blob: 18c5ca801b00d81020b49fae13854b798833c663 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
Mark Mendell67c39c42014-01-31 17:28:00 -080019#include "dex/dataflow_iterator-inl.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "x86_lir.h"
21
22namespace art {
23
24/* This file contains codegen for the X86 ISA */
25
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070026LIR* X86Mir2Lir::OpFpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070027 int opcode;
28 /* must be both DOUBLE or both not DOUBLE */
29 DCHECK_EQ(X86_DOUBLEREG(r_dest), X86_DOUBLEREG(r_src));
30 if (X86_DOUBLEREG(r_dest)) {
31 opcode = kX86MovsdRR;
32 } else {
33 if (X86_SINGLEREG(r_dest)) {
34 if (X86_SINGLEREG(r_src)) {
35 opcode = kX86MovssRR;
36 } else { // Fpr <- Gpr
37 opcode = kX86MovdxrRR;
38 }
39 } else { // Gpr <- Fpr
40 DCHECK(X86_SINGLEREG(r_src));
41 opcode = kX86MovdrxRR;
42 }
43 }
44 DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
45 LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest, r_src);
46 if (r_dest == r_src) {
47 res->flags.is_nop = true;
48 }
49 return res;
50}
51
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070052bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070053 return true;
54}
55
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070056bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070057 return false;
58}
59
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070060bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070061 return true;
62}
63
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070064bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
Mark Mendell67c39c42014-01-31 17:28:00 -080065 return value == 0;
Brian Carlstrom7940e442013-07-12 13:46:57 -070066}
67
68/*
69 * Load a immediate using a shortcut if possible; otherwise
70 * grab from the per-translation literal pool. If target is
71 * a high register, build constant into a low register and copy.
72 *
73 * No additional register clobbering operation performed. Use this version when
74 * 1) r_dest is freshly returned from AllocTemp or
75 * 2) The codegen is under fixed register usage
76 */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070077LIR* X86Mir2Lir::LoadConstantNoClobber(int r_dest, int value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070078 int r_dest_save = r_dest;
79 if (X86_FPREG(r_dest)) {
80 if (value == 0) {
81 return NewLIR2(kX86XorpsRR, r_dest, r_dest);
82 }
83 DCHECK(X86_SINGLEREG(r_dest));
84 r_dest = AllocTemp();
85 }
86
87 LIR *res;
88 if (value == 0) {
89 res = NewLIR2(kX86Xor32RR, r_dest, r_dest);
90 } else {
91 // Note, there is no byte immediate form of a 32 bit immediate move.
92 res = NewLIR2(kX86Mov32RI, r_dest, value);
93 }
94
95 if (X86_FPREG(r_dest_save)) {
96 NewLIR2(kX86MovdxrRR, r_dest_save, r_dest);
97 FreeTemp(r_dest);
98 }
99
100 return res;
101}
102
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700103LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
Brian Carlstromdf629502013-07-17 22:39:56 -0700104 LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700105 res->target = target;
106 return res;
107}
108
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700109LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700110 LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
111 X86ConditionEncoding(cc));
112 branch->target = target;
113 return branch;
114}
115
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700116LIR* X86Mir2Lir::OpReg(OpKind op, int r_dest_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700117 X86OpCode opcode = kX86Bkpt;
118 switch (op) {
119 case kOpNeg: opcode = kX86Neg32R; break;
120 case kOpNot: opcode = kX86Not32R; break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100121 case kOpRev: opcode = kX86Bswap32R; break;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700122 case kOpBlx: opcode = kX86CallR; break;
123 default:
124 LOG(FATAL) << "Bad case in OpReg " << op;
125 }
126 return NewLIR1(opcode, r_dest_src);
127}
128
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700129LIR* X86Mir2Lir::OpRegImm(OpKind op, int r_dest_src1, int value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700130 X86OpCode opcode = kX86Bkpt;
131 bool byte_imm = IS_SIMM8(value);
132 DCHECK(!X86_FPREG(r_dest_src1));
133 switch (op) {
134 case kOpLsl: opcode = kX86Sal32RI; break;
135 case kOpLsr: opcode = kX86Shr32RI; break;
136 case kOpAsr: opcode = kX86Sar32RI; break;
137 case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
138 case kOpOr: opcode = byte_imm ? kX86Or32RI8 : kX86Or32RI; break;
139 case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700140 // case kOpSbb: opcode = kX86Sbb32RI; break;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700141 case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
142 case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
143 case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
144 case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800145 case kOpMov:
146 /*
147 * Moving the constant zero into register can be specialized as an xor of the register.
