blob: f4b2e22b5c616bdb7a29e33d207fdf8fbe66a1f2 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089#include <linux/slab.h>
90#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070091#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070092#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Andrew Morton138ae662006-12-06 20:36:41 -0800106#include <linux/uaccess.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Akinobu Mita8a8b6502006-12-08 02:39:44 -0800110#include <linux/fault-inject.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700111#include <linux/rtmutex.h>
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800112#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129#ifdef CONFIG_DEBUG_SLAB
130#define DEBUG 1
131#define STATS 1
132#define FORCED_DEBUG 1
133#else
134#define DEBUG 0
135#define STATS 0
136#define FORCED_DEBUG 0
137#endif
138
Linus Torvalds1da177e2005-04-16 15:20:36 -0700139/* Shouldn't this be in a header file somewhere? */
140#define BYTES_PER_WORD sizeof(void *)
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155#define ARCH_KMALLOC_MINALIGN 0
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
175# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800177 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700207typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212
Linus Torvalds1da177e2005-04-16 15:20:36 -0700213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
Andrew Mortona737b3e2006-03-22 00:08:11 -0800277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800284 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285};
286
287/*
Christoph Lametere498be72005-09-09 13:03:32 -0700288 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 */
290struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800295 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800296 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302};
303
Christoph Lametere498be72005-09-09 13:03:32 -0700304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
Christoph Lametered11d9e2006-06-30 01:55:45 -0700313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700317static int enable_cpucache(struct kmem_cache *cachep);
David Howells65f27f32006-11-22 14:55:48 +0000318static void cache_reap(struct work_struct *unused);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700319
Christoph Lametere498be72005-09-09 13:03:32 -0700320/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700323 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700324static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700325{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800326 extern void __bad_size(void);
327
Christoph Lametere498be72005-09-09 13:03:32 -0700328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800338 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700339 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800340 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700341 return 0;
342}
343
Ingo Molnare0a42722006-06-23 02:03:46 -0700344static int slab_early_init = 1;
345
Christoph Lametere498be72005-09-09 13:03:32 -0700346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
Pekka Enberg5295a742006-02-01 03:05:48 -0800349static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800356 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
Andrew Mortona737b3e2006-03-22 00:08:11 -0800362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700366 } while (0)
367
Andrew Mortona737b3e2006-03-22 00:08:11 -0800368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374
375/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800376 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 *
378 * manages a cache.
379 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800380
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800381struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800383 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800384/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800388
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800389 unsigned int buffer_size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800390 u32 reciprocal_buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391/* 3) touched by every alloc & free from the backend */
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800392
Andrew Mortona737b3e2006-03-22 00:08:11 -0800393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700395
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800396/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700397 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800398 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800401 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
Andrew Mortona737b3e2006-03-22 00:08:11 -0800403 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800404 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800405 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800406 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800407 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408
409 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411
412 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800415/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800416 const char *name;
417 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800419/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700420#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700430 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435#endif
436#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445#endif
Eric Dumazet8da34302007-05-06 14:49:29 -0700446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457};
458
459#define CFLGS_OFF_SLAB (0x80000000UL)
460#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800463/*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700466 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100467 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468 * which could lock up otherwise freeable slabs.
469 */
470#define REAPTIMEOUT_CPUC (2*HZ)
471#define REAPTIMEOUT_LIST3 (4*HZ)
472
473#if STATS
474#define STATS_INC_ACTIVE(x) ((x)->num_active++)
475#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700478#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800479#define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484#define STATS_INC_ERR(x) ((x)->errors++)
485#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700486#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700487#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800488#define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497#else
498#define STATS_INC_ACTIVE(x) do { } while (0)
499#define STATS_DEC_ACTIVE(x) do { } while (0)
500#define STATS_INC_ALLOCED(x) do { } while (0)
501#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700502#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700503#define STATS_SET_HIGH(x) do { } while (0)
504#define STATS_INC_ERR(x) do { } while (0)
505#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700506#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700507#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800508#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509#define STATS_INC_ALLOCHIT(x) do { } while (0)
510#define STATS_INC_ALLOCMISS(x) do { } while (0)
511#define STATS_INC_FREEHIT(x) do { } while (0)
512#define STATS_INC_FREEMISS(x) do { } while (0)
513#endif
514
515#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516
Andrew Mortona737b3e2006-03-22 00:08:11 -0800517/*
518 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800530static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800532 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533}
534
Pekka Enberg343e0d72006-02-01 03:05:50 -0800535static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800537 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700538}
539
Pekka Enberg343e0d72006-02-01 03:05:50 -0800540static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541{
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800543 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544}
545
Pekka Enberg343e0d72006-02-01 03:05:50 -0800546static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547{
548 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
549 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800550 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800551 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800552 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553}
554
Pekka Enberg343e0d72006-02-01 03:05:50 -0800555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559}
560
561#else
562
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
571/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
573 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700574 */
575#if defined(CONFIG_LARGE_ALLOCS)
576#define MAX_OBJ_ORDER 13 /* up to 32Mb */
577#define MAX_GFP_ORDER 13 /* up to 32Mb */
578#elif defined(CONFIG_MMU)
579#define MAX_OBJ_ORDER 5 /* 32 pages */
580#define MAX_GFP_ORDER 5 /* 32 pages */
581#else
582#define MAX_OBJ_ORDER 8 /* up to 1Mb */
583#define MAX_GFP_ORDER 8 /* up to 1Mb */
584#endif
585
586/*
587 * Do not go above this order unless 0 objects fit into the slab.
588 */
589#define BREAK_GFP_ORDER_HI 1
590#define BREAK_GFP_ORDER_LO 0
591static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
592
Andrew Mortona737b3e2006-03-22 00:08:11 -0800593/*
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800598static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
599{
600 page->lru.next = (struct list_head *)cache;
601}
602
603static inline struct kmem_cache *page_get_cache(struct page *page)
604{
Christoph Lameterd85f3382007-05-06 14:49:39 -0700605 page = compound_head(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700606 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800607 return (struct kmem_cache *)page->lru.next;
608}
609
610static inline void page_set_slab(struct page *page, struct slab *slab)
611{
612 page->lru.prev = (struct list_head *)slab;
613}
614
615static inline struct slab *page_get_slab(struct page *page)
616{
Christoph Lameterd85f3382007-05-06 14:49:39 -0700617 page = compound_head(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700618 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800619 return (struct slab *)page->lru.prev;
620}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800622static inline struct kmem_cache *virt_to_cache(const void *obj)
623{
624 struct page *page = virt_to_page(obj);
625 return page_get_cache(page);
626}
627
628static inline struct slab *virt_to_slab(const void *obj)
629{
630 struct page *page = virt_to_page(obj);
631 return page_get_slab(page);
632}
633
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800634static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
635 unsigned int idx)
636{
637 return slab->s_mem + cache->buffer_size * idx;
638}
639
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800640/*
641 * We want to avoid an expensive divide : (offset / cache->buffer_size)
642 * Using the fact that buffer_size is a constant for a particular cache,
643 * we can replace (offset / cache->buffer_size) by
644 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
645 */
646static inline unsigned int obj_to_index(const struct kmem_cache *cache,
647 const struct slab *slab, void *obj)
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800648{
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800649 u32 offset = (obj - slab->s_mem);
650 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800651}
652
Andrew Mortona737b3e2006-03-22 00:08:11 -0800653/*
654 * These are the default caches for kmalloc. Custom caches can have other sizes.
655 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700656struct cache_sizes malloc_sizes[] = {
657#define CACHE(x) { .cs_size = (x) },
658#include <linux/kmalloc_sizes.h>
659 CACHE(ULONG_MAX)
660#undef CACHE
661};
662EXPORT_SYMBOL(malloc_sizes);
663
664/* Must match cache_sizes above. Out of line to keep cache footprint low. */
665struct cache_names {
666 char *name;
667 char *name_dma;
668};
669
670static struct cache_names __initdata cache_names[] = {
671#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
672#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800673 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674#undef CACHE
675};
676
677static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800678 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700679static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681
682/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800683static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800684 .batchcount = 1,
685 .limit = BOOT_CPUCACHE_ENTRIES,
686 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800687 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800688 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700689};
690
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700691#define BAD_ALIEN_MAGIC 0x01020304ul
692
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200693#ifdef CONFIG_LOCKDEP
694
695/*
696 * Slab sometimes uses the kmalloc slabs to store the slab headers
697 * for other slabs "off slab".
698 * The locking for this is tricky in that it nests within the locks
699 * of all other slabs in a few places; to deal with this special
700 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700701 *
702 * We set lock class for alien array caches which are up during init.
703 * The lock annotation will be lost if all cpus of a node goes down and
704 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200705 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700706static struct lock_class_key on_slab_l3_key;
707static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200708
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700709static inline void init_lock_keys(void)
710
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200711{
712 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700713 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200714
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700715 while (s->cs_size != ULONG_MAX) {
716 for_each_node(q) {
717 struct array_cache **alc;
718 int r;
719 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
720 if (!l3 || OFF_SLAB(s->cs_cachep))
721 continue;
722 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
723 alc = l3->alien;
724 /*
725 * FIXME: This check for BAD_ALIEN_MAGIC
726 * should go away when common slab code is taught to
727 * work even without alien caches.
728 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
729 * for alloc_alien_cache,
730 */
731 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
732 continue;
733 for_each_node(r) {
734 if (alc[r])
735 lockdep_set_class(&alc[r]->lock,
736 &on_slab_alc_key);
737 }
738 }
739 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200740 }
741}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200742#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700743static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200744{
745}
746#endif
747
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -0800748/*
749 * 1. Guard access to the cache-chain.
750 * 2. Protect sanity of cpu_online_map against cpu hotplug events
751 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800752static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700753static struct list_head cache_chain;
754
755/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756 * chicken and egg problem: delay the per-cpu array allocation
757 * until the general caches are up.
758 */
759static enum {
760 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700761 PARTIAL_AC,
762 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700763 FULL
764} g_cpucache_up;
765
Mike Kravetz39d24e62006-05-15 09:44:13 -0700766/*
767 * used by boot code to determine if it can use slab based allocator
768 */
769int slab_is_available(void)
770{
771 return g_cpucache_up == FULL;
772}
773
David Howells52bad642006-11-22 14:54:01 +0000774static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700775
Pekka Enberg343e0d72006-02-01 03:05:50 -0800776static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700777{
778 return cachep->array[smp_processor_id()];
779}
780
Andrew Mortona737b3e2006-03-22 00:08:11 -0800781static inline struct kmem_cache *__find_general_cachep(size_t size,
782 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783{
784 struct cache_sizes *csizep = malloc_sizes;
785
786#if DEBUG
787 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800788 * kmem_cache_create(), or __kmalloc(), before
789 * the generic caches are initialized.
790 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700791 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700792#endif
793 while (size > csizep->cs_size)
794 csizep++;
795
796 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700797 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700798 * has cs_{dma,}cachep==NULL. Thus no special case
799 * for large kmalloc calls required.
800 */
Christoph Lameter4b51d662007-02-10 01:43:10 -0800801#ifdef CONFIG_ZONE_DMA
Linus Torvalds1da177e2005-04-16 15:20:36 -0700802 if (unlikely(gfpflags & GFP_DMA))
803 return csizep->cs_dmacachep;
Christoph Lameter4b51d662007-02-10 01:43:10 -0800804#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700805 return csizep->cs_cachep;
806}
807
Adrian Bunkb2213852006-09-25 23:31:02 -0700808static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700809{
810 return __find_general_cachep(size, gfpflags);
811}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700812
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800813static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700814{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800815 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
816}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700817
Andrew Mortona737b3e2006-03-22 00:08:11 -0800818/*
819 * Calculate the number of objects and left-over bytes for a given buffer size.
820 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800821static void cache_estimate(unsigned long gfporder, size_t buffer_size,
822 size_t align, int flags, size_t *left_over,
823 unsigned int *num)
824{
825 int nr_objs;
826 size_t mgmt_size;
827 size_t slab_size = PAGE_SIZE << gfporder;
828
829 /*
830 * The slab management structure can be either off the slab or
831 * on it. For the latter case, the memory allocated for a
832 * slab is used for:
833 *
834 * - The struct slab
835 * - One kmem_bufctl_t for each object
836 * - Padding to respect alignment of @align
837 * - @buffer_size bytes for each object
838 *
839 * If the slab management structure is off the slab, then the
840 * alignment will already be calculated into the size. Because
841 * the slabs are all pages aligned, the objects will be at the
842 * correct alignment when allocated.
843 */
844 if (flags & CFLGS_OFF_SLAB) {
845 mgmt_size = 0;
846 nr_objs = slab_size / buffer_size;
847
848 if (nr_objs > SLAB_LIMIT)
849 nr_objs = SLAB_LIMIT;
850 } else {
851 /*
852 * Ignore padding for the initial guess. The padding
853 * is at most @align-1 bytes, and @buffer_size is at
854 * least @align. In the worst case, this result will
855 * be one greater than the number of objects that fit
856 * into the memory allocation when taking the padding
857 * into account.
858 */
859 nr_objs = (slab_size - sizeof(struct slab)) /
860 (buffer_size + sizeof(kmem_bufctl_t));
861
862 /*
863 * This calculated number will be either the right
864 * amount, or one greater than what we want.
865 */
866 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
867 > slab_size)
868 nr_objs--;
869
870 if (nr_objs > SLAB_LIMIT)
871 nr_objs = SLAB_LIMIT;
872
873 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800875 *num = nr_objs;
876 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700877}
878
879#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
880
Andrew Mortona737b3e2006-03-22 00:08:11 -0800881static void __slab_error(const char *function, struct kmem_cache *cachep,
882 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883{
884 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800885 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700886 dump_stack();
887}
888
Paul Menage3395ee02006-12-06 20:32:16 -0800889/*
890 * By default on NUMA we use alien caches to stage the freeing of
891 * objects allocated from other nodes. This causes massive memory
892 * inefficiencies when using fake NUMA setup to split memory into a
893 * large number of small nodes, so it can be disabled on the command
894 * line
895 */
896
897static int use_alien_caches __read_mostly = 1;
898static int __init noaliencache_setup(char *s)
899{
900 use_alien_caches = 0;
901 return 1;
902}
903__setup("noaliencache", noaliencache_setup);
904
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800905#ifdef CONFIG_NUMA
906/*
907 * Special reaping functions for NUMA systems called from cache_reap().
908 * These take care of doing round robin flushing of alien caches (containing
909 * objects freed on different nodes from which they were allocated) and the
910 * flushing of remote pcps by calling drain_node_pages.
