blob: bb1dfec69e225ce55c36ae2fc6979f10e5e069ba [file] [log] [blame]
Jenkinsb9abeae2018-11-22 11:58:08 +00001///
Jenkins18b685f2020-08-21 10:26:22 +01002/// Copyright (c) 2017-2020 Arm Limited.
Jenkinsb9abeae2018-11-22 11:58:08 +00003///
4/// SPDX-License-Identifier: MIT
5///
6/// Permission is hereby granted, free of charge, to any person obtaining a copy
7/// of this software and associated documentation files (the "Software"), to
8/// deal in the Software without restriction, including without limitation the
9/// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10/// sell copies of the Software, and to permit persons to whom the Software is
11/// furnished to do so, subject to the following conditions:
12///
13/// The above copyright notice and this permission notice shall be included in all
14/// copies or substantial portions of the Software.
15///
16/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22/// SOFTWARE.
23///
Jenkinsc3f34a42018-03-02 12:38:09 +000024namespace arm_compute
25{
Anthony Barbierdbdab852017-06-23 15:42:00 +010026/** @mainpage Introduction
27
28@tableofcontents
29
30The Computer Vision and Machine Learning library is a set of functions optimised for both ARM CPUs and GPUs using SIMD technologies.
31
32Several builds of the library are available using various configurations:
33 - OS: Linux, Android or bare metal.
34 - Architecture: armv7a (32bit) or arm64-v8a (64bit)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000035 - Technology: NEON / OpenCL / GLES_COMPUTE / NEON and OpenCL and GLES_COMPUTE
Anthony Barbierdbdab852017-06-23 15:42:00 +010036 - Debug / Asserts / Release: Use a build with asserts enabled to debug your application and enable extra validation. Once you are sure your application works as expected you can switch to a release build of the library for maximum performance.
37
38@section S0_1_contact Contact / Support
39
40Please email developer@arm.com
41
42In order to facilitate the work of the support team please provide the build information of the library you are using. To get the version of the library you are using simply run:
43
44 $ strings android-armv7a-cl-asserts/libarm_compute.so | grep arm_compute_version
45 arm_compute_version=v16.12 Build options: {'embed_kernels': '1', 'opencl': '1', 'arch': 'armv7a', 'neon': '0', 'asserts': '1', 'debug': '0', 'os': 'android', 'Werror': '1'} Git hash=f51a545d4ea12a9059fe4e598a092f1fd06dc858
46
Anthony Barbier8140e1e2017-12-14 23:48:46 +000047@section S0_2_prebuilt_binaries Pre-built binaries
48
49For each release we provide some pre-built binaries of the library [here](https://github.com/ARM-software/ComputeLibrary/releases)
50
51These binaries have been built using the following toolchains:
Jenkins6a7771e2020-05-28 11:28:36 +010052 - Linux armv7a: gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-gnueabihf
53 - Linux arm64-v8a: gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu
54 - Android armv7a: clang++ / libc++ NDK r18b
55 - Android am64-v8a: clang++ / libc++ NDK r18b
Anthony Barbier8140e1e2017-12-14 23:48:46 +000056
57@warning Make sure to use a compatible toolchain to build your application or you will get some std::bad_alloc errors at runtime.
58
Anthony Barbierdbdab852017-06-23 15:42:00 +010059@section S1_file_organisation File organisation
60
61This archive contains:
62 - The arm_compute header and source files
63 - The latest Khronos OpenCL 1.2 C headers from the <a href="https://www.khronos.org/registry/cl/">Khronos OpenCL registry</a>
64 - The latest Khronos cl2.hpp from the <a href="https://www.khronos.org/registry/cl/">Khronos OpenCL registry</a> (API version 2.1 when this document was written)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000065 - The latest Khronos OpenGL ES 3.1 C headers from the <a href="https://www.khronos.org/registry/gles/">Khronos OpenGL ES registry</a>
66 - The latest Khronos EGL 1.5 C headers from the <a href="https://www.khronos.org/registry/gles/">Khronos EGL registry</a>
67 - The sources for a stub version of libOpenCL.so, libGLESv1_CM.so, libGLESv2.so and libEGL.so to help you build your application.
Anthony Barbierdbdab852017-06-23 15:42:00 +010068 - An examples folder containing a few examples to compile and link against the library.
69 - A @ref utils folder containing headers with some boiler plate code used by the examples.
70 - This documentation.
71
72You should have the following file organisation:
73
74 .
75 ├── arm_compute --> All the arm_compute headers
Jenkins4ba87db2019-05-23 17:11:51 +010076 │ ├── graph.h --> Includes all the Graph headers at once.
Anthony Barbierdbdab852017-06-23 15:42:00 +010077 │   ├── core
78 │   │   ├── CL
Kaizen8938bd32017-09-28 14:38:23 +010079 │   │   │   ├── CLKernelLibrary.h --> Manages all the OpenCL kernels compilation and caching, provides accessors for the OpenCL Context.
Anthony Barbierdbdab852017-06-23 15:42:00 +010080 │   │   │   ├── CLKernels.h --> Includes all the OpenCL kernels at once
Jenkins6a7771e2020-05-28 11:28:36 +010081 │   │   │   ├── CL specialisation of all the generic interfaces (ICLTensor, ICLArray, etc.)
82 │   │   │   ├── gemm --> Folder containing all the configuration files for GEMM
Anthony Barbierdbdab852017-06-23 15:42:00 +010083 │   │   │   ├── kernels --> Folder containing all the OpenCL kernels
84 │   │   │   │   └── CL*Kernel.h
85 │   │   │   └── OpenCL.h --> Wrapper to configure the Khronos OpenCL C++ header
86 │   │ ├── CPP
Kaizen8938bd32017-09-28 14:38:23 +010087 │   │   │   ├── CPPKernels.h --> Includes all the CPP kernels at once
Anthony Barbierdbdab852017-06-23 15:42:00 +010088 │   │ │   └── kernels --> Folder containing all the CPP kernels
Kaizen8938bd32017-09-28 14:38:23 +010089 │   │   │      └── CPP*Kernel.h
Anthony Barbier8140e1e2017-12-14 23:48:46 +000090 │   │   ├── GLES_COMPUTE
91 │   │   │   ├── GCKernelLibrary.h --> Manages all the GLES kernels compilation and caching, provides accessors for the GLES Context.
