /*
1116 * In order to keep per-task stats reliable we need to flip the event
1117 * values when we flip the contexts.
1118 */
1119 value = atomic64_read(&next_event->count);
1120 value = atomic64_xchg(&event->count, value);
1121 atomic64_set(&next_event->count, value);
1122
1123 swap(event->total_time_enabled, next_event->total_time_enabled);
1124 swap(event->total_time_running, next_event->total_time_running);
1125
1126 /*
1127 * Since we swizzled the values, update the user visible data too.
1128 */
1129 perf_event_update_userpage(event);
1130 perf_event_update_userpage(next_event);
1131}
1132
1133#define list_next_entry(pos, member) \
1134 list_entry(pos->member.next, typeof(*pos), member)
1135
1136static void perf_event_sync_stat(struct perf_event_context *ctx,
1137 struct perf_event_context *next_ctx)
1138{
1139 struct perf_event *event, *next_event;
1140
1141 if (!ctx->nr_stat)
1142 return;
1143
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001144 update_context_time(ctx);
1145
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001146 event = list_first_entry(&ctx->event_list,
1147 struct perf_event, event_entry);
1148
1149 next_event = list_first_entry(&next_ctx->event_list,
1150 struct perf_event, event_entry);
1151
1152 while (&event->event_entry != &ctx->event_list &&
1153 &next_event->event_entry != &next_ctx->event_list) {
1154
1155 __perf_event_sync_stat(event, next_event);
1156
1157 event = list_next_entry(event, event_entry);
1158 next_event = list_next_entry(next_event, event_entry);
1159 }
1160}
1161
1162/*
1163 * Called from scheduler to remove the events of the current task,
1164 * with interrupts disabled.
1165 *
1166 * We stop each event and update the event value in event->count.
1167 *
1168 * This does not protect us against NMI, but disable()
1169 * sets the disabled bit in the control field of event _before_
1170 * accessing the event control register. If a NMI hits, then it will
1171 * not restart the event.
1172 */
1173void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001174 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001175{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001176 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001177 struct perf_event_context *ctx = task->perf_event_ctxp;
1178 struct perf_event_context *next_ctx;
1179 struct perf_event_context *parent;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001180 int do_switch = 1;
1181
Frederic Weisbeckere49a5bd2010-03-22 19:40:03 +01001182 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001183
1184 if (likely(!ctx || !cpuctx->task_ctx))
1185 return;
1186
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001187 rcu_read_lock();
1188 parent = rcu_dereference(ctx->parent_ctx);
1189 next_ctx = next->perf_event_ctxp;
1190 if (parent && next_ctx &&
1191 rcu_dereference(next_ctx->parent_ctx) == parent) {
1192 /*
1193 * Looks like the two contexts are clones, so we might be
1194 * able to optimize the context switch. We lock both
1195 * contexts and check that they are clones under the
1196 * lock (including re-checking that neither has been
1197 * uncloned in the meantime). It doesn't matter which
1198 * order we take the locks because no other cpu could
1199 * be trying to lock both of these tasks.
1200 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001201 raw_spin_lock(&ctx->lock);
1202 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001203 if (context_equiv(ctx, next_ctx)) {
1204 /*
1205 * XXX do we need a memory barrier of sorts
1206 * wrt to rcu_dereference() of perf_event_ctxp
1207 */
1208 task->perf_event_ctxp = next_ctx;
1209 next->perf_event_ctxp = ctx;
1210 ctx->task = next;
1211 next_ctx->task = task;
1212 do_switch = 0;
1213
1214 perf_event_sync_stat(ctx, next_ctx);
1215 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001216 raw_spin_unlock(&next_ctx->lock);
1217 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001218 }
1219 rcu_read_unlock();
1220
1221 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001222 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001223 cpuctx->task_ctx = NULL;
1224 }
1225}
1226
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001227static void task_ctx_sched_out(struct perf_event_context *ctx,
1228 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001229{
1230 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1231
1232 if (!cpuctx->task_ctx)
1233 return;
1234
1235 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1236 return;
1237
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001238 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001239 cpuctx->task_ctx = NULL;
1240}
1241
1242/*
1243 * Called with IRQs disabled
1244 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001245static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001246{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001247 task_ctx_sched_out(ctx, EVENT_ALL);
1248}
1249
1250/*
1251 * Called with IRQs disabled
1252 */
1253static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1254 enum event_type_t event_type)
1255{
1256 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001257}
1258
1259static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001260ctx_pinned_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001261 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262{
1263 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001264
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001265 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1266 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001267 continue;
Peter Zijlstra6e377382010-02-11 13:21:58 +01001268 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001269 continue;
1270
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001271 if (group_can_go_on(event, cpuctx, 1))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001272 group_sched_in(event, cpuctx, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001273
1274 /*
1275 * If this pinned group hasn't been scheduled,
1276 * put it in error state.
1277 */
1278 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1279 update_group_times(event);
1280 event->state = PERF_EVENT_STATE_ERROR;
1281 }
1282 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001283}
1284
1285static void
1286ctx_flexible_sched_in(struct perf_event_context *ctx,
Peter Zijlstra6e377382010-02-11 13:21:58 +01001287 struct perf_cpu_context *cpuctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001288{
1289 struct perf_event *event;
1290 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001292 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1293 /* Ignore events in OFF or ERROR state */
1294 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001295 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296 /*
1297 * Listen to the 'cpu' scheduling filter constraint
1298 * of events:
1299 */
Peter Zijlstra6e377382010-02-11 13:21:58 +01001300 if (event->cpu != -1 && event->cpu != smp_processor_id())
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001301 continue;
1302
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001303 if (group_can_go_on(event, cpuctx, can_add_hw))
Peter Zijlstra6e377382010-02-11 13:21:58 +01001304 if (group_sched_in(event, cpuctx, ctx))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001305 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001306 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001307}
1308
1309static void
1310ctx_sched_in(struct perf_event_context *ctx,
1311 struct perf_cpu_context *cpuctx,
1312 enum event_type_t event_type)
1313{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001314 raw_spin_lock(&ctx->lock);
1315 ctx->is_active = 1;
1316 if (likely(!ctx->nr_events))
1317 goto out;
1318
1319 ctx->timestamp = perf_clock();
1320
1321 perf_disable();
1322
1323 /*
1324 * First go through the list and put on any pinned groups
1325 * in order to give them the best chance of going on.
1326 */
1327 if (event_type & EVENT_PINNED)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001328 ctx_pinned_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001329
1330 /* Then walk through the lower prio flexible groups */
1331 if (event_type & EVENT_FLEXIBLE)
Peter Zijlstra6e377382010-02-11 13:21:58 +01001332 ctx_flexible_sched_in(ctx, cpuctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001333
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001334 perf_enable();
1335 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001336 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001337}
1338
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001339static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1340 enum event_type_t event_type)
1341{
1342 struct perf_event_context *ctx = &cpuctx->ctx;
1343
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345}
1346
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001347static void task_ctx_sched_in(struct task_struct *task,
1348 enum event_type_t event_type)
1349{
1350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1351 struct perf_event_context *ctx = task->perf_event_ctxp;
1352
1353 if (likely(!ctx))
1354 return;
1355 if (cpuctx->task_ctx == ctx)
1356 return;
1357 ctx_sched_in(ctx, cpuctx, event_type);
1358 cpuctx->task_ctx = ctx;
1359}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360/*
1361 * Called from scheduler to add the events of the current task
1362 * with interrupts disabled.
1363 *
1364 * We restore the event value and then enable it.
1365 *
1366 * This does not protect us against NMI, but enable()
1367 * sets the enabled bit in the control field of event _before_
1368 * accessing the event control register. If a NMI hits, then it will
1369 * keep the event running.
1370 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001371void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001372{
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001373 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1374 struct perf_event_context *ctx = task->perf_event_ctxp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001375
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001376 if (likely(!ctx))
1377 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001378
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001379 if (cpuctx->task_ctx == ctx)
1380 return;
1381
eranian@google.com9b33fa62010-03-10 22:26:05 -08001382 perf_disable();
1383
Frederic Weisbecker329c0e02010-01-17 12:56:05 +01001384 /*
1385 * We want to keep the following priority order:
1386 * cpu pinned (that don't need to move), task pinned,
1387 * cpu flexible, task flexible.
1388 */
1389 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1390
1391 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1392 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1393 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1394
1395 cpuctx->task_ctx = ctx;
eranian@google.com9b33fa62010-03-10 22:26:05 -08001396
1397 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001398}
1399
1400#define MAX_INTERRUPTS (~0ULL)
1401
1402static void perf_log_throttle(struct perf_event *event, int enable);
1403
Peter Zijlstraabd50712010-01-26 18:50:16 +01001404static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1405{
1406 u64 frequency = event->attr.sample_freq;
1407 u64 sec = NSEC_PER_SEC;
1408 u64 divisor, dividend;
1409
1410 int count_fls, nsec_fls, frequency_fls, sec_fls;
1411
1412 count_fls = fls64(count);
1413 nsec_fls = fls64(nsec);
1414 frequency_fls = fls64(frequency);
1415 sec_fls = 30;
1416
1417 /*
1418 * We got @count in @nsec, with a target of sample_freq HZ
1419 * the target period becomes:
1420 *
1421 * @count * 10^9
1422 * period = -------------------
1423 * @nsec * sample_freq
1424 *
1425 */
1426
1427 /*
1428 * Reduce accuracy by one bit such that @a and @b converge
1429 * to a similar magnitude.
1430 */
1431#define REDUCE_FLS(a, b) \
1432do { \
1433 if (a##_fls > b##_fls) { \
1434 a >>= 1; \
1435 a##_fls--; \
1436 } else { \
1437 b >>= 1; \
1438 b##_fls--; \
1439 } \
1440} while (0)
1441
1442 /*
1443 * Reduce accuracy until either term fits in a u64, then proceed with
1444 * the other, so that finally we can do a u64/u64 division.
1445 */
1446 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1447 REDUCE_FLS(nsec, frequency);
1448 REDUCE_FLS(sec, count);
1449 }
1450
1451 if (count_fls + sec_fls > 64) {
1452 divisor = nsec * frequency;
1453
1454 while (count_fls + sec_fls > 64) {
1455 REDUCE_FLS(count, sec);
1456 divisor >>= 1;
1457 }
1458
1459 dividend = count * sec;
1460 } else {
1461 dividend = count * sec;
1462
1463 while (nsec_fls + frequency_fls > 64) {
1464 REDUCE_FLS(nsec, frequency);
1465 dividend >>= 1;
1466 }
1467
1468 divisor = nsec * frequency;
1469 }
1470
1471 return div64_u64(dividend, divisor);
1472}
1473
Stephane Eraniand76a0812010-02-08 17:06:01 +02001474static void perf_event_stop(struct perf_event *event)
1475{
1476 if (!event->pmu->stop)
1477 return event->pmu->disable(event);
1478
1479 return event->pmu->stop(event);
1480}
1481
1482static int perf_event_start(struct perf_event *event)
1483{
1484 if (!event->pmu->start)
1485 return event->pmu->enable(event);
1486
1487 return event->pmu->start(event);
1488}
1489
Peter Zijlstraabd50712010-01-26 18:50:16 +01001490static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001491{
1492 struct hw_perf_event *hwc = &event->hw;
1493 u64 period, sample_period;
1494 s64 delta;
1495
Peter Zijlstraabd50712010-01-26 18:50:16 +01001496 period = perf_calculate_period(event, nsec, count);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001497
1498 delta = (s64)(period - hwc->sample_period);
1499 delta = (delta + 7) / 8; /* low pass filter */
1500
1501 sample_period = hwc->sample_period + delta;
1502
1503 if (!sample_period)
1504 sample_period = 1;
1505
1506 hwc->sample_period = sample_period;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001507
1508 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1509 perf_disable();
Stephane Eraniand76a0812010-02-08 17:06:01 +02001510 perf_event_stop(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001511 atomic64_set(&hwc->period_left, 0);
Stephane Eraniand76a0812010-02-08 17:06:01 +02001512 perf_event_start(event);
Peter Zijlstraabd50712010-01-26 18:50:16 +01001513 perf_enable();
1514 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001515}
1516
1517static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1518{
1519 struct perf_event *event;
1520 struct hw_perf_event *hwc;
Peter Zijlstraabd50712010-01-26 18:50:16 +01001521 u64 interrupts, now;
1522 s64 delta;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001523
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001524 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001525 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001526 if (event->state != PERF_EVENT_STATE_ACTIVE)
1527 continue;
1528
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001529 if (event->cpu != -1 && event->cpu != smp_processor_id())
1530 continue;
1531
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001532 hwc = &event->hw;
1533
1534 interrupts = hwc->interrupts;
1535 hwc->interrupts = 0;
1536
1537 /*
1538 * unthrottle events on the tick
1539 */
1540 if (interrupts == MAX_INTERRUPTS) {
1541 perf_log_throttle(event, 1);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001542 perf_disable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001543 event->pmu->unthrottle(event);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001544 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001545 }
1546
1547 if (!event->attr.freq || !event->attr.sample_freq)
1548 continue;
1549
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001550 perf_disable();
Peter Zijlstraabd50712010-01-26 18:50:16 +01001551 event->pmu->read(event);
1552 now = atomic64_read(&event->count);
1553 delta = now - hwc->freq_count_stamp;
1554 hwc->freq_count_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001555
Peter Zijlstraabd50712010-01-26 18:50:16 +01001556 if (delta > 0)
1557 perf_adjust_period(event, TICK_NSEC, delta);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001558 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001559 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001560 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001561}
1562
1563/*
1564 * Round-robin a context's events:
1565 */
1566static void rotate_ctx(struct perf_event_context *ctx)
1567{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001568 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001569
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001570 /* Rotate the first entry last of non-pinned groups */
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001571 list_rotate_left(&ctx->flexible_groups);
1572
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001573 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001574}
1575
Peter Zijlstra49f47432009-12-27 11:51:52 +01001576void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001577{
1578 struct perf_cpu_context *cpuctx;
1579 struct perf_event_context *ctx;
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001580 int rotate = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001581
1582 if (!atomic_read(&nr_events))
1583 return;
1584
Peter Zijlstra49f47432009-12-27 11:51:52 +01001585 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001586 if (cpuctx->ctx.nr_events &&
1587 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1588 rotate = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001589
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001590 ctx = curr->perf_event_ctxp;
1591 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1592 rotate = 1;
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001593
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001594 perf_ctx_adjust_freq(&cpuctx->ctx);
1595 if (ctx)
1596 perf_ctx_adjust_freq(ctx);
1597
Peter Zijlstrad4944a02010-03-08 13:51:20 +01001598 if (!rotate)
1599 return;
1600
1601 perf_disable();
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001602 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001603 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001604 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001605
1606 rotate_ctx(&cpuctx->ctx);
1607 if (ctx)
1608 rotate_ctx(ctx);
1609
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001610 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001611 if (ctx)
Frederic Weisbecker7defb0f2010-01-17 12:15:31 +01001612 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
Peter Zijlstra9717e6c2010-01-28 13:57:44 +01001613 perf_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001614}
1615
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001616static int event_enable_on_exec(struct perf_event *event,
1617 struct perf_event_context *ctx)
1618{
1619 if (!event->attr.enable_on_exec)
1620 return 0;
1621
1622 event->attr.enable_on_exec = 0;
1623 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1624 return 0;
1625
1626 __perf_event_mark_enabled(event, ctx);
1627
1628 return 1;
1629}
1630
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001631/*
1632 * Enable all of a task's events that have been marked enable-on-exec.
1633 * This expects task == current.
1634 */
1635static void perf_event_enable_on_exec(struct task_struct *task)
1636{
1637 struct perf_event_context *ctx;
1638 struct perf_event *event;
1639 unsigned long flags;
1640 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001641 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001642
1643 local_irq_save(flags);
1644 ctx = task->perf_event_ctxp;
1645 if (!ctx || !ctx->nr_events)
1646 goto out;
1647
1648 __perf_event_task_sched_out(ctx);
1649
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001650 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001651
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001652 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1653 ret = event_enable_on_exec(event, ctx);
1654 if (ret)
1655 enabled = 1;
1656 }
1657
1658 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1659 ret = event_enable_on_exec(event, ctx);
1660 if (ret)
1661 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001662 }
1663
1664 /*
1665 * Unclone this context if we enabled any event.
1666 */
1667 if (enabled)
1668 unclone_ctx(ctx);
1669
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001670 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001671
Peter Zijlstra49f47432009-12-27 11:51:52 +01001672 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001673 out:
1674 local_irq_restore(flags);
1675}
1676
1677/*
1678 * Cross CPU call to read the hardware event
1679 */
1680static void __perf_event_read(void *info)
1681{
1682 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683 struct perf_event *event = info;
1684 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001685
1686 /*
1687 * If this is a task context, we need to check whether it is
1688 * the current task context of this cpu. If not it has been
1689 * scheduled out before the smp call arrived. In that case
1690 * event->count would have been updated to a recent sample
1691 * when the event was scheduled out.