911 */
912static DEFINE_PER_CPU(unsigned long, reap_node);
913
914static void init_reap_node(int cpu)
915{
916 int node;
917
918 node = next_node(cpu_to_node(cpu), node_online_map);
919 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800920 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800921
Daniel Yeisley7f6b8872006-11-02 22:07:14 -0800922 per_cpu(reap_node, cpu) = node;
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800923}
924
925static void next_reap_node(void)
926{
927 int node = __get_cpu_var(reap_node);
928
929 /*
930 * Also drain per cpu pages on remote zones
931 */
932 if (node != numa_node_id())
933 drain_node_pages(node);
934
935 node = next_node(node, node_online_map);
936 if (unlikely(node >= MAX_NUMNODES))
937 node = first_node(node_online_map);
938 __get_cpu_var(reap_node) = node;
939}
940
941#else
942#define init_reap_node(cpu) do { } while (0)
943#define next_reap_node(void) do { } while (0)
944#endif
945
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946/*
947 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
948 * via the workqueue/eventd.
949 * Add the CPU number into the expiration time to minimize the possibility of
950 * the CPUs getting into lockstep and contending for the global cache chain
951 * lock.
952 */
953static void __devinit start_cpu_timer(int cpu)
954{
David Howells52bad642006-11-22 14:54:01 +0000955 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956
957 /*
958 * When this gets called from do_initcalls via cpucache_init(),
959 * init_workqueues() has already run, so keventd will be setup
960 * at that time.
961 */
David Howells52bad642006-11-22 14:54:01 +0000962 if (keventd_up() && reap_work->work.func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800963 init_reap_node(cpu);
David Howells65f27f32006-11-22 14:55:48 +0000964 INIT_DELAYED_WORK(reap_work, cache_reap);
Arjan van de Ven2b284212006-12-10 02:21:28 -0800965 schedule_delayed_work_on(cpu, reap_work,
966 __round_jiffies_relative(HZ, cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700967 }
968}
969
Christoph Lametere498be72005-09-09 13:03:32 -0700970static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800971 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800973 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700974 struct array_cache *nc = NULL;
975
Christoph Lametere498be72005-09-09 13:03:32 -0700976 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700977 if (nc) {
978 nc->avail = 0;
979 nc->limit = entries;
980 nc->batchcount = batchcount;
981 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700982 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983 }
984 return nc;
985}
986
Christoph Lameter3ded1752006-03-25 03:06:44 -0800987/*
988 * Transfer objects in one arraycache to another.
989 * Locking must be handled by the caller.
990 *
991 * Return the number of entries transferred.
992 */
993static int transfer_objects(struct array_cache *to,
994 struct array_cache *from, unsigned int max)
995{
996 /* Figure out how many entries to transfer */
997 int nr = min(min(from->avail, max), to->limit - to->avail);
998
999 if (!nr)
1000 return 0;
1001
1002 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1003 sizeof(void *) *nr);
1004
1005 from->avail -= nr;
1006 to->avail += nr;
1007 to->touched = 1;
1008 return nr;
1009}
1010
Christoph Lameter765c4502006-09-27 01:50:08 -07001011#ifndef CONFIG_NUMA
1012
1013#define drain_alien_cache(cachep, alien) do { } while (0)
1014#define reap_alien(cachep, l3) do { } while (0)
1015
1016static inline struct array_cache **alloc_alien_cache(int node, int limit)
1017{
1018 return (struct array_cache **)BAD_ALIEN_MAGIC;
1019}
1020
1021static inline void free_alien_cache(struct array_cache **ac_ptr)
1022{
1023}
1024
1025static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1026{
1027 return 0;
1028}
1029
1030static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1031 gfp_t flags)
1032{
1033 return NULL;
1034}
1035
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001036static inline void *____cache_alloc_node(struct kmem_cache *cachep,
Christoph Lameter765c4502006-09-27 01:50:08 -07001037 gfp_t flags, int nodeid)
1038{
1039 return NULL;
1040}
1041
1042#else /* CONFIG_NUMA */
1043
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001044static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -08001045static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -08001046
Pekka Enberg5295a742006-02-01 03:05:48 -08001047static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -07001048{
1049 struct array_cache **ac_ptr;
Christoph Lameter8ef82862007-02-20 13:57:52 -08001050 int memsize = sizeof(void *) * nr_node_ids;
Christoph Lametere498be72005-09-09 13:03:32 -07001051 int i;
1052
1053 if (limit > 1)
1054 limit = 12;
1055 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1056 if (ac_ptr) {
1057 for_each_node(i) {
1058 if (i == node || !node_online(i)) {
1059 ac_ptr[i] = NULL;
1060 continue;
1061 }
1062 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1063 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001064 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001065 kfree(ac_ptr[i]);
1066 kfree(ac_ptr);
1067 return NULL;
1068 }
1069 }
1070 }
1071 return ac_ptr;
1072}
1073
Pekka Enberg5295a742006-02-01 03:05:48 -08001074static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001075{
1076 int i;
1077
1078 if (!ac_ptr)
1079 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001080 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001081 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001082 kfree(ac_ptr);
1083}
1084
Pekka Enberg343e0d72006-02-01 03:05:50 -08001085static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001086 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001087{
1088 struct kmem_list3 *rl3 = cachep->nodelists[node];
1089
1090 if (ac->avail) {
1091 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001092 /*
1093 * Stuff objects into the remote nodes shared array first.
1094 * That way we could avoid the overhead of putting the objects
1095 * into the free lists and getting them back later.
1096 */
shin, jacob693f7d32006-04-28 10:54:37 -05001097 if (rl3->shared)
1098 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001099
Christoph Lameterff694162005-09-22 21:44:02 -07001100 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001101 ac->avail = 0;
1102 spin_unlock(&rl3->list_lock);
1103 }
1104}
1105
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001106/*
1107 * Called from cache_reap() to regularly drain alien caches round robin.
1108 */
1109static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1110{
1111 int node = __get_cpu_var(reap_node);
1112
1113 if (l3->alien) {
1114 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001115
1116 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001117 __drain_alien_cache(cachep, ac, node);
1118 spin_unlock_irq(&ac->lock);
1119 }
1120 }
1121}
1122
Andrew Mortona737b3e2006-03-22 00:08:11 -08001123static void drain_alien_cache(struct kmem_cache *cachep,
1124 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001125{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001126 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001127 struct array_cache *ac;
1128 unsigned long flags;
1129
1130 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001131 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001132 if (ac) {
1133 spin_lock_irqsave(&ac->lock, flags);
1134 __drain_alien_cache(cachep, ac, i);
1135 spin_unlock_irqrestore(&ac->lock, flags);
1136 }
1137 }
1138}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001139
Ingo Molnar873623d2006-07-13 14:44:38 +02001140static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001141{
1142 struct slab *slabp = virt_to_slab(objp);
1143 int nodeid = slabp->nodeid;
1144 struct kmem_list3 *l3;
1145 struct array_cache *alien = NULL;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001146 int node;
1147
1148 node = numa_node_id();
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001149
1150 /*
1151 * Make sure we are not freeing a object from another node to the array
1152 * cache on this cpu.
1153 */
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001154 if (likely(slabp->nodeid == node))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001155 return 0;
1156
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001157 l3 = cachep->nodelists[node];
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001158 STATS_INC_NODEFREES(cachep);
1159 if (l3->alien && l3->alien[nodeid]) {
1160 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001161 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001162 if (unlikely(alien->avail == alien->limit)) {
1163 STATS_INC_ACOVERFLOW(cachep);
1164 __drain_alien_cache(cachep, alien, nodeid);
1165 }
1166 alien->entry[alien->avail++] = objp;
1167 spin_unlock(&alien->lock);
1168 } else {
1169 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1170 free_block(cachep, &objp, 1, nodeid);
1171 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1172 }
1173 return 1;
1174}
Christoph Lametere498be72005-09-09 13:03:32 -07001175#endif
1176
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001177static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001178 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179{
1180 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001181 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001182 struct kmem_list3 *l3 = NULL;
1183 int node = cpu_to_node(cpu);
1184 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001185
1186 switch (action) {
1187 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001188 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001189 /*
1190 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001191 * alloc_arraycache's are going to use this list.
1192 * kmalloc_node allows us to add the slab to the right
1193 * kmem_list3 and not this cpu's kmem_list3
1194 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001195
Christoph Lametere498be72005-09-09 13:03:32 -07001196 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001197 /*
1198 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001199 * begin anything. Make sure some other cpu on this
1200 * node has not already allocated this
1201 */
1202 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001203 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1204 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001205 goto bad;
1206 kmem_list3_init(l3);
1207 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001208 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001209
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001210 /*
1211 * The l3s don't come and go as CPUs come and
1212 * go. cache_chain_mutex is sufficient
1213 * protection here.
1214 */
Christoph Lametere498be72005-09-09 13:03:32 -07001215 cachep->nodelists[node] = l3;
1216 }
1217
1218 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1219 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001220 (1 + nr_cpus_node(node)) *
1221 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001222 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1223 }
1224
Andrew Mortona737b3e2006-03-22 00:08:11 -08001225 /*
1226 * Now we can go ahead with allocating the shared arrays and
1227 * array caches
1228 */
Christoph Lametere498be72005-09-09 13:03:32 -07001229 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001230 struct array_cache *nc;
Eric Dumazet63109842007-05-06 14:49:28 -07001231 struct array_cache *shared = NULL;
Paul Menage3395ee02006-12-06 20:32:16 -08001232 struct array_cache **alien = NULL;
Tobias Klausercd105df2006-01-08 01:00:59 -08001233
Christoph Lametere498be72005-09-09 13:03:32 -07001234 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001235 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001236 if (!nc)
1237 goto bad;
Eric Dumazet63109842007-05-06 14:49:28 -07001238 if (cachep->shared) {
1239 shared = alloc_arraycache(node,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001240 cachep->shared * cachep->batchcount,
1241 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07001242 if (!shared)
1243 goto bad;
1244 }
Paul Menage3395ee02006-12-06 20:32:16 -08001245 if (use_alien_caches) {
1246 alien = alloc_alien_cache(node, cachep->limit);
1247 if (!alien)
1248 goto bad;
1249 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001251 l3 = cachep->nodelists[node];
1252 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001253
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001254 spin_lock_irq(&l3->list_lock);
1255 if (!l3->shared) {
1256 /*
1257 * We are serialised from CPU_DEAD or
1258 * CPU_UP_CANCELLED by the cpucontrol lock
1259 */
1260 l3->shared = shared;
1261 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001262 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001263#ifdef CONFIG_NUMA
1264 if (!l3->alien) {
1265 l3->alien = alien;
1266 alien = NULL;
1267 }
1268#endif
1269 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001270 kfree(shared);
1271 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001273 break;
1274 case CPU_ONLINE:
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001275 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001276 start_cpu_timer(cpu);
1277 break;
1278#ifdef CONFIG_HOTPLUG_CPU
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001279 case CPU_DOWN_PREPARE:
1280 mutex_lock(&cache_chain_mutex);
1281 break;
1282 case CPU_DOWN_FAILED:
1283 mutex_unlock(&cache_chain_mutex);
1284 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001285 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001286 /*
1287 * Even if all the cpus of a node are down, we don't free the
1288 * kmem_list3 of any cache. This to avoid a race between
1289 * cpu_down, and a kmalloc allocation from another cpu for
1290 * memory from the node of the cpu going down. The list3
1291 * structure is usually allocated from kmem_cache_create() and
1292 * gets destroyed at kmem_cache_destroy().
1293 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294 /* fall thru */
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001295#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296 case CPU_UP_CANCELED:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001297 list_for_each_entry(cachep, &cache_chain, next) {
1298 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001299 struct array_cache *shared;
1300 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001301 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302
Christoph Lametere498be72005-09-09 13:03:32 -07001303 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001304 /* cpu is dead; no one can alloc from it. */
1305 nc = cachep->array[cpu];
1306 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001307 l3 = cachep->nodelists[node];
1308
1309 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001310 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001311
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001312 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001313
1314 /* Free limit for this kmem_list3 */
1315 l3->free_limit -= cachep->batchcount;
1316 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001317 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001318
1319 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001320 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001321 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001322 }
Christoph Lametere498be72005-09-09 13:03:32 -07001323
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001324 shared = l3->shared;
1325 if (shared) {
Eric Dumazet63109842007-05-06 14:49:28 -07001326 free_block(cachep, shared->entry,
1327 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001328 l3->shared = NULL;
1329 }
Christoph Lametere498be72005-09-09 13:03:32 -07001330
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001331 alien = l3->alien;
1332 l3->alien = NULL;
1333
1334 spin_unlock_irq(&l3->list_lock);
1335
1336 kfree(shared);
1337 if (alien) {
1338 drain_alien_cache(cachep, alien);
1339 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001340 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001341free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001342 kfree(nc);
1343 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001344 /*
1345 * In the previous loop, all the objects were freed to
1346 * the respective cache's slabs, now we can go ahead and
1347 * shrink each nodelist to its limit.
1348 */
1349 list_for_each_entry(cachep, &cache_chain, next) {
1350 l3 = cachep->nodelists[node];
1351 if (!l3)
1352 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001353 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001354 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001355 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001357 }
1358 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001359bad:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360 return NOTIFY_BAD;
1361}
1362
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001363static struct notifier_block __cpuinitdata cpucache_notifier = {
1364 &cpuup_callback, NULL, 0
1365};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001366
Christoph Lametere498be72005-09-09 13:03:32 -07001367/*
1368 * swap the static kmem_list3 with kmalloced memory
1369 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001370static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1371 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001372{
1373 struct kmem_list3 *ptr;
1374
Christoph Lametere498be72005-09-09 13:03:32 -07001375 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1376 BUG_ON(!ptr);
1377
1378 local_irq_disable();
1379 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001380 /*
1381 * Do not assume that spinlocks can be initialized via memcpy:
1382 */
1383 spin_lock_init(&ptr->list_lock);
1384
Christoph Lametere498be72005-09-09 13:03:32 -07001385 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1386 cachep->nodelists[nodeid] = ptr;
1387 local_irq_enable();
1388}
1389
Andrew Mortona737b3e2006-03-22 00:08:11 -08001390/*
1391 * Initialisation. Called after the page allocator have been initialised and
1392 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001393 */
1394void __init kmem_cache_init(void)
1395{
1396 size_t left_over;
1397 struct cache_sizes *sizes;
1398 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001399 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001400 int order;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001401 int node;
Christoph Lametere498be72005-09-09 13:03:32 -07001402
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001403 if (num_possible_nodes() == 1)
1404 use_alien_caches = 0;
1405
Christoph Lametere498be72005-09-09 13:03:32 -07001406 for (i = 0; i < NUM_INIT_LISTS; i++) {
1407 kmem_list3_init(&initkmem_list3[i]);
1408 if (i < MAX_NUMNODES)
1409 cache_cache.nodelists[i] = NULL;
1410 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411
1412 /*
1413 * Fragmentation resistance on low memory - only use bigger
1414 * page orders on machines with more than 32MB of memory.
