blob: f2bf1f73d468942590d5c914e874d24fa23d22b0 [file] [log] [blame]
Rusty Russellf938d2c2007-07-26 10:41:02 -07001/*P:010
2 * A hypervisor allows multiple Operating Systems to run on a single machine.
3 * To quote David Wheeler: "Any problem in computer science can be solved with
4 * another layer of indirection."
Rusty Russell07ad1572007-07-19 01:49:22 -07005 *
Rusty Russellf938d2c2007-07-26 10:41:02 -07006 * We keep things simple in two ways. First, we start with a normal Linux
7 * kernel and insert a module (lg.ko) which allows us to run other Linux
8 * kernels the same way we'd run processes. We call the first kernel the Host,
9 * and the others the Guests. The program which sets up and configures Guests
10 * (such as the example in Documentation/lguest/lguest.c) is called the
11 * Launcher.
12 *
Rusty Russella6bd8e12008-03-28 11:05:53 -050013 * Secondly, we only run specially modified Guests, not normal kernels: setting
14 * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
15 * how to be a Guest at boot time. This means that you can use the same kernel
16 * you boot normally (ie. as a Host) as a Guest.
Rusty Russellf938d2c2007-07-26 10:41:02 -070017 *
18 * These Guests know that they cannot do privileged operations, such as disable
19 * interrupts, and that they have to ask the Host to do such things explicitly.
20 * This file consists of all the replacements for such low-level native
21 * hardware operations: these special Guest versions call the Host.
22 *
Rusty Russella6bd8e12008-03-28 11:05:53 -050023 * So how does the kernel know it's a Guest? We'll see that later, but let's
24 * just say that we end up here where we replace the native functions various
25 * "paravirt" structures with our Guest versions, then boot like normal. :*/
Rusty Russellf938d2c2007-07-26 10:41:02 -070026
27/*
Rusty Russell07ad1572007-07-19 01:49:22 -070028 * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2 of the License, or
33 * (at your option) any later version.
34 *
35 * This program is distributed in the hope that it will be useful, but
36 * WITHOUT ANY WARRANTY; without even the implied warranty of
37 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
38 * NON INFRINGEMENT. See the GNU General Public License for more
39 * details.
40 *
41 * You should have received a copy of the GNU General Public License
42 * along with this program; if not, write to the Free Software
43 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
44 */
45#include <linux/kernel.h>
46#include <linux/start_kernel.h>
47#include <linux/string.h>
48#include <linux/console.h>
49#include <linux/screen_info.h>
50#include <linux/irq.h>
51#include <linux/interrupt.h>
Rusty Russelld7e28ff2007-07-19 01:49:23 -070052#include <linux/clocksource.h>
53#include <linux/clockchips.h>
Rusty Russell07ad1572007-07-19 01:49:22 -070054#include <linux/lguest.h>
55#include <linux/lguest_launcher.h>
Rusty Russell19f15372007-10-22 11:24:21 +100056#include <linux/virtio_console.h>
Jeff Garzik4cfe6c32007-10-25 14:15:09 +100057#include <linux/pm.h>
Ingo Molnar7b6aa332009-02-17 13:58:15 +010058#include <asm/apic.h>
Harvey Harrisoncbc34972008-02-13 13:14:35 -080059#include <asm/lguest.h>
Rusty Russell07ad1572007-07-19 01:49:22 -070060#include <asm/paravirt.h>
61#include <asm/param.h>
62#include <asm/page.h>
63#include <asm/pgtable.h>
64#include <asm/desc.h>
65#include <asm/setup.h>
66#include <asm/e820.h>
67#include <asm/mce.h>
68#include <asm/io.h>
Jes Sorensen625efab2007-10-22 11:03:28 +100069#include <asm/i387.h>
Rusty Russell2cb78782009-06-03 14:52:24 +093070#include <asm/stackprotector.h>
Balaji Raoec04b132007-12-28 14:26:24 +053071#include <asm/reboot.h> /* for struct machine_ops */
Rusty Russell07ad1572007-07-19 01:49:22 -070072
Rusty Russellb2b47c22007-07-26 10:41:02 -070073/*G:010 Welcome to the Guest!
74 *
75 * The Guest in our tale is a simple creature: identical to the Host but
76 * behaving in simplified but equivalent ways. In particular, the Guest is the
77 * same kernel as the Host (or at least, built from the same source code). :*/
78
Rusty Russell07ad1572007-07-19 01:49:22 -070079struct lguest_data lguest_data = {
80 .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
81 .noirq_start = (u32)lguest_noirq_start,
82 .noirq_end = (u32)lguest_noirq_end,
Rusty Russell47436aa2007-10-22 11:03:36 +100083 .kernel_address = PAGE_OFFSET,
Rusty Russell07ad1572007-07-19 01:49:22 -070084 .blocked_interrupts = { 1 }, /* Block timer interrupts */
Rusty Russellc18acd72007-10-22 11:03:35 +100085 .syscall_vec = SYSCALL_VECTOR,
Rusty Russell07ad1572007-07-19 01:49:22 -070086};
Rusty Russell07ad1572007-07-19 01:49:22 -070087
Rusty Russell633872b2007-11-05 21:55:57 +110088/*G:037 async_hcall() is pretty simple: I'm quite proud of it really. We have a
Rusty Russellb2b47c22007-07-26 10:41:02 -070089 * ring buffer of stored hypercalls which the Host will run though next time we
Matias Zabaljaureguicefcad12009-06-12 22:27:07 -060090 * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
Rusty Russellb2b47c22007-07-26 10:41:02 -070091 * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
92 * and 255 once the Host has finished with it.
93 *
94 * If we come around to a slot which hasn't been finished, then the table is
95 * full and we just make the hypercall directly. This has the nice side
96 * effect of causing the Host to run all the stored calls in the ring buffer
97 * which empties it for next time! */
Adrian Bunk9b56fdb2007-11-02 16:43:10 +010098static void async_hcall(unsigned long call, unsigned long arg1,
Matias Zabaljaureguicefcad12009-06-12 22:27:07 -060099 unsigned long arg2, unsigned long arg3,
100 unsigned long arg4)
Rusty Russell07ad1572007-07-19 01:49:22 -0700101{
102 /* Note: This code assumes we're uniprocessor. */
103 static unsigned int next_call;
104 unsigned long flags;
105
Rusty Russellb2b47c22007-07-26 10:41:02 -0700106 /* Disable interrupts if not already disabled: we don't want an
107 * interrupt handler making a hypercall while we're already doing
108 * one! */
Rusty Russell07ad1572007-07-19 01:49:22 -0700109 local_irq_save(flags);
110 if (lguest_data.hcall_status[next_call] != 0xFF) {
111 /* Table full, so do normal hcall which will flush table. */
Matias Zabaljaureguicefcad12009-06-12 22:27:07 -0600112 kvm_hypercall4(call, arg1, arg2, arg3, arg4);
Rusty Russell07ad1572007-07-19 01:49:22 -0700113 } else {
Jes Sorensenb410e7b2007-10-22 11:03:31 +1000114 lguest_data.hcalls[next_call].arg0 = call;
115 lguest_data.hcalls[next_call].arg1 = arg1;
116 lguest_data.hcalls[next_call].arg2 = arg2;
117 lguest_data.hcalls[next_call].arg3 = arg3;
Matias Zabaljaureguicefcad12009-06-12 22:27:07 -0600118 lguest_data.hcalls[next_call].arg4 = arg4;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700119 /* Arguments must all be written before we mark it to go */
Rusty Russell07ad1572007-07-19 01:49:22 -0700120 wmb();
121 lguest_data.hcall_status[next_call] = 0;
122 if (++next_call == LHCALL_RING_SIZE)
123 next_call = 0;
124 }
125 local_irq_restore(flags);
126}
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100127
Rusty Russell633872b2007-11-05 21:55:57 +1100128/*G:035 Notice the lazy_hcall() above, rather than hcall(). This is our first
129 * real optimization trick!
130 *
131 * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
132 * them as a batch when lazy_mode is eventually turned off. Because hypercalls
133 * are reasonably expensive, batching them up makes sense. For example, a
134 * large munmap might update dozens of page table entries: that code calls
135 * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
136 * lguest_leave_lazy_mode().