1692 */
1693 if (ctx->task && cpuctx->task_ctx != ctx)
1694 return;
1695
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001696 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001697 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001698 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001699 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001700
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001701 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001702}
1703
1704static u64 perf_event_read(struct perf_event *event)
1705{
1706 /*
1707 * If event is enabled and currently active on a CPU, update the
1708 * value in the event structure:
1709 */
1710 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1711 smp_call_function_single(event->oncpu,
1712 __perf_event_read, event, 1);
1713 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001714 struct perf_event_context *ctx = event->ctx;
1715 unsigned long flags;
1716
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001717 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001718 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001719 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001720 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001721 }
1722
1723 return atomic64_read(&event->count);
1724}
1725
1726/*
1727 * Initialize the perf_event context in a task_struct:
1728 */
1729static void
1730__perf_event_init_context(struct perf_event_context *ctx,
1731 struct task_struct *task)
1732{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001733 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001734 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001735 INIT_LIST_HEAD(&ctx->pinned_groups);
1736 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001737 INIT_LIST_HEAD(&ctx->event_list);
1738 atomic_set(&ctx->refcount, 1);
1739 ctx->task = task;
1740}
1741
1742static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1743{
1744 struct perf_event_context *ctx;
1745 struct perf_cpu_context *cpuctx;
1746 struct task_struct *task;
1747 unsigned long flags;
1748 int err;
1749
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001750 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001751 /* Must be root to operate on a CPU event: */
1752 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1753 return ERR_PTR(-EACCES);
1754
Paul Mackerras0f624e72009-12-15 19:40:32 +11001755 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001756 return ERR_PTR(-EINVAL);
1757
1758 /*
1759 * We could be clever and allow to attach a event to an
1760 * offline CPU and activate it when the CPU comes up, but
1761 * that's for later.
1762 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001763 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001764 return ERR_PTR(-ENODEV);
1765
1766 cpuctx = &per_cpu(perf_cpu_context, cpu);
1767 ctx = &cpuctx->ctx;
1768 get_ctx(ctx);
1769
1770 return ctx;
1771 }
1772
1773 rcu_read_lock();
1774 if (!pid)
1775 task = current;
1776 else
1777 task = find_task_by_vpid(pid);
1778 if (task)
1779 get_task_struct(task);
1780 rcu_read_unlock();
1781
1782 if (!task)
1783 return ERR_PTR(-ESRCH);
1784
1785 /*
1786 * Can't attach events to a dying task.
1787 */
1788 err = -ESRCH;
1789 if (task->flags & PF_EXITING)
1790 goto errout;
1791
1792 /* Reuse ptrace permission checks for now. */
1793 err = -EACCES;
1794 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1795 goto errout;
1796
1797 retry:
1798 ctx = perf_lock_task_context(task, &flags);
1799 if (ctx) {
1800 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001801 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001802 }
1803
1804 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001805 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001806 err = -ENOMEM;
1807 if (!ctx)
1808 goto errout;
1809 __perf_event_init_context(ctx, task);
1810 get_ctx(ctx);
1811 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1812 /*
1813 * We raced with some other task; use
1814 * the context they set.
1815 */
1816 kfree(ctx);
1817 goto retry;
1818 }
1819 get_task_struct(task);
1820 }
1821
1822 put_task_struct(task);
1823 return ctx;
1824
1825 errout:
1826 put_task_struct(task);
1827 return ERR_PTR(err);
1828}
1829
Li Zefan6fb29152009-10-15 11:21:42 +08001830static void perf_event_free_filter(struct perf_event *event);
1831
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001832static void free_event_rcu(struct rcu_head *head)
1833{
1834 struct perf_event *event;
1835
1836 event = container_of(head, struct perf_event, rcu_head);
1837 if (event->ns)
1838 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001839 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001840 kfree(event);
1841}
1842
1843static void perf_pending_sync(struct perf_event *event);
1844
1845static void free_event(struct perf_event *event)
1846{
1847 perf_pending_sync(event);
1848
1849 if (!event->parent) {
1850 atomic_dec(&nr_events);
1851 if (event->attr.mmap)
1852 atomic_dec(&nr_mmap_events);
1853 if (event->attr.comm)
1854 atomic_dec(&nr_comm_events);
1855 if (event->attr.task)
1856 atomic_dec(&nr_task_events);
1857 }
1858
1859 if (event->output) {
1860 fput(event->output->filp);
1861 event->output = NULL;
1862 }
1863
1864 if (event->destroy)
1865 event->destroy(event);
1866
1867 put_ctx(event->ctx);
1868 call_rcu(&event->rcu_head, free_event_rcu);
1869}
1870
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001871int perf_event_release_kernel(struct perf_event *event)
1872{
1873 struct perf_event_context *ctx = event->ctx;
1874
Peter Zijlstra050735b2010-05-11 11:51:53 +02001875 /*
1876 * Remove from the PMU, can't get re-enabled since we got
1877 * here because the last ref went.
1878 */
1879 perf_event_disable(event);
1880
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001881 WARN_ON_ONCE(ctx->parent_ctx);
Peter Zijlstraa0507c82010-05-06 15:42:53 +02001882 /*
1883 * There are two ways this annotation is useful:
1884 *
1885 * 1) there is a lock recursion from perf_event_exit_task
1886 * see the comment there.
1887 *
1888 * 2) there is a lock-inversion with mmap_sem through
1889 * perf_event_read_group(), which takes faults while
1890 * holding ctx->mutex, however this is called after
1891 * the last filedesc died, so there is no possibility
1892 * to trigger the AB-BA case.
1893 */
1894 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
Peter Zijlstra050735b2010-05-11 11:51:53 +02001895 raw_spin_lock_irq(&ctx->lock);
1896 list_del_event(event, ctx);
1897 perf_destroy_group(event, ctx);
1898 raw_spin_unlock_irq(&ctx->lock);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001899 mutex_unlock(&ctx->mutex);
1900
1901 mutex_lock(&event->owner->perf_event_mutex);
1902 list_del_init(&event->owner_entry);
1903 mutex_unlock(&event->owner->perf_event_mutex);
1904 put_task_struct(event->owner);
1905
1906 free_event(event);
1907
1908 return 0;
1909}
1910EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1911
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001912/*
1913 * Called when the last reference to the file is gone.
1914 */
1915static int perf_release(struct inode *inode, struct file *file)
1916{
1917 struct perf_event *event = file->private_data;
1918
1919 file->private_data = NULL;
1920
1921 return perf_event_release_kernel(event);
1922}
1923
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001924static int perf_event_read_size(struct perf_event *event)
1925{
1926 int entry = sizeof(u64); /* value */
1927 int size = 0;
1928 int nr = 1;
1929
1930 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1931 size += sizeof(u64);
1932
1933 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1934 size += sizeof(u64);
1935
1936 if (event->attr.read_format & PERF_FORMAT_ID)
1937 entry += sizeof(u64);
1938
1939 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1940 nr += event->group_leader->nr_siblings;
1941 size += sizeof(u64);
1942 }
1943
1944 size += entry * nr;
1945
1946 return size;
1947}
1948
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001949u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001950{
1951 struct perf_event *child;
1952 u64 total = 0;
1953
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001954 *enabled = 0;
1955 *running = 0;
1956
Peter Zijlstra6f105812009-11-20 22:19:56 +01001957 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001958 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001959 *enabled += event->total_time_enabled +
1960 atomic64_read(&event->child_total_time_enabled);
1961 *running += event->total_time_running +
1962 atomic64_read(&event->child_total_time_running);
1963
1964 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001965 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001966 *enabled += child->total_time_enabled;
1967 *running += child->total_time_running;
1968 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001969 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001970
1971 return total;
1972}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001973EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001974
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001975static int perf_event_read_group(struct perf_event *event,
1976 u64 read_format, char __user *buf)
1977{
1978 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001979 int n = 0, size = 0, ret = -EFAULT;
1980 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001981 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001982 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001983
Peter Zijlstra6f105812009-11-20 22:19:56 +01001984 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001985 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001986
1987 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001988 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1989 values[n++] = enabled;
1990 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1991 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001992 values[n++] = count;
1993 if (read_format & PERF_FORMAT_ID)
1994 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001995
1996 size = n * sizeof(u64);
1997
1998 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001999 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002000
Peter Zijlstra6f105812009-11-20 22:19:56 +01002001 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002002
2003 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01002004 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002005
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002006 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01002007 if (read_format & PERF_FORMAT_ID)
2008 values[n++] = primary_event_id(sub);
2009
2010 size = n * sizeof(u64);
2011
Stephane Eranian184d3da2009-11-23 21:40:49 -08002012 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01002013 ret = -EFAULT;
2014 goto unlock;
2015 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01002016
2017 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002018 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01002019unlock:
2020 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002021
Peter Zijlstraabf48682009-11-20 22:19:49 +01002022 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002023}
2024
2025static int perf_event_read_one(struct perf_event *event,
2026 u64 read_format, char __user *buf)
2027{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002028 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002029 u64 values[4];
2030 int n = 0;
2031
Peter Zijlstra59ed4462009-11-20 22:19:55 +01002032 values[n++] = perf_event_read_value(event, &enabled, &running);
2033 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2034 values[n++] = enabled;
2035 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2036 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002037 if (read_format & PERF_FORMAT_ID)
2038 values[n++] = primary_event_id(event);
2039
2040 if (copy_to_user(buf, values, n * sizeof(u64)))
2041 return -EFAULT;
2042
2043 return n * sizeof(u64);
2044}
2045
2046/*
2047 * Read the performance event - simple non blocking version for now
2048 */
2049static ssize_t
2050perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2051{
2052 u64 read_format = event->attr.read_format;
2053 int ret;
2054
2055 /*
2056 * Return end-of-file for a read on a event that is in
2057 * error state (i.e. because it was pinned but it couldn't be
2058 * scheduled on to the CPU at some point).
2059 */
2060 if (event->state == PERF_EVENT_STATE_ERROR)
2061 return 0;
2062
2063 if (count < perf_event_read_size(event))
2064 return -ENOSPC;
2065
2066 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002067 if (read_format & PERF_FORMAT_GROUP)
2068 ret = perf_event_read_group(event, read_format, buf);
2069 else
2070 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002071
2072 return ret;
2073}
2074
2075static ssize_t
2076perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2077{
2078 struct perf_event *event = file->private_data;
2079
2080 return perf_read_hw(event, buf, count);
2081}
2082
2083static unsigned int perf_poll(struct file *file, poll_table *wait)
2084{
2085 struct perf_event *event = file->private_data;
2086 struct perf_mmap_data *data;
2087 unsigned int events = POLL_HUP;
2088
2089 rcu_read_lock();
2090 data = rcu_dereference(event->data);
2091 if (data)
2092 events = atomic_xchg(&data->poll, 0);
2093 rcu_read_unlock();
2094
2095 poll_wait(file, &event->waitq, wait);
2096
2097 return events;
2098}
2099
2100static void perf_event_reset(struct perf_event *event)
2101{
2102 (void)perf_event_read(event);
2103 atomic64_set(&event->count, 0);
2104 perf_event_update_userpage(event);
2105}
2106
2107/*
2108 * Holding the top-level event's child_mutex means that any
2109 * descendant process that has inherited this event will block
2110 * in sync_child_event if it goes to exit, thus satisfying the
2111 * task existence requirements of perf_event_enable/disable.
2112 */
2113static void perf_event_for_each_child(struct perf_event *event,
2114 void (*func)(struct perf_event *))
2115{
2116 struct perf_event *child;
2117
2118 WARN_ON_ONCE(event->ctx->parent_ctx);
2119 mutex_lock(&event->child_mutex);
2120 func(event);
2121 list_for_each_entry(child, &event->child_list, child_list)
2122 func(child);
2123 mutex_unlock(&event->child_mutex);
2124}
2125
2126static void perf_event_for_each(struct perf_event *event,
2127 void (*func)(struct perf_event *))
2128{
2129 struct perf_event_context *ctx = event->ctx;
2130 struct perf_event *sibling;
2131
2132 WARN_ON_ONCE(ctx->parent_ctx);
2133 mutex_lock(&ctx->mutex);
2134 event = event->group_leader;
2135
2136 perf_event_for_each_child(event, func);
2137 func(event);
2138 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2139 perf_event_for_each_child(event, func);
2140 mutex_unlock(&ctx->mutex);
2141}
2142
2143static int perf_event_period(struct perf_event *event, u64 __user *arg)
2144{
2145 struct perf_event_context *ctx = event->ctx;
2146 unsigned long size;
2147 int ret = 0;
2148 u64 value;
2149
2150 if (!event->attr.sample_period)
2151 return -EINVAL;
2152
2153 size = copy_from_user(&value, arg, sizeof(value));
2154 if (size != sizeof(value))
2155 return -EFAULT;
2156
2157 if (!value)
2158 return -EINVAL;
2159
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002160 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002161 if (event->attr.freq) {
2162 if (value > sysctl_perf_event_sample_rate) {
2163 ret = -EINVAL;
2164 goto unlock;
2165 }
2166
2167 event->attr.sample_freq = value;
2168 } else {
2169 event->attr.sample_period = value;
2170 event->hw.sample_period = value;
2171 }
2172unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002173 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002174
2175 return ret;
2176}
2177
Li Zefan6fb29152009-10-15 11:21:42 +08002178static int perf_event_set_output(struct perf_event *event, int output_fd);
2179static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002180
2181static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2182{
2183 struct perf_event *event = file->private_data;
2184 void (*func)(struct perf_event *);
2185 u32 flags = arg;
2186
2187 switch (cmd) {
2188 case PERF_EVENT_IOC_ENABLE:
2189 func = perf_event_enable;
2190 break;
2191 case PERF_EVENT_IOC_DISABLE:
2192 func = perf_event_disable;
2193 break;
2194 case PERF_EVENT_IOC_RESET:
2195 func = perf_event_reset;
2196 break;
2197
2198 case PERF_EVENT_IOC_REFRESH:
2199 return perf_event_refresh(event, arg);
2200
2201 case PERF_EVENT_IOC_PERIOD:
2202 return perf_event_period(event, (u64 __user *)arg);
2203
2204 case PERF_EVENT_IOC_SET_OUTPUT:
2205 return perf_event_set_output(event, arg);
2206
Li Zefan6fb29152009-10-15 11:21:42 +08002207 case PERF_EVENT_IOC_SET_FILTER:
2208 return perf_event_set_filter(event, (void __user *)arg);
2209
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002210 default:
2211 return -ENOTTY;
2212 }
2213
2214 if (flags & PERF_IOC_FLAG_GROUP)
2215 perf_event_for_each(event, func);
2216 else
2217 perf_event_for_each_child(event, func);
2218
2219 return 0;
2220}
2221
2222int perf_event_task_enable(void)
2223{
2224 struct perf_event *event;
2225
2226 mutex_lock(&current->perf_event_mutex);
2227 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2228 perf_event_for_each_child(event, perf_event_enable);
2229 mutex_unlock(&current->perf_event_mutex);
2230
2231 return 0;
2232}
2233
2234int perf_event_task_disable(void)
2235{
2236 struct perf_event *event;
2237
2238 mutex_lock(&current->perf_event_mutex);
2239 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2240 perf_event_for_each_child(event, perf_event_disable);
2241 mutex_unlock(&current->perf_event_mutex);
2242
2243 return 0;
2244}
2245
2246#ifndef PERF_EVENT_INDEX_OFFSET
2247# define PERF_EVENT_INDEX_OFFSET 0
2248#endif
2249
2250static int perf_event_index(struct perf_event *event)
2251{
2252 if (event->state != PERF_EVENT_STATE_ACTIVE)
2253 return 0;
2254
2255 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2256}
2257
2258/*
2259 * Callers need to ensure there can be no nesting of this function, otherwise
2260 * the seqlock logic goes bad. We can not serialize this because the arch
2261 * code calls this from NMI context.
2262 */
2263void perf_event_update_userpage(struct perf_event *event)
2264{
2265 struct perf_event_mmap_page *userpg;
2266 struct perf_mmap_data *data;
2267
2268 rcu_read_lock();
2269 data = rcu_dereference(event->data);
2270 if (!data)
2271 goto unlock;
2272
2273 userpg = data->user_page;
2274
2275 /*
2276 * Disable preemption so as to not let the corresponding user-space
2277 * spin too long if we get preempted.