1415 */
1416 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1417 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1418
Linus Torvalds1da177e2005-04-16 15:20:36 -07001419 /* Bootstrap is tricky, because several objects are allocated
1420 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001421 * 1) initialize the cache_cache cache: it contains the struct
1422 * kmem_cache structures of all caches, except cache_cache itself:
1423 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001424 * Initially an __init data area is used for the head array and the
1425 * kmem_list3 structures, it's replaced with a kmalloc allocated
1426 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001428 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001429 * An __init data area is used for the head array.
1430 * 3) Create the remaining kmalloc caches, with minimally sized
1431 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 * 4) Replace the __init data head arrays for cache_cache and the first
1433 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001434 * 5) Replace the __init data for kmem_list3 for cache_cache and
1435 * the other cache's with kmalloc allocated memory.
1436 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437 */
1438
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001439 node = numa_node_id();
1440
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442 INIT_LIST_HEAD(&cache_chain);
1443 list_add(&cache_cache.next, &cache_chain);
1444 cache_cache.colour_off = cache_line_size();
1445 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001446 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447
Eric Dumazet8da34302007-05-06 14:49:29 -07001448 /*
1449 * struct kmem_cache size depends on nr_node_ids, which
1450 * can be less than MAX_NUMNODES.
1451 */
1452 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1453 nr_node_ids * sizeof(struct kmem_list3 *);
1454#if DEBUG
1455 cache_cache.obj_size = cache_cache.buffer_size;
1456#endif
Andrew Mortona737b3e2006-03-22 00:08:11 -08001457 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1458 cache_line_size());
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08001459 cache_cache.reciprocal_buffer_size =
1460 reciprocal_value(cache_cache.buffer_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461
Jack Steiner07ed76b2006-03-07 21:55:46 -08001462 for (order = 0; order < MAX_ORDER; order++) {
1463 cache_estimate(order, cache_cache.buffer_size,
1464 cache_line_size(), 0, &left_over, &cache_cache.num);
1465 if (cache_cache.num)
1466 break;
1467 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001468 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001469 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001470 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001471 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1472 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473
1474 /* 2+3) create the kmalloc caches */
1475 sizes = malloc_sizes;
1476 names = cache_names;
1477
Andrew Mortona737b3e2006-03-22 00:08:11 -08001478 /*
1479 * Initialize the caches that provide memory for the array cache and the
1480 * kmem_list3 structures first. Without this, further allocations will
1481 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001482 */
1483
1484 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001485 sizes[INDEX_AC].cs_size,
1486 ARCH_KMALLOC_MINALIGN,
1487 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1488 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001489
Andrew Mortona737b3e2006-03-22 00:08:11 -08001490 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001491 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001492 kmem_cache_create(names[INDEX_L3].name,
1493 sizes[INDEX_L3].cs_size,
1494 ARCH_KMALLOC_MINALIGN,
1495 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1496 NULL, NULL);
1497 }
Christoph Lametere498be72005-09-09 13:03:32 -07001498
Ingo Molnare0a42722006-06-23 02:03:46 -07001499 slab_early_init = 0;
1500
Linus Torvalds1da177e2005-04-16 15:20:36 -07001501 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001502 /*
1503 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001504 * This should be particularly beneficial on SMP boxes, as it
1505 * eliminates "false sharing".
1506 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001507 * allow tighter packing of the smaller caches.
1508 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001509 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001510 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001511 sizes->cs_size,
1512 ARCH_KMALLOC_MINALIGN,
1513 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1514 NULL, NULL);
1515 }
Christoph Lameter4b51d662007-02-10 01:43:10 -08001516#ifdef CONFIG_ZONE_DMA
1517 sizes->cs_dmacachep = kmem_cache_create(
1518 names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001519 sizes->cs_size,
1520 ARCH_KMALLOC_MINALIGN,
1521 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1522 SLAB_PANIC,
1523 NULL, NULL);
Christoph Lameter4b51d662007-02-10 01:43:10 -08001524#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525 sizes++;
1526 names++;
1527 }
1528 /* 4) Replace the bootstrap head arrays */
1529 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001530 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001531
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001533
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001535 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1536 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001537 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001538 /*
1539 * Do not assume that spinlocks can be initialized via memcpy:
1540 */
1541 spin_lock_init(&ptr->lock);
1542
Linus Torvalds1da177e2005-04-16 15:20:36 -07001543 cache_cache.array[smp_processor_id()] = ptr;
1544 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001545
Linus Torvalds1da177e2005-04-16 15:20:36 -07001546 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001547
Linus Torvalds1da177e2005-04-16 15:20:36 -07001548 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001549 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001550 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001551 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001552 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001553 /*
1554 * Do not assume that spinlocks can be initialized via memcpy:
1555 */
1556 spin_lock_init(&ptr->lock);
1557
Christoph Lametere498be72005-09-09 13:03:32 -07001558 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001559 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560 local_irq_enable();
1561 }
Christoph Lametere498be72005-09-09 13:03:32 -07001562 /* 5) Replace the bootstrap kmem_list3's */
1563 {
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001564 int nid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001566 /* Replace the static kmem_list3 structures for the boot cpu */
1567 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1568
1569 for_each_online_node(nid) {
Christoph Lametere498be72005-09-09 13:03:32 -07001570 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001571 &initkmem_list3[SIZE_AC + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001572
1573 if (INDEX_AC != INDEX_L3) {
1574 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001575 &initkmem_list3[SIZE_L3 + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001576 }
1577 }
1578 }
1579
1580 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001581 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001582 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001583 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001585 if (enable_cpucache(cachep))
1586 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001587 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001588 }
1589
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001590 /* Annotate slab for lockdep -- annotate the malloc caches */
1591 init_lock_keys();
1592
1593
Linus Torvalds1da177e2005-04-16 15:20:36 -07001594 /* Done! */
1595 g_cpucache_up = FULL;
1596
Andrew Mortona737b3e2006-03-22 00:08:11 -08001597 /*
1598 * Register a cpu startup notifier callback that initializes
1599 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600 */
1601 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001602
Andrew Mortona737b3e2006-03-22 00:08:11 -08001603 /*
1604 * The reap timers are started later, with a module init call: That part
1605 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001606 */
1607}
1608
1609static int __init cpucache_init(void)
1610{
1611 int cpu;
1612
Andrew Mortona737b3e2006-03-22 00:08:11 -08001613 /*
1614 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001615 */
Christoph Lametere498be72005-09-09 13:03:32 -07001616 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001617 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618 return 0;
1619}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001620__initcall(cpucache_init);
1621
1622/*
1623 * Interface to system's page allocator. No need to hold the cache-lock.
1624 *
1625 * If we requested dmaable memory, we will get it. Even if we
1626 * did not request dmaable memory, we might get it, but that
1627 * would be relatively rare and ignorable.
1628 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001629static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001630{
1631 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001632 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633 int i;
1634
Luke Yangd6fef9d2006-04-10 22:52:56 -07001635#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001636 /*
1637 * Nommu uses slab's for process anonymous memory allocations, and thus
1638 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001639 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001640 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001641#endif
Christoph Lameter765c4502006-09-27 01:50:08 -07001642
Christoph Lameter3c517a62006-12-06 20:33:29 -08001643 flags |= cachep->gfpflags;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001644
1645 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646 if (!page)
1647 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001648
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001649 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Lameter972d1a72006-09-25 23:31:51 -07001651 add_zone_page_state(page_zone(page),
1652 NR_SLAB_RECLAIMABLE, nr_pages);
1653 else
1654 add_zone_page_state(page_zone(page),
1655 NR_SLAB_UNRECLAIMABLE, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001656 for (i = 0; i < nr_pages; i++)
1657 __SetPageSlab(page + i);
1658 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659}
1660
1661/*
1662 * Interface to system's page release.
1663 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001664static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001665{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001666 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667 struct page *page = virt_to_page(addr);
1668 const unsigned long nr_freed = i;
1669
Christoph Lameter972d1a72006-09-25 23:31:51 -07001670 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1671 sub_zone_page_state(page_zone(page),
1672 NR_SLAB_RECLAIMABLE, nr_freed);
1673 else
1674 sub_zone_page_state(page_zone(page),
1675 NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001677 BUG_ON(!PageSlab(page));
1678 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001679 page++;
1680 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681 if (current->reclaim_state)
1682 current->reclaim_state->reclaimed_slab += nr_freed;
1683 free_pages((unsigned long)addr, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684}
1685
1686static void kmem_rcu_free(struct rcu_head *head)
1687{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001688 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001689 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001690
1691 kmem_freepages(cachep, slab_rcu->addr);
1692 if (OFF_SLAB(cachep))
1693 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1694}
1695
1696#if DEBUG
1697
1698#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001699static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001700 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001701{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001702 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001704 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001705
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001706 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707 return;
1708
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001709 *addr++ = 0x12345678;
1710 *addr++ = caller;
1711 *addr++ = smp_processor_id();
1712 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001713 {
1714 unsigned long *sptr = &caller;
1715 unsigned long svalue;
1716
1717 while (!kstack_end(sptr)) {
1718 svalue = *sptr++;
1719 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001720 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001721 size -= sizeof(unsigned long);
1722 if (size <= sizeof(unsigned long))
1723 break;
1724 }
1725 }
1726
1727 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001728 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729}
1730#endif
1731
Pekka Enberg343e0d72006-02-01 03:05:50 -08001732static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001734 int size = obj_size(cachep);
1735 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736
1737 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001738 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001739}
1740
1741static void dump_line(char *data, int offset, int limit)
1742{
1743 int i;
Dave Jonesaa83aa42006-09-29 01:59:51 -07001744 unsigned char error = 0;
1745 int bad_count = 0;
1746
Linus Torvalds1da177e2005-04-16 15:20:36 -07001747 printk(KERN_ERR "%03x:", offset);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001748 for (i = 0; i < limit; i++) {
1749 if (data[offset + i] != POISON_FREE) {
1750 error = data[offset + i];
1751 bad_count++;
1752 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001753 printk(" %02x", (unsigned char)data[offset + i]);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001754 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755 printk("\n");
Dave Jonesaa83aa42006-09-29 01:59:51 -07001756
1757 if (bad_count == 1) {
1758 error ^= POISON_FREE;
1759 if (!(error & (error - 1))) {
1760 printk(KERN_ERR "Single bit error detected. Probably "
1761 "bad RAM.\n");
1762#ifdef CONFIG_X86
1763 printk(KERN_ERR "Run memtest86+ or a similar memory "
1764 "test tool.\n");
1765#else
1766 printk(KERN_ERR "Run a memory test tool.\n");
1767#endif
1768 }
1769 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770}
1771#endif
1772
1773#if DEBUG
1774
Pekka Enberg343e0d72006-02-01 03:05:50 -08001775static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776{
1777 int i, size;
1778 char *realobj;
1779
1780 if (cachep->flags & SLAB_RED_ZONE) {
1781 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001782 *dbg_redzone1(cachep, objp),
1783 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784 }
1785
1786 if (cachep->flags & SLAB_STORE_USER) {
1787 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001788 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001789 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001790 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791 printk("\n");
1792 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001793 realobj = (char *)objp + obj_offset(cachep);
1794 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001795 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 int limit;
1797 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001798 if (i + limit > size)
1799 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001800 dump_line(realobj, i, limit);
1801 }
1802}
1803
Pekka Enberg343e0d72006-02-01 03:05:50 -08001804static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001805{
1806 char *realobj;
1807 int size, i;
1808 int lines = 0;
1809
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001810 realobj = (char *)objp + obj_offset(cachep);
1811 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001813 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001815 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816 exp = POISON_END;
1817 if (realobj[i] != exp) {
1818 int limit;
1819 /* Mismatch ! */
1820 /* Print header */
1821 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001822 printk(KERN_ERR
David Howellse94a40c2007-04-02 23:46:28 +01001823 "Slab corruption: %s start=%p, len=%d\n",
1824 cachep->name, realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001825 print_objinfo(cachep, objp, 0);
1826 }
1827 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001828 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001829 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001830 if (i + limit > size)
1831 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001832 dump_line(realobj, i, limit);
1833 i += 16;
1834 lines++;
1835 /* Limit to 5 lines */
1836 if (lines > 5)
1837 break;
1838 }
1839 }
1840 if (lines != 0) {
1841 /* Print some data about the neighboring objects, if they
1842 * exist:
1843 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001844 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001845 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001846
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001847 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001848 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001849 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001850 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001852 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001853 print_objinfo(cachep, objp, 2);
1854 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001855 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001856 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001857 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001858 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001859 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001860 print_objinfo(cachep, objp, 2);
1861 }
1862 }
1863}
1864#endif
1865
Linus Torvalds1da177e2005-04-16 15:20:36 -07001866#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001867/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001868 * slab_destroy_objs - destroy a slab and its objects
1869 * @cachep: cache pointer being destroyed
1870 * @slabp: slab pointer being destroyed
1871 *
1872 * Call the registered destructor for each object in a slab that is being
1873 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001874 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001875static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001876{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877 int i;
1878 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001879 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001880
1881 if (cachep->flags & SLAB_POISON) {
1882#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001883 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1884 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001885 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001886 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001887 else
1888 check_poison_obj(cachep, objp);
1889#else
1890 check_poison_obj(cachep, objp);
1891#endif
1892 }
1893 if (cachep->flags & SLAB_RED_ZONE) {
1894 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1895 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001896 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001897 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1898 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001899 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900 }
1901 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001902 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001904}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001905#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001906static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001907{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001908 if (cachep->dtor) {
1909 int i;
1910 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001911 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001912 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001913 }
1914 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001915}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001916#endif
1917
Randy Dunlap911851e2006-03-22 00:08:14 -08001918/**
1919 * slab_destroy - destroy and release all objects in a slab
1920 * @cachep: cache pointer being destroyed
1921 * @slabp: slab pointer being destroyed
1922 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001923 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001924 * Before calling the slab must have been unlinked from the cache. The
1925 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001926 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001927static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001928{
1929 void *addr = slabp->s_mem - slabp->colouroff;
1930
1931 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1933 struct slab_rcu *slab_rcu;
1934
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001935 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001936 slab_rcu->cachep = cachep;
1937 slab_rcu->addr = addr;
1938 call_rcu(&slab_rcu->head, kmem_rcu_free);
1939 } else {
1940 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001941 if (OFF_SLAB(cachep))
1942 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943 }
1944}
1945
Andrew Mortona737b3e2006-03-22 00:08:11 -08001946/*
1947 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1948 * size of kmem_list3.