137 *
138 * So, when we're in lazy mode, we call async_hcall() to store the call for
Rusty Russella6bd8e12008-03-28 11:05:53 -0500139 * future processing: */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200140static void lazy_hcall1(unsigned long call,
141 unsigned long arg1)
142{
143 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
144 kvm_hypercall1(call, arg1);
145 else
Matias Zabaljaureguicefcad12009-06-12 22:27:07 -0600146 async_hcall(call, arg1, 0, 0, 0);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200147}
148
149static void lazy_hcall2(unsigned long call,
150 unsigned long arg1,
151 unsigned long arg2)
152{
153 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
154 kvm_hypercall2(call, arg1, arg2);
155 else
Matias Zabaljaureguicefcad12009-06-12 22:27:07 -0600156 async_hcall(call, arg1, arg2, 0, 0);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200157}
158
159static void lazy_hcall3(unsigned long call,
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100160 unsigned long arg1,
161 unsigned long arg2,
162 unsigned long arg3)
163{
164 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200165 kvm_hypercall3(call, arg1, arg2, arg3);
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100166 else
Matias Zabaljaureguicefcad12009-06-12 22:27:07 -0600167 async_hcall(call, arg1, arg2, arg3, 0);
168}
169
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600170#ifdef CONFIG_X86_PAE
Matias Zabaljaureguicefcad12009-06-12 22:27:07 -0600171static void lazy_hcall4(unsigned long call,
172 unsigned long arg1,
173 unsigned long arg2,
174 unsigned long arg3,
175 unsigned long arg4)
176{
177 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
178 kvm_hypercall4(call, arg1, arg2, arg3, arg4);
179 else
180 async_hcall(call, arg1, arg2, arg3, arg4);
Adrian Bunk9b56fdb2007-11-02 16:43:10 +0100181}
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600182#endif
Rusty Russell633872b2007-11-05 21:55:57 +1100183
184/* When lazy mode is turned off reset the per-cpu lazy mode variable and then
Rusty Russella6bd8e12008-03-28 11:05:53 -0500185 * issue the do-nothing hypercall to flush any stored calls. */
Jeremy Fitzhardingeb407fc52009-02-17 23:46:21 -0800186static void lguest_leave_lazy_mmu_mode(void)
Rusty Russell633872b2007-11-05 21:55:57 +1100187{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200188 kvm_hypercall0(LHCALL_FLUSH_ASYNC);
Jeremy Fitzhardingeb407fc52009-02-17 23:46:21 -0800189 paravirt_leave_lazy_mmu();
190}
191
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -0800192static void lguest_end_context_switch(struct task_struct *next)
Jeremy Fitzhardingeb407fc52009-02-17 23:46:21 -0800193{
Rusty Russell633872b2007-11-05 21:55:57 +1100194 kvm_hypercall0(LHCALL_FLUSH_ASYNC);
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -0800195 paravirt_end_context_switch(next);
Rusty Russell633872b2007-11-05 21:55:57 +1100196}
Rusty Russell07ad1572007-07-19 01:49:22 -0700197
Rusty Russell61f4bc82009-06-12 22:27:03 -0600198/*G:032
Rusty Russelle1e72962007-10-25 15:02:50 +1000199 * After that diversion we return to our first native-instruction
200 * replacements: four functions for interrupt control.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700201 *
202 * The simplest way of implementing these would be to have "turn interrupts
203 * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
204 * these are by far the most commonly called functions of those we override.
205 *
206 * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
207 * which the Guest can update with a single instruction. The Host knows to
Rusty Russella6bd8e12008-03-28 11:05:53 -0500208 * check there before it tries to deliver an interrupt.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700209 */
210
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100211/* save_flags() is expected to return the processor state (ie. "flags"). The
212 * flags word contains all kind of stuff, but in practice Linux only cares
Rusty Russellb2b47c22007-07-26 10:41:02 -0700213 * about the interrupt flag. Our "save_flags()" just returns that. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700214static unsigned long save_fl(void)
215{
216 return lguest_data.irq_enabled;
217}
Rusty Russell07ad1572007-07-19 01:49:22 -0700218
Rusty Russellb2b47c22007-07-26 10:41:02 -0700219/* Interrupts go off... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700220static void irq_disable(void)
221{
222 lguest_data.irq_enabled = 0;
223}
Rusty Russell61f4bc82009-06-12 22:27:03 -0600224
225/* Let's pause a moment. Remember how I said these are called so often?
226 * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
227 * break some rules. In particular, these functions are assumed to save their
228 * own registers if they need to: normal C functions assume they can trash the
229 * eax register. To use normal C functions, we use
230 * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
231 * C function, then restores it. */
232PV_CALLEE_SAVE_REGS_THUNK(save_fl);
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -0800233PV_CALLEE_SAVE_REGS_THUNK(irq_disable);
Rusty Russellf56a3842007-07-26 10:41:05 -0700234/*:*/
Rusty Russell61f4bc82009-06-12 22:27:03 -0600235
236/* These are in i386_head.S */
237extern void lg_irq_enable(void);
238extern void lg_restore_fl(unsigned long flags);
239
Rusty Russellf56a3842007-07-26 10:41:05 -0700240/*M:003 Note that we don't check for outstanding interrupts when we re-enable
241 * them (or when we unmask an interrupt). This seems to work for the moment,
242 * since interrupts are rare and we'll just get the interrupt on the next timer
Rusty Russella6bd8e12008-03-28 11:05:53 -0500243 * tick, but now we can run with CONFIG_NO_HZ, we should revisit this. One way
Rusty Russellf56a3842007-07-26 10:41:05 -0700244 * would be to put the "irq_enabled" field in a page by itself, and have the
245 * Host write-protect it when an interrupt comes in when irqs are disabled.
Rusty Russella6bd8e12008-03-28 11:05:53 -0500246 * There will then be a page fault as soon as interrupts are re-enabled.
247 *
248 * A better method is to implement soft interrupt disable generally for x86:
249 * instead of disabling interrupts, we set a flag. If an interrupt does come
250 * in, we then disable them for real. This is uncommon, so we could simply use
251 * a hypercall for interrupt control and not worry about efficiency. :*/
Rusty Russell07ad1572007-07-19 01:49:22 -0700252
Rusty Russellb2b47c22007-07-26 10:41:02 -0700253/*G:034
254 * The Interrupt Descriptor Table (IDT).
255 *
256 * The IDT tells the processor what to do when an interrupt comes in. Each
257 * entry in the table is a 64-bit descriptor: this holds the privilege level,
258 * address of the handler, and... well, who cares? The Guest just asks the
259 * Host to make the change anyway, because the Host controls the real IDT.
260 */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100261static void lguest_write_idt_entry(gate_desc *dt,
262 int entrynum, const gate_desc *g)
Rusty Russell07ad1572007-07-19 01:49:22 -0700263{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500264 /* The gate_desc structure is 8 bytes long: we hand it to the Host in
265 * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
266 * around like this; typesafety wasn't a big concern in Linux's early
267 * years. */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100268 u32 *desc = (u32 *)g;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700269 /* Keep the local copy up to date. */
Glauber de Oliveira Costa8d947342008-01-30 13:31:12 +0100270 native_write_idt_entry(dt, entrynum, g);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700271 /* Tell Host about this new entry. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200272 kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
Rusty Russell07ad1572007-07-19 01:49:22 -0700273}
274
Rusty Russellb2b47c22007-07-26 10:41:02 -0700275/* Changing to a different IDT is very rare: we keep the IDT up-to-date every
276 * time it is written, so we can simply loop through all entries and tell the
277 * Host about them. */
Glauber de Oliveira Costa6b68f012008-01-30 13:31:12 +0100278static void lguest_load_idt(const struct desc_ptr *desc)
Rusty Russell07ad1572007-07-19 01:49:22 -0700279{
280 unsigned int i;
281 struct desc_struct *idt = (void *)desc->address;
282
283 for (i = 0; i < (desc->size+1)/8; i++)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200284 kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700285}
286
Rusty Russellb2b47c22007-07-26 10:41:02 -0700287/*
288 * The Global Descriptor Table.
289 *
290 * The Intel architecture defines another table, called the Global Descriptor
291 * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
292 * instruction, and then several other instructions refer to entries in the
293 * table. There are three entries which the Switcher needs, so the Host simply
294 * controls the entire thing and the Guest asks it to make changes using the
295 * LOAD_GDT hypercall.