2278 */
2279 preempt_disable();
2280 ++userpg->lock;
2281 barrier();
2282 userpg->index = perf_event_index(event);
2283 userpg->offset = atomic64_read(&event->count);
2284 if (event->state == PERF_EVENT_STATE_ACTIVE)
2285 userpg->offset -= atomic64_read(&event->hw.prev_count);
2286
2287 userpg->time_enabled = event->total_time_enabled +
2288 atomic64_read(&event->child_total_time_enabled);
2289
2290 userpg->time_running = event->total_time_running +
2291 atomic64_read(&event->child_total_time_running);
2292
2293 barrier();
2294 ++userpg->lock;
2295 preempt_enable();
2296unlock:
2297 rcu_read_unlock();
2298}
2299
Peter Zijlstra906010b2009-09-21 16:08:49 +02002300static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002301{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002302 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002303}
2304
Peter Zijlstra906010b2009-09-21 16:08:49 +02002305#ifndef CONFIG_PERF_USE_VMALLOC
2306
2307/*
2308 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2309 */
2310
2311static struct page *
2312perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2313{
2314 if (pgoff > data->nr_pages)
2315 return NULL;
2316
2317 if (pgoff == 0)
2318 return virt_to_page(data->user_page);
2319
2320 return virt_to_page(data->data_pages[pgoff - 1]);
2321}
2322
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002323static void *perf_mmap_alloc_page(int cpu)
2324{
2325 struct page *page;
2326 int node;
2327
2328 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2329 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2330 if (!page)
2331 return NULL;
2332
2333 return page_address(page);
2334}
2335
Peter Zijlstra906010b2009-09-21 16:08:49 +02002336static struct perf_mmap_data *
2337perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002338{
2339 struct perf_mmap_data *data;
2340 unsigned long size;
2341 int i;
2342
2343 WARN_ON(atomic_read(&event->mmap_count));
2344
2345 size = sizeof(struct perf_mmap_data);
2346 size += nr_pages * sizeof(void *);
2347
2348 data = kzalloc(size, GFP_KERNEL);
2349 if (!data)
2350 goto fail;
2351
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002352 data->user_page = perf_mmap_alloc_page(event->cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002353 if (!data->user_page)
2354 goto fail_user_page;
2355
2356 for (i = 0; i < nr_pages; i++) {
Peter Zijlstraa19d35c2010-05-17 18:48:00 +02002357 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002358 if (!data->data_pages[i])
2359 goto fail_data_pages;
2360 }
2361
Peter Zijlstra906010b2009-09-21 16:08:49 +02002362 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002363 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002364
Peter Zijlstra906010b2009-09-21 16:08:49 +02002365 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002366
2367fail_data_pages:
2368 for (i--; i >= 0; i--)
2369 free_page((unsigned long)data->data_pages[i]);
2370
2371 free_page((unsigned long)data->user_page);
2372
2373fail_user_page:
2374 kfree(data);
2375
2376fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002377 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002378}
2379
2380static void perf_mmap_free_page(unsigned long addr)
2381{
2382 struct page *page = virt_to_page((void *)addr);
2383
2384 page->mapping = NULL;
2385 __free_page(page);
2386}
2387
Peter Zijlstra906010b2009-09-21 16:08:49 +02002388static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002389{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002390 int i;
2391
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002392 perf_mmap_free_page((unsigned long)data->user_page);
2393 for (i = 0; i < data->nr_pages; i++)
2394 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002395 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002396}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002397
Peter Zijlstra906010b2009-09-21 16:08:49 +02002398#else
2399
2400/*
2401 * Back perf_mmap() with vmalloc memory.
2402 *
2403 * Required for architectures that have d-cache aliasing issues.
2404 */
2405
2406static struct page *
2407perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2408{
2409 if (pgoff > (1UL << data->data_order))
2410 return NULL;
2411
2412 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2413}
2414
2415static void perf_mmap_unmark_page(void *addr)
2416{
2417 struct page *page = vmalloc_to_page(addr);
2418
2419 page->mapping = NULL;
2420}
2421
2422static void perf_mmap_data_free_work(struct work_struct *work)
2423{
2424 struct perf_mmap_data *data;
2425 void *base;
2426 int i, nr;
2427
2428 data = container_of(work, struct perf_mmap_data, work);
2429 nr = 1 << data->data_order;
2430
2431 base = data->user_page;
2432 for (i = 0; i < nr + 1; i++)
2433 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2434
2435 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002436 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002437}
2438
2439static void perf_mmap_data_free(struct perf_mmap_data *data)
2440{
2441 schedule_work(&data->work);
2442}
2443
2444static struct perf_mmap_data *
2445perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2446{
2447 struct perf_mmap_data *data;
2448 unsigned long size;
2449 void *all_buf;
2450
2451 WARN_ON(atomic_read(&event->mmap_count));
2452
2453 size = sizeof(struct perf_mmap_data);
2454 size += sizeof(void *);
2455
2456 data = kzalloc(size, GFP_KERNEL);
2457 if (!data)
2458 goto fail;
2459
2460 INIT_WORK(&data->work, perf_mmap_data_free_work);
2461
2462 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2463 if (!all_buf)
2464 goto fail_all_buf;
2465
2466 data->user_page = all_buf;
2467 data->data_pages[0] = all_buf + PAGE_SIZE;
2468 data->data_order = ilog2(nr_pages);
2469 data->nr_pages = 1;
2470
2471 return data;
2472
2473fail_all_buf:
2474 kfree(data);
2475
2476fail:
2477 return NULL;
2478}
2479
2480#endif
2481
2482static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2483{
2484 struct perf_event *event = vma->vm_file->private_data;
2485 struct perf_mmap_data *data;
2486 int ret = VM_FAULT_SIGBUS;
2487
2488 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2489 if (vmf->pgoff == 0)
2490 ret = 0;
2491 return ret;
2492 }
2493
2494 rcu_read_lock();
2495 data = rcu_dereference(event->data);
2496 if (!data)
2497 goto unlock;
2498
2499 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2500 goto unlock;
2501
2502 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2503 if (!vmf->page)
2504 goto unlock;
2505
2506 get_page(vmf->page);
2507 vmf->page->mapping = vma->vm_file->f_mapping;
2508 vmf->page->index = vmf->pgoff;
2509
2510 ret = 0;
2511unlock:
2512 rcu_read_unlock();
2513
2514 return ret;
2515}
2516
2517static void
2518perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2519{
2520 long max_size = perf_data_size(data);
2521
Peter Zijlstra906010b2009-09-21 16:08:49 +02002522 if (event->attr.watermark) {
2523 data->watermark = min_t(long, max_size,
2524 event->attr.wakeup_watermark);
2525 }
2526
2527 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002528 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002529
2530
2531 rcu_assign_pointer(event->data, data);
2532}
2533
2534static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2535{
2536 struct perf_mmap_data *data;
2537
2538 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2539 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002540}
2541
Peter Zijlstra906010b2009-09-21 16:08:49 +02002542static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002543{
2544 struct perf_mmap_data *data = event->data;
2545
2546 WARN_ON(atomic_read(&event->mmap_count));
2547
2548 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002549 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002550}
2551
2552static void perf_mmap_open(struct vm_area_struct *vma)
2553{
2554 struct perf_event *event = vma->vm_file->private_data;
2555
2556 atomic_inc(&event->mmap_count);
2557}
2558
2559static void perf_mmap_close(struct vm_area_struct *vma)
2560{
2561 struct perf_event *event = vma->vm_file->private_data;
2562
2563 WARN_ON_ONCE(event->ctx->parent_ctx);
2564 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002565 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002566 struct user_struct *user = current_user();
2567
Peter Zijlstra906010b2009-09-21 16:08:49 +02002568 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002569 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002570 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002571 mutex_unlock(&event->mmap_mutex);
2572 }
2573}
2574
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002575static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002576 .open = perf_mmap_open,
2577 .close = perf_mmap_close,
2578 .fault = perf_mmap_fault,
2579 .page_mkwrite = perf_mmap_fault,
2580};
2581
2582static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2583{
2584 struct perf_event *event = file->private_data;
2585 unsigned long user_locked, user_lock_limit;
2586 struct user_struct *user = current_user();
2587 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002588 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002589 unsigned long vma_size;
2590 unsigned long nr_pages;
2591 long user_extra, extra;
2592 int ret = 0;
2593
Peter Zijlstrac7920612010-05-18 10:33:24 +02002594 /*
2595 * Don't allow mmap() of inherited per-task counters. This would
2596 * create a performance issue due to all children writing to the
2597 * same buffer.
2598 */
2599 if (event->cpu == -1 && event->attr.inherit)
2600 return -EINVAL;
2601
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002602 if (!(vma->vm_flags & VM_SHARED))
2603 return -EINVAL;
2604
2605 vma_size = vma->vm_end - vma->vm_start;
2606 nr_pages = (vma_size / PAGE_SIZE) - 1;
2607
2608 /*
2609 * If we have data pages ensure they're a power-of-two number, so we
2610 * can do bitmasks instead of modulo.
2611 */
2612 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2613 return -EINVAL;
2614
2615 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2616 return -EINVAL;
2617
2618 if (vma->vm_pgoff != 0)
2619 return -EINVAL;
2620
2621 WARN_ON_ONCE(event->ctx->parent_ctx);
2622 mutex_lock(&event->mmap_mutex);
2623 if (event->output) {
2624 ret = -EINVAL;
2625 goto unlock;
2626 }
2627
2628 if (atomic_inc_not_zero(&event->mmap_count)) {
2629 if (nr_pages != event->data->nr_pages)
2630 ret = -EINVAL;
2631 goto unlock;
2632 }
2633
2634 user_extra = nr_pages + 1;
2635 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2636
2637 /*
2638 * Increase the limit linearly with more CPUs:
2639 */
2640 user_lock_limit *= num_online_cpus();
2641
2642 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2643
2644 extra = 0;
2645 if (user_locked > user_lock_limit)
2646 extra = user_locked - user_lock_limit;
2647
Jiri Slaby78d7d402010-03-05 13:42:54 -08002648 lock_limit = rlimit(RLIMIT_MEMLOCK);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002649 lock_limit >>= PAGE_SHIFT;
2650 locked = vma->vm_mm->locked_vm + extra;
2651
2652 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2653 !capable(CAP_IPC_LOCK)) {
2654 ret = -EPERM;
2655 goto unlock;
2656 }
2657
2658 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002659
2660 data = perf_mmap_data_alloc(event, nr_pages);
2661 ret = -ENOMEM;
2662 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002663 goto unlock;
2664
Peter Zijlstra906010b2009-09-21 16:08:49 +02002665 ret = 0;
2666 perf_mmap_data_init(event, data);
2667
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002668 atomic_set(&event->mmap_count, 1);
2669 atomic_long_add(user_extra, &user->locked_vm);
2670 vma->vm_mm->locked_vm += extra;
2671 event->data->nr_locked = extra;
2672 if (vma->vm_flags & VM_WRITE)
2673 event->data->writable = 1;
2674
2675unlock:
2676 mutex_unlock(&event->mmap_mutex);
2677
2678 vma->vm_flags |= VM_RESERVED;
2679 vma->vm_ops = &perf_mmap_vmops;
2680
2681 return ret;
2682}
2683
2684static int perf_fasync(int fd, struct file *filp, int on)
2685{
2686 struct inode *inode = filp->f_path.dentry->d_inode;
2687 struct perf_event *event = filp->private_data;
2688 int retval;
2689
2690 mutex_lock(&inode->i_mutex);
2691 retval = fasync_helper(fd, filp, on, &event->fasync);
2692 mutex_unlock(&inode->i_mutex);
2693
2694 if (retval < 0)
2695 return retval;
2696
2697 return 0;
2698}
2699
2700static const struct file_operations perf_fops = {
Arnd Bergmann3326c1c2010-03-23 19:09:33 +01002701 .llseek = no_llseek,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002702 .release = perf_release,
2703 .read = perf_read,
2704 .poll = perf_poll,
2705 .unlocked_ioctl = perf_ioctl,
2706 .compat_ioctl = perf_ioctl,
2707 .mmap = perf_mmap,
2708 .fasync = perf_fasync,
2709};
2710
2711/*
2712 * Perf event wakeup
2713 *
2714 * If there's data, ensure we set the poll() state and publish everything
2715 * to user-space before waking everybody up.
2716 */
2717
2718void perf_event_wakeup(struct perf_event *event)
2719{
2720 wake_up_all(&event->waitq);
2721
2722 if (event->pending_kill) {
2723 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2724 event->pending_kill = 0;
2725 }
2726}
2727
2728/*
2729 * Pending wakeups
2730 *
2731 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2732 *
2733 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2734 * single linked list and use cmpxchg() to add entries lockless.
2735 */
2736
2737static void perf_pending_event(struct perf_pending_entry *entry)
2738{
2739 struct perf_event *event = container_of(entry,
2740 struct perf_event, pending);
2741
2742 if (event->pending_disable) {
2743 event->pending_disable = 0;
2744 __perf_event_disable(event);
2745 }
2746
2747 if (event->pending_wakeup) {
2748 event->pending_wakeup = 0;
2749 perf_event_wakeup(event);
2750 }
2751}
2752
2753#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2754
2755static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2756 PENDING_TAIL,
2757};
2758
2759static void perf_pending_queue(struct perf_pending_entry *entry,
2760 void (*func)(struct perf_pending_entry *))
2761{
2762 struct perf_pending_entry **head;
2763
2764 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2765 return;
2766
2767 entry->func = func;
2768
2769 head = &get_cpu_var(perf_pending_head);
2770
2771 do {
2772 entry->next = *head;
2773 } while (cmpxchg(head, entry->next, entry) != entry->next);
2774
2775 set_perf_event_pending();
2776
2777 put_cpu_var(perf_pending_head);
2778}
2779
2780static int __perf_pending_run(void)
2781{
2782 struct perf_pending_entry *list;
2783 int nr = 0;
2784
2785 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2786 while (list != PENDING_TAIL) {
2787 void (*func)(struct perf_pending_entry *);
2788 struct perf_pending_entry *entry = list;
2789
2790 list = list->next;
2791
2792 func = entry->func;
2793 entry->next = NULL;
2794 /*
2795 * Ensure we observe the unqueue before we issue the wakeup,
2796 * so that we won't be waiting forever.
2797 * -- see perf_not_pending().
2798 */
2799 smp_wmb();
2800
2801 func(entry);
2802 nr++;
2803 }
2804
2805 return nr;
2806}
2807
2808static inline int perf_not_pending(struct perf_event *event)
2809{
2810 /*
2811 * If we flush on whatever cpu we run, there is a chance we don't
2812 * need to wait.
2813 */
2814 get_cpu();
2815 __perf_pending_run();
2816 put_cpu();
2817
2818 /*
2819 * Ensure we see the proper queue state before going to sleep
2820 * so that we do not miss the wakeup. -- see perf_pending_handle()
2821 */
2822 smp_rmb();
2823 return event->pending.next == NULL;
2824}
2825
2826static void perf_pending_sync(struct perf_event *event)
2827{
2828 wait_event(event->waitq, perf_not_pending(event));
2829}
2830
2831void perf_event_do_pending(void)
2832{
2833 __perf_pending_run();
2834}
2835
2836/*
2837 * Callchain support -- arch specific
2838 */
2839
2840__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2841{
2842 return NULL;
2843}
2844
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002845__weak
2846void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2847{
2848}
Frederic Weisbecker26d80aa2010-04-03 12:22:05 +02002849
Frederic Weisbecker5331d7b2010-03-04 21:15:56 +01002850
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002851/*
Zhang, Yanmin39447b32010-04-19 13:32:41 +08002852 * We assume there is only KVM supporting the callbacks.
2853 * Later on, we might change it to a list if there is
2854 * another virtualization implementation supporting the callbacks.
2855 */
2856struct perf_guest_info_callbacks *perf_guest_cbs;
2857
2858int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2859{
2860 perf_guest_cbs = cbs;
2861 return 0;
2862}
2863EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2864
2865int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2866{
2867 perf_guest_cbs = NULL;
2868 return 0;
2869}
2870EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2871
2872/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002873 * Output
2874 */
2875static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2876 unsigned long offset, unsigned long head)
2877{
2878 unsigned long mask;
2879
2880 if (!data->writable)
2881 return true;
2882
Peter Zijlstra906010b2009-09-21 16:08:49 +02002883 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002884
2885 offset = (offset - tail) & mask;
2886 head = (head - tail) & mask;
2887
2888 if ((int)(head - offset) < 0)
2889 return false;
2890
2891 return true;
2892}
2893
2894static void perf_output_wakeup(struct perf_output_handle *handle)
2895{
2896 atomic_set(&handle->data->poll, POLL_IN);
2897
2898 if (handle->nmi) {
2899 handle->event->pending_wakeup = 1;
2900 perf_pending_queue(&handle->event->pending,
2901 perf_pending_event);
2902 } else
2903 perf_event_wakeup(handle->event);
2904}
2905
2906/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002907 * We need to ensure a later event_id doesn't publish a head when a former
Peter Zijlstraef607772010-05-18 10:50:41 +02002908 * event isn't done writing. However since we need to deal with NMIs we
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002909 * cannot fully serialize things.
