blob: b6e96213e92477904665c2bdce933ead7ba9c48f [file] [log] [blame]
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001/*
2 * PHY functions
3 *
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03004 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
Nick Kossifidis33a31822009-02-09 06:00:34 +02005 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
Nick Kossifidisc6e387a2008-08-29 22:45:39 +03006 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02007 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
Jiri Slabyfa1c1142007-08-12 17:33:16 +02008 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23#include <linux/delay.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090024#include <linux/slab.h>
Jiri Slabyfa1c1142007-08-12 17:33:16 +020025
26#include "ath5k.h"
27#include "reg.h"
28#include "base.h"
Nick Kossifidis33a31822009-02-09 06:00:34 +020029#include "rfbuffer.h"
30#include "rfgain.h"
Jiri Slabyfa1c1142007-08-12 17:33:16 +020031
Nick Kossifidis9320b5c2010-11-23 20:36:45 +020032
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Get the PHY Chip revision
39 */
40u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
41{
42 unsigned int i;
43 u32 srev;
44 u16 ret;
45
46 /*
47 * Set the radio chip access register
48 */
49 switch (chan) {
50 case CHANNEL_2GHZ:
51 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
52 break;
53 case CHANNEL_5GHZ:
54 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
55 break;
56 default:
57 return 0;
58 }
59
60 mdelay(2);
61
62 /* ...wait until PHY is ready and read the selected radio revision */
63 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
64
65 for (i = 0; i < 8; i++)
66 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
67
68 if (ah->ah_version == AR5K_AR5210) {
69 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
70 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
71 } else {
72 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
73 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
74 ((srev & 0x0f) << 4), 8);
75 }
76
77 /* Reset to the 5GHz mode */
78 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
79
80 return ret;
81}
82
83/*
84 * Check if a channel is supported
85 */
86bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
87{
88 /* Check if the channel is in our supported range */
89 if (flags & CHANNEL_2GHZ) {
90 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
91 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
92 return true;
93 } else if (flags & CHANNEL_5GHZ)
94 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
95 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
96 return true;
97
98 return false;
99}
100
101bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
102 struct ieee80211_channel *channel)
103{
104 u8 refclk_freq;
105
106 if ((ah->ah_radio == AR5K_RF5112) ||
107 (ah->ah_radio == AR5K_RF5413) ||
108 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
109 refclk_freq = 40;
110 else
111 refclk_freq = 32;
112
113 if ((channel->center_freq % refclk_freq != 0) &&
114 ((channel->center_freq % refclk_freq < 10) ||
115 (channel->center_freq % refclk_freq > 22)))
116 return true;
117 else
118 return false;
119}
120
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200121/*
122 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
123 */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200124static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
125 const struct ath5k_rf_reg *rf_regs,
126 u32 val, u8 reg_id, bool set)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200127{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200128 const struct ath5k_rf_reg *rfreg = NULL;
129 u8 offset, bank, num_bits, col, position;
130 u16 entry;
131 u32 mask, data, last_bit, bits_shifted, first_bit;
132 u32 *rfb;
133 s32 bits_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200134 int i;
135
136 data = 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200137 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200138
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200139 for (i = 0; i < ah->ah_rf_regs_count; i++) {
140 if (rf_regs[i].index == reg_id) {
141 rfreg = &rf_regs[i];
142 break;
143 }
144 }
145
146 if (rfb == NULL || rfreg == NULL) {
147 ATH5K_PRINTF("Rf register not found!\n");
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200148 /* should not happen */
149 return 0;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200150 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200151
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200152 bank = rfreg->bank;
153 num_bits = rfreg->field.len;
154 first_bit = rfreg->field.pos;
155 col = rfreg->field.col;
156
157 /* first_bit is an offset from bank's
158 * start. Since we have all banks on
159 * the same array, we use this offset
160 * to mark each bank's start */
161 offset = ah->ah_offset[bank];
162
163 /* Boundary check */
164 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200165 ATH5K_PRINTF("invalid values at offset %u\n", offset);
166 return 0;
167 }
168
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200169 entry = ((first_bit - 1) / 8) + offset;
170 position = (first_bit - 1) % 8;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200171
Joe Perchese9010e22008-03-07 14:21:16 -0800172 if (set)
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200173 data = ath5k_hw_bitswap(val, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200174
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200175 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
176 position = 0, entry++) {
177
178 last_bit = (position + bits_left > 8) ? 8 :
179 position + bits_left;
180
181 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
182 (col * 8);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200183
Joe Perchese9010e22008-03-07 14:21:16 -0800184 if (set) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200185 rfb[entry] &= ~mask;
186 rfb[entry] |= ((data << position) << (col * 8)) & mask;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200187 data >>= (8 - position);
188 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200189 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
190 << bits_shifted;
191 bits_shifted += last_bit - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200192 }
193
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200194 bits_left -= 8 - position;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200195 }
196
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200197 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200198
199 return data;
200}
201
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200202/**
203 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
204 *
205 * @ah: the &struct ath5k_hw
206 * @channel: the currently set channel upon reset
207 *
208 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
209 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
210 *
211 * Since delta slope is floating point we split it on its exponent and
212 * mantissa and provide these values on hw.
213 *
214 * For more infos i think this patent is related
215 * http://www.freepatentsonline.com/7184495.html
216 */
217static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
218 struct ieee80211_channel *channel)
219{
220 /* Get exponent and mantissa and set it */
221 u32 coef_scaled, coef_exp, coef_man,
222 ds_coef_exp, ds_coef_man, clock;
223
224 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
225 !(channel->hw_value & CHANNEL_OFDM));
226
227 /* Get coefficient
228 * ALGO: coef = (5 * clock / carrier_freq) / 2
229 * we scale coef by shifting clock value by 24 for
230 * better precision since we use integers */
Nick Kossifidis73a06a62010-11-23 21:48:32 +0200231 switch (ah->ah_bwmode) {
232 case AR5K_BWMODE_40MHZ:
233 clock = 40 * 2;
234 break;
235 case AR5K_BWMODE_10MHZ:
236 clock = 40 / 2;
237 break;
238 case AR5K_BWMODE_5MHZ:
239 clock = 40 / 4;
240 break;
241 default:
242 clock = 40;
243 break;
244 }
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200245 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
246
247 /* Get exponent
248 * ALGO: coef_exp = 14 - highest set bit position */
249 coef_exp = ilog2(coef_scaled);
250
251 /* Doesn't make sense if it's zero*/
252 if (!coef_scaled || !coef_exp)
253 return -EINVAL;
254
255 /* Note: we've shifted coef_scaled by 24 */
256 coef_exp = 14 - (coef_exp - 24);
257
258
259 /* Get mantissa (significant digits)
260 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
261 coef_man = coef_scaled +
262 (1 << (24 - coef_exp - 1));
263
264 /* Calculate delta slope coefficient exponent
265 * and mantissa (remove scaling) and set them on hw */
266 ds_coef_man = coef_man >> (24 - coef_exp);
267 ds_coef_exp = coef_exp - 16;
268
269 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
270 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
271 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
273
274 return 0;
275}
276
277int ath5k_hw_phy_disable(struct ath5k_hw *ah)
278{
279 /*Just a try M.F.*/
280 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
281
282 return 0;
283}
284
285
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200286/**********************\
287* RF Gain optimization *
288\**********************/
289
290/*
Bob Copelanda180a132010-08-15 13:03:12 -0400291 * This code is used to optimize RF gain on different environments
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200292 * (temperature mostly) based on feedback from a power detector.
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200293 *
294 * It's only used on RF5111 and RF5112, later RF chips seem to have
295 * auto adjustment on hw -notice they have a much smaller BANK 7 and
296 * no gain optimization ladder-.
297 *
298 * For more infos check out this patent doc
299 * http://www.freepatentsonline.com/7400691.html
300 *
301 * This paper describes power drops as seen on the receiver due to
302 * probe packets
303 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
304 * %20of%20Power%20Control.pdf
305 *
306 * And this is the MadWiFi bug entry related to the above
307 * http://madwifi-project.org/ticket/1659
308 * with various measurements and diagrams
309 *
310 * TODO: Deal with power drops due to probes by setting an apropriate
311 * tx power on the probe packets ! Make this part of the calibration process.
312 */
313
314/* Initialize ah_gain durring attach */
315int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
316{
317 /* Initialize the gain optimization values */
318 switch (ah->ah_radio) {
319 case AR5K_RF5111:
320 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
321 ah->ah_gain.g_low = 20;
322 ah->ah_gain.g_high = 35;
323 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
324 break;
325 case AR5K_RF5112:
326 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
327 ah->ah_gain.g_low = 20;
328 ah->ah_gain.g_high = 85;
329 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
330 break;
331 default:
332 return -EINVAL;
333 }
334
335 return 0;
336}
337
338/* Schedule a gain probe check on the next transmited packet.
339 * That means our next packet is going to be sent with lower
340 * tx power and a Peak to Average Power Detector (PAPD) will try
341 * to measure the gain.
342 *
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200343 * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc)
344 * just after we enable the probe so that we don't mess with
345 * standard traffic ? Maybe it's time to use sw interrupts and
346 * a probe tasklet !!!
347 */
348static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
349{
350
351 /* Skip if gain calibration is inactive or
352 * we already handle a probe request */
353 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
354 return;
355
Nick Kossifidis8f655dd2009-03-15 22:20:35 +0200356 /* Send the packet with 2dB below max power as
357 * patent doc suggest */
Nick Kossifidisa0823812009-04-30 15:55:44 -0400358 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200359 AR5K_PHY_PAPD_PROBE_TXPOWER) |
360 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
361
362 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
363
364}
365
366/* Calculate gain_F measurement correction
367 * based on the current step for RF5112 rev. 2 */
368static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200369{
370 u32 mix, step;
371 u32 *rf;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200372 const struct ath5k_gain_opt *go;
373 const struct ath5k_gain_opt_step *g_step;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200374 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200375
376 /* Only RF5112 Rev. 2 supports it */
377 if ((ah->ah_radio != AR5K_RF5112) ||
378 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
379 return 0;
380
381 go = &rfgain_opt_5112;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200382 rf_regs = rf_regs_5112a;
383 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200384
385 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200386
387 if (ah->ah_rf_banks == NULL)
388 return 0;
389
390 rf = ah->ah_rf_banks;
391 ah->ah_gain.g_f_corr = 0;
392
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200393 /* No VGA (Variable Gain Amplifier) override, skip */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200394 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200395 return 0;
396
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200397 /* Mix gain stepping */
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200398 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200399
400 /* Mix gain override */
401 mix = g_step->gos_param[0];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200402
403 switch (mix) {
404 case 3:
405 ah->ah_gain.g_f_corr = step * 2;
406 break;
407 case 2:
408 ah->ah_gain.g_f_corr = (step - 5) * 2;
409 break;
410 case 1:
411 ah->ah_gain.g_f_corr = step;
412 break;
413 default:
414 ah->ah_gain.g_f_corr = 0;
415 break;
416 }
417
418 return ah->ah_gain.g_f_corr;
419}
420
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200421/* Check if current gain_F measurement is in the range of our
422 * power detector windows. If we get a measurement outside range
423 * we know it's not accurate (detectors can't measure anything outside
424 * their detection window) so we must ignore it */
425static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200426{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200427 const struct ath5k_rf_reg *rf_regs;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200428 u32 step, mix_ovr, level[4];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200429 u32 *rf;
430
431 if (ah->ah_rf_banks == NULL)
432 return false;
433
434 rf = ah->ah_rf_banks;
435
436 if (ah->ah_radio == AR5K_RF5111) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200437
438 rf_regs = rf_regs_5111;
439 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
440
441 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
442 false);
443
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200444 level[0] = 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200445 level[1] = (step == 63) ? 50 : step + 4;
446 level[2] = (step != 63) ? 64 : level[0];
447 level[3] = level[2] + 50 ;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200448
449 ah->ah_gain.g_high = level[3] -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200450 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200451 ah->ah_gain.g_low = level[0] +
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200452 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200453 } else {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200454
455 rf_regs = rf_regs_5112;
456 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
457
458 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
459 false);
460
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200461 level[0] = level[2] = 0;
462
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200463 if (mix_ovr == 1) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200464 level[1] = level[3] = 83;
465 } else {
466 level[1] = level[3] = 107;
467 ah->ah_gain.g_high = 55;
468 }
469 }
470
471 return (ah->ah_gain.g_current >= level[0] &&
472 ah->ah_gain.g_current <= level[1]) ||
473 (ah->ah_gain.g_current >= level[2] &&
474 ah->ah_gain.g_current <= level[3]);
475}
476
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200477/* Perform gain_F adjustment by choosing the right set
Bob Copelanda180a132010-08-15 13:03:12 -0400478 * of parameters from RF gain optimization ladder */
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200479static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200480{
481 const struct ath5k_gain_opt *go;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200482 const struct ath5k_gain_opt_step *g_step;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200483 int ret = 0;
484
485 switch (ah->ah_radio) {
486 case AR5K_RF5111:
487 go = &rfgain_opt_5111;
488 break;
489 case AR5K_RF5112:
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200490 go = &rfgain_opt_5112;
491 break;
492 default:
493 return 0;
494 }
495
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200496 g_step = &go->go_step[ah->ah_gain.g_step_idx];
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200497
498 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200499
500 /* Reached maximum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200501 if (ah->ah_gain.g_step_idx == 0)
502 return -1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200503
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200504 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
505 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
506 ah->ah_gain.g_step_idx > 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200507 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200508 ah->ah_gain.g_target -= 2 *
509 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200510 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200511
512 ret = 1;
513 goto done;
514 }
515
516 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200517
518 /* Reached minimum */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200519 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
520 return -2;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200521
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200522 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
523 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
524 ah->ah_gain.g_step_idx < go->go_steps_count-1;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200525 g_step = &go->go_step[ah->ah_gain.g_step_idx])
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200526 ah->ah_gain.g_target -= 2 *
527 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200528 g_step->gos_gain);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200529
530 ret = 2;
531 goto done;
532 }
533
534done:
535 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
536 "ret %d, gain step %u, current gain %u, target gain %u\n",
537 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
538 ah->ah_gain.g_target);
539
540 return ret;
541}
542
Bob Copelanda180a132010-08-15 13:03:12 -0400543/* Main callback for thermal RF gain calibration engine
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200544 * Check for a new gain reading and schedule an adjustment
545 * if needed.