1949 */
Andrew Mortona3a02be2007-05-06 14:49:31 -07001950static void __init set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001951{
1952 int node;
1953
1954 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001955 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001956 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001957 REAPTIMEOUT_LIST3 +
1958 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001959 }
1960}
1961
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001962static void __kmem_cache_destroy(struct kmem_cache *cachep)
1963{
1964 int i;
1965 struct kmem_list3 *l3;
1966
1967 for_each_online_cpu(i)
1968 kfree(cachep->array[i]);
1969
1970 /* NUMA: free the list3 structures */
1971 for_each_online_node(i) {
1972 l3 = cachep->nodelists[i];
1973 if (l3) {
1974 kfree(l3->shared);
1975 free_alien_cache(l3->alien);
1976 kfree(l3);
1977 }
1978 }
1979 kmem_cache_free(&cache_cache, cachep);
1980}
1981
1982
Linus Torvalds1da177e2005-04-16 15:20:36 -07001983/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001984 * calculate_slab_order - calculate size (page order) of slabs
1985 * @cachep: pointer to the cache that is being created
1986 * @size: size of objects to be created in this cache.
1987 * @align: required alignment for the objects.
1988 * @flags: slab allocation flags
1989 *
1990 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001991 *
1992 * This could be made much more intelligent. For now, try to avoid using
1993 * high order pages for slabs. When the gfp() functions are more friendly
1994 * towards high-order requests, this should be changed.
1995 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001996static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001997 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001998{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001999 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002000 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002001 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002002
Andrew Mortona737b3e2006-03-22 00:08:11 -08002003 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002004 unsigned int num;
2005 size_t remainder;
2006
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002007 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002008 if (!num)
2009 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002010
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02002011 if (flags & CFLGS_OFF_SLAB) {
2012 /*
2013 * Max number of objs-per-slab for caches which
2014 * use off-slab slabs. Needed to avoid a possible
2015 * looping condition in cache_grow().
2016 */
2017 offslab_limit = size - sizeof(struct slab);
2018 offslab_limit /= sizeof(kmem_bufctl_t);
2019
2020 if (num > offslab_limit)
2021 break;
2022 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002023
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002024 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002025 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002026 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002027 left_over = remainder;
2028
2029 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002030 * A VFS-reclaimable slab tends to have most allocations
2031 * as GFP_NOFS and we really don't want to have to be allocating
2032 * higher-order pages when we are unable to shrink dcache.
2033 */
2034 if (flags & SLAB_RECLAIM_ACCOUNT)
2035 break;
2036
2037 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002038 * Large number of objects is good, but very large slabs are
2039 * currently bad for the gfp()s.
2040 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002041 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002042 break;
2043
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002044 /*
2045 * Acceptable internal fragmentation?
2046 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002047 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002048 break;
2049 }
2050 return left_over;
2051}
2052
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002053static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002054{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002055 if (g_cpucache_up == FULL)
2056 return enable_cpucache(cachep);
2057
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002058 if (g_cpucache_up == NONE) {
2059 /*
2060 * Note: the first kmem_cache_create must create the cache
2061 * that's used by kmalloc(24), otherwise the creation of
2062 * further caches will BUG().
2063 */
2064 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2065
2066 /*
2067 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2068 * the first cache, then we need to set up all its list3s,
2069 * otherwise the creation of further caches will BUG().
2070 */
2071 set_up_list3s(cachep, SIZE_AC);
2072 if (INDEX_AC == INDEX_L3)
2073 g_cpucache_up = PARTIAL_L3;
2074 else
2075 g_cpucache_up = PARTIAL_AC;
2076 } else {
2077 cachep->array[smp_processor_id()] =
2078 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2079
2080 if (g_cpucache_up == PARTIAL_AC) {
2081 set_up_list3s(cachep, SIZE_L3);
2082 g_cpucache_up = PARTIAL_L3;
2083 } else {
2084 int node;
2085 for_each_online_node(node) {
2086 cachep->nodelists[node] =
2087 kmalloc_node(sizeof(struct kmem_list3),
2088 GFP_KERNEL, node);
2089 BUG_ON(!cachep->nodelists[node]);
2090 kmem_list3_init(cachep->nodelists[node]);
2091 }
2092 }
2093 }
2094 cachep->nodelists[numa_node_id()]->next_reap =
2095 jiffies + REAPTIMEOUT_LIST3 +
2096 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2097
2098 cpu_cache_get(cachep)->avail = 0;
2099 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2100 cpu_cache_get(cachep)->batchcount = 1;
2101 cpu_cache_get(cachep)->touched = 0;
2102 cachep->batchcount = 1;
2103 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002104 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002105}
2106
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002107/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108 * kmem_cache_create - Create a cache.
2109 * @name: A string which is used in /proc/slabinfo to identify this cache.
2110 * @size: The size of objects to be created in this cache.
2111 * @align: The required alignment for the objects.
2112 * @flags: SLAB flags
2113 * @ctor: A constructor for the objects.
2114 * @dtor: A destructor for the objects.
2115 *
2116 * Returns a ptr to the cache on success, NULL on failure.
2117 * Cannot be called within a int, but can be interrupted.
2118 * The @ctor is run when new pages are allocated by the cache
2119 * and the @dtor is run before the pages are handed back.
2120 *
2121 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002122 * the module calling this has to destroy the cache before getting unloaded.
2123 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124 * The flags are
2125 *
2126 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2127 * to catch references to uninitialised memory.
2128 *
2129 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2130 * for buffer overruns.
2131 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002132 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2133 * cacheline. This can be beneficial if you're counting cycles as closely
2134 * as davem.
2135 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002136struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002137kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002138 unsigned long flags,
2139 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002140 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141{
2142 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002143 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002144
2145 /*
2146 * Sanity checks... these are all serious usage bugs.
2147 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002148 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002149 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002150 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2151 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002152 BUG();
2153 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002154
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002155 /*
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002156 * We use cache_chain_mutex to ensure a consistent view of
2157 * cpu_online_map as well. Please see cpuup_callback
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002158 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002159 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002160
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002161 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002162 char tmp;
2163 int res;
2164
2165 /*
2166 * This happens when the module gets unloaded and doesn't
2167 * destroy its slab cache and no-one else reuses the vmalloc
2168 * area of the module. Print a warning.
2169 */
Andrew Morton138ae662006-12-06 20:36:41 -08002170 res = probe_kernel_address(pc->name, tmp);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002171 if (res) {
2172 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002173 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002174 continue;
2175 }
2176
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002177 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002178 printk("kmem_cache_create: duplicate cache %s\n", name);
2179 dump_stack();
2180 goto oops;
2181 }
2182 }
2183
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184#if DEBUG
2185 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2186 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2187 /* No constructor, but inital state check requested */
2188 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002189 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002190 flags &= ~SLAB_DEBUG_INITIAL;
2191 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002192#if FORCED_DEBUG
2193 /*
2194 * Enable redzoning and last user accounting, except for caches with
2195 * large objects, if the increased size would increase the object size
2196 * above the next power of two: caches with object sizes just above a
2197 * power of two have a significant amount of internal fragmentation.
2198 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002199 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002200 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002201 if (!(flags & SLAB_DESTROY_BY_RCU))
2202 flags |= SLAB_POISON;
2203#endif
2204 if (flags & SLAB_DESTROY_BY_RCU)
2205 BUG_ON(flags & SLAB_POISON);
2206#endif
2207 if (flags & SLAB_DESTROY_BY_RCU)
2208 BUG_ON(dtor);
2209
2210 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002211 * Always checks flags, a caller might be expecting debug support which
2212 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002214 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002215
Andrew Mortona737b3e2006-03-22 00:08:11 -08002216 /*
2217 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002218 * unaligned accesses for some archs when redzoning is used, and makes
2219 * sure any on-slab bufctl's are also correctly aligned.
2220 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002221 if (size & (BYTES_PER_WORD - 1)) {
2222 size += (BYTES_PER_WORD - 1);
2223 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002224 }
2225
Andrew Mortona737b3e2006-03-22 00:08:11 -08002226 /* calculate the final buffer alignment: */
2227
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228 /* 1) arch recommendation: can be overridden for debug */
2229 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002230 /*
2231 * Default alignment: as specified by the arch code. Except if
2232 * an object is really small, then squeeze multiple objects into
2233 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002234 */
2235 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002236 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002237 ralign /= 2;
2238 } else {
2239 ralign = BYTES_PER_WORD;
2240 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002241
2242 /*
2243 * Redzoning and user store require word alignment. Note this will be
2244 * overridden by architecture or caller mandated alignment if either
2245 * is greater than BYTES_PER_WORD.
2246 */
2247 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2248 ralign = BYTES_PER_WORD;
2249
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002250 /* 2) arch mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002251 if (ralign < ARCH_SLAB_MINALIGN) {
2252 ralign = ARCH_SLAB_MINALIGN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002254 /* 3) caller mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255 if (ralign < align) {
2256 ralign = align;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002257 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002258 /* disable debug if necessary */
2259 if (ralign > BYTES_PER_WORD)
2260 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002261 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002262 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 */
2264 align = ralign;
2265
2266 /* Get cache's description obj. */
Christoph Lametere94b1762006-12-06 20:33:17 -08002267 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002269 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002270
2271#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002272 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002273
Pekka Enbergca5f9702006-09-25 23:31:25 -07002274 /*
2275 * Both debugging options require word-alignment which is calculated
2276 * into align above.
2277 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002280 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002281 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002282 }
2283 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002284 /* user store requires one word storage behind the end of
2285 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002286 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002287 size += BYTES_PER_WORD;
2288 }
2289#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002290 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002291 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2292 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002293 size = PAGE_SIZE;
2294 }
2295#endif
2296#endif
2297
Ingo Molnare0a42722006-06-23 02:03:46 -07002298 /*
2299 * Determine if the slab management is 'on' or 'off' slab.
2300 * (bootstrapping cannot cope with offslab caches so don't do
2301 * it too early on.)
2302 */
2303 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002304 /*
2305 * Size is large, assume best to place the slab management obj
2306 * off-slab (should allow better packing of objs).
2307 */
2308 flags |= CFLGS_OFF_SLAB;
2309
2310 size = ALIGN(size, align);
2311
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002312 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313
2314 if (!cachep->num) {
2315 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2316 kmem_cache_free(&cache_cache, cachep);
2317 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002318 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002319 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002320 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2321 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322
2323 /*
2324 * If the slab has been placed off-slab, and we have enough space then
2325 * move it on-slab. This is at the expense of any extra colouring.
2326 */
2327 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2328 flags &= ~CFLGS_OFF_SLAB;
2329 left_over -= slab_size;
2330 }
2331
2332 if (flags & CFLGS_OFF_SLAB) {
2333 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002334 slab_size =
2335 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336 }
2337
2338 cachep->colour_off = cache_line_size();
2339 /* Offset must be a multiple of the alignment. */
2340 if (cachep->colour_off < align)
2341 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002342 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343 cachep->slab_size = slab_size;
2344 cachep->flags = flags;
2345 cachep->gfpflags = 0;
Christoph Lameter4b51d662007-02-10 01:43:10 -08002346 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002347 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002348 cachep->buffer_size = size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08002349 cachep->reciprocal_buffer_size = reciprocal_value(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002350
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002351 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002352 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002353 /*
2354 * This is a possibility for one of the malloc_sizes caches.
2355 * But since we go off slab only for object size greater than
2356 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2357 * this should not happen at all.
2358 * But leave a BUG_ON for some lucky dude.
2359 */
2360 BUG_ON(!cachep->slabp_cache);
2361 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002362 cachep->ctor = ctor;
2363 cachep->dtor = dtor;
2364 cachep->name = name;
2365
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002366 if (setup_cpu_cache(cachep)) {
2367 __kmem_cache_destroy(cachep);
2368 cachep = NULL;
2369 goto oops;
2370 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002371
Linus Torvalds1da177e2005-04-16 15:20:36 -07002372 /* cache setup completed, link it into the list */
2373 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002374oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002375 if (!cachep && (flags & SLAB_PANIC))
2376 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002377 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002378 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379 return cachep;
2380}
2381EXPORT_SYMBOL(kmem_cache_create);
2382
2383#if DEBUG
2384static void check_irq_off(void)
2385{
2386 BUG_ON(!irqs_disabled());
2387}
2388
2389static void check_irq_on(void)
2390{
2391 BUG_ON(irqs_disabled());
2392}
2393
Pekka Enberg343e0d72006-02-01 03:05:50 -08002394static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395{
2396#ifdef CONFIG_SMP
2397 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002398 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002399#endif
2400}
Christoph Lametere498be72005-09-09 13:03:32 -07002401
Pekka Enberg343e0d72006-02-01 03:05:50 -08002402static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002403{
2404#ifdef CONFIG_SMP
2405 check_irq_off();
2406 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2407#endif
2408}
2409
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410#else
2411#define check_irq_off() do { } while(0)
2412#define check_irq_on() do { } while(0)
2413#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002414#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002415#endif
2416
Christoph Lameteraab22072006-03-22 00:09:06 -08002417static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2418 struct array_cache *ac,
2419 int force, int node);
2420
Linus Torvalds1da177e2005-04-16 15:20:36 -07002421static void do_drain(void *arg)
2422{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002423 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002424 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002425 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426
2427 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002428 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002429 spin_lock(&cachep->nodelists[node]->list_lock);
2430 free_block(cachep, ac->entry, ac->avail, node);
2431 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002432 ac->avail = 0;
2433}
2434
Pekka Enberg343e0d72006-02-01 03:05:50 -08002435static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002436{
Christoph Lametere498be72005-09-09 13:03:32 -07002437 struct kmem_list3 *l3;
2438 int node;
2439
Andrew Mortona07fa392006-03-22 00:08:17 -08002440 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002441 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002442 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002443 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002444 if (l3 && l3->alien)
2445 drain_alien_cache(cachep, l3->alien);
2446 }
2447
2448 for_each_online_node(node) {
2449 l3 = cachep->nodelists[node];
2450 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002451 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002452 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002453}
2454
Christoph Lametered11d9e2006-06-30 01:55:45 -07002455/*
2456 * Remove slabs from the list of free slabs.
2457 * Specify the number of slabs to drain in tofree.
2458 *
2459 * Returns the actual number of slabs released.
