blob: 42f7a5b340aa38daeb73b3fd791c4678832108a4 [file] [log] [blame]
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -06001/*
2 * Copyright (c) 2017, The Linux Foundation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 */
14
15#include <asm/dma-iommu.h>
16#include <linux/clk.h>
17#include <linux/dma-mapping.h>
18#include <linux/ipc_logging.h>
19#include <linux/io.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/msm-bus.h>
23#include <linux/msm-bus-board.h>
24#include <linux/of.h>
25#include <linux/of_platform.h>
26#include <linux/pm_runtime.h>
27#include <linux/qcom-geni-se.h>
28#include <linux/spinlock.h>
29
30#define GENI_SE_IOMMU_VA_START (0x40000000)
31#define GENI_SE_IOMMU_VA_SIZE (0xC0000000)
32
33#define NUM_LOG_PAGES 2
Karthikeyan Ramasubramanian8bef5ea2017-05-11 17:02:46 -060034#define MAX_CLK_PERF_LEVEL 32
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -060035static unsigned long default_bus_bw_set[] = {0, 19200000, 50000000, 100000000};
36
37/**
38 * @struct geni_se_device - Data structure to represent the QUPv3 Core
39 * @dev: Device pointer of the QUPv3 core.
40 * @cb_dev: Device pointer of the context bank in the IOMMU.
41 * @iommu_lock: Lock to protect IOMMU Mapping & attachment.
42 * @iommu_map: IOMMU map of the memory space supported by this core.
43 * @iommu_s1_bypass: Bypass IOMMU stage 1 translation.
44 * @base: Base address of this instance of QUPv3 core.
45 * @bus_bw: Client handle to the bus bandwidth request.
46 * @bus_mas_id: Master Endpoint ID for bus BW request.
47 * @bus_slv_id: Slave Endpoint ID for bus BW request.
48 * @ab_ib_lock: Lock to protect the bus ab & ib values, list.
49 * @ab_list_head: Sorted resource list based on average bus BW.
50 * @ib_list_head: Sorted resource list based on instantaneous bus BW.
51 * @cur_ab: Current Bus Average BW request value.
52 * @cur_ib: Current Bus Instantaneous BW request value.
53 * @bus_bw_set: Clock plan for the bus driver.
54 * @cur_bus_bw_idx: Current index within the bus clock plan.
Karthikeyan Ramasubramanian8bef5ea2017-05-11 17:02:46 -060055 * @num_clk_levels: Number of valid clock levels in clk_perf_tbl.
56 * @clk_perf_tbl: Table of clock frequency input to Serial Engine clock.
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -060057 * @log_ctx: Logging context to hold the debug information
58 */
59struct geni_se_device {
60 struct device *dev;
61 struct device *cb_dev;
62 struct mutex iommu_lock;
63 struct dma_iommu_mapping *iommu_map;
64 bool iommu_s1_bypass;
65 void __iomem *base;
66 struct msm_bus_client_handle *bus_bw;
67 u32 bus_mas_id;
68 u32 bus_slv_id;
69 spinlock_t ab_ib_lock;
70 struct list_head ab_list_head;
71 struct list_head ib_list_head;
72 unsigned long cur_ab;
73 unsigned long cur_ib;
74 int bus_bw_set_size;
75 unsigned long *bus_bw_set;
76 int cur_bus_bw_idx;
Karthikeyan Ramasubramanian8bef5ea2017-05-11 17:02:46 -060077 unsigned int num_clk_levels;
78 unsigned long *clk_perf_tbl;
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -060079 void *log_ctx;
80};
81
82/* Offset of QUPV3 Hardware Version Register */
83#define QUPV3_HW_VER (0x4)
84
85#define HW_VER_MAJOR_MASK GENMASK(31, 28)
86#define HW_VER_MAJOR_SHFT 28
87#define HW_VER_MINOR_MASK GENMASK(27, 16)
88#define HW_VER_MINOR_SHFT 16
89#define HW_VER_STEP_MASK GENMASK(15, 0)
90
91static int geni_se_iommu_map_and_attach(struct geni_se_device *geni_se_dev);
92
93/**
94 * geni_read_reg_nolog() - Helper function to read from a GENI register
95 * @base: Base address of the serial engine's register block.
96 * @offset: Offset within the serial engine's register block.
97 *
98 * Return: Return the contents of the register.
99 */
100unsigned int geni_read_reg_nolog(void __iomem *base, int offset)
101{
102 return readl_relaxed_no_log(base + offset);
103}
104EXPORT_SYMBOL(geni_read_reg_nolog);
105
106/**
107 * geni_write_reg_nolog() - Helper function to write into a GENI register
108 * @value: Value to be written into the register.
109 * @base: Base address of the serial engine's register block.
110 * @offset: Offset within the serial engine's register block.
111 */
112void geni_write_reg_nolog(unsigned int value, void __iomem *base, int offset)
113{
114 return writel_relaxed_no_log(value, (base + offset));
115}
116EXPORT_SYMBOL(geni_write_reg_nolog);
117
118/**
119 * geni_read_reg() - Helper function to read from a GENI register
120 * @base: Base address of the serial engine's register block.
121 * @offset: Offset within the serial engine's register block.
122 *
123 * Return: Return the contents of the register.
124 */
125unsigned int geni_read_reg(void __iomem *base, int offset)
126{
127 return readl_relaxed(base + offset);
128}
129EXPORT_SYMBOL(geni_read_reg);
130
131/**
132 * geni_write_reg() - Helper function to write into a GENI register
133 * @value: Value to be written into the register.
134 * @base: Base address of the serial engine's register block.
135 * @offset: Offset within the serial engine's register block.
136 */
137void geni_write_reg(unsigned int value, void __iomem *base, int offset)
138{
139 return writel_relaxed(value, (base + offset));
140}
141EXPORT_SYMBOL(geni_write_reg);
142
143/**
144 * get_se_proto() - Read the protocol configured for a serial engine
145 * @base: Base address of the serial engine's register block.
146 *
147 * Return: Protocol value as configured in the serial engine.