546 *
547 * TODO: Use sw interrupt to schedule reset if gain_F needs
548 * adjustment */
549enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
550{
551 u32 data, type;
552 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
553
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200554 if (ah->ah_rf_banks == NULL ||
555 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
556 return AR5K_RFGAIN_INACTIVE;
557
558 /* No check requested, either engine is inactive
559 * or an adjustment is already requested */
560 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
561 goto done;
562
563 /* Read the PAPD (Peak to Average Power Detector)
564 * register */
565 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
566
567 /* No probe is scheduled, read gain_F measurement */
568 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
569 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
570 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
571
572 /* If tx packet is CCK correct the gain_F measurement
573 * by cck ofdm gain delta */
574 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
575 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
576 ah->ah_gain.g_current +=
577 ee->ee_cck_ofdm_gain_delta;
578 else
579 ah->ah_gain.g_current +=
580 AR5K_GAIN_CCK_PROBE_CORR;
581 }
582
583 /* Further correct gain_F measurement for
584 * RF5112A radios */
585 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
586 ath5k_hw_rf_gainf_corr(ah);
587 ah->ah_gain.g_current =
588 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
589 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
590 0;
591 }
592
593 /* Check if measurement is ok and if we need
594 * to adjust gain, schedule a gain adjustment,
595 * else switch back to the acive state */
596 if (ath5k_hw_rf_check_gainf_readback(ah) &&
597 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
598 ath5k_hw_rf_gainf_adjust(ah)) {
599 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
600 } else {
601 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
602 }
603 }
604
605done:
606 return ah->ah_gain.g_state;
607}
608
Bob Copelanda180a132010-08-15 13:03:12 -0400609/* Write initial RF gain table to set the RF sensitivity
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200610 * this one works on all RF chips and has nothing to do
611 * with gain_F calibration */
Bruno Randolf26a51ad2010-12-21 17:30:37 +0900612static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200613{
614 const struct ath5k_ini_rfgain *ath5k_rfg;
Bruno Randolf26a51ad2010-12-21 17:30:37 +0900615 unsigned int i, size, index;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200616
617 switch (ah->ah_radio) {
618 case AR5K_RF5111:
619 ath5k_rfg = rfgain_5111;
620 size = ARRAY_SIZE(rfgain_5111);
621 break;
622 case AR5K_RF5112:
623 ath5k_rfg = rfgain_5112;
624 size = ARRAY_SIZE(rfgain_5112);
625 break;
626 case AR5K_RF2413:
627 ath5k_rfg = rfgain_2413;
628 size = ARRAY_SIZE(rfgain_2413);
629 break;
630 case AR5K_RF2316:
631 ath5k_rfg = rfgain_2316;
632 size = ARRAY_SIZE(rfgain_2316);
633 break;
634 case AR5K_RF5413:
635 ath5k_rfg = rfgain_5413;
636 size = ARRAY_SIZE(rfgain_5413);
637 break;
638 case AR5K_RF2317:
639 case AR5K_RF2425:
640 ath5k_rfg = rfgain_2425;
641 size = ARRAY_SIZE(rfgain_2425);
642 break;
643 default:
644 return -EINVAL;
645 }
646
Bruno Randolf26a51ad2010-12-21 17:30:37 +0900647 index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200648
649 for (i = 0; i < size; i++) {
650 AR5K_REG_WAIT(i);
Bruno Randolf26a51ad2010-12-21 17:30:37 +0900651 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
Nick Kossifidis6f3b4142009-02-09 06:03:41 +0200652 (u32)ath5k_rfg[i].rfg_register);
653 }
654
655 return 0;
656}
657
658
659
660/********************\
661* RF Registers setup *
662\********************/
663
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200664/*
Bob Copelanda180a132010-08-15 13:03:12 -0400665 * Setup RF registers by writing RF buffer on hw
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200666 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +0200667static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
668 struct ieee80211_channel *channel, unsigned int mode)
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200669{
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200670 const struct ath5k_rf_reg *rf_regs;
671 const struct ath5k_ini_rfbuffer *ini_rfb;
672 const struct ath5k_gain_opt *go = NULL;
673 const struct ath5k_gain_opt_step *g_step;
674 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
675 u8 ee_mode = 0;
676 u32 *rfb;
677 int i, obdb = -1, bank = -1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200678
679 switch (ah->ah_radio) {
680 case AR5K_RF5111:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200681 rf_regs = rf_regs_5111;
682 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
683 ini_rfb = rfb_5111;
684 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
685 go = &rfgain_opt_5111;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200686 break;
687 case AR5K_RF5112:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200688 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
689 rf_regs = rf_regs_5112a;
690 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
691 ini_rfb = rfb_5112a;
692 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
693 } else {
694 rf_regs = rf_regs_5112;
695 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
696 ini_rfb = rfb_5112;
697 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
698 }
699 go = &rfgain_opt_5112;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200700 break;
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500701 case AR5K_RF2413:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200702 rf_regs = rf_regs_2413;
703 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
704 ini_rfb = rfb_2413;
705 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
706 break;
707 case AR5K_RF2316:
708 rf_regs = rf_regs_2316;
709 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
710 ini_rfb = rfb_2316;
711 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
712 break;
713 case AR5K_RF5413:
714 rf_regs = rf_regs_5413;
715 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
716 ini_rfb = rfb_5413;
717 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
718 break;
719 case AR5K_RF2317:
720 rf_regs = rf_regs_2425;
721 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
722 ini_rfb = rfb_2317;
723 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
Nick Kossifidisf714dd62008-02-28 14:43:51 -0500724 break;
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300725 case AR5K_RF2425:
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200726 rf_regs = rf_regs_2425;
727 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
728 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
729 ini_rfb = rfb_2425;
730 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
731 } else {
732 ini_rfb = rfb_2417;
733 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
734 }
Nick Kossifidis136bfc72008-04-16 18:42:48 +0300735 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200736 default:
737 return -EINVAL;
738 }
739
Bob Copelanda180a132010-08-15 13:03:12 -0400740 /* If it's the first time we set RF buffer, allocate
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200741 * ah->ah_rf_banks based on ah->ah_rf_banks_size
742 * we set above */
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200743 if (ah->ah_rf_banks == NULL) {
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200744 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
745 GFP_KERNEL);
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200746 if (ah->ah_rf_banks == NULL) {
747 ATH5K_ERR(ah->ah_sc, "out of memory\n");
748 return -ENOMEM;
749 }
750 }
751
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200752 /* Copy values to modify them */
753 rfb = ah->ah_rf_banks;
Jiri Slabyfa1c1142007-08-12 17:33:16 +0200754
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200755 for (i = 0; i < ah->ah_rf_banks_size; i++) {
756 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
757 ATH5K_ERR(ah->ah_sc, "invalid bank\n");
758 return -EINVAL;
759 }
760
761 /* Bank changed, write down the offset */
762 if (bank != ini_rfb[i].rfb_bank) {
763 bank = ini_rfb[i].rfb_bank;
764 ah->ah_offset[bank] = i;
765 }
766
767 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
768 }
769
770 /* Set Output and Driver bias current (OB/DB) */
771 if (channel->hw_value & CHANNEL_2GHZ) {
772
773 if (channel->hw_value & CHANNEL_CCK)
774 ee_mode = AR5K_EEPROM_MODE_11B;
775 else
776 ee_mode = AR5K_EEPROM_MODE_11G;
777
778 /* For RF511X/RF211X combination we
779 * use b_OB and b_DB parameters stored
780 * in eeprom on ee->ee_ob[ee_mode][0]
781 *
782 * For all other chips we use OB/DB for 2Ghz
783 * stored in the b/g modal section just like
784 * 802.11a on ee->ee_ob[ee_mode][1] */
785 if ((ah->ah_radio == AR5K_RF5111) ||
786 (ah->ah_radio == AR5K_RF5112))
787 obdb = 0;
788 else
789 obdb = 1;
790
791 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
792 AR5K_RF_OB_2GHZ, true);
793
794 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
795 AR5K_RF_DB_2GHZ, true);
796
797 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
798 } else if ((channel->hw_value & CHANNEL_5GHZ) ||
799 (ah->ah_radio == AR5K_RF5111)) {
800
801 /* For 11a, Turbo and XR we need to choose
802 * OB/DB based on frequency range */
803 ee_mode = AR5K_EEPROM_MODE_11A;
804 obdb = channel->center_freq >= 5725 ? 3 :
805 (channel->center_freq >= 5500 ? 2 :
806 (channel->center_freq >= 5260 ? 1 :
807 (channel->center_freq > 4000 ? 0 : -1)));
808
809 if (obdb < 0)
810 return -EINVAL;
811
812 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
813 AR5K_RF_OB_5GHZ, true);
814
815 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
816 AR5K_RF_DB_5GHZ, true);
817 }
818
819 g_step = &go->go_step[ah->ah_gain.g_step_idx];
820
Nick Kossifidis4352fab2010-11-23 21:53:28 +0200821 /* Set turbo mode (N/A on RF5413) */
822 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
823 (ah->ah_radio != AR5K_RF5413))
824 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
825
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200826 /* Bank Modifications (chip-specific) */
827 if (ah->ah_radio == AR5K_RF5111) {
828
829 /* Set gain_F settings according to current step */
830 if (channel->hw_value & CHANNEL_OFDM) {
831
832 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
833 AR5K_PHY_FRAME_CTL_TX_CLIP,
834 g_step->gos_param[0]);
835
836 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
837 AR5K_RF_PWD_90, true);
838
839 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
840 AR5K_RF_PWD_84, true);
841
842 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
843 AR5K_RF_RFGAIN_SEL, true);
844
845 /* We programmed gain_F parameters, switch back
846 * to active state */
847 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
848
849 }
850
851 /* Bank 6/7 setup */
852
853 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
854 AR5K_RF_PWD_XPD, true);
855
856 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
857 AR5K_RF_XPD_GAIN, true);
858
859 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
860 AR5K_RF_GAIN_I, true);
861
862 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
863 AR5K_RF_PLO_SEL, true);
864
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200865 /* Tweak power detectors for half/quarter rate support */
866 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
867 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
868 u8 wait_i;
869
870 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
871 AR5K_RF_WAIT_S, true);
872
873 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
874 0x1f : 0x10;
875
876 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
877 AR5K_RF_WAIT_I, true);
878 ath5k_hw_rfb_op(ah, rf_regs, 3,
879 AR5K_RF_MAX_TIME, true);
880
881 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200882 }
883
884 if (ah->ah_radio == AR5K_RF5112) {
885
886 /* Set gain_F settings according to current step */
887 if (channel->hw_value & CHANNEL_OFDM) {
888
889 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
890 AR5K_RF_MIXGAIN_OVR, true);
891
892 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
893 AR5K_RF_PWD_138, true);
894
895 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
896 AR5K_RF_PWD_137, true);
897
898 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
899 AR5K_RF_PWD_136, true);
900
901 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
902 AR5K_RF_PWD_132, true);
903
904 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
905 AR5K_RF_PWD_131, true);
906
907 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
908 AR5K_RF_PWD_130, true);
909
910 /* We programmed gain_F parameters, switch back
911 * to active state */
912 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
913 }
914
915 /* Bank 6/7 setup */
916
917 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
918 AR5K_RF_XPD_SEL, true);
919
920 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
921 /* Rev. 1 supports only one xpd */
922 ath5k_hw_rfb_op(ah, rf_regs,
923 ee->ee_x_gain[ee_mode],
924 AR5K_RF_XPD_GAIN, true);
925
926 } else {
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300927 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
928 if (ee->ee_pd_gains[ee_mode] > 1) {
929 ath5k_hw_rfb_op(ah, rf_regs,
930 pdg_curve_to_idx[0],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200931 AR5K_RF_PD_GAIN_LO, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300932 ath5k_hw_rfb_op(ah, rf_regs,
933 pdg_curve_to_idx[1],
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200934 AR5K_RF_PD_GAIN_HI, true);
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +0300935 } else {
936 ath5k_hw_rfb_op(ah, rf_regs,
937 pdg_curve_to_idx[0],
938 AR5K_RF_PD_GAIN_LO, true);
939 ath5k_hw_rfb_op(ah, rf_regs,
940 pdg_curve_to_idx[0],
941 AR5K_RF_PD_GAIN_HI, true);
942 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200943
944 /* Lower synth voltage on Rev 2 */
945 ath5k_hw_rfb_op(ah, rf_regs, 2,
946 AR5K_RF_HIGH_VC_CP, true);
947
948 ath5k_hw_rfb_op(ah, rf_regs, 2,
949 AR5K_RF_MID_VC_CP, true);
950
951 ath5k_hw_rfb_op(ah, rf_regs, 2,
952 AR5K_RF_LOW_VC_CP, true);
953
954 ath5k_hw_rfb_op(ah, rf_regs, 2,
955 AR5K_RF_PUSH_UP, true);
956
957 /* Decrease power consumption on 5213+ BaseBand */
958 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
959 ath5k_hw_rfb_op(ah, rf_regs, 1,
960 AR5K_RF_PAD2GND, true);
961
962 ath5k_hw_rfb_op(ah, rf_regs, 1,
963 AR5K_RF_XB2_LVL, true);
964
965 ath5k_hw_rfb_op(ah, rf_regs, 1,
966 AR5K_RF_XB5_LVL, true);
967
968 ath5k_hw_rfb_op(ah, rf_regs, 1,
969 AR5K_RF_PWD_167, true);
970
971 ath5k_hw_rfb_op(ah, rf_regs, 1,
972 AR5K_RF_PWD_166, true);
973 }
974 }
975
976 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
977 AR5K_RF_GAIN_I, true);
978
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200979 /* Tweak power detector for half/quarter rates */
980 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
981 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
982 u8 pd_delay;
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200983
Nick Kossifidisb2b4c692010-11-23 21:26:13 +0200984 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
985 0xf : 0x8;
986
987 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
988 AR5K_RF_PD_PERIOD_A, true);
989 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
990 AR5K_RF_PD_DELAY_A, true);
991
992 }
Nick Kossifidis8892e4e2009-02-09 06:06:34 +0200993 }
994
995 if (ah->ah_radio == AR5K_RF5413 &&
996 channel->hw_value & CHANNEL_2GHZ) {
997
998 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
999 true);
1000
1001 /* Set optimum value for early revisions (on pci-e chips) */
1002 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1003 ah->ah_mac_srev < AR5K_SREV_AR5413)
1004 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1005 AR5K_RF_PWD_ICLOBUF_2G, true);
1006
1007 }
1008
1009 /* Write RF banks on hw */
1010 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1011 AR5K_REG_WAIT(i);
1012 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1013 }
1014
1015 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001016}
1017
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001018
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001019/**************************\
1020 PHY/RF channel functions
1021\**************************/
1022
1023/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001024 * Convertion needed for RF5110
1025 */
1026static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1027{
1028 u32 athchan;
1029
1030 /*
1031 * Convert IEEE channel/MHz to an internal channel value used
1032 * by the AR5210 chipset. This has not been verified with
1033 * newer chipsets like the AR5212A who have a completely
1034 * different RF/PHY part.
