blob: 82f7fad0e00bbd210f9145b587f116e40af876b2 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Nicolas Geoffrayf3e2cc42014-02-18 18:37:26 +000017#include <string>
18#include <inttypes.h>
19
Brian Carlstrom7940e442013-07-12 13:46:57 -070020#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
Mark Mendelle19c91f2014-02-25 08:19:08 -080023#include "mirror/array.h"
24#include "mirror/string.h"
Brian Carlstrom7940e442013-07-12 13:46:57 -070025#include "x86_lir.h"
26
Brian Carlstrom7940e442013-07-12 13:46:57 -070027namespace art {
28
Vladimir Marko089142c2014-06-05 10:57:05 +010029static constexpr RegStorage core_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070030 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
31};
Vladimir Marko089142c2014-06-05 10:57:05 +010032static constexpr RegStorage core_regs_arr_64[] = {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070033 rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
Brian Carlstrom7940e442013-07-12 13:46:57 -070034#ifdef TARGET_REX_SUPPORT
buzbee091cc402014-03-31 10:14:40 -070035 rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
Brian Carlstrom7940e442013-07-12 13:46:57 -070036#endif
37};
Vladimir Marko089142c2014-06-05 10:57:05 +010038static constexpr RegStorage core_regs_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070039 rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
40#ifdef TARGET_REX_SUPPORT
Dmitry Petrochenkoa20468c2014-04-30 13:40:19 +070041 rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070042#endif
43};
Vladimir Marko089142c2014-06-05 10:57:05 +010044static constexpr RegStorage sp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070045 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46};
Vladimir Marko089142c2014-06-05 10:57:05 +010047static constexpr RegStorage sp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070048 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
Brian Carlstrom7940e442013-07-12 13:46:57 -070049#ifdef TARGET_REX_SUPPORT
buzbee091cc402014-03-31 10:14:40 -070050 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070051#endif
52};
Vladimir Marko089142c2014-06-05 10:57:05 +010053static constexpr RegStorage dp_regs_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070054 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
55};
Vladimir Marko089142c2014-06-05 10:57:05 +010056static constexpr RegStorage dp_regs_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070057 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
Brian Carlstrom7940e442013-07-12 13:46:57 -070058#ifdef TARGET_REX_SUPPORT
buzbee091cc402014-03-31 10:14:40 -070059 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
Brian Carlstrom7940e442013-07-12 13:46:57 -070060#endif
61};
Vladimir Marko089142c2014-06-05 10:57:05 +010062static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +070063static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
Vladimir Marko089142c2014-06-05 10:57:05 +010064static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
65static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
66static constexpr RegStorage core_temps_arr_64[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070067 rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
68#ifdef TARGET_REX_SUPPORT
69 rs_r8, rs_r9, rs_r10, rs_r11
70#endif
71};
Vladimir Marko089142c2014-06-05 10:57:05 +010072static constexpr RegStorage core_temps_arr_64q[] = {
Dmitry Petrochenko0999a6f2014-05-22 12:26:50 +070073 rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
74#ifdef TARGET_REX_SUPPORT
75 rs_r8q, rs_r9q, rs_r10q, rs_r11q
76#endif
77};
Vladimir Marko089142c2014-06-05 10:57:05 +010078static constexpr RegStorage sp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070079 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
80};
Vladimir Marko089142c2014-06-05 10:57:05 +010081static constexpr RegStorage sp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070082 rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
83#ifdef TARGET_REX_SUPPORT
84 rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
85#endif
86};
Vladimir Marko089142c2014-06-05 10:57:05 +010087static constexpr RegStorage dp_temps_arr_32[] = {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +070088 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
89};
Vladimir Marko089142c2014-06-05 10:57:05 +010090static constexpr RegStorage dp_temps_arr_64[] = {
buzbee091cc402014-03-31 10:14:40 -070091 rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
92#ifdef TARGET_REX_SUPPORT
93 rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
94#endif
95};
96
Vladimir Marko089142c2014-06-05 10:57:05 +010097static constexpr RegStorage xp_temps_arr_32[] = {
Mark Mendellfe945782014-05-22 09:52:36 -040098 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
99};
Vladimir Marko089142c2014-06-05 10:57:05 +0100100static constexpr RegStorage xp_temps_arr_64[] = {
Mark Mendellfe945782014-05-22 09:52:36 -0400101 rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
102#ifdef TARGET_REX_SUPPORT
103 rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
104#endif
105};
106
Vladimir Marko089142c2014-06-05 10:57:05 +0100107static constexpr ArrayRef<const RegStorage> empty_pool;
108static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
109static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
110static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
111static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
112static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
113static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
114static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
115static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
116static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
117static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
118static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
119static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
120static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
121static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
122static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
123static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
124static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700125
Vladimir Marko089142c2014-06-05 10:57:05 +0100126static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
127static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
Mark Mendellfe945782014-05-22 09:52:36 -0400128
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700129RegStorage rs_rX86_SP;
130
131X86NativeRegisterPool rX86_ARG0;
132X86NativeRegisterPool rX86_ARG1;
133X86NativeRegisterPool rX86_ARG2;
134X86NativeRegisterPool rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700135#ifdef TARGET_REX_SUPPORT
136X86NativeRegisterPool rX86_ARG4;
137X86NativeRegisterPool rX86_ARG5;
138#endif
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700139X86NativeRegisterPool rX86_FARG0;
140X86NativeRegisterPool rX86_FARG1;
141X86NativeRegisterPool rX86_FARG2;
142X86NativeRegisterPool rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700143X86NativeRegisterPool rX86_FARG4;
144X86NativeRegisterPool rX86_FARG5;
145X86NativeRegisterPool rX86_FARG6;
146X86NativeRegisterPool rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700147X86NativeRegisterPool rX86_RET0;
148X86NativeRegisterPool rX86_RET1;
149X86NativeRegisterPool rX86_INVOKE_TGT;
150X86NativeRegisterPool rX86_COUNT;
151
152RegStorage rs_rX86_ARG0;
153RegStorage rs_rX86_ARG1;
154RegStorage rs_rX86_ARG2;
155RegStorage rs_rX86_ARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700156RegStorage rs_rX86_ARG4;
157RegStorage rs_rX86_ARG5;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700158RegStorage rs_rX86_FARG0;
159RegStorage rs_rX86_FARG1;
160RegStorage rs_rX86_FARG2;
161RegStorage rs_rX86_FARG3;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700162RegStorage rs_rX86_FARG4;
163RegStorage rs_rX86_FARG5;
164RegStorage rs_rX86_FARG6;
165RegStorage rs_rX86_FARG7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700166RegStorage rs_rX86_RET0;
167RegStorage rs_rX86_RET1;
168RegStorage rs_rX86_INVOKE_TGT;
169RegStorage rs_rX86_COUNT;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700170
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700171RegLocation X86Mir2Lir::LocCReturn() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000172 return x86_loc_c_return;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700173}
174
buzbeea0cd2d72014-06-01 09:33:49 -0700175RegLocation X86Mir2Lir::LocCReturnRef() {
176 // FIXME: return x86_loc_c_return_wide for x86_64 when wide refs supported.
177 return x86_loc_c_return;
178}
179
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700180RegLocation X86Mir2Lir::LocCReturnWide() {
Chao-ying Fua0147762014-06-06 18:38:49 -0700181 return Gen64Bit() ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700182}
183
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700184RegLocation X86Mir2Lir::LocCReturnFloat() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000185 return x86_loc_c_return_float;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700186}
187
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700188RegLocation X86Mir2Lir::LocCReturnDouble() {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000189 return x86_loc_c_return_double;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700190}
191
192// Return a target-dependent special register.
buzbee2700f7e2014-03-07 09:46:20 -0800193RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
buzbee091cc402014-03-31 10:14:40 -0700194 RegStorage res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700195 switch (reg) {
buzbee091cc402014-03-31 10:14:40 -0700196 case kSelf: res_reg = RegStorage::InvalidReg(); break;
197 case kSuspend: res_reg = RegStorage::InvalidReg(); break;
198 case kLr: res_reg = RegStorage::InvalidReg(); break;
199 case kPc: res_reg = RegStorage::InvalidReg(); break;
200 case kSp: res_reg = rs_rX86_SP; break;
201 case kArg0: res_reg = rs_rX86_ARG0; break;
202 case kArg1: res_reg = rs_rX86_ARG1; break;
203 case kArg2: res_reg = rs_rX86_ARG2; break;
204 case kArg3: res_reg = rs_rX86_ARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700205 case kArg4: res_reg = rs_rX86_ARG4; break;
206 case kArg5: res_reg = rs_rX86_ARG5; break;
buzbee091cc402014-03-31 10:14:40 -0700207 case kFArg0: res_reg = rs_rX86_FARG0; break;
208 case kFArg1: res_reg = rs_rX86_FARG1; break;
209 case kFArg2: res_reg = rs_rX86_FARG2; break;
210 case kFArg3: res_reg = rs_rX86_FARG3; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700211 case kFArg4: res_reg = rs_rX86_FARG4; break;
212 case kFArg5: res_reg = rs_rX86_FARG5; break;
213 case kFArg6: res_reg = rs_rX86_FARG6; break;
214 case kFArg7: res_reg = rs_rX86_FARG7; break;
buzbee091cc402014-03-31 10:14:40 -0700215 case kRet0: res_reg = rs_rX86_RET0; break;
216 case kRet1: res_reg = rs_rX86_RET1; break;
217 case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
218 case kHiddenArg: res_reg = rs_rAX; break;
Mark Mendelld3703d82014-06-09 15:10:50 -0400219 case kHiddenFpArg: DCHECK(!Gen64Bit()); res_reg = rs_fr0; break;
buzbee091cc402014-03-31 10:14:40 -0700220 case kCount: res_reg = rs_rX86_COUNT; break;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700221 default: res_reg = RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700222 }
buzbee091cc402014-03-31 10:14:40 -0700223 return res_reg;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700224}
225
Brian Carlstrom7940e442013-07-12 13:46:57 -0700226/*
227 * Decode the register id.