148 * However, that sets eflags while the move does not. For that reason here, always do
149 * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
150 */
151 opcode = kX86Mov32RI;
152 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700153 case kOpMul:
154 opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
155 return NewLIR3(opcode, r_dest_src1, r_dest_src1, value);
156 default:
157 LOG(FATAL) << "Bad case in OpRegImm " << op;
158 }
159 return NewLIR2(opcode, r_dest_src1, value);
160}
161
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700162LIR* X86Mir2Lir::OpRegReg(OpKind op, int r_dest_src1, int r_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700163 X86OpCode opcode = kX86Nop;
164 bool src2_must_be_cx = false;
165 switch (op) {
166 // X86 unary opcodes
167 case kOpMvn:
168 OpRegCopy(r_dest_src1, r_src2);
169 return OpReg(kOpNot, r_dest_src1);
170 case kOpNeg:
171 OpRegCopy(r_dest_src1, r_src2);
172 return OpReg(kOpNeg, r_dest_src1);
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100173 case kOpRev:
174 OpRegCopy(r_dest_src1, r_src2);
175 return OpReg(kOpRev, r_dest_src1);
176 case kOpRevsh:
177 OpRegCopy(r_dest_src1, r_src2);
178 OpReg(kOpRev, r_dest_src1);
179 return OpRegImm(kOpAsr, r_dest_src1, 16);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700180 // X86 binary opcodes
181 case kOpSub: opcode = kX86Sub32RR; break;
182 case kOpSbc: opcode = kX86Sbb32RR; break;
183 case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
184 case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
185 case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
186 case kOpMov: opcode = kX86Mov32RR; break;
187 case kOpCmp: opcode = kX86Cmp32RR; break;
188 case kOpAdd: opcode = kX86Add32RR; break;
189 case kOpAdc: opcode = kX86Adc32RR; break;
190 case kOpAnd: opcode = kX86And32RR; break;
191 case kOpOr: opcode = kX86Or32RR; break;
192 case kOpXor: opcode = kX86Xor32RR; break;
193 case kOp2Byte:
194 // Use shifts instead of a byte operand if the source can't be byte accessed.
195 if (r_src2 >= 4) {
196 NewLIR2(kX86Mov32RR, r_dest_src1, r_src2);
197 NewLIR2(kX86Sal32RI, r_dest_src1, 24);
198 return NewLIR2(kX86Sar32RI, r_dest_src1, 24);
199 } else {
200 opcode = kX86Movsx8RR;
201 }
202 break;
203 case kOp2Short: opcode = kX86Movsx16RR; break;
204 case kOp2Char: opcode = kX86Movzx16RR; break;
205 case kOpMul: opcode = kX86Imul32RR; break;
206 default:
207 LOG(FATAL) << "Bad case in OpRegReg " << op;
208 break;
209 }
210 CHECK(!src2_must_be_cx || r_src2 == rCX);
211 return NewLIR2(opcode, r_dest_src1, r_src2);
212}
213
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800214LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, int r_dest, int r_src) {
215 // The only conditional reg to reg operation supported is Cmov
216 DCHECK_EQ(op, kOpCmov);
217 return NewLIR3(kX86Cmov32RRC, r_dest, r_src, X86ConditionEncoding(cc));
218}
219
Brian Carlstrom7940e442013-07-12 13:46:57 -0700220LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, int rBase,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700221 int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700222 X86OpCode opcode = kX86Nop;
223 switch (op) {
224 // X86 binary opcodes
225 case kOpSub: opcode = kX86Sub32RM; break;
226 case kOpMov: opcode = kX86Mov32RM; break;
227 case kOpCmp: opcode = kX86Cmp32RM; break;
228 case kOpAdd: opcode = kX86Add32RM; break;
229 case kOpAnd: opcode = kX86And32RM; break;
230 case kOpOr: opcode = kX86Or32RM; break;
231 case kOpXor: opcode = kX86Xor32RM; break;
232 case kOp2Byte: opcode = kX86Movsx8RM; break;
233 case kOp2Short: opcode = kX86Movsx16RM; break;