2460 */
2461static int drain_freelist(struct kmem_cache *cache,
2462 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002463{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002464 struct list_head *p;
2465 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002466 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002467
Christoph Lametered11d9e2006-06-30 01:55:45 -07002468 nr_freed = 0;
2469 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002470
Christoph Lametered11d9e2006-06-30 01:55:45 -07002471 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002472 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002473 if (p == &l3->slabs_free) {
2474 spin_unlock_irq(&l3->list_lock);
2475 goto out;
2476 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002477
Christoph Lametered11d9e2006-06-30 01:55:45 -07002478 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002480 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002481#endif
2482 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002483 /*
2484 * Safe to drop the lock. The slab is no longer linked
2485 * to the cache.
2486 */
2487 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002488 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002489 slab_destroy(cache, slabp);
2490 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002492out:
2493 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494}
2495
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002496/* Called with cache_chain_mutex held to protect against cpu hotplug */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002497static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002498{
2499 int ret = 0, i = 0;
2500 struct kmem_list3 *l3;
2501
2502 drain_cpu_caches(cachep);
2503
2504 check_irq_on();
2505 for_each_online_node(i) {
2506 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002507 if (!l3)
2508 continue;
2509
2510 drain_freelist(cachep, l3, l3->free_objects);
2511
2512 ret += !list_empty(&l3->slabs_full) ||
2513 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002514 }
2515 return (ret ? 1 : 0);
2516}
2517
Linus Torvalds1da177e2005-04-16 15:20:36 -07002518/**
2519 * kmem_cache_shrink - Shrink a cache.
2520 * @cachep: The cache to shrink.
2521 *
2522 * Releases as many slabs as possible for a cache.
2523 * To help debugging, a zero exit status indicates all slabs were released.
2524 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002525int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002526{
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002527 int ret;
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002528 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002529
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002530 mutex_lock(&cache_chain_mutex);
2531 ret = __cache_shrink(cachep);
2532 mutex_unlock(&cache_chain_mutex);
2533 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534}
2535EXPORT_SYMBOL(kmem_cache_shrink);
2536
2537/**
2538 * kmem_cache_destroy - delete a cache
2539 * @cachep: the cache to destroy
2540 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08002541 * Remove a &struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002542 *
2543 * It is expected this function will be called by a module when it is
2544 * unloaded. This will remove the cache completely, and avoid a duplicate
2545 * cache being allocated each time a module is loaded and unloaded, if the
2546 * module doesn't have persistent in-kernel storage across loads and unloads.
2547 *
2548 * The cache must be empty before calling this function.
2549 *
2550 * The caller must guarantee that noone will allocate memory from the cache
2551 * during the kmem_cache_destroy().
2552 */
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002553void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002554{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002555 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002556
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002558 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002559 /*
2560 * the chain is never empty, cache_cache is never destroyed
2561 */
2562 list_del(&cachep->next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002563 if (__cache_shrink(cachep)) {
2564 slab_error(cachep, "Can't free all objects");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002565 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002566 mutex_unlock(&cache_chain_mutex);
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002567 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002568 }
2569
2570 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002571 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002572
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002573 __kmem_cache_destroy(cachep);
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002574 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002575}
2576EXPORT_SYMBOL(kmem_cache_destroy);
2577
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002578/*
2579 * Get the memory for a slab management obj.
2580 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2581 * always come from malloc_sizes caches. The slab descriptor cannot
2582 * come from the same cache which is getting created because,
2583 * when we are searching for an appropriate cache for these
2584 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2585 * If we are creating a malloc_sizes cache here it would not be visible to
2586 * kmem_find_general_cachep till the initialization is complete.
2587 * Hence we cannot have slabp_cache same as the original cache.
2588 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002589static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002590 int colour_off, gfp_t local_flags,
2591 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002592{
2593 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002594
Linus Torvalds1da177e2005-04-16 15:20:36 -07002595 if (OFF_SLAB(cachep)) {
2596 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002597 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
Christoph Lameter3c517a62006-12-06 20:33:29 -08002598 local_flags & ~GFP_THISNODE, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002599 if (!slabp)
2600 return NULL;
2601 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002602 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002603 colour_off += cachep->slab_size;
2604 }
2605 slabp->inuse = 0;
2606 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002607 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002608 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002609 return slabp;
2610}
2611
2612static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2613{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002614 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002615}
2616
Pekka Enberg343e0d72006-02-01 03:05:50 -08002617static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002618 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002619{
2620 int i;
2621
2622 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002623 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002624#if DEBUG
2625 /* need to poison the objs? */
2626 if (cachep->flags & SLAB_POISON)
2627 poison_obj(cachep, objp, POISON_FREE);
2628 if (cachep->flags & SLAB_STORE_USER)
2629 *dbg_userword(cachep, objp) = NULL;
2630
2631 if (cachep->flags & SLAB_RED_ZONE) {
2632 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2633 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2634 }
2635 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002636 * Constructors are not allowed to allocate memory from the same
2637 * cache which they are a constructor for. Otherwise, deadlock.
2638 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002639 */
2640 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002641 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002642 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002643
2644 if (cachep->flags & SLAB_RED_ZONE) {
2645 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2646 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002647 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002648 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2649 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002650 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002652 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2653 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002654 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002655 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002656#else
2657 if (cachep->ctor)
2658 cachep->ctor(objp, cachep, ctor_flags);
2659#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002660 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002661 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002662 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002663 slabp->free = 0;
2664}
2665
Pekka Enberg343e0d72006-02-01 03:05:50 -08002666static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002667{
Christoph Lameter4b51d662007-02-10 01:43:10 -08002668 if (CONFIG_ZONE_DMA_FLAG) {
2669 if (flags & GFP_DMA)
2670 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2671 else
2672 BUG_ON(cachep->gfpflags & GFP_DMA);
2673 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002674}
2675
Andrew Mortona737b3e2006-03-22 00:08:11 -08002676static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2677 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002678{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002679 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002680 kmem_bufctl_t next;
2681
2682 slabp->inuse++;
2683 next = slab_bufctl(slabp)[slabp->free];
2684#if DEBUG
2685 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2686 WARN_ON(slabp->nodeid != nodeid);
2687#endif
2688 slabp->free = next;
2689
2690 return objp;
2691}
2692
Andrew Mortona737b3e2006-03-22 00:08:11 -08002693static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2694 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002695{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002696 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002697
2698#if DEBUG
2699 /* Verify that the slab belongs to the intended node */
2700 WARN_ON(slabp->nodeid != nodeid);
2701
Al Viro871751e2006-03-25 03:06:39 -08002702 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002703 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002704 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002705 BUG();
2706 }
2707#endif
2708 slab_bufctl(slabp)[objnr] = slabp->free;
2709 slabp->free = objnr;
2710 slabp->inuse--;
2711}
2712
Pekka Enberg47768742006-06-23 02:03:07 -07002713/*
2714 * Map pages beginning at addr to the given cache and slab. This is required
2715 * for the slab allocator to be able to lookup the cache and slab of a
2716 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2717 */
2718static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2719 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720{
Pekka Enberg47768742006-06-23 02:03:07 -07002721 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002722 struct page *page;
2723
Pekka Enberg47768742006-06-23 02:03:07 -07002724 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002725
Pekka Enberg47768742006-06-23 02:03:07 -07002726 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002727 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002728 nr_pages <<= cache->gfporder;
2729
Linus Torvalds1da177e2005-04-16 15:20:36 -07002730 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002731 page_set_cache(page, cache);
2732 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002734 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002735}
2736
2737/*
2738 * Grow (by 1) the number of slabs within a cache. This is called by
2739 * kmem_cache_alloc() when there are no active objs left in a cache.
2740 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002741static int cache_grow(struct kmem_cache *cachep,
2742 gfp_t flags, int nodeid, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002744 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002745 size_t offset;
2746 gfp_t local_flags;
2747 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002748 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749
Andrew Mortona737b3e2006-03-22 00:08:11 -08002750 /*
2751 * Be lazy and only check for valid flags here, keeping it out of the
2752 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002753 */
Christoph Lameter441e1432006-12-06 20:33:19 -08002754 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
Christoph Lameter6e0eaa42006-12-06 20:33:10 -08002755 if (flags & __GFP_NO_GROW)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002756 return 0;
2757
2758 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Christoph Lametera06d72c2006-12-06 20:33:12 -08002759 local_flags = (flags & GFP_LEVEL_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002760 if (!(local_flags & __GFP_WAIT))
2761 /*
2762 * Not allowed to sleep. Need to tell a constructor about
2763 * this - it might need to know...
2764 */
2765 ctor_flags |= SLAB_CTOR_ATOMIC;
2766
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002767 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002769 l3 = cachep->nodelists[nodeid];
2770 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002771
2772 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002773 offset = l3->colour_next;
2774 l3->colour_next++;
2775 if (l3->colour_next >= cachep->colour)
2776 l3->colour_next = 0;
2777 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002778
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002779 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780
2781 if (local_flags & __GFP_WAIT)
2782 local_irq_enable();
2783
2784 /*
2785 * The test for missing atomic flag is performed here, rather than
2786 * the more obvious place, simply to reduce the critical path length
2787 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2788 * will eventually be caught here (where it matters).
2789 */
2790 kmem_flagcheck(cachep, flags);
2791
Andrew Mortona737b3e2006-03-22 00:08:11 -08002792 /*
2793 * Get mem for the objs. Attempt to allocate a physical page from
2794 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002795 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002796 if (!objp)
2797 objp = kmem_getpages(cachep, flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002798 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002799 goto failed;
2800
2801 /* Get slab management. */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002802 slabp = alloc_slabmgmt(cachep, objp, offset,
2803 local_flags & ~GFP_THISNODE, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002804 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002805 goto opps1;
2806
Christoph Lametere498be72005-09-09 13:03:32 -07002807 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002808 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002809
2810 cache_init_objs(cachep, slabp, ctor_flags);
2811
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002815 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002816
2817 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002818 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002819 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002820 l3->free_objects += cachep->num;
2821 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002823opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002824 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002825failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826 if (local_flags & __GFP_WAIT)
2827 local_irq_disable();
2828 return 0;
2829}
2830
2831#if DEBUG
2832
2833/*
2834 * Perform extra freeing checks:
2835 * - detect bad pointers.
2836 * - POISON/RED_ZONE checking
2837 * - destructor calls, for caches with POISON+dtor
2838 */
2839static void kfree_debugcheck(const void *objp)
2840{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841 if (!virt_addr_valid(objp)) {
2842 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002843 (unsigned long)objp);
2844 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002846}
2847
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002848static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2849{
2850 unsigned long redzone1, redzone2;
2851
2852 redzone1 = *dbg_redzone1(cache, obj);
2853 redzone2 = *dbg_redzone2(cache, obj);
2854
2855 /*
2856 * Redzone is ok.
2857 */
2858 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2859 return;
2860
2861 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2862 slab_error(cache, "double free detected");
2863 else
2864 slab_error(cache, "memory outside object was overwritten");
2865
2866 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2867 obj, redzone1, redzone2);
2868}
2869
Pekka Enberg343e0d72006-02-01 03:05:50 -08002870static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002871 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872{
2873 struct page *page;
2874 unsigned int objnr;
2875 struct slab *slabp;
2876
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002877 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002878 kfree_debugcheck(objp);
2879 page = virt_to_page(objp);
2880
Pekka Enberg065d41c2005-11-13 16:06:46 -08002881 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002882
2883 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002884 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2886 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2887 }
2888 if (cachep->flags & SLAB_STORE_USER)
2889 *dbg_userword(cachep, objp) = caller;
2890
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002891 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002892
2893 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002894 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002895
2896 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002897 /*
2898 * Need to call the slab's constructor so the caller can
2899 * perform a verify of its state (debugging). Called without
2900 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002901 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002902 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002903 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002904 }
2905 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2906 /* we want to cache poison the object,
2907 * call the destruction callback
2908 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002909 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002910 }
Al Viro871751e2006-03-25 03:06:39 -08002911#ifdef CONFIG_DEBUG_SLAB_LEAK
2912 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2913#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002914 if (cachep->flags & SLAB_POISON) {
2915#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002916 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002917 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002918 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002919 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002920 } else {
2921 poison_obj(cachep, objp, POISON_FREE);
2922 }
2923#else
2924 poison_obj(cachep, objp, POISON_FREE);
2925#endif
2926 }
2927 return objp;
2928}
2929
Pekka Enberg343e0d72006-02-01 03:05:50 -08002930static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002931{
2932 kmem_bufctl_t i;
2933 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002934
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935 /* Check slab's freelist to see if this obj is there. */
2936 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2937 entries++;
2938 if (entries > cachep->num || i >= cachep->num)
2939 goto bad;
2940 }
2941 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002942bad:
2943 printk(KERN_ERR "slab: Internal list corruption detected in "
2944 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2945 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002946 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002947 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002948 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002949 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002950 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002951 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002952 }
2953 printk("\n");
2954 BUG();
2955 }
2956}
2957#else
2958#define kfree_debugcheck(x) do { } while(0)
2959#define cache_free_debugcheck(x,objp,z) (objp)
2960#define check_slabp(x,y) do { } while(0)
2961#endif
2962
Pekka Enberg343e0d72006-02-01 03:05:50 -08002963static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002964{
2965 int batchcount;
2966 struct kmem_list3 *l3;
2967 struct array_cache *ac;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002968 int node;
2969
2970 node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002971
2972 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002973 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002974retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002975 batchcount = ac->batchcount;
2976 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002977 /*
2978 * If there was little recent activity on this cache, then
2979 * perform only a partial refill. Otherwise we could generate
2980 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002981 */
2982 batchcount = BATCHREFILL_LIMIT;
2983 }
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002984 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002985
Christoph Lametere498be72005-09-09 13:03:32 -07002986 BUG_ON(ac->avail > 0 || !l3);
2987 spin_lock(&l3->list_lock);
2988
Christoph Lameter3ded1752006-03-25 03:06:44 -08002989 /* See if we can refill from the shared array */
2990 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2991 goto alloc_done;
2992
Linus Torvalds1da177e2005-04-16 15:20:36 -07002993 while (batchcount > 0) {
2994 struct list_head *entry;
2995 struct slab *slabp;
2996 /* Get slab alloc is to come from. */
2997 entry = l3->slabs_partial.next;
2998 if (entry == &l3->slabs_partial) {
2999 l3->free_touched = 1;
3000 entry = l3->slabs_free.next;
3001 if (entry == &l3->slabs_free)
3002 goto must_grow;
3003 }
3004
3005 slabp = list_entry(entry, struct slab, list);
3006 check_slabp(cachep, slabp);
3007 check_spinlock_acquired(cachep);
Pekka Enberg714b81712007-05-06 14:49:03 -07003008
3009 /*
3010 * The slab was either on partial or free list so
3011 * there must be at least one object available for
3012 * allocation.