228 */
buzbee091cc402014-03-31 10:14:40 -0700229uint64_t X86Mir2Lir::GetRegMaskCommon(RegStorage reg) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700230 uint64_t seed;
231 int shift;
232 int reg_id;
233
buzbee091cc402014-03-31 10:14:40 -0700234 reg_id = reg.GetRegNum();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700235 /* Double registers in x86 are just a single FP register */
236 seed = 1;
237 /* FP register starts at bit position 16 */
Mark Mendellfe945782014-05-22 09:52:36 -0400238 shift = (reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700239 /* Expand the double register id into single offset */
240 shift += reg_id;
241 return (seed << shift);
242}
243
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700244uint64_t X86Mir2Lir::GetPCUseDefEncoding() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700245 /*
246 * FIXME: might make sense to use a virtual resource encoding bit for pc. Might be
247 * able to clean up some of the x86/Arm_Mips differences
248 */
249 LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
250 return 0ULL;
251}
252
buzbeeb48819d2013-09-14 16:15:25 -0700253void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
Dmitry Petrochenko6a58cb12014-04-02 17:27:59 +0700254 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
buzbeeb48819d2013-09-14 16:15:25 -0700255 DCHECK(!lir->flags.use_def_invalid);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700256
257 // X86-specific resource map setup here.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700258 if (flags & REG_USE_SP) {
buzbeeb48819d2013-09-14 16:15:25 -0700259 lir->u.m.use_mask |= ENCODE_X86_REG_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700260 }
261
262 if (flags & REG_DEF_SP) {
buzbeeb48819d2013-09-14 16:15:25 -0700263 lir->u.m.def_mask |= ENCODE_X86_REG_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700264 }
265
266 if (flags & REG_DEFA) {
buzbee091cc402014-03-31 10:14:40 -0700267 SetupRegMask(&lir->u.m.def_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700268 }
269
270 if (flags & REG_DEFD) {
buzbee091cc402014-03-31 10:14:40 -0700271 SetupRegMask(&lir->u.m.def_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700272 }
273 if (flags & REG_USEA) {
buzbee091cc402014-03-31 10:14:40 -0700274 SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700275 }
276
277 if (flags & REG_USEC) {
buzbee091cc402014-03-31 10:14:40 -0700278 SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700279 }
280
281 if (flags & REG_USED) {
buzbee091cc402014-03-31 10:14:40 -0700282 SetupRegMask(&lir->u.m.use_mask, rs_rDX.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700283 }
Vladimir Marko70b797d2013-12-03 15:25:24 +0000284
285 if (flags & REG_USEB) {
buzbee091cc402014-03-31 10:14:40 -0700286 SetupRegMask(&lir->u.m.use_mask, rs_rBX.GetReg());
Vladimir Marko70b797d2013-12-03 15:25:24 +0000287 }
Mark Mendell4028a6c2014-02-19 20:06:20 -0800288
289 // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
290 if (lir->opcode == kX86RepneScasw) {
buzbee091cc402014-03-31 10:14:40 -0700291 SetupRegMask(&lir->u.m.use_mask, rs_rAX.GetReg());
292 SetupRegMask(&lir->u.m.use_mask, rs_rCX.GetReg());
293 SetupRegMask(&lir->u.m.use_mask, rs_rDI.GetReg());
294 SetupRegMask(&lir->u.m.def_mask, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -0800295 }
Serguei Katkove90501d2014-03-12 15:56:54 +0700296
297 if (flags & USE_FP_STACK) {
298 lir->u.m.use_mask |= ENCODE_X86_FP_STACK;
299 lir->u.m.def_mask |= ENCODE_X86_FP_STACK;
300 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700301}
302
303/* For dumping instructions */
304static const char* x86RegName[] = {
305 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
306 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
307};
308
309static const char* x86CondName[] = {
310 "O",
311 "NO",
312 "B/NAE/C",
313 "NB/AE/NC",
314 "Z/EQ",
315 "NZ/NE",
316 "BE/NA",
317 "NBE/A",
318 "S",
319 "NS",
320 "P/PE",
321 "NP/PO",
322 "L/NGE",
323 "NL/GE",
324 "LE/NG",
325 "NLE/G"
326};
327
328/*
329 * Interpret a format string and build a string no longer than size
330 * See format key in Assemble.cc.
331 */
332std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
333 std::string buf;
334 size_t i = 0;
335 size_t fmt_len = strlen(fmt);
336 while (i < fmt_len) {
337 if (fmt[i] != '!') {
338 buf += fmt[i];
339 i++;
340 } else {
341 i++;
342 DCHECK_LT(i, fmt_len);
343 char operand_number_ch = fmt[i];
344 i++;
345 if (operand_number_ch == '!') {
346 buf += "!";
347 } else {
348 int operand_number = operand_number_ch - '0';
349 DCHECK_LT(operand_number, 6); // Expect upto 6 LIR operands.
350 DCHECK_LT(i, fmt_len);
351 int operand = lir->operands[operand_number];
352 switch (fmt[i]) {
353 case 'c':
354 DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
355 buf += x86CondName[operand];
356 break;
357 case 'd':
358 buf += StringPrintf("%d", operand);
359 break;
360 case 'p': {
buzbee0d829482013-10-11 15:24:55 -0700361 EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700362 buf += StringPrintf("0x%08x", tab_rec->offset);
363 break;
364 }
365 case 'r':
buzbee091cc402014-03-31 10:14:40 -0700366 if (RegStorage::IsFloat(operand)) {
367 int fp_reg = RegStorage::RegNum(operand);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700368 buf += StringPrintf("xmm%d", fp_reg);
369 } else {
buzbee091cc402014-03-31 10:14:40 -0700370 int reg_num = RegStorage::RegNum(operand);
371 DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
372 buf += x86RegName[reg_num];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700373 }
374 break;
375 case 't':
Ian Rogers107c31e2014-01-23 20:55:29 -0800376 buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
377 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
378 lir->target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700379 break;
380 default:
381 buf += StringPrintf("DecodeError '%c'", fmt[i]);
382 break;
383 }
384 i++;
385 }
386 }
387 }
388 return buf;
389}
390
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700391void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, uint64_t mask, const char *prefix) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700392 char buf[256];
393 buf[0] = 0;
394
395 if (mask == ENCODE_ALL) {
396 strcpy(buf, "all");
397 } else {
398 char num[8];
399 int i;
400
401 for (i = 0; i < kX86RegEnd; i++) {
402 if (mask & (1ULL << i)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800403 snprintf(num, arraysize(num), "%d ", i);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700404 strcat(buf, num);
405 }
406 }
407
408 if (mask & ENCODE_CCODE) {
409 strcat(buf, "cc ");
410 }
411 /* Memory bits */
412 if (x86LIR && (mask & ENCODE_DALVIK_REG)) {
Ian Rogers988e6ea2014-01-08 11:30:50 -0800413 snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
414 DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
415 (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
Brian Carlstrom7940e442013-07-12 13:46:57 -0700416 }
417 if (mask & ENCODE_LITERAL) {
418 strcat(buf, "lit ");
419 }
420
421 if (mask & ENCODE_HEAP_REF) {
422 strcat(buf, "heap ");
423 }
424 if (mask & ENCODE_MUST_NOT_ALIAS) {
425 strcat(buf, "noalias ");
426 }
427 }
428 if (buf[0]) {
429 LOG(INFO) << prefix << ": " << buf;
430 }
431}
432
433void X86Mir2Lir::AdjustSpillMask() {
434 // Adjustment for LR spilling, x86 has no LR so nothing to do here
buzbee091cc402014-03-31 10:14:40 -0700435 core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700436 num_core_spills_++;
437}
438
439/*
440 * Mark a callee-save fp register as promoted. Note that
441 * vpush/vpop uses contiguous register lists so we must
442 * include any holes in the mask. Associate holes with
443 * Dalvik register INVALID_VREG (0xFFFFU).
444 */
buzbee091cc402014-03-31 10:14:40 -0700445void X86Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
446 UNIMPLEMENTED(FATAL) << "MarkPreservedSingle";
Brian Carlstrom7940e442013-07-12 13:46:57 -0700447}
448
buzbee091cc402014-03-31 10:14:40 -0700449void X86Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
450 UNIMPLEMENTED(FATAL) << "MarkPreservedDouble";
buzbee2700f7e2014-03-07 09:46:20 -0800451}
452
Mark Mendelle87f9b52014-04-30 14:13:18 -0400453RegStorage X86Mir2Lir::AllocateByteRegister() {
454 return AllocTypedTemp(false, kCoreReg);
455}
456
Brian Carlstrom7940e442013-07-12 13:46:57 -0700457/* Clobber all regs that might be used by an external C call */
Vladimir Marko31c2aac2013-12-09 16:31:19 +0000458void X86Mir2Lir::ClobberCallerSave() {
buzbee091cc402014-03-31 10:14:40 -0700459 Clobber(rs_rAX);
460 Clobber(rs_rCX);
461 Clobber(rs_rDX);
462 Clobber(rs_rBX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700463}
464
465RegLocation X86Mir2Lir::GetReturnWideAlt() {
466 RegLocation res = LocCReturnWide();
buzbee091cc402014-03-31 10:14:40 -0700467 DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
468 DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
469 Clobber(rs_rAX);
470 Clobber(rs_rDX);
471 MarkInUse(rs_rAX);
472 MarkInUse(rs_rDX);
473 MarkWide(res.reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700474 return res;
475}
476
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700477RegLocation X86Mir2Lir::GetReturnAlt() {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700478 RegLocation res = LocCReturn();
buzbee091cc402014-03-31 10:14:40 -0700479 res.reg.SetReg(rs_rDX.GetReg());
480 Clobber(rs_rDX);
481 MarkInUse(rs_rDX);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700482 return res;
483}
484
Brian Carlstrom7940e442013-07-12 13:46:57 -0700485/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700486void X86Mir2Lir::LockCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700487 LockTemp(rs_rX86_ARG0);
488 LockTemp(rs_rX86_ARG1);
489 LockTemp(rs_rX86_ARG2);
490 LockTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700491#ifdef TARGET_REX_SUPPORT
492 if (Gen64Bit()) {
493 LockTemp(rs_rX86_ARG4);
494 LockTemp(rs_rX86_ARG5);
495 LockTemp(rs_rX86_FARG0);
496 LockTemp(rs_rX86_FARG1);
497 LockTemp(rs_rX86_FARG2);
498 LockTemp(rs_rX86_FARG3);
499 LockTemp(rs_rX86_FARG4);
500 LockTemp(rs_rX86_FARG5);
501 LockTemp(rs_rX86_FARG6);
502 LockTemp(rs_rX86_FARG7);
503 }
504#endif
Brian Carlstrom7940e442013-07-12 13:46:57 -0700505}
506
507/* To be used when explicitly managing register use */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700508void X86Mir2Lir::FreeCallTemps() {
buzbee091cc402014-03-31 10:14:40 -0700509 FreeTemp(rs_rX86_ARG0);
510 FreeTemp(rs_rX86_ARG1);
511 FreeTemp(rs_rX86_ARG2);
512 FreeTemp(rs_rX86_ARG3);
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700513#ifdef TARGET_REX_SUPPORT
514 if (Gen64Bit()) {
515 FreeTemp(rs_rX86_ARG4);
516 FreeTemp(rs_rX86_ARG5);
517 FreeTemp(rs_rX86_FARG0);
518 FreeTemp(rs_rX86_FARG1);
519 FreeTemp(rs_rX86_FARG2);
520 FreeTemp(rs_rX86_FARG3);
521 FreeTemp(rs_rX86_FARG4);
522 FreeTemp(rs_rX86_FARG5);
523 FreeTemp(rs_rX86_FARG6);
524 FreeTemp(rs_rX86_FARG7);
525 }
526#endif
Brian Carlstrom7940e442013-07-12 13:46:57 -0700527}
528
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800529bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
530 switch (opcode) {
531 case kX86LockCmpxchgMR:
532 case kX86LockCmpxchgAR:
533 case kX86LockCmpxchg8bM:
534 case kX86LockCmpxchg8bA:
535 case kX86XchgMR:
536 case kX86Mfence:
537 // Atomic memory instructions provide full barrier.