234 case kOp2Char: opcode = kX86Movzx16RM; break;
235 case kOpMul:
236 default:
237 LOG(FATAL) << "Bad case in OpRegMem " << op;
238 break;
239 }
Mark Mendellfeb2b4e2014-01-28 12:59:49 -0800240 LIR *l = NewLIR3(opcode, r_dest, rBase, offset);
241 if (rBase == rX86_SP) {
242 AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
243 }
244 return l;
245}
246
247LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
248 DCHECK_NE(rl_dest.location, kLocPhysReg);
249 int displacement = SRegOffset(rl_dest.s_reg_low);
250 X86OpCode opcode = kX86Nop;
251 switch (op) {
252 case kOpSub: opcode = kX86Sub32MR; break;
253 case kOpMov: opcode = kX86Mov32MR; break;
254 case kOpCmp: opcode = kX86Cmp32MR; break;
255 case kOpAdd: opcode = kX86Add32MR; break;
256 case kOpAnd: opcode = kX86And32MR; break;
257 case kOpOr: opcode = kX86Or32MR; break;
258 case kOpXor: opcode = kX86Xor32MR; break;
259 case kOpLsl: opcode = kX86Sal32MC; break;
260 case kOpLsr: opcode = kX86Shr32MC; break;
261 case kOpAsr: opcode = kX86Sar32MC; break;
262 default:
263 LOG(FATAL) << "Bad case in OpMemReg " << op;
264 break;
265 }
266 LIR *l = NewLIR3(opcode, rX86_SP, displacement, r_value);
267 AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, false /* is_64bit */);
268 return l;
269}
270
271LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, RegLocation rl_value) {
272 DCHECK_NE(rl_value.location, kLocPhysReg);
273 int displacement = SRegOffset(rl_value.s_reg_low);
274 X86OpCode opcode = kX86Nop;
275 switch (op) {
276 case kOpSub: opcode = kX86Sub32RM; break;
277 case kOpMov: opcode = kX86Mov32RM; break;
278 case kOpCmp: opcode = kX86Cmp32RM; break;
279 case kOpAdd: opcode = kX86Add32RM; break;
280 case kOpAnd: opcode = kX86And32RM; break;
281 case kOpOr: opcode = kX86Or32RM; break;
282 case kOpXor: opcode = kX86Xor32RM; break;
283 case kOpMul: opcode = kX86Imul32RM; break;
284 default:
285 LOG(FATAL) << "Bad case in OpRegMem " << op;
286 break;
287 }
288 LIR *l = NewLIR3(opcode, r_dest, rX86_SP, displacement);
289 AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, false /* is_64bit */);
290 return l;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700291}
292
293LIR* X86Mir2Lir::OpRegRegReg(OpKind op, int r_dest, int r_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700294 int r_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700295 if (r_dest != r_src1 && r_dest != r_src2) {
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700296 if (op == kOpAdd) { // lea special case, except can't encode rbp as base
Brian Carlstrom7940e442013-07-12 13:46:57 -0700297 if (r_src1 == r_src2) {
298 OpRegCopy(r_dest, r_src1);
299 return OpRegImm(kOpLsl, r_dest, 1);
300 } else if (r_src1 != rBP) {
301 return NewLIR5(kX86Lea32RA, r_dest, r_src1 /* base */,
302 r_src2 /* index */, 0 /* scale */, 0 /* disp */);
303 } else {
304 return NewLIR5(kX86Lea32RA, r_dest, r_src2 /* base */,
305 r_src1 /* index */, 0 /* scale */, 0 /* disp */);
306 }
307 } else {
308 OpRegCopy(r_dest, r_src1);
309 return OpRegReg(op, r_dest, r_src2);
310 }
311 } else if (r_dest == r_src1) {
312 return OpRegReg(op, r_dest, r_src2);
313 } else { // r_dest == r_src2
314 switch (op) {
315 case kOpSub: // non-commutative
316 OpReg(kOpNeg, r_dest);
317 op = kOpAdd;
318 break;
319 case kOpSbc:
320 case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
321 int t_reg = AllocTemp();
322 OpRegCopy(t_reg, r_src1);
323 OpRegReg(op, t_reg, r_src2);
324 LIR* res = OpRegCopy(r_dest, t_reg);
325 FreeTemp(t_reg);
326 return res;
327 }
328 case kOpAdd: // commutative
329 case kOpOr:
330 case kOpAdc:
331 case kOpAnd:
332 case kOpXor:
333 break;
334 default:
335 LOG(FATAL) << "Bad case in OpRegRegReg " << op;
336 }
337 return OpRegReg(op, r_dest, r_src1);
338 }
339}
340
341LIR* X86Mir2Lir::OpRegRegImm(OpKind op, int r_dest, int r_src,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700342 int value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700343 if (op == kOpMul) {
344 X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
345 return NewLIR3(opcode, r_dest, r_src, value);
346 } else if (op == kOpAnd) {
347 if (value == 0xFF && r_src < 4) {
348 return NewLIR2(kX86Movzx8RR, r_dest, r_src);
349 } else if (value == 0xFFFF) {
350 return NewLIR2(kX86Movzx16RR, r_dest, r_src);
351 }
352 }
353 if (r_dest != r_src) {
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700354 if (false && op == kOpLsl && value >= 0 && value <= 3) { // lea shift special case
Brian Carlstrom7940e442013-07-12 13:46:57 -0700355 // TODO: fix bug in LEA encoding when disp == 0
356 return NewLIR5(kX86Lea32RA, r_dest, r5sib_no_base /* base */,
357 r_src /* index */, value /* scale */, 0 /* disp */);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700358 } else if (op == kOpAdd) { // lea add special case
Brian Carlstrom7940e442013-07-12 13:46:57 -0700359 return NewLIR5(kX86Lea32RA, r_dest, r_src /* base */,
360 r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
361 }
362 OpRegCopy(r_dest, r_src);
363 }
364 return OpRegImm(op, r_dest, value);
365}
366
Ian Rogers468532e2013-08-05 10:56:33 -0700367LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700368 X86OpCode opcode = kX86Bkpt;
369 switch (op) {
370 case kOpBlx: opcode = kX86CallT; break;
371 default:
372 LOG(FATAL) << "Bad opcode: " << op;
373 break;
374 }
Ian Rogers468532e2013-08-05 10:56:33 -0700375 return NewLIR1(opcode, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700376}
377
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700378LIR* X86Mir2Lir::OpMem(OpKind op, int rBase, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700379 X86OpCode opcode = kX86Bkpt;
380 switch (op) {
381 case kOpBlx: opcode = kX86CallM; break;
382 default:
383 LOG(FATAL) << "Bad opcode: " << op;
384 break;
385 }
386 return NewLIR2(opcode, rBase, disp);
387}
388
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700389LIR* X86Mir2Lir::LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700390 int32_t val_lo = Low32Bits(value);
391 int32_t val_hi = High32Bits(value);
392 LIR *res;
393 if (X86_FPREG(r_dest_lo)) {
394 DCHECK(X86_FPREG(r_dest_hi)); // ignore r_dest_hi
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000395 DCHECK_EQ(r_dest_lo, r_dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700396 if (value == 0) {
397 return NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
Mark Mendell67c39c42014-01-31 17:28:00 -0800398 } else if (base_of_code_ != nullptr) {
399 // We will load the value from the literal area.
400 LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
401 if (data_target == NULL) {
402 data_target = AddWideData(&literal_list_, val_lo, val_hi);
403 }
404
405 // Address the start of the method
406 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
407 rl_method = LoadValue(rl_method, kCoreReg);
408
409 // Load the proper value from the literal area.
410 // We don't know the proper offset for the value, so pick one that will force
411 // 4 byte offset. We will fix this up in the assembler later to have the right
412 // value.
413 res = LoadBaseDisp(rl_method.low_reg, 256 /* bogus */, r_dest_lo, kDouble, INVALID_SREG);
414 res->target = data_target;
415 res->flags.fixup = kFixupLoad;
416 SetMemRefType(res, true, kLiteral);
417 // Redo after we assign target to ensure size is correct.