296 *
Rusty Russella489f0b2009-04-19 23:14:00 -0600297 * This is the exactly like the IDT code.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700298 */
Glauber de Oliveira Costa6b68f012008-01-30 13:31:12 +0100299static void lguest_load_gdt(const struct desc_ptr *desc)
Rusty Russell07ad1572007-07-19 01:49:22 -0700300{
Rusty Russella489f0b2009-04-19 23:14:00 -0600301 unsigned int i;
302 struct desc_struct *gdt = (void *)desc->address;
303
304 for (i = 0; i < (desc->size+1)/8; i++)
305 kvm_hypercall3(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700306}
307
Rusty Russellb2b47c22007-07-26 10:41:02 -0700308/* For a single GDT entry which changes, we do the lazy thing: alter our GDT,
309 * then tell the Host to reload the entire thing. This operation is so rare
310 * that this naive implementation is reasonable. */
Glauber de Oliveira Costa014b15b2008-01-30 13:31:13 +0100311static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
312 const void *desc, int type)
Rusty Russell07ad1572007-07-19 01:49:22 -0700313{
Glauber de Oliveira Costa014b15b2008-01-30 13:31:13 +0100314 native_write_gdt_entry(dt, entrynum, desc, type);
Rusty Russella489f0b2009-04-19 23:14:00 -0600315 /* Tell Host about this new entry. */
316 kvm_hypercall3(LHCALL_LOAD_GDT_ENTRY, entrynum,
317 dt[entrynum].a, dt[entrynum].b);
Rusty Russell07ad1572007-07-19 01:49:22 -0700318}
319
Rusty Russellb2b47c22007-07-26 10:41:02 -0700320/* OK, I lied. There are three "thread local storage" GDT entries which change
321 * on every context switch (these three entries are how glibc implements
322 * __thread variables). So we have a hypercall specifically for this case. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700323static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
324{
Rusty Russell0d027c02007-08-09 20:57:13 +1000325 /* There's one problem which normal hardware doesn't have: the Host
326 * can't handle us removing entries we're currently using. So we clear
327 * the GS register here: if it's needed it'll be reloaded anyway. */
Tejun Heoccbeed32009-02-09 22:17:40 +0900328 lazy_load_gs(0);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200329 lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
Rusty Russell07ad1572007-07-19 01:49:22 -0700330}
331
Rusty Russellb2b47c22007-07-26 10:41:02 -0700332/*G:038 That's enough excitement for now, back to ploughing through each of
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700333 * the different pv_ops structures (we're about 1/3 of the way through).
Rusty Russellb2b47c22007-07-26 10:41:02 -0700334 *
335 * This is the Local Descriptor Table, another weird Intel thingy. Linux only
336 * uses this for some strange applications like Wine. We don't do anything
337 * here, so they'll get an informative and friendly Segmentation Fault. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700338static void lguest_set_ldt(const void *addr, unsigned entries)
339{
340}
341
Rusty Russellb2b47c22007-07-26 10:41:02 -0700342/* This loads a GDT entry into the "Task Register": that entry points to a
343 * structure called the Task State Segment. Some comments scattered though the
344 * kernel code indicate that this used for task switching in ages past, along
345 * with blood sacrifice and astrology.
346 *
347 * Now there's nothing interesting in here that we don't get told elsewhere.
348 * But the native version uses the "ltr" instruction, which makes the Host
349 * complain to the Guest about a Segmentation Fault and it'll oops. So we
350 * override the native version with a do-nothing version. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700351static void lguest_load_tr_desc(void)
352{
353}
354
Rusty Russellb2b47c22007-07-26 10:41:02 -0700355/* The "cpuid" instruction is a way of querying both the CPU identity
356 * (manufacturer, model, etc) and its features. It was introduced before the
Rusty Russella6bd8e12008-03-28 11:05:53 -0500357 * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
358 * As you might imagine, after a decade and a half this treatment, it is now a
359 * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700360 *
361 * This instruction even it has its own Wikipedia entry. The Wikipedia entry
362 * has been translated into 4 languages. I am not making this up!
363 *
364 * We could get funky here and identify ourselves as "GenuineLguest", but
365 * instead we just use the real "cpuid" instruction. Then I pretty much turned
366 * off feature bits until the Guest booted. (Don't say that: you'll damage
367 * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
368 * hardly future proof.) Noone's listening! They don't like you anyway,
369 * parenthetic weirdo!
370 *
371 * Replacing the cpuid so we can turn features off is great for the kernel, but
372 * anyone (including userspace) can just use the raw "cpuid" instruction and
373 * the Host won't even notice since it isn't privileged. So we try not to get
374 * too worked up about it. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100375static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
376 unsigned int *cx, unsigned int *dx)
Rusty Russell07ad1572007-07-19 01:49:22 -0700377{
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100378 int function = *ax;
Rusty Russell07ad1572007-07-19 01:49:22 -0700379
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100380 native_cpuid(ax, bx, cx, dx);
Rusty Russell07ad1572007-07-19 01:49:22 -0700381 switch (function) {
Rusty Russell7a504922009-07-17 21:47:44 -0600382 case 0: /* ID and highest CPUID. Futureproof a little by sticking to
383 * older ones. */
384 if (*ax > 5)
385 *ax = 5;
386 break;
Rusty Russell07ad1572007-07-19 01:49:22 -0700387 case 1: /* Basic feature request. */
388 /* We only allow kernel to see SSE3, CMPXCHG16B and SSSE3 */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100389 *cx &= 0x00002201;
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600390 /* SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU, PAE. */
391 *dx &= 0x07808151;
Rusty Russellb2b47c22007-07-26 10:41:02 -0700392 /* The Host can do a nice optimization if it knows that the
393 * kernel mappings (addresses above 0xC0000000 or whatever
394 * PAGE_OFFSET is set to) haven't changed. But Linux calls
395 * flush_tlb_user() for both user and kernel mappings unless
396 * the Page Global Enable (PGE) feature bit is set. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100397 *dx |= 0x00002000;
Rusty Russellcbd88c82009-03-09 10:06:22 -0600398 /* We also lie, and say we're family id 5. 6 or greater
399 * leads to a rdmsr in early_init_intel which we can't handle.
400 * Family ID is returned as bits 8-12 in ax. */
401 *ax &= 0xFFFFF0FF;
402 *ax |= 0x00000500;
Rusty Russell07ad1572007-07-19 01:49:22 -0700403 break;
404 case 0x80000000:
405 /* Futureproof this a little: if they ask how much extended
Rusty Russellb2b47c22007-07-26 10:41:02 -0700406 * processor information there is, limit it to known fields. */
H. Peter Anvin65ea5b02008-01-30 13:30:56 +0100407 if (*ax > 0x80000008)
408 *ax = 0x80000008;
Rusty Russell07ad1572007-07-19 01:49:22 -0700409 break;
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600410 case 0x80000001:
411 /* Here we should fix nx cap depending on host. */
412 /* For this version of PAE, we just clear NX bit. */
413 *dx &= ~(1 << 20);
414 break;
Rusty Russell07ad1572007-07-19 01:49:22 -0700415 }
416}
417
Rusty Russellb2b47c22007-07-26 10:41:02 -0700418/* Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
419 * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
420 * it. The Host needs to know when the Guest wants to change them, so we have
421 * a whole series of functions like read_cr0() and write_cr0().
422 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000423 * We start with cr0. cr0 allows you to turn on and off all kinds of basic
Rusty Russellb2b47c22007-07-26 10:41:02 -0700424 * features, but Linux only really cares about one: the horrifically-named Task
425 * Switched (TS) bit at bit 3 (ie. 8)
426 *
427 * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
428 * the floating point unit is used. Which allows us to restore FPU state
429 * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
430 * name like "FPUTRAP bit" be a little less cryptic?