538 return true;
539 default:
540 break;
541 }
542
543 // Conservative if cannot prove it provides full barrier.
544 return false;
545}
546
Andreas Gampeb14329f2014-05-15 11:16:06 -0700547bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700548#if ANDROID_SMP != 0
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800549 // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
550 LIR* mem_barrier = last_lir_insn_;
551
Andreas Gampeb14329f2014-05-15 11:16:06 -0700552 bool ret = false;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800553 /*
554 * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
555 * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
556 * to ensure is that there is a scheduling barrier in place.
557 */
558 if (barrier_kind == kStoreLoad) {
559 // If no LIR exists already that can be used a barrier, then generate an mfence.
560 if (mem_barrier == nullptr) {
561 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700562 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800563 }
564
565 // If last instruction does not provide full barrier, then insert an mfence.
566 if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
567 mem_barrier = NewLIR0(kX86Mfence);
Andreas Gampeb14329f2014-05-15 11:16:06 -0700568 ret = true;
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800569 }
570 }
571
572 // Now ensure that a scheduling barrier is in place.
573 if (mem_barrier == nullptr) {
574 GenBarrier();
575 } else {
576 // Mark as a scheduling barrier.
577 DCHECK(!mem_barrier->flags.use_def_invalid);
578 mem_barrier->u.m.def_mask = ENCODE_ALL;
579 }
Andreas Gampeb14329f2014-05-15 11:16:06 -0700580 return ret;
581#else
582 return false;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700583#endif
584}
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000585
Brian Carlstrom7940e442013-07-12 13:46:57 -0700586void X86Mir2Lir::CompilerInitializeRegAlloc() {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700587 if (Gen64Bit()) {
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700588 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
589 dp_regs_64, reserved_regs_64, reserved_regs_64q,
590 core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700591 } else {
buzbeeb01bf152014-05-13 15:59:07 -0700592 reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
593 dp_regs_32, reserved_regs_32, empty_pool,
594 core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700595 }
buzbee091cc402014-03-31 10:14:40 -0700596
597 // Target-specific adjustments.
598
Mark Mendellfe945782014-05-22 09:52:36 -0400599 // Add in XMM registers.
Vladimir Marko089142c2014-06-05 10:57:05 +0100600 const ArrayRef<const RegStorage> *xp_temps = Gen64Bit() ? &xp_temps_64 : &xp_temps_32;
Mark Mendellfe945782014-05-22 09:52:36 -0400601 for (RegStorage reg : *xp_temps) {
602 RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
603 reginfo_map_.Put(reg.GetReg(), info);
604 info->SetIsTemp(true);
605 }
606
buzbee091cc402014-03-31 10:14:40 -0700607 // Alias single precision xmm to double xmms.
608 // TODO: as needed, add larger vector sizes - alias all to the largest.
609 GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
610 for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
611 int sp_reg_num = info->GetReg().GetRegNum();
Mark Mendellfe945782014-05-22 09:52:36 -0400612 RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
613 RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
614 // 128-bit xmm vector register's master storage should refer to itself.
615 DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
616
617 // Redirect 32-bit vector's master storage to 128-bit vector.
618 info->SetMaster(xp_reg_info);
619
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700620 RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
buzbee091cc402014-03-31 10:14:40 -0700621 RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
Mark Mendellfe945782014-05-22 09:52:36 -0400622 // Redirect 64-bit vector's master storage to 128-bit vector.
623 dp_reg_info->SetMaster(xp_reg_info);
Dmitry Petrochenko76af0d32014-06-05 21:15:08 +0700624 // Singles should show a single 32-bit mask bit, at first referring to the low half.
625 DCHECK_EQ(info->StorageMask(), 0x1U);
626 }
627
628 if (Gen64Bit()) {
629 // Alias 32bit W registers to corresponding 64bit X registers.
630 GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
631 for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
632 int x_reg_num = info->GetReg().GetRegNum();
633 RegStorage x_reg = RegStorage::Solo64(x_reg_num);
634 RegisterInfo* x_reg_info = GetRegInfo(x_reg);
635 // 64bit X register's master storage should refer to itself.
636 DCHECK_EQ(x_reg_info, x_reg_info->Master());
637 // Redirect 32bit W master storage to 64bit X.
638 info->SetMaster(x_reg_info);
639 // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
640 DCHECK_EQ(info->StorageMask(), 0x1U);
641 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700642 }
buzbee091cc402014-03-31 10:14:40 -0700643
644 // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
645 // TODO: adjust for x86/hard float calling convention.
646 reg_pool_->next_core_reg_ = 2;
647 reg_pool_->next_sp_reg_ = 2;
648 reg_pool_->next_dp_reg_ = 1;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700649}
650
Brian Carlstrom7940e442013-07-12 13:46:57 -0700651void X86Mir2Lir::SpillCoreRegs() {
652 if (num_core_spills_ == 0) {
653 return;
654 }
655 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700656 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700657 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700658 for (int reg = 0; mask; mask >>= 1, reg++) {
659 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800660 StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700661 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700662 }
663 }
664}
665
666void X86Mir2Lir::UnSpillCoreRegs() {
667 if (num_core_spills_ == 0) {
668 return;
669 }
670 // Spill mask not including fake return address register
buzbee091cc402014-03-31 10:14:40 -0700671 uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700672 int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700673 for (int reg = 0; mask; mask >>= 1, reg++) {
674 if (mask & 0x1) {
buzbee2700f7e2014-03-07 09:46:20 -0800675 LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700676 offset += GetInstructionSetPointerSize(cu_->instruction_set);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700677 }
678 }
679}
680
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700681bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700682 return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
683}
684
Vladimir Marko674744e2014-04-24 15:18:26 +0100685bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
686 return true;
687}
688
689RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
Chao-ying Fue0ccdc02014-06-06 17:32:37 -0700690 // X86_64 can handle any size.
691 if (Gen64Bit()) {
692 if (size == kReference) {
693 return kRefReg;
694 }
695 return kCoreReg;
696 }
697
Vladimir Marko674744e2014-04-24 15:18:26 +0100698 if (UNLIKELY(is_volatile)) {
699 // On x86, atomic 64-bit load/store requires an fp register.
700 // Smaller aligned load/store is atomic for both core and fp registers.
701 if (size == k64 || size == kDouble) {
702 return kFPReg;
703 }
704 }
705 return RegClassBySize(size);
706}
707
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700708X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena, bool gen64bit)
Mark Mendell55d0eac2014-02-06 11:02:52 -0800709 : Mir2Lir(cu, mir_graph, arena),
Ian Rogersdd7624d2014-03-14 17:43:00 -0700710 base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800711 method_address_insns_(arena, 100, kGrowableArrayMisc),
712 class_type_address_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendellae9fd932014-02-10 16:14:35 -0800713 call_method_insns_(arena, 100, kGrowableArrayMisc),
Mark Mendelld65c51a2014-04-29 16:55:20 -0400714 stack_decrement_(nullptr), stack_increment_(nullptr), gen64bit_(gen64bit),
715 const_vectors_(nullptr) {
716 store_method_addr_used_ = false;
Ian Rogersdd7624d2014-03-14 17:43:00 -0700717 if (kIsDebugBuild) {
718 for (int i = 0; i < kX86Last; i++) {
719 if (X86Mir2Lir::EncodingMap[i].opcode != i) {
720 LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
Mark Mendelld65c51a2014-04-29 16:55:20 -0400721 << " is wrong: expecting " << i << ", seeing "
722 << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
Ian Rogersdd7624d2014-03-14 17:43:00 -0700723 }
Brian Carlstrom7940e442013-07-12 13:46:57 -0700724 }
725 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700726 if (Gen64Bit()) {
727 rs_rX86_SP = rs_rX86_SP_64;
728
729 rs_rX86_ARG0 = rs_rDI;
730 rs_rX86_ARG1 = rs_rSI;
731 rs_rX86_ARG2 = rs_rDX;
732 rs_rX86_ARG3 = rs_rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700733#ifdef TARGET_REX_SUPPORT
734 rs_rX86_ARG4 = rs_r8;
735 rs_rX86_ARG5 = rs_r9;
736#else
737 rs_rX86_ARG4 = RegStorage::InvalidReg();
738 rs_rX86_ARG5 = RegStorage::InvalidReg();
739#endif
740 rs_rX86_FARG0 = rs_fr0;
741 rs_rX86_FARG1 = rs_fr1;
742 rs_rX86_FARG2 = rs_fr2;
743 rs_rX86_FARG3 = rs_fr3;
744 rs_rX86_FARG4 = rs_fr4;
745 rs_rX86_FARG5 = rs_fr5;
746 rs_rX86_FARG6 = rs_fr6;
747 rs_rX86_FARG7 = rs_fr7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700748 rX86_ARG0 = rDI;
749 rX86_ARG1 = rSI;
750 rX86_ARG2 = rDX;
751 rX86_ARG3 = rCX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700752#ifdef TARGET_REX_SUPPORT
753 rX86_ARG4 = r8;
754 rX86_ARG5 = r9;
755#endif
756 rX86_FARG0 = fr0;
757 rX86_FARG1 = fr1;
758 rX86_FARG2 = fr2;
759 rX86_FARG3 = fr3;
760 rX86_FARG4 = fr4;
761 rX86_FARG5 = fr5;
762 rX86_FARG6 = fr6;
763 rX86_FARG7 = fr7;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700764 } else {
765 rs_rX86_SP = rs_rX86_SP_32;
766
767 rs_rX86_ARG0 = rs_rAX;
768 rs_rX86_ARG1 = rs_rCX;
769 rs_rX86_ARG2 = rs_rDX;
770 rs_rX86_ARG3 = rs_rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700771 rs_rX86_ARG4 = RegStorage::InvalidReg();
772 rs_rX86_ARG5 = RegStorage::InvalidReg();
773 rs_rX86_FARG0 = rs_rAX;
774 rs_rX86_FARG1 = rs_rCX;
775 rs_rX86_FARG2 = rs_rDX;
776 rs_rX86_FARG3 = rs_rBX;
777 rs_rX86_FARG4 = RegStorage::InvalidReg();
778 rs_rX86_FARG5 = RegStorage::InvalidReg();
779 rs_rX86_FARG6 = RegStorage::InvalidReg();
780 rs_rX86_FARG7 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700781 rX86_ARG0 = rAX;