418 SetupResourceMasks(res);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700419 } else {
420 if (val_lo == 0) {
421 res = NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
422 } else {
423 res = LoadConstantNoClobber(r_dest_lo, val_lo);
424 }
425 if (val_hi != 0) {
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000426 r_dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700427 LoadConstantNoClobber(r_dest_hi, val_hi);
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800428 NewLIR2(kX86PunpckldqRR, r_dest_lo, r_dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000429 FreeTemp(r_dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700430 }
431 }
432 } else {
433 res = LoadConstantNoClobber(r_dest_lo, val_lo);
434 LoadConstantNoClobber(r_dest_hi, val_hi);
435 }
436 return res;
437}
438
439LIR* X86Mir2Lir::LoadBaseIndexedDisp(int rBase, int r_index, int scale,
440 int displacement, int r_dest, int r_dest_hi, OpSize size,
441 int s_reg) {
442 LIR *load = NULL;
443 LIR *load2 = NULL;
444 bool is_array = r_index != INVALID_REG;
445 bool pair = false;
446 bool is64bit = false;
447 X86OpCode opcode = kX86Nop;
448 switch (size) {
449 case kLong:
450 case kDouble:
451 is64bit = true;
452 if (X86_FPREG(r_dest)) {
453 opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700454 } else {
455 pair = true;
456 opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
457 }
458 // TODO: double store is to unaligned address
459 DCHECK_EQ((displacement & 0x3), 0);
460 break;
461 case kWord:
462 case kSingle:
463 opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
464 if (X86_FPREG(r_dest)) {
465 opcode = is_array ? kX86MovssRA : kX86MovssRM;
466 DCHECK(X86_SINGLEREG(r_dest));
467 }
468 DCHECK_EQ((displacement & 0x3), 0);
469 break;
470 case kUnsignedHalf:
471 opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
472 DCHECK_EQ((displacement & 0x1), 0);
473 break;
474 case kSignedHalf:
475 opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
476 DCHECK_EQ((displacement & 0x1), 0);
477 break;
478 case kUnsignedByte:
479 opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
480 break;
481 case kSignedByte:
482 opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
483 break;
484 default:
485 LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
486 }
487
488 if (!is_array) {
489 if (!pair) {
490 load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
491 } else {
492 if (rBase == r_dest) {
493 load2 = NewLIR3(opcode, r_dest_hi, rBase,
494 displacement + HIWORD_OFFSET);
495 load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
496 } else {
497 load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
498 load2 = NewLIR3(opcode, r_dest_hi, rBase,
499 displacement + HIWORD_OFFSET);
500 }
501 }
502 if (rBase == rX86_SP) {
503 AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
504 true /* is_load */, is64bit);
505 if (pair) {
506 AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
507 true /* is_load */, is64bit);
508 }
509 }
510 } else {
511 if (!pair) {
512 load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
513 displacement + LOWORD_OFFSET);
514 } else {
515 if (rBase == r_dest) {
Mark Mendellae427c32014-01-24 09:17:22 -0800516 if (r_dest_hi == r_index) {
517 // We can't use either register for the first load.
518 int temp = AllocTemp();
519 load2 = NewLIR5(opcode, temp, rBase, r_index, scale,
520 displacement + HIWORD_OFFSET);
521 load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
522 displacement + LOWORD_OFFSET);
523 OpRegCopy(r_dest_hi, temp);
524 FreeTemp(temp);
525 } else {
526 load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
527 displacement + HIWORD_OFFSET);
528 load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
529 displacement + LOWORD_OFFSET);
530 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700531 } else {
Mark Mendellae427c32014-01-24 09:17:22 -0800532 if (r_dest == r_index) {
533 // We can't use either register for the first load.