431 *
Rusty Russellad5173f2008-10-31 11:24:27 -0500432 * We store cr0 locally because the Host never changes it. The Guest sometimes
433 * wants to read it and we'd prefer not to bother the Host unnecessarily. */
434static unsigned long current_cr0;
Rusty Russell07ad1572007-07-19 01:49:22 -0700435static void lguest_write_cr0(unsigned long val)
436{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200437 lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
Rusty Russell07ad1572007-07-19 01:49:22 -0700438 current_cr0 = val;
439}
440
441static unsigned long lguest_read_cr0(void)
442{
443 return current_cr0;
444}
445
Rusty Russellb2b47c22007-07-26 10:41:02 -0700446/* Intel provided a special instruction to clear the TS bit for people too cool
447 * to use write_cr0() to do it. This "clts" instruction is faster, because all
448 * the vowels have been optimized out. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700449static void lguest_clts(void)
450{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200451 lazy_hcall1(LHCALL_TS, 0);
Rusty Russell25c47bb2007-10-25 14:09:53 +1000452 current_cr0 &= ~X86_CR0_TS;
Rusty Russell07ad1572007-07-19 01:49:22 -0700453}
454
Rusty Russelle1e72962007-10-25 15:02:50 +1000455/* cr2 is the virtual address of the last page fault, which the Guest only ever
Rusty Russellb2b47c22007-07-26 10:41:02 -0700456 * reads. The Host kindly writes this into our "struct lguest_data", so we
457 * just read it out of there. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700458static unsigned long lguest_read_cr2(void)
459{
460 return lguest_data.cr2;
461}
462
Rusty Russellad5173f2008-10-31 11:24:27 -0500463/* See lguest_set_pte() below. */
464static bool cr3_changed = false;
465
Rusty Russelle1e72962007-10-25 15:02:50 +1000466/* cr3 is the current toplevel pagetable page: the principle is the same as
Rusty Russellad5173f2008-10-31 11:24:27 -0500467 * cr0. Keep a local copy, and tell the Host when it changes. The only
468 * difference is that our local copy is in lguest_data because the Host needs
469 * to set it upon our initial hypercall. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700470static void lguest_write_cr3(unsigned long cr3)
471{
Rusty Russellad5173f2008-10-31 11:24:27 -0500472 lguest_data.pgdir = cr3;
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200473 lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
Rusty Russellad5173f2008-10-31 11:24:27 -0500474 cr3_changed = true;
Rusty Russell07ad1572007-07-19 01:49:22 -0700475}
476
477static unsigned long lguest_read_cr3(void)
478{
Rusty Russellad5173f2008-10-31 11:24:27 -0500479 return lguest_data.pgdir;
Rusty Russell07ad1572007-07-19 01:49:22 -0700480}
481
Rusty Russelle1e72962007-10-25 15:02:50 +1000482/* cr4 is used to enable and disable PGE, but we don't care. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700483static unsigned long lguest_read_cr4(void)
484{
485 return 0;
486}
487
488static void lguest_write_cr4(unsigned long val)
489{
490}
491
Rusty Russellb2b47c22007-07-26 10:41:02 -0700492/*
493 * Page Table Handling.
494 *
495 * Now would be a good time to take a rest and grab a coffee or similarly
496 * relaxing stimulant. The easy parts are behind us, and the trek gradually
497 * winds uphill from here.
498 *
499 * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
500 * maps virtual addresses to physical addresses using "page tables". We could
501 * use one huge index of 1 million entries: each address is 4 bytes, so that's
502 * 1024 pages just to hold the page tables. But since most virtual addresses
Rusty Russelle1e72962007-10-25 15:02:50 +1000503 * are unused, we use a two level index which saves space. The cr3 register
Rusty Russellb2b47c22007-07-26 10:41:02 -0700504 * contains the physical address of the top level "page directory" page, which
505 * contains physical addresses of up to 1024 second-level pages. Each of these
506 * second level pages contains up to 1024 physical addresses of actual pages,
507 * or Page Table Entries (PTEs).
508 *
509 * Here's a diagram, where arrows indicate physical addresses:
510 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000511 * cr3 ---> +---------+
Rusty Russellb2b47c22007-07-26 10:41:02 -0700512 * | --------->+---------+
513 * | | | PADDR1 |
514 * Top-level | | PADDR2 |
515 * (PMD) page | | |
516 * | | Lower-level |
517 * | | (PTE) page |
518 * | | | |
519 * .... ....
520 *
521 * So to convert a virtual address to a physical address, we look up the top
522 * level, which points us to the second level, which gives us the physical
523 * address of that page. If the top level entry was not present, or the second
524 * level entry was not present, then the virtual address is invalid (we
525 * say "the page was not mapped").
526 *
527 * Put another way, a 32-bit virtual address is divided up like so:
528 *
529 * 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
530 * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
531 * Index into top Index into second Offset within page
532 * page directory page pagetable page
533 *
534 * The kernel spends a lot of time changing both the top-level page directory
535 * and lower-level pagetable pages. The Guest doesn't know physical addresses,
536 * so while it maintains these page tables exactly like normal, it also needs
537 * to keep the Host informed whenever it makes a change: the Host will create
538 * the real page tables based on the Guests'.
539 */
540
541/* The Guest calls this to set a second-level entry (pte), ie. to map a page
542 * into a process' address space. We set the entry then tell the Host the
543 * toplevel and address this corresponds to. The Guest uses one pagetable per
544 * process, so we need to tell the Host which one we're changing (mm->pgd). */
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600545static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
546 pte_t *ptep)
547{
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600548#ifdef CONFIG_X86_PAE
549 lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
550 ptep->pte_low, ptep->pte_high);
551#else
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200552 lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600553#endif
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600554}
555
Rusty Russell07ad1572007-07-19 01:49:22 -0700556static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
557 pte_t *ptep, pte_t pteval)
558{
Matias Zabaljauregui90603d12009-06-12 22:27:06 -0600559 native_set_pte(ptep, pteval);
Rusty Russellb7ff99e2009-03-30 21:55:23 -0600560 lguest_pte_update(mm, addr, ptep);
Rusty Russell07ad1572007-07-19 01:49:22 -0700561}
562
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600563/* The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
564 * to set a middle-level entry when PAE is activated.
565 * Again, we set the entry then tell the Host which page we changed,
566 * and the index of the entry we changed. */
567#ifdef CONFIG_X86_PAE
568static void lguest_set_pud(pud_t *pudp, pud_t pudval)
569{
570 native_set_pud(pudp, pudval);
571
572 /* 32 bytes aligned pdpt address and the index. */
573 lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
574 (__pa(pudp) & 0x1F) / sizeof(pud_t));
575}
576
577static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
578{
579 native_set_pmd(pmdp, pmdval);
580 lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
581 (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
582}
583#else
584
585/* The Guest calls lguest_set_pmd to set a top-level entry when PAE is not
586 * activated. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700587static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
588{
Matias Zabaljauregui90603d12009-06-12 22:27:06 -0600589 native_set_pmd(pmdp, pmdval);
Matias Zabaljaureguiebe0ba82009-05-30 15:48:08 -0300590 lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
Matias Zabaljauregui90603d12009-06-12 22:27:06 -0600591 (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
Rusty Russell07ad1572007-07-19 01:49:22 -0700592}
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600593#endif
Rusty Russell07ad1572007-07-19 01:49:22 -0700594
Rusty Russellb2b47c22007-07-26 10:41:02 -0700595/* There are a couple of legacy places where the kernel sets a PTE, but we
596 * don't know the top level any more. This is useless for us, since we don't
597 * know which pagetable is changing or what address, so we just tell the Host
598 * to forget all of them. Fortunately, this is very rare.
599 *
600 * ... except in early boot when the kernel sets up the initial pagetables,
Rusty Russellad5173f2008-10-31 11:24:27 -0500601 * which makes booting astonishingly slow: 1.83 seconds! So we don't even tell
602 * the Host anything changed until we've done the first page table switch,
603 * which brings boot back to 0.25 seconds. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700604static void lguest_set_pte(pte_t *ptep, pte_t pteval)
605{
Matias Zabaljauregui90603d12009-06-12 22:27:06 -0600606 native_set_pte(ptep, pteval);
Rusty Russellad5173f2008-10-31 11:24:27 -0500607 if (cr3_changed)
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200608 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
Rusty Russell07ad1572007-07-19 01:49:22 -0700609}
610
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -0600611#ifdef CONFIG_X86_PAE
612static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
613{
614 native_set_pte_atomic(ptep, pte);
615 if (cr3_changed)
616 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
617}
618
619void lguest_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
620{
621 native_pte_clear(mm, addr, ptep);
622 lguest_pte_update(mm, addr, ptep);
623}
624
625void lguest_pmd_clear(pmd_t *pmdp)
626{
627 lguest_set_pmd(pmdp, __pmd(0));
628}
629#endif
630
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -0700631/* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
Rusty Russellb2b47c22007-07-26 10:41:02 -0700632 * native page table operations. On native hardware you can set a new page
633 * table entry whenever you want, but if you want to remove one you have to do
634 * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
635 *
636 * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
637 * called when a valid entry is written, not when it's removed (ie. marked not
638 * present). Instead, this is where we come when the Guest wants to remove a
639 * page table entry: we tell the Host to set that entry to 0 (ie. the present
640 * bit is zero). */
Rusty Russell07ad1572007-07-19 01:49:22 -0700641static void lguest_flush_tlb_single(unsigned long addr)
642{
Rusty Russellb2b47c22007-07-26 10:41:02 -0700643 /* Simply set it to zero: if it was not, it will fault back in. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200644 lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700645}
646
Rusty Russellb2b47c22007-07-26 10:41:02 -0700647/* This is what happens after the Guest has removed a large number of entries.