782 rX86_ARG1 = rCX;
783 rX86_ARG2 = rDX;
784 rX86_ARG3 = rBX;
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +0700785 rX86_FARG0 = rAX;
786 rX86_FARG1 = rCX;
787 rX86_FARG2 = rDX;
788 rX86_FARG3 = rBX;
789 // TODO(64): Initialize with invalid reg
790// rX86_ARG4 = RegStorage::InvalidReg();
791// rX86_ARG5 = RegStorage::InvalidReg();
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700792 }
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700793 rs_rX86_RET0 = rs_rAX;
794 rs_rX86_RET1 = rs_rDX;
795 rs_rX86_INVOKE_TGT = rs_rAX;
796 rs_rX86_COUNT = rs_rCX;
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700797 rX86_RET0 = rAX;
798 rX86_RET1 = rDX;
799 rX86_INVOKE_TGT = rAX;
800 rX86_COUNT = rCX;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700801}
802
803Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
804 ArenaAllocator* const arena) {
Dmitry Petrochenko9ee801f2014-05-12 11:31:37 +0700805 return new X86Mir2Lir(cu, mir_graph, arena, false);
806}
807
808Mir2Lir* X86_64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
809 ArenaAllocator* const arena) {
810 return new X86Mir2Lir(cu, mir_graph, arena, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700811}
812
813// Not used in x86
Ian Rogersdd7624d2014-03-14 17:43:00 -0700814RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700815 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
buzbee2700f7e2014-03-07 09:46:20 -0800816 return RegStorage::InvalidReg();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700817}
818
Andreas Gampe2f244e92014-05-08 03:35:25 -0700819// Not used in x86
820RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
821 LOG(FATAL) << "Unexpected use of LoadHelper in x86";
822 return RegStorage::InvalidReg();
823}
824
Dave Allisonb373e092014-02-20 16:06:36 -0800825LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
826 LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
827 return nullptr;
828}
829
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700830uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700831 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700832 return X86Mir2Lir::EncodingMap[opcode].flags;
833}
834
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700835const char* X86Mir2Lir::GetTargetInstName(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700836 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 return X86Mir2Lir::EncodingMap[opcode].name;
838}
839
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700840const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
buzbee409fe942013-10-11 10:49:56 -0700841 DCHECK(!IsPseudoLirOp(opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700842 return X86Mir2Lir::EncodingMap[opcode].fmt;
843}
844
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000845void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
846 // Can we do this directly to memory?
847 rl_dest = UpdateLocWide(rl_dest);
848 if ((rl_dest.location == kLocDalvikFrame) ||
849 (rl_dest.location == kLocCompilerTemp)) {
850 int32_t val_lo = Low32Bits(value);
851 int32_t val_hi = High32Bits(value);
buzbee2700f7e2014-03-07 09:46:20 -0800852 int r_base = TargetReg(kSp).GetReg();
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000853 int displacement = SRegOffset(rl_dest.s_reg_low);
854
buzbee2700f7e2014-03-07 09:46:20 -0800855 LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000856 AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
857 false /* is_load */, true /* is64bit */);
buzbee2700f7e2014-03-07 09:46:20 -0800858 store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000859 AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
860 false /* is_load */, true /* is64bit */);
861 return;
862 }
863
864 // Just use the standard code to do the generation.
865 Mir2Lir::GenConstWide(rl_dest, value);
866}
Mark Mendelle02d48f2014-01-15 11:19:23 -0800867
868// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
869void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
870 LOG(INFO) << "location: " << loc.location << ','
871 << (loc.wide ? " w" : " ")
872 << (loc.defined ? " D" : " ")
873 << (loc.is_const ? " c" : " ")
874 << (loc.fp ? " F" : " ")
875 << (loc.core ? " C" : " ")
876 << (loc.ref ? " r" : " ")
877 << (loc.high_word ? " h" : " ")
878 << (loc.home ? " H" : " ")
buzbee2700f7e2014-03-07 09:46:20 -0800879 << ", low: " << static_cast<int>(loc.reg.GetLowReg())
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000880 << ", high: " << static_cast<int>(loc.reg.GetHighReg())
Mark Mendelle02d48f2014-01-15 11:19:23 -0800881 << ", s_reg: " << loc.s_reg_low
882 << ", orig: " << loc.orig_sreg;
883}
884
Mark Mendell67c39c42014-01-31 17:28:00 -0800885void X86Mir2Lir::Materialize() {
886 // A good place to put the analysis before starting.
887 AnalyzeMIR();
888
889 // Now continue with regular code generation.
890 Mir2Lir::Materialize();
891}
892
Jeff Hao49161ce2014-03-12 11:05:25 -0700893void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
Mark Mendell55d0eac2014-02-06 11:02:52 -0800894 SpecialTargetRegister symbolic_reg) {
895 /*
896 * For x86, just generate a 32 bit move immediate instruction, that will be filled
897 * in at 'link time'. For now, put a unique value based on target to ensure that
898 * code deduplication works.
899 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700900 int target_method_idx = target_method.dex_method_index;
901 const DexFile* target_dex_file = target_method.dex_file;
902 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
903 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800904
Jeff Hao49161ce2014-03-12 11:05:25 -0700905 // Generate the move instruction with the unique pointer and save index, dex_file, and type.
buzbee2700f7e2014-03-07 09:46:20 -0800906 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Jeff Hao49161ce2014-03-12 11:05:25 -0700907 static_cast<int>(target_method_id_ptr), target_method_idx,
908 WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800909 AppendLIR(move);
910 method_address_insns_.Insert(move);
911}
912
913void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
914 /*
915 * For x86, just generate a 32 bit move immediate instruction, that will be filled
916 * in at 'link time'. For now, put a unique value based on target to ensure that
917 * code deduplication works.
918 */
919 const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
920 uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
921
922 // Generate the move instruction with the unique pointer and save index and type.
buzbee2700f7e2014-03-07 09:46:20 -0800923 LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg).GetReg(),
Mark Mendell55d0eac2014-02-06 11:02:52 -0800924 static_cast<int>(ptr), type_idx);
925 AppendLIR(move);
926 class_type_address_insns_.Insert(move);
927}
928
Jeff Hao49161ce2014-03-12 11:05:25 -0700929LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800930 /*
931 * For x86, just generate a 32 bit call relative instruction, that will be filled
932 * in at 'link time'. For now, put a unique value based on target to ensure that
933 * code deduplication works.
934 */
Jeff Hao49161ce2014-03-12 11:05:25 -0700935 int target_method_idx = target_method.dex_method_index;
936 const DexFile* target_dex_file = target_method.dex_file;
937 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
938 uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800939
Jeff Hao49161ce2014-03-12 11:05:25 -0700940 // Generate the call instruction with the unique pointer and save index, dex_file, and type.
941 LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
942 target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800943 AppendLIR(call);
944 call_method_insns_.Insert(call);
945 return call;
946}
947
Mark Mendelld65c51a2014-04-29 16:55:20 -0400948/*
949 * @brief Enter a 32 bit quantity into a buffer
950 * @param buf buffer.
951 * @param data Data value.
952 */
953
954static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
955 buf.push_back(data & 0xff);
956 buf.push_back((data >> 8) & 0xff);
957 buf.push_back((data >> 16) & 0xff);
958 buf.push_back((data >> 24) & 0xff);
959}
960
Mark Mendell55d0eac2014-02-06 11:02:52 -0800961void X86Mir2Lir::InstallLiteralPools() {
962 // These are handled differently for x86.
963 DCHECK(code_literal_list_ == nullptr);
964 DCHECK(method_literal_list_ == nullptr);
965 DCHECK(class_literal_list_ == nullptr);
966
Mark Mendelld65c51a2014-04-29 16:55:20 -0400967 // Align to 16 byte boundary. We have implicit knowledge that the start of the method is
968 // on a 4 byte boundary. How can I check this if it changes (other than aligned loads
969 // will fail at runtime)?
970 if (const_vectors_ != nullptr) {
971 int align_size = (16-4) - (code_buffer_.size() & 0xF);
972 if (align_size < 0) {
973 align_size += 16;
974 }
975
976 while (align_size > 0) {
977 code_buffer_.push_back(0);
978 align_size--;
979 }
980 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
981 PushWord(code_buffer_, p->operands[0]);
982 PushWord(code_buffer_, p->operands[1]);
983 PushWord(code_buffer_, p->operands[2]);
984 PushWord(code_buffer_, p->operands[3]);
985 }
986 }
987
Mark Mendell55d0eac2014-02-06 11:02:52 -0800988 // Handle the fixups for methods.
989 for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
990 LIR* p = method_address_insns_.Get(i);
991 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -0700992 uint32_t target_method_idx = p->operands[2];
993 const DexFile* target_dex_file =
994 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
Mark Mendell55d0eac2014-02-06 11:02:52 -0800995
996 // The offset to patch is the last 4 bytes of the instruction.
997 int patch_offset = p->offset + p->flags.size - 4;
998 cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
999 cu_->method_idx, cu_->invoke_type,
Jeff Hao49161ce2014-03-12 11:05:25 -07001000 target_method_idx, target_dex_file,
1001 static_cast<InvokeType>(p->operands[4]),
Mark Mendell55d0eac2014-02-06 11:02:52 -08001002 patch_offset);
1003 }
1004
1005 // Handle the fixups for class types.
1006 for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
1007 LIR* p = class_type_address_insns_.Get(i);
1008 DCHECK_EQ(p->opcode, kX86Mov32RI);
Jeff Hao49161ce2014-03-12 11:05:25 -07001009 uint32_t target_method_idx = p->operands[2];
Mark Mendell55d0eac2014-02-06 11:02:52 -08001010
1011 // The offset to patch is the last 4 bytes of the instruction.