92 │   │   │   ├── GCKernels.h --> Includes all the GLES kernels at once
Jenkins6a7771e2020-05-28 11:28:36 +010093 │   │   │   ├── GLES specialisation of all the generic interfaces (IGCTensor etc.)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000094 │   │   │   ├── kernels --> Folder containing all the GLES kernels
95 │   │   │   │   └── GC*Kernel.h
96 │   │   │   └── OpenGLES.h --> Wrapper to configure the Khronos EGL and OpenGL ES C header
Anthony Barbierdbdab852017-06-23 15:42:00 +010097 │   │   ├── NEON
98 │   │   │   ├── kernels --> Folder containing all the NEON kernels
Jenkinsb3a371b2018-05-23 11:36:53 +010099 │   │   │   │ ├── assembly --> headers for assembly optimised NEON kernels.
100 │   │   │   │ ├── convolution --> headers for convolution assembly optimised NEON kernels.
101 │   │   │   │   │   ├── common --> headers for code which is common to several convolution implementations.
Jenkins6a7771e2020-05-28 11:28:36 +0100102 │   │   │   │   │   ├── depthwise --> headers for Depthwise convolution assembly implementation
Jenkinsb3a371b2018-05-23 11:36:53 +0100103 │   │   │   │   │   └── winograd --> headers for Winograd convolution assembly implementation
104 │   │   │   │ ├── detail --> Common code for several intrinsics implementations.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100105 │   │   │   │   └── NE*Kernel.h
Jenkins36ccc902020-02-21 11:10:48 +0000106 │   │   │   ├── wrapper --> NEON wrapper used to simplify code
Jenkins6a7771e2020-05-28 11:28:36 +0100107 │   │   │   │ ├── intrinsics --> NEON intrinsics wrappers
Jenkins36ccc902020-02-21 11:10:48 +0000108 │   │   │   │ ├── scalar --> Scalar operations
109 │   │   │   │ ├── traits.h --> Traits defined on NEON vectors
110 │   │   │   │   └── wrapper.h --> Includes all wrapper headers at once
Anthony Barbierdbdab852017-06-23 15:42:00 +0100111 │   │   │   └── NEKernels.h --> Includes all the NEON kernels at once
112 │   │   ├── All common basic types (Types.h, Window, Coordinates, Iterator, etc.)
Jenkins6a7771e2020-05-28 11:28:36 +0100113 │   │   ├── All generic interfaces (ITensor, IArray, etc.)
Jenkins36ccc902020-02-21 11:10:48 +0000114 │   │   └── Objects metadata classes (TensorInfo, MultiImageInfo)
Kaizen8938bd32017-09-28 14:38:23 +0100115 │   ├── graph
Jenkins6a7771e2020-05-28 11:28:36 +0100116 │   │   ├── algorithms --> Generic algorithms used by the graph backend (e.g Order of traversal)
Jenkinsb3a371b2018-05-23 11:36:53 +0100117 │   │   ├── backends --> The backend specific code
118 │   │   │   ├── CL --> OpenCL specific operations
119 │   │   │   ├── GLES --> OpenGLES Compute Shaders specific operations
120 │   │   │   └── NEON --> NEON specific operations
Jenkins6a7771e2020-05-28 11:28:36 +0100121 │   │   ├── detail --> Collection of internal utilities.
122 │   │   ├── frontend --> Code related to the stream frontend interface.
123 │   │   ├── mutators --> Used to modify / optimise the Graph intermediate representation(Operator fusion, in place operations, etc.)
124 │   │   ├── nodes --> The various nodes supported by the graph API
125 │   │   ├── printers --> Debug printers
126 │   │   └── Graph objects interfaces (INode, ITensorAccessor, Graph, etc.)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100127 │   └── runtime
Jenkins36ccc902020-02-21 11:10:48 +0000128 │   ├── common
129 │ │ └── Common utility code used by all backends
Anthony Barbierdbdab852017-06-23 15:42:00 +0100130 │   ├── CL
Jenkins36ccc902020-02-21 11:10:48 +0000131 │   │   ├── CL objects & allocators (CLArray, CLTensor, etc.)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100132 │   │   ├── functions --> Folder containing all the OpenCL functions
133 │   │   │   └── CL*.h
Kaizen8938bd32017-09-28 14:38:23 +0100134 │   │   ├── CLScheduler.h --> Interface to enqueue OpenCL kernels and get/set the OpenCL CommandQueue and ICLTuner.
Jenkinsb3a371b2018-05-23 11:36:53 +0100135 │   │   ├── CLFunctions.h --> Includes all the OpenCL functions at once
Jenkins36ccc902020-02-21 11:10:48 +0000136 │   │   ├── ICLTuner.h --> Interface used to tune the local work-group size of OpenCL kernels
Jenkinsb3a371b2018-05-23 11:36:53 +0100137 │   │   └── tuners
138 │   │      └── Local workgroup size tuners for specific architectures / GPUs
Anthony Barbierdbdab852017-06-23 15:42:00 +0100139 │   ├── CPP
Kaizen8938bd32017-09-28 14:38:23 +0100140 │      │   ├── CPPKernels.h --> Includes all the CPP functions at once.
Jenkinsb3a371b2018-05-23 11:36:53 +0100141 │   │   ├── CPPScheduler.h --> Basic pool of threads to execute CPP/NEON code on several cores in parallel
142 │   │   └── functions --> Folder containing all the CPP functions
143 │   │      └── CPP*.h
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000144 │   ├── GLES_COMPUTE
Jenkins36ccc902020-02-21 11:10:48 +0000145 │   │   ├── GLES objects & allocators (GCArray, GCTensor, etc.)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000146 │   │   ├── functions --> Folder containing all the GLES functions
147 │   │   │   └── GC*.h
148 │   │   ├── GCScheduler.h --> Interface to enqueue GLES kernels and get/set the GLES CommandQueue.