648 * This tells the Host that any of the page table entries for userspace might
649 * have changed, ie. virtual addresses below PAGE_OFFSET. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700650static void lguest_flush_tlb_user(void)
651{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200652 lazy_hcall1(LHCALL_FLUSH_TLB, 0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700653}
654
Rusty Russellb2b47c22007-07-26 10:41:02 -0700655/* This is called when the kernel page tables have changed. That's not very
656 * common (unless the Guest is using highmem, which makes the Guest extremely
657 * slow), so it's worth separating this from the user flushing above. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700658static void lguest_flush_tlb_kernel(void)
659{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200660 lazy_hcall1(LHCALL_FLUSH_TLB, 1);
Rusty Russell07ad1572007-07-19 01:49:22 -0700661}
662
Rusty Russellb2b47c22007-07-26 10:41:02 -0700663/*
664 * The Unadvanced Programmable Interrupt Controller.
665 *
666 * This is an attempt to implement the simplest possible interrupt controller.
667 * I spent some time looking though routines like set_irq_chip_and_handler,
668 * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
669 * I *think* this is as simple as it gets.
670 *
671 * We can tell the Host what interrupts we want blocked ready for using the
672 * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
673 * simple as setting a bit. We don't actually "ack" interrupts as such, we
674 * just mask and unmask them. I wonder if we should be cleverer?
675 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700676static void disable_lguest_irq(unsigned int irq)
677{
678 set_bit(irq, lguest_data.blocked_interrupts);
679}
680
681static void enable_lguest_irq(unsigned int irq)
682{
683 clear_bit(irq, lguest_data.blocked_interrupts);
Rusty Russell07ad1572007-07-19 01:49:22 -0700684}
685
Rusty Russellb2b47c22007-07-26 10:41:02 -0700686/* This structure describes the lguest IRQ controller. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700687static struct irq_chip lguest_irq_controller = {
688 .name = "lguest",
689 .mask = disable_lguest_irq,
690 .mask_ack = disable_lguest_irq,
691 .unmask = enable_lguest_irq,
692};
693
Rusty Russellb2b47c22007-07-26 10:41:02 -0700694/* This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
695 * interrupt (except 128, which is used for system calls), and then tells the
696 * Linux infrastructure that each interrupt is controlled by our level-based
697 * lguest interrupt controller. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700698static void __init lguest_init_IRQ(void)
699{
700 unsigned int i;
701
Rusty Russell10283752009-06-12 22:26:59 -0600702 for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
Rusty Russell526e5ab2008-10-31 11:24:27 -0500703 /* Some systems map "vectors" to interrupts weirdly. Lguest has
704 * a straightforward 1 to 1 mapping, so force that here. */
Rusty Russell10283752009-06-12 22:26:59 -0600705 __get_cpu_var(vector_irq)[i] = i - FIRST_EXTERNAL_VECTOR;
706 if (i != SYSCALL_VECTOR)
707 set_intr_gate(i, interrupt[i - FIRST_EXTERNAL_VECTOR]);
Rusty Russell07ad1572007-07-19 01:49:22 -0700708 }
Rusty Russellb2b47c22007-07-26 10:41:02 -0700709 /* This call is required to set up for 4k stacks, where we have
710 * separate stacks for hard and soft interrupts. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700711 irq_ctx_init(smp_processor_id());
712}
713
Rusty Russell6db6a5f2009-03-09 10:06:28 -0600714void lguest_setup_irq(unsigned int irq)
715{
Yinghai Lu85ac16d2009-04-27 18:00:38 -0700716 irq_to_desc_alloc_node(irq, 0);
Rusty Russell6db6a5f2009-03-09 10:06:28 -0600717 set_irq_chip_and_handler_name(irq, &lguest_irq_controller,
718 handle_level_irq, "level");
719}
720
Rusty Russellb2b47c22007-07-26 10:41:02 -0700721/*
722 * Time.
723 *
724 * It would be far better for everyone if the Guest had its own clock, but
Rusty Russell6c8dca52007-07-27 13:42:52 +1000725 * until then the Host gives us the time on every interrupt.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700726 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700727static unsigned long lguest_get_wallclock(void)
728{
Rusty Russell6c8dca52007-07-27 13:42:52 +1000729 return lguest_data.time.tv_sec;
Rusty Russell07ad1572007-07-19 01:49:22 -0700730}
731
Rusty Russella6bd8e12008-03-28 11:05:53 -0500732/* The TSC is an Intel thing called the Time Stamp Counter. The Host tells us
733 * what speed it runs at, or 0 if it's unusable as a reliable clock source.
734 * This matches what we want here: if we return 0 from this function, the x86
735 * TSC clock will give up and not register itself. */
Alok Katariae93ef942008-07-01 11:43:36 -0700736static unsigned long lguest_tsc_khz(void)
Rusty Russell3fabc552008-03-11 09:35:56 -0500737{
738 return lguest_data.tsc_khz;
739}
740
Rusty Russella6bd8e12008-03-28 11:05:53 -0500741/* If we can't use the TSC, the kernel falls back to our lower-priority
742 * "lguest_clock", where we read the time value given to us by the Host. */
Magnus Damm8e196082009-04-21 12:24:00 -0700743static cycle_t lguest_clock_read(struct clocksource *cs)
Rusty Russell07ad1572007-07-19 01:49:22 -0700744{
Rusty Russell6c8dca52007-07-27 13:42:52 +1000745 unsigned long sec, nsec;
746
Rusty Russell3fabc552008-03-11 09:35:56 -0500747 /* Since the time is in two parts (seconds and nanoseconds), we risk
748 * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
749 * and getting 99 and 0. As Linux tends to come apart under the stress
750 * of time travel, we must be careful: */
Rusty Russell6c8dca52007-07-27 13:42:52 +1000751 do {
752 /* First we read the seconds part. */
753 sec = lguest_data.time.tv_sec;
754 /* This read memory barrier tells the compiler and the CPU that
755 * this can't be reordered: we have to complete the above
756 * before going on. */
757 rmb();
758 /* Now we read the nanoseconds part. */
759 nsec = lguest_data.time.tv_nsec;
760 /* Make sure we've done that. */
761 rmb();
762 /* Now if the seconds part has changed, try again. */
763 } while (unlikely(lguest_data.time.tv_sec != sec));
764
Rusty Russell3fabc552008-03-11 09:35:56 -0500765 /* Our lguest clock is in real nanoseconds. */
Rusty Russell6c8dca52007-07-27 13:42:52 +1000766 return sec*1000000000ULL + nsec;
Rusty Russell07ad1572007-07-19 01:49:22 -0700767}
768
Rusty Russell3fabc552008-03-11 09:35:56 -0500769/* This is the fallback clocksource: lower priority than the TSC clocksource. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700770static struct clocksource lguest_clock = {
771 .name = "lguest",
Rusty Russell3fabc552008-03-11 09:35:56 -0500772 .rating = 200,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700773 .read = lguest_clock_read,
Rusty Russell6c8dca52007-07-27 13:42:52 +1000774 .mask = CLOCKSOURCE_MASK(64),
Rusty Russell37250092007-08-09 20:52:35 +1000775 .mult = 1 << 22,
776 .shift = 22,
Tony Breeds05aa0262007-10-22 10:56:25 +1000777 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700778};
779
780/* We also need a "struct clock_event_device": Linux asks us to set it to go
781 * off some time in the future. Actually, James Morris figured all this out, I
782 * just applied the patch. */
783static int lguest_clockevent_set_next_event(unsigned long delta,
784 struct clock_event_device *evt)
785{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500786 /* FIXME: I don't think this can ever happen, but James tells me he had
787 * to put this code in. Maybe we should remove it now. Anyone? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700788 if (delta < LG_CLOCK_MIN_DELTA) {
789 if (printk_ratelimit())
790 printk(KERN_DEBUG "%s: small delta %lu ns\n",
Harvey Harrison77bf90e2008-03-03 11:37:23 -0800791 __func__, delta);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700792 return -ETIME;
793 }
Rusty Russella6bd8e12008-03-28 11:05:53 -0500794
795 /* Please wake us this far in the future. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200796 kvm_hypercall1(LHCALL_SET_CLOCKEVENT, delta);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700797 return 0;