1035 */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001036 athchan = (ath5k_hw_bitswap(
1037 (ieee80211_frequency_to_channel(
1038 channel->center_freq) - 24) / 2, 5)
1039 << 1) | (1 << 6) | 0x1;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001040 return athchan;
1041}
1042
1043/*
1044 * Set channel on RF5110
1045 */
1046static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1047 struct ieee80211_channel *channel)
1048{
1049 u32 data;
1050
1051 /*
1052 * Set the channel and wait
1053 */
1054 data = ath5k_hw_rf5110_chan2athchan(channel);
1055 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1056 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1057 mdelay(1);
1058
1059 return 0;
1060}
1061
1062/*
1063 * Convertion needed for 5111
1064 */
1065static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1066 struct ath5k_athchan_2ghz *athchan)
1067{
1068 int channel;
1069
1070 /* Cast this value to catch negative channel numbers (>= -19) */
1071 channel = (int)ieee;
1072
1073 /*
1074 * Map 2GHz IEEE channel to 5GHz Atheros channel
1075 */
1076 if (channel <= 13) {
1077 athchan->a2_athchan = 115 + channel;
1078 athchan->a2_flags = 0x46;
1079 } else if (channel == 14) {
1080 athchan->a2_athchan = 124;
1081 athchan->a2_flags = 0x44;
1082 } else if (channel >= 15 && channel <= 26) {
1083 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1084 athchan->a2_flags = 0x46;
1085 } else
1086 return -EINVAL;
1087
1088 return 0;
1089}
1090
1091/*
1092 * Set channel on 5111
1093 */
1094static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1095 struct ieee80211_channel *channel)
1096{
1097 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001098 unsigned int ath5k_channel =
1099 ieee80211_frequency_to_channel(channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001100 u32 data0, data1, clock;
1101 int ret;
1102
1103 /*
1104 * Set the channel on the RF5111 radio
1105 */
1106 data0 = data1 = 0;
1107
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001108 if (channel->hw_value & CHANNEL_2GHZ) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001109 /* Map 2GHz channel to 5GHz Atheros channel ID */
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001110 ret = ath5k_hw_rf5111_chan2athchan(
1111 ieee80211_frequency_to_channel(channel->center_freq),
1112 &ath5k_channel_2ghz);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001113 if (ret)
1114 return ret;
1115
1116 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1117 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1118 << 5) | (1 << 4);
1119 }
1120
1121 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1122 clock = 1;
1123 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1124 (clock << 1) | (1 << 10) | 1;
1125 } else {
1126 clock = 0;
1127 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1128 << 2) | (clock << 1) | (1 << 10) | 1;
1129 }
1130
1131 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1132 AR5K_RF_BUFFER);
1133 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1134 AR5K_RF_BUFFER_CONTROL_3);
1135
1136 return 0;
1137}
1138
1139/*
1140 * Set channel on 5112 and newer
1141 */
1142static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1143 struct ieee80211_channel *channel)
1144{
1145 u32 data, data0, data1, data2;
1146 u16 c;
1147
1148 data = data0 = data1 = data2 = 0;
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001149 c = channel->center_freq;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001150
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001151 if (c < 4800) {
1152 if (!((c - 2224) % 5)) {
1153 data0 = ((2 * (c - 704)) - 3040) / 10;
1154 data1 = 1;
1155 } else if (!((c - 2192) % 5)) {
1156 data0 = ((2 * (c - 672)) - 3040) / 10;
1157 data1 = 0;
1158 } else
1159 return -EINVAL;
1160
1161 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
Bob Copeland1968cc72010-04-07 23:55:56 -04001162 } else if ((c % 5) != 2 || c > 5435) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001163 if (!(c % 20) && c >= 5120) {
1164 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1165 data2 = ath5k_hw_bitswap(3, 2);
1166 } else if (!(c % 10)) {
1167 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1168 data2 = ath5k_hw_bitswap(2, 2);
1169 } else if (!(c % 5)) {
1170 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1171 data2 = ath5k_hw_bitswap(1, 2);
1172 } else
1173 return -EINVAL;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001174 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001175 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001176 data2 = ath5k_hw_bitswap(0, 2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001177 }
1178
1179 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1180
1181 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1182 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1183
1184 return 0;
1185}
1186
1187/*
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001188 * Set the channel on the RF2425
1189 */
1190static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1191 struct ieee80211_channel *channel)
1192{
1193 u32 data, data0, data2;
1194 u16 c;
1195
1196 data = data0 = data2 = 0;
1197 c = channel->center_freq;
1198
1199 if (c < 4800) {
1200 data0 = ath5k_hw_bitswap((c - 2272), 8);
1201 data2 = 0;
1202 /* ? 5GHz ? */
Bob Copeland1968cc72010-04-07 23:55:56 -04001203 } else if ((c % 5) != 2 || c > 5435) {
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001204 if (!(c % 20) && c < 5120)
1205 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1206 else if (!(c % 10))
1207 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1208 else if (!(c % 5))
1209 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1210 else
1211 return -EINVAL;
1212 data2 = ath5k_hw_bitswap(1, 2);
1213 } else {
Bob Copeland1968cc72010-04-07 23:55:56 -04001214 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001215 data2 = ath5k_hw_bitswap(0, 2);
1216 }
1217
1218 data = (data0 << 4) | data2 << 2 | 0x1001;
1219
1220 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1221 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1222
1223 return 0;
1224}
1225
1226/*
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001227 * Set a channel on the radio chip
1228 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001229static int ath5k_hw_channel(struct ath5k_hw *ah,
1230 struct ieee80211_channel *channel)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001231{
1232 int ret;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001233 /*
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001234 * Check bounds supported by the PHY (we don't care about regultory
1235 * restrictions at this point). Note: hw_value already has the band
1236 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1237 * of the band by that */
1238 if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001239 ATH5K_ERR(ah->ah_sc,
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001240 "channel frequency (%u MHz) out of supported "
1241 "band range\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001242 channel->center_freq);
Luis R. Rodriguez400ec452008-02-03 21:51:49 -05001243 return -EINVAL;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001244 }
1245
1246 /*
1247 * Set the channel and wait
1248 */
1249 switch (ah->ah_radio) {
1250 case AR5K_RF5110:
1251 ret = ath5k_hw_rf5110_channel(ah, channel);
1252 break;
1253 case AR5K_RF5111:
1254 ret = ath5k_hw_rf5111_channel(ah, channel);
1255 break;
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001256 case AR5K_RF2425:
1257 ret = ath5k_hw_rf2425_channel(ah, channel);
1258 break;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001259 default:
1260 ret = ath5k_hw_rf5112_channel(ah, channel);
1261 break;
1262 }
1263
1264 if (ret)
1265 return ret;
1266
Nick Kossifidiscc6323c2008-07-20 06:44:43 +03001267 /* Set JAPAN setting for channel 14 */
1268 if (channel->center_freq == 2484) {
1269 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1270 AR5K_PHY_CCKTXCTL_JAPAN);
1271 } else {
1272 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1273 AR5K_PHY_CCKTXCTL_WORLD);
1274 }
1275
Bob Copeland46026e82009-06-10 22:22:20 -04001276 ah->ah_current_channel = channel;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001277
1278 return 0;
1279}
1280
1281/*****************\
1282 PHY calibration
1283\*****************/
1284
Bob Copelande5e26472009-10-14 14:16:30 -04001285static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1286{
1287 s32 val;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001288
Bob Copelande5e26472009-10-14 14:16:30 -04001289 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
Andreas Herrmann7919a572010-08-30 19:04:01 +00001290 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
Bob Copelande5e26472009-10-14 14:16:30 -04001291}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001292
Bob Copelande5e26472009-10-14 14:16:30 -04001293void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1294{
1295 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001296
Bob Copelande5e26472009-10-14 14:16:30 -04001297 ah->ah_nfcal_hist.index = 0;
1298 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1299 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1300}
1301
1302static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1303{
1304 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1305 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1306 hist->nfval[hist->index] = noise_floor;
1307}
1308
1309static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1310{
1311 s16 sort[ATH5K_NF_CAL_HIST_MAX];
1312 s16 tmp;
1313 int i, j;
1314
1315 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1316 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1317 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1318 if (sort[j] > sort[j-1]) {
1319 tmp = sort[j];
1320 sort[j] = sort[j-1];
1321 sort[j-1] = tmp;
1322 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001323 }
1324 }
Bob Copelande5e26472009-10-14 14:16:30 -04001325 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1326 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1327 "cal %d:%d\n", i, sort[i]);
1328 }
1329 return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1330}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001331
Bob Copelande5e26472009-10-14 14:16:30 -04001332/*
1333 * When we tell the hardware to perform a noise floor calibration
1334 * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1335 * sample-and-hold the minimum noise level seen at the antennas.
1336 * This value is then stored in a ring buffer of recently measured
1337 * noise floor values so we have a moving window of the last few
1338 * samples.
1339 *
1340 * The median of the values in the history is then loaded into the
1341 * hardware for its own use for RSSI and CCA measurements.