3013 */
3014 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3015
Linus Torvalds1da177e2005-04-16 15:20:36 -07003016 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003017 STATS_INC_ALLOCED(cachep);
3018 STATS_INC_ACTIVE(cachep);
3019 STATS_SET_HIGH(cachep);
3020
Matthew Dobson78d382d2006-02-01 03:05:47 -08003021 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07003022 node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003023 }
3024 check_slabp(cachep, slabp);
3025
3026 /* move slabp to correct slabp list: */
3027 list_del(&slabp->list);
3028 if (slabp->free == BUFCTL_END)
3029 list_add(&slabp->list, &l3->slabs_full);
3030 else
3031 list_add(&slabp->list, &l3->slabs_partial);
3032 }
3033
Andrew Mortona737b3e2006-03-22 00:08:11 -08003034must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003035 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003036alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07003037 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003038
3039 if (unlikely(!ac->avail)) {
3040 int x;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003041 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07003042
Andrew Mortona737b3e2006-03-22 00:08:11 -08003043 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003044 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003045 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003046 return NULL;
3047
Andrew Mortona737b3e2006-03-22 00:08:11 -08003048 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003049 goto retry;
3050 }
3051 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003052 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003053}
3054
Andrew Mortona737b3e2006-03-22 00:08:11 -08003055static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3056 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003057{
3058 might_sleep_if(flags & __GFP_WAIT);
3059#if DEBUG
3060 kmem_flagcheck(cachep, flags);
3061#endif
3062}
3063
3064#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003065static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3066 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003067{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003068 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003069 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003070 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003071#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003072 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003073 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003074 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003075 else
3076 check_poison_obj(cachep, objp);
3077#else
3078 check_poison_obj(cachep, objp);
3079#endif
3080 poison_obj(cachep, objp, POISON_INUSE);
3081 }
3082 if (cachep->flags & SLAB_STORE_USER)
3083 *dbg_userword(cachep, objp) = caller;
3084
3085 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003086 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3087 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3088 slab_error(cachep, "double free, or memory outside"
3089 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003090 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08003091 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3092 objp, *dbg_redzone1(cachep, objp),
3093 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003094 }
3095 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3096 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3097 }
Al Viro871751e2006-03-25 03:06:39 -08003098#ifdef CONFIG_DEBUG_SLAB_LEAK
3099 {
3100 struct slab *slabp;
3101 unsigned objnr;
3102
3103 slabp = page_get_slab(virt_to_page(objp));
3104 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3105 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3106 }
3107#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003108 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003109 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003110 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003111
3112 if (!(flags & __GFP_WAIT))
3113 ctor_flags |= SLAB_CTOR_ATOMIC;
3114
3115 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003116 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08003117#if ARCH_SLAB_MINALIGN
3118 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3119 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3120 objp, ARCH_SLAB_MINALIGN);
3121 }
3122#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003123 return objp;
3124}
3125#else
3126#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3127#endif
3128
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003129#ifdef CONFIG_FAILSLAB
3130
3131static struct failslab_attr {
3132
3133 struct fault_attr attr;
3134
3135 u32 ignore_gfp_wait;
3136#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3137 struct dentry *ignore_gfp_wait_file;
3138#endif
3139
3140} failslab = {
3141 .attr = FAULT_ATTR_INITIALIZER,
Don Mullis6b1b60f2006-12-08 02:39:53 -08003142 .ignore_gfp_wait = 1,
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003143};
3144
3145static int __init setup_failslab(char *str)
3146{
3147 return setup_fault_attr(&failslab.attr, str);
3148}
3149__setup("failslab=", setup_failslab);
3150
3151static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3152{
3153 if (cachep == &cache_cache)
3154 return 0;
3155 if (flags & __GFP_NOFAIL)
3156 return 0;
3157 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3158 return 0;
3159
3160 return should_fail(&failslab.attr, obj_size(cachep));
3161}
3162
3163#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3164
3165static int __init failslab_debugfs(void)
3166{
3167 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3168 struct dentry *dir;
3169 int err;
3170
3171 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3172 if (err)
3173 return err;
3174 dir = failslab.attr.dentries.dir;
3175
3176 failslab.ignore_gfp_wait_file =
3177 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3178 &failslab.ignore_gfp_wait);
3179
3180 if (!failslab.ignore_gfp_wait_file) {
3181 err = -ENOMEM;
3182 debugfs_remove(failslab.ignore_gfp_wait_file);
3183 cleanup_fault_attr_dentries(&failslab.attr);
3184 }
3185
3186 return err;
3187}
3188
3189late_initcall(failslab_debugfs);
3190
3191#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3192
3193#else /* CONFIG_FAILSLAB */
3194
3195static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3196{
3197 return 0;
3198}
3199
3200#endif /* CONFIG_FAILSLAB */
3201
Pekka Enberg343e0d72006-02-01 03:05:50 -08003202static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003203{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003204 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003205 struct array_cache *ac;
3206
Alok N Kataria5c382302005-09-27 21:45:46 -07003207 check_irq_off();
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003208
3209 if (should_failslab(cachep, flags))
3210 return NULL;
3211
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003212 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003213 if (likely(ac->avail)) {
3214 STATS_INC_ALLOCHIT(cachep);
3215 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003216 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003217 } else {
3218 STATS_INC_ALLOCMISS(cachep);
3219 objp = cache_alloc_refill(cachep, flags);
3220 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003221 return objp;
3222}
3223
Christoph Lametere498be72005-09-09 13:03:32 -07003224#ifdef CONFIG_NUMA
3225/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003226 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003227 *
3228 * If we are in_interrupt, then process context, including cpusets and
3229 * mempolicy, may not apply and should not be used for allocation policy.
3230 */
3231static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3232{
3233 int nid_alloc, nid_here;
3234
Christoph Lameter765c4502006-09-27 01:50:08 -07003235 if (in_interrupt() || (flags & __GFP_THISNODE))
Paul Jacksonc61afb12006-03-24 03:16:08 -08003236 return NULL;
3237 nid_alloc = nid_here = numa_node_id();
3238 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3239 nid_alloc = cpuset_mem_spread_node();
3240 else if (current->mempolicy)
3241 nid_alloc = slab_node(current->mempolicy);
3242 if (nid_alloc != nid_here)
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003243 return ____cache_alloc_node(cachep, flags, nid_alloc);
Paul Jacksonc61afb12006-03-24 03:16:08 -08003244 return NULL;
3245}
3246
3247/*
Christoph Lameter765c4502006-09-27 01:50:08 -07003248 * Fallback function if there was no memory available and no objects on a
Christoph Lameter3c517a62006-12-06 20:33:29 -08003249 * certain node and fall back is permitted. First we scan all the
3250 * available nodelists for available objects. If that fails then we
3251 * perform an allocation without specifying a node. This allows the page
3252 * allocator to do its reclaim / fallback magic. We then insert the
3253 * slab into the proper nodelist and then allocate from it.
Christoph Lameter765c4502006-09-27 01:50:08 -07003254 */
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003255static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
Christoph Lameter765c4502006-09-27 01:50:08 -07003256{
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003257 struct zonelist *zonelist;
3258 gfp_t local_flags;
Christoph Lameter765c4502006-09-27 01:50:08 -07003259 struct zone **z;
3260 void *obj = NULL;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003261 int nid;
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003262
3263 if (flags & __GFP_THISNODE)
3264 return NULL;
3265
3266 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3267 ->node_zonelists[gfp_zone(flags)];
3268 local_flags = (flags & GFP_LEVEL_MASK);
Christoph Lameter765c4502006-09-27 01:50:08 -07003269
Christoph Lameter3c517a62006-12-06 20:33:29 -08003270retry:
3271 /*
3272 * Look through allowed nodes for objects available
3273 * from existing per node queues.
3274 */
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003275 for (z = zonelist->zones; *z && !obj; z++) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003276 nid = zone_to_nid(*z);
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003277
Paul Jackson02a0e532006-12-13 00:34:25 -08003278 if (cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lameter3c517a62006-12-06 20:33:29 -08003279 cache->nodelists[nid] &&
3280 cache->nodelists[nid]->free_objects)
3281 obj = ____cache_alloc_node(cache,
3282 flags | GFP_THISNODE, nid);
3283 }
3284
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003285 if (!obj && !(flags & __GFP_NO_GROW)) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003286 /*
3287 * This allocation will be performed within the constraints
3288 * of the current cpuset / memory policy requirements.
3289 * We may trigger various forms of reclaim on the allowed
3290 * set and go into memory reserves if necessary.
3291 */
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003292 if (local_flags & __GFP_WAIT)
3293 local_irq_enable();
3294 kmem_flagcheck(cache, flags);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003295 obj = kmem_getpages(cache, flags, -1);
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003296 if (local_flags & __GFP_WAIT)
3297 local_irq_disable();
Christoph Lameter3c517a62006-12-06 20:33:29 -08003298 if (obj) {
3299 /*
3300 * Insert into the appropriate per node queues
3301 */
3302 nid = page_to_nid(virt_to_page(obj));
3303 if (cache_grow(cache, flags, nid, obj)) {
3304 obj = ____cache_alloc_node(cache,
3305 flags | GFP_THISNODE, nid);
3306 if (!obj)
3307 /*
3308 * Another processor may allocate the
3309 * objects in the slab since we are
3310 * not holding any locks.
3311 */
3312 goto retry;
3313 } else {
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003314 /* cache_grow already freed obj */
Christoph Lameter3c517a62006-12-06 20:33:29 -08003315 obj = NULL;
3316 }
3317 }
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003318 }
Christoph Lameter765c4502006-09-27 01:50:08 -07003319 return obj;
3320}
3321
3322/*
Christoph Lametere498be72005-09-09 13:03:32 -07003323 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003324 */
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003325static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003326 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003327{
3328 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003329 struct slab *slabp;
3330 struct kmem_list3 *l3;
3331 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003332 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003333
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003334 l3 = cachep->nodelists[nodeid];
3335 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003336
Andrew Mortona737b3e2006-03-22 00:08:11 -08003337retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003338 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003339 spin_lock(&l3->list_lock);
3340 entry = l3->slabs_partial.next;
3341 if (entry == &l3->slabs_partial) {
3342 l3->free_touched = 1;
3343 entry = l3->slabs_free.next;
3344 if (entry == &l3->slabs_free)
3345 goto must_grow;
3346 }
Christoph Lametere498be72005-09-09 13:03:32 -07003347
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003348 slabp = list_entry(entry, struct slab, list);
3349 check_spinlock_acquired_node(cachep, nodeid);
3350 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003351
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003352 STATS_INC_NODEALLOCS(cachep);
3353 STATS_INC_ACTIVE(cachep);
3354 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003355
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003356 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003357
Matthew Dobson78d382d2006-02-01 03:05:47 -08003358 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003359 check_slabp(cachep, slabp);
3360 l3->free_objects--;
3361 /* move slabp to correct slabp list: */
3362 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003363
Andrew Mortona737b3e2006-03-22 00:08:11 -08003364 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003365 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003366 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003367 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003368
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003369 spin_unlock(&l3->list_lock);
3370 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003371
Andrew Mortona737b3e2006-03-22 00:08:11 -08003372must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003373 spin_unlock(&l3->list_lock);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003374 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
Christoph Lameter765c4502006-09-27 01:50:08 -07003375 if (x)
3376 goto retry;
Christoph Lametere498be72005-09-09 13:03:32 -07003377
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003378 return fallback_alloc(cachep, flags);
Christoph Lameter765c4502006-09-27 01:50:08 -07003379
Andrew Mortona737b3e2006-03-22 00:08:11 -08003380done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003381 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003382}
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003383
3384/**
3385 * kmem_cache_alloc_node - Allocate an object on the specified node
3386 * @cachep: The cache to allocate from.
3387 * @flags: See kmalloc().
3388 * @nodeid: node number of the target node.
3389 * @caller: return address of caller, used for debug information
3390 *
3391 * Identical to kmem_cache_alloc but it will allocate memory on the given
3392 * node, which can improve the performance for cpu bound structures.
3393 *
3394 * Fallback to other node is possible if __GFP_THISNODE is not set.
3395 */
3396static __always_inline void *
3397__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3398 void *caller)
3399{
3400 unsigned long save_flags;
3401 void *ptr;
3402
3403 cache_alloc_debugcheck_before(cachep, flags);
3404 local_irq_save(save_flags);
3405
3406 if (unlikely(nodeid == -1))
3407 nodeid = numa_node_id();
3408
3409 if (unlikely(!cachep->nodelists[nodeid])) {
3410 /* Node not bootstrapped yet */
3411 ptr = fallback_alloc(cachep, flags);
3412 goto out;
3413 }
3414
3415 if (nodeid == numa_node_id()) {
3416 /*
3417 * Use the locally cached objects if possible.
3418 * However ____cache_alloc does not allow fallback
3419 * to other nodes. It may fail while we still have
3420 * objects on other nodes available.
3421 */
3422 ptr = ____cache_alloc(cachep, flags);
3423 if (ptr)
3424 goto out;
3425 }
3426 /* ___cache_alloc_node can fall back to other nodes */
3427 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3428 out:
3429 local_irq_restore(save_flags);
3430 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3431
3432 return ptr;
3433}
3434
3435static __always_inline void *
3436__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3437{
3438 void *objp;
3439
3440 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3441 objp = alternate_node_alloc(cache, flags);
3442 if (objp)
3443 goto out;
3444 }
3445 objp = ____cache_alloc(cache, flags);
3446
3447 /*
3448 * We may just have run out of memory on the local node.
3449 * ____cache_alloc_node() knows how to locate memory on other nodes
3450 */
3451 if (!objp)
3452 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3453
3454 out:
3455 return objp;
3456}
3457#else
3458
3459static __always_inline void *
3460__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3461{
3462 return ____cache_alloc(cachep, flags);
3463}
3464
3465#endif /* CONFIG_NUMA */
3466
3467static __always_inline void *
3468__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3469{
3470 unsigned long save_flags;
3471 void *objp;
3472
3473 cache_alloc_debugcheck_before(cachep, flags);
3474 local_irq_save(save_flags);
3475 objp = __do_cache_alloc(cachep, flags);
3476 local_irq_restore(save_flags);
3477 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3478 prefetchw(objp);
3479
3480 return objp;
3481}
Christoph Lametere498be72005-09-09 13:03:32 -07003482
3483/*
3484 * Caller needs to acquire correct kmem_list's list_lock
3485 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003486static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003487 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003488{
3489 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003490 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003491
3492 for (i = 0; i < nr_objects; i++) {
3493 void *objp = objpp[i];
3494 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003495
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003496 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003497 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003499 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003500 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003501 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003502 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003503 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003504 check_slabp(cachep, slabp);
3505
3506 /* fixup slab chains */
3507 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003508 if (l3->free_objects > l3->free_limit) {
3509 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003510 /* No need to drop any previously held
3511 * lock here, even if we have a off-slab slab
3512 * descriptor it is guaranteed to come from
3513 * a different cache, refer to comments before
3514 * alloc_slabmgmt.