2910 *
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002911 * We only publish the head (and generate a wakeup) when the outer-most
Peter Zijlstraef607772010-05-18 10:50:41 +02002912 * event completes.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002913 */
Peter Zijlstraef607772010-05-18 10:50:41 +02002914static void perf_output_get_handle(struct perf_output_handle *handle)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002915{
2916 struct perf_mmap_data *data = handle->data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002917
Peter Zijlstraef607772010-05-18 10:50:41 +02002918 preempt_disable();
Peter Zijlstrafa588152010-05-18 10:54:20 +02002919 local_inc(&data->nest);
Peter Zijlstra6d1acfd2010-05-18 11:12:48 +02002920 handle->wakeup = local_read(&data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002921}
2922
Peter Zijlstraef607772010-05-18 10:50:41 +02002923static void perf_output_put_handle(struct perf_output_handle *handle)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002924{
2925 struct perf_mmap_data *data = handle->data;
2926 unsigned long head;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002927
2928again:
Peter Zijlstrafa588152010-05-18 10:54:20 +02002929 head = local_read(&data->head);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002930
2931 /*
Peter Zijlstraef607772010-05-18 10:50:41 +02002932 * IRQ/NMI can happen here, which means we can miss a head update.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002933 */
2934
Peter Zijlstrafa588152010-05-18 10:54:20 +02002935 if (!local_dec_and_test(&data->nest))
Frederic Weisbeckeracd35a42010-05-20 21:28:34 +02002936 goto out;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002937
2938 /*
Peter Zijlstraef607772010-05-18 10:50:41 +02002939 * Publish the known good head. Rely on the full barrier implied
2940 * by atomic_dec_and_test() order the data->head read and this
2941 * write.
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002942 */
Peter Zijlstraef607772010-05-18 10:50:41 +02002943 data->user_page->data_head = head;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002944
Peter Zijlstraef607772010-05-18 10:50:41 +02002945 /*
2946 * Now check if we missed an update, rely on the (compiler)
2947 * barrier in atomic_dec_and_test() to re-read data->head.
2948 */
Peter Zijlstrafa588152010-05-18 10:54:20 +02002949 if (unlikely(head != local_read(&data->head))) {
2950 local_inc(&data->nest);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002951 goto again;
2952 }
2953
Peter Zijlstra6d1acfd2010-05-18 11:12:48 +02002954 if (handle->wakeup != local_read(&data->wakeup))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002955 perf_output_wakeup(handle);
Peter Zijlstraef607772010-05-18 10:50:41 +02002956
Frederic Weisbeckeracd35a42010-05-20 21:28:34 +02002957 out:
Peter Zijlstraef607772010-05-18 10:50:41 +02002958 preempt_enable();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002959}
2960
2961void perf_output_copy(struct perf_output_handle *handle,
2962 const void *buf, unsigned int len)
2963{
2964 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002965 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002966 unsigned int size;
2967 void **pages;
2968
2969 offset = handle->offset;
2970 pages_mask = handle->data->nr_pages - 1;
2971 pages = handle->data->data_pages;
2972
2973 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002974 unsigned long page_offset;
2975 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002976 int nr;
2977
2978 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002979 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2980 page_offset = offset & (page_size - 1);
2981 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002982
2983 memcpy(pages[nr] + page_offset, buf, size);
2984
2985 len -= size;
2986 buf += size;
2987 offset += size;
2988 } while (len);
2989
2990 handle->offset = offset;
2991
2992 /*
2993 * Check we didn't copy past our reservation window, taking the
2994 * possible unsigned int wrap into account.
2995 */
2996 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2997}
2998
2999int perf_output_begin(struct perf_output_handle *handle,
3000 struct perf_event *event, unsigned int size,
3001 int nmi, int sample)
3002{
3003 struct perf_event *output_event;
3004 struct perf_mmap_data *data;
3005 unsigned long tail, offset, head;
3006 int have_lost;
3007 struct {
3008 struct perf_event_header header;
3009 u64 id;
3010 u64 lost;
3011 } lost_event;
3012
3013 rcu_read_lock();
3014 /*
3015 * For inherited events we send all the output towards the parent.
3016 */
3017 if (event->parent)
3018 event = event->parent;
3019
3020 output_event = rcu_dereference(event->output);
3021 if (output_event)
3022 event = output_event;
3023
3024 data = rcu_dereference(event->data);
3025 if (!data)
3026 goto out;
3027
3028 handle->data = data;
3029 handle->event = event;
3030 handle->nmi = nmi;
3031 handle->sample = sample;
3032
3033 if (!data->nr_pages)
Stephane Eranian00d1d0b2010-05-17 12:46:01 +02003034 goto out;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003035
Peter Zijlstrafa588152010-05-18 10:54:20 +02003036 have_lost = local_read(&data->lost);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003037 if (have_lost)
3038 size += sizeof(lost_event);
3039
Peter Zijlstraef607772010-05-18 10:50:41 +02003040 perf_output_get_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003041
3042 do {
3043 /*
3044 * Userspace could choose to issue a mb() before updating the
3045 * tail pointer. So that all reads will be completed before the
3046 * write is issued.
3047 */
3048 tail = ACCESS_ONCE(data->user_page->data_tail);
3049 smp_rmb();
Peter Zijlstrafa588152010-05-18 10:54:20 +02003050 offset = head = local_read(&data->head);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003051 head += size;
3052 if (unlikely(!perf_output_space(data, tail, offset, head)))
3053 goto fail;
Peter Zijlstrafa588152010-05-18 10:54:20 +02003054 } while (local_cmpxchg(&data->head, offset, head) != offset);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003055
3056 handle->offset = offset;
3057 handle->head = head;
3058
3059 if (head - tail > data->watermark)
Peter Zijlstrafa588152010-05-18 10:54:20 +02003060 local_inc(&data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003061
3062 if (have_lost) {
3063 lost_event.header.type = PERF_RECORD_LOST;
3064 lost_event.header.misc = 0;
3065 lost_event.header.size = sizeof(lost_event);
3066 lost_event.id = event->id;
Peter Zijlstrafa588152010-05-18 10:54:20 +02003067 lost_event.lost = local_xchg(&data->lost, 0);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003068
3069 perf_output_put(handle, lost_event);
3070 }
3071
3072 return 0;
3073
3074fail:
Peter Zijlstrafa588152010-05-18 10:54:20 +02003075 local_inc(&data->lost);
Peter Zijlstraef607772010-05-18 10:50:41 +02003076 perf_output_put_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003077out:
3078 rcu_read_unlock();
3079
3080 return -ENOSPC;
3081}
3082
3083void perf_output_end(struct perf_output_handle *handle)
3084{
3085 struct perf_event *event = handle->event;
3086 struct perf_mmap_data *data = handle->data;
3087
3088 int wakeup_events = event->attr.wakeup_events;
3089
3090 if (handle->sample && wakeup_events) {
Peter Zijlstrafa588152010-05-18 10:54:20 +02003091 int events = local_inc_return(&data->events);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003092 if (events >= wakeup_events) {
Peter Zijlstrafa588152010-05-18 10:54:20 +02003093 local_sub(wakeup_events, &data->events);
3094 local_inc(&data->wakeup);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003095 }
3096 }
3097
Peter Zijlstraef607772010-05-18 10:50:41 +02003098 perf_output_put_handle(handle);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003099 rcu_read_unlock();
3100}
3101
3102static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3103{
3104 /*
3105 * only top level events have the pid namespace they were created in
3106 */
3107 if (event->parent)
3108 event = event->parent;
3109
3110 return task_tgid_nr_ns(p, event->ns);
3111}
3112
3113static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3114{
3115 /*
3116 * only top level events have the pid namespace they were created in
3117 */
3118 if (event->parent)
3119 event = event->parent;
3120
3121 return task_pid_nr_ns(p, event->ns);
3122}
3123
3124static void perf_output_read_one(struct perf_output_handle *handle,
3125 struct perf_event *event)
3126{
3127 u64 read_format = event->attr.read_format;
3128 u64 values[4];
3129 int n = 0;
3130
3131 values[n++] = atomic64_read(&event->count);
3132 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3133 values[n++] = event->total_time_enabled +
3134 atomic64_read(&event->child_total_time_enabled);
3135 }
3136 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3137 values[n++] = event->total_time_running +
3138 atomic64_read(&event->child_total_time_running);
3139 }
3140 if (read_format & PERF_FORMAT_ID)
3141 values[n++] = primary_event_id(event);
3142
3143 perf_output_copy(handle, values, n * sizeof(u64));
3144}
3145
3146/*
3147 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3148 */
3149static void perf_output_read_group(struct perf_output_handle *handle,
3150 struct perf_event *event)
3151{
3152 struct perf_event *leader = event->group_leader, *sub;
3153 u64 read_format = event->attr.read_format;
3154 u64 values[5];
3155 int n = 0;
3156
3157 values[n++] = 1 + leader->nr_siblings;
3158
3159 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3160 values[n++] = leader->total_time_enabled;
3161
3162 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3163 values[n++] = leader->total_time_running;
3164
3165 if (leader != event)
3166 leader->pmu->read(leader);
3167
3168 values[n++] = atomic64_read(&leader->count);
3169 if (read_format & PERF_FORMAT_ID)
3170 values[n++] = primary_event_id(leader);
3171
3172 perf_output_copy(handle, values, n * sizeof(u64));
3173
3174 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3175 n = 0;
3176
3177 if (sub != event)
3178 sub->pmu->read(sub);
3179
3180 values[n++] = atomic64_read(&sub->count);
3181 if (read_format & PERF_FORMAT_ID)
3182 values[n++] = primary_event_id(sub);
3183
3184 perf_output_copy(handle, values, n * sizeof(u64));
3185 }
3186}
3187
3188static void perf_output_read(struct perf_output_handle *handle,
3189 struct perf_event *event)
3190{
3191 if (event->attr.read_format & PERF_FORMAT_GROUP)
3192 perf_output_read_group(handle, event);
3193 else
3194 perf_output_read_one(handle, event);
3195}
3196
3197void perf_output_sample(struct perf_output_handle *handle,
3198 struct perf_event_header *header,
3199 struct perf_sample_data *data,
3200 struct perf_event *event)
3201{
3202 u64 sample_type = data->type;
3203
3204 perf_output_put(handle, *header);
3205
3206 if (sample_type & PERF_SAMPLE_IP)
3207 perf_output_put(handle, data->ip);
3208
3209 if (sample_type & PERF_SAMPLE_TID)
3210 perf_output_put(handle, data->tid_entry);
3211
3212 if (sample_type & PERF_SAMPLE_TIME)
3213 perf_output_put(handle, data->time);
3214
3215 if (sample_type & PERF_SAMPLE_ADDR)
3216 perf_output_put(handle, data->addr);
3217
3218 if (sample_type & PERF_SAMPLE_ID)
3219 perf_output_put(handle, data->id);
3220
3221 if (sample_type & PERF_SAMPLE_STREAM_ID)
3222 perf_output_put(handle, data->stream_id);
3223
3224 if (sample_type & PERF_SAMPLE_CPU)
3225 perf_output_put(handle, data->cpu_entry);
3226
3227 if (sample_type & PERF_SAMPLE_PERIOD)
3228 perf_output_put(handle, data->period);
3229
3230 if (sample_type & PERF_SAMPLE_READ)
3231 perf_output_read(handle, event);
3232
3233 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3234 if (data->callchain) {
3235 int size = 1;
3236
3237 if (data->callchain)
3238 size += data->callchain->nr;
3239
3240 size *= sizeof(u64);
3241
3242 perf_output_copy(handle, data->callchain, size);
3243 } else {
3244 u64 nr = 0;
3245 perf_output_put(handle, nr);
3246 }
3247 }
3248
3249 if (sample_type & PERF_SAMPLE_RAW) {
3250 if (data->raw) {
3251 perf_output_put(handle, data->raw->size);
3252 perf_output_copy(handle, data->raw->data,
3253 data->raw->size);
3254 } else {
3255 struct {
3256 u32 size;
3257 u32 data;
3258 } raw = {
3259 .size = sizeof(u32),
3260 .data = 0,
3261 };
3262 perf_output_put(handle, raw);
3263 }
3264 }
3265}
3266
3267void perf_prepare_sample(struct perf_event_header *header,
3268 struct perf_sample_data *data,
3269 struct perf_event *event,
3270 struct pt_regs *regs)
3271{
3272 u64 sample_type = event->attr.sample_type;
3273
3274 data->type = sample_type;
3275
3276 header->type = PERF_RECORD_SAMPLE;
3277 header->size = sizeof(*header);
3278
3279 header->misc = 0;
3280 header->misc |= perf_misc_flags(regs);
3281
3282 if (sample_type & PERF_SAMPLE_IP) {
3283 data->ip = perf_instruction_pointer(regs);
3284
3285 header->size += sizeof(data->ip);
3286 }
3287
3288 if (sample_type & PERF_SAMPLE_TID) {
3289 /* namespace issues */
3290 data->tid_entry.pid = perf_event_pid(event, current);
3291 data->tid_entry.tid = perf_event_tid(event, current);
3292
3293 header->size += sizeof(data->tid_entry);
3294 }
3295
3296 if (sample_type & PERF_SAMPLE_TIME) {
3297 data->time = perf_clock();
3298
3299 header->size += sizeof(data->time);
3300 }
3301
3302 if (sample_type & PERF_SAMPLE_ADDR)
3303 header->size += sizeof(data->addr);
3304
3305 if (sample_type & PERF_SAMPLE_ID) {
3306 data->id = primary_event_id(event);
3307
3308 header->size += sizeof(data->id);
3309 }
3310
3311 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3312 data->stream_id = event->id;
3313
3314 header->size += sizeof(data->stream_id);
3315 }
3316
3317 if (sample_type & PERF_SAMPLE_CPU) {
3318 data->cpu_entry.cpu = raw_smp_processor_id();
3319 data->cpu_entry.reserved = 0;
3320
3321 header->size += sizeof(data->cpu_entry);
3322 }
3323
3324 if (sample_type & PERF_SAMPLE_PERIOD)
3325 header->size += sizeof(data->period);
3326
3327 if (sample_type & PERF_SAMPLE_READ)
3328 header->size += perf_event_read_size(event);
3329
3330 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3331 int size = 1;
3332
3333 data->callchain = perf_callchain(regs);
3334
3335 if (data->callchain)
3336 size += data->callchain->nr;
3337
3338 header->size += size * sizeof(u64);
3339 }
3340
3341 if (sample_type & PERF_SAMPLE_RAW) {
3342 int size = sizeof(u32);
3343
3344 if (data->raw)
3345 size += data->raw->size;
3346 else
3347 size += sizeof(u32);
3348
3349 WARN_ON_ONCE(size & (sizeof(u64)-1));
3350 header->size += size;
3351 }
3352}
3353
3354static void perf_event_output(struct perf_event *event, int nmi,
3355 struct perf_sample_data *data,
3356 struct pt_regs *regs)
3357{
3358 struct perf_output_handle handle;
3359 struct perf_event_header header;
3360
3361 perf_prepare_sample(&header, data, event, regs);
3362
3363 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3364 return;
3365
3366 perf_output_sample(&handle, &header, data, event);
3367
3368 perf_output_end(&handle);
3369}
3370
3371/*
3372 * read event_id
3373 */
3374
3375struct perf_read_event {
3376 struct perf_event_header header;
3377
3378 u32 pid;
3379 u32 tid;
3380};
3381
3382static void
3383perf_event_read_event(struct perf_event *event,
3384 struct task_struct *task)
3385{
3386 struct perf_output_handle handle;
3387 struct perf_read_event read_event = {
3388 .header = {
3389 .type = PERF_RECORD_READ,
3390 .misc = 0,
3391 .size = sizeof(read_event) + perf_event_read_size(event),
3392 },
3393 .pid = perf_event_pid(event, task),
3394 .tid = perf_event_tid(event, task),
3395 };
3396 int ret;
3397
3398 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3399 if (ret)
3400 return;
3401
3402 perf_output_put(&handle, read_event);
3403 perf_output_read(&handle, event);
3404
3405 perf_output_end(&handle);
3406}
3407
3408/*
3409 * task tracking -- fork/exit
3410 *
3411 * enabled by: attr.comm | attr.mmap | attr.task
3412 */
3413
3414struct perf_task_event {
3415 struct task_struct *task;
3416 struct perf_event_context *task_ctx;
3417
3418 struct {
3419 struct perf_event_header header;
3420
3421 u32 pid;
3422 u32 ppid;
3423 u32 tid;
3424 u32 ptid;
3425 u64 time;
3426 } event_id;
3427};
3428
3429static void perf_event_task_output(struct perf_event *event,
3430 struct perf_task_event *task_event)
3431{