1012 int patch_offset = p->offset + p->flags.size - 4;
1013 cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -07001014 cu_->method_idx, target_method_idx, patch_offset);
Mark Mendell55d0eac2014-02-06 11:02:52 -08001015 }
1016
1017 // And now the PC-relative calls to methods.
1018 for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1019 LIR* p = call_method_insns_.Get(i);
1020 DCHECK_EQ(p->opcode, kX86CallI);
Jeff Hao49161ce2014-03-12 11:05:25 -07001021 uint32_t target_method_idx = p->operands[1];
1022 const DexFile* target_dex_file =
1023 reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
Mark Mendell55d0eac2014-02-06 11:02:52 -08001024
1025 // The offset to patch is the last 4 bytes of the instruction.
1026 int patch_offset = p->offset + p->flags.size - 4;
1027 cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
Jeff Hao49161ce2014-03-12 11:05:25 -07001028 cu_->method_idx, cu_->invoke_type,
1029 target_method_idx, target_dex_file,
1030 static_cast<InvokeType>(p->operands[3]),
Mark Mendell55d0eac2014-02-06 11:02:52 -08001031 patch_offset, -4 /* offset */);
1032 }
1033
1034 // And do the normal processing.
1035 Mir2Lir::InstallLiteralPools();
1036}
1037
Mark Mendell4028a6c2014-02-19 20:06:20 -08001038/*
1039 * Fast string.index_of(I) & (II). Inline check for simple case of char <= 0xffff,
1040 * otherwise bails to standard library code.
1041 */
1042bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1043 ClobberCallerSave();
1044 LockCallTemps(); // Using fixed registers
1045
1046 // EAX: 16 bit character being searched.
1047 // ECX: count: number of words to be searched.
1048 // EDI: String being searched.
1049 // EDX: temporary during execution.
1050 // EBX: temporary during execution.
1051
1052 RegLocation rl_obj = info->args[0];
1053 RegLocation rl_char = info->args[1];
buzbeea44d4f52014-03-05 11:26:39 -08001054 RegLocation rl_start; // Note: only present in III flavor or IndexOf.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001055
1056 uint32_t char_value =
1057 rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1058
1059 if (char_value > 0xFFFF) {
1060 // We have to punt to the real String.indexOf.
1061 return false;
1062 }
1063
1064 // Okay, we are commited to inlining this.
buzbeea0cd2d72014-06-01 09:33:49 -07001065 RegLocation rl_return = GetReturn(kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001066 RegLocation rl_dest = InlineTarget(info);
1067
1068 // Is the string non-NULL?
buzbee2700f7e2014-03-07 09:46:20 -08001069 LoadValueDirectFixed(rl_obj, rs_rDX);
1070 GenNullCheck(rs_rDX, info->opt_flags);
Vladimir Marko3bc86152014-03-13 14:11:28 +00001071 info->opt_flags |= MIR_IGNORE_NULL_CHECK; // Record that we've null checked.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001072
1073 // Does the character fit in 16 bits?
Mingyao Yang3a74d152014-04-21 15:39:44 -07001074 LIR* slowpath_branch = nullptr;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001075 if (rl_char.is_const) {
1076 // We need the value in EAX.
buzbee2700f7e2014-03-07 09:46:20 -08001077 LoadConstantNoClobber(rs_rAX, char_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001078 } else {
1079 // Character is not a constant; compare at runtime.
buzbee2700f7e2014-03-07 09:46:20 -08001080 LoadValueDirectFixed(rl_char, rs_rAX);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001081 slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001082 }
1083
1084 // From here down, we know that we are looking for a char that fits in 16 bits.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001085 // Location of reference to data array within the String object.
1086 int value_offset = mirror::String::ValueOffset().Int32Value();
1087 // Location of count within the String object.
1088 int count_offset = mirror::String::CountOffset().Int32Value();
1089 // Starting offset within data array.
1090 int offset_offset = mirror::String::OffsetOffset().Int32Value();
1091 // Start of char data with array_.
1092 int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
Mark Mendell4028a6c2014-02-19 20:06:20 -08001093
1094 // Character is in EAX.
1095 // Object pointer is in EDX.
1096
1097 // We need to preserve EDI, but have no spare registers, so push it on the stack.
1098 // We have to remember that all stack addresses after this are offset by sizeof(EDI).
buzbee091cc402014-03-31 10:14:40 -07001099 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001100
1101 // Compute the number of words to search in to rCX.
buzbee695d13a2014-04-19 13:32:20 -07001102 Load32Disp(rs_rDX, count_offset, rs_rCX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001103 LIR *length_compare = nullptr;
1104 int start_value = 0;
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001105 bool is_index_on_stack = false;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001106 if (zero_based) {
1107 // We have to handle an empty string. Use special instruction JECXZ.
1108 length_compare = NewLIR0(kX86Jecxz8);
1109 } else {
buzbeea44d4f52014-03-05 11:26:39 -08001110 rl_start = info->args[2];
Mark Mendell4028a6c2014-02-19 20:06:20 -08001111 // We have to offset by the start index.
1112 if (rl_start.is_const) {
1113 start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1114 start_value = std::max(start_value, 0);
1115
1116 // Is the start > count?
buzbee2700f7e2014-03-07 09:46:20 -08001117 length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001118
1119 if (start_value != 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001120 OpRegImm(kOpSub, rs_rCX, start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001121 }
1122 } else {
1123 // Runtime start index.
buzbee30adc732014-05-09 15:10:18 -07001124 rl_start = UpdateLocTyped(rl_start, kCoreReg);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001125 if (rl_start.location == kLocPhysReg) {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001126 // Handle "start index < 0" case.
1127 OpRegReg(kOpXor, rs_rBX, rs_rBX);
1128 OpRegReg(kOpCmp, rl_start.reg, rs_rBX);
1129 OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, rs_rBX);
1130
1131 // The length of the string should be greater than the start index.
buzbee2700f7e2014-03-07 09:46:20 -08001132 length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1133 OpRegReg(kOpSub, rs_rCX, rl_start.reg);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001134 if (rl_start.reg == rs_rDI) {
1135 // The special case. We will use EDI further, so lets put start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001136 NewLIR1(kX86Push32R, rs_rDI.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001137 is_index_on_stack = true;
1138 }
Mark Mendell4028a6c2014-02-19 20:06:20 -08001139 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001140 // Load the start index from stack, remembering that we pushed EDI.
Mark Mendell4028a6c2014-02-19 20:06:20 -08001141 int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
buzbee695d13a2014-04-19 13:32:20 -07001142 Load32Disp(rs_rX86_SP, displacement, rs_rBX);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001143 OpRegReg(kOpXor, rs_rDI, rs_rDI);
1144 OpRegReg(kOpCmp, rs_rBX, rs_rDI);
1145 OpCondRegReg(kOpCmov, kCondLt, rs_rBX, rs_rDI);
1146
1147 length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rBX, nullptr);
1148 OpRegReg(kOpSub, rs_rCX, rs_rBX);
1149 // Put the start index to stack.
buzbee091cc402014-03-31 10:14:40 -07001150 NewLIR1(kX86Push32R, rs_rBX.GetReg());
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001151 is_index_on_stack = true;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001152 }
1153 }
1154 }
1155 DCHECK(length_compare != nullptr);
1156
1157 // ECX now contains the count in words to be searched.
1158
1159 // Load the address of the string into EBX.
Mark Mendelle19c91f2014-02-25 08:19:08 -08001160 // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
buzbee695d13a2014-04-19 13:32:20 -07001161 Load32Disp(rs_rDX, value_offset, rs_rDI);
1162 Load32Disp(rs_rDX, offset_offset, rs_rBX);
buzbee2700f7e2014-03-07 09:46:20 -08001163 OpLea(rs_rBX, rs_rDI, rs_rBX, 1, data_offset);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001164
1165 // Now compute into EDI where the search will start.
1166 if (zero_based || rl_start.is_const) {
1167 if (start_value == 0) {
buzbee2700f7e2014-03-07 09:46:20 -08001168 OpRegCopy(rs_rDI, rs_rBX);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001169 } else {
buzbee091cc402014-03-31 10:14:40 -07001170 NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), rs_rBX.GetReg(), 2 * start_value);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001171 }
1172 } else {
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001173 if (is_index_on_stack == true) {
1174 // Load the start index from stack.
buzbee091cc402014-03-31 10:14:40 -07001175 NewLIR1(kX86Pop32R, rs_rDX.GetReg());
buzbee2700f7e2014-03-07 09:46:20 -08001176 OpLea(rs_rDI, rs_rBX, rs_rDX, 1, 0);
Alexei Zavjalova1758d82014-04-17 01:55:43 +07001177 } else {
1178 OpLea(rs_rDI, rs_rBX, rl_start.reg, 1, 0);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001179 }
1180 }
1181
1182 // EDI now contains the start of the string to be searched.
1183 // We are all prepared to do the search for the character.
1184 NewLIR0(kX86RepneScasw);
1185
1186 // Did we find a match?
1187 LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1188
1189 // yes, we matched. Compute the index of the result.
1190 // index = ((curr_ptr - orig_ptr) / 2) - 1.
buzbee2700f7e2014-03-07 09:46:20 -08001191 OpRegReg(kOpSub, rs_rDI, rs_rBX);
1192 OpRegImm(kOpAsr, rs_rDI, 1);
buzbee091cc402014-03-31 10:14:40 -07001193 NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001194 LIR *all_done = NewLIR1(kX86Jmp8, 0);
1195
1196 // Failed to match; return -1.
1197 LIR *not_found = NewLIR0(kPseudoTargetLabel);
1198 length_compare->target = not_found;
1199 failed_branch->target = not_found;
buzbee2700f7e2014-03-07 09:46:20 -08001200 LoadConstantNoClobber(rl_return.reg, -1);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001201
1202 // And join up at the end.
1203 all_done->target = NewLIR0(kPseudoTargetLabel);
1204 // Restore EDI from the stack.
buzbee091cc402014-03-31 10:14:40 -07001205 NewLIR1(kX86Pop32R, rs_rDI.GetReg());
Mark Mendell4028a6c2014-02-19 20:06:20 -08001206
1207 // Out of line code returns here.