1342 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001343void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
Bob Copelande5e26472009-10-14 14:16:30 -04001344{
1345 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1346 u32 val;
1347 s16 nf, threshold;
1348 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001349
Bob Copelande5e26472009-10-14 14:16:30 -04001350 /* keep last value if calibration hasn't completed */
1351 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1352 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1353 "NF did not complete in calibration window\n");
1354
1355 return;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001356 }
1357
Bob Copelande5e26472009-10-14 14:16:30 -04001358 switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1359 case CHANNEL_A:
Bob Copelande5e26472009-10-14 14:16:30 -04001360 case CHANNEL_XR:
1361 ee_mode = AR5K_EEPROM_MODE_11A;
1362 break;
1363 case CHANNEL_G:
Bob Copelande5e26472009-10-14 14:16:30 -04001364 ee_mode = AR5K_EEPROM_MODE_11G;
1365 break;
1366 default:
1367 case CHANNEL_B:
1368 ee_mode = AR5K_EEPROM_MODE_11B;
1369 break;
1370 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001371
Bob Copelande5e26472009-10-14 14:16:30 -04001372
1373 /* completed NF calibration, test threshold */
1374 nf = ath5k_hw_read_measured_noise_floor(ah);
1375 threshold = ee->ee_noise_floor_thr[ee_mode];
1376
1377 if (nf > threshold) {
1378 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1379 "noise floor failure detected; "
1380 "read %d, threshold %d\n",
1381 nf, threshold);
1382
1383 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1384 }
1385
1386 ath5k_hw_update_nfcal_hist(ah, nf);
1387 nf = ath5k_hw_get_median_noise_floor(ah);
1388
1389 /* load noise floor (in .5 dBm) so the hardware will use it */
1390 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1391 val |= (nf * 2) & AR5K_PHY_NF_M;
1392 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1393
1394 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1395 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1396
1397 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1398 0, false);
1399
1400 /*
1401 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1402 * so that we're not capped by the median we just loaded.
1403 * This will be used as the initial value for the next noise
1404 * floor calibration.
1405 */
1406 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1407 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1408 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1409 AR5K_PHY_AGCCTL_NF_EN |
1410 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1411 AR5K_PHY_AGCCTL_NF);
1412
1413 ah->ah_noise_floor = nf;
1414
1415 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1416 "noise floor calibrated: %d\n", nf);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001417}
1418
1419/*
1420 * Perform a PHY calibration on RF5110
1421 * -Fix BPSK/QAM Constellation (I/Q correction)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001422 */
1423static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1424 struct ieee80211_channel *channel)
1425{
1426 u32 phy_sig, phy_agc, phy_sat, beacon;
1427 int ret;
1428
1429 /*
1430 * Disable beacons and RX/TX queues, wait
1431 */
1432 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001433 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001434 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1435 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1436
Nick Kossifidis84e463f2008-09-17 03:33:19 +03001437 mdelay(2);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001438
1439 /*
1440 * Set the channel (with AGC turned off)
1441 */
1442 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1443 udelay(10);
1444 ret = ath5k_hw_channel(ah, channel);
1445
1446 /*
1447 * Activate PHY and wait
1448 */
1449 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1450 mdelay(1);
1451
1452 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1453
1454 if (ret)
1455 return ret;
1456
1457 /*
1458 * Calibrate the radio chip
1459 */
1460
1461 /* Remember normal state */
1462 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1463 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1464 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1465
1466 /* Update radio registers */
1467 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1468 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1469
1470 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1471 AR5K_PHY_AGCCOARSE_LO)) |
1472 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1473 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1474
1475 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1476 AR5K_PHY_ADCSAT_THR)) |
1477 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1478 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1479
1480 udelay(20);
1481
1482 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1483 udelay(10);
1484 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1485 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1486
1487 mdelay(1);
1488
1489 /*
1490 * Enable calibration and wait until completion
1491 */
1492 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1493
1494 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1495 AR5K_PHY_AGCCTL_CAL, 0, false);
1496
1497 /* Reset to normal state */
1498 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1499 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1500 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1501
1502 if (ret) {
1503 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
Luis R. Rodriguezd8ee3982008-02-03 21:51:04 -05001504 channel->center_freq);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001505 return ret;
1506 }
1507
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001508 /*
1509 * Re-enable RX/TX and beacons
1510 */
1511 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
Bruno Randolfeada7ca2010-09-27 13:02:40 +09001512 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001513 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1514
1515 return 0;
1516}
1517
1518/*
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001519 * Perform I/Q calibration on RF5111/5112 and newer chips
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001520 */
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001521static int
1522ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001523{
1524 u32 i_pwr, q_pwr;
1525 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001526 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001527
Joe Perchese9010e22008-03-07 14:21:16 -08001528 if (!ah->ah_calibration ||
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001529 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001530 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001531
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001532 /* Calibration has finished, get the results and re-run */
Bruno Randolf86415d42010-03-09 16:56:05 +09001533 /* work around empty results which can apparently happen on 5212 */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001534 for (i = 0; i <= 10; i++) {
1535 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1536 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1537 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
Bruno Randolf86415d42010-03-09 16:56:05 +09001538 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1539 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1540 if (i_pwr && q_pwr)
1541 break;
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001542 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001543
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001544 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
Bruno Randolf49a85d22010-03-09 16:56:15 +09001545
1546 if (ah->ah_version == AR5K_AR5211)
1547 q_coffd = q_pwr >> 6;
1548 else
1549 q_coffd = q_pwr >> 7;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001550
Bruno Randolf86415d42010-03-09 16:56:05 +09001551 /* protect against divide by 0 and loss of sign bits */
1552 if (i_coffd == 0 || q_coffd < 2)
Fabio Rossi516c6e12010-09-08 22:37:41 +02001553 return 0;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001554
Bruno Randolf86415d42010-03-09 16:56:05 +09001555 i_coff = (-iq_corr) / i_coffd;
1556 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001557
John W. Linvilleace5d5d2010-04-08 16:34:49 -04001558 if (ah->ah_version == AR5K_AR5211)
1559 q_coff = (i_pwr / q_coffd) - 64;
1560 else
1561 q_coff = (i_pwr / q_coffd) - 128;
Bruno Randolf86415d42010-03-09 16:56:05 +09001562 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001563
Bruno Randolf86415d42010-03-09 16:56:05 +09001564 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1565 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1566 i_coff, q_coff, i_coffd, q_coffd);
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001567
Bruno Randolf86415d42010-03-09 16:56:05 +09001568 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1569 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1570 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1571 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001572
Nick Kossifidisf860ee22008-07-20 06:47:12 +03001573 /* Re-enable calibration -if we don't we'll commit
1574 * the same values again and again */
1575 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1576 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1577 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1578
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001579 return 0;
1580}
1581
1582/*
1583 * Perform a PHY calibration
1584 */
1585int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1586 struct ieee80211_channel *channel)
1587{
1588 int ret;
1589
1590 if (ah->ah_radio == AR5K_RF5110)
1591 ret = ath5k_hw_rf5110_calibrate(ah, channel);
Bruno Randolf9e04a7e2010-05-19 10:31:00 +09001592 else {
1593 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1594 ath5k_hw_request_rfgain_probe(ah);
1595 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001596
1597 return ret;
1598}
1599
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001600
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001601/***************************\
1602* Spur mitigation functions *
1603\***************************/
1604
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02001605static void
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001606ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1607 struct ieee80211_channel *channel)
1608{
1609 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1610 u32 mag_mask[4] = {0, 0, 0, 0};
1611 u32 pilot_mask[2] = {0, 0};
1612 /* Note: fbin values are scaled up by 2 */
1613 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1614 s32 spur_delta_phase, spur_freq_sigma_delta;
1615 s32 spur_offset, num_symbols_x16;
1616 u8 num_symbol_offsets, i, freq_band;
1617
1618 /* Convert current frequency to fbin value (the same way channels
1619 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1620 * up by 2 so we can compare it later */
1621 if (channel->hw_value & CHANNEL_2GHZ) {
1622 chan_fbin = (channel->center_freq - 2300) * 10;
1623 freq_band = AR5K_EEPROM_BAND_2GHZ;
1624 } else {
1625 chan_fbin = (channel->center_freq - 4900) * 10;
1626 freq_band = AR5K_EEPROM_BAND_5GHZ;
1627 }
1628
1629 /* Check if any spur_chan_fbin from EEPROM is
1630 * within our current channel's spur detection range */
1631 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1632 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1633 /* XXX: Half/Quarter channels ?*/
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001634 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001635 spur_detection_window *= 2;
1636
1637 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1638 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1639
1640 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1641 * so it's zero if we got nothing from EEPROM */
1642 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1643 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1644 break;
1645 }
1646
1647 if ((chan_fbin - spur_detection_window <=
1648 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1649 (chan_fbin + spur_detection_window >=
1650 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1651 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1652 break;
1653 }
1654 }
1655
1656 /* We need to enable spur filter for this channel */
1657 if (spur_chan_fbin) {
1658 spur_offset = spur_chan_fbin - chan_fbin;
1659 /*
1660 * Calculate deltas:
1661 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1662 * spur_delta_phase -> spur_offset / chip_freq << 11
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001663 * Note: Both values have 100Hz resolution
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001664 */
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001665 switch (ah->ah_bwmode) {
1666 case AR5K_BWMODE_40MHZ:
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001667 /* Both sample_freq and chip_freq are 80MHz */
1668 spur_delta_phase = (spur_offset << 16) / 25;
1669 spur_freq_sigma_delta = (spur_delta_phase >> 10);
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001670 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001671 break;
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001672 case AR5K_BWMODE_10MHZ:
1673 /* Both sample_freq and chip_freq are 20MHz (?) */
1674 spur_delta_phase = (spur_offset << 18) / 25;
1675 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1676 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1677 case AR5K_BWMODE_5MHZ:
1678 /* Both sample_freq and chip_freq are 10MHz (?) */
1679 spur_delta_phase = (spur_offset << 19) / 25;
1680 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1681 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001682 default:
Nick Kossifidisa2677fe2010-11-23 21:28:15 +02001683 if (channel->hw_value == CHANNEL_A) {
1684 /* Both sample_freq and chip_freq are 40MHz */
1685 spur_delta_phase = (spur_offset << 17) / 25;
1686 spur_freq_sigma_delta =
1687 (spur_delta_phase >> 10);
1688 symbol_width =
1689 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1690 } else {
1691 /* sample_freq -> 40MHz chip_freq -> 44MHz
1692 * (for b compatibility) */
1693 spur_delta_phase = (spur_offset << 17) / 25;
1694 spur_freq_sigma_delta =
1695 (spur_offset << 8) / 55;
1696 symbol_width =
1697 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1698 }
1699 break;
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001700 }
1701
1702 /* Calculate pilot and magnitude masks */
1703
1704 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1705 * and divide by symbol_width to find how many symbols we have
1706 * Note: number of symbols is scaled up by 16 */
1707 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1708
1709 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1710 if (!(num_symbols_x16 & 0xF))
1711 /* _X_ */
1712 num_symbol_offsets = 3;
1713 else
1714 /* _xx_ */
1715 num_symbol_offsets = 4;
1716
1717 for (i = 0; i < num_symbol_offsets; i++) {
1718
1719 /* Calculate pilot mask */
1720 s32 curr_sym_off =
1721 (num_symbols_x16 / 16) + i + 25;
1722
1723 /* Pilot magnitude mask seems to be a way to
1724 * declare the boundaries for our detection
1725 * window or something, it's 2 for the middle
1726 * value(s) where the symbol is expected to be
1727 * and 1 on the boundary values */
1728 u8 plt_mag_map =
1729 (i == 0 || i == (num_symbol_offsets - 1))
1730 ? 1 : 2;
1731
1732 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1733 if (curr_sym_off <= 25)
1734 pilot_mask[0] |= 1 << curr_sym_off;
1735 else if (curr_sym_off >= 27)
1736 pilot_mask[0] |= 1 << (curr_sym_off - 1);
1737 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1738 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1739
1740 /* Calculate magnitude mask (for viterbi decoder) */
1741 if (curr_sym_off >= -1 && curr_sym_off <= 14)
1742 mag_mask[0] |=
1743 plt_mag_map << (curr_sym_off + 1) * 2;
1744 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1745 mag_mask[1] |=
1746 plt_mag_map << (curr_sym_off - 15) * 2;
1747 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1748 mag_mask[2] |=
1749 plt_mag_map << (curr_sym_off - 31) * 2;
Bob Copeland53b1cf82010-08-24 21:37:14 -04001750 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
Nick Kossifidis57e6c562009-04-30 15:55:50 -04001751 mag_mask[3] |=
1752 plt_mag_map << (curr_sym_off - 47) * 2;
1753
1754 }
1755
1756 /* Write settings on hw to enable spur filter */
1757 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1758 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1759 /* XXX: Self correlator also ? */
1760 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1761 AR5K_PHY_IQ_PILOT_MASK_EN |
1762 AR5K_PHY_IQ_CHAN_MASK_EN |
1763 AR5K_PHY_IQ_SPUR_FILT_EN);
1764
1765 /* Set delta phase and freq sigma delta */
1766 ath5k_hw_reg_write(ah,
1767 AR5K_REG_SM(spur_delta_phase,
1768 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1769 AR5K_REG_SM(spur_freq_sigma_delta,
1770 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1771 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1772 AR5K_PHY_TIMING_11);
1773
1774 /* Write pilot masks */
1775 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1776 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1777 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1778 pilot_mask[1]);
1779
1780 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1781 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1782 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1783 pilot_mask[1]);
1784
1785 /* Write magnitude masks */
1786 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1787 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1788 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1789 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1790 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1791 mag_mask[3]);
1792
1793 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1794 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1795 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1796 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1797 AR5K_PHY_BIN_MASK2_4_MASK_4,
1798 mag_mask[3]);
1799
1800 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1801 AR5K_PHY_IQ_SPUR_FILT_EN) {
1802 /* Clean up spur mitigation settings and disable fliter */
1803 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1804 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1805 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1806 AR5K_PHY_IQ_PILOT_MASK_EN |
1807 AR5K_PHY_IQ_CHAN_MASK_EN |
1808 AR5K_PHY_IQ_SPUR_FILT_EN);
1809 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1810
1811 /* Clear pilot masks */
1812 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1813 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1814 AR5K_PHY_TIMING_8_PILOT_MASK_2,
1815 0);
1816
1817 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1818 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1819 AR5K_PHY_TIMING_10_PILOT_MASK_2,
1820 0);
1821
1822 /* Clear magnitude masks */
1823 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1824 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1825 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1826 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1827 AR5K_PHY_BIN_MASK_CTL_MASK_4,
1828 0);
1829
1830 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1831 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1832 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1833 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1834 AR5K_PHY_BIN_MASK2_4_MASK_4,
1835 0);
1836 }
1837}
1838
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001839
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001840/*****************\
1841* Antenna control *
1842\*****************/
1843
Pavel Roskin626ede62010-02-18 20:28:02 -05001844static void /*TODO:Boundary check*/
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001845ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001846{
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001847 if (ah->ah_version != AR5K_AR5210)
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001848 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02001849}
1850
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001851/*
1852 * Enable/disable fast rx antenna diversity
1853 */
1854static void
1855ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1856{
1857 switch (ee_mode) {
1858 case AR5K_EEPROM_MODE_11G:
1859 /* XXX: This is set to
1860 * disabled on initvals !!! */
1861 case AR5K_EEPROM_MODE_11A:
1862 if (enable)
1863 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1864 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1865 else
1866 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1867 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1868 break;
1869 case AR5K_EEPROM_MODE_11B:
1870 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1871 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1872 break;
1873 default:
1874 return;
1875 }
1876
1877 if (enable) {
1878 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf6665b542010-06-28 11:01:48 +09001879 AR5K_PHY_RESTART_DIV_GC, 4);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001880
1881 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1882 AR5K_PHY_FAST_ANT_DIV_EN);
1883 } else {
1884 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
Bruno Randolf39d5b2c2010-06-07 13:11:25 +09001885 AR5K_PHY_RESTART_DIV_GC, 0);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001886
1887 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1888 AR5K_PHY_FAST_ANT_DIV_EN);
1889 }
1890}
1891
Bruno Randolf0ca74022010-06-07 13:11:30 +09001892void
1893ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1894{
1895 u8 ant0, ant1;
1896
1897 /*
1898 * In case a fixed antenna was set as default
1899 * use the same switch table twice.