148 */
149int get_se_proto(void __iomem *base)
150{
151 int proto;
152
153 proto = ((geni_read_reg(base, GENI_FW_REVISION_RO)
154 & FW_REV_PROTOCOL_MSK) >> FW_REV_PROTOCOL_SHFT);
155 return proto;
156}
157EXPORT_SYMBOL(get_se_proto);
158
159static int se_geni_irq_en(void __iomem *base)
160{
161 unsigned int common_geni_m_irq_en;
162 unsigned int common_geni_s_irq_en;
163
164 common_geni_m_irq_en = geni_read_reg(base, SE_GENI_M_IRQ_EN);
165 common_geni_s_irq_en = geni_read_reg(base, SE_GENI_S_IRQ_EN);
166 /* Common to all modes */
167 common_geni_m_irq_en |= M_COMMON_GENI_M_IRQ_EN;
168 common_geni_s_irq_en |= S_COMMON_GENI_S_IRQ_EN;
169
170 geni_write_reg(common_geni_m_irq_en, base, SE_GENI_M_IRQ_EN);
171 geni_write_reg(common_geni_s_irq_en, base, SE_GENI_S_IRQ_EN);
172 return 0;
173}
174
175
176static void se_set_rx_rfr_wm(void __iomem *base, unsigned int rx_wm,
177 unsigned int rx_rfr)
178{
179 geni_write_reg(rx_wm, base, SE_GENI_RX_WATERMARK_REG);
180 geni_write_reg(rx_rfr, base, SE_GENI_RX_RFR_WATERMARK_REG);
181}
182
183static int se_io_set_mode(void __iomem *base)
184{
185 unsigned int io_mode;
186 unsigned int geni_dma_mode;
187
188 io_mode = geni_read_reg(base, SE_IRQ_EN);
189 geni_dma_mode = geni_read_reg(base, SE_GENI_DMA_MODE_EN);
190
191 io_mode |= (GENI_M_IRQ_EN | GENI_S_IRQ_EN);
192 io_mode |= (DMA_TX_IRQ_EN | DMA_RX_IRQ_EN);
193 geni_dma_mode &= ~GENI_DMA_MODE_EN;
194
195 geni_write_reg(io_mode, base, SE_IRQ_EN);
196 geni_write_reg(geni_dma_mode, base, SE_GENI_DMA_MODE_EN);
197 geni_write_reg(0, base, SE_GSI_EVENT_EN);
198 return 0;
199}
200
201static void se_io_init(void __iomem *base)
202{
203 unsigned int io_op_ctrl;
204 unsigned int geni_cgc_ctrl;
205 unsigned int dma_general_cfg;
206
207 geni_cgc_ctrl = geni_read_reg(base, GENI_CGC_CTRL);
208 dma_general_cfg = geni_read_reg(base, SE_DMA_GENERAL_CFG);
209 geni_cgc_ctrl |= DEFAULT_CGC_EN;
210 dma_general_cfg |= (AHB_SEC_SLV_CLK_CGC_ON | DMA_AHB_SLV_CFG_ON |
211 DMA_TX_CLK_CGC_ON | DMA_RX_CLK_CGC_ON);
212 io_op_ctrl = DEFAULT_IO_OUTPUT_CTRL_MSK;
213 geni_write_reg(geni_cgc_ctrl, base, GENI_CGC_CTRL);
214 geni_write_reg(dma_general_cfg, base, SE_DMA_GENERAL_CFG);
215
216 geni_write_reg(io_op_ctrl, base, GENI_OUTPUT_CTRL);
217 geni_write_reg(FORCE_DEFAULT, base, GENI_FORCE_DEFAULT_REG);
218}
219
220/**
221 * geni_se_init() - Initialize the GENI Serial Engine
222 * @base: Base address of the serial engine's register block.
223 * @rx_wm: Receive watermark to be configured.
224 * @rx_rfr_wm: Ready-for-receive watermark to be configured.
225 *
226 * This function is used to initialize the GENI serial engine, configure
227 * receive watermark and ready-for-receive watermarks.
228 *
229 * Return: 0 on success, standard Linux error codes on failure/error.
230 */
231int geni_se_init(void __iomem *base, unsigned int rx_wm, unsigned int rx_rfr)
232{
233 int ret;
234
235 se_io_init(base);
236 ret = se_io_set_mode(base);
237 if (ret)
238 return ret;
239
240 se_set_rx_rfr_wm(base, rx_wm, rx_rfr);
241 ret = se_geni_irq_en(base);
242 return ret;
243}
244EXPORT_SYMBOL(geni_se_init);
245
246static int geni_se_select_fifo_mode(void __iomem *base)
247{
248 int proto = get_se_proto(base);
249 unsigned int common_geni_m_irq_en;
250 unsigned int common_geni_s_irq_en;
251 unsigned int geni_dma_mode;
252
253 geni_write_reg(0, base, SE_GSI_EVENT_EN);
254 geni_write_reg(0xFFFFFFFF, base, SE_GENI_M_IRQ_CLEAR);
255 geni_write_reg(0xFFFFFFFF, base, SE_GENI_S_IRQ_CLEAR);
256 geni_write_reg(0xFFFFFFFF, base, SE_DMA_TX_IRQ_CLR);
257 geni_write_reg(0xFFFFFFFF, base, SE_DMA_RX_IRQ_CLR);
258 geni_write_reg(0xFFFFFFFF, base, SE_IRQ_EN);
259
260 common_geni_m_irq_en = geni_read_reg(base, SE_GENI_M_IRQ_EN);
261 common_geni_s_irq_en = geni_read_reg(base, SE_GENI_S_IRQ_EN);
262 geni_dma_mode = geni_read_reg(base, SE_GENI_DMA_MODE_EN);
263 if (proto != UART) {
264 common_geni_m_irq_en |=
265 (M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN |
266 M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN);
267 common_geni_s_irq_en |= S_CMD_DONE_EN;
268 }
269 geni_dma_mode &= ~GENI_DMA_MODE_EN;
270
271 geni_write_reg(common_geni_m_irq_en, base, SE_GENI_M_IRQ_EN);
272 geni_write_reg(common_geni_s_irq_en, base, SE_GENI_S_IRQ_EN);
273 geni_write_reg(geni_dma_mode, base, SE_GENI_DMA_MODE_EN);
274 return 0;
275}
276
277static int geni_se_select_dma_mode(void __iomem *base)
278{
279 unsigned int geni_dma_mode = 0;
280
281 geni_write_reg(0, base, SE_GSI_EVENT_EN);
282 geni_write_reg(0xFFFFFFFF, base, SE_GENI_M_IRQ_CLEAR);
283 geni_write_reg(0xFFFFFFFF, base, SE_GENI_S_IRQ_CLEAR);
284 geni_write_reg(0xFFFFFFFF, base, SE_DMA_TX_IRQ_CLR);
285 geni_write_reg(0xFFFFFFFF, base, SE_DMA_RX_IRQ_CLR);
286 geni_write_reg(0xFFFFFFFF, base, SE_IRQ_EN);
287
288 geni_dma_mode = geni_read_reg(base, SE_GENI_DMA_MODE_EN);
289 geni_dma_mode |= GENI_DMA_MODE_EN;
290 geni_write_reg(geni_dma_mode, base, SE_GENI_DMA_MODE_EN);
291 return 0;
292}
293
294static int geni_se_select_gsi_mode(void __iomem *base)
295{
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -0600296 unsigned int geni_dma_mode = 0;
297 unsigned int gsi_event_en = 0;
Girish Mahadevanaf5f2bc2017-08-15 12:05:40 -0600298 unsigned int common_geni_m_irq_en = 0;
299 unsigned int common_geni_s_irq_en = 0;
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -0600300
Girish Mahadevanaf5f2bc2017-08-15 12:05:40 -0600301 common_geni_m_irq_en = geni_read_reg(base, SE_GENI_M_IRQ_EN);
302 common_geni_s_irq_en = geni_read_reg(base, SE_GENI_S_IRQ_EN);
303 common_geni_m_irq_en &=
304 ~(M_CMD_DONE_EN | M_TX_FIFO_WATERMARK_EN |
305 M_RX_FIFO_WATERMARK_EN | M_RX_FIFO_LAST_EN);
306 common_geni_s_irq_en &= ~S_CMD_DONE_EN;
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -0600307 geni_dma_mode = geni_read_reg(base, SE_GENI_DMA_MODE_EN);
308 gsi_event_en = geni_read_reg(base, SE_GSI_EVENT_EN);
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -0600309
310 geni_dma_mode |= GENI_DMA_MODE_EN;
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -0600311 gsi_event_en |= (DMA_RX_EVENT_EN | DMA_TX_EVENT_EN |
312 GENI_M_EVENT_EN | GENI_S_EVENT_EN);
313
Girish Mahadevanaf5f2bc2017-08-15 12:05:40 -0600314 geni_write_reg(0, base, SE_IRQ_EN);
315 geni_write_reg(common_geni_s_irq_en, base, SE_GENI_S_IRQ_EN);
316 geni_write_reg(common_geni_m_irq_en, base, SE_GENI_M_IRQ_EN);
317 geni_write_reg(0xFFFFFFFF, base, SE_GENI_M_IRQ_CLEAR);
318 geni_write_reg(0xFFFFFFFF, base, SE_GENI_S_IRQ_CLEAR);
319 geni_write_reg(0xFFFFFFFF, base, SE_DMA_TX_IRQ_CLR);
320 geni_write_reg(0xFFFFFFFF, base, SE_DMA_RX_IRQ_CLR);
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -0600321 geni_write_reg(geni_dma_mode, base, SE_GENI_DMA_MODE_EN);
322 geni_write_reg(gsi_event_en, base, SE_GSI_EVENT_EN);
323 return 0;
324
325}
326
327/**
328 * geni_se_select_mode() - Select the serial engine transfer mode
329 * @base: Base address of the serial engine's register block.