149 │   │   └── GCFunctions.h --> Includes all the GLES functions at once
Anthony Barbierdbdab852017-06-23 15:42:00 +0100150 │   ├── NEON
151 │   │ ├── functions --> Folder containing all the NEON functions
152 │   │ │   └── NE*.h
153 │   │ └── NEFunctions.h --> Includes all the NEON functions at once
Kaizen8938bd32017-09-28 14:38:23 +0100154 │   ├── OMP
155 │   │   └── OMPScheduler.h --> OpenMP scheduler (Alternative to the CPPScheduler)
Jenkins36ccc902020-02-21 11:10:48 +0000156 │ ├── Memory & weights manager files (LifetimeManager, PoolManager, etc.)
157 │   └── Basic implementations of the generic object interfaces (Array, Tensor, etc.)
158 ├── data --> Contains test images and reference data dumps used by validation tests
Jenkins6a7771e2020-05-28 11:28:36 +0100159 ├── docs --> Contains Doxyfile and Doxygen sources used to generate the HTML pages.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100160 ├── examples
Jenkins6a7771e2020-05-28 11:28:36 +0100161 │   ├── gemm_tuner
162 │   │ └── OpenCL GEMM tuner utility
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000163 │   ├── cl_*.cpp --> OpenCL examples
164 │   ├── gc_*.cpp --> GLES compute shaders examples
165 │   ├── graph_*.cpp --> Graph examples
166 │   ├── neoncl_*.cpp --> NEON / OpenCL interoperability examples
167 │   └── neon_*.cpp --> NEON examples
Anthony Barbierdbdab852017-06-23 15:42:00 +0100168 ├── include
Kaizen8938bd32017-09-28 14:38:23 +0100169 │   ├── CL
170 │   │ └── Khronos OpenCL C headers and C++ wrapper
171 │   ├── half --> FP16 library available from http://half.sourceforge.net
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000172 │   ├── libnpy --> Library to load / write npy buffers, available from https://github.com/llohse/libnpy
Jenkins36ccc902020-02-21 11:10:48 +0000173 │  ├── linux --> Headers only needed for Linux builds
174 │   │ └── Khronos EGL and OpenGLES headers
175 │ └── stb
176 │ └── stb_image.h --> Single header library to load image files, available from https://github.com/nothings/stb
Kaizen8938bd32017-09-28 14:38:23 +0100177 ├── scripts
178 │   ├── caffe_data_extractor.py --> Basic script to export weights from Caffe to npy files
179 │   └── tensorflow_data_extractor.py --> Basic script to export weights from Tensor Flow to npy files
Anthony Barbierdbdab852017-06-23 15:42:00 +0100180 ├── src
181 │   ├── core
182 │ │ └── ... (Same structure as headers)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000183 │   │ ├── CL
184 │   │ │ └── cl_kernels --> All the OpenCL kernels
185 │   │ └── GLES_COMPUTE
186 │   │ └── cs_shaders --> All the OpenGL ES Compute Shaders
Kaizen8938bd32017-09-28 14:38:23 +0100187 │   ├── graph
188 │ │ └── ... (Same structure as headers)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100189 │ └── runtime
190 │ └── ... (Same structure as headers)
Kaizen8938bd32017-09-28 14:38:23 +0100191 ├── support
192 │ └── Various headers to work around toolchains / platform issues.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100193 ├── tests
194 │   ├── All test related files shared between validation and benchmark
Jenkinsb3a371b2018-05-23 11:36:53 +0100195 │   ├── benchmark --> Sources for benchmarking
196 │ │ ├── Benchmark specific files
197 │   │ ├── fixtures
198 │ │ │ └── Backend agnostic fixtures to initialise and run the functions to test.
199 │ │ ├── CL --> OpenCL benchmarking tests
200 │ │ ├── GLES_COMPUTE --> GLES benchmarking tests
201 │ │ └── NEON --> NEON benchmarking tests
Jenkins36ccc902020-02-21 11:10:48 +0000202 │ ├── benchmark_examples --> Sources needed to wrap examples to run through our benchmarking framework.
Kaizen8938bd32017-09-28 14:38:23 +0100203 │   ├── CL --> OpenCL accessors
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000204 │   ├── GLES_COMPUTE --> GLES accessors
Kaizen8938bd32017-09-28 14:38:23 +0100205 │   ├── NEON --> NEON accessors
Kaizen8938bd32017-09-28 14:38:23 +0100206 │   ├── datasets
207 │ │ └── Datasets for all the validation / benchmark tests, layer configurations for various networks, etc.
208 │   ├── framework
209 │ │ └── Boiler plate code for both validation and benchmark test suites (Command line parsers, instruments, output loggers, etc.)
Jenkins36ccc902020-02-21 11:10:48 +0000210 │   ├── instruments --> User defined instruments that can be registered to the framework.
211 │ ├── validate_examples --> Sources needed to wrap examples to run through our validation framework.
Jenkinsb3a371b2018-05-23 11:36:53 +0100212 │   └── validation --> Sources for validation
213 │ ├── Validation specific files
214 │   ├── fixtures
215 │ │ └── Backend agnostic fixtures to initialise and run the functions to test.
216 │   ├── reference
217 │ │ └── Reference implementation used to validate the results of the various backends.
218 │ ├── CL --> OpenCL validation tests
219 │ ├── GLES_COMPUTE --> GLES validation tests
220 │ ├── CPP --> C++ reference implementations
221 │ └── NEON --> NEON validation tests
Anthony Barbierdbdab852017-06-23 15:42:00 +0100222 └── utils --> Boiler plate code used by examples
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000223 └── Various utilities to print types, load / store assets, etc.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100224
225@section S2_versions_changelog Release versions and changelog
226
227@subsection S2_1_versions Release versions
228
229All releases are numbered vYY.MM Where YY are the last two digits of the year, and MM the month number.
230If there is more than one release in a month then an extra sequential number is appended at the end:
231
232 v17.03 (First release of March 2017)
233 v17.03.1 (Second release of March 2017)
234 v17.04 (First release of April 2017)
235
236@note We're aiming at releasing one major public release with new features per quarter. All releases in between will only contain bug fixes.