1900 */
1901 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1902 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1903 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1904 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1905 else {
1906 ant0 = AR5K_ANT_SWTABLE_A;
1907 ant1 = AR5K_ANT_SWTABLE_B;
1908 }
1909
1910 /* Set antenna idle switch table */
1911 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1912 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1913 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1914 AR5K_PHY_ANT_CTL_TXRX_EN));
1915
1916 /* Set antenna switch tables */
1917 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1918 AR5K_PHY_ANT_SWITCH_TABLE_0);
1919 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1920 AR5K_PHY_ANT_SWITCH_TABLE_1);
1921}
1922
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001923/*
1924 * Set antenna operating mode
1925 */
1926void
1927ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1928{
Bob Copeland46026e82009-06-10 22:22:20 -04001929 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001930 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1931 bool use_def_for_sg;
1932 u8 def_ant, tx_ant, ee_mode;
1933 u32 sta_id1 = 0;
1934
Bruno Randolf436c1092010-06-07 13:11:19 +09001935 /* if channel is not initialized yet we can't set the antennas
1936 * so just store the mode. it will be set on the next reset */
1937 if (channel == NULL) {
1938 ah->ah_ant_mode = ant_mode;
1939 return;
1940 }
1941
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001942 def_ant = ah->ah_def_ant;
1943
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001944 switch (channel->hw_value & CHANNEL_MODES) {
1945 case CHANNEL_A:
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001946 case CHANNEL_XR:
1947 ee_mode = AR5K_EEPROM_MODE_11A;
1948 break;
1949 case CHANNEL_G:
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001950 ee_mode = AR5K_EEPROM_MODE_11G;
1951 break;
1952 case CHANNEL_B:
1953 ee_mode = AR5K_EEPROM_MODE_11B;
1954 break;
1955 default:
1956 ATH5K_ERR(ah->ah_sc,
1957 "invalid channel: %d\n", channel->center_freq);
1958 return;
1959 }
1960
1961 switch (ant_mode) {
1962 case AR5K_ANTMODE_DEFAULT:
1963 tx_ant = 0;
1964 use_def_for_tx = false;
1965 update_def_on_tx = false;
1966 use_def_for_rts = false;
1967 use_def_for_sg = false;
1968 fast_div = true;
1969 break;
1970 case AR5K_ANTMODE_FIXED_A:
1971 def_ant = 1;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001972 tx_ant = 1;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001973 use_def_for_tx = true;
1974 update_def_on_tx = false;
1975 use_def_for_rts = true;
1976 use_def_for_sg = true;
1977 fast_div = false;
1978 break;
1979 case AR5K_ANTMODE_FIXED_B:
1980 def_ant = 2;
Bruno Randolf8bd8bea2010-03-09 16:55:23 +09001981 tx_ant = 2;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04001982 use_def_for_tx = true;
1983 update_def_on_tx = false;
1984 use_def_for_rts = true;
1985 use_def_for_sg = true;
1986 fast_div = false;
1987 break;
1988 case AR5K_ANTMODE_SINGLE_AP:
1989 def_ant = 1; /* updated on tx */
1990 tx_ant = 0;
1991 use_def_for_tx = true;
1992 update_def_on_tx = true;
1993 use_def_for_rts = true;
1994 use_def_for_sg = true;
1995 fast_div = true;
1996 break;
1997 case AR5K_ANTMODE_SECTOR_AP:
1998 tx_ant = 1; /* variable */
1999 use_def_for_tx = false;
2000 update_def_on_tx = false;
2001 use_def_for_rts = true;
2002 use_def_for_sg = false;
2003 fast_div = false;
2004 break;
2005 case AR5K_ANTMODE_SECTOR_STA:
2006 tx_ant = 1; /* variable */
2007 use_def_for_tx = true;
2008 update_def_on_tx = false;
2009 use_def_for_rts = true;
2010 use_def_for_sg = false;
2011 fast_div = true;
2012 break;
2013 case AR5K_ANTMODE_DEBUG:
2014 def_ant = 1;
2015 tx_ant = 2;
2016 use_def_for_tx = false;
2017 update_def_on_tx = false;
2018 use_def_for_rts = false;
2019 use_def_for_sg = false;
2020 fast_div = false;
2021 break;
2022 default:
2023 return;
2024 }
2025
2026 ah->ah_tx_ant = tx_ant;
2027 ah->ah_ant_mode = ant_mode;
Bruno Randolfcaec9112010-03-09 16:55:28 +09002028 ah->ah_def_ant = def_ant;
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04002029
2030 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2031 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2032 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2033 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2034
2035 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2036
2037 if (sta_id1)
2038 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2039
Bruno Randolf0ca74022010-06-07 13:11:30 +09002040 ath5k_hw_set_antenna_switch(ah, ee_mode);
Nick Kossifidis2bed03e2009-04-30 15:55:49 -04002041 /* Note: set diversity before default antenna
2042 * because it won't work correctly */
2043 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2044 ath5k_hw_set_def_antenna(ah, def_ant);
2045}
2046
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002047
2048/****************\
2049* TX power setup *
2050\****************/
2051
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002052/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002053 * Helper functions
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002054 */
2055
2056/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002057 * Do linear interpolation between two given (x, y) points
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002058 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002059static s16
2060ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2061 s16 y_left, s16 y_right)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002062{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002063 s16 ratio, result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002064
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002065 /* Avoid divide by zero and skip interpolation
2066 * if we have the same point */
2067 if ((x_left == x_right) || (y_left == y_right))
2068 return y_left;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002069
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002070 /*
2071 * Since we use ints and not fps, we need to scale up in
2072 * order to get a sane ratio value (or else we 'll eg. get
2073 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2074 * to have some accuracy both for 0.5 and 0.25 steps.
2075 */
2076 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002077
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002078 /* Now scale down to be in range */
2079 result = y_left + (ratio * (target - x_left) / 100);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002080
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002081 return result;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002082}
2083
2084/*
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002085 * Find vertical boundary (min pwr) for the linear PCDAC curve.
2086 *
2087 * Since we have the top of the curve and we draw the line below
2088 * until we reach 1 (1 pcdac step) we need to know which point
2089 * (x value) that is so that we don't go below y axis and have negative
2090 * pcdac values when creating the curve, or fill the table with zeroes.
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002091 */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002092static s16
2093ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2094 const s16 *pwrL, const s16 *pwrR)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002095{
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002096 s8 tmp;
2097 s16 min_pwrL, min_pwrR;
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002098 s16 pwr_i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002099
Nick Kossifidisd1cb0bd2009-08-10 03:27:59 +03002100 /* Some vendors write the same pcdac value twice !!! */
2101 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2102 return max(pwrL[0], pwrR[0]);
Bob Copeland9c8b3ed2009-05-19 23:37:31 -04002103
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002104 if (pwrL[0] == pwrL[1])
2105 min_pwrL = pwrL[0];
2106 else {
2107 pwr_i = pwrL[0];
2108 do {
2109 pwr_i--;
2110 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2111 pwrL[0], pwrL[1],
2112 stepL[0], stepL[1]);
2113 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002114
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002115 min_pwrL = pwr_i;
2116 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002117
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002118 if (pwrR[0] == pwrR[1])
2119 min_pwrR = pwrR[0];
2120 else {
2121 pwr_i = pwrR[0];
2122 do {
2123 pwr_i--;
2124 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2125 pwrR[0], pwrR[1],
2126 stepR[0], stepR[1]);
2127 } while (tmp > 1);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002128
Fabio Rossi64cdb0e2009-04-01 20:37:50 +02002129 min_pwrR = pwr_i;
2130 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002131
2132 /* Keep the right boundary so that it works for both curves */
2133 return max(min_pwrL, min_pwrR);
2134}
2135
2136/*
2137 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2138 * Power to PCDAC curve.
2139 *
2140 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2141 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2142 * PCDAC/PDADC step for each curve is 64 but we can write more than
2143 * one curves on hw so we can go up to 128 (which is the max step we
2144 * can write on the final table).
2145 *
2146 * We write y values (PCDAC/PDADC steps) on hw.
2147 */
2148static void
2149ath5k_create_power_curve(s16 pmin, s16 pmax,
2150 const s16 *pwr, const u8 *vpd,
2151 u8 num_points,
2152 u8 *vpd_table, u8 type)
2153{
2154 u8 idx[2] = { 0, 1 };
2155 s16 pwr_i = 2*pmin;
2156 int i;
2157
2158 if (num_points < 2)
2159 return;
2160
2161 /* We want the whole line, so adjust boundaries
2162 * to cover the entire power range. Note that
2163 * power values are already 0.25dB so no need
2164 * to multiply pwr_i by 2 */
2165 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2166 pwr_i = pmin;
2167 pmin = 0;
2168 pmax = 63;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002169 }
2170
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002171 /* Find surrounding turning points (TPs)
2172 * and interpolate between them */
2173 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2174 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2175
2176 /* We passed the right TP, move to the next set of TPs
2177 * if we pass the last TP, extrapolate above using the last
2178 * two TPs for ratio */
2179 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2180 idx[0]++;
2181 idx[1]++;
2182 }
2183
2184 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2185 pwr[idx[0]], pwr[idx[1]],
2186 vpd[idx[0]], vpd[idx[1]]);
2187
2188 /* Increase by 0.5dB
2189 * (0.25 dB units) */
2190 pwr_i += 2;
2191 }
2192}
2193
2194/*
2195 * Get the surrounding per-channel power calibration piers
2196 * for a given frequency so that we can interpolate between
2197 * them and come up with an apropriate dataset for our current
2198 * channel.