3432 struct perf_output_handle handle;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003433 struct task_struct *task = task_event->task;
Mike Galbraith8bb39f92010-03-26 11:11:33 +01003434 int size, ret;
3435
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003436 size = task_event->event_id.header.size;
3437 ret = perf_output_begin(&handle, event, size, 0, 0);
3438
Peter Zijlstraef607772010-05-18 10:50:41 +02003439 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003440 return;
3441
3442 task_event->event_id.pid = perf_event_pid(event, task);
3443 task_event->event_id.ppid = perf_event_pid(event, current);
3444
3445 task_event->event_id.tid = perf_event_tid(event, task);
3446 task_event->event_id.ptid = perf_event_tid(event, current);
3447
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003448 perf_output_put(&handle, task_event->event_id);
3449
3450 perf_output_end(&handle);
3451}
3452
3453static int perf_event_task_match(struct perf_event *event)
3454{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003455 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003456 return 0;
3457
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003458 if (event->cpu != -1 && event->cpu != smp_processor_id())
3459 return 0;
3460
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003461 if (event->attr.comm || event->attr.mmap || event->attr.task)
3462 return 1;
3463
3464 return 0;
3465}
3466
3467static void perf_event_task_ctx(struct perf_event_context *ctx,
3468 struct perf_task_event *task_event)
3469{
3470 struct perf_event *event;
3471
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003472 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3473 if (perf_event_task_match(event))
3474 perf_event_task_output(event, task_event);
3475 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003476}
3477
3478static void perf_event_task_event(struct perf_task_event *task_event)
3479{
3480 struct perf_cpu_context *cpuctx;
3481 struct perf_event_context *ctx = task_event->task_ctx;
3482
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003483 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003484 cpuctx = &get_cpu_var(perf_cpu_context);
3485 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003486 if (!ctx)
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003487 ctx = rcu_dereference(current->perf_event_ctxp);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003488 if (ctx)
3489 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003490 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003491 rcu_read_unlock();
3492}
3493
3494static void perf_event_task(struct task_struct *task,
3495 struct perf_event_context *task_ctx,
3496 int new)
3497{
3498 struct perf_task_event task_event;
3499
3500 if (!atomic_read(&nr_comm_events) &&
3501 !atomic_read(&nr_mmap_events) &&
3502 !atomic_read(&nr_task_events))
3503 return;
3504
3505 task_event = (struct perf_task_event){
3506 .task = task,
3507 .task_ctx = task_ctx,
3508 .event_id = {
3509 .header = {
3510 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3511 .misc = 0,
3512 .size = sizeof(task_event.event_id),
3513 },
3514 /* .pid */
3515 /* .ppid */
3516 /* .tid */
3517 /* .ptid */
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003518 .time = perf_clock(),
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003519 },
3520 };
3521
3522 perf_event_task_event(&task_event);
3523}
3524
3525void perf_event_fork(struct task_struct *task)
3526{
3527 perf_event_task(task, NULL, 1);
3528}
3529
3530/*
3531 * comm tracking
3532 */
3533
3534struct perf_comm_event {
3535 struct task_struct *task;
3536 char *comm;
3537 int comm_size;
3538
3539 struct {
3540 struct perf_event_header header;
3541
3542 u32 pid;
3543 u32 tid;
3544 } event_id;
3545};
3546
3547static void perf_event_comm_output(struct perf_event *event,
3548 struct perf_comm_event *comm_event)
3549{
3550 struct perf_output_handle handle;
3551 int size = comm_event->event_id.header.size;
3552 int ret = perf_output_begin(&handle, event, size, 0, 0);
3553
3554 if (ret)
3555 return;
3556
3557 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3558 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3559
3560 perf_output_put(&handle, comm_event->event_id);
3561 perf_output_copy(&handle, comm_event->comm,
3562 comm_event->comm_size);
3563 perf_output_end(&handle);
3564}
3565
3566static int perf_event_comm_match(struct perf_event *event)
3567{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003568 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003569 return 0;
3570
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003571 if (event->cpu != -1 && event->cpu != smp_processor_id())
3572 return 0;
3573
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003574 if (event->attr.comm)
3575 return 1;
3576
3577 return 0;
3578}
3579
3580static void perf_event_comm_ctx(struct perf_event_context *ctx,
3581 struct perf_comm_event *comm_event)
3582{
3583 struct perf_event *event;
3584
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003585 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3586 if (perf_event_comm_match(event))
3587 perf_event_comm_output(event, comm_event);
3588 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003589}
3590
3591static void perf_event_comm_event(struct perf_comm_event *comm_event)
3592{
3593 struct perf_cpu_context *cpuctx;
3594 struct perf_event_context *ctx;
3595 unsigned int size;
3596 char comm[TASK_COMM_LEN];
3597
3598 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003599 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003600 size = ALIGN(strlen(comm)+1, sizeof(u64));
3601
3602 comm_event->comm = comm;
3603 comm_event->comm_size = size;
3604
3605 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3606
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003607 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003608 cpuctx = &get_cpu_var(perf_cpu_context);
3609 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003610 ctx = rcu_dereference(current->perf_event_ctxp);
3611 if (ctx)
3612 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003613 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003614 rcu_read_unlock();
3615}
3616
3617void perf_event_comm(struct task_struct *task)
3618{
3619 struct perf_comm_event comm_event;
3620
3621 if (task->perf_event_ctxp)
3622 perf_event_enable_on_exec(task);
3623
3624 if (!atomic_read(&nr_comm_events))
3625 return;
3626
3627 comm_event = (struct perf_comm_event){
3628 .task = task,
3629 /* .comm */
3630 /* .comm_size */
3631 .event_id = {
3632 .header = {
3633 .type = PERF_RECORD_COMM,
3634 .misc = 0,
3635 /* .size */
3636 },
3637 /* .pid */
3638 /* .tid */
3639 },
3640 };
3641
3642 perf_event_comm_event(&comm_event);
3643}
3644
3645/*
3646 * mmap tracking
3647 */
3648
3649struct perf_mmap_event {
3650 struct vm_area_struct *vma;
3651
3652 const char *file_name;
3653 int file_size;
3654
3655 struct {
3656 struct perf_event_header header;
3657
3658 u32 pid;
3659 u32 tid;
3660 u64 start;
3661 u64 len;
3662 u64 pgoff;
3663 } event_id;
3664};
3665
3666static void perf_event_mmap_output(struct perf_event *event,
3667 struct perf_mmap_event *mmap_event)
3668{
3669 struct perf_output_handle handle;
3670 int size = mmap_event->event_id.header.size;
3671 int ret = perf_output_begin(&handle, event, size, 0, 0);
3672
3673 if (ret)
3674 return;
3675
3676 mmap_event->event_id.pid = perf_event_pid(event, current);
3677 mmap_event->event_id.tid = perf_event_tid(event, current);
3678
3679 perf_output_put(&handle, mmap_event->event_id);
3680 perf_output_copy(&handle, mmap_event->file_name,
3681 mmap_event->file_size);
3682 perf_output_end(&handle);
3683}
3684
3685static int perf_event_mmap_match(struct perf_event *event,
3686 struct perf_mmap_event *mmap_event)
3687{
Peter Zijlstra6f93d0a2010-02-14 11:12:04 +01003688 if (event->state < PERF_EVENT_STATE_INACTIVE)
Peter Zijlstra22e19082010-01-18 09:12:32 +01003689 return 0;
3690
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003691 if (event->cpu != -1 && event->cpu != smp_processor_id())
3692 return 0;
3693
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003694 if (event->attr.mmap)
3695 return 1;
3696
3697 return 0;
3698}
3699
3700static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3701 struct perf_mmap_event *mmap_event)
3702{
3703 struct perf_event *event;
3704
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003705 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3706 if (perf_event_mmap_match(event, mmap_event))
3707 perf_event_mmap_output(event, mmap_event);
3708 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003709}
3710
3711static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3712{
3713 struct perf_cpu_context *cpuctx;
3714 struct perf_event_context *ctx;
3715 struct vm_area_struct *vma = mmap_event->vma;
3716 struct file *file = vma->vm_file;
3717 unsigned int size;
3718 char tmp[16];
3719 char *buf = NULL;
3720 const char *name;
3721
3722 memset(tmp, 0, sizeof(tmp));
3723
3724 if (file) {
3725 /*
3726 * d_path works from the end of the buffer backwards, so we
3727 * need to add enough zero bytes after the string to handle
3728 * the 64bit alignment we do later.
3729 */
3730 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3731 if (!buf) {
3732 name = strncpy(tmp, "//enomem", sizeof(tmp));
3733 goto got_name;
3734 }
3735 name = d_path(&file->f_path, buf, PATH_MAX);
3736 if (IS_ERR(name)) {
3737 name = strncpy(tmp, "//toolong", sizeof(tmp));
3738 goto got_name;
3739 }
3740 } else {
3741 if (arch_vma_name(mmap_event->vma)) {
3742 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3743 sizeof(tmp));
3744 goto got_name;
3745 }
3746
3747 if (!vma->vm_mm) {
3748 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3749 goto got_name;
3750 }
3751
3752 name = strncpy(tmp, "//anon", sizeof(tmp));
3753 goto got_name;
3754 }
3755
3756got_name:
3757 size = ALIGN(strlen(name)+1, sizeof(u64));
3758
3759 mmap_event->file_name = name;
3760 mmap_event->file_size = size;
3761
3762 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3763
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003764 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003765 cpuctx = &get_cpu_var(perf_cpu_context);
3766 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003767 ctx = rcu_dereference(current->perf_event_ctxp);
3768 if (ctx)
3769 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003770 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003771 rcu_read_unlock();
3772
3773 kfree(buf);
3774}
3775
3776void __perf_event_mmap(struct vm_area_struct *vma)
3777{
3778 struct perf_mmap_event mmap_event;
3779
3780 if (!atomic_read(&nr_mmap_events))
3781 return;
3782
3783 mmap_event = (struct perf_mmap_event){
3784 .vma = vma,
3785 /* .file_name */
3786 /* .file_size */
3787 .event_id = {
3788 .header = {
3789 .type = PERF_RECORD_MMAP,
Zhang, Yanmin39447b32010-04-19 13:32:41 +08003790 .misc = PERF_RECORD_MISC_USER,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003791 /* .size */
3792 },
3793 /* .pid */
3794 /* .tid */
3795 .start = vma->vm_start,
3796 .len = vma->vm_end - vma->vm_start,
Peter Zijlstra3a0304e2010-02-26 10:33:41 +01003797 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003798 },
3799 };
3800
3801 perf_event_mmap_event(&mmap_event);
3802}
3803
3804/*
3805 * IRQ throttle logging
3806 */
3807
3808static void perf_log_throttle(struct perf_event *event, int enable)
3809{
3810 struct perf_output_handle handle;
3811 int ret;
3812
3813 struct {
3814 struct perf_event_header header;
3815 u64 time;
3816 u64 id;
3817 u64 stream_id;
3818 } throttle_event = {
3819 .header = {
3820 .type = PERF_RECORD_THROTTLE,
3821 .misc = 0,
3822 .size = sizeof(throttle_event),
3823 },
3824 .time = perf_clock(),
3825 .id = primary_event_id(event),
3826 .stream_id = event->id,
3827 };
3828
3829 if (enable)
3830 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3831
3832 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3833 if (ret)
3834 return;
3835
3836 perf_output_put(&handle, throttle_event);
3837 perf_output_end(&handle);
3838}
3839
3840/*
3841 * Generic event overflow handling, sampling.
3842 */
3843
3844static int __perf_event_overflow(struct perf_event *event, int nmi,
3845 int throttle, struct perf_sample_data *data,
3846 struct pt_regs *regs)
3847{
3848 int events = atomic_read(&event->event_limit);
3849 struct hw_perf_event *hwc = &event->hw;
3850 int ret = 0;
3851
3852 throttle = (throttle && event->pmu->unthrottle != NULL);
3853
3854 if (!throttle) {
3855 hwc->interrupts++;
3856 } else {
3857 if (hwc->interrupts != MAX_INTERRUPTS) {
3858 hwc->interrupts++;
3859 if (HZ * hwc->interrupts >
3860 (u64)sysctl_perf_event_sample_rate) {
3861 hwc->interrupts = MAX_INTERRUPTS;
3862 perf_log_throttle(event, 0);
3863 ret = 1;
3864 }
3865 } else {
3866 /*
3867 * Keep re-disabling events even though on the previous
3868 * pass we disabled it - just in case we raced with a
3869 * sched-in and the event got enabled again:
3870 */
3871 ret = 1;
3872 }
3873 }
3874
3875 if (event->attr.freq) {
3876 u64 now = perf_clock();
Peter Zijlstraabd50712010-01-26 18:50:16 +01003877 s64 delta = now - hwc->freq_time_stamp;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003878
Peter Zijlstraabd50712010-01-26 18:50:16 +01003879 hwc->freq_time_stamp = now;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003880
Peter Zijlstraabd50712010-01-26 18:50:16 +01003881 if (delta > 0 && delta < 2*TICK_NSEC)
3882 perf_adjust_period(event, delta, hwc->last_period);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003883 }
3884
3885 /*
3886 * XXX event_limit might not quite work as expected on inherited
3887 * events
3888 */
3889
3890 event->pending_kill = POLL_IN;
3891 if (events && atomic_dec_and_test(&event->event_limit)) {
3892 ret = 1;
3893 event->pending_kill = POLL_HUP;
3894 if (nmi) {
3895 event->pending_disable = 1;
3896 perf_pending_queue(&event->pending,
3897 perf_pending_event);
3898 } else
3899 perf_event_disable(event);
3900 }
3901
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003902 if (event->overflow_handler)
3903 event->overflow_handler(event, nmi, data, regs);
3904 else
3905 perf_event_output(event, nmi, data, regs);
3906
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003907 return ret;
3908}
3909
3910int perf_event_overflow(struct perf_event *event, int nmi,
3911 struct perf_sample_data *data,
3912 struct pt_regs *regs)
3913{
3914 return __perf_event_overflow(event, nmi, 1, data, regs);
3915}
3916
3917/*
3918 * Generic software event infrastructure
3919 */
3920
3921/*
3922 * We directly increment event->count and keep a second value in
3923 * event->hw.period_left to count intervals. This period event
3924 * is kept in the range [-sample_period, 0] so that we can use the
3925 * sign as trigger.
3926 */
3927
3928static u64 perf_swevent_set_period(struct perf_event *event)
3929{
3930 struct hw_perf_event *hwc = &event->hw;
3931 u64 period = hwc->last_period;
3932 u64 nr, offset;
3933 s64 old, val;
3934
3935 hwc->last_period = hwc->sample_period;
3936
3937again:
3938 old = val = atomic64_read(&hwc->period_left);
3939 if (val < 0)
3940 return 0;
3941
3942 nr = div64_u64(period + val, period);
3943 offset = nr * period;
3944 val -= offset;
3945 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3946 goto again;
3947
3948 return nr;
3949}
3950
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003951static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003952 int nmi, struct perf_sample_data *data,
3953 struct pt_regs *regs)
3954{
3955 struct hw_perf_event *hwc = &event->hw;
3956 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003957
3958 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003959 if (!overflow)
3960 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003961
3962 if (hwc->interrupts == MAX_INTERRUPTS)
3963 return;
3964
3965 for (; overflow; overflow--) {
3966 if (__perf_event_overflow(event, nmi, throttle,
3967 data, regs)) {
3968 /*
3969 * We inhibit the overflow from happening when
3970 * hwc->interrupts == MAX_INTERRUPTS.
3971 */
3972 break;
3973 }
3974 throttle = 1;
3975 }
3976}
3977
3978static void perf_swevent_unthrottle(struct perf_event *event)
3979{
3980 /*
3981 * Nothing to do, we already reset hwc->interrupts.