3515 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003516 slab_destroy(cachep, slabp);
3517 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003518 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003519 }
3520 } else {
3521 /* Unconditionally move a slab to the end of the
3522 * partial list on free - maximum time for the
3523 * other objects to be freed, too.
3524 */
Christoph Lametere498be72005-09-09 13:03:32 -07003525 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526 }
3527 }
3528}
3529
Pekka Enberg343e0d72006-02-01 03:05:50 -08003530static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003531{
3532 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003533 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003534 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535
3536 batchcount = ac->batchcount;
3537#if DEBUG
3538 BUG_ON(!batchcount || batchcount > ac->avail);
3539#endif
3540 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003541 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003542 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003543 if (l3->shared) {
3544 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003545 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003546 if (max) {
3547 if (batchcount > max)
3548 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003549 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003550 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551 shared_array->avail += batchcount;
3552 goto free_done;
3553 }
3554 }
3555
Christoph Lameterff694162005-09-22 21:44:02 -07003556 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003557free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003558#if STATS
3559 {
3560 int i = 0;
3561 struct list_head *p;
3562
Christoph Lametere498be72005-09-09 13:03:32 -07003563 p = l3->slabs_free.next;
3564 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003565 struct slab *slabp;
3566
3567 slabp = list_entry(p, struct slab, list);
3568 BUG_ON(slabp->inuse);
3569
3570 i++;
3571 p = p->next;
3572 }
3573 STATS_SET_FREEABLE(cachep, i);
3574 }
3575#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003576 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003577 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003578 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003579}
3580
3581/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003582 * Release an obj back to its cache. If the obj has a constructed state, it must
3583 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003584 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003585static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003587 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003588
3589 check_irq_off();
3590 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3591
Siddha, Suresh B62918a02007-05-02 19:27:18 +02003592 if (use_alien_caches && cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003593 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003594
Linus Torvalds1da177e2005-04-16 15:20:36 -07003595 if (likely(ac->avail < ac->limit)) {
3596 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003597 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003598 return;
3599 } else {
3600 STATS_INC_FREEMISS(cachep);
3601 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003602 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603 }
3604}
3605
3606/**
3607 * kmem_cache_alloc - Allocate an object
3608 * @cachep: The cache to allocate from.
3609 * @flags: See kmalloc().
3610 *
3611 * Allocate an object from this cache. The flags are only relevant
3612 * if the cache has no available objects.
3613 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003614void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003615{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003616 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617}
3618EXPORT_SYMBOL(kmem_cache_alloc);
3619
3620/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003621 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003622 * @cache: The cache to allocate from.
3623 * @flags: See kmalloc().
3624 *
3625 * Allocate an object from this cache and set the allocated memory to zero.
3626 * The flags are only relevant if the cache has no available objects.
3627 */
3628void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3629{
3630 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3631 if (ret)
3632 memset(ret, 0, obj_size(cache));
3633 return ret;
3634}
3635EXPORT_SYMBOL(kmem_cache_zalloc);
3636
3637/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003638 * kmem_ptr_validate - check if an untrusted pointer might
3639 * be a slab entry.
3640 * @cachep: the cache we're checking against
3641 * @ptr: pointer to validate
3642 *
3643 * This verifies that the untrusted pointer looks sane:
3644 * it is _not_ a guarantee that the pointer is actually
3645 * part of the slab cache in question, but it at least
3646 * validates that the pointer can be dereferenced and
3647 * looks half-way sane.
3648 *
3649 * Currently only used for dentry validation.
3650 */
Christoph Lameterb7f869a22006-12-22 01:06:44 -08003651int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003652{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003653 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003654 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003655 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003656 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003657 struct page *page;
3658
3659 if (unlikely(addr < min_addr))
3660 goto out;
3661 if (unlikely(addr > (unsigned long)high_memory - size))
3662 goto out;
3663 if (unlikely(addr & align_mask))
3664 goto out;
3665 if (unlikely(!kern_addr_valid(addr)))
3666 goto out;
3667 if (unlikely(!kern_addr_valid(addr + size - 1)))
3668 goto out;
3669 page = virt_to_page(ptr);
3670 if (unlikely(!PageSlab(page)))
3671 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003672 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003673 goto out;
3674 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003675out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003676 return 0;
3677}
3678
3679#ifdef CONFIG_NUMA
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003680void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3681{
3682 return __cache_alloc_node(cachep, flags, nodeid,
3683 __builtin_return_address(0));
3684}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003685EXPORT_SYMBOL(kmem_cache_alloc_node);
3686
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003687static __always_inline void *
3688__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003689{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003690 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003691
3692 cachep = kmem_find_general_cachep(size, flags);
3693 if (unlikely(cachep == NULL))
3694 return NULL;
3695 return kmem_cache_alloc_node(cachep, flags, node);
3696}
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003697
3698#ifdef CONFIG_DEBUG_SLAB
3699void *__kmalloc_node(size_t size, gfp_t flags, int node)
3700{
3701 return __do_kmalloc_node(size, flags, node,
3702 __builtin_return_address(0));
3703}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003704EXPORT_SYMBOL(__kmalloc_node);
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003705
3706void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3707 int node, void *caller)
3708{
3709 return __do_kmalloc_node(size, flags, node, caller);
3710}
3711EXPORT_SYMBOL(__kmalloc_node_track_caller);
3712#else
3713void *__kmalloc_node(size_t size, gfp_t flags, int node)
3714{
3715 return __do_kmalloc_node(size, flags, node, NULL);
3716}
3717EXPORT_SYMBOL(__kmalloc_node);
3718#endif /* CONFIG_DEBUG_SLAB */
3719#endif /* CONFIG_NUMA */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003720
3721/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003722 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003723 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003724 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003725 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003726 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003727static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3728 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003729{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003730 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003731
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003732 /* If you want to save a few bytes .text space: replace
3733 * __ with kmem_.
3734 * Then kmalloc uses the uninlined functions instead of the inline
3735 * functions.
3736 */
3737 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003738 if (unlikely(cachep == NULL))
3739 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003740 return __cache_alloc(cachep, flags, caller);
3741}
3742
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003743
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003744#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003745void *__kmalloc(size_t size, gfp_t flags)
3746{
Al Viro871751e2006-03-25 03:06:39 -08003747 return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003748}
3749EXPORT_SYMBOL(__kmalloc);
3750
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003751void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3752{
3753 return __do_kmalloc(size, flags, caller);
3754}
3755EXPORT_SYMBOL(__kmalloc_track_caller);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003756
3757#else
3758void *__kmalloc(size_t size, gfp_t flags)
3759{
3760 return __do_kmalloc(size, flags, NULL);
3761}
3762EXPORT_SYMBOL(__kmalloc);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003763#endif
3764
Linus Torvalds1da177e2005-04-16 15:20:36 -07003765/**
Pekka Enbergfd76bab2007-05-06 14:48:40 -07003766 * krealloc - reallocate memory. The contents will remain unchanged.
3767 *
3768 * @p: object to reallocate memory for.
3769 * @new_size: how many bytes of memory are required.
3770 * @flags: the type of memory to allocate.
3771 *
3772 * The contents of the object pointed to are preserved up to the
3773 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3774 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3775 * %NULL pointer, the object pointed to is freed.
3776 */
3777void *krealloc(const void *p, size_t new_size, gfp_t flags)
3778{
3779 struct kmem_cache *cache, *new_cache;
3780 void *ret;
3781
3782 if (unlikely(!p))
3783 return kmalloc_track_caller(new_size, flags);
3784
3785 if (unlikely(!new_size)) {
3786 kfree(p);
3787 return NULL;
3788 }
3789
3790 cache = virt_to_cache(p);
3791 new_cache = __find_general_cachep(new_size, flags);
3792
3793 /*
3794 * If new size fits in the current cache, bail out.
3795 */
3796 if (likely(cache == new_cache))
3797 return (void *)p;
3798
3799 /*
3800 * We are on the slow-path here so do not use __cache_alloc
3801 * because it bloats kernel text.
3802 */
3803 ret = kmalloc_track_caller(new_size, flags);
3804 if (ret) {
3805 memcpy(ret, p, min(new_size, ksize(p)));
3806 kfree(p);
3807 }
3808 return ret;
3809}
3810EXPORT_SYMBOL(krealloc);
3811
3812/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003813 * kmem_cache_free - Deallocate an object
3814 * @cachep: The cache the allocation was from.
3815 * @objp: The previously allocated object.
3816 *
3817 * Free an object which was previously allocated from this
3818 * cache.
3819 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003820void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003821{
3822 unsigned long flags;
3823
Pekka Enbergddc2e812006-06-23 02:03:40 -07003824 BUG_ON(virt_to_cache(objp) != cachep);
3825
Linus Torvalds1da177e2005-04-16 15:20:36 -07003826 local_irq_save(flags);
Ingo Molnar898552c2007-02-10 01:44:57 -08003827 debug_check_no_locks_freed(objp, obj_size(cachep));
Ingo Molnar873623d2006-07-13 14:44:38 +02003828 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003829 local_irq_restore(flags);
3830}
3831EXPORT_SYMBOL(kmem_cache_free);
3832
3833/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003834 * kfree - free previously allocated memory
3835 * @objp: pointer returned by kmalloc.
3836 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003837 * If @objp is NULL, no operation is performed.
3838 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003839 * Don't free memory not originally allocated by kmalloc()
3840 * or you will run into trouble.
3841 */
3842void kfree(const void *objp)
3843{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003844 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003845 unsigned long flags;
3846
3847 if (unlikely(!objp))
3848 return;
3849 local_irq_save(flags);
3850 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003851 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003852 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003853 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003854 local_irq_restore(flags);
3855}
3856EXPORT_SYMBOL(kfree);
3857
Pekka Enberg343e0d72006-02-01 03:05:50 -08003858unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003859{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003860 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003861}
3862EXPORT_SYMBOL(kmem_cache_size);
3863
Pekka Enberg343e0d72006-02-01 03:05:50 -08003864const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003865{
3866 return cachep->name;
3867}
3868EXPORT_SYMBOL_GPL(kmem_cache_name);
3869
Christoph Lametere498be72005-09-09 13:03:32 -07003870/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003871 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003872 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003873static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003874{
3875 int node;
3876 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003877 struct array_cache *new_shared;
Paul Menage3395ee02006-12-06 20:32:16 -08003878 struct array_cache **new_alien = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003879
3880 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003881
Paul Menage3395ee02006-12-06 20:32:16 -08003882 if (use_alien_caches) {
3883 new_alien = alloc_alien_cache(node, cachep->limit);
3884 if (!new_alien)
3885 goto fail;
3886 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003887
Eric Dumazet63109842007-05-06 14:49:28 -07003888 new_shared = NULL;
3889 if (cachep->shared) {
3890 new_shared = alloc_arraycache(node,
Christoph Lameter0718dc22006-03-25 03:06:47 -08003891 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003892 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07003893 if (!new_shared) {
3894 free_alien_cache(new_alien);
3895 goto fail;
3896 }
Christoph Lameter0718dc22006-03-25 03:06:47 -08003897 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003898
Andrew Mortona737b3e2006-03-22 00:08:11 -08003899 l3 = cachep->nodelists[node];
3900 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003901 struct array_cache *shared = l3->shared;
3902
Christoph Lametere498be72005-09-09 13:03:32 -07003903 spin_lock_irq(&l3->list_lock);
3904
Christoph Lametercafeb022006-03-25 03:06:46 -08003905 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003906 free_block(cachep, shared->entry,
3907 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003908
Christoph Lametercafeb022006-03-25 03:06:46 -08003909 l3->shared = new_shared;
3910 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003911 l3->alien = new_alien;
3912 new_alien = NULL;
3913 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003914 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003915 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003916 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003917 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003918 free_alien_cache(new_alien);
3919 continue;
3920 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003921 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003922 if (!l3) {
3923 free_alien_cache(new_alien);
3924 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003925 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003926 }
Christoph Lametere498be72005-09-09 13:03:32 -07003927
3928 kmem_list3_init(l3);
3929 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003930 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003931 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003932 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003933 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003934 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003935 cachep->nodelists[node] = l3;
3936 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003937 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003938
Andrew Mortona737b3e2006-03-22 00:08:11 -08003939fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003940 if (!cachep->next.next) {
3941 /* Cache is not active yet. Roll back what we did */
3942 node--;
3943 while (node >= 0) {
3944 if (cachep->nodelists[node]) {
3945 l3 = cachep->nodelists[node];
3946
3947 kfree(l3->shared);
3948 free_alien_cache(l3->alien);
3949 kfree(l3);
3950 cachep->nodelists[node] = NULL;
3951 }
3952 node--;
3953 }
3954 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003955 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003956}
3957
Linus Torvalds1da177e2005-04-16 15:20:36 -07003958struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003959 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003960 struct array_cache *new[NR_CPUS];
3961};
3962
3963static void do_ccupdate_local(void *info)
3964{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003965 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003966 struct array_cache *old;
3967
3968 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003969 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003970
Linus Torvalds1da177e2005-04-16 15:20:36 -07003971 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3972 new->new[smp_processor_id()] = old;
3973}
3974
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003975/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003976static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3977 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003978{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003979 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003980 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003981
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003982 new = kzalloc(sizeof(*new), GFP_KERNEL);
3983 if (!new)
3984 return -ENOMEM;
3985
Christoph Lametere498be72005-09-09 13:03:32 -07003986 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003987 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003988 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003989 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003990 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003991 kfree(new->new[i]);
3992 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003993 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003994 }
3995 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003996 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003997
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003998 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003999
Linus Torvalds1da177e2005-04-16 15:20:36 -07004000 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004001 cachep->batchcount = batchcount;
4002 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07004003 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004
Christoph Lametere498be72005-09-09 13:03:32 -07004005 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004006 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07004007 if (!ccold)
4008 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07004009 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07004010 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07004011 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004012 kfree(ccold);
4013 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004014 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004015 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004016}
4017
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08004018/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004019static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004020{
4021 int err;
4022 int limit, shared;
4023
Andrew Mortona737b3e2006-03-22 00:08:11 -08004024 /*
4025 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004026 * - create a LIFO ordering, i.e. return objects that are cache-warm
4027 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08004028 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07004029 * bufctl chains: array operations are cheaper.