798}
799
800static void lguest_clockevent_set_mode(enum clock_event_mode mode,
801 struct clock_event_device *evt)
802{
803 switch (mode) {
804 case CLOCK_EVT_MODE_UNUSED:
805 case CLOCK_EVT_MODE_SHUTDOWN:
806 /* A 0 argument shuts the clock down. */
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200807 kvm_hypercall0(LHCALL_SET_CLOCKEVENT);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700808 break;
809 case CLOCK_EVT_MODE_ONESHOT:
810 /* This is what we expect. */
811 break;
812 case CLOCK_EVT_MODE_PERIODIC:
813 BUG();
Thomas Gleixner18de5bc2007-07-21 04:37:34 -0700814 case CLOCK_EVT_MODE_RESUME:
815 break;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700816 }
817}
818
819/* This describes our primitive timer chip. */
820static struct clock_event_device lguest_clockevent = {
821 .name = "lguest",
822 .features = CLOCK_EVT_FEAT_ONESHOT,
823 .set_next_event = lguest_clockevent_set_next_event,
824 .set_mode = lguest_clockevent_set_mode,
825 .rating = INT_MAX,
826 .mult = 1,
827 .shift = 0,
828 .min_delta_ns = LG_CLOCK_MIN_DELTA,
829 .max_delta_ns = LG_CLOCK_MAX_DELTA,
830};
831
832/* This is the Guest timer interrupt handler (hardware interrupt 0). We just
833 * call the clockevent infrastructure and it does whatever needs doing. */
834static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
835{
836 unsigned long flags;
837
838 /* Don't interrupt us while this is running. */
839 local_irq_save(flags);
840 lguest_clockevent.event_handler(&lguest_clockevent);
841 local_irq_restore(flags);
842}
843
Rusty Russellb2b47c22007-07-26 10:41:02 -0700844/* At some point in the boot process, we get asked to set up our timing
845 * infrastructure. The kernel doesn't expect timer interrupts before this, but
846 * we cleverly initialized the "blocked_interrupts" field of "struct
847 * lguest_data" so that timer interrupts were blocked until now. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700848static void lguest_time_init(void)
849{
Rusty Russellb2b47c22007-07-26 10:41:02 -0700850 /* Set up the timer interrupt (0) to go to our simple timer routine */
Rusty Russell07ad1572007-07-19 01:49:22 -0700851 set_irq_handler(0, lguest_time_irq);
Rusty Russell07ad1572007-07-19 01:49:22 -0700852
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700853 clocksource_register(&lguest_clock);
854
Rusty Russellb2b47c22007-07-26 10:41:02 -0700855 /* We can't set cpumask in the initializer: damn C limitations! Set it
856 * here and register our timer device. */
Rusty Russell320ab2b2008-12-13 21:20:26 +1030857 lguest_clockevent.cpumask = cpumask_of(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700858 clockevents_register_device(&lguest_clockevent);
859
Rusty Russellb2b47c22007-07-26 10:41:02 -0700860 /* Finally, we unblock the timer interrupt. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700861 enable_lguest_irq(0);
Rusty Russell07ad1572007-07-19 01:49:22 -0700862}
863
Rusty Russellb2b47c22007-07-26 10:41:02 -0700864/*
865 * Miscellaneous bits and pieces.
866 *
867 * Here is an oddball collection of functions which the Guest needs for things
868 * to work. They're pretty simple.
869 */
870
Rusty Russelle1e72962007-10-25 15:02:50 +1000871/* The Guest needs to tell the Host what stack it expects traps to use. For
Rusty Russellb2b47c22007-07-26 10:41:02 -0700872 * native hardware, this is part of the Task State Segment mentioned above in
873 * lguest_load_tr_desc(), but to help hypervisors there's this special call.
874 *
875 * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
876 * segment), the privilege level (we're privilege level 1, the Host is 0 and
877 * will not tolerate us trying to use that), the stack pointer, and the number
878 * of pages in the stack. */
H. Peter Anvinfaca6222008-01-30 13:31:02 +0100879static void lguest_load_sp0(struct tss_struct *tss,
Rusty Russella6bd8e12008-03-28 11:05:53 -0500880 struct thread_struct *thread)
Rusty Russell07ad1572007-07-19 01:49:22 -0700881{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200882 lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
883 THREAD_SIZE / PAGE_SIZE);
Rusty Russell07ad1572007-07-19 01:49:22 -0700884}
885
Rusty Russellb2b47c22007-07-26 10:41:02 -0700886/* Let's just say, I wouldn't do debugging under a Guest. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700887static void lguest_set_debugreg(int regno, unsigned long value)
888{
889 /* FIXME: Implement */
890}
891
Rusty Russellb2b47c22007-07-26 10:41:02 -0700892/* There are times when the kernel wants to make sure that no memory writes are
893 * caught in the cache (that they've all reached real hardware devices). This
894 * doesn't matter for the Guest which has virtual hardware.
895 *
896 * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
897 * (clflush) instruction is available and the kernel uses that. Otherwise, it
898 * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
899 * Unlike clflush, wbinvd can only be run at privilege level 0. So we can
900 * ignore clflush, but replace wbinvd.
901 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700902static void lguest_wbinvd(void)
903{
904}
905
Rusty Russellb2b47c22007-07-26 10:41:02 -0700906/* If the Guest expects to have an Advanced Programmable Interrupt Controller,
907 * we play dumb by ignoring writes and returning 0 for reads. So it's no
908 * longer Programmable nor Controlling anything, and I don't think 8 lines of
909 * code qualifies for Advanced. It will also never interrupt anything. It
910 * does, however, allow us to get through the Linux boot code. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700911#ifdef CONFIG_X86_LOCAL_APIC
Suresh Siddhaad66dd32008-07-11 13:11:56 -0700912static void lguest_apic_write(u32 reg, u32 v)
Rusty Russell07ad1572007-07-19 01:49:22 -0700913{
914}
915
Suresh Siddhaad66dd32008-07-11 13:11:56 -0700916static u32 lguest_apic_read(u32 reg)
Rusty Russell07ad1572007-07-19 01:49:22 -0700917{
918 return 0;
919}
Suresh Siddha511d9d32008-07-14 09:49:14 -0700920
921static u64 lguest_apic_icr_read(void)
922{
923 return 0;
924}
925
926static void lguest_apic_icr_write(u32 low, u32 id)
927{
928 /* Warn to see if there's any stray references */
929 WARN_ON(1);
930}
931
932static void lguest_apic_wait_icr_idle(void)
933{
934 return;
935}
936
937static u32 lguest_apic_safe_wait_icr_idle(void)
938{
939 return 0;
940}
941
Yinghai Luc1eeb2d2009-02-16 23:02:14 -0800942static void set_lguest_basic_apic_ops(void)
943{
944 apic->read = lguest_apic_read;
945 apic->write = lguest_apic_write;
946 apic->icr_read = lguest_apic_icr_read;
947 apic->icr_write = lguest_apic_icr_write;
948 apic->wait_icr_idle = lguest_apic_wait_icr_idle;
949 apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
Suresh Siddha511d9d32008-07-14 09:49:14 -0700950};
Rusty Russell07ad1572007-07-19 01:49:22 -0700951#endif
952
Rusty Russellb2b47c22007-07-26 10:41:02 -0700953/* STOP! Until an interrupt comes in. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700954static void lguest_safe_halt(void)
955{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200956 kvm_hypercall0(LHCALL_HALT);
Rusty Russell07ad1572007-07-19 01:49:22 -0700957}
958
Rusty Russella6bd8e12008-03-28 11:05:53 -0500959/* The SHUTDOWN hypercall takes a string to describe what's happening, and
960 * an argument which says whether this to restart (reboot) the Guest or not.
Rusty Russellb2b47c22007-07-26 10:41:02 -0700961 *
962 * Note that the Host always prefers that the Guest speak in physical addresses
963 * rather than virtual addresses, so we use __pa() here. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700964static void lguest_power_off(void)
965{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200966 kvm_hypercall2(LHCALL_SHUTDOWN, __pa("Power down"),
967 LGUEST_SHUTDOWN_POWEROFF);
Rusty Russell07ad1572007-07-19 01:49:22 -0700968}
969
Rusty Russellb2b47c22007-07-26 10:41:02 -0700970/*
971 * Panicing.
972 *
973 * Don't. But if you did, this is what happens.