3982 */
3983}
3984
3985static void perf_swevent_add(struct perf_event *event, u64 nr,
3986 int nmi, struct perf_sample_data *data,
3987 struct pt_regs *regs)
3988{
3989 struct hw_perf_event *hwc = &event->hw;
3990
3991 atomic64_add(nr, &event->count);
3992
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003993 if (!regs)
3994 return;
3995
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003996 if (!hwc->sample_period)
3997 return;
3998
3999 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4000 return perf_swevent_overflow(event, 1, nmi, data, regs);
4001
4002 if (atomic64_add_negative(nr, &hwc->period_left))
4003 return;
4004
4005 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004006}
4007
Li Zefan6fb29152009-10-15 11:21:42 +08004008static int perf_tp_event_match(struct perf_event *event,
4009 struct perf_sample_data *data);
4010
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004011static int perf_exclude_event(struct perf_event *event,
4012 struct pt_regs *regs)
4013{
4014 if (regs) {
4015 if (event->attr.exclude_user && user_mode(regs))
4016 return 1;
4017
4018 if (event->attr.exclude_kernel && !user_mode(regs))
4019 return 1;
4020 }
4021
4022 return 0;
4023}
4024
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004025static int perf_swevent_match(struct perf_event *event,
4026 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08004027 u32 event_id,
4028 struct perf_sample_data *data,
4029 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004030{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004031 if (event->attr.type != type)
4032 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004033
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004034 if (event->attr.config != event_id)
4035 return 0;
4036
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004037 if (perf_exclude_event(event, regs))
4038 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004039
Li Zefan6fb29152009-10-15 11:21:42 +08004040 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4041 !perf_tp_event_match(event, data))
4042 return 0;
4043
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004044 return 1;
4045}
4046
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004047static inline u64 swevent_hash(u64 type, u32 event_id)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004048{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004049 u64 val = event_id | (type << 32);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004050
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004051 return hash_64(val, SWEVENT_HLIST_BITS);
4052}
4053
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004054static inline struct hlist_head *
4055__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004056{
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004057 u64 hash = swevent_hash(type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004058
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004059 return &hlist->heads[hash];
4060}
4061
4062/* For the read side: events when they trigger */
4063static inline struct hlist_head *
4064find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4065{
4066 struct swevent_hlist *hlist;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004067
4068 hlist = rcu_dereference(ctx->swevent_hlist);
4069 if (!hlist)
4070 return NULL;
4071
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004072 return __find_swevent_head(hlist, type, event_id);
4073}
4074
4075/* For the event head insertion and removal in the hlist */
4076static inline struct hlist_head *
4077find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4078{
4079 struct swevent_hlist *hlist;
4080 u32 event_id = event->attr.config;
4081 u64 type = event->attr.type;
4082
4083 /*
4084 * Event scheduling is always serialized against hlist allocation
4085 * and release. Which makes the protected version suitable here.
4086 * The context lock guarantees that.
4087 */
4088 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4089 lockdep_is_held(&event->ctx->lock));
4090 if (!hlist)
4091 return NULL;
4092
4093 return __find_swevent_head(hlist, type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004094}
4095
4096static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4097 u64 nr, int nmi,
4098 struct perf_sample_data *data,
4099 struct pt_regs *regs)
4100{
4101 struct perf_cpu_context *cpuctx;
4102 struct perf_event *event;
4103 struct hlist_node *node;
4104 struct hlist_head *head;
4105
4106 cpuctx = &__get_cpu_var(perf_cpu_context);
4107
4108 rcu_read_lock();
4109
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004110 head = find_swevent_head_rcu(cpuctx, type, event_id);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004111
4112 if (!head)
4113 goto end;
4114
4115 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08004116 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004117 perf_swevent_add(event, nr, nmi, data, regs);
4118 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004119end:
4120 rcu_read_unlock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004121}
4122
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004123int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004124{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004125 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4126 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004127
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004128 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004129 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004130 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004131 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004132 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004133 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004134 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004135 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004136
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004137 if (cpuctx->recursion[rctx]) {
4138 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004139 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004140 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004141
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004142 cpuctx->recursion[rctx]++;
4143 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004144
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004145 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004146}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004147EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004148
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004149void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004150{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004151 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4152 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004153 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004154 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004155}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004156EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004157
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004158
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004159void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4160 struct pt_regs *regs, u64 addr)
4161{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004162 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004163 int rctx;
4164
4165 rctx = perf_swevent_get_recursion_context();
4166 if (rctx < 0)
4167 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004168
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004169 perf_sample_data_init(&data, addr);
Ingo Molnara4234bf2009-11-23 10:57:59 +01004170
4171 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004172
4173 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004174}
4175
4176static void perf_swevent_read(struct perf_event *event)
4177{
4178}
4179
4180static int perf_swevent_enable(struct perf_event *event)
4181{
4182 struct hw_perf_event *hwc = &event->hw;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004183 struct perf_cpu_context *cpuctx;
4184 struct hlist_head *head;
4185
4186 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004187
4188 if (hwc->sample_period) {
4189 hwc->last_period = hwc->sample_period;
4190 perf_swevent_set_period(event);
4191 }
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004192
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004193 head = find_swevent_head(cpuctx, event);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004194 if (WARN_ON_ONCE(!head))
4195 return -EINVAL;
4196
4197 hlist_add_head_rcu(&event->hlist_entry, head);
4198
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004199 return 0;
4200}
4201
4202static void perf_swevent_disable(struct perf_event *event)
4203{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004204 hlist_del_rcu(&event->hlist_entry);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004205}
4206
4207static const struct pmu perf_ops_generic = {
4208 .enable = perf_swevent_enable,
4209 .disable = perf_swevent_disable,
4210 .read = perf_swevent_read,
4211 .unthrottle = perf_swevent_unthrottle,
4212};
4213
4214/*
4215 * hrtimer based swevent callback
4216 */
4217
4218static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4219{
4220 enum hrtimer_restart ret = HRTIMER_RESTART;
4221 struct perf_sample_data data;
4222 struct pt_regs *regs;
4223 struct perf_event *event;
4224 u64 period;
4225
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004226 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004227 event->pmu->read(event);
4228
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004229 perf_sample_data_init(&data, 0);
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004230 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004231 regs = get_irq_regs();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004232
Frederic Weisbeckerdf8290b2010-04-09 00:28:14 +02004233 if (regs && !perf_exclude_event(event, regs)) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004234 if (!(event->attr.exclude_idle && current->pid == 0))
4235 if (perf_event_overflow(event, 0, &data, regs))
4236 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004237 }
4238
4239 period = max_t(u64, 10000, event->hw.sample_period);
4240 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4241
4242 return ret;
4243}
4244
Soeren Sandmann721a6692009-09-15 14:33:08 +02004245static void perf_swevent_start_hrtimer(struct perf_event *event)
4246{
4247 struct hw_perf_event *hwc = &event->hw;
4248
4249 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4250 hwc->hrtimer.function = perf_swevent_hrtimer;
4251 if (hwc->sample_period) {
4252 u64 period;
4253
4254 if (hwc->remaining) {
4255 if (hwc->remaining < 0)
4256 period = 10000;
4257 else
4258 period = hwc->remaining;
4259 hwc->remaining = 0;
4260 } else {
4261 period = max_t(u64, 10000, hwc->sample_period);
4262 }
4263 __hrtimer_start_range_ns(&hwc->hrtimer,
4264 ns_to_ktime(period), 0,
4265 HRTIMER_MODE_REL, 0);
4266 }
4267}
4268
4269static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4270{
4271 struct hw_perf_event *hwc = &event->hw;
4272
4273 if (hwc->sample_period) {
4274 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4275 hwc->remaining = ktime_to_ns(remaining);
4276
4277 hrtimer_cancel(&hwc->hrtimer);
4278 }
4279}
4280
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004281/*
4282 * Software event: cpu wall time clock
4283 */
4284
4285static void cpu_clock_perf_event_update(struct perf_event *event)
4286{
4287 int cpu = raw_smp_processor_id();
4288 s64 prev;
4289 u64 now;
4290
4291 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004292 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004293 atomic64_add(now - prev, &event->count);
4294}
4295
4296static int cpu_clock_perf_event_enable(struct perf_event *event)
4297{
4298 struct hw_perf_event *hwc = &event->hw;
4299 int cpu = raw_smp_processor_id();
4300
4301 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004302 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004303
4304 return 0;
4305}
4306
4307static void cpu_clock_perf_event_disable(struct perf_event *event)
4308{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004309 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004310 cpu_clock_perf_event_update(event);
4311}
4312
4313static void cpu_clock_perf_event_read(struct perf_event *event)
4314{
4315 cpu_clock_perf_event_update(event);
4316}
4317
4318static const struct pmu perf_ops_cpu_clock = {
4319 .enable = cpu_clock_perf_event_enable,
4320 .disable = cpu_clock_perf_event_disable,
4321 .read = cpu_clock_perf_event_read,
4322};
4323
4324/*
4325 * Software event: task time clock
4326 */
4327
4328static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4329{
4330 u64 prev;
4331 s64 delta;
4332
4333 prev = atomic64_xchg(&event->hw.prev_count, now);
4334 delta = now - prev;
4335 atomic64_add(delta, &event->count);
4336}
4337
4338static int task_clock_perf_event_enable(struct perf_event *event)
4339{
4340 struct hw_perf_event *hwc = &event->hw;
4341 u64 now;
4342
4343 now = event->ctx->time;
4344
4345 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004346
4347 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004348
4349 return 0;
4350}
4351
4352static void task_clock_perf_event_disable(struct perf_event *event)
4353{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004354 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004355 task_clock_perf_event_update(event, event->ctx->time);
4356
4357}
4358
4359static void task_clock_perf_event_read(struct perf_event *event)
4360{
4361 u64 time;
4362
4363 if (!in_nmi()) {
4364 update_context_time(event->ctx);
4365 time = event->ctx->time;
4366 } else {
4367 u64 now = perf_clock();
4368 u64 delta = now - event->ctx->timestamp;
4369 time = event->ctx->time + delta;
4370 }
4371
4372 task_clock_perf_event_update(event, time);
4373}
4374
4375static const struct pmu perf_ops_task_clock = {
4376 .enable = task_clock_perf_event_enable,
4377 .disable = task_clock_perf_event_disable,
4378 .read = task_clock_perf_event_read,
4379};
4380
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004381/* Deref the hlist from the update side */
4382static inline struct swevent_hlist *
4383swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4384{
4385 return rcu_dereference_protected(cpuctx->swevent_hlist,
4386 lockdep_is_held(&cpuctx->hlist_mutex));
4387}
4388
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004389static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4390{
4391 struct swevent_hlist *hlist;
4392
4393 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4394 kfree(hlist);
4395}
4396
4397static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4398{
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004399 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004400
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004401 if (!hlist)
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004402 return;
4403
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004404 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4405 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4406}
4407
4408static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4409{
4410 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4411
4412 mutex_lock(&cpuctx->hlist_mutex);
4413
4414 if (!--cpuctx->hlist_refcount)
4415 swevent_hlist_release(cpuctx);
4416
4417 mutex_unlock(&cpuctx->hlist_mutex);
4418}
4419
4420static void swevent_hlist_put(struct perf_event *event)
4421{
4422 int cpu;
4423
4424 if (event->cpu != -1) {
4425 swevent_hlist_put_cpu(event, event->cpu);
4426 return;
4427 }
4428
4429 for_each_possible_cpu(cpu)
4430 swevent_hlist_put_cpu(event, cpu);
4431}
4432
4433static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4434{
4435 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4436 int err = 0;
4437
4438 mutex_lock(&cpuctx->hlist_mutex);
4439
Frederic Weisbecker49f135e2010-05-20 10:17:46 +02004440 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004441 struct swevent_hlist *hlist;
4442
4443 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4444 if (!hlist) {
4445 err = -ENOMEM;
4446 goto exit;
4447 }
4448 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4449 }
4450 cpuctx->hlist_refcount++;
4451 exit:
4452 mutex_unlock(&cpuctx->hlist_mutex);
4453
4454 return err;
4455}
4456
4457static int swevent_hlist_get(struct perf_event *event)
4458{
4459 int err;
4460 int cpu, failed_cpu;
4461
4462 if (event->cpu != -1)
4463 return swevent_hlist_get_cpu(event, event->cpu);
4464
4465 get_online_cpus();
4466 for_each_possible_cpu(cpu) {
4467 err = swevent_hlist_get_cpu(event, cpu);
4468 if (err) {
4469 failed_cpu = cpu;
4470 goto fail;
4471 }
4472 }
4473 put_online_cpus();
4474
4475 return 0;
4476 fail:
4477 for_each_possible_cpu(cpu) {
4478 if (cpu == failed_cpu)
4479 break;
4480 swevent_hlist_put_cpu(event, cpu);
4481 }
4482
4483 put_online_cpus();
4484 return err;
4485}
4486
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004487#ifdef CONFIG_EVENT_TRACING
4488
4489void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
Peter Zijlstra4f41c012010-05-18 18:08:32 +02004490 int entry_size, struct pt_regs *regs, void *event)
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004491{
Peter Zijlstra4f41c012010-05-18 18:08:32 +02004492 const int type = PERF_TYPE_TRACEPOINT;
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004493 struct perf_sample_data data;
4494 struct perf_raw_record raw = {
4495 .size = entry_size,
4496 .data = record,
4497 };
4498
4499 perf_sample_data_init(&data, addr);
4500 data.raw = &raw;
4501
Peter Zijlstra4f41c012010-05-18 18:08:32 +02004502 if (!event) {
4503 do_perf_sw_event(type, event_id, count, 1, &data, regs);
4504 return;
4505 }
4506
4507 if (perf_swevent_match(event, type, event_id, &data, regs))
4508 perf_swevent_add(event, count, 1, &data, regs);
Frederic Weisbecker95476b62010-04-14 23:42:18 +02004509}
4510EXPORT_SYMBOL_GPL(perf_tp_event);
4511
4512static int perf_tp_event_match(struct perf_event *event,
4513 struct perf_sample_data *data)
4514{
4515 void *record = data->raw->data;
4516
4517 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4518 return 1;
4519 return 0;
4520}
4521
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004522static void tp_perf_event_destroy(struct perf_event *event)
4523{
Frederic Weisbecker97d5a222010-03-05 05:35:37 +01004524 perf_trace_disable(event->attr.config);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004525 swevent_hlist_put(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004526}
4527
4528static const struct pmu *tp_perf_event_init(struct perf_event *event)
4529{
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004530 int err;
4531
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004532 /*
4533 * Raw tracepoint data is a severe data leak, only allow root to
4534 * have these.
4535 */
4536 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4537 perf_paranoid_tracepoint_raw() &&
4538 !capable(CAP_SYS_ADMIN))
4539 return ERR_PTR(-EPERM);
4540
Peter Zijlstra4f41c012010-05-18 18:08:32 +02004541 if (perf_trace_enable(event->attr.config, event))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004542 return NULL;
4543
4544 event->destroy = tp_perf_event_destroy;
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004545 err = swevent_hlist_get(event);
4546 if (err) {
4547 perf_trace_disable(event->attr.config);
4548 return ERR_PTR(err);
4549 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004550
4551 return &perf_ops_generic;
4552}
Li Zefan6fb29152009-10-15 11:21:42 +08004553
4554static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4555{
4556 char *filter_str;
4557 int ret;
4558
4559 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4560 return -EINVAL;
4561
4562 filter_str = strndup_user(arg, PAGE_SIZE);
4563 if (IS_ERR(filter_str))
4564 return PTR_ERR(filter_str);
4565
4566 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4567
4568 kfree(filter_str);
4569 return ret;
4570}
4571
4572static void perf_event_free_filter(struct perf_event *event)
4573{
4574 ftrace_profile_free_filter(event);
4575}
4576
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004577#else
Li Zefan6fb29152009-10-15 11:21:42 +08004578
4579static int perf_tp_event_match(struct perf_event *event,
4580 struct perf_sample_data *data)
4581{
4582 return 1;
4583}
4584
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004585static const struct pmu *tp_perf_event_init(struct perf_event *event)
4586{
4587 return NULL;
4588}
Li Zefan6fb29152009-10-15 11:21:42 +08004589
4590static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4591{
4592 return -ENOENT;
4593}
4594
4595static void perf_event_free_filter(struct perf_event *event)
4596{
4597}
4598
Li Zefan07b139c2009-12-21 14:27:35 +08004599#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004600
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004601#ifdef CONFIG_HAVE_HW_BREAKPOINT
4602static void bp_perf_event_destroy(struct perf_event *event)
4603{
4604 release_bp_slot(event);
4605}
4606
4607static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4608{
4609 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004610
4611 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004612 if (err)
4613 return ERR_PTR(err);
4614
4615 bp->destroy = bp_perf_event_destroy;
4616
4617 return &perf_ops_bp;
4618}
4619
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004620void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004621{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004622 struct perf_sample_data sample;
4623 struct pt_regs *regs = data;
4624
Peter Zijlstradc1d6282010-03-03 15:55:04 +01004625 perf_sample_data_init(&sample, bp->attr.bp_addr);
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004626
4627 if (!perf_exclude_event(bp, regs))
4628 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004629}
4630#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004631static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4632{
4633 return NULL;
4634}
4635
4636void perf_bp_event(struct perf_event *bp, void *regs)
4637{
4638}
4639#endif
4640
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004641atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4642
4643static void sw_perf_event_destroy(struct perf_event *event)
4644{
4645 u64 event_id = event->attr.config;
4646
4647 WARN_ON(event->parent);
4648
4649 atomic_dec(&perf_swevent_enabled[event_id]);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004650 swevent_hlist_put(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004651}
4652
4653static const struct pmu *sw_perf_event_init(struct perf_event *event)
4654{
4655 const struct pmu *pmu = NULL;
4656 u64 event_id = event->attr.config;
4657
4658 /*
4659 * Software events (currently) can't in general distinguish
4660 * between user, kernel and hypervisor events.