330 * @mode: Transfer mode to be selected.
331 *
332 * Return: 0 on success, standard Linux error codes on failure.
333 */
334int geni_se_select_mode(void __iomem *base, int mode)
335{
336 int ret = 0;
337
338 switch (mode) {
339 case FIFO_MODE:
340 geni_se_select_fifo_mode(base);
341 break;
342 case SE_DMA:
343 geni_se_select_dma_mode(base);
344 break;
345 case GSI_DMA:
346 geni_se_select_gsi_mode(base);
347 break;
348 default:
349 ret = -EINVAL;
350 break;
351 }
352
353 return ret;
354}
355EXPORT_SYMBOL(geni_se_select_mode);
356
357/**
358 * geni_setup_m_cmd() - Setup the primary sequencer
359 * @base: Base address of the serial engine's register block.
360 * @cmd: Command/Operation to setup in the primary sequencer.
361 * @params: Parameter for the sequencer command.
362 *
363 * This function is used to configure the primary sequencer with the
364 * command and its assoicated parameters.
365 */
366void geni_setup_m_cmd(void __iomem *base, u32 cmd, u32 params)
367{
368 u32 m_cmd = (cmd << M_OPCODE_SHFT);
369
370 m_cmd |= (params & M_PARAMS_MSK);
371 geni_write_reg(m_cmd, base, SE_GENI_M_CMD0);
372}
373EXPORT_SYMBOL(geni_setup_m_cmd);
374
375/**
376 * geni_setup_s_cmd() - Setup the secondary sequencer
377 * @base: Base address of the serial engine's register block.
378 * @cmd: Command/Operation to setup in the secondary sequencer.
379 * @params: Parameter for the sequencer command.
380 *
381 * This function is used to configure the secondary sequencer with the
382 * command and its assoicated parameters.
383 */
384void geni_setup_s_cmd(void __iomem *base, u32 cmd, u32 params)
385{
386 u32 s_cmd = geni_read_reg(base, SE_GENI_S_CMD0);
387
388 s_cmd &= ~(S_OPCODE_MSK | S_PARAMS_MSK);
389 s_cmd |= (cmd << S_OPCODE_SHFT);
390 s_cmd |= (params & S_PARAMS_MSK);
391 geni_write_reg(s_cmd, base, SE_GENI_S_CMD0);
392}
393EXPORT_SYMBOL(geni_setup_s_cmd);
394
395/**
396 * geni_cancel_m_cmd() - Cancel the command configured in the primary sequencer
397 * @base: Base address of the serial engine's register block.
398 *
399 * This function is used to cancel the currently configured command in the
400 * primary sequencer.
401 */
402void geni_cancel_m_cmd(void __iomem *base)
403{
404 geni_write_reg(M_GENI_CMD_CANCEL, base, SE_GENI_S_CMD_CTRL_REG);
405}
406EXPORT_SYMBOL(geni_cancel_m_cmd);
407
408/**
409 * geni_cancel_s_cmd() - Cancel the command configured in the secondary
410 * sequencer
411 * @base: Base address of the serial engine's register block.
412 *
413 * This function is used to cancel the currently configured command in the
414 * secondary sequencer.
415 */
416void geni_cancel_s_cmd(void __iomem *base)
417{
418 geni_write_reg(S_GENI_CMD_CANCEL, base, SE_GENI_S_CMD_CTRL_REG);
419}
420EXPORT_SYMBOL(geni_cancel_s_cmd);
421
422/**
423 * geni_abort_m_cmd() - Abort the command configured in the primary sequencer
424 * @base: Base address of the serial engine's register block.
425 *
426 * This function is used to force abort the currently configured command in the
427 * primary sequencer.
428 */
429void geni_abort_m_cmd(void __iomem *base)
430{
431 geni_write_reg(M_GENI_CMD_ABORT, base, SE_GENI_M_CMD_CTRL_REG);
432}
433EXPORT_SYMBOL(geni_abort_m_cmd);
434
435/**
436 * geni_abort_s_cmd() - Abort the command configured in the secondary
437 * sequencer
438 * @base: Base address of the serial engine's register block.
439 *
440 * This function is used to force abort the currently configured command in the
441 * secondary sequencer.
442 */
443void geni_abort_s_cmd(void __iomem *base)
444{
445 geni_write_reg(S_GENI_CMD_ABORT, base, SE_GENI_S_CMD_CTRL_REG);
446}
447EXPORT_SYMBOL(geni_abort_s_cmd);
448
449/**
450 * get_tx_fifo_depth() - Get the TX fifo depth of the serial engine
451 * @base: Base address of the serial engine's register block.
452 *
453 * This function is used to get the depth i.e. number of elements in the
454 * TX fifo of the serial engine.
455 *
456 * Return: TX fifo depth in units of FIFO words.
457 */
458int get_tx_fifo_depth(void __iomem *base)
459{
460 int tx_fifo_depth;
461
462 tx_fifo_depth = ((geni_read_reg(base, SE_HW_PARAM_0)
463 & TX_FIFO_DEPTH_MSK) >> TX_FIFO_DEPTH_SHFT);
464 return tx_fifo_depth;
465}
466EXPORT_SYMBOL(get_tx_fifo_depth);
467
468/**
469 * get_tx_fifo_width() - Get the TX fifo width of the serial engine
470 * @base: Base address of the serial engine's register block.
471 *
472 * This function is used to get the width i.e. word size per element in the
473 * TX fifo of the serial engine.
474 *
475 * Return: TX fifo width in bits
476 */
477int get_tx_fifo_width(void __iomem *base)
478{
479 int tx_fifo_width;
480
481 tx_fifo_width = ((geni_read_reg(base, SE_HW_PARAM_0)
482 & TX_FIFO_WIDTH_MSK) >> TX_FIFO_WIDTH_SHFT);
483 return tx_fifo_width;
484}
485EXPORT_SYMBOL(get_tx_fifo_width);
486
487/**
488 * get_rx_fifo_depth() - Get the RX fifo depth of the serial engine
489 * @base: Base address of the serial engine's register block.
490 *
491 * This function is used to get the depth i.e. number of elements in the
492 * RX fifo of the serial engine.
493 *
494 * Return: RX fifo depth in units of FIFO words
495 */
496int get_rx_fifo_depth(void __iomem *base)
497{
498 int rx_fifo_depth;
499
500 rx_fifo_depth = ((geni_read_reg(base, SE_HW_PARAM_1)
501 & RX_FIFO_DEPTH_MSK) >> RX_FIFO_DEPTH_SHFT);
502 return rx_fifo_depth;
503}
504EXPORT_SYMBOL(get_rx_fifo_depth);
505
506/**
507 * se_get_packing_config() - Get the packing configuration based on input
508 * @bpw: Bits of data per transfer word.