Mingyao Yang3a74d152014-04-21 15:39:44 -07001208 if (slowpath_branch != nullptr) {
Mark Mendell4028a6c2014-02-19 20:06:20 -08001209 LIR *return_point = NewLIR0(kPseudoTargetLabel);
Mingyao Yang3a74d152014-04-21 15:39:44 -07001210 AddIntrinsicSlowPath(info, slowpath_branch, return_point);
Mark Mendell4028a6c2014-02-19 20:06:20 -08001211 }
1212
1213 StoreValue(rl_dest, rl_return);
1214 return true;
1215}
1216
Mark Mendellae9fd932014-02-10 16:14:35 -08001217/*
Mark Mendellae9fd932014-02-10 16:14:35 -08001218 * @brief Enter an 'advance LOC' into the FDE buffer
1219 * @param buf FDE buffer.
1220 * @param increment Amount by which to increase the current location.
1221 */
1222static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1223 if (increment < 64) {
1224 // Encoding in opcode.
1225 buf.push_back(0x1 << 6 | increment);
1226 } else if (increment < 256) {
1227 // Single byte delta.
1228 buf.push_back(0x02);
1229 buf.push_back(increment);
1230 } else if (increment < 256 * 256) {
1231 // Two byte delta.
1232 buf.push_back(0x03);
1233 buf.push_back(increment & 0xff);
1234 buf.push_back((increment >> 8) & 0xff);
1235 } else {
1236 // Four byte delta.
1237 buf.push_back(0x04);
1238 PushWord(buf, increment);
1239 }
1240}
1241
1242
1243std::vector<uint8_t>* X86CFIInitialization() {
1244 return X86Mir2Lir::ReturnCommonCallFrameInformation();
1245}
1246
1247std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1248 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1249
1250 // Length of the CIE (except for this field).
1251 PushWord(*cfi_info, 16);
1252
1253 // CIE id.
1254 PushWord(*cfi_info, 0xFFFFFFFFU);
1255
1256 // Version: 3.
1257 cfi_info->push_back(0x03);
1258
1259 // Augmentation: empty string.
1260 cfi_info->push_back(0x0);
1261
1262 // Code alignment: 1.
1263 cfi_info->push_back(0x01);
1264
1265 // Data alignment: -4.
1266 cfi_info->push_back(0x7C);
1267
1268 // Return address register (R8).
1269 cfi_info->push_back(0x08);
1270
1271 // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1272 cfi_info->push_back(0x0C);
1273 cfi_info->push_back(0x04);
1274 cfi_info->push_back(0x04);
1275
1276 // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1277 cfi_info->push_back(0x2 << 6 | 0x08);
1278 cfi_info->push_back(0x01);
1279
1280 // And 2 Noops to align to 4 byte boundary.
1281 cfi_info->push_back(0x0);
1282 cfi_info->push_back(0x0);
1283
1284 DCHECK_EQ(cfi_info->size() & 3, 0U);
1285 return cfi_info;
1286}
1287
1288static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1289 uint8_t buffer[12];
1290 uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1291 for (uint8_t *p = buffer; p < ptr; p++) {
1292 buf.push_back(*p);
1293 }
1294}
1295
1296std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1297 std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1298
1299 // Generate the FDE for the method.
1300 DCHECK_NE(data_offset_, 0U);
1301
1302 // Length (will be filled in later in this routine).
1303 PushWord(*cfi_info, 0);
1304
1305 // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1306 // one CIE for the whole debug_frame section.
1307 PushWord(*cfi_info, 0);
1308
1309 // 'initial_location' (filled in by linker).
1310 PushWord(*cfi_info, 0);
1311
1312 // 'address_range' (number of bytes in the method).
1313 PushWord(*cfi_info, data_offset_);
1314
1315 // The instructions in the FDE.
1316 if (stack_decrement_ != nullptr) {
1317 // Advance LOC to just past the stack decrement.
1318 uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1319 AdvanceLoc(*cfi_info, pc);
1320
1321 // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1322 cfi_info->push_back(0x0e);
1323 EncodeUnsignedLeb128(*cfi_info, frame_size_);
1324
1325 // We continue with that stack until the epilogue.
1326 if (stack_increment_ != nullptr) {
1327 uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1328 AdvanceLoc(*cfi_info, new_pc - pc);
1329
1330 // We probably have code snippets after the epilogue, so save the
1331 // current state: DW_CFA_remember_state.
1332 cfi_info->push_back(0x0a);
1333
1334 // We have now popped the stack: DW_CFA_def_cfa_offset 4. There is only the return
1335 // PC on the stack now.
1336 cfi_info->push_back(0x0e);
1337 EncodeUnsignedLeb128(*cfi_info, 4);
1338
1339 // Everything after that is the same as before the epilogue.
1340 // Stack bump was followed by RET instruction.
1341 LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1342 if (post_ret_insn != nullptr) {
1343 pc = new_pc;
1344 new_pc = post_ret_insn->offset;
1345 AdvanceLoc(*cfi_info, new_pc - pc);
1346 // Restore the state: DW_CFA_restore_state.
1347 cfi_info->push_back(0x0b);
1348 }
1349 }
1350 }
1351
1352 // Padding to a multiple of 4
1353 while ((cfi_info->size() & 3) != 0) {
1354 // DW_CFA_nop is encoded as 0.
1355 cfi_info->push_back(0);
1356 }
1357
1358 // Set the length of the FDE inside the generated bytes.
1359 uint32_t length = cfi_info->size() - 4;
1360 (*cfi_info)[0] = length;
1361 (*cfi_info)[1] = length >> 8;
1362 (*cfi_info)[2] = length >> 16;
1363 (*cfi_info)[3] = length >> 24;
1364 return cfi_info;
1365}
1366
Mark Mendelld65c51a2014-04-29 16:55:20 -04001367void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1368 switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1369 case kMirOpConstVector:
1370 GenConst128(bb, mir);
1371 break;
Mark Mendellfe945782014-05-22 09:52:36 -04001372 case kMirOpMoveVector:
1373 GenMoveVector(bb, mir);
1374 break;
1375 case kMirOpPackedMultiply:
1376 GenMultiplyVector(bb, mir);
1377 break;
1378 case kMirOpPackedAddition:
1379 GenAddVector(bb, mir);
1380 break;
1381 case kMirOpPackedSubtract:
1382 GenSubtractVector(bb, mir);
1383 break;
1384 case kMirOpPackedShiftLeft:
1385 GenShiftLeftVector(bb, mir);
1386 break;
1387 case kMirOpPackedSignedShiftRight:
1388 GenSignedShiftRightVector(bb, mir);
1389 break;
1390 case kMirOpPackedUnsignedShiftRight:
1391 GenUnsignedShiftRightVector(bb, mir);
1392 break;
1393 case kMirOpPackedAnd:
1394 GenAndVector(bb, mir);
1395 break;
1396 case kMirOpPackedOr:
1397 GenOrVector(bb, mir);
1398 break;
1399 case kMirOpPackedXor:
1400 GenXorVector(bb, mir);
1401 break;
1402 case kMirOpPackedAddReduce:
1403 GenAddReduceVector(bb, mir);
1404 break;
1405 case kMirOpPackedReduce:
1406 GenReduceVector(bb, mir);
1407 break;
1408 case kMirOpPackedSet:
1409 GenSetVector(bb, mir);
1410 break;
Mark Mendelld65c51a2014-04-29 16:55:20 -04001411 default:
1412 break;
1413 }
1414}
1415
1416void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1417 int type_size = mir->dalvikInsn.vA;
1418 // We support 128 bit vectors.
1419 DCHECK_EQ(type_size & 0xFFFF, 128);
Mark Mendellfe945782014-05-22 09:52:36 -04001420 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
Mark Mendelld65c51a2014-04-29 16:55:20 -04001421 uint32_t *args = mir->dalvikInsn.arg;
Mark Mendellfe945782014-05-22 09:52:36 -04001422 int reg = rs_dest.GetReg();
Mark Mendelld65c51a2014-04-29 16:55:20 -04001423 // Check for all 0 case.
1424 if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1425 NewLIR2(kX86XorpsRR, reg, reg);
1426 return;
1427 }
1428 // Okay, load it from the constant vector area.
1429 LIR *data_target = ScanVectorLiteral(mir);
1430 if (data_target == nullptr) {
1431 data_target = AddVectorLiteral(mir);
1432 }
1433
1434 // Address the start of the method.
1435 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
Chao-ying Fue0ccdc02014-06-06 17:32:37 -07001436 if (rl_method.wide) {
1437 rl_method = LoadValueWide(rl_method, kCoreReg);
1438 } else {
1439 rl_method = LoadValue(rl_method, kCoreReg);
1440 }
Mark Mendelld65c51a2014-04-29 16:55:20 -04001441
1442 // Load the proper value from the literal area.
1443 // We don't know the proper offset for the value, so pick one that will force
1444 // 4 byte offset. We will fix this up in the assembler later to have the right
1445 // value.
1446 LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(), 256 /* bogus */);
1447 load->flags.fixup = kFixupLoad;
1448 load->target = data_target;
1449 SetMemRefType(load, true, kLiteral);
1450}
1451
Mark Mendellfe945782014-05-22 09:52:36 -04001452void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1453 // We only support 128 bit registers.