237
238@subsection S2_2_changelog Changelog
239
Jenkins18b685f2020-08-21 10:26:22 +0100240v20.08 Public major release
241 - Various bug fixes.
242 - Various optimisations.
243 - Added new data type QASYMM8_SIGNED support for:
244 - @ref CLArgMinMaxLayer
245 - @ref CLArgMinMaxLayerKernel
246 - Added new data type U8 support for:
247 - @ref NECropKernel
248 - @ref CLCropKernel
249 - Added aligh_corner support for nearest neighbor interpolation in:
250 - @ref NEScaleKernel
251 - @ref CLScaleKernel
252 - New OpenCL kernels / functions:
253 - @ref CLMaxUnpoolingLayerKernel
254 - New NEON kernels / functions:
255 - @ref NEMaxUnpoolingLayerKernel
256 - New graph example:
257 - graph_yolov3_output_detector
258 - GEMMTuner improvements:
259 - Added fp16 support
260 - Output json files for easier integration
261 - Enabled tuning for export_to_cl_image_rhs option for RHS tensors
262 - More robust script for running benchmarks
263 - Removed padding from:
264 - @ref NEPixelWiseMultiplicationKernel
265 - @ref NEHeightConcatenateLayerKernel
266 - @ref NEThresholdKernel
267 - @ref NEBatchConcatenateLayerKernel
268 - @ref NETransposeKernel
269 - @ref NEBatchNormalizationLayerKernel
270 - @ref NEArithmeticSubtractionKernel
271 - @ref NEBoundingBoxTransformKernel
272 - @ref NELogits1DMaxKernel
273 - @ref NELogits1DSoftmaxKernel
274 - @ref NEROIPoolingLayerKernel
275 - @ref NEROIAlignLayerKernel
276 - @ref NEYOLOLayerKernel
277 - @ref NEUpsampleLayerKernel
278 - @ref NEFloorKernel
279 - @ref NEWidthConcatenateLayerKernel
280 - @ref NEDepthConcatenateLayerKernel
281 - @ref NENormalizationLayerKernel
282 - @ref NEL2NormalizeLayerKernel
283 - @ref NEFillArrayKernel
284 - @ref NEDepthConvertLayerKernel
285 - @ref NERangeKernel
286 - @ref NEPriorBoxLayer
287 - Removedd OpenCL kernels / functions:
288 - CLGEMMLowpQuantizeDownInt32ToUint8Scale
289 - CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloat
290 - Removed NEON kernels / functions:
291 - NEGEMMLowpQuantizeDownInt32ToUint8Scale
292 - NEGEMMMatrixAccumulateBiasesKernel
293 - Deprecated functions / interfaces:
294 - Non-descriptor based interfaces for @ref NEThreshold, @ref CLThreshold
295 - Non-descriptor based interfaces for @ref NEScale, @ref CLScale and @ref GCScale
296 - In @ref NESoftmaxLayer, @ref NELogSoftmaxLayer, @ref CLSoftmaxLayer, @ref CLLogSoftmaxLayer and @ref GCSoftmaxLayer :
297 The default "axis" value for @ref CLSoftmaxLayer, @ref CLLogSoftmaxLayer and @ref GCSoftmaxLayer is changed from 1 to 0.
298 Only axis 0 is supported.
299 The default "axis" value for @ref NESoftmaxLayer, @ref NELogSoftmaxLayer is changed from 1 to 0.
300 Only axis 0 is supported.
301 - The support for quantized data types has been removed from @ref CLLogSoftmaxLayer due to implementation complexity.
302 - Removed padding requirement for the input (e.g. LHS of GEMM) and output in @ref CLGEMMMatrixMultiplyNativeKernel, @ref CLGEMMMatrixMultiplyReshapedKernel, @ref CLGEMMMatrixMultiplyReshapedOnlyRHSKernel and @ref CLIm2ColKernel (NHWC only)
303 - This change allows to use @ref CLGEMMConvolutionLayer without extra padding for the input and output.
304 - Only the weights/bias of @ref CLGEMMConvolutionLayer could require padding for the computation.
305 - Only on Arm Mali Midgard GPUs, @ref CLGEMMConvolutionLayer could require padding since @ref CLGEMMMatrixMultiplyKernel is called and currently requires padding.
306 - Added support for exporting the OpenCL buffer object to the OpenCL image object in @ref CLGEMMMatrixMultiplyReshapedKernel and @ref CLGEMMMatrixMultiplyReshapedOnlyRHSKernel.
307 - This support allows to export the OpenCL buffer used for the reshaped RHS matrix to the OpenCL image object.
308 - The padding requirement for the OpenCL image object is considered into the @ref CLGEMMReshapeRHSMatrixKernel.
309 - The reshaped RHS matrix stores the weights when GEMM is used to accelerate @ref CLGEMMConvolutionLayer.
310
Jenkins6a7771e2020-05-28 11:28:36 +0100311v20.05 Public major release
312 - Various bug fixes.
313 - Various optimisations.
314 - Updated recommended NDK version to r18b.
315 - Updated recommended gcc version to Linaro 6.3.1.