4661 * However, context switches and cpu migrations are considered
4662 * to be kernel events, and page faults are never hypervisor
4663 * events.
4664 */
4665 switch (event_id) {
4666 case PERF_COUNT_SW_CPU_CLOCK:
4667 pmu = &perf_ops_cpu_clock;
4668
4669 break;
4670 case PERF_COUNT_SW_TASK_CLOCK:
4671 /*
4672 * If the user instantiates this as a per-cpu event,
4673 * use the cpu_clock event instead.
4674 */
4675 if (event->ctx->task)
4676 pmu = &perf_ops_task_clock;
4677 else
4678 pmu = &perf_ops_cpu_clock;
4679
4680 break;
4681 case PERF_COUNT_SW_PAGE_FAULTS:
4682 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4683 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4684 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4685 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004686 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4687 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004688 if (!event->parent) {
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02004689 int err;
4690
4691 err = swevent_hlist_get(event);
4692 if (err)
4693 return ERR_PTR(err);
4694
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004695 atomic_inc(&perf_swevent_enabled[event_id]);
4696 event->destroy = sw_perf_event_destroy;
4697 }
4698 pmu = &perf_ops_generic;
4699 break;
4700 }
4701
4702 return pmu;
4703}
4704
4705/*
4706 * Allocate and initialize a event structure
4707 */
4708static struct perf_event *
4709perf_event_alloc(struct perf_event_attr *attr,
4710 int cpu,
4711 struct perf_event_context *ctx,
4712 struct perf_event *group_leader,
4713 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004714 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004715 gfp_t gfpflags)
4716{
4717 const struct pmu *pmu;
4718 struct perf_event *event;
4719 struct hw_perf_event *hwc;
4720 long err;
4721
4722 event = kzalloc(sizeof(*event), gfpflags);
4723 if (!event)
4724 return ERR_PTR(-ENOMEM);
4725
4726 /*
4727 * Single events are their own group leaders, with an
4728 * empty sibling list:
4729 */
4730 if (!group_leader)
4731 group_leader = event;
4732
4733 mutex_init(&event->child_mutex);
4734 INIT_LIST_HEAD(&event->child_list);
4735
4736 INIT_LIST_HEAD(&event->group_entry);
4737 INIT_LIST_HEAD(&event->event_entry);
4738 INIT_LIST_HEAD(&event->sibling_list);
4739 init_waitqueue_head(&event->waitq);
4740
4741 mutex_init(&event->mmap_mutex);
4742
4743 event->cpu = cpu;
4744 event->attr = *attr;
4745 event->group_leader = group_leader;
4746 event->pmu = NULL;
4747 event->ctx = ctx;
4748 event->oncpu = -1;
4749
4750 event->parent = parent_event;
4751
4752 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4753 event->id = atomic64_inc_return(&perf_event_id);
4754
4755 event->state = PERF_EVENT_STATE_INACTIVE;
4756
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004757 if (!overflow_handler && parent_event)
4758 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004759
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004760 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004761
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004762 if (attr->disabled)
4763 event->state = PERF_EVENT_STATE_OFF;
4764
4765 pmu = NULL;
4766
4767 hwc = &event->hw;
4768 hwc->sample_period = attr->sample_period;
4769 if (attr->freq && attr->sample_freq)
4770 hwc->sample_period = 1;
4771 hwc->last_period = hwc->sample_period;
4772
4773 atomic64_set(&hwc->period_left, hwc->sample_period);
4774
4775 /*
4776 * we currently do not support PERF_FORMAT_GROUP on inherited events
4777 */
4778 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4779 goto done;
4780
4781 switch (attr->type) {
4782 case PERF_TYPE_RAW:
4783 case PERF_TYPE_HARDWARE:
4784 case PERF_TYPE_HW_CACHE:
4785 pmu = hw_perf_event_init(event);
4786 break;
4787
4788 case PERF_TYPE_SOFTWARE:
4789 pmu = sw_perf_event_init(event);
4790 break;
4791
4792 case PERF_TYPE_TRACEPOINT:
4793 pmu = tp_perf_event_init(event);
4794 break;
4795
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004796 case PERF_TYPE_BREAKPOINT:
4797 pmu = bp_perf_event_init(event);
4798 break;
4799
4800
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004801 default:
4802 break;
4803 }
4804done:
4805 err = 0;
4806 if (!pmu)
4807 err = -EINVAL;
4808 else if (IS_ERR(pmu))
4809 err = PTR_ERR(pmu);
4810
4811 if (err) {
4812 if (event->ns)
4813 put_pid_ns(event->ns);
4814 kfree(event);
4815 return ERR_PTR(err);
4816 }
4817
4818 event->pmu = pmu;
4819
4820 if (!event->parent) {
4821 atomic_inc(&nr_events);
4822 if (event->attr.mmap)
4823 atomic_inc(&nr_mmap_events);
4824 if (event->attr.comm)
4825 atomic_inc(&nr_comm_events);
4826 if (event->attr.task)
4827 atomic_inc(&nr_task_events);
4828 }
4829
4830 return event;
4831}
4832
4833static int perf_copy_attr(struct perf_event_attr __user *uattr,
4834 struct perf_event_attr *attr)
4835{
4836 u32 size;
4837 int ret;
4838
4839 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4840 return -EFAULT;
4841
4842 /*
4843 * zero the full structure, so that a short copy will be nice.
4844 */
4845 memset(attr, 0, sizeof(*attr));
4846
4847 ret = get_user(size, &uattr->size);
4848 if (ret)
4849 return ret;
4850
4851 if (size > PAGE_SIZE) /* silly large */
4852 goto err_size;
4853
4854 if (!size) /* abi compat */
4855 size = PERF_ATTR_SIZE_VER0;
4856
4857 if (size < PERF_ATTR_SIZE_VER0)
4858 goto err_size;
4859
4860 /*
4861 * If we're handed a bigger struct than we know of,
4862 * ensure all the unknown bits are 0 - i.e. new
4863 * user-space does not rely on any kernel feature
4864 * extensions we dont know about yet.
4865 */
4866 if (size > sizeof(*attr)) {
4867 unsigned char __user *addr;
4868 unsigned char __user *end;
4869 unsigned char val;
4870
4871 addr = (void __user *)uattr + sizeof(*attr);
4872 end = (void __user *)uattr + size;
4873
4874 for (; addr < end; addr++) {
4875 ret = get_user(val, addr);
4876 if (ret)
4877 return ret;
4878 if (val)
4879 goto err_size;
4880 }
4881 size = sizeof(*attr);
4882 }
4883
4884 ret = copy_from_user(attr, uattr, size);
4885 if (ret)
4886 return -EFAULT;
4887
4888 /*
4889 * If the type exists, the corresponding creation will verify
4890 * the attr->config.
4891 */
4892 if (attr->type >= PERF_TYPE_MAX)
4893 return -EINVAL;
4894
Mahesh Salgaonkarcd757642010-01-30 10:25:18 +05304895 if (attr->__reserved_1)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004896 return -EINVAL;
4897
4898 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4899 return -EINVAL;
4900
4901 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4902 return -EINVAL;
4903
4904out:
4905 return ret;
4906
4907err_size:
4908 put_user(sizeof(*attr), &uattr->size);
4909 ret = -E2BIG;
4910 goto out;
4911}
4912
Li Zefan6fb29152009-10-15 11:21:42 +08004913static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004914{
4915 struct perf_event *output_event = NULL;
4916 struct file *output_file = NULL;
4917 struct perf_event *old_output;
4918 int fput_needed = 0;
4919 int ret = -EINVAL;
4920
4921 if (!output_fd)
4922 goto set;
4923
4924 output_file = fget_light(output_fd, &fput_needed);
4925 if (!output_file)
4926 return -EBADF;
4927
4928 if (output_file->f_op != &perf_fops)
4929 goto out;
4930
4931 output_event = output_file->private_data;
4932
4933 /* Don't chain output fds */
4934 if (output_event->output)
4935 goto out;
4936
4937 /* Don't set an output fd when we already have an output channel */
4938 if (event->data)
4939 goto out;
4940
4941 atomic_long_inc(&output_file->f_count);
4942
4943set:
4944 mutex_lock(&event->mmap_mutex);
4945 old_output = event->output;
4946 rcu_assign_pointer(event->output, output_event);
4947 mutex_unlock(&event->mmap_mutex);
4948
4949 if (old_output) {
4950 /*
4951 * we need to make sure no existing perf_output_*()
4952 * is still referencing this event.
4953 */
4954 synchronize_rcu();
4955 fput(old_output->filp);
4956 }
4957
4958 ret = 0;
4959out:
4960 fput_light(output_file, fput_needed);
4961 return ret;
4962}
4963
4964/**
4965 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4966 *
4967 * @attr_uptr: event_id type attributes for monitoring/sampling
4968 * @pid: target pid
4969 * @cpu: target cpu
4970 * @group_fd: group leader event fd
4971 */
4972SYSCALL_DEFINE5(perf_event_open,
4973 struct perf_event_attr __user *, attr_uptr,
4974 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4975{
4976 struct perf_event *event, *group_leader;
4977 struct perf_event_attr attr;
4978 struct perf_event_context *ctx;
4979 struct file *event_file = NULL;
4980 struct file *group_file = NULL;
4981 int fput_needed = 0;
4982 int fput_needed2 = 0;
4983 int err;
4984
4985 /* for future expandability... */
4986 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4987 return -EINVAL;
4988
4989 err = perf_copy_attr(attr_uptr, &attr);
4990 if (err)
4991 return err;
4992
4993 if (!attr.exclude_kernel) {
4994 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4995 return -EACCES;
4996 }
4997
4998 if (attr.freq) {
4999 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5000 return -EINVAL;
5001 }
5002
5003 /*
5004 * Get the target context (task or percpu):
5005 */
5006 ctx = find_get_context(pid, cpu);
5007 if (IS_ERR(ctx))
5008 return PTR_ERR(ctx);
5009
5010 /*
5011 * Look up the group leader (we will attach this event to it):
5012 */
5013 group_leader = NULL;
5014 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
5015 err = -EINVAL;
5016 group_file = fget_light(group_fd, &fput_needed);
5017 if (!group_file)
5018 goto err_put_context;
5019 if (group_file->f_op != &perf_fops)
5020 goto err_put_context;
5021
5022 group_leader = group_file->private_data;
5023 /*
5024 * Do not allow a recursive hierarchy (this new sibling
5025 * becoming part of another group-sibling):
5026 */
5027 if (group_leader->group_leader != group_leader)
5028 goto err_put_context;
5029 /*
5030 * Do not allow to attach to a group in a different
5031 * task or CPU context:
5032 */
5033 if (group_leader->ctx != ctx)
5034 goto err_put_context;
5035 /*
5036 * Only a group leader can be exclusive or pinned
5037 */
5038 if (attr.exclusive || attr.pinned)
5039 goto err_put_context;
5040 }
5041
5042 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005043 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005044 err = PTR_ERR(event);
5045 if (IS_ERR(event))
5046 goto err_put_context;
5047
Roland Dreier628ff7c2009-12-18 09:41:24 -08005048 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005049 if (err < 0)
5050 goto err_free_put_context;
5051
5052 event_file = fget_light(err, &fput_needed2);
5053 if (!event_file)
5054 goto err_free_put_context;
5055
5056 if (flags & PERF_FLAG_FD_OUTPUT) {
5057 err = perf_event_set_output(event, group_fd);
5058 if (err)
5059 goto err_fput_free_put_context;
5060 }
5061
5062 event->filp = event_file;
5063 WARN_ON_ONCE(ctx->parent_ctx);
5064 mutex_lock(&ctx->mutex);
5065 perf_install_in_context(ctx, event, cpu);
5066 ++ctx->generation;
5067 mutex_unlock(&ctx->mutex);
5068
5069 event->owner = current;
5070 get_task_struct(current);
5071 mutex_lock(&current->perf_event_mutex);
5072 list_add_tail(&event->owner_entry, &current->perf_event_list);
5073 mutex_unlock(&current->perf_event_mutex);
5074
5075err_fput_free_put_context:
5076 fput_light(event_file, fput_needed2);
5077
5078err_free_put_context:
5079 if (err < 0)
Tejun Heo048c8522010-05-01 10:11:35 +02005080 free_event(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005081
5082err_put_context:
5083 if (err < 0)
5084 put_ctx(ctx);
5085
5086 fput_light(group_file, fput_needed);
5087
5088 return err;
5089}
5090
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005091/**
5092 * perf_event_create_kernel_counter
5093 *
5094 * @attr: attributes of the counter to create
5095 * @cpu: cpu in which the counter is bound
5096 * @pid: task to profile
5097 */
5098struct perf_event *
5099perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005100 pid_t pid,
5101 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005102{
5103 struct perf_event *event;
5104 struct perf_event_context *ctx;
5105 int err;
5106
5107 /*
5108 * Get the target context (task or percpu):
5109 */
5110
5111 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005112 if (IS_ERR(ctx)) {
5113 err = PTR_ERR(ctx);
5114 goto err_exit;
5115 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005116
5117 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01005118 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005119 if (IS_ERR(event)) {
5120 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005121 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005122 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005123
5124 event->filp = NULL;
5125 WARN_ON_ONCE(ctx->parent_ctx);
5126 mutex_lock(&ctx->mutex);
5127 perf_install_in_context(ctx, event, cpu);
5128 ++ctx->generation;
5129 mutex_unlock(&ctx->mutex);
5130
5131 event->owner = current;
5132 get_task_struct(current);
5133 mutex_lock(&current->perf_event_mutex);
5134 list_add_tail(&event->owner_entry, &current->perf_event_list);
5135 mutex_unlock(&current->perf_event_mutex);
5136
5137 return event;
5138
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01005139 err_put_context:
5140 put_ctx(ctx);
5141 err_exit:
5142 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02005143}
5144EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5145
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005146/*
5147 * inherit a event from parent task to child task:
5148 */
5149static struct perf_event *
5150inherit_event(struct perf_event *parent_event,
5151 struct task_struct *parent,
5152 struct perf_event_context *parent_ctx,
5153 struct task_struct *child,
5154 struct perf_event *group_leader,
5155 struct perf_event_context *child_ctx)
5156{
5157 struct perf_event *child_event;
5158
5159 /*
5160 * Instead of creating recursive hierarchies of events,
5161 * we link inherited events back to the original parent,
5162 * which has a filp for sure, which we use as the reference
5163 * count:
5164 */
5165 if (parent_event->parent)
5166 parent_event = parent_event->parent;
5167
5168 child_event = perf_event_alloc(&parent_event->attr,
5169 parent_event->cpu, child_ctx,
5170 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02005171 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005172 if (IS_ERR(child_event))
5173 return child_event;
5174 get_ctx(child_ctx);
5175
5176 /*
5177 * Make the child state follow the state of the parent event,
5178 * not its attr.disabled bit. We hold the parent's mutex,
5179 * so we won't race with perf_event_{en, dis}able_family.