534 int temp = AllocTemp();
535 load = NewLIR5(opcode, temp, rBase, r_index, scale,
536 displacement + LOWORD_OFFSET);
537 load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
538 displacement + HIWORD_OFFSET);
539 OpRegCopy(r_dest, temp);
540 FreeTemp(temp);
541 } else {
542 load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
543 displacement + LOWORD_OFFSET);
544 load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
545 displacement + HIWORD_OFFSET);
546 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700547 }
548 }
549 }
550
551 return load;
552}
553
554/* Load value from base + scaled index. */
555LIR* X86Mir2Lir::LoadBaseIndexed(int rBase,
556 int r_index, int r_dest, int scale, OpSize size) {
557 return LoadBaseIndexedDisp(rBase, r_index, scale, 0,
558 r_dest, INVALID_REG, size, INVALID_SREG);
559}
560
561LIR* X86Mir2Lir::LoadBaseDisp(int rBase, int displacement,
562 int r_dest, OpSize size, int s_reg) {
563 return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
564 r_dest, INVALID_REG, size, s_reg);
565}
566
567LIR* X86Mir2Lir::LoadBaseDispWide(int rBase, int displacement,
568 int r_dest_lo, int r_dest_hi, int s_reg) {
569 return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
570 r_dest_lo, r_dest_hi, kLong, s_reg);
571}
572
573LIR* X86Mir2Lir::StoreBaseIndexedDisp(int rBase, int r_index, int scale,
574 int displacement, int r_src, int r_src_hi, OpSize size,
575 int s_reg) {
576 LIR *store = NULL;
577 LIR *store2 = NULL;
578 bool is_array = r_index != INVALID_REG;
579 bool pair = false;
580 bool is64bit = false;
581 X86OpCode opcode = kX86Nop;
582 switch (size) {
583 case kLong:
584 case kDouble:
585 is64bit = true;
586 if (X86_FPREG(r_src)) {
587 opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700588 } else {
589 pair = true;
590 opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
591 }
592 // TODO: double store is to unaligned address
593 DCHECK_EQ((displacement & 0x3), 0);
594 break;
595 case kWord:
596 case kSingle:
597 opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
598 if (X86_FPREG(r_src)) {
599 opcode = is_array ? kX86MovssAR : kX86MovssMR;
600 DCHECK(X86_SINGLEREG(r_src));
601 }
602 DCHECK_EQ((displacement & 0x3), 0);
603 break;
604 case kUnsignedHalf:
605 case kSignedHalf:
606 opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
607 DCHECK_EQ((displacement & 0x1), 0);
608 break;
609 case kUnsignedByte:
610 case kSignedByte:
611 opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
612 break;
613 default:
614 LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
615 }
616
617 if (!is_array) {
618 if (!pair) {
619 store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
620 } else {
621 store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
622 store2 = NewLIR3(opcode, rBase, displacement + HIWORD_OFFSET, r_src_hi);
623 }
624 if (rBase == rX86_SP) {
625 AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
626 false /* is_load */, is64bit);
627 if (pair) {
628 AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
629 false /* is_load */, is64bit);
630 }
631 }
632 } else {
633 if (!pair) {
634 store = NewLIR5(opcode, rBase, r_index, scale,
635 displacement + LOWORD_OFFSET, r_src);
636 } else {
637 store = NewLIR5(opcode, rBase, r_index, scale,
638 displacement + LOWORD_OFFSET, r_src);
639 store2 = NewLIR5(opcode, rBase, r_index, scale,
640 displacement + HIWORD_OFFSET, r_src_hi);
641 }
642 }
643
644 return store;
645}
646
647/* store value base base + scaled index. */
648LIR* X86Mir2Lir::StoreBaseIndexed(int rBase, int r_index, int r_src,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700649 int scale, OpSize size) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700650 return StoreBaseIndexedDisp(rBase, r_index, scale, 0,
651 r_src, INVALID_REG, size, INVALID_SREG);
652}
653
654LIR* X86Mir2Lir::StoreBaseDisp(int rBase, int displacement,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700655 int r_src, OpSize size) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700656 return StoreBaseIndexedDisp(rBase, INVALID_REG, 0,
657 displacement, r_src, INVALID_REG, size,
658 INVALID_SREG);
659}
660
661LIR* X86Mir2Lir::StoreBaseDispWide(int rBase, int displacement,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700662 int r_src_lo, int r_src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700663 return StoreBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
664 r_src_lo, r_src_hi, kLong, INVALID_SREG);
665}
666
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000667/*
668 * Copy a long value in Core registers to an XMM register
669 *
670 */
671void X86Mir2Lir::OpVectorRegCopyWide(uint8_t fp_reg, uint8_t low_reg, uint8_t high_reg) {
672 NewLIR2(kX86MovdxrRR, fp_reg, low_reg);
673 int tmp_reg = AllocTempDouble();
674 NewLIR2(kX86MovdxrRR, tmp_reg, high_reg);
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800675 NewLIR2(kX86PunpckldqRR, fp_reg, tmp_reg);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000676 FreeTemp(tmp_reg);
677}
678
Mark Mendell766e9292014-01-27 07:55:47 -0800679LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, int temp_reg, int base_reg,
680 int offset, int check_value, LIR* target) {
681 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg, offset,
682 check_value);
683 LIR* branch = OpCondBranch(cond, target);
684 return branch;
685}
686
Mark Mendell67c39c42014-01-31 17:28:00 -0800687void X86Mir2Lir::AnalyzeMIR() {
688 // Assume we don't need a pointer to the base of the code.