316 - Added Bfloat16 type support
317 - Added Bfloat16 support in:
318 - @ref NEWeightsReshapeKernel
319 - @ref NEConvolutionLayerReshapeWeights
320 - @ref NEIm2ColKernel
321 - @ref NEIm2Col
322 - @ref NEDepthConvertLayerKernel
323 - @ref NEDepthConvertLayer
324 - @ref NEGEMMConvolutionLayer
325 - @ref NEGEMMAssemblyDispatch
326 - Added new data type QASYMM8_SIGNED support for:
327 - @ref CLDirectConvolutionLayer
328 - @ref CLDeconvolutionLayer
329 - @ref CLDirectDeconvolutionLayer
330 - @ref CLGEMMDeconvolutionLayer
331 - @ref CLGEMMLowpMatrixMultiplyReshapedKernel
332 - @ref CLGEMMLowpQuantizeDownInt32ScaleKernel
333 - @ref CLGEMMLowpQuantizeDownInt32ScaleByFloatKernel
334 - @ref CLReductionOperation
335 - @ref CLReduceMean
336 - @ref NEScale
337 - @ref NEScaleKernel
338 - @ref NEUpsampleLayer
339 - @ref NECast
340 - @ref NEReductionOperation
341 - @ref NEReduceMean
342 - @ref NEArgMinMaxLayer
343 - @ref NEDeconvolutionLayer
344 - @ref NEGEMMLowpQuantizeDownInt32ScaleKernel
345 - @ref CPPBoxWithNonMaximaSuppressionLimit
346 - @ref CPPDetectionPostProcessLayer
347 - @ref CPPPermuteKernel
348 - @ref CPPPermute
349 - @ref CPPTopKVKernel
350 - @ref CPPTopKV
351 - @ref CPPUpsample
352 - @ref CPPUpsampleKernel
353 - New OpenCL kernels / functions:
354 - @ref CLQLSTMLayer
355 - @ref CLQLSTMLayerNormalizationKernel
356 - New NEON kernels / functions:
357 - @ref NEQLSTMLayer
358 - @ref NEQLSTMLayerNormalizationKernel
359 - Added HARD_SWISH support in:
360 - @ref CLActivationLayerKernel
361 - @ref NEActivationLayerKernel
362 - Deprecated OpenCL kernels / functions:
363 - CLGEMMLowpQuantizeDownInt32ToUint8Scale
364 - CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFloat
365 - Deprecated NEON kernels / functions:
366 - NEGEMMLowpQuantizeDownInt32ToUint8Scale
367 - Removed CPP kernels / functions:
368 - CPPFlipWeightsKernel
369 - Removed PoolingLayerInfo constructors without Data Layout.
370 - Removed CLDepthwiseConvolutionLayer3x3
371 - Removed NEDepthwiseConvolutionLayerOptimized
372 - Added support for Winograd 3x3,4x4 on NEON FP16:
373 - @ref NEWinogradConvolutionLayer
374 - @ref NEWinogradLayerTransformInputKernel
375 - @ref NEWinogradLayerTransformOutputKernel
376 - @ref NEWinogradLayerTransformWeightsKernel
377 - Added CLCompileContext
378 - Added NEON GEMM kernel with 2D window support
379
Jenkins575c81f2020-03-05 16:07:35 +0000380v20.02.1 Maintenance release
381 - Added Android-NN build script.
382
Jenkins36ccc902020-02-21 11:10:48 +0000383v20.02 Public major release
384 - Various bug fixes.
385 - Various optimisations.
386 - Added new data type QASYMM8_SIGNED support for:
387 - @ref CLDepthwiseConvolutionLayer
Jenkins6a7771e2020-05-28 11:28:36 +0100388 - CLDepthwiseConvolutionLayer3x3
Jenkins36ccc902020-02-21 11:10:48 +0000389 - @ref CLGEMMConvolutionLayer
390 - @ref CLGEMMLowpMatrixMultiplyCore
391 - @ref CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel
392 - @ref CLGEMMLowpMatrixMultiplyNativeKernel
393 - @ref NEActivationLayer
394 - @ref NEComparisonOperationKernel
395 - @ref NEConvolutionLayer
396 - @ref NEDepthwiseConvolutionLayer
397 - @ref NEDepthwiseConvolutionLayer3x3Kernel
398 - @ref NEDirectConvolutionLayerOutputStageKernel
399 - @ref NEElementwiseComparison
400 - @ref NEElementwiseMax
401 - @ref NEElementwiseMin
402 - @ref NEElementwiseSquaredDiff
403 - @ref NEFullyConnectedLayer
Jenkins18b685f2020-08-21 10:26:22 +0100404 - NEGEMMMatrixVectorMultiplyKernel
Jenkins36ccc902020-02-21 11:10:48 +0000405 - @ref NEPixelWiseMultiplication
406 - @ref NEPoolingLayer
407 - @ref NEPReluLayer
408 - Added support for QSYMM8_PER_CHANNEL in:
409 - @ref NEDepthwiseConvolutionLayer3x3Kernel
410 - Added support for split sizes in:
411 - @ref CLSplit
412 - @ref NESplit
413 - New OpenCL kernels / functions:
414 - @ref CLFill
415 - @ref CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel / @ref CLGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPoint
416 - New NEON kernels / functions:
417 - @ref NEFill
418 - @ref NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointKernel / @ref NEGEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPoint
419 - Deprecated NEON functions / interfaces:
Jenkins6a7771e2020-05-28 11:28:36 +0100420 - CLDepthwiseConvolutionLayer3x3
421 - NEDepthwiseConvolutionLayerOptimized
422 - PoolingLayerInfo constructors without Data Layout.
Jenkins36ccc902020-02-21 11:10:48 +0000423 - Added support for quantization with multiplier greater than 1 on NEON and CL.
424 - Added support for quantized inputs of type QASYMM8_SIGNED and QASYMM8 to @ref CLQuantizationLayer.
425 - Added the ability to build bootcode for bare metal.
426 - Added support for generating synthetic QASYMM8 graphs.
427 - Added support for F16 datatype in VGG16.
428 - Removed pre-built binaries for GLES.
429
Jenkins7f09cf72020-01-22 18:08:16 +0000430v19.11.1 Public maintenance release
431 - Fix offset calculation in NEReductionOperationKernel.
432 - Fix data layout in NEScaleKernel for nhwc.
433 - Retain configuration step data layout to avoid side-effects.
434 - Perform sqrt in double domain for L2 pooling.
435 - Fix output shape calculation for Reduce Mean
436 - Restrict cases where optimized NEPadLayer runs.
437
Jenkins0e205f72019-11-28 16:53:35 +0000438v19.11 Public major release
439 - Various bug fixes.
440 - Various optimisations.
441 - Updated recommended NDK version to r17c.