1454 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1455 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1456 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1457 NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1458}
1459
1460void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1461 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1462 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1463 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1464 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1465 int opcode = 0;
1466 switch (opsize) {
1467 case k32:
1468 opcode = kX86PmulldRR;
1469 break;
1470 case kSignedHalf:
1471 opcode = kX86PmullwRR;
1472 break;
1473 case kSingle:
1474 opcode = kX86MulpsRR;
1475 break;
1476 case kDouble:
1477 opcode = kX86MulpdRR;
1478 break;
1479 default:
1480 LOG(FATAL) << "Unsupported vector multiply " << opsize;
1481 break;
1482 }
1483 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1484}
1485
1486void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1487 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1488 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1489 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1490 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1491 int opcode = 0;
1492 switch (opsize) {
1493 case k32:
1494 opcode = kX86PadddRR;
1495 break;
1496 case kSignedHalf:
1497 case kUnsignedHalf:
1498 opcode = kX86PaddwRR;
1499 break;
1500 case kUnsignedByte:
1501 case kSignedByte:
1502 opcode = kX86PaddbRR;
1503 break;
1504 case kSingle:
1505 opcode = kX86AddpsRR;
1506 break;
1507 case kDouble:
1508 opcode = kX86AddpdRR;
1509 break;
1510 default:
1511 LOG(FATAL) << "Unsupported vector addition " << opsize;
1512 break;
1513 }
1514 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1515}
1516
1517void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1518 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1519 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1520 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1521 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1522 int opcode = 0;
1523 switch (opsize) {
1524 case k32:
1525 opcode = kX86PsubdRR;
1526 break;
1527 case kSignedHalf:
1528 case kUnsignedHalf:
1529 opcode = kX86PsubwRR;
1530 break;
1531 case kUnsignedByte:
1532 case kSignedByte:
1533 opcode = kX86PsubbRR;
1534 break;
1535 case kSingle:
1536 opcode = kX86SubpsRR;
1537 break;
1538 case kDouble:
1539 opcode = kX86SubpdRR;
1540 break;
1541 default:
1542 LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1543 break;
1544 }
1545 NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1546}
1547
1548void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1549 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1550 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1551 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1552 int imm = mir->dalvikInsn.vC;
1553 int opcode = 0;
1554 switch (opsize) {
1555 case k32:
1556 opcode = kX86PslldRI;
1557 break;
1558 case k64:
1559 opcode = kX86PsllqRI;
1560 break;
1561 case kSignedHalf:
1562 case kUnsignedHalf:
1563 opcode = kX86PsllwRI;
1564 break;
1565 default:
1566 LOG(FATAL) << "Unsupported vector shift left " << opsize;
1567 break;
1568 }
1569 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1570}
1571
1572void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1573 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1574 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1575 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1576 int imm = mir->dalvikInsn.vC;
1577 int opcode = 0;
1578 switch (opsize) {
1579 case k32:
1580 opcode = kX86PsradRI;
1581 break;
1582 case kSignedHalf:
1583 case kUnsignedHalf:
1584 opcode = kX86PsrawRI;
1585 break;
1586 default:
1587 LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1588 break;
1589 }
1590 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1591}
1592
1593void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1594 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1595 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1596 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1597 int imm = mir->dalvikInsn.vC;
1598 int opcode = 0;
1599 switch (opsize) {
1600 case k32:
1601 opcode = kX86PsrldRI;
1602 break;
1603 case k64:
1604 opcode = kX86PsrlqRI;
1605 break;
1606 case kSignedHalf:
1607 case kUnsignedHalf:
1608 opcode = kX86PsrlwRI;
1609 break;
1610 default:
1611 LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1612 break;
1613 }
1614 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1615}
1616
1617void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1618 // We only support 128 bit registers.
1619 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1620 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1621 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1622 NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1623}
1624
1625void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1626 // We only support 128 bit registers.
1627 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1628 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1629 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1630 NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1631}
1632
1633void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1634 // We only support 128 bit registers.
1635 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1636 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1637 RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1638 NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1639}
1640
1641void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1642 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1643 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1644 RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1645 int imm = mir->dalvikInsn.vC;
1646 int opcode = 0;
1647 switch (opsize) {
1648 case k32:
1649 opcode = kX86PhadddRR;
1650 break;
1651 case kSignedHalf:
1652 case kUnsignedHalf:
1653 opcode = kX86PhaddwRR;
1654 break;
1655 default:
1656 LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1657 break;
1658 }
1659 NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1660}
1661
1662void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1663 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1664 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1665 RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1666 int index = mir->dalvikInsn.arg[0];
1667 int opcode = 0;
1668 switch (opsize) {
1669 case k32:
1670 opcode = kX86PextrdRRI;
1671 break;
1672 case kSignedHalf:
1673 case kUnsignedHalf:
1674 opcode = kX86PextrwRRI;
1675 break;
1676 case kUnsignedByte:
1677 case kSignedByte:
1678 opcode = kX86PextrbRRI;
1679 break;
1680 default:
1681 LOG(FATAL) << "Unsupported vector reduce " << opsize;
1682 break;
1683 }
1684 // We need to extract to a GPR.
1685 RegStorage temp = AllocTemp();
1686 NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1687
1688 // Assume that the destination VR is in the def for the mir.
1689 RegLocation rl_dest = mir_graph_->GetDest(mir);
1690 RegLocation rl_temp =
1691 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1692 StoreValue(rl_dest, rl_temp);
1693}
1694
1695void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1696 DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1697 OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1698 RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1699 int op_low = 0, op_high = 0;
1700 switch (opsize) {
1701 case k32:
1702 op_low = kX86PshufdRRI;
1703 break;
1704 case kSignedHalf:
1705 case kUnsignedHalf:
1706 // Handles low quadword.
1707 op_low = kX86PshuflwRRI;
1708 // Handles upper quadword.
1709 op_high = kX86PshufdRRI;
1710 break;
1711 default:
1712 LOG(FATAL) << "Unsupported vector set " << opsize;
1713 break;
1714 }
1715
1716 // Load the value from the VR into a GPR.
1717 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1718 rl_src = LoadValue(rl_src, kCoreReg);
1719
1720 // Load the value into the XMM register.
1721 NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1722
1723 // Now shuffle the value across the destination.
1724 NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1725
1726 // And then repeat as needed.
1727 if (op_high != 0) {
1728 NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1729 }
1730}
1731
1732
Mark Mendelld65c51a2014-04-29 16:55:20 -04001733LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1734 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1735 for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1736 if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1737 args[2] == p->operands[2] && args[3] == p->operands[3]) {
1738 return p;
1739 }
1740 }
1741 return nullptr;
1742}
1743
1744LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1745 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1746 int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1747 new_value->operands[0] = args[0];
1748 new_value->operands[1] = args[1];
1749 new_value->operands[2] = args[2];
1750 new_value->operands[3] = args[3];
1751 new_value->next = const_vectors_;
1752 if (const_vectors_ == nullptr) {
1753 estimated_native_code_size_ += 12; // Amount needed to align to 16 byte boundary.
1754 }
1755 estimated_native_code_size_ += 16; // Space for one vector.
1756 const_vectors_ = new_value;
1757 return new_value;
1758}
1759
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07001760// ------------ ABI support: mapping of args to physical registers -------------
1761RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1762 const RegStorage coreArgMappingToPhysicalReg[] = {rs_rX86_ARG1, rs_rX86_ARG2, rs_rX86_ARG3, rs_rX86_ARG4, rs_rX86_ARG5};
1763 const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
1764 const RegStorage fpArgMappingToPhysicalReg[] = {rs_rX86_FARG0, rs_rX86_FARG1, rs_rX86_FARG2, rs_rX86_FARG3,
1765 rs_rX86_FARG4, rs_rX86_FARG5, rs_rX86_FARG6, rs_rX86_FARG7};
1766 const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
1767
1768 RegStorage result = RegStorage::InvalidReg();
1769 if (is_double_or_float) {
1770 if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1771 result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
1772 if (result.Valid()) {
1773 result = is_wide ? RegStorage::FloatSolo64(result.GetReg()) : RegStorage::FloatSolo32(result.GetReg());
1774 }
1775 }
1776 } else {
1777 if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1778 result = coreArgMappingToPhysicalReg[cur_core_reg_++];
1779 if (result.Valid()) {
1780 result = is_wide ? RegStorage::Solo64(result.GetReg()) : RegStorage::Solo32(result.GetReg());
1781 }
1782 }
1783 }
1784 return result;
1785}
1786
1787RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1788 DCHECK(IsInitialized());
1789 auto res = mapping_.find(in_position);
1790 return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1791}
1792
1793void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1794 DCHECK(mapper != nullptr);
1795 max_mapped_in_ = -1;
1796 is_there_stack_mapped_ = false;
1797 for (int in_position = 0; in_position < count; in_position++) {
1798 RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1799 if (reg.Valid()) {
1800 mapping_[in_position] = reg;
1801 max_mapped_in_ = std::max(max_mapped_in_, in_position);
1802 if (reg.Is64BitSolo()) {
1803 // We covered 2 args, so skip the next one
1804 in_position++;
1805 }
1806 } else {
1807 is_there_stack_mapped_ = true;
1808 }
1809 }
1810 initialized_ = true;
1811}
1812
1813RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1814 if (!Gen64Bit()) {
1815 return GetCoreArgMappingToPhysicalReg(arg_num);
1816 }
1817
1818 if (!in_to_reg_storage_mapping_.IsInitialized()) {
1819 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1820 RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1821
1822 InToRegStorageX86_64Mapper mapper;
1823 in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1824 }
1825 return in_to_reg_storage_mapping_.Get(arg_num);
1826}
1827
1828RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1829 // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1830 // Not used for 64-bit, TODO: Move X86_32 to the same framework
1831 switch (core_arg_num) {
1832 case 0:
1833 return rs_rX86_ARG1;
1834 case 1:
1835 return rs_rX86_ARG2;
1836 case 2:
1837 return rs_rX86_ARG3;
1838 default:
1839 return RegStorage::InvalidReg();
1840 }
1841}
1842
1843// ---------End of ABI support: mapping of args to physical registers -------------
1844
1845/*
1846 * If there are any ins passed in registers that have not been promoted
1847 * to a callee-save register, flush them to the frame. Perform initial
1848 * assignment of promoted arguments.
1849 *
1850 * ArgLocs is an array of location records describing the incoming arguments
1851 * with one location record per word of argument.
1852 */
1853void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1854 if (!Gen64Bit()) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1855 /*
1856 * Dummy up a RegLocation for the incoming Method*
1857 * It will attempt to keep kArg0 live (or copy it to home location
1858 * if promoted).
1859 */
1860
1861 RegLocation rl_src = rl_method;
1862 rl_src.location = kLocPhysReg;
1863 rl_src.reg = TargetReg(kArg0);
1864 rl_src.home = false;
1865 MarkLive(rl_src);
1866 StoreValue(rl_method, rl_src);
1867 // If Method* has been promoted, explicitly flush
1868 if (rl_method.location == kLocPhysReg) {
1869 StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0));
1870 }
1871
1872 if (cu_->num_ins == 0) {
1873 return;
1874 }
1875
1876 int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1877 /*
1878 * Copy incoming arguments to their proper home locations.
1879 * NOTE: an older version of dx had an issue in which
1880 * it would reuse static method argument registers.
1881 * This could result in the same Dalvik virtual register
1882 * being promoted to both core and fp regs. To account for this,
1883 * we only copy to the corresponding promoted physical register
1884 * if it matches the type of the SSA name for the incoming
1885 * argument. It is also possible that long and double arguments
1886 * end up half-promoted. In those cases, we must flush the promoted
1887 * half to memory as well.
1888 */
1889 for (int i = 0; i < cu_->num_ins; i++) {
1890 PromotionMap* v_map = &promotion_map_[start_vreg + i];
1891 RegStorage reg = RegStorage::InvalidReg();
1892 // get reg corresponding to input
1893 reg = GetArgMappingToPhysicalReg(i);
1894
1895 if (reg.Valid()) {
1896 // If arriving in register
1897 bool need_flush = true;
1898 RegLocation* t_loc = &ArgLocs[i];
1899 if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
1900 OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
1901 need_flush = false;
1902 } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
1903 OpRegCopy(RegStorage::Solo32(v_map->FpReg), reg);
1904 need_flush = false;
1905 } else {
1906 need_flush = true;
1907 }
1908
1909 // For wide args, force flush if not fully promoted
1910 if (t_loc->wide) {
1911 PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
1912 // Is only half promoted?