2199 */
2200static void
2201ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2202 struct ieee80211_channel *channel,
2203 struct ath5k_chan_pcal_info **pcinfo_l,
2204 struct ath5k_chan_pcal_info **pcinfo_r)
2205{
2206 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2207 struct ath5k_chan_pcal_info *pcinfo;
2208 u8 idx_l, idx_r;
2209 u8 mode, max, i;
2210 u32 target = channel->center_freq;
2211
2212 idx_l = 0;
2213 idx_r = 0;
2214
2215 if (!(channel->hw_value & CHANNEL_OFDM)) {
2216 pcinfo = ee->ee_pwr_cal_b;
2217 mode = AR5K_EEPROM_MODE_11B;
2218 } else if (channel->hw_value & CHANNEL_2GHZ) {
2219 pcinfo = ee->ee_pwr_cal_g;
2220 mode = AR5K_EEPROM_MODE_11G;
2221 } else {
2222 pcinfo = ee->ee_pwr_cal_a;
2223 mode = AR5K_EEPROM_MODE_11A;
2224 }
2225 max = ee->ee_n_piers[mode] - 1;
2226
2227 /* Frequency is below our calibrated
2228 * range. Use the lowest power curve
2229 * we have */
2230 if (target < pcinfo[0].freq) {
2231 idx_l = idx_r = 0;
2232 goto done;
2233 }
2234
2235 /* Frequency is above our calibrated
2236 * range. Use the highest power curve
2237 * we have */
2238 if (target > pcinfo[max].freq) {
2239 idx_l = idx_r = max;
2240 goto done;
2241 }
2242
2243 /* Frequency is inside our calibrated
2244 * channel range. Pick the surrounding
2245 * calibration piers so that we can
2246 * interpolate */
2247 for (i = 0; i <= max; i++) {
2248
2249 /* Frequency matches one of our calibration
2250 * piers, no need to interpolate, just use
2251 * that calibration pier */
2252 if (pcinfo[i].freq == target) {
2253 idx_l = idx_r = i;
2254 goto done;
2255 }
2256
2257 /* We found a calibration pier that's above
2258 * frequency, use this pier and the previous
2259 * one to interpolate */
2260 if (target < pcinfo[i].freq) {
2261 idx_r = i;
2262 idx_l = idx_r - 1;
2263 goto done;
2264 }
2265 }
2266
2267done:
2268 *pcinfo_l = &pcinfo[idx_l];
2269 *pcinfo_r = &pcinfo[idx_r];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002270}
2271
2272/*
2273 * Get the surrounding per-rate power calibration data
2274 * for a given frequency and interpolate between power
2275 * values to set max target power supported by hw for
2276 * each rate.
2277 */
2278static void
2279ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2280 struct ieee80211_channel *channel,
2281 struct ath5k_rate_pcal_info *rates)
2282{
2283 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2284 struct ath5k_rate_pcal_info *rpinfo;
2285 u8 idx_l, idx_r;
2286 u8 mode, max, i;
2287 u32 target = channel->center_freq;
2288
2289 idx_l = 0;
2290 idx_r = 0;
2291
2292 if (!(channel->hw_value & CHANNEL_OFDM)) {
2293 rpinfo = ee->ee_rate_tpwr_b;
2294 mode = AR5K_EEPROM_MODE_11B;
2295 } else if (channel->hw_value & CHANNEL_2GHZ) {
2296 rpinfo = ee->ee_rate_tpwr_g;
2297 mode = AR5K_EEPROM_MODE_11G;
2298 } else {
2299 rpinfo = ee->ee_rate_tpwr_a;
2300 mode = AR5K_EEPROM_MODE_11A;
2301 }
2302 max = ee->ee_rate_target_pwr_num[mode] - 1;
2303
2304 /* Get the surrounding calibration
2305 * piers - same as above */
2306 if (target < rpinfo[0].freq) {
2307 idx_l = idx_r = 0;
2308 goto done;
2309 }
2310
2311 if (target > rpinfo[max].freq) {
2312 idx_l = idx_r = max;
2313 goto done;
2314 }
2315
2316 for (i = 0; i <= max; i++) {
2317
2318 if (rpinfo[i].freq == target) {
2319 idx_l = idx_r = i;
2320 goto done;
2321 }
2322
2323 if (target < rpinfo[i].freq) {
2324 idx_r = i;
2325 idx_l = idx_r - 1;
2326 goto done;
2327 }
2328 }
2329
2330done:
2331 /* Now interpolate power value, based on the frequency */
2332 rates->freq = target;
2333
2334 rates->target_power_6to24 =
2335 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2336 rpinfo[idx_r].freq,
2337 rpinfo[idx_l].target_power_6to24,
2338 rpinfo[idx_r].target_power_6to24);
2339
2340 rates->target_power_36 =
2341 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2342 rpinfo[idx_r].freq,
2343 rpinfo[idx_l].target_power_36,
2344 rpinfo[idx_r].target_power_36);
2345
2346 rates->target_power_48 =
2347 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2348 rpinfo[idx_r].freq,
2349 rpinfo[idx_l].target_power_48,
2350 rpinfo[idx_r].target_power_48);
2351
2352 rates->target_power_54 =
2353 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2354 rpinfo[idx_r].freq,
2355 rpinfo[idx_l].target_power_54,
2356 rpinfo[idx_r].target_power_54);
2357}
2358
2359/*
2360 * Get the max edge power for this channel if
2361 * we have such data from EEPROM's Conformance Test
2362 * Limits (CTL), and limit max power if needed.
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002363 */
2364static void
2365ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2366 struct ieee80211_channel *channel)
2367{
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002368 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002369 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2370 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2371 u8 *ctl_val = ee->ee_ctl;
2372 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2373 s16 edge_pwr = 0;
2374 u8 rep_idx;
2375 u8 i, ctl_mode;
2376 u8 ctl_idx = 0xFF;
2377 u32 target = channel->center_freq;
2378
Luis R. Rodriguez608b88c2009-08-17 18:07:23 -07002379 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
Bob Copeland6752ee92009-04-30 15:55:51 -04002380
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002381 switch (channel->hw_value & CHANNEL_MODES) {
2382 case CHANNEL_A:
Nick Kossifidisacb091d2010-11-23 21:49:53 +02002383 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2384 ctl_mode |= AR5K_CTL_TURBO;
2385 else
2386 ctl_mode |= AR5K_CTL_11A;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002387 break;
2388 case CHANNEL_G:
Nick Kossifidisacb091d2010-11-23 21:49:53 +02002389 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2390 ctl_mode |= AR5K_CTL_TURBOG;
2391 else
2392 ctl_mode |= AR5K_CTL_11G;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002393 break;
2394 case CHANNEL_B:
Bob Copeland6752ee92009-04-30 15:55:51 -04002395 ctl_mode |= AR5K_CTL_11B;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002396 break;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002397 case CHANNEL_XR:
2398 /* Fall through */
2399 default:
2400 return;
2401 }
Nick Kossifidis903b4742008-02-28 14:50:50 -05002402
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002403 for (i = 0; i < ee->ee_ctls; i++) {
2404 if (ctl_val[i] == ctl_mode) {
2405 ctl_idx = i;
2406 break;
2407 }
2408 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002409
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002410 /* If we have a CTL dataset available grab it and find the
2411 * edge power for our frequency */
2412 if (ctl_idx == 0xFF)
2413 return;
2414
2415 /* Edge powers are sorted by frequency from lower
2416 * to higher. Each CTL corresponds to 8 edge power
2417 * measurements. */
2418 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2419
2420 /* Don't do boundaries check because we
2421 * might have more that one bands defined
2422 * for this mode */
2423
2424 /* Get the edge power that's closer to our
2425 * frequency */
2426 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2427 rep_idx += i;
2428 if (target <= rep[rep_idx].freq)
2429 edge_pwr = (s16) rep[rep_idx].edge;
2430 }
2431
2432 if (edge_pwr)
2433 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2434}
2435
2436
2437/*
2438 * Power to PCDAC table functions
2439 */
2440
2441/*
2442 * Fill Power to PCDAC table on RF5111
2443 *
2444 * No further processing is needed for RF5111, the only thing we have to
2445 * do is fill the values below and above calibration range since eeprom data
2446 * may not cover the entire PCDAC table.
2447 */
2448static void
2449ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2450 s16 *table_max)
2451{
2452 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2453 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2454 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2455 s16 min_pwr, max_pwr;
2456
2457 /* Get table boundaries */
2458 min_pwr = table_min[0];
2459 pcdac_0 = pcdac_tmp[0];
2460
2461 max_pwr = table_max[0];
2462 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2463
2464 /* Extrapolate below minimum using pcdac_0 */
2465 pcdac_i = 0;
2466 for (i = 0; i < min_pwr; i++)
2467 pcdac_out[pcdac_i++] = pcdac_0;
2468
2469 /* Copy values from pcdac_tmp */
2470 pwr_idx = min_pwr;
2471 for (i = 0 ; pwr_idx <= max_pwr &&
2472 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2473 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2474 pwr_idx++;
2475 }
2476
2477 /* Extrapolate above maximum */
2478 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2479 pcdac_out[pcdac_i++] = pcdac_n;
2480
2481}
2482
2483/*
2484 * Combine available XPD Curves and fill Linear Power to PCDAC table
2485 * on RF5112
2486 *
2487 * RFX112 can have up to 2 curves (one for low txpower range and one for
2488 * higher txpower range). We need to put them both on pcdac_out and place
2489 * them in the correct location. In case we only have one curve available
2490 * just fit it on pcdac_out (it's supposed to cover the entire range of
2491 * available pwr levels since it's always the higher power curve). Extrapolate
2492 * below and above final table if needed.
2493 */
2494static void
2495ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2496 s16 *table_max, u8 pdcurves)
2497{
2498 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2499 u8 *pcdac_low_pwr;
2500 u8 *pcdac_high_pwr;
2501 u8 *pcdac_tmp;
2502 u8 pwr;
2503 s16 max_pwr_idx;
2504 s16 min_pwr_idx;
2505 s16 mid_pwr_idx = 0;
2506 /* Edge flag turs on the 7nth bit on the PCDAC
2507 * to delcare the higher power curve (force values
2508 * to be greater than 64). If we only have one curve
2509 * we don't need to set this, if we have 2 curves and
2510 * fill the table backwards this can also be used to
2511 * switch from higher power curve to lower power curve */
2512 u8 edge_flag;
2513 int i;
2514
2515 /* When we have only one curve available
2516 * that's the higher power curve. If we have
2517 * two curves the first is the high power curve
2518 * and the next is the low power curve. */
2519 if (pdcurves > 1) {
2520 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2521 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2522 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2523 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2524
2525 /* If table size goes beyond 31.5dB, keep the
2526 * upper 31.5dB range when setting tx power.
2527 * Note: 126 = 31.5 dB in quarter dB steps */
2528 if (table_max[0] - table_min[1] > 126)
2529 min_pwr_idx = table_max[0] - 126;
2530 else
2531 min_pwr_idx = table_min[1];
2532
2533 /* Since we fill table backwards
2534 * start from high power curve */
2535 pcdac_tmp = pcdac_high_pwr;
2536
2537 edge_flag = 0x40;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002538 } else {
2539 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2540 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2541 min_pwr_idx = table_min[0];
2542 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2543 pcdac_tmp = pcdac_high_pwr;
2544 edge_flag = 0;
2545 }
2546
2547 /* This is used when setting tx power*/
2548 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2549
2550 /* Fill Power to PCDAC table backwards */
2551 pwr = max_pwr_idx;
2552 for (i = 63; i >= 0; i--) {
2553 /* Entering lower power range, reset
2554 * edge flag and set pcdac_tmp to lower
2555 * power curve.*/
2556 if (edge_flag == 0x40 &&
2557 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2558 edge_flag = 0x00;
2559 pcdac_tmp = pcdac_low_pwr;
2560 pwr = mid_pwr_idx/2;
2561 }
2562
2563 /* Don't go below 1, extrapolate below if we have
2564 * already swithced to the lower power curve -or
2565 * we only have one curve and edge_flag is zero
2566 * anyway */
2567 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2568 while (i >= 0) {
2569 pcdac_out[i] = pcdac_out[i + 1];
2570 i--;
2571 }
2572 break;
2573 }
2574
2575 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2576
2577 /* Extrapolate above if pcdac is greater than
2578 * 126 -this can happen because we OR pcdac_out
2579 * value with edge_flag on high power curve */
2580 if (pcdac_out[i] > 126)
2581 pcdac_out[i] = 126;
2582
2583 /* Decrease by a 0.5dB step */
2584 pwr--;
2585 }
2586}
2587
2588/* Write PCDAC values on hw */
2589static void
Bruno Randolf56bd29d2010-12-21 17:30:26 +09002590ath5k_write_pcdac_table(struct ath5k_hw *ah)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002591{
2592 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2593 int i;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002594
2595 /*
2596 * Write TX power values
2597 */
2598 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2599 ath5k_hw_reg_write(ah,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002600 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2601 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002602 AR5K_PHY_PCDAC_TXPOWER(i));
2603 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002604}
Jiri Slabyfa1c1142007-08-12 17:33:16 +02002605
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002606
2607/*
2608 * Power to PDADC table functions
2609 */
2610
2611/*
2612 * Set the gain boundaries and create final Power to PDADC table
2613 *
2614 * We can have up to 4 pd curves, we need to do a simmilar process
2615 * as we do for RF5112. This time we don't have an edge_flag but we
2616 * set the gain boundaries on a separate register.
2617 */
2618static void
2619ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2620 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2621{
2622 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2623 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2624 u8 *pdadc_tmp;
2625 s16 pdadc_0;
2626 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2627 u8 pd_gain_overlap;
2628
2629 /* Note: Register value is initialized on initvals
2630 * there is no feedback from hw.