509 * @pack_words: Number of words per fifo element.
510 * @msb_to_lsb: Transfer from MSB to LSB or vice-versa.
511 * @cfg0: Output buffer to hold the first half of configuration.
512 * @cfg1: Output buffer to hold the second half of configuration.
513 *
514 * This function is used to calculate the packing configuration based on
515 * the input packing requirement and the configuration logic.
516 */
517void se_get_packing_config(int bpw, int pack_words, bool msb_to_lsb,
518 unsigned long *cfg0, unsigned long *cfg1)
519{
520 u32 cfg[4] = {0};
521 int len;
522 int temp_bpw = bpw;
523 int idx_start = (msb_to_lsb ? (bpw - 1) : 0);
524 int idx = idx_start;
525 int idx_delta = (msb_to_lsb ? -BITS_PER_BYTE : BITS_PER_BYTE);
526 int ceil_bpw = ((bpw & (BITS_PER_BYTE - 1)) ?
527 ((bpw & ~(BITS_PER_BYTE - 1)) + BITS_PER_BYTE) : bpw);
528 int iter = (ceil_bpw * pack_words) >> 3;
529 int i;
530
531 if (unlikely(iter <= 0 || iter > 4)) {
532 *cfg0 = 0;
533 *cfg1 = 0;
534 return;
535 }
536
537 for (i = 0; i < iter; i++) {
538 len = (temp_bpw < BITS_PER_BYTE) ?
539 (temp_bpw - 1) : BITS_PER_BYTE - 1;
540 cfg[i] = ((idx << 5) | (msb_to_lsb << 4) | (len << 1));
541 idx = ((temp_bpw - BITS_PER_BYTE) <= 0) ?
542 ((i + 1) * BITS_PER_BYTE) + idx_start :
543 idx + idx_delta;
544 temp_bpw = ((temp_bpw - BITS_PER_BYTE) <= 0) ?
545 bpw : (temp_bpw - BITS_PER_BYTE);
546 }
547 cfg[iter - 1] |= 1;
548 *cfg0 = cfg[0] | (cfg[1] << 10);
549 *cfg1 = cfg[2] | (cfg[3] << 10);
550}
551EXPORT_SYMBOL(se_get_packing_config);
552
553/**
554 * se_config_packing() - Packing configuration of the serial engine
555 * @base: Base address of the serial engine's register block.
556 * @bpw: Bits of data per transfer word.
557 * @pack_words: Number of words per fifo element.
558 * @msb_to_lsb: Transfer from MSB to LSB or vice-versa.
559 *
560 * This function is used to configure the packing rules for the current
561 * transfer.
562 */
563void se_config_packing(void __iomem *base, int bpw,
564 int pack_words, bool msb_to_lsb)
565{
566 unsigned long cfg0, cfg1;
567
568 se_get_packing_config(bpw, pack_words, msb_to_lsb, &cfg0, &cfg1);
569 geni_write_reg(cfg0, base, SE_GENI_TX_PACKING_CFG0);
570 geni_write_reg(cfg1, base, SE_GENI_TX_PACKING_CFG1);
571 geni_write_reg(cfg0, base, SE_GENI_RX_PACKING_CFG0);
572 geni_write_reg(cfg1, base, SE_GENI_RX_PACKING_CFG1);
573 if (pack_words || bpw == 32)
574 geni_write_reg((bpw >> 4), base, SE_GENI_BYTE_GRAN);
575}
576EXPORT_SYMBOL(se_config_packing);
577
578static void se_geni_clks_off(struct se_geni_rsc *rsc)
579{
580 clk_disable_unprepare(rsc->se_clk);
581 clk_disable_unprepare(rsc->s_ahb_clk);
582 clk_disable_unprepare(rsc->m_ahb_clk);
583}
584
585static bool geni_se_check_bus_bw(struct geni_se_device *geni_se_dev)
586{
587 int i;
588 int new_bus_bw_idx = geni_se_dev->bus_bw_set_size - 1;
589 unsigned long new_bus_bw;
590 bool bus_bw_update = false;
591
592 new_bus_bw = max(geni_se_dev->cur_ib, geni_se_dev->cur_ab) /
593 DEFAULT_BUS_WIDTH;
594 for (i = 0; i < geni_se_dev->bus_bw_set_size; i++) {
595 if (geni_se_dev->bus_bw_set[i] >= new_bus_bw) {
596 new_bus_bw_idx = i;
597 break;
598 }
599 }
600
601 if (geni_se_dev->cur_bus_bw_idx != new_bus_bw_idx) {
602 geni_se_dev->cur_bus_bw_idx = new_bus_bw_idx;
603 bus_bw_update = true;
604 }
605 return bus_bw_update;
606}
607
608static int geni_se_rmv_ab_ib(struct geni_se_device *geni_se_dev,
609 struct se_geni_rsc *rsc)
610{
611 unsigned long flags;
612 struct se_geni_rsc *tmp;
613 bool bus_bw_update = false;
614 int ret = 0;
615
616 if (unlikely(list_empty(&rsc->ab_list) || list_empty(&rsc->ib_list)))
617 return -EINVAL;
618
619 spin_lock_irqsave(&geni_se_dev->ab_ib_lock, flags);
620 list_del_init(&rsc->ab_list);
621 geni_se_dev->cur_ab -= rsc->ab;
622
623 list_del_init(&rsc->ib_list);
624 tmp = list_first_entry_or_null(&geni_se_dev->ib_list_head,
625 struct se_geni_rsc, ib_list);
626 if (tmp && tmp->ib != geni_se_dev->cur_ib)
627 geni_se_dev->cur_ib = tmp->ib;
628 else if (!tmp && geni_se_dev->cur_ib)
629 geni_se_dev->cur_ib = 0;
630
631 bus_bw_update = geni_se_check_bus_bw(geni_se_dev);
632 spin_unlock_irqrestore(&geni_se_dev->ab_ib_lock, flags);
633
634 if (bus_bw_update)
635 ret = msm_bus_scale_update_bw(geni_se_dev->bus_bw,
636 geni_se_dev->cur_ab,
637 geni_se_dev->cur_ib);
638 GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL,
639 "%s: %lu:%lu (%lu:%lu) %d\n", __func__,
640 geni_se_dev->cur_ab, geni_se_dev->cur_ib,
641 rsc->ab, rsc->ib, bus_bw_update);
642 return ret;
643}
644
645/**
646 * se_geni_resources_off() - Turn off resources associated with the serial
647 * engine
648 * @rsc: Handle to resources associated with the serial engine.
649 *
650 * Return: 0 on success, standard Linux error codes on failure/error.