1913 need_flush |= (p_map->core_location != v_map->core_location) ||
1914 (p_map->fp_location != v_map->fp_location);
1915 }
1916 if (need_flush) {
1917 if (t_loc->wide && t_loc->fp) {
1918 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
1919 // Increment i to skip the next one
1920 i++;
1921 } else if (t_loc->wide && !t_loc->fp) {
1922 StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, k64);
1923 // Increment i to skip the next one
1924 i++;
1925 } else {
1926 Store32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), reg);
1927 }
1928 }
1929 } else {
1930 // If arriving in frame & promoted
1931 if (v_map->core_location == kLocPhysReg) {
1932 Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->core_reg));
1933 }
1934 if (v_map->fp_location == kLocPhysReg) {
1935 Load32Disp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->FpReg));
1936 }
1937 }
1938 }
1939}
1940
1941/*
1942 * Load up to 5 arguments, the first three of which will be in
1943 * kArg1 .. kArg3. On entry kArg0 contains the current method pointer,
1944 * and as part of the load sequence, it must be replaced with
1945 * the target method pointer. Note, this may also be called
1946 * for "range" variants if the number of arguments is 5 or fewer.
1947 */
1948int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1949 int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1950 const MethodReference& target_method,
1951 uint32_t vtable_idx, uintptr_t direct_code,
1952 uintptr_t direct_method, InvokeType type, bool skip_this) {
1953 if (!Gen64Bit()) {
1954 return Mir2Lir::GenDalvikArgsNoRange(info,
1955 call_state, pcrLabel, next_call_insn,
1956 target_method,
1957 vtable_idx, direct_code,
1958 direct_method, type, skip_this);
1959 }
1960 return GenDalvikArgsRange(info,
1961 call_state, pcrLabel, next_call_insn,
1962 target_method,
1963 vtable_idx, direct_code,
1964 direct_method, type, skip_this);
1965}
1966
1967/*
1968 * May have 0+ arguments (also used for jumbo). Note that
1969 * source virtual registers may be in physical registers, so may
1970 * need to be flushed to home location before copying. This
1971 * applies to arg3 and above (see below).
1972 *
1973 * Two general strategies:
1974 * If < 20 arguments
1975 * Pass args 3-18 using vldm/vstm block copy
1976 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1977 * If 20+ arguments
1978 * Pass args arg19+ using memcpy block copy
1979 * Pass arg0, arg1 & arg2 in kArg1-kArg3
1980 *
1981 */
1982int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1983 LIR** pcrLabel, NextCallInsn next_call_insn,
1984 const MethodReference& target_method,
1985 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
1986 InvokeType type, bool skip_this) {
1987 if (!Gen64Bit()) {
1988 return Mir2Lir::GenDalvikArgsRange(info, call_state,
1989 pcrLabel, next_call_insn,
1990 target_method,
1991 vtable_idx, direct_code, direct_method,
1992 type, skip_this);
1993 }
1994
1995 /* If no arguments, just return */
1996 if (info->num_arg_words == 0)
1997 return call_state;
1998
1999 const int start_index = skip_this ? 1 : 0;
2000
2001 InToRegStorageX86_64Mapper mapper;
2002 InToRegStorageMapping in_to_reg_storage_mapping;
2003 in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2004 const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2005 const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2006 in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
2007 int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2008
2009 // Fisrt of all, check whether it make sense to use bulk copying
2010 // Optimization is aplicable only for range case
2011 // TODO: make a constant instead of 2
2012 if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2013 // Scan the rest of the args - if in phys_reg flush to memory
2014 for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2015 RegLocation loc = info->args[next_arg];
2016 if (loc.wide) {
2017 loc = UpdateLocWide(loc);
2018 if (loc.location == kLocPhysReg) {
2019 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64);
2020 }
2021 next_arg += 2;
2022 } else {
2023 loc = UpdateLoc(loc);
2024 if (loc.location == kLocPhysReg) {
2025 StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32);
2026 }
2027 next_arg++;
2028 }
2029 }
2030
2031 // Logic below assumes that Method pointer is at offset zero from SP.
2032 DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2033
2034 // The rest can be copied together
2035 int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2036 int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2037
2038 int current_src_offset = start_offset;
2039 int current_dest_offset = outs_offset;
2040
2041 while (regs_left_to_pass_via_stack > 0) {
2042 // This is based on the knowledge that the stack itself is 16-byte aligned.
2043 bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2044 bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2045 size_t bytes_to_move;
2046
2047 /*
2048 * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2049 * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2050 * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2051 * We do this because we could potentially do a smaller move to align.
2052 */
2053 if (regs_left_to_pass_via_stack == 4 ||
2054 (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2055 // Moving 128-bits via xmm register.
2056 bytes_to_move = sizeof(uint32_t) * 4;
2057
2058 // Allocate a free xmm temp. Since we are working through the calling sequence,
2059 // we expect to have an xmm temporary available. AllocTempDouble will abort if
2060 // there are no free registers.
2061 RegStorage temp = AllocTempDouble();
2062
2063 LIR* ld1 = nullptr;
2064 LIR* ld2 = nullptr;
2065 LIR* st1 = nullptr;
2066 LIR* st2 = nullptr;
2067
2068 /*
2069 * The logic is similar for both loads and stores. If we have 16-byte alignment,
2070 * do an aligned move. If we have 8-byte alignment, then do the move in two
2071 * parts. This approach prevents possible cache line splits. Finally, fall back
2072 * to doing an unaligned move. In most cases we likely won't split the cache
2073 * line but we cannot prove it and thus take a conservative approach.
2074 */
2075 bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2076 bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2077
2078 if (src_is_16b_aligned) {
2079 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
2080 } else if (src_is_8b_aligned) {
2081 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
2082 ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1),
2083 kMovHi128FP);
2084 } else {
2085 ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
2086 }
2087
2088 if (dest_is_16b_aligned) {
2089 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
2090 } else if (dest_is_8b_aligned) {
2091 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
2092 st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2093 temp, kMovHi128FP);
2094 } else {
2095 st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
2096 }
2097
2098 // TODO If we could keep track of aliasing information for memory accesses that are wider
2099 // than 64-bit, we wouldn't need to set up a barrier.
2100 if (ld1 != nullptr) {
2101 if (ld2 != nullptr) {
2102 // For 64-bit load we can actually set up the aliasing information.
2103 AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2104 AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2105 } else {
2106 // Set barrier for 128-bit load.
2107 SetMemRefType(ld1, true /* is_load */, kDalvikReg);
2108 ld1->u.m.def_mask = ENCODE_ALL;
2109 }
2110 }
2111 if (st1 != nullptr) {
2112 if (st2 != nullptr) {
2113 // For 64-bit store we can actually set up the aliasing information.
2114 AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2115 AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2116 } else {
2117 // Set barrier for 128-bit store.
2118 SetMemRefType(st1, false /* is_load */, kDalvikReg);
2119 st1->u.m.def_mask = ENCODE_ALL;
2120 }
2121 }
2122
2123 // Free the temporary used for the data movement.
2124 FreeTemp(temp);
2125 } else {
2126 // Moving 32-bits via general purpose register.
2127 bytes_to_move = sizeof(uint32_t);
2128
2129 // Instead of allocating a new temp, simply reuse one of the registers being used
2130 // for argument passing.
2131 RegStorage temp = TargetReg(kArg3);
2132
2133 // Now load the argument VR and store to the outs.
2134 Load32Disp(TargetReg(kSp), current_src_offset, temp);
2135 Store32Disp(TargetReg(kSp), current_dest_offset, temp);
2136 }
2137
2138 current_src_offset += bytes_to_move;
2139 current_dest_offset += bytes_to_move;
2140 regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2141 }
2142 DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2143 }
2144
2145 // Now handle rest not registers if they are
2146 if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2147 RegStorage regSingle = TargetReg(kArg2);
2148 RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
2149 for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
2150 RegLocation rl_arg = info->args[i];
2151 rl_arg = UpdateRawLoc(rl_arg);
2152 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2153 if (!reg.Valid()) {
2154 int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2155
2156 if (rl_arg.wide) {
2157 if (rl_arg.location == kLocPhysReg) {
2158 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64);
2159 } else {
2160 LoadValueDirectWideFixed(rl_arg, regWide);
2161 StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64);
2162 }
2163 i++;
2164 } else {
2165 if (rl_arg.location == kLocPhysReg) {
2166 StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32);
2167 } else {
2168 LoadValueDirectFixed(rl_arg, regSingle);
2169 StoreBaseDisp(TargetReg(kSp), out_offset, regSingle, k32);
2170 }
2171 }
2172 call_state = next_call_insn(cu_, info, call_state, target_method,
2173 vtable_idx, direct_code, direct_method, type);
2174 }
2175 }
2176 }
2177
2178 // Finish with mapped registers
2179 for (int i = start_index; i <= last_mapped_in; i++) {
2180 RegLocation rl_arg = info->args[i];
2181 rl_arg = UpdateRawLoc(rl_arg);
2182 RegStorage reg = in_to_reg_storage_mapping.Get(i);
2183 if (reg.Valid()) {
2184 if (rl_arg.wide) {
2185 LoadValueDirectWideFixed(rl_arg, reg);
2186 i++;
2187 } else {
2188 LoadValueDirectFixed(rl_arg, reg);
2189 }
2190 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2191 direct_code, direct_method, type);
2192 }
2193 }
2194
2195 call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2196 direct_code, direct_method, type);
2197 if (pcrLabel) {
2198 if (Runtime::Current()->ExplicitNullChecks()) {
2199 *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
2200 } else {
2201 *pcrLabel = nullptr;
2202 // In lieu of generating a check for kArg1 being null, we need to
2203 // perform a load when doing implicit checks.
2204 RegStorage tmp = AllocTemp();
2205 Load32Disp(TargetReg(kArg1), 0, tmp);
2206 MarkPossibleNullPointerException(info->opt_flags);
2207 FreeTemp(tmp);
2208 }
2209 }
2210 return call_state;
2211}
2212
Brian Carlstrom7934ac22013-07-26 10:54:15 -07002213} // namespace art
Dmitry Petrochenko58994cd2014-05-17 01:02:18 +07002214