2631 * XXX: What about pd_gain_overlap from EEPROM ? */
2632 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2633 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2634
2635 /* Create final PDADC table */
2636 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2637 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2638
2639 if (pdg == pdcurves - 1)
2640 /* 2 dB boundary stretch for last
2641 * (higher power) curve */
2642 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2643 else
2644 /* Set gain boundary in the middle
2645 * between this curve and the next one */
2646 gain_boundaries[pdg] =
2647 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2648
2649 /* Sanity check in case our 2 db stretch got out of
2650 * range. */
2651 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2652 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2653
2654 /* For the first curve (lower power)
2655 * start from 0 dB */
2656 if (pdg == 0)
2657 pdadc_0 = 0;
2658 else
2659 /* For the other curves use the gain overlap */
2660 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2661 pd_gain_overlap;
2662
2663 /* Force each power step to be at least 0.5 dB */
2664 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2665 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2666 else
2667 pwr_step = 1;
2668
2669 /* If pdadc_0 is negative, we need to extrapolate
2670 * below this pdgain by a number of pwr_steps */
2671 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2672 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2673 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2674 pdadc_0++;
2675 }
2676
2677 /* Set last pwr level, using gain boundaries */
2678 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2679 /* Limit it to be inside pwr range */
2680 table_size = pwr_max[pdg] - pwr_min[pdg];
2681 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2682
2683 /* Fill pdadc_out table */
Bob Copeland4f59fce2010-04-07 23:55:59 -04002684 while (pdadc_0 < max_idx && pdadc_i < 128)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002685 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2686
2687 /* Need to extrapolate above this pdgain? */
2688 if (pdadc_n <= max_idx)
2689 continue;
2690
2691 /* Force each power step to be at least 0.5 dB */
2692 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2693 pwr_step = pdadc_tmp[table_size - 1] -
2694 pdadc_tmp[table_size - 2];
2695 else
2696 pwr_step = 1;
2697
2698 /* Extrapolate above */
2699 while ((pdadc_0 < (s16) pdadc_n) &&
2700 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2701 s16 tmp = pdadc_tmp[table_size - 1] +
2702 (pdadc_0 - max_idx) * pwr_step;
2703 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2704 pdadc_0++;
2705 }
2706 }
2707
2708 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2709 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2710 pdg++;
2711 }
2712
2713 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2714 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2715 pdadc_i++;
2716 }
2717
2718 /* Set gain boundaries */
2719 ath5k_hw_reg_write(ah,
2720 AR5K_REG_SM(pd_gain_overlap,
2721 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2722 AR5K_REG_SM(gain_boundaries[0],
2723 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2724 AR5K_REG_SM(gain_boundaries[1],
2725 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2726 AR5K_REG_SM(gain_boundaries[2],
2727 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2728 AR5K_REG_SM(gain_boundaries[3],
2729 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2730 AR5K_PHY_TPC_RG5);
2731
2732 /* Used for setting rate power table */
2733 ah->ah_txpower.txp_min_idx = pwr_min[0];
2734
2735}
2736
2737/* Write PDADC values on hw */
2738static void
Bruno Randolf56bd29d2010-12-21 17:30:26 +09002739ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002740{
Nick Kossifidisd84938c2010-12-03 06:03:00 +02002741 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002742 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
Nick Kossifidisd84938c2010-12-03 06:03:00 +02002743 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2744 u8 pdcurves = ee->ee_pd_gains[ee_mode];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002745 u32 reg;
2746 u8 i;
2747
2748 /* Select the right pdgain curves */
2749
2750 /* Clear current settings */
2751 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2752 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2753 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2754 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2755 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2756
2757 /*
2758 * Use pd_gains curve from eeprom
2759 *
2760 * This overrides the default setting from initvals
2761 * in case some vendors (e.g. Zcomax) don't use the default
2762 * curves. If we don't honor their settings we 'll get a
2763 * 5dB (1 * gain overlap ?) drop.
2764 */
2765 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2766
2767 switch (pdcurves) {
2768 case 3:
2769 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2770 /* Fall through */
2771 case 2:
2772 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2773 /* Fall through */
2774 case 1:
2775 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2776 break;
2777 }
2778 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2779
2780 /*
2781 * Write TX power values
2782 */
2783 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2784 ath5k_hw_reg_write(ah,
2785 ((pdadc_out[4*i + 0] & 0xff) << 0) |
2786 ((pdadc_out[4*i + 1] & 0xff) << 8) |
2787 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2788 ((pdadc_out[4*i + 3] & 0xff) << 24),
2789 AR5K_PHY_PDADC_TXPOWER(i));
2790 }
2791}
2792
2793
2794/*
2795 * Common code for PCDAC/PDADC tables
2796 */
2797
2798/*
2799 * This is the main function that uses all of the above
2800 * to set PCDAC/PDADC table on hw for the current channel.
2801 * This table is used for tx power calibration on the basband,
2802 * without it we get weird tx power levels and in some cases
2803 * distorted spectral mask
2804 */
2805static int
2806ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2807 struct ieee80211_channel *channel,
2808 u8 ee_mode, u8 type)
2809{
2810 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2811 struct ath5k_chan_pcal_info *pcinfo_L;
2812 struct ath5k_chan_pcal_info *pcinfo_R;
2813 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2814 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2815 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2816 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2817 u8 *tmpL;
2818 u8 *tmpR;
2819 u32 target = channel->center_freq;
2820 int pdg, i;
2821
2822 /* Get surounding freq piers for this channel */
2823 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2824 &pcinfo_L,
2825 &pcinfo_R);
2826
2827 /* Loop over pd gain curves on
2828 * surounding freq piers by index */
2829 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2830
2831 /* Fill curves in reverse order
2832 * from lower power (max gain)
2833 * to higher power. Use curve -> idx
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002834 * backmapping we did on eeprom init */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002835 u8 idx = pdg_curve_to_idx[pdg];
2836
2837 /* Grab the needed curves by index */
2838 pdg_L = &pcinfo_L->pd_curves[idx];
2839 pdg_R = &pcinfo_R->pd_curves[idx];
2840
2841 /* Initialize the temp tables */
2842 tmpL = ah->ah_txpower.tmpL[pdg];
2843 tmpR = ah->ah_txpower.tmpR[pdg];
2844
2845 /* Set curve's x boundaries and create
2846 * curves so that they cover the same
2847 * range (if we don't do that one table
2848 * will have values on some range and the
2849 * other one won't have any so interpolation
2850 * will fail) */
2851 table_min[pdg] = min(pdg_L->pd_pwr[0],
2852 pdg_R->pd_pwr[0]) / 2;
2853
2854 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2855 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2856
2857 /* Now create the curves on surrounding channels
2858 * and interpolate if needed to get the final
2859 * curve for this gain on this channel */
2860 switch (type) {
2861 case AR5K_PWRTABLE_LINEAR_PCDAC:
2862 /* Override min/max so that we don't loose
2863 * accuracy (don't divide by 2) */
2864 table_min[pdg] = min(pdg_L->pd_pwr[0],
2865 pdg_R->pd_pwr[0]);
2866
2867 table_max[pdg] =
2868 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2869 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2870
2871 /* Override minimum so that we don't get
2872 * out of bounds while extrapolating
2873 * below. Don't do this when we have 2
2874 * curves and we are on the high power curve
2875 * because table_min is ok in this case */
2876 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2877
2878 table_min[pdg] =
2879 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2880 pdg_R->pd_step,
2881 pdg_L->pd_pwr,
2882 pdg_R->pd_pwr);
2883
2884 /* Don't go too low because we will
2885 * miss the upper part of the curve.
2886 * Note: 126 = 31.5dB (max power supported)
2887 * in 0.25dB units */
2888 if (table_max[pdg] - table_min[pdg] > 126)
2889 table_min[pdg] = table_max[pdg] - 126;
2890 }
2891
2892 /* Fall through */
2893 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2894 case AR5K_PWRTABLE_PWR_TO_PDADC:
2895
2896 ath5k_create_power_curve(table_min[pdg],
2897 table_max[pdg],
2898 pdg_L->pd_pwr,
2899 pdg_L->pd_step,
2900 pdg_L->pd_points, tmpL, type);
2901
2902 /* We are in a calibration
2903 * pier, no need to interpolate
2904 * between freq piers */
2905 if (pcinfo_L == pcinfo_R)
2906 continue;
2907
2908 ath5k_create_power_curve(table_min[pdg],
2909 table_max[pdg],
2910 pdg_R->pd_pwr,
2911 pdg_R->pd_step,
2912 pdg_R->pd_points, tmpR, type);
2913 break;
2914 default:
2915 return -EINVAL;
2916 }
2917
2918 /* Interpolate between curves
2919 * of surounding freq piers to
2920 * get the final curve for this
2921 * pd gain. Re-use tmpL for interpolation
2922 * output */
2923 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2924 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2925 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2926 (s16) pcinfo_L->freq,
2927 (s16) pcinfo_R->freq,
2928 (s16) tmpL[i],
2929 (s16) tmpR[i]);
2930 }
2931 }
2932
2933 /* Now we have a set of curves for this
2934 * channel on tmpL (x range is table_max - table_min
2935 * and y values are tmpL[pdg][]) sorted in the same
André Goddard Rosaaf901ca2009-11-14 13:09:05 -02002936 * order as EEPROM (because we've used the backmapping).
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002937 * So for RF5112 it's from higher power to lower power
2938 * and for RF2413 it's from lower power to higher power.
2939 * For RF5111 we only have one curve. */
2940
2941 /* Fill min and max power levels for this
2942 * channel by interpolating the values on
2943 * surounding channels to complete the dataset */
2944 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2945 (s16) pcinfo_L->freq,
2946 (s16) pcinfo_R->freq,
2947 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2948
2949 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2950 (s16) pcinfo_L->freq,
2951 (s16) pcinfo_R->freq,
2952 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2953
Bruno Randolf56bd29d2010-12-21 17:30:26 +09002954 /* Fill PCDAC/PDADC table */
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002955 switch (type) {
2956 case AR5K_PWRTABLE_LINEAR_PCDAC:
2957 /* For RF5112 we can have one or two curves
2958 * and each curve covers a certain power lvl
2959 * range so we need to do some more processing */
2960 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2961 ee->ee_pd_gains[ee_mode]);
2962
2963 /* Set txp.offset so that we can
2964 * match max power value with max
2965 * table index */
2966 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002967 break;
2968 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2969 /* We are done for RF5111 since it has only
2970 * one curve, just fit the curve on the table */
2971 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2972
2973 /* No rate powertable adjustment for RF5111 */
2974 ah->ah_txpower.txp_min_idx = 0;
2975 ah->ah_txpower.txp_offset = 0;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002976 break;
2977 case AR5K_PWRTABLE_PWR_TO_PDADC:
2978 /* Set PDADC boundaries and fill
2979 * final PDADC table */
2980 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2981 ee->ee_pd_gains[ee_mode]);
2982
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002983 /* Set txp.offset, note that table_min
2984 * can be negative */
2985 ah->ah_txpower.txp_offset = table_min[0];
2986 break;
2987 default:
2988 return -EINVAL;
2989 }
2990
Bruno Randolf26c7fc42010-12-21 17:30:20 +09002991 ah->ah_txpower.txp_setup = true;
2992
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02002993 return 0;
2994}
2995
Bruno Randolf56bd29d2010-12-21 17:30:26 +09002996/* Write power table for current channel to hw */
2997static void
2998ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
2999{
3000 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3001 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3002 else
3003 ath5k_write_pcdac_table(ah);
3004}
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003005
3006/*
3007 * Per-rate tx power setting
3008 *
3009 * This is the code that sets the desired tx power (below
3010 * maximum) on hw for each rate (we also have TPC that sets
3011 * power per packet). We do that by providing an index on the
3012 * PCDAC/PDADC table we set up.
3013 */
3014
3015/*
3016 * Set rate power table
3017 *
3018 * For now we only limit txpower based on maximum tx power
3019 * supported by hw (what's inside rate_info). We need to limit
3020 * this even more, based on regulatory domain etc.