651 */
652int se_geni_resources_off(struct se_geni_rsc *rsc)
653{
654 int ret = 0;
655 struct geni_se_device *geni_se_dev;
656
657 if (unlikely(!rsc || !rsc->wrapper_dev))
658 return -EINVAL;
659
660 geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
661 if (unlikely(!geni_se_dev || !geni_se_dev->bus_bw))
662 return -ENODEV;
663
664 ret = pinctrl_select_state(rsc->geni_pinctrl, rsc->geni_gpio_sleep);
665 if (ret) {
666 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
667 "%s: Error %d pinctrl_select_state\n", __func__, ret);
668 return ret;
669 }
670 se_geni_clks_off(rsc);
671 ret = geni_se_rmv_ab_ib(geni_se_dev, rsc);
672 if (ret)
673 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
674 "%s: Error %d during bus_bw_update\n", __func__, ret);
675 return ret;
676}
677EXPORT_SYMBOL(se_geni_resources_off);
678
679static int se_geni_clks_on(struct se_geni_rsc *rsc)
680{
681 int ret;
682
683 ret = clk_prepare_enable(rsc->m_ahb_clk);
684 if (ret)
685 return ret;
686
687 ret = clk_prepare_enable(rsc->s_ahb_clk);
688 if (ret) {
689 clk_disable_unprepare(rsc->m_ahb_clk);
690 return ret;
691 }
692
693 ret = clk_prepare_enable(rsc->se_clk);
694 if (ret) {
695 clk_disable_unprepare(rsc->s_ahb_clk);
696 clk_disable_unprepare(rsc->m_ahb_clk);
697 }
698 return ret;
699}
700
701static int geni_se_add_ab_ib(struct geni_se_device *geni_se_dev,
702 struct se_geni_rsc *rsc)
703{
704 unsigned long flags;
705 struct se_geni_rsc *tmp;
706 struct list_head *ins_list_head;
707 bool bus_bw_update = false;
708 int ret = 0;
709
710 spin_lock_irqsave(&geni_se_dev->ab_ib_lock, flags);
711 list_add(&rsc->ab_list, &geni_se_dev->ab_list_head);
712 geni_se_dev->cur_ab += rsc->ab;
713
714 ins_list_head = &geni_se_dev->ib_list_head;
715 list_for_each_entry(tmp, &geni_se_dev->ib_list_head, ib_list) {
716 if (tmp->ib < rsc->ib)
717 break;
718 ins_list_head = &tmp->ib_list;
719 }
720 list_add(&rsc->ib_list, ins_list_head);
721 /* Currently inserted node has greater average BW value */
722 if (ins_list_head == &geni_se_dev->ib_list_head)
723 geni_se_dev->cur_ib = tmp->ib;
724
725 bus_bw_update = geni_se_check_bus_bw(geni_se_dev);
726 spin_unlock_irqrestore(&geni_se_dev->ab_ib_lock, flags);
727
728 if (bus_bw_update)
729 ret = msm_bus_scale_update_bw(geni_se_dev->bus_bw,
730 geni_se_dev->cur_ab,
731 geni_se_dev->cur_ib);
732 GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL,
733 "%s: %lu:%lu (%lu:%lu) %d\n", __func__,
734 geni_se_dev->cur_ab, geni_se_dev->cur_ib,
735 rsc->ab, rsc->ib, bus_bw_update);
736 return ret;
737}
738
739/**
740 * se_geni_resources_on() - Turn on resources associated with the serial
741 * engine
742 * @rsc: Handle to resources associated with the serial engine.
743 *
744 * Return: 0 on success, standard Linux error codes on failure/error.
745 */
746int se_geni_resources_on(struct se_geni_rsc *rsc)
747{
748 int ret = 0;
749 struct geni_se_device *geni_se_dev;
750
751 if (unlikely(!rsc || !rsc->wrapper_dev))
752 return -EINVAL;
753
754 geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
755 if (unlikely(!geni_se_dev))
756 return -EPROBE_DEFER;
757
758 ret = geni_se_add_ab_ib(geni_se_dev, rsc);
759 if (ret) {
760 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
761 "%s: Error %d during bus_bw_update\n", __func__, ret);
762 return ret;
763 }
764
765 ret = se_geni_clks_on(rsc);
766 if (ret) {
767 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
768 "%s: Error %d during clks_on\n", __func__, ret);
769 geni_se_rmv_ab_ib(geni_se_dev, rsc);
770 return ret;
771 }
772
773 ret = pinctrl_select_state(rsc->geni_pinctrl, rsc->geni_gpio_active);
774 if (ret) {
775 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
776 "%s: Error %d pinctrl_select_state\n", __func__, ret);
777 se_geni_clks_off(rsc);
778 geni_se_rmv_ab_ib(geni_se_dev, rsc);
779 }
780 return ret;
781}
782EXPORT_SYMBOL(se_geni_resources_on);
783
784/**
785 * geni_se_resources_init() - Init the SE resource structure
786 * @rsc: SE resource structure to be initialized.
787 * @ab: Initial Average bus bandwidth request value.
788 * @ib: Initial Instantaneous bus bandwidth request value.
789 *
790 * Return: 0 on success, standard Linux error codes on failure.
791 */
792int geni_se_resources_init(struct se_geni_rsc *rsc,
793 unsigned long ab, unsigned long ib)
794{
795 struct geni_se_device *geni_se_dev;
796
797 if (unlikely(!rsc || !rsc->wrapper_dev))
798 return -EINVAL;
799
800 geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
801 if (unlikely(!geni_se_dev))
802 return -EPROBE_DEFER;
803
804 if (unlikely(IS_ERR_OR_NULL(geni_se_dev->bus_bw))) {
805 geni_se_dev->bus_bw = msm_bus_scale_register(
806 geni_se_dev->bus_mas_id,
807 geni_se_dev->bus_slv_id,
808 (char *)dev_name(geni_se_dev->dev),
809 false);
810 if (IS_ERR_OR_NULL(geni_se_dev->bus_bw)) {
811 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
812 "%s: Error creating bus client\n", __func__);
813 return (int)PTR_ERR(geni_se_dev->bus_bw);
814 }
815 }
816
817 rsc->ab = ab;
818 rsc->ib = ib;
819 INIT_LIST_HEAD(&rsc->ab_list);
820 INIT_LIST_HEAD(&rsc->ib_list);
821 geni_se_iommu_map_and_attach(geni_se_dev);
822 return 0;
823}
824EXPORT_SYMBOL(geni_se_resources_init);
825
826/**
Karthikeyan Ramasubramanian8bef5ea2017-05-11 17:02:46 -0600827 * geni_se_clk_tbl_get() - Get the clock table to program DFS
828 * @rsc: Resource for which the clock table is requested.
829 * @tbl: Table in which the output is returned.
830 *
831 * This function is called by the protocol drivers to determine the different
832 * clock frequencies supported by Serail Engine Core Clock. The protocol
833 * drivers use the output to determine the clock frequency index to be
834 * programmed into DFS.
835 *
836 * Return: number of valid performance levels in the table on success,
837 * standard Linux error codes on failure.
838 */
839int geni_se_clk_tbl_get(struct se_geni_rsc *rsc, unsigned long **tbl)
840{
841 struct geni_se_device *geni_se_dev;
842 int i;
843 unsigned long prev_freq = 0;
844
845 if (unlikely(!rsc || !rsc->wrapper_dev || !rsc->se_clk || !tbl))
846 return -EINVAL;
847
848 *tbl = NULL;
849 geni_se_dev = dev_get_drvdata(rsc->wrapper_dev);
850 if (unlikely(!geni_se_dev))
851 return -EPROBE_DEFER;
852
853 if (geni_se_dev->clk_perf_tbl) {
854 *tbl = geni_se_dev->clk_perf_tbl;
855 return geni_se_dev->num_clk_levels;
856 }
857
858 geni_se_dev->clk_perf_tbl = kzalloc(sizeof(*geni_se_dev->clk_perf_tbl) *
859 MAX_CLK_PERF_LEVEL, GFP_KERNEL);
860 if (!geni_se_dev->clk_perf_tbl)
861 return -ENOMEM;
862
863 for (i = 0; i < MAX_CLK_PERF_LEVEL; i++) {
864 geni_se_dev->clk_perf_tbl[i] = clk_round_rate(rsc->se_clk,
865 prev_freq + 1);
866 if (geni_se_dev->clk_perf_tbl[i] == prev_freq) {
867 geni_se_dev->clk_perf_tbl[i] = 0;
868 break;
869 }
870 prev_freq = geni_se_dev->clk_perf_tbl[i];
871 }
872 geni_se_dev->num_clk_levels = i;
873 *tbl = geni_se_dev->clk_perf_tbl;
874 return geni_se_dev->num_clk_levels;
875}
876EXPORT_SYMBOL(geni_se_clk_tbl_get);
877
878/**
879 * geni_se_clk_freq_match() - Get the matching or closest SE clock frequency
880 * @rsc: Resource for which the clock frequency is requested.