442 - Deprecated OpenCL kernels / functions:
443 - CLDepthwiseConvolutionLayerReshapeWeightsGenericKernel
444 - CLDepthwiseIm2ColKernel
445 - CLDepthwiseSeparableConvolutionLayer
446 - CLDepthwiseVectorToTensorKernel
447 - CLDirectConvolutionLayerOutputStageKernel
448 - Deprecated NEON kernels / functions:
449 - NEDepthwiseWeightsReshapeKernel
450 - NEDepthwiseIm2ColKernel
451 - NEDepthwiseSeparableConvolutionLayer
452 - NEDepthwiseVectorToTensorKernel
453 - NEDepthwiseConvolutionLayer3x3
454 - New OpenCL kernels / functions:
455 - @ref CLInstanceNormalizationLayerKernel / @ref CLInstanceNormalizationLayer
456 - @ref CLDepthwiseConvolutionLayerNativeKernel to replace the old generic depthwise convolution (see Deprecated
457 OpenCL kernels / functions)
458 - @ref CLLogSoftmaxLayer
459 - New NEON kernels / functions:
460 - @ref NEBoundingBoxTransformKernel / @ref NEBoundingBoxTransform
461 - @ref NEComputeAllAnchorsKernel / @ref NEComputeAllAnchors
462 - @ref NEDetectionPostProcessLayer
463 - @ref NEGenerateProposalsLayer
464 - @ref NEInstanceNormalizationLayerKernel / @ref NEInstanceNormalizationLayer
465 - @ref NELogSoftmaxLayer
466 - @ref NEROIAlignLayerKernel / @ref NEROIAlignLayer
467 - Added QASYMM8 support for:
468 - @ref CLGenerateProposalsLayer
469 - @ref CLROIAlignLayer
470 - @ref CPPBoxWithNonMaximaSuppressionLimit
471 - Added QASYMM16 support for:
472 - @ref CLBoundingBoxTransform
473 - Added FP16 support for:
474 - @ref CLGEMMMatrixMultiplyReshapedKernel
475 - Added new data type QASYMM8_PER_CHANNEL support for:
476 - @ref CLDequantizationLayer
477 - @ref NEDequantizationLayer
478 - Added new data type QSYMM8_PER_CHANNEL support for:
479 - @ref CLConvolutionLayer
480 - @ref NEConvolutionLayer
481 - @ref CLDepthwiseConvolutionLayer
482 - @ref NEDepthwiseConvolutionLayer
483 - Added FP16 mixed-precision support for:
484 - @ref CLGEMMMatrixMultiplyReshapedKernel
485 - @ref CLPoolingLayerKernel
486 - Added FP32 and FP16 ELU activation for:
487 - @ref CLActivationLayer
488 - @ref NEActivationLayer
489 - Added asymmetric padding support for:
490 - @ref CLDirectDeconvolutionLayer
491 - @ref CLGEMMDeconvolutionLayer
492 - @ref NEDeconvolutionLayer
493 - Added SYMMETRIC and REFLECT modes for @ref CLPadLayerKernel / @ref CLPadLayer.
494 - Replaced the calls to @ref NECopyKernel and @ref NEMemsetKernel with @ref NEPadLayer in @ref NEGenerateProposalsLayer.
495 - Replaced the calls to @ref CLCopyKernel and @ref CLMemsetKernel with @ref CLPadLayer in @ref CLGenerateProposalsLayer.
496 - Improved performance for CL Inception V3 - FP16.
497 - Improved accuracy for CL Inception V3 - FP16 by enabling FP32 accumulator (mixed-precision).
498 - Improved NEON performance by enabling fusing batch normalization with convolution and depth-wise convolution layer.
499 - Improved NEON performance for MobileNet-SSD by improving the output detection performance.
500 - Optimized @ref CLPadLayer.
501 - Optimized CL generic depthwise convolution layer by introducing @ref CLDepthwiseConvolutionLayerNativeKernel.
502 - Reduced memory consumption by implementing weights sharing.
503
Jenkins7f09cf72020-01-22 18:08:16 +0000504v19.08.1 Public maintenance release
505 - Fix offset calculation in NEReductionOperationKernel.
506 - Fix data layout in NEScaleKernel for nhwc.
507 - Retain configuration step data layout to avoid side-effects.
508 - Perform sqrt in double domain for L2 pooling.
509 - Fix output shape calculation for Reduce Mean
510 - Fix broadcast CLPixelwiseMultiplication with 5D tensors
511
Jenkins975dfe12019-09-02 11:47:54 +0100512v19.08 Public major release
513 - Various bug fixes.
514 - Various optimisations.
515 - Deprecated NEON functions
516 - NEDepthConcatenateLayer
517 - NEWidthConcatenateLayer
518 - Deprecated OpenCL kernels / functions
519 - CLDepthConcatenateLayer
520 - CLGEMMInterleave4x4Kernel / CLGEMMInterleave4x4
521 - CLGEMMTranspose1xWKernel / CLGEMMTranspose1xW
522 - CLWidthConcatenateLayer
523 - New NEON kernels / functions:
524 - @ref NEAbsLayer
525 - @ref NECast
526 - @ref NEElementwisePower
527 - @ref NELogLayer
528 - @ref NELSTMLayerQuantized
529 - @ref NENegLayer
530 - @ref NEPReluLayer
531 - @ref NESinLayer
532 - @ref NEBatchConcatenateLayerKernel
533 - @ref NEDepthToSpaceLayerKernel / @ref NEDepthToSpaceLayer
534 - @ref NEDepthwiseConvolutionLayerNativeKernel
535 - @ref NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel
536 - @ref NEMeanStdDevNormalizationKernel / @ref NEMeanStdDevNormalizationLayer
537 - @ref NESpaceToDepthLayerKernel / @ref NESpaceToDepthLayer
538 - New OpenCL kernels / functions:
539 - @ref CLAbsLayer
540 - @ref CLElementwisePower
541 - @ref CLLogLayer
542 - @ref CLLSTMLayerQuantized
543 - @ref CLNegLayer
544 - @ref CLPReluLayer
545 - @ref CLSinLayer
546 - @ref CLBatchConcatenateLayerKernel
547 - @ref CLDepthToSpaceLayerKernel / @ref CLDepthToSpaceLayer
548 - @ref CLGEMMLowpMatrixMultiplyNativeKernel
549 - @ref CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel
550 - @ref CLGEMMMatrixMultiplyNativeKernel
551 - @ref CLMeanStdDevNormalizationKernel / @ref CLMeanStdDevNormalizationLayer
552 - @ref CLSpaceToDepthLayerKernel / @ref CLSpaceToDepthLayer
553 - New examples:
554 - neon_opticalflow
555 - cl_cache
556 - neon_permute
557 - Added support for FP16 in @ref NEDeconvolutionLayer
558 - Added support for FP16 in @ref CLDeconvolutionLayer
559 - Added support for REDUCE_MIN and REDUCE_MAX in @ref ReductionOperation
560 - Enable the fusion of batch normalization with convolution and depthwise convolution layer for FP32 in the graph API (OpenCL only)
561 - Added support for fusing activation function and broadcast addition with the matrix multiplication for FP32 (OpenCL only)
562 - Re-factored the depthwise convolution layer kernel on NEON for generic cases
563 - Added an optimized depthwise convolution layer kernel for 5x5 filters (NEON only)
564 - Added support to enable OpenCL kernel cache. Added example showing how to load the prebuilt OpenCL kernels from a binary cache file
565 - Altered @ref QuantizationInfo interface to support per-channel quantization.