5180 */
5181 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5182 child_event->state = PERF_EVENT_STATE_INACTIVE;
5183 else
5184 child_event->state = PERF_EVENT_STATE_OFF;
5185
Peter Zijlstra75c9f322010-01-29 09:04:26 +01005186 if (parent_event->attr.freq) {
5187 u64 sample_period = parent_event->hw.sample_period;
5188 struct hw_perf_event *hwc = &child_event->hw;
5189
5190 hwc->sample_period = sample_period;
5191 hwc->last_period = sample_period;
5192
5193 atomic64_set(&hwc->period_left, sample_period);
5194 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005195
Peter Zijlstra453f19e2009-11-20 22:19:43 +01005196 child_event->overflow_handler = parent_event->overflow_handler;
5197
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005198 /*
5199 * Link it up in the child's context:
5200 */
5201 add_event_to_ctx(child_event, child_ctx);
5202
5203 /*
5204 * Get a reference to the parent filp - we will fput it
5205 * when the child event exits. This is safe to do because
5206 * we are in the parent and we know that the filp still
5207 * exists and has a nonzero count:
5208 */
5209 atomic_long_inc(&parent_event->filp->f_count);
5210
5211 /*
5212 * Link this into the parent event's child list
5213 */
5214 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5215 mutex_lock(&parent_event->child_mutex);
5216 list_add_tail(&child_event->child_list, &parent_event->child_list);
5217 mutex_unlock(&parent_event->child_mutex);
5218
5219 return child_event;
5220}
5221
5222static int inherit_group(struct perf_event *parent_event,
5223 struct task_struct *parent,
5224 struct perf_event_context *parent_ctx,
5225 struct task_struct *child,
5226 struct perf_event_context *child_ctx)
5227{
5228 struct perf_event *leader;
5229 struct perf_event *sub;
5230 struct perf_event *child_ctr;
5231
5232 leader = inherit_event(parent_event, parent, parent_ctx,
5233 child, NULL, child_ctx);
5234 if (IS_ERR(leader))
5235 return PTR_ERR(leader);
5236 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5237 child_ctr = inherit_event(sub, parent, parent_ctx,
5238 child, leader, child_ctx);
5239 if (IS_ERR(child_ctr))
5240 return PTR_ERR(child_ctr);
5241 }
5242 return 0;
5243}
5244
5245static void sync_child_event(struct perf_event *child_event,
5246 struct task_struct *child)
5247{
5248 struct perf_event *parent_event = child_event->parent;
5249 u64 child_val;
5250
5251 if (child_event->attr.inherit_stat)
5252 perf_event_read_event(child_event, child);
5253
5254 child_val = atomic64_read(&child_event->count);
5255
5256 /*
5257 * Add back the child's count to the parent's count:
5258 */
5259 atomic64_add(child_val, &parent_event->count);
5260 atomic64_add(child_event->total_time_enabled,
5261 &parent_event->child_total_time_enabled);
5262 atomic64_add(child_event->total_time_running,
5263 &parent_event->child_total_time_running);
5264
5265 /*
5266 * Remove this event from the parent's list
5267 */
5268 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5269 mutex_lock(&parent_event->child_mutex);
5270 list_del_init(&child_event->child_list);
5271 mutex_unlock(&parent_event->child_mutex);
5272
5273 /*
5274 * Release the parent event, if this was the last
5275 * reference to it.
5276 */
5277 fput(parent_event->filp);
5278}
5279
5280static void
5281__perf_event_exit_task(struct perf_event *child_event,
5282 struct perf_event_context *child_ctx,
5283 struct task_struct *child)
5284{
5285 struct perf_event *parent_event;
5286
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005287 perf_event_remove_from_context(child_event);
5288
5289 parent_event = child_event->parent;
5290 /*
5291 * It can happen that parent exits first, and has events
5292 * that are still around due to the child reference. These
5293 * events need to be zapped - but otherwise linger.
5294 */
5295 if (parent_event) {
5296 sync_child_event(child_event, child);
5297 free_event(child_event);
5298 }
5299}
5300
5301/*
5302 * When a child task exits, feed back event values to parent events.
5303 */
5304void perf_event_exit_task(struct task_struct *child)
5305{
5306 struct perf_event *child_event, *tmp;
5307 struct perf_event_context *child_ctx;
5308 unsigned long flags;
5309
5310 if (likely(!child->perf_event_ctxp)) {
5311 perf_event_task(child, NULL, 0);
5312 return;
5313 }
5314
5315 local_irq_save(flags);
5316 /*
5317 * We can't reschedule here because interrupts are disabled,
5318 * and either child is current or it is a task that can't be
5319 * scheduled, so we are now safe from rescheduling changing
5320 * our context.
5321 */
5322 child_ctx = child->perf_event_ctxp;
5323 __perf_event_task_sched_out(child_ctx);
5324
5325 /*
5326 * Take the context lock here so that if find_get_context is
5327 * reading child->perf_event_ctxp, we wait until it has
5328 * incremented the context's refcount before we do put_ctx below.
5329 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005330 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005331 child->perf_event_ctxp = NULL;
5332 /*
5333 * If this context is a clone; unclone it so it can't get
5334 * swapped to another process while we're removing all
5335 * the events from it.
5336 */
5337 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005338 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005339 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005340
5341 /*
5342 * Report the task dead after unscheduling the events so that we
5343 * won't get any samples after PERF_RECORD_EXIT. We can however still
5344 * get a few PERF_RECORD_READ events.
5345 */
5346 perf_event_task(child, child_ctx, 0);
5347
5348 /*
5349 * We can recurse on the same lock type through:
5350 *
5351 * __perf_event_exit_task()
5352 * sync_child_event()
5353 * fput(parent_event->filp)
5354 * perf_release()
5355 * mutex_lock(&ctx->mutex)
5356 *
5357 * But since its the parent context it won't be the same instance.
5358 */
Peter Zijlstraa0507c82010-05-06 15:42:53 +02005359 mutex_lock(&child_ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005360
5361again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005362 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5363 group_entry)
5364 __perf_event_exit_task(child_event, child_ctx, child);
5365
5366 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005367 group_entry)
5368 __perf_event_exit_task(child_event, child_ctx, child);
5369
5370 /*
5371 * If the last event was a group event, it will have appended all
5372 * its siblings to the list, but we obtained 'tmp' before that which
5373 * will still point to the list head terminating the iteration.
5374 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005375 if (!list_empty(&child_ctx->pinned_groups) ||
5376 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005377 goto again;
5378
5379 mutex_unlock(&child_ctx->mutex);
5380
5381 put_ctx(child_ctx);
5382}
5383
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005384static void perf_free_event(struct perf_event *event,
5385 struct perf_event_context *ctx)
5386{
5387 struct perf_event *parent = event->parent;
5388
5389 if (WARN_ON_ONCE(!parent))
5390 return;
5391
5392 mutex_lock(&parent->child_mutex);
5393 list_del_init(&event->child_list);
5394 mutex_unlock(&parent->child_mutex);
5395
5396 fput(parent->filp);
5397
5398 list_del_event(event, ctx);
5399 free_event(event);
5400}
5401
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005402/*
5403 * free an unexposed, unused context as created by inheritance by
5404 * init_task below, used by fork() in case of fail.
5405 */
5406void perf_event_free_task(struct task_struct *task)
5407{
5408 struct perf_event_context *ctx = task->perf_event_ctxp;
5409 struct perf_event *event, *tmp;
5410
5411 if (!ctx)
5412 return;
5413
5414 mutex_lock(&ctx->mutex);
5415again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005416 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5417 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005418
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005419 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5420 group_entry)
5421 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005422
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005423 if (!list_empty(&ctx->pinned_groups) ||
5424 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005425 goto again;
5426
5427 mutex_unlock(&ctx->mutex);
5428
5429 put_ctx(ctx);
5430}
5431
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005432static int
5433inherit_task_group(struct perf_event *event, struct task_struct *parent,
5434 struct perf_event_context *parent_ctx,
5435 struct task_struct *child,
5436 int *inherited_all)
5437{
5438 int ret;
5439 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5440
5441 if (!event->attr.inherit) {
5442 *inherited_all = 0;
5443 return 0;
5444 }
5445
5446 if (!child_ctx) {
5447 /*
5448 * This is executed from the parent task context, so
5449 * inherit events that have been marked for cloning.
5450 * First allocate and initialize a context for the
5451 * child.
5452 */
5453
5454 child_ctx = kzalloc(sizeof(struct perf_event_context),
5455 GFP_KERNEL);
5456 if (!child_ctx)
5457 return -ENOMEM;
5458
5459 __perf_event_init_context(child_ctx, child);
5460 child->perf_event_ctxp = child_ctx;
5461 get_task_struct(child);
5462 }
5463
5464 ret = inherit_group(event, parent, parent_ctx,
5465 child, child_ctx);
5466
5467 if (ret)
5468 *inherited_all = 0;
5469
5470 return ret;
5471}
5472
5473
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005474/*
5475 * Initialize the perf_event context in task_struct
5476 */
5477int perf_event_init_task(struct task_struct *child)
5478{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005479 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005480 struct perf_event_context *cloned_ctx;
5481 struct perf_event *event;
5482 struct task_struct *parent = current;
5483 int inherited_all = 1;
5484 int ret = 0;
5485
5486 child->perf_event_ctxp = NULL;
5487
5488 mutex_init(&child->perf_event_mutex);
5489 INIT_LIST_HEAD(&child->perf_event_list);
5490
5491 if (likely(!parent->perf_event_ctxp))
5492 return 0;
5493
5494 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005495 * If the parent's context is a clone, pin it so it won't get
5496 * swapped under us.
5497 */
5498 parent_ctx = perf_pin_task_context(parent);
5499
5500 /*
5501 * No need to check if parent_ctx != NULL here; since we saw
5502 * it non-NULL earlier, the only reason for it to become NULL
5503 * is if we exit, and since we're currently in the middle of
5504 * a fork we can't be exiting at the same time.
5505 */
5506
5507 /*
5508 * Lock the parent list. No need to lock the child - not PID
5509 * hashed yet and not running, so nobody can access it.
5510 */
5511 mutex_lock(&parent_ctx->mutex);
5512
5513 /*
5514 * We dont have to disable NMIs - we are only looking at
5515 * the list, not manipulating it:
5516 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005517 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5518 ret = inherit_task_group(event, parent, parent_ctx, child,
5519 &inherited_all);
5520 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005521 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005522 }
5523
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005524 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5525 ret = inherit_task_group(event, parent, parent_ctx, child,
5526 &inherited_all);
5527 if (ret)
5528 break;
5529 }
5530
5531 child_ctx = child->perf_event_ctxp;
5532
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005533 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005534 /*
5535 * Mark the child context as a clone of the parent
5536 * context, or of whatever the parent is a clone of.
5537 * Note that if the parent is a clone, it could get
5538 * uncloned at any point, but that doesn't matter
5539 * because the list of events and the generation
5540 * count can't have changed since we took the mutex.
5541 */
5542 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5543 if (cloned_ctx) {
5544 child_ctx->parent_ctx = cloned_ctx;
5545 child_ctx->parent_gen = parent_ctx->parent_gen;
5546 } else {
5547 child_ctx->parent_ctx = parent_ctx;
5548 child_ctx->parent_gen = parent_ctx->generation;
5549 }
5550 get_ctx(child_ctx->parent_ctx);
5551 }
5552
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005553 mutex_unlock(&parent_ctx->mutex);
5554
5555 perf_unpin_context(parent_ctx);
5556
5557 return ret;
5558}
5559
Paul Mackerras220b1402010-03-10 20:45:52 +11005560static void __init perf_event_init_all_cpus(void)
5561{
5562 int cpu;
5563 struct perf_cpu_context *cpuctx;
5564
5565 for_each_possible_cpu(cpu) {
5566 cpuctx = &per_cpu(perf_cpu_context, cpu);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005567 mutex_init(&cpuctx->hlist_mutex);
Paul Mackerras220b1402010-03-10 20:45:52 +11005568 __perf_event_init_context(&cpuctx->ctx, NULL);
5569 }
5570}
5571
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005572static void __cpuinit perf_event_init_cpu(int cpu)
5573{
5574 struct perf_cpu_context *cpuctx;
5575
5576 cpuctx = &per_cpu(perf_cpu_context, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005577
5578 spin_lock(&perf_resource_lock);
5579 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5580 spin_unlock(&perf_resource_lock);
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005581
5582 mutex_lock(&cpuctx->hlist_mutex);
5583 if (cpuctx->hlist_refcount > 0) {
5584 struct swevent_hlist *hlist;
5585
5586 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5587 WARN_ON_ONCE(!hlist);
5588 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5589 }
5590 mutex_unlock(&cpuctx->hlist_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005591}
5592
5593#ifdef CONFIG_HOTPLUG_CPU
5594static void __perf_event_exit_cpu(void *info)
5595{
5596 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5597 struct perf_event_context *ctx = &cpuctx->ctx;
5598 struct perf_event *event, *tmp;
5599
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005600 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5601 __perf_event_remove_from_context(event);
5602 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005603 __perf_event_remove_from_context(event);
5604}
5605static void perf_event_exit_cpu(int cpu)
5606{
5607 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5608 struct perf_event_context *ctx = &cpuctx->ctx;
5609
Frederic Weisbecker76e1d902010-04-05 15:35:57 +02005610 mutex_lock(&cpuctx->hlist_mutex);
5611 swevent_hlist_release(cpuctx);
5612 mutex_unlock(&cpuctx->hlist_mutex);
5613
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005614 mutex_lock(&ctx->mutex);
5615 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5616 mutex_unlock(&ctx->mutex);
5617}
5618#else
5619static inline void perf_event_exit_cpu(int cpu) { }
5620#endif
5621
5622static int __cpuinit
5623perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5624{
5625 unsigned int cpu = (long)hcpu;
5626
5627 switch (action) {
5628
5629 case CPU_UP_PREPARE:
5630 case CPU_UP_PREPARE_FROZEN:
5631 perf_event_init_cpu(cpu);
5632 break;
5633
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005634 case CPU_DOWN_PREPARE:
5635 case CPU_DOWN_PREPARE_FROZEN:
5636 perf_event_exit_cpu(cpu);
5637 break;
5638
5639 default:
5640 break;
5641 }
5642
5643 return NOTIFY_OK;
5644}
5645
5646/*
5647 * This has to have a higher priority than migration_notifier in sched.c.
5648 */
5649static struct notifier_block __cpuinitdata perf_cpu_nb = {
5650 .notifier_call = perf_cpu_notify,
5651 .priority = 20,
5652};
5653
5654void __init perf_event_init(void)
5655{
Paul Mackerras220b1402010-03-10 20:45:52 +11005656 perf_event_init_all_cpus();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005657 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5658 (void *)(long)smp_processor_id());
5659 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5660 (void *)(long)smp_processor_id());
5661 register_cpu_notifier(&perf_cpu_nb);
5662}
5663
Andi Kleenc9be0a32010-01-05 12:47:58 +01005664static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5665 struct sysdev_class_attribute *attr,
5666 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005667{
5668 return sprintf(buf, "%d\n", perf_reserved_percpu);
5669}
5670
5671static ssize_t
5672perf_set_reserve_percpu(struct sysdev_class *class,
Andi Kleenc9be0a32010-01-05 12:47:58 +01005673 struct sysdev_class_attribute *attr,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005674 const char *buf,
5675 size_t count)
5676{
5677 struct perf_cpu_context *cpuctx;
5678 unsigned long val;
5679 int err, cpu, mpt;
5680
5681 err = strict_strtoul(buf, 10, &val);
5682 if (err)
5683 return err;
5684 if (val > perf_max_events)
5685 return -EINVAL;
5686
5687 spin_lock(&perf_resource_lock);
5688 perf_reserved_percpu = val;
5689 for_each_online_cpu(cpu) {
5690 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005691 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005692 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5693 perf_max_events - perf_reserved_percpu);
5694 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005695 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005696 }
5697 spin_unlock(&perf_resource_lock);
5698
5699 return count;
5700}
5701
Andi Kleenc9be0a32010-01-05 12:47:58 +01005702static ssize_t perf_show_overcommit(struct sysdev_class *class,
5703 struct sysdev_class_attribute *attr,
5704 char *buf)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005705{
5706 return sprintf(buf, "%d\n", perf_overcommit);
5707}
5708
5709static ssize_t
Andi Kleenc9be0a32010-01-05 12:47:58 +01005710perf_set_overcommit(struct sysdev_class *class,
5711 struct sysdev_class_attribute *attr,
5712 const char *buf, size_t count)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005713{
5714 unsigned long val;
5715 int err;
5716
5717 err = strict_strtoul(buf, 10, &val);
5718 if (err)
5719 return err;
5720 if (val > 1)
5721 return -EINVAL;
5722
5723 spin_lock(&perf_resource_lock);
5724 perf_overcommit = val;
5725 spin_unlock(&perf_resource_lock);
5726
5727 return count;
5728}
5729
5730static SYSDEV_CLASS_ATTR(
5731 reserve_percpu,
5732 0644,
5733 perf_show_reserve_percpu,
5734 perf_set_reserve_percpu
5735 );
5736
5737static SYSDEV_CLASS_ATTR(
5738 overcommit,
5739 0644,
5740 perf_show_overcommit,
5741 perf_set_overcommit
5742 );
5743
5744static struct attribute *perfclass_attrs[] = {
5745 &attr_reserve_percpu.attr,
5746 &attr_overcommit.attr,
5747 NULL
5748};
5749
5750static struct attribute_group perfclass_attr_group = {
5751 .attrs = perfclass_attrs,
5752 .name = "perf_events",
5753};
5754
5755static int __init perf_event_sysfs_init(void)
5756{
5757 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5758 &perfclass_attr_group);
5759}
5760device_initcall(perf_event_sysfs_init);