974 */
Rusty Russell07ad1572007-07-19 01:49:22 -0700975static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
976{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -0200977 kvm_hypercall2(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700978 /* The hcall won't return, but to keep gcc happy, we're "done". */
Rusty Russell07ad1572007-07-19 01:49:22 -0700979 return NOTIFY_DONE;
980}
981
982static struct notifier_block paniced = {
983 .notifier_call = lguest_panic
984};
985
Rusty Russellb2b47c22007-07-26 10:41:02 -0700986/* Setting up memory is fairly easy. */
Rusty Russell07ad1572007-07-19 01:49:22 -0700987static __init char *lguest_memory_setup(void)
988{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500989 /* We do this here and not earlier because lockcheck used to barf if we
990 * did it before start_kernel(). I think we fixed that, so it'd be
991 * nice to move it back to lguest_init. Patch welcome... */
Rusty Russell07ad1572007-07-19 01:49:22 -0700992 atomic_notifier_chain_register(&panic_notifier_list, &paniced);
993
Rusty Russellb2b47c22007-07-26 10:41:02 -0700994 /* The Linux bootloader header contains an "e820" memory map: the
995 * Launcher populated the first entry with our memory limit. */
Yinghai Lud0be6bd2008-06-15 18:58:51 -0700996 e820_add_region(boot_params.e820_map[0].addr,
H. Peter Anvin30c82642007-10-15 17:13:22 -0700997 boot_params.e820_map[0].size,
998 boot_params.e820_map[0].type);
Rusty Russellb2b47c22007-07-26 10:41:02 -0700999
1000 /* This string is for the boot messages. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001001 return "LGUEST";
1002}
1003
Rusty Russelle1e72962007-10-25 15:02:50 +10001004/* We will eventually use the virtio console device to produce console output,
1005 * but before that is set up we use LHCALL_NOTIFY on normal memory to produce
1006 * console output. */
Rusty Russell19f15372007-10-22 11:24:21 +10001007static __init int early_put_chars(u32 vtermno, const char *buf, int count)
1008{
1009 char scratch[17];
1010 unsigned int len = count;
1011
Rusty Russelle1e72962007-10-25 15:02:50 +10001012 /* We use a nul-terminated string, so we have to make a copy. Icky,
1013 * huh? */
Rusty Russell19f15372007-10-22 11:24:21 +10001014 if (len > sizeof(scratch) - 1)
1015 len = sizeof(scratch) - 1;
1016 scratch[len] = '\0';
1017 memcpy(scratch, buf, len);
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -02001018 kvm_hypercall1(LHCALL_NOTIFY, __pa(scratch));
Rusty Russell19f15372007-10-22 11:24:21 +10001019
1020 /* This routine returns the number of bytes actually written. */
1021 return len;
1022}
1023
Rusty Russella6bd8e12008-03-28 11:05:53 -05001024/* Rebooting also tells the Host we're finished, but the RESTART flag tells the
1025 * Launcher to reboot us. */
1026static void lguest_restart(char *reason)
1027{
Matias Zabaljauregui4cd8b5e2009-03-14 13:37:52 -02001028 kvm_hypercall2(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART);
Rusty Russella6bd8e12008-03-28 11:05:53 -05001029}
1030
Rusty Russellb2b47c22007-07-26 10:41:02 -07001031/*G:050
1032 * Patching (Powerfully Placating Performance Pedants)
1033 *
Rusty Russella6bd8e12008-03-28 11:05:53 -05001034 * We have already seen that pv_ops structures let us replace simple native
1035 * instructions with calls to the appropriate back end all throughout the
1036 * kernel. This allows the same kernel to run as a Guest and as a native
Rusty Russellb2b47c22007-07-26 10:41:02 -07001037 * kernel, but it's slow because of all the indirect branches.
1038 *
1039 * Remember that David Wheeler quote about "Any problem in computer science can
1040 * be solved with another layer of indirection"? The rest of that quote is
1041 * "... But that usually will create another problem." This is the first of
1042 * those problems.
1043 *
1044 * Our current solution is to allow the paravirt back end to optionally patch
1045 * over the indirect calls to replace them with something more efficient. We
Rusty Russella32a8812009-06-12 22:27:02 -06001046 * patch two of the simplest of the most commonly called functions: disable
1047 * interrupts and save interrupts. We usually have 6 or 10 bytes to patch
1048 * into: the Guest versions of these operations are small enough that we can
1049 * fit comfortably.
Rusty Russellb2b47c22007-07-26 10:41:02 -07001050 *
1051 * First we need assembly templates of each of the patchable Guest operations,
Atsushi SAKAI72410af2009-01-16 20:39:14 +09001052 * and these are in i386_head.S. */
Rusty Russellb2b47c22007-07-26 10:41:02 -07001053
1054/*G:060 We construct a table from the assembler templates: */
Rusty Russell07ad1572007-07-19 01:49:22 -07001055static const struct lguest_insns
1056{
1057 const char *start, *end;
1058} lguest_insns[] = {
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001059 [PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001060 [PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
Rusty Russell07ad1572007-07-19 01:49:22 -07001061};
Rusty Russellb2b47c22007-07-26 10:41:02 -07001062
1063/* Now our patch routine is fairly simple (based on the native one in
1064 * paravirt.c). If we have a replacement, we copy it in and return how much of
1065 * the available space we used. */
Andi Kleenab144f52007-08-10 22:31:03 +02001066static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
1067 unsigned long addr, unsigned len)
Rusty Russell07ad1572007-07-19 01:49:22 -07001068{
1069 unsigned int insn_len;
1070
Rusty Russellb2b47c22007-07-26 10:41:02 -07001071 /* Don't do anything special if we don't have a replacement */
Rusty Russell07ad1572007-07-19 01:49:22 -07001072 if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
Andi Kleenab144f52007-08-10 22:31:03 +02001073 return paravirt_patch_default(type, clobber, ibuf, addr, len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001074
1075 insn_len = lguest_insns[type].end - lguest_insns[type].start;
1076
Rusty Russellb2b47c22007-07-26 10:41:02 -07001077 /* Similarly if we can't fit replacement (shouldn't happen, but let's
1078 * be thorough). */
Rusty Russell07ad1572007-07-19 01:49:22 -07001079 if (len < insn_len)
Andi Kleenab144f52007-08-10 22:31:03 +02001080 return paravirt_patch_default(type, clobber, ibuf, addr, len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001081
Rusty Russellb2b47c22007-07-26 10:41:02 -07001082 /* Copy in our instructions. */
Andi Kleenab144f52007-08-10 22:31:03 +02001083 memcpy(ibuf, lguest_insns[type].start, insn_len);
Rusty Russell07ad1572007-07-19 01:49:22 -07001084 return insn_len;
1085}
1086
Matias Zabaljauregui57808882009-06-18 11:44:06 -03001087/*G:029 Once we get to lguest_init(), we know we're a Guest. The various
Rusty Russella6bd8e12008-03-28 11:05:53 -05001088 * pv_ops structures in the kernel provide points for (almost) every routine we
1089 * have to override to avoid privileged instructions. */
Rusty Russell814a0e52007-10-22 11:29:44 +10001090__init void lguest_init(void)
Rusty Russell07ad1572007-07-19 01:49:22 -07001091{
Rusty Russellb2b47c22007-07-26 10:41:02 -07001092 /* We're under lguest, paravirt is enabled, and we're running at
1093 * privilege level 1, not 0 as normal. */
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001094 pv_info.name = "lguest";
1095 pv_info.paravirt_enabled = 1;
1096 pv_info.kernel_rpl = 1;
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -06001097 pv_info.shared_kernel_pmd = 1;
Rusty Russell07ad1572007-07-19 01:49:22 -07001098
Rusty Russellb2b47c22007-07-26 10:41:02 -07001099 /* We set up all the lguest overrides for sensitive operations. These
1100 * are detailed with the operations themselves. */
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001101
1102 /* interrupt-related operations */
1103 pv_irq_ops.init_IRQ = lguest_init_IRQ;
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -08001104 pv_irq_ops.save_fl = PV_CALLEE_SAVE(save_fl);
Rusty Russell61f4bc82009-06-12 22:27:03 -06001105 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
Jeremy Fitzhardingeecb93d12009-01-28 14:35:05 -08001106 pv_irq_ops.irq_disable = PV_CALLEE_SAVE(irq_disable);