881 * @req_freq: Requested clock frequency.
882 * @index: Index of the resultant frequency in the table.
883 * @res_freq: Resultant frequency which matches or is closer to the
884 * requested frequency.
885 * @exact: Flag to indicate exact multiple requirement of the requested
886 * frequency .
887 *
888 * This function is called by the protocol drivers to determine the matching
889 * or closest frequency of the Serial Engine clock to be selected in order
890 * to meet the performance requirements.
891 *
892 * Return: 0 on success, standard Linux error codes on failure.
893 */
894int geni_se_clk_freq_match(struct se_geni_rsc *rsc, unsigned long req_freq,
895 unsigned int *index, unsigned long *res_freq,
896 bool exact)
897{
898 unsigned long *tbl;
899 int num_clk_levels;
900 int i;
901
902 num_clk_levels = geni_se_clk_tbl_get(rsc, &tbl);
903 if (num_clk_levels < 0)
904 return num_clk_levels;
905
906 if (num_clk_levels == 0)
907 return -EFAULT;
908
909 *res_freq = 0;
910 for (i = 0; i < num_clk_levels; i++) {
911 if (!(tbl[i] % req_freq)) {
912 *index = i;
913 *res_freq = tbl[i];
914 return 0;
915 }
916
917 if (!(*res_freq) || ((tbl[i] > *res_freq) &&
918 (tbl[i] < req_freq))) {
919 *index = i;
920 *res_freq = tbl[i];
921 }
922 }
923
924 if (exact || !(*res_freq))
925 return -ENOKEY;
926
927 return 0;
928}
929EXPORT_SYMBOL(geni_se_clk_freq_match);
930
931/**
Karthikeyan Ramasubramanian0d578b72017-04-26 10:44:02 -0600932 * geni_se_tx_dma_prep() - Prepare the Serial Engine for TX DMA transfer
933 * @wrapper_dev: QUPv3 Wrapper Device to which the TX buffer is mapped.
934 * @base: Base address of the SE register block.
935 * @tx_buf: Pointer to the TX buffer.
936 * @tx_len: Length of the TX buffer.
937 * @tx_dma: Pointer to store the mapped DMA address.
938 *
939 * This function is used to prepare the buffers for DMA TX.
940 *
941 * Return: 0 on success, standard Linux error codes on error/failure.
942 */
943int geni_se_tx_dma_prep(struct device *wrapper_dev, void __iomem *base,
944 void *tx_buf, int tx_len, dma_addr_t *tx_dma)
945{
946 int ret;
947
948 if (unlikely(!wrapper_dev || !base || !tx_buf || !tx_len || !tx_dma))
949 return -EINVAL;
950
951 ret = geni_se_iommu_map_buf(wrapper_dev, tx_dma, tx_buf, tx_len,
952 DMA_TO_DEVICE);
953 if (ret)
954 return ret;
955
956 geni_write_reg(7, base, SE_DMA_TX_IRQ_EN_SET);
957 geni_write_reg((u32)(*tx_dma), base, SE_DMA_TX_PTR_L);
958 geni_write_reg((u32)((*tx_dma) >> 32), base, SE_DMA_TX_PTR_H);
959 geni_write_reg(1, base, SE_DMA_TX_ATTR);
960 geni_write_reg(tx_len, base, SE_DMA_TX_LEN);
961 return 0;
962}
963EXPORT_SYMBOL(geni_se_tx_dma_prep);
964
965/**
966 * geni_se_rx_dma_prep() - Prepare the Serial Engine for RX DMA transfer
967 * @wrapper_dev: QUPv3 Wrapper Device to which the RX buffer is mapped.
968 * @base: Base address of the SE register block.
969 * @rx_buf: Pointer to the RX buffer.
970 * @rx_len: Length of the RX buffer.
971 * @rx_dma: Pointer to store the mapped DMA address.
972 *
973 * This function is used to prepare the buffers for DMA RX.
974 *
975 * Return: 0 on success, standard Linux error codes on error/failure.
976 */
977int geni_se_rx_dma_prep(struct device *wrapper_dev, void __iomem *base,
978 void *rx_buf, int rx_len, dma_addr_t *rx_dma)
979{
980 int ret;
981
982 if (unlikely(!wrapper_dev || !base || !rx_buf || !rx_len || !rx_dma))
983 return -EINVAL;
984
985 ret = geni_se_iommu_map_buf(wrapper_dev, rx_dma, rx_buf, rx_len,
986 DMA_FROM_DEVICE);
987 if (ret)
988 return ret;
989
990 geni_write_reg(7, base, SE_DMA_RX_IRQ_EN_SET);
991 geni_write_reg((u32)(*rx_dma), base, SE_DMA_RX_PTR_L);
992 geni_write_reg((u32)((*rx_dma) >> 32), base, SE_DMA_RX_PTR_H);
993 /* RX does not have EOT bit */
994 geni_write_reg(0, base, SE_DMA_RX_ATTR);
995 geni_write_reg(rx_len, base, SE_DMA_RX_LEN);
996 return 0;
997}
998EXPORT_SYMBOL(geni_se_rx_dma_prep);
999
1000/**
1001 * geni_se_tx_dma_unprep() - Unprepare the Serial Engine after TX DMA transfer
1002 * @wrapper_dev: QUPv3 Wrapper Device to which the RX buffer is mapped.
1003 * @tx_dma: DMA address of the TX buffer.
1004 * @tx_len: Length of the TX buffer.
1005 *
1006 * This function is used to unprepare the DMA buffers after DMA TX.
1007 */
1008void geni_se_tx_dma_unprep(struct device *wrapper_dev,
1009 dma_addr_t tx_dma, int tx_len)
1010{
1011 if (tx_dma)
1012 geni_se_iommu_unmap_buf(wrapper_dev, &tx_dma, tx_len,
1013 DMA_TO_DEVICE);
1014}
1015EXPORT_SYMBOL(geni_se_tx_dma_unprep);
1016
1017/**
1018 * geni_se_rx_dma_unprep() - Unprepare the Serial Engine after RX DMA transfer
1019 * @wrapper_dev: QUPv3 Wrapper Device to which the RX buffer is mapped.
1020 * @rx_dma: DMA address of the RX buffer.
1021 * @rx_len: Length of the RX buffer.
1022 *
1023 * This function is used to unprepare the DMA buffers after DMA RX.
1024 */
1025void geni_se_rx_dma_unprep(struct device *wrapper_dev,
1026 dma_addr_t rx_dma, int rx_len)
1027{
1028 if (rx_dma)
1029 geni_se_iommu_unmap_buf(wrapper_dev, &rx_dma, rx_len,
1030 DMA_FROM_DEVICE);
1031}
1032EXPORT_SYMBOL(geni_se_rx_dma_unprep);
1033
1034/**
1035 * geni_se_qupv3_hw_version() - Read the QUPv3 Hardware version
1036 * @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
1037 * @major: Buffer for Major Version field.
1038 * @minor: Buffer for Minor Version field.