Jenkins6a7771e2020-05-28 11:28:36 +0100566 - The CLDepthwiseConvolutionLayer3x3 will be included by @ref CLDepthwiseConvolutionLayer to accommodate for future optimizations.
567 - The NEDepthwiseConvolutionLayerOptimized will be included by @ref NEDepthwiseConvolutionLayer to accommodate for future optimizations.
Jenkins975dfe12019-09-02 11:47:54 +0100568 - Removed inner_border_right and inner_border_top parameters from @ref CLDeconvolutionLayer interface
569 - Removed inner_border_right and inner_border_top parameters from @ref NEDeconvolutionLayer interface
570 - Optimized the NEON assembly kernel for GEMMLowp. The new implementation fuses the output stage and quantization with the matrix multiplication kernel
571
Jenkins4ba87db2019-05-23 17:11:51 +0100572v19.05 Public major release
573 - Various bug fixes.
574 - Various optimisations.
575 - New Neon kernels / functions:
576 - @ref NEBatchToSpaceLayerKernel / @ref NEBatchToSpaceLayer
577 - @ref NEComplexPixelWiseMultiplicationKernel / @ref NEComplexPixelWiseMultiplication
578 - @ref NECropKernel / @ref NECropResize
579 - @ref NEDepthwiseConvolutionAssemblyDispatch
580 - @ref NEFFTDigitReverseKernel
581 - @ref NEFFTRadixStageKernel
582 - @ref NEFFTScaleKernel
583 - @ref NEGEMMLowpOffsetContributionOutputStageKernel
584 - @ref NEHeightConcatenateLayerKernel
585 - @ref NESpaceToBatchLayerKernel / @ref NESpaceToBatchLayer
586 - @ref NEFFT1D
587 - @ref NEFFT2D
588 - @ref NEFFTConvolutionLayer
589 - New OpenCL kernels / functions:
590 - @ref CLComplexPixelWiseMultiplicationKernel / @ref CLComplexPixelWiseMultiplication
591 - @ref CLCropKernel / @ref CLCropResize
592 - @ref CLDeconvolutionReshapeOutputKernel
593 - @ref CLFFTDigitReverseKernel
594 - @ref CLFFTRadixStageKernel
595 - @ref CLFFTScaleKernel
596 - @ref CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel
597 - @ref CLGEMMMatrixMultiplyReshapedOnlyRHSKernel
598 - @ref CLHeightConcatenateLayerKernel
599 - @ref CLDirectDeconvolutionLayer
600 - @ref CLFFT1D
601 - @ref CLFFT2D
602 - @ref CLFFTConvolutionLayer
603 - @ref CLGEMMDeconvolutionLayer
604 - New OpenGLES kernels / functions:
605 - @ref GCConcatenateLayer
606 - Deprecated functions/interfaces
Jenkins975dfe12019-09-02 11:47:54 +0100607 - GCDepthConcatenateLayer
608 - NEWidthConcatenateLayer
609 - NEDepthConcatenateLayer
610 - CLWidthConcatenateLayer
611 - CLDepthConcatenateLayer
612 - CLGEMMInterleave4x4
613 - CLGEMMTranspose1xW
Jenkins4ba87db2019-05-23 17:11:51 +0100614 - Support different quantization info in CLConcatLayer.
615 - Add checks on different input/output quantization info were not supported.
616 - Tensors have different quantization information.
617 - Add FP16 support checks.
618 - Fix output quantization CLDeptwiseConv3x3 when activation is fused.
619 - New graph examples:
620 - graph_convolution
621 - graph_fully_connected
622 - graph_depthwise_convolution
623 - Deepspeech v0.4.1
624 - Add support for QASYMM8 in NEArithmeticSubtractionKernel.
625 - Add support for QASYMM8 in NEPixelWiseMultiplicationKernel.
626 - Add support for QASYMM8 NEDeconvolution.
627 - Add support for DequantizationLayer for NEON/CL.
628 - Add support for dilation in CLDepthwiseConvolution.
629 - Fuse offset contribution with the output stage when we use NEGEMMLowpMatrixMultiplyCore.
630 - Optimize CLDeconvolution.
631 - Add StackLayer to the graph API.
632 - Add support for "reflect" padding mode in NEPad.
633 - Winograd 7x7 NHWC on OpenCL.
634 - Rework CL ML layers to run exclusively on CL.
635 - Support different quantization info in PoolingLayer.
636 - Implement and test import memory interfaces.
637 - Added new tests and removed old ones.
638 - Various clang-tidy fixes.
639
Jenkins514be652019-02-28 12:25:18 +0000640v19.02 Public major release
641 - Various bug fixes.
642 - Various optimisations.