3021 *
3022 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3023 * and is indexed as follows:
3024 * rates[0] - rates[7] -> OFDM rates
3025 * rates[8] - rates[14] -> CCK rates
3026 * rates[15] -> XR rates (they all have the same power)
3027 */
3028static void
3029ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3030 struct ath5k_rate_pcal_info *rate_info,
3031 u8 ee_mode)
3032{
3033 unsigned int i;
3034 u16 *rates;
3035
3036 /* max_pwr is power level we got from driver/user in 0.5dB
3037 * units, switch to 0.25dB units so we can compare */
3038 max_pwr *= 2;
3039 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3040
3041 /* apply rate limits */
3042 rates = ah->ah_txpower.txp_rates_power_table;
3043
3044 /* OFDM rates 6 to 24Mb/s */
3045 for (i = 0; i < 5; i++)
3046 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3047
3048 /* Rest OFDM rates */
3049 rates[5] = min(rates[0], rate_info->target_power_36);
3050 rates[6] = min(rates[0], rate_info->target_power_48);
3051 rates[7] = min(rates[0], rate_info->target_power_54);
3052
3053 /* CCK rates */
3054 /* 1L */
3055 rates[8] = min(rates[0], rate_info->target_power_6to24);
3056 /* 2L */
3057 rates[9] = min(rates[0], rate_info->target_power_36);
3058 /* 2S */
3059 rates[10] = min(rates[0], rate_info->target_power_36);
3060 /* 5L */
3061 rates[11] = min(rates[0], rate_info->target_power_48);
3062 /* 5S */
3063 rates[12] = min(rates[0], rate_info->target_power_48);
3064 /* 11L */
3065 rates[13] = min(rates[0], rate_info->target_power_54);
3066 /* 11S */
3067 rates[14] = min(rates[0], rate_info->target_power_54);
3068
3069 /* XR rates */
3070 rates[15] = min(rates[0], rate_info->target_power_6to24);
3071
3072 /* CCK rates have different peak to average ratio
3073 * so we have to tweak their power so that gainf
3074 * correction works ok. For this we use OFDM to
3075 * CCK delta from eeprom */
3076 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3077 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3078 for (i = 8; i <= 15; i++)
3079 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3080
Nick Kossifidisa0823812009-04-30 15:55:44 -04003081 /* Now that we have all rates setup use table offset to
3082 * match the power range set by user with the power indices
3083 * on PCDAC/PDADC table */
3084 for (i = 0; i < 16; i++) {
3085 rates[i] += ah->ah_txpower.txp_offset;
3086 /* Don't get out of bounds */
3087 if (rates[i] > 63)
3088 rates[i] = 63;
3089 }
3090
3091 /* Min/max in 0.25dB units */
3092 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
Bruno Randolf51f00622010-12-21 17:30:32 +09003093 ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003094 ah->ah_txpower.txp_ofdm = rates[7];
3095}
3096
3097
3098/*
Bob Copeland8801df82010-08-21 16:39:02 -04003099 * Set transmission power
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003100 */
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003101static int
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003102ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003103 u8 ee_mode, u8 txpower)
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003104{
3105 struct ath5k_rate_pcal_info rate_info;
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003106 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003107 u8 type;
3108 int ret;
3109
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003110 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3111 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3112 return -EINVAL;
3113 }
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003114
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003115 /* Initialize TX power table */
3116 switch (ah->ah_radio) {
Nick Kossifidis3bb17652010-11-23 21:45:21 +02003117 case AR5K_RF5110:
3118 /* TODO */
3119 return 0;
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003120 case AR5K_RF5111:
3121 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3122 break;
3123 case AR5K_RF5112:
3124 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3125 break;
3126 case AR5K_RF2413:
3127 case AR5K_RF5413:
3128 case AR5K_RF2316:
3129 case AR5K_RF2317:
3130 case AR5K_RF2425:
3131 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3132 break;
3133 default:
3134 return -EINVAL;
3135 }
3136
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003137 /*
3138 * If we don't change channel/mode skip tx powertable calculation
3139 * and use the cached one.
3140 */
3141 if (!ah->ah_txpower.txp_setup ||
3142 (channel->hw_value != curr_channel->hw_value) ||
3143 (channel->center_freq != curr_channel->center_freq)) {
Nick Kossifidisd84938c2010-12-03 06:03:00 +02003144 /* Reset TX power values */
3145 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3146 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
Nick Kossifidisd84938c2010-12-03 06:03:00 +02003147
3148 /* Calculate the powertable */
Nick Kossifidis4c575812010-11-23 21:37:30 +02003149 ret = ath5k_setup_channel_powertable(ah, channel,
3150 ee_mode, type);
Nick Kossifidisd84938c2010-12-03 06:03:00 +02003151 if (ret)
3152 return ret;
Bruno Randolf56bd29d2010-12-21 17:30:26 +09003153 }
3154
3155 /* Write table on hw */
3156 ath5k_write_channel_powertable(ah, ee_mode, type);
Nick Kossifidisd84938c2010-12-03 06:03:00 +02003157
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003158 /* Limit max power if we have a CTL available */
3159 ath5k_get_max_ctl_power(ah, channel);
3160
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003161 /* FIXME: Antenna reduction stuff */
3162
3163 /* FIXME: Limit power on turbo modes */
3164
3165 /* FIXME: TPC scale reduction */
3166
3167 /* Get surounding channels for per-rate power table
3168 * calibration */
3169 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3170
3171 /* Setup rate power table */
3172 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3173
3174 /* Write rate power table on hw */
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003175 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3176 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3177 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3178
3179 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3180 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3181 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3182
3183 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3184 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3185 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3186
3187 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3188 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3189 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3190
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003191 /* FIXME: TPC support */
3192 if (ah->ah_txpower.txp_tpc) {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003193 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3194 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003195
3196 ath5k_hw_reg_write(ah,
3197 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3198 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3199 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3200 AR5K_TPC);
3201 } else {
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003202 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3203 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003204 }
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003205
3206 return 0;
3207}
3208
Nick Kossifidisa0823812009-04-30 15:55:44 -04003209int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003210{
3211 /*Just a try M.F.*/
Bob Copeland46026e82009-06-10 22:22:20 -04003212 struct ieee80211_channel *channel = ah->ah_current_channel;
Nick Kossifidisa0823812009-04-30 15:55:44 -04003213 u8 ee_mode;
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003214
Nick Kossifidisa0823812009-04-30 15:55:44 -04003215 switch (channel->hw_value & CHANNEL_MODES) {
3216 case CHANNEL_A:
Nick Kossifidisa0823812009-04-30 15:55:44 -04003217 case CHANNEL_XR:
3218 ee_mode = AR5K_EEPROM_MODE_11A;
3219 break;
3220 case CHANNEL_G:
Nick Kossifidisa0823812009-04-30 15:55:44 -04003221 ee_mode = AR5K_EEPROM_MODE_11G;
3222 break;
3223 case CHANNEL_B:
3224 ee_mode = AR5K_EEPROM_MODE_11B;
3225 break;
3226 default:
3227 ATH5K_ERR(ah->ah_sc,
3228 "invalid channel: %d\n", channel->center_freq);
3229 return -EINVAL;
3230 }
3231
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003232 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
Nick Kossifidis8f655dd2009-03-15 22:20:35 +02003233 "changing txpower to %d\n", txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003234
Bruno Randolf26c7fc42010-12-21 17:30:20 +09003235 return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
Jiri Slabyfa1c1142007-08-12 17:33:16 +02003236}
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003237
3238/*************\
3239 Init function
3240\*************/
3241
3242int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
Bruno Randolf26a51ad2010-12-21 17:30:37 +09003243 u8 mode, u8 ee_mode, bool fast)
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003244{
Nick Kossifidis4c575812010-11-23 21:37:30 +02003245 struct ieee80211_channel *curr_channel;
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003246 int ret, i;
3247 u32 phy_tst1;
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003248 ret = 0;
3249
3250 /*
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003251 * Sanity check for fast flag
3252 * Don't try fast channel change when changing modulation
3253 * mode/band. We check for chip compatibility on
3254 * ath5k_hw_reset.
3255 */
3256 curr_channel = ah->ah_current_channel;
3257 if (fast && (channel->hw_value != curr_channel->hw_value))
3258 return -EINVAL;
3259
3260 /*
3261 * On fast channel change we only set the synth parameters
3262 * while PHY is running, enable calibration and skip the rest.
3263 */
3264 if (fast) {
3265 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3266 AR5K_PHY_RFBUS_REQ_REQUEST);
3267 for (i = 0; i < 100; i++) {
3268 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3269 break;
3270 udelay(5);
3271 }
3272 /* Failed */
3273 if (i >= 100)
3274 return -EIO;
3275 }
3276
3277 /*
Nick Kossifidis4c575812010-11-23 21:37:30 +02003278 * Set TX power
3279 *
3280 * Note: We need to do that before we set
3281 * RF buffer settings on 5211/5212+ so that we
3282 * properly set curve indices.
3283 */
3284 ret = ath5k_hw_txpower(ah, channel, ee_mode,
Bruno Randolf51f00622010-12-21 17:30:32 +09003285 ah->ah_txpower.txp_cur_pwr ?
3286 ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
Nick Kossifidis4c575812010-11-23 21:37:30 +02003287 if (ret)
3288 return ret;
3289
3290 /*
3291 * For 5210 we do all initialization using
3292 * initvals, so we don't have to modify
3293 * any settings (5210 also only supports
3294 * a/aturbo modes)
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003295 */
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003296 if ((ah->ah_version != AR5K_AR5210) && !fast) {
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003297
3298 /*
3299 * Write initial RF gain settings
3300 * This should work for both 5111/5112
3301 */
Bruno Randolf26a51ad2010-12-21 17:30:37 +09003302 ret = ath5k_hw_rfgain_init(ah, channel->band);
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003303 if (ret)
3304 return ret;
3305
3306 mdelay(1);
3307
3308 /*
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003309 * Write RF buffer
3310 */
3311 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3312 if (ret)
3313 return ret;
3314
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003315 /* Write OFDM timings on 5212*/
3316 if (ah->ah_version == AR5K_AR5212 &&
3317 channel->hw_value & CHANNEL_OFDM) {
3318
3319 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3320 if (ret)
3321 return ret;
3322
3323 /* Spur info is available only from EEPROM versions
3324 * greater than 5.3, but the EEPROM routines will use
3325 * static values for older versions */
3326 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3327 ath5k_hw_set_spur_mitigation_filter(ah,
3328 channel);
3329 }
3330
3331 /*Enable/disable 802.11b mode on 5111
3332 (enable 2111 frequency converter + CCK)*/
3333 if (ah->ah_radio == AR5K_RF5111) {
3334 if (mode == AR5K_MODE_11B)
3335 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3336 AR5K_TXCFG_B_MODE);
3337 else
3338 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3339 AR5K_TXCFG_B_MODE);
3340 }
3341
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003342 } else if (ah->ah_version == AR5K_AR5210) {
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003343 mdelay(1);
3344 /* Disable phy and wait */
3345 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3346 mdelay(1);
3347 }
3348
3349 /* Set channel on PHY */
3350 ret = ath5k_hw_channel(ah, channel);
3351 if (ret)
3352 return ret;
3353
3354 /*
3355 * Enable the PHY and wait until completion
3356 * This includes BaseBand and Synthesizer
3357 * activation.
3358 */
3359 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3360
3361 /*
3362 * On 5211+ read activation -> rx delay
3363 * and use it.
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003364 */
3365 if (ah->ah_version != AR5K_AR5210) {
3366 u32 delay;
3367 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
3368 AR5K_PHY_RX_DELAY_M;
3369 delay = (channel->hw_value & CHANNEL_CCK) ?
3370 ((delay << 2) / 22) : (delay / 10);
Nick Kossifidisb02f5d12010-11-23 21:44:02 +02003371 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
3372 delay = delay << 1;
3373 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
3374 delay = delay << 2;
3375 /* XXX: /2 on turbo ? Let's be safe
3376 * for now */
3377 udelay(100 + delay);
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003378 } else {
3379 mdelay(1);
3380 }
3381
Nick Kossifidis8aec7af2010-11-23 21:39:28 +02003382 if (fast)
3383 /*
3384 * Release RF Bus grant
3385 */
3386 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3387 AR5K_PHY_RFBUS_REQ_REQUEST);
3388 else {
3389 /*
3390 * Perform ADC test to see if baseband is ready
3391 * Set tx hold and check adc test register
3392 */
3393 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3394 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3395 for (i = 0; i <= 20; i++) {
3396 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3397 break;
3398 udelay(200);
3399 }
3400 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003401 }
Nick Kossifidis9320b5c2010-11-23 20:36:45 +02003402
3403 /*
3404 * Start automatic gain control calibration
3405 *
3406 * During AGC calibration RX path is re-routed to
3407 * a power detector so we don't receive anything.
3408 *
3409 * This method is used to calibrate some static offsets
3410 * used together with on-the fly I/Q calibration (the
3411 * one performed via ath5k_hw_phy_calibrate), which doesn't
3412 * interrupt rx path.
3413 *
3414 * While rx path is re-routed to the power detector we also
3415 * start a noise floor calibration to measure the
3416 * card's noise floor (the noise we measure when we are not
3417 * transmitting or receiving anything).
3418 *
3419 * If we are in a noisy environment, AGC calibration may time
3420 * out and/or noise floor calibration might timeout.
3421 */
3422 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3423 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3424
3425 /* At the same time start I/Q calibration for QAM constellation
3426 * -no need for CCK- */
3427 ah->ah_calibration = false;
3428 if (!(mode == AR5K_MODE_11B)) {
3429 ah->ah_calibration = true;
3430 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3431 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3432 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3433 AR5K_PHY_IQ_RUN);
3434 }
3435
3436 /* Wait for gain calibration to finish (we check for I/Q calibration
3437 * during ath5k_phy_calibrate) */
3438 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3439 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3440 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
3441 channel->center_freq);
3442 }
3443
3444 /* Restore antenna mode */
3445 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3446
3447 return ret;
3448}