Rusty Russell61f4bc82009-06-12 22:27:03 -06001107 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001108 pv_irq_ops.safe_halt = lguest_safe_halt;
1109
1110 /* init-time operations */
1111 pv_init_ops.memory_setup = lguest_memory_setup;
1112 pv_init_ops.patch = lguest_patch;
1113
1114 /* Intercepts of various cpu instructions */
1115 pv_cpu_ops.load_gdt = lguest_load_gdt;
1116 pv_cpu_ops.cpuid = lguest_cpuid;
1117 pv_cpu_ops.load_idt = lguest_load_idt;
1118 pv_cpu_ops.iret = lguest_iret;
H. Peter Anvinfaca6222008-01-30 13:31:02 +01001119 pv_cpu_ops.load_sp0 = lguest_load_sp0;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001120 pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
1121 pv_cpu_ops.set_ldt = lguest_set_ldt;
1122 pv_cpu_ops.load_tls = lguest_load_tls;
1123 pv_cpu_ops.set_debugreg = lguest_set_debugreg;
1124 pv_cpu_ops.clts = lguest_clts;
1125 pv_cpu_ops.read_cr0 = lguest_read_cr0;
1126 pv_cpu_ops.write_cr0 = lguest_write_cr0;
1127 pv_cpu_ops.read_cr4 = lguest_read_cr4;
1128 pv_cpu_ops.write_cr4 = lguest_write_cr4;
1129 pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
1130 pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
1131 pv_cpu_ops.wbinvd = lguest_wbinvd;
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -08001132 pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
1133 pv_cpu_ops.end_context_switch = lguest_end_context_switch;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001134
1135 /* pagetable management */
1136 pv_mmu_ops.write_cr3 = lguest_write_cr3;
1137 pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
1138 pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
1139 pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
1140 pv_mmu_ops.set_pte = lguest_set_pte;
1141 pv_mmu_ops.set_pte_at = lguest_set_pte_at;
1142 pv_mmu_ops.set_pmd = lguest_set_pmd;
Matias Zabaljaureguiacdd0b62009-06-12 22:27:07 -06001143#ifdef CONFIG_X86_PAE
1144 pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
1145 pv_mmu_ops.pte_clear = lguest_pte_clear;
1146 pv_mmu_ops.pmd_clear = lguest_pmd_clear;
1147 pv_mmu_ops.set_pud = lguest_set_pud;
1148#endif
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001149 pv_mmu_ops.read_cr2 = lguest_read_cr2;
1150 pv_mmu_ops.read_cr3 = lguest_read_cr3;
Jeremy Fitzhardinge8965c1c2007-10-16 11:51:29 -07001151 pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
Jeremy Fitzhardingeb407fc52009-02-17 23:46:21 -08001152 pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
Rusty Russellb7ff99e2009-03-30 21:55:23 -06001153 pv_mmu_ops.pte_update = lguest_pte_update;
1154 pv_mmu_ops.pte_update_defer = lguest_pte_update;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001155
Rusty Russell07ad1572007-07-19 01:49:22 -07001156#ifdef CONFIG_X86_LOCAL_APIC
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001157 /* apic read/write intercepts */
Yinghai Luc1eeb2d2009-02-16 23:02:14 -08001158 set_lguest_basic_apic_ops();
Rusty Russell07ad1572007-07-19 01:49:22 -07001159#endif
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001160
1161 /* time operations */
1162 pv_time_ops.get_wallclock = lguest_get_wallclock;
1163 pv_time_ops.time_init = lguest_time_init;
Alok Katariae93ef942008-07-01 11:43:36 -07001164 pv_time_ops.get_tsc_khz = lguest_tsc_khz;
Jeremy Fitzhardinge93b1eab2007-10-16 11:51:29 -07001165
Rusty Russellb2b47c22007-07-26 10:41:02 -07001166 /* Now is a good time to look at the implementations of these functions
1167 * before returning to the rest of lguest_init(). */
Rusty Russell07ad1572007-07-19 01:49:22 -07001168
Rusty Russellb2b47c22007-07-26 10:41:02 -07001169 /*G:070 Now we've seen all the paravirt_ops, we return to
1170 * lguest_init() where the rest of the fairly chaotic boot setup
Rusty Russell47436aa2007-10-22 11:03:36 +10001171 * occurs. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001172
Rusty Russell2cb78782009-06-03 14:52:24 +09301173 /* The stack protector is a weird thing where gcc places a canary
1174 * value on the stack and then checks it on return. This file is
1175 * compiled with -fno-stack-protector it, so we got this far without
1176 * problems. The value of the canary is kept at offset 20 from the
1177 * %gs register, so we need to set that up before calling C functions
1178 * in other files. */
1179 setup_stack_canary_segment(0);
1180 /* We could just call load_stack_canary_segment(), but we might as
1181 * call switch_to_new_gdt() which loads the whole table and sets up
1182 * the per-cpu segment descriptor register %fs as well. */
1183 switch_to_new_gdt(0);
1184
Rusty Russell5d006d82008-07-29 09:58:29 -05001185 /* As described in head_32.S, we map the first 128M of memory. */
1186 max_pfn_mapped = (128*1024*1024) >> PAGE_SHIFT;
1187
Rusty Russella6bd8e12008-03-28 11:05:53 -05001188 /* The Host<->Guest Switcher lives at the top of our address space, and
1189 * the Host told us how big it is when we made LGUEST_INIT hypercall:
1190 * it put the answer in lguest_data.reserve_mem */
Rusty Russell07ad1572007-07-19 01:49:22 -07001191 reserve_top_address(lguest_data.reserve_mem);
1192
Rusty Russellb2b47c22007-07-26 10:41:02 -07001193 /* If we don't initialize the lock dependency checker now, it crashes
1194 * paravirt_disable_iospace. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001195 lockdep_init();
1196
Rusty Russellb2b47c22007-07-26 10:41:02 -07001197 /* The IDE code spends about 3 seconds probing for disks: if we reserve
1198 * all the I/O ports up front it can't get them and so doesn't probe.
1199 * Other device drivers are similar (but less severe). This cuts the
1200 * kernel boot time on my machine from 4.1 seconds to 0.45 seconds. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001201 paravirt_disable_iospace();
1202
Rusty Russellb2b47c22007-07-26 10:41:02 -07001203 /* This is messy CPU setup stuff which the native boot code does before
1204 * start_kernel, so we have to do, too: */
Rusty Russell07ad1572007-07-19 01:49:22 -07001205 cpu_detect(&new_cpu_data);
1206 /* head.S usually sets up the first capability word, so do it here. */
1207 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1208
1209 /* Math is always hard! */
1210 new_cpu_data.hard_math = 1;
1211
Rusty Russella6bd8e12008-03-28 11:05:53 -05001212 /* We don't have features. We have puppies! Puppies! */
Rusty Russell07ad1572007-07-19 01:49:22 -07001213#ifdef CONFIG_X86_MCE
1214 mce_disabled = 1;
1215#endif
Rusty Russell07ad1572007-07-19 01:49:22 -07001216#ifdef CONFIG_ACPI
1217 acpi_disabled = 1;
1218 acpi_ht = 0;
1219#endif
1220
Atsushi SAKAI72410af2009-01-16 20:39:14 +09001221 /* We set the preferred console to "hvc". This is the "hypervisor
Rusty Russellb2b47c22007-07-26 10:41:02 -07001222 * virtual console" driver written by the PowerPC people, which we also
1223 * adapted for lguest's use. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001224 add_preferred_console("hvc", 0, NULL);
1225
Rusty Russell19f15372007-10-22 11:24:21 +10001226 /* Register our very early console. */
1227 virtio_cons_early_init(early_put_chars);
1228
Rusty Russellb2b47c22007-07-26 10:41:02 -07001229 /* Last of all, we set the power management poweroff hook to point to
Rusty Russella6bd8e12008-03-28 11:05:53 -05001230 * the Guest routine to power off, and the reboot hook to our restart
1231 * routine. */
Rusty Russell07ad1572007-07-19 01:49:22 -07001232 pm_power_off = lguest_power_off;
Balaji Raoec04b132007-12-28 14:26:24 +05301233 machine_ops.restart = lguest_restart;
Rusty Russella6bd8e12008-03-28 11:05:53 -05001234
Yinghai Luf0d43102008-05-29 12:56:36 -07001235 /* Now we're set up, call i386_start_kernel() in head32.c and we proceed
Rusty Russellb2b47c22007-07-26 10:41:02 -07001236 * to boot as normal. It never returns. */
Yinghai Luf0d43102008-05-29 12:56:36 -07001237 i386_start_kernel();
Rusty Russell07ad1572007-07-19 01:49:22 -07001238}
Rusty Russellb2b47c22007-07-26 10:41:02 -07001239/*
1240 * This marks the end of stage II of our journey, The Guest.
1241 *
Rusty Russelle1e72962007-10-25 15:02:50 +10001242 * It is now time for us to explore the layer of virtual drivers and complete
1243 * our understanding of the Guest in "make Drivers".
Rusty Russellb2b47c22007-07-26 10:41:02 -07001244 */