4030 * The numbers are guessed, we should auto-tune as described by
4031 * Bonwick.
4032 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004033 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004034 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004035 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004036 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004037 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004038 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004039 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004040 limit = 54;
4041 else
4042 limit = 120;
4043
Andrew Mortona737b3e2006-03-22 00:08:11 -08004044 /*
4045 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07004046 * allocation behaviour: Most allocs on one cpu, most free operations
4047 * on another cpu. For these cases, an efficient object passing between
4048 * cpus is necessary. This is provided by a shared array. The array
4049 * replaces Bonwick's magazine layer.
4050 * On uniprocessor, it's functionally equivalent (but less efficient)
4051 * to a larger limit. Thus disabled by default.
4052 */
4053 shared = 0;
Eric Dumazet364fbb22007-05-06 14:49:27 -07004054 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004055 shared = 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004056
4057#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08004058 /*
4059 * With debugging enabled, large batchcount lead to excessively long
4060 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07004061 */
4062 if (limit > 32)
4063 limit = 32;
4064#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004065 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004066 if (err)
4067 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004068 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004069 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004070}
4071
Christoph Lameter1b552532006-03-22 00:09:07 -08004072/*
4073 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004074 * necessary. Note that the l3 listlock also protects the array_cache
4075 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08004076 */
4077void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4078 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004079{
4080 int tofree;
4081
Christoph Lameter1b552532006-03-22 00:09:07 -08004082 if (!ac || !ac->avail)
4083 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004084 if (ac->touched && !force) {
4085 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004086 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08004087 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004088 if (ac->avail) {
4089 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4090 if (tofree > ac->avail)
4091 tofree = (ac->avail + 1) / 2;
4092 free_block(cachep, ac->entry, tofree, node);
4093 ac->avail -= tofree;
4094 memmove(ac->entry, &(ac->entry[tofree]),
4095 sizeof(void *) * ac->avail);
4096 }
Christoph Lameter1b552532006-03-22 00:09:07 -08004097 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004098 }
4099}
4100
4101/**
4102 * cache_reap - Reclaim memory from caches.
Randy Dunlap05fb6bf2007-02-28 20:12:13 -08004103 * @w: work descriptor
Linus Torvalds1da177e2005-04-16 15:20:36 -07004104 *
4105 * Called from workqueue/eventd every few seconds.
4106 * Purpose:
4107 * - clear the per-cpu caches for this CPU.
4108 * - return freeable pages to the main free memory pool.
4109 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08004110 * If we cannot acquire the cache chain mutex then just give up - we'll try
4111 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004112 */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004113static void cache_reap(struct work_struct *w)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004114{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004115 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07004116 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08004117 int node = numa_node_id();
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004118 struct delayed_work *work =
4119 container_of(w, struct delayed_work, work);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004121 if (!mutex_trylock(&cache_chain_mutex))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004122 /* Give up. Setup the next iteration. */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004123 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004124
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004125 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004126 check_irq_on();
4127
Christoph Lameter35386e32006-03-22 00:09:05 -08004128 /*
4129 * We only take the l3 lock if absolutely necessary and we
4130 * have established with reasonable certainty that
4131 * we can do some work if the lock was obtained.
4132 */
Christoph Lameteraab22072006-03-22 00:09:06 -08004133 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08004134
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004135 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004136
Christoph Lameteraab22072006-03-22 00:09:06 -08004137 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004138
Christoph Lameter35386e32006-03-22 00:09:05 -08004139 /*
4140 * These are racy checks but it does not matter
4141 * if we skip one check or scan twice.
4142 */
Christoph Lametere498be72005-09-09 13:03:32 -07004143 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08004144 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004145
Christoph Lametere498be72005-09-09 13:03:32 -07004146 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004147
Christoph Lameteraab22072006-03-22 00:09:06 -08004148 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004149
Christoph Lametered11d9e2006-06-30 01:55:45 -07004150 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07004151 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07004152 else {
4153 int freed;
4154
4155 freed = drain_freelist(searchp, l3, (l3->free_limit +
4156 5 * searchp->num - 1) / (5 * searchp->num));
4157 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004158 }
Christoph Lameter35386e32006-03-22 00:09:05 -08004159next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004160 cond_resched();
4161 }
4162 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004163 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004164 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07004165 refresh_cpu_vm_stats(smp_processor_id());
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004166out:
Andrew Mortona737b3e2006-03-22 00:08:11 -08004167 /* Set up the next iteration */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004168 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004169}
4170
4171#ifdef CONFIG_PROC_FS
4172
Pekka Enberg85289f92006-01-08 01:00:36 -08004173static void print_slabinfo_header(struct seq_file *m)
4174{
4175 /*
4176 * Output format version, so at least we can change it
4177 * without _too_ many complaints.
4178 */
4179#if STATS
4180 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4181#else
4182 seq_puts(m, "slabinfo - version: 2.1\n");
4183#endif
4184 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4185 "<objperslab> <pagesperslab>");
4186 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4187 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4188#if STATS
4189 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004190 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08004191 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4192#endif
4193 seq_putc(m, '\n');
4194}
4195
Linus Torvalds1da177e2005-04-16 15:20:36 -07004196static void *s_start(struct seq_file *m, loff_t *pos)
4197{
4198 loff_t n = *pos;
4199 struct list_head *p;
4200
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004201 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08004202 if (!n)
4203 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004204 p = cache_chain.next;
4205 while (n--) {
4206 p = p->next;
4207 if (p == &cache_chain)
4208 return NULL;
4209 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08004210 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004211}
4212
4213static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4214{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004215 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004216 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08004217 return cachep->next.next == &cache_chain ?
4218 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004219}
4220
4221static void s_stop(struct seq_file *m, void *p)
4222{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004223 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004224}
4225
4226static int s_show(struct seq_file *m, void *p)
4227{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004228 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004229 struct slab *slabp;
4230 unsigned long active_objs;
4231 unsigned long num_objs;
4232 unsigned long active_slabs = 0;
4233 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004234 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004235 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07004236 int node;
4237 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004238
Linus Torvalds1da177e2005-04-16 15:20:36 -07004239 active_objs = 0;
4240 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004241 for_each_online_node(node) {
4242 l3 = cachep->nodelists[node];
4243 if (!l3)
4244 continue;
4245
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004246 check_irq_on();
4247 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07004248
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004249 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004250 if (slabp->inuse != cachep->num && !error)
4251 error = "slabs_full accounting error";
4252 active_objs += cachep->num;
4253 active_slabs++;
4254 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004255 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004256 if (slabp->inuse == cachep->num && !error)
4257 error = "slabs_partial inuse accounting error";
4258 if (!slabp->inuse && !error)
4259 error = "slabs_partial/inuse accounting error";
4260 active_objs += slabp->inuse;
4261 active_slabs++;
4262 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004263 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004264 if (slabp->inuse && !error)
4265 error = "slabs_free/inuse accounting error";
4266 num_slabs++;
4267 }
4268 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08004269 if (l3->shared)
4270 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07004271
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004272 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004273 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004274 num_slabs += active_slabs;
4275 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07004276 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277 error = "free_objects accounting error";
4278
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004279 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004280 if (error)
4281 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4282
4283 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004284 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004285 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004286 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004287 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004288 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004289 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004290#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004291 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004292 unsigned long high = cachep->high_mark;
4293 unsigned long allocs = cachep->num_allocations;
4294 unsigned long grown = cachep->grown;
4295 unsigned long reaped = cachep->reaped;
4296 unsigned long errors = cachep->errors;
4297 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004298 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004299 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004300 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004301
Christoph Lametere498be72005-09-09 13:03:32 -07004302 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004303 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004304 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004305 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306 }
4307 /* cpu stats */
4308 {
4309 unsigned long allochit = atomic_read(&cachep->allochit);
4310 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4311 unsigned long freehit = atomic_read(&cachep->freehit);
4312 unsigned long freemiss = atomic_read(&cachep->freemiss);
4313
4314 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004315 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004316 }
4317#endif
4318 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004319 return 0;
4320}
4321
4322/*
4323 * slabinfo_op - iterator that generates /proc/slabinfo
4324 *
4325 * Output layout:
4326 * cache-name
4327 * num-active-objs
4328 * total-objs
4329 * object size
4330 * num-active-slabs
4331 * total-slabs
4332 * num-pages-per-slab
4333 * + further values on SMP and with statistics enabled
4334 */
4335
Helge Deller15ad7cd2006-12-06 20:40:36 -08004336const struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004337 .start = s_start,
4338 .next = s_next,
4339 .stop = s_stop,
4340 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004341};
4342
4343#define MAX_SLABINFO_WRITE 128
4344/**
4345 * slabinfo_write - Tuning for the slab allocator
4346 * @file: unused
4347 * @buffer: user buffer
4348 * @count: data length
4349 * @ppos: unused
4350 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004351ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4352 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004353{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004354 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004355 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004356 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004357
Linus Torvalds1da177e2005-04-16 15:20:36 -07004358 if (count > MAX_SLABINFO_WRITE)
4359 return -EINVAL;
4360 if (copy_from_user(&kbuf, buffer, count))
4361 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004362 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004363
4364 tmp = strchr(kbuf, ' ');
4365 if (!tmp)
4366 return -EINVAL;
4367 *tmp = '\0';
4368 tmp++;
4369 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4370 return -EINVAL;
4371
4372 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004373 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004374 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004375 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004376 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004377 if (limit < 1 || batchcount < 1 ||
4378 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004379 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004380 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004381 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004382 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004383 }
4384 break;
4385 }
4386 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004387 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004388 if (res >= 0)
4389 res = count;
4390 return res;
4391}
Al Viro871751e2006-03-25 03:06:39 -08004392
4393#ifdef CONFIG_DEBUG_SLAB_LEAK
4394
4395static void *leaks_start(struct seq_file *m, loff_t *pos)
4396{
4397 loff_t n = *pos;
4398 struct list_head *p;
4399
4400 mutex_lock(&cache_chain_mutex);
4401 p = cache_chain.next;
4402 while (n--) {
4403 p = p->next;
4404 if (p == &cache_chain)
4405 return NULL;
4406 }
4407 return list_entry(p, struct kmem_cache, next);
4408}
4409
4410static inline int add_caller(unsigned long *n, unsigned long v)
4411{
4412 unsigned long *p;
4413 int l;
4414 if (!v)
4415 return 1;
4416 l = n[1];
4417 p = n + 2;
4418 while (l) {
4419 int i = l/2;
4420 unsigned long *q = p + 2 * i;
4421 if (*q == v) {
4422 q[1]++;
4423 return 1;
4424 }
4425 if (*q > v) {
4426 l = i;
4427 } else {
4428 p = q + 2;
4429 l -= i + 1;
4430 }
4431 }
4432 if (++n[1] == n[0])
4433 return 0;
4434 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4435 p[0] = v;
4436 p[1] = 1;
4437 return 1;
4438}
4439
4440static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4441{
4442 void *p;
4443 int i;
4444 if (n[0] == n[1])
4445 return;
4446 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4447 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4448 continue;
4449 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4450 return;
4451 }
4452}
4453
4454static void show_symbol(struct seq_file *m, unsigned long address)
4455{
4456#ifdef CONFIG_KALLSYMS
4457 char *modname;
4458 const char *name;
4459 unsigned long offset, size;
4460 char namebuf[KSYM_NAME_LEN+1];
4461
4462 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4463
4464 if (name) {
4465 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4466 if (modname)
4467 seq_printf(m, " [%s]", modname);
4468 return;
4469 }
4470#endif
4471 seq_printf(m, "%p", (void *)address);
4472}
4473
4474static int leaks_show(struct seq_file *m, void *p)
4475{
4476 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004477 struct slab *slabp;
4478 struct kmem_list3 *l3;
4479 const char *name;
4480 unsigned long *n = m->private;
4481 int node;
4482 int i;
4483
4484 if (!(cachep->flags & SLAB_STORE_USER))
4485 return 0;
4486 if (!(cachep->flags & SLAB_RED_ZONE))
4487 return 0;
4488
4489 /* OK, we can do it */
4490
4491 n[1] = 0;
4492
4493 for_each_online_node(node) {
4494 l3 = cachep->nodelists[node];
4495 if (!l3)
4496 continue;
4497
4498 check_irq_on();
4499 spin_lock_irq(&l3->list_lock);
4500
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004501 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004502 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004503 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004504 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004505 spin_unlock_irq(&l3->list_lock);
4506 }
4507 name = cachep->name;
4508 if (n[0] == n[1]) {
4509 /* Increase the buffer size */
4510 mutex_unlock(&cache_chain_mutex);
4511 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4512 if (!m->private) {
4513 /* Too bad, we are really out */
4514 m->private = n;
4515 mutex_lock(&cache_chain_mutex);
4516 return -ENOMEM;
4517 }
4518 *(unsigned long *)m->private = n[0] * 2;
4519 kfree(n);
4520 mutex_lock(&cache_chain_mutex);
4521 /* Now make sure this entry will be retried */
4522 m->count = m->size;
4523 return 0;
4524 }
4525 for (i = 0; i < n[1]; i++) {
4526 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4527 show_symbol(m, n[2*i+2]);
4528 seq_putc(m, '\n');
4529 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004530
Al Viro871751e2006-03-25 03:06:39 -08004531 return 0;
4532}
4533
Helge Deller15ad7cd2006-12-06 20:40:36 -08004534const struct seq_operations slabstats_op = {
Al Viro871751e2006-03-25 03:06:39 -08004535 .start = leaks_start,
4536 .next = s_next,
4537 .stop = s_stop,
4538 .show = leaks_show,
4539};
4540#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004541#endif
4542
Manfred Spraul00e145b2005-09-03 15:55:07 -07004543/**
4544 * ksize - get the actual amount of memory allocated for a given object
4545 * @objp: Pointer to the object
4546 *
4547 * kmalloc may internally round up allocations and return more memory
4548 * than requested. ksize() can be used to determine the actual amount of
4549 * memory allocated. The caller may use this additional memory, even though
4550 * a smaller amount of memory was initially specified with the kmalloc call.
4551 * The caller must guarantee that objp points to a valid object previously
4552 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4553 * must not be freed during the duration of the call.
4554 */
Pekka Enbergfd76bab2007-05-06 14:48:40 -07004555size_t ksize(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004556{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004557 if (unlikely(objp == NULL))
4558 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004559
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08004560 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004561}