1039 * @step: Buffer for Step Version field.
1040 *
1041 * Return: 0 on success, standard Linux error codes on failure/error.
1042 */
1043int geni_se_qupv3_hw_version(struct device *wrapper_dev, unsigned int *major,
1044 unsigned int *minor, unsigned int *step)
1045{
1046 unsigned int version;
1047 struct geni_se_device *geni_se_dev;
1048
1049 if (!wrapper_dev || !major || !minor || !step)
1050 return -EINVAL;
1051
1052 geni_se_dev = dev_get_drvdata(wrapper_dev);
1053 if (unlikely(!geni_se_dev))
1054 return -ENODEV;
1055
1056 version = geni_read_reg(geni_se_dev->base, QUPV3_HW_VER);
1057 *major = (version & HW_VER_MAJOR_MASK) >> HW_VER_MAJOR_SHFT;
1058 *minor = (version & HW_VER_MINOR_MASK) >> HW_VER_MINOR_SHFT;
1059 *step = version & HW_VER_STEP_MASK;
1060 return 0;
1061}
1062EXPORT_SYMBOL(geni_se_qupv3_hw_version);
1063
1064static int geni_se_iommu_map_and_attach(struct geni_se_device *geni_se_dev)
1065{
1066 dma_addr_t va_start = GENI_SE_IOMMU_VA_START;
1067 size_t va_size = GENI_SE_IOMMU_VA_SIZE;
1068 int bypass = 1;
1069 struct device *cb_dev = geni_se_dev->cb_dev;
1070
1071 mutex_lock(&geni_se_dev->iommu_lock);
1072 if (likely(geni_se_dev->iommu_map)) {
1073 mutex_unlock(&geni_se_dev->iommu_lock);
1074 return 0;
1075 }
1076
1077 geni_se_dev->iommu_map = arm_iommu_create_mapping(&platform_bus_type,
1078 va_start, va_size);
1079 if (IS_ERR(geni_se_dev->iommu_map)) {
1080 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
1081 "%s:%s iommu_create_mapping failure\n",
1082 __func__, dev_name(cb_dev));
1083 mutex_unlock(&geni_se_dev->iommu_lock);
1084 return PTR_ERR(geni_se_dev->iommu_map);
1085 }
1086
1087 if (geni_se_dev->iommu_s1_bypass) {
1088 if (iommu_domain_set_attr(geni_se_dev->iommu_map->domain,
1089 DOMAIN_ATTR_S1_BYPASS, &bypass)) {
1090 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
1091 "%s:%s Couldn't bypass s1 translation\n",
1092 __func__, dev_name(cb_dev));
1093 arm_iommu_release_mapping(geni_se_dev->iommu_map);
1094 geni_se_dev->iommu_map = NULL;
1095 mutex_unlock(&geni_se_dev->iommu_lock);
1096 return -EIO;
1097 }
1098 }
1099
1100 if (arm_iommu_attach_device(cb_dev, geni_se_dev->iommu_map)) {
1101 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
1102 "%s:%s couldn't arm_iommu_attach_device\n",
1103 __func__, dev_name(cb_dev));
1104 arm_iommu_release_mapping(geni_se_dev->iommu_map);
1105 geni_se_dev->iommu_map = NULL;
1106 mutex_unlock(&geni_se_dev->iommu_lock);
1107 return -EIO;
1108 }
1109 mutex_unlock(&geni_se_dev->iommu_lock);
1110 GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL, "%s:%s successful\n",
1111 __func__, dev_name(cb_dev));
1112 return 0;
1113}
1114
1115/**
1116 * geni_se_iommu_map_buf() - Map a single buffer into QUPv3 context bank
1117 * @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
1118 * @iova: Pointer in which the mapped virtual address is stored.
1119 * @buf: Address of the buffer that needs to be mapped.
1120 * @size: Size of the buffer.
1121 * @dir: Direction of the DMA transfer.
1122 *
1123 * This function is used to map an already allocated buffer into the
1124 * QUPv3 context bank device space.
1125 *
1126 * Return: 0 on success, standard Linux error codes on failure/error.
1127 */
1128int geni_se_iommu_map_buf(struct device *wrapper_dev, dma_addr_t *iova,
1129 void *buf, size_t size, enum dma_data_direction dir)
1130{
1131 struct device *cb_dev;
1132 struct geni_se_device *geni_se_dev;
1133
1134 if (!wrapper_dev || !iova || !buf || !size)
1135 return -EINVAL;
1136
1137 *iova = DMA_ERROR_CODE;
1138 geni_se_dev = dev_get_drvdata(wrapper_dev);
1139 if (!geni_se_dev || !geni_se_dev->cb_dev)
1140 return -ENODEV;
1141
1142 cb_dev = geni_se_dev->cb_dev;
1143
1144 *iova = dma_map_single(cb_dev, buf, size, dir);
1145 if (dma_mapping_error(cb_dev, *iova))
1146 return -EIO;
1147 return 0;
1148}
1149EXPORT_SYMBOL(geni_se_iommu_map_buf);
1150
1151/**
1152 * geni_se_iommu_alloc_buf() - Allocate & map a single buffer into QUPv3
1153 * context bank
1154 * @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
1155 * @iova: Pointer in which the mapped virtual address is stored.
1156 * @size: Size of the buffer.
1157 *
1158 * This function is used to allocate a buffer and map it into the
1159 * QUPv3 context bank device space.
1160 *
1161 * Return: address of the buffer on success, NULL or ERR_PTR on
1162 * failure/error.
1163 */
1164void *geni_se_iommu_alloc_buf(struct device *wrapper_dev, dma_addr_t *iova,
1165 size_t size)
1166{
1167 struct device *cb_dev;
1168 struct geni_se_device *geni_se_dev;
1169 void *buf = NULL;
1170
1171 if (!wrapper_dev || !iova || !size)
1172 return ERR_PTR(-EINVAL);
1173
1174 *iova = DMA_ERROR_CODE;
1175 geni_se_dev = dev_get_drvdata(wrapper_dev);
1176 if (!geni_se_dev || !geni_se_dev->cb_dev)
1177 return ERR_PTR(-ENODEV);
1178
1179 cb_dev = geni_se_dev->cb_dev;
1180
1181 buf = dma_alloc_coherent(cb_dev, size, iova, GFP_KERNEL);
1182 if (!buf)
1183 GENI_SE_ERR(geni_se_dev->log_ctx, false, NULL,
1184 "%s: Failed dma_alloc_coherent\n", __func__);
1185 return buf;
1186}
1187EXPORT_SYMBOL(geni_se_iommu_alloc_buf);
1188
1189/**
1190 * geni_se_iommu_unmap_buf() - Unmap a single buffer from QUPv3 context bank
1191 * @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
1192 * @iova: Pointer in which the mapped virtual address is stored.
1193 * @size: Size of the buffer.
1194 * @dir: Direction of the DMA transfer.
1195 *
1196 * This function is used to unmap an already mapped buffer from the
1197 * QUPv3 context bank device space.
1198 *
1199 * Return: 0 on success, standard Linux error codes on failure/error.