689 cu_->NewTimingSplit("X86 MIR Analysis");
690 store_method_addr_ = false;
691
692 // Walk the MIR looking for interesting items.
693 PreOrderDfsIterator iter(mir_graph_);
694 BasicBlock* curr_bb = iter.Next();
695 while (curr_bb != NULL) {
696 AnalyzeBB(curr_bb);
697 curr_bb = iter.Next();
698 }
699
700 // Did we need a pointer to the method code?
701 if (store_method_addr_) {
702 base_of_code_ = mir_graph_->GetNewCompilerTemp(kCompilerTempVR, false);
703 } else {
704 base_of_code_ = nullptr;
705 }
706}
707
708void X86Mir2Lir::AnalyzeBB(BasicBlock * bb) {
709 if (bb->block_type == kDead) {
710 // Ignore dead blocks
711 return;
712 }
713
714 for (MIR *mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
715 int opcode = mir->dalvikInsn.opcode;
716 if (opcode >= kMirOpFirst) {
717 AnalyzeExtendedMIR(opcode, bb, mir);
718 } else {
719 AnalyzeMIR(opcode, bb, mir);
720 }
721 }
722}
723
724
725void X86Mir2Lir::AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir) {
726 switch (opcode) {
727 // Instructions referencing doubles.
728 case kMirOpFusedCmplDouble:
729 case kMirOpFusedCmpgDouble:
730 AnalyzeFPInstruction(opcode, bb, mir);
731 break;
732 default:
733 // Ignore the rest.
734 break;
735 }
736}
737
738void X86Mir2Lir::AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir) {
739 // Looking for
740 // - Do we need a pointer to the code (used for packed switches and double lits)?
741
742 switch (opcode) {
743 // Instructions referencing doubles.
744 case Instruction::CMPL_DOUBLE:
745 case Instruction::CMPG_DOUBLE:
746 case Instruction::NEG_DOUBLE:
747 case Instruction::ADD_DOUBLE:
748 case Instruction::SUB_DOUBLE:
749 case Instruction::MUL_DOUBLE:
750 case Instruction::DIV_DOUBLE:
751 case Instruction::REM_DOUBLE:
752 case Instruction::ADD_DOUBLE_2ADDR:
753 case Instruction::SUB_DOUBLE_2ADDR:
754 case Instruction::MUL_DOUBLE_2ADDR:
755 case Instruction::DIV_DOUBLE_2ADDR:
756 case Instruction::REM_DOUBLE_2ADDR:
757 AnalyzeFPInstruction(opcode, bb, mir);
758 break;
759 // Packed switches and array fills need a pointer to the base of the method.
760 case Instruction::FILL_ARRAY_DATA:
761 case Instruction::PACKED_SWITCH:
762 store_method_addr_ = true;
763 break;
764 default:
765 // Other instructions are not interesting yet.
766 break;
767 }
768}
769
770void X86Mir2Lir::AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir) {
771 // Look at all the uses, and see if they are double constants.
772 uint64_t attrs = mir_graph_->oat_data_flow_attributes_[opcode];
773 int next_sreg = 0;
774 if (attrs & DF_UA) {
775 if (attrs & DF_A_WIDE) {
776 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
777 next_sreg += 2;
778 } else {
779 next_sreg++;
780 }
781 }
782 if (attrs & DF_UB) {
783 if (attrs & DF_B_WIDE) {
784 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
785 next_sreg += 2;
786 } else {
787 next_sreg++;
788 }
789 }
790 if (attrs & DF_UC) {
791 if (attrs & DF_C_WIDE) {
792 AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg));
793 }
794 }
795}
796
797void X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
798 // If this is a double literal, we will want it in the literal pool.
799 if (use.is_const) {
800 store_method_addr_ = true;
801 }
802}
803
Brian Carlstrom7940e442013-07-12 13:46:57 -0700804} // namespace art