1200 */
1201int geni_se_iommu_unmap_buf(struct device *wrapper_dev, dma_addr_t *iova,
1202 size_t size, enum dma_data_direction dir)
1203{
1204 struct device *cb_dev;
1205 struct geni_se_device *geni_se_dev;
1206
1207 if (!wrapper_dev || !iova || !size)
1208 return -EINVAL;
1209
1210 geni_se_dev = dev_get_drvdata(wrapper_dev);
1211 if (!geni_se_dev || !geni_se_dev->cb_dev)
1212 return -ENODEV;
1213
1214 cb_dev = geni_se_dev->cb_dev;
1215
1216 dma_unmap_single(cb_dev, *iova, size, dir);
1217 return 0;
1218}
1219EXPORT_SYMBOL(geni_se_iommu_unmap_buf);
1220
1221/**
1222 * geni_se_iommu_free_buf() - Unmap & free a single buffer from QUPv3
1223 * context bank
1224 * @wrapper_dev: Pointer to the corresponding QUPv3 wrapper core.
1225 * @iova: Pointer in which the mapped virtual address is stored.
1226 * @buf: Address of the buffer.
1227 * @size: Size of the buffer.
1228 *
1229 * This function is used to unmap and free a buffer from the
1230 * QUPv3 context bank device space.
1231 *
1232 * Return: 0 on success, standard Linux error codes on failure/error.
1233 */
1234int geni_se_iommu_free_buf(struct device *wrapper_dev, dma_addr_t *iova,
1235 void *buf, size_t size)
1236{
1237 struct device *cb_dev;
1238 struct geni_se_device *geni_se_dev;
1239
1240 if (!wrapper_dev || !iova || !buf || !size)
1241 return -EINVAL;
1242
1243 geni_se_dev = dev_get_drvdata(wrapper_dev);
1244 if (!geni_se_dev || !geni_se_dev->cb_dev)
1245 return -ENODEV;
1246
1247 cb_dev = geni_se_dev->cb_dev;
1248
1249 dma_free_coherent(cb_dev, size, buf, *iova);
1250 return 0;
1251}
1252EXPORT_SYMBOL(geni_se_iommu_free_buf);
1253
1254static const struct of_device_id geni_se_dt_match[] = {
1255 { .compatible = "qcom,qupv3-geni-se", },
1256 { .compatible = "qcom,qupv3-geni-se-cb", },
1257 {}
1258};
1259
1260static int geni_se_iommu_probe(struct device *dev)
1261{
1262 struct geni_se_device *geni_se_dev;
1263
1264 if (unlikely(!dev->parent)) {
1265 dev_err(dev, "%s no parent for this device\n", __func__);
1266 return -EINVAL;
1267 }
1268
1269 geni_se_dev = dev_get_drvdata(dev->parent);
1270 if (unlikely(!geni_se_dev)) {
1271 dev_err(dev, "%s geni_se_dev not found\n", __func__);
1272 return -EINVAL;
1273 }
1274 geni_se_dev->cb_dev = dev;
1275
1276 GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL,
1277 "%s: Probe successful\n", __func__);
1278 return 0;
1279}
1280
1281static int geni_se_probe(struct platform_device *pdev)
1282{
1283 int ret;
1284 struct device *dev = &pdev->dev;
1285 struct resource *res;
1286 struct geni_se_device *geni_se_dev;
1287
1288 if (of_device_is_compatible(dev->of_node, "qcom,qupv3-geni-se-cb"))
1289 return geni_se_iommu_probe(dev);
1290
1291 geni_se_dev = devm_kzalloc(dev, sizeof(*geni_se_dev), GFP_KERNEL);
1292 if (!geni_se_dev)
1293 return -ENOMEM;
1294
1295 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1296 if (!res) {
1297 dev_err(dev, "%s: Mandatory resource info not found\n",
1298 __func__);
1299 devm_kfree(dev, geni_se_dev);
1300 return -EINVAL;
1301 }
1302
1303 geni_se_dev->base = devm_ioremap_resource(dev, res);
1304 if (IS_ERR_OR_NULL(geni_se_dev->base)) {
1305 dev_err(dev, "%s: Error mapping the resource\n", __func__);
1306 devm_kfree(dev, geni_se_dev);
1307 return -EFAULT;
1308 }
1309
1310 geni_se_dev->dev = dev;
1311 ret = of_property_read_u32(dev->of_node, "qcom,bus-mas-id",
1312 &geni_se_dev->bus_mas_id);
1313 if (ret) {
1314 dev_err(dev, "%s: Error missing bus master id\n", __func__);
1315 devm_iounmap(dev, geni_se_dev->base);
1316 devm_kfree(dev, geni_se_dev);
1317 }
1318 ret = of_property_read_u32(dev->of_node, "qcom,bus-slv-id",
1319 &geni_se_dev->bus_slv_id);
1320 if (ret) {
1321 dev_err(dev, "%s: Error missing bus slave id\n", __func__);
1322 devm_iounmap(dev, geni_se_dev->base);
1323 devm_kfree(dev, geni_se_dev);
1324 }
1325
1326 geni_se_dev->iommu_s1_bypass = of_property_read_bool(dev->of_node,
1327 "qcom,iommu-s1-bypass");
1328 geni_se_dev->bus_bw_set = default_bus_bw_set;
1329 geni_se_dev->bus_bw_set_size = ARRAY_SIZE(default_bus_bw_set);
1330 mutex_init(&geni_se_dev->iommu_lock);
1331 INIT_LIST_HEAD(&geni_se_dev->ab_list_head);
1332 INIT_LIST_HEAD(&geni_se_dev->ib_list_head);
1333 spin_lock_init(&geni_se_dev->ab_ib_lock);
1334 geni_se_dev->log_ctx = ipc_log_context_create(NUM_LOG_PAGES,
1335 dev_name(geni_se_dev->dev), 0);
1336 if (!geni_se_dev->log_ctx)
1337 dev_err(dev, "%s Failed to allocate log context\n", __func__);
1338 dev_set_drvdata(dev, geni_se_dev);
1339
1340 ret = of_platform_populate(dev->of_node, geni_se_dt_match, NULL, dev);
1341 if (ret) {
1342 dev_err(dev, "%s: Error populating children\n", __func__);
1343 devm_iounmap(dev, geni_se_dev->base);
1344 devm_kfree(dev, geni_se_dev);
1345 }
1346
1347 GENI_SE_DBG(geni_se_dev->log_ctx, false, NULL,
1348 "%s: Probe successful\n", __func__);
1349 return ret;
1350}
1351
1352static int geni_se_remove(struct platform_device *pdev)
1353{
1354 struct device *dev = &pdev->dev;
1355 struct geni_se_device *geni_se_dev = dev_get_drvdata(dev);
1356
1357 if (likely(!IS_ERR_OR_NULL(geni_se_dev->iommu_map))) {
1358 arm_iommu_detach_device(geni_se_dev->cb_dev);
1359 arm_iommu_release_mapping(geni_se_dev->iommu_map);
1360 }
1361 ipc_log_context_destroy(geni_se_dev->log_ctx);
1362 devm_iounmap(dev, geni_se_dev->base);
1363 devm_kfree(dev, geni_se_dev);
1364 return 0;
1365}
1366
1367static struct platform_driver geni_se_driver = {
1368 .driver = {
1369 .name = "qupv3_geni_se",
1370 .of_match_table = geni_se_dt_match,
1371 },
1372 .probe = geni_se_probe,
1373 .remove = geni_se_remove,
1374};
1375
1376static int __init geni_se_driver_init(void)
1377{
1378 return platform_driver_register(&geni_se_driver);
1379}
1380arch_initcall(geni_se_driver_init);
1381
1382static void __exit geni_se_driver_exit(void)
1383{
1384 platform_driver_unregister(&geni_se_driver);
1385}
1386module_exit(geni_se_driver_exit);
1387
1388MODULE_DESCRIPTION("GENI Serial Engine Driver");
1389MODULE_LICENSE("GPL v2");