643 - New Neon kernels / functions:
644 - @ref NETileKernel / @ref NETile
645 - @ref NEFuseBatchNormalizationKernel / @ref NEFuseBatchNormalization
646 - @ref NEElementwiseOperationKernel
647 - @ref NEElementwiseMax
648 - @ref NEElementwiseMin
649 - @ref NEElementwiseSquaredDiff
650 - @ref NESelectKernel / @ref NESelect
651 - @ref NESplit
652 - @ref NESlice
653 - @ref NEUnstack
654 - @ref NEStridedSliceKernel / @ref NEStridedSlice
655 - @ref NEElementwiseUnaryKernel
656 - @ref NERsqrtLayer
657 - @ref NEExpLayer
658 - @ref NEReverseKernel / @ref NEReverse
659 - @ref NEArgMinMaxLayer
660 - @ref NEStackLayerKernel / @ref NEStackLayer
661 - @ref NERangeKernel / @ref NERange
662 - @ref NEPadLayer
663 - @ref NEMemsetKernel
664 - @ref NEGatherKernel / @ref NEGather
665 - @ref NEElementwiseComparison
666 - @ref NEElementwiseComparisonStatic
667 - @ref NEComparisonOperationKernel
668 - @ref NEElementwiseDivision
669 - New OpenCL kernels / functions:
670 - @ref CLSelectKernel / @ref CLSelect
671 - @ref CLTileKernel / @ref CLTile
672 - @ref CLComparisonKernel / @ref CLComparison
673 - @ref CLArgMinMaxLayer
674 - @ref CLElementwiseMax
675 - @ref CLElementwiseMin
676 - @ref CLElementwiseSquaredDiff
677 - @ref CLStackLayerKernel / @ref CLStackLayer
678 - @ref CLReverse / @ref CLReverseKernel
679 - @ref CLRsqrtLayer
680 - @ref CLExpLayer
681 - @ref CLElementWiseUnaryLayerKernel
682 - @ref CLGEMMReshapeLHSMatrixKernel
683 - @ref CLGEMMReshapeRHSMatrixKernel
684 - @ref CLGEMMMatrixMultiplyReshapedKernel
685 - @ref CLRangeKernel / @ref CLRange
686 - @ref CLUnstack
687 - @ref CLGatherKernel / @ref CLGather
688 - @ref CLGEMMLowpMatrixMultiplyReshapedKernel
689 - New CPP kernels / functions:
690 - @ref CPPDetectionOutputLayer
691 - @ref CPPTopKV / @ref CPPTopKVKernel
692 - Added new examples:
693 - graph_ssd_mobilenet.cpp
694 - graph_mobilenet_v2.cpp
695 - graph_resnet12.cpp
696 - graph_srcnn955.cpp
697 - graph_vgg_vdsr.cpp
698 - graph_inception_resnet_v1.cpp
699 - Add 4D tensors support to
700 - @ref NESoftmaxLayer
701 - Fused activation in @ref CLWinogradConvolutionLayer
702 - Extented @ref NEPermute to support more cases
703 - Added NEON/SVE GEMM Hybrid kernels
704 - Added u8 and s8 hybrid assembly kernels
705 - Introduced GEMM strategy name in NEGEMMAssemblyWrapper
706 - Improved @ref CLTuner
707 - Fused the bias addition within @ref CLGEMM
708 - Added support for QASYMM8 LOGISTIC activation in @ref NEActivationLayer
709 - Added NHWC data layout support to:
710 - @ref NEScale for F16
711 - @ref CLNormalizationLayer IN_MAP_2D for FP32/FP16
712 - @ref NEL2NormalizeLayer for FP32/FP16
713 - @ref NENormalizationLayer IN_MAP_2D for FP32/FP16
714 - @ref CLROIAlignLayer
715 - @ref CLGenerateProposalsLayer
716 - Added QASYMM8 support to the following kernels:
717 - @ref NEArithmeticAdditionKernel
718 - @ref NEScale
719 - Added new tests and improved validation and benchmarking suites.
720 - Deprecated functions/interfaces
721 - Usage of inner_border_right and inner_border_top has been deprecated in @ref CLDeconvolutionLayer and @ref NEDeconvolutionLayer
722
Jenkinsb9abeae2018-11-22 11:58:08 +0000723v18.11 Public major release
724 - Various bug fixes.
725 - Various optimisations.
726 - New Neon kernels / functions:
727 - @ref NEChannelShuffleLayer / @ref NEChannelShuffleLayerKernel
728 - @ref NEReduceMean
729 - @ref NEReorgLayer / @ref NEReorgLayerKernel
730 - @ref NEPriorBoxLayer / @ref NEPriorBoxLayerKernel
731 - @ref NEUpsampleLayer / @ref NEUpsampleLayerKernel
732 - @ref NEYOLOLayer / @ref NEYOLOLayerKernel
733 - New OpenCL kernels / functions:
734 - @ref CLBatchToSpaceLayer / @ref CLBatchToSpaceLayerKernel
735 - @ref CLBoundingBoxTransform / @ref CLBoundingBoxTransformKernel
736 - @ref CLComputeAllAnchorsKernel
737 - @ref CLGenerateProposalsLayer
738 - @ref CLNormalizePlanarYUVLayer / @ref CLNormalizePlanarYUVLayerKernel
739 - @ref CLReorgLayer / @ref CLReorgLayerKernel
740 - @ref CLSpaceToBatchLayer / @ref CLSpaceToBatchLayerKernel
741 - @ref CLPadLayer
742 - @ref CLReduceMean
743 - @ref CLPriorBoxLayer / @ref CLPriorBoxLayerKernel
744 - @ref CLROIAlignLayer / @ref CLROIAlignLayerKernel
745 - @ref CLSlice
746 - @ref CLSplit
747 - @ref CLStridedSlice / @ref CLStridedSliceKernel
748 - @ref CLUpsampleLayer / @ref CLUpsampleLayerKernel
749 - @ref CLYOLOLayer / @ref CLYOLOLayerKernel
750 - New CPP kernels / functions:
751 - @ref CPPBoxWithNonMaximaSuppressionLimit / @ref CPPBoxWithNonMaximaSuppressionLimitKernel
752 - Added the validate method in:
753 - @ref NEDepthConvertLayer
754 - @ref NEFloor / @ref CLFloor
755 - @ref NEGEMMMatrixAdditionKernel
756 - @ref NEReshapeLayer / @ref CLReshapeLayer
757 - @ref CLScale
758 - Added new examples:
759 - graph_shufflenet.cpp
760 - graph_yolov3.cpp
761 - Added documentation for add a new function or kernel.
762 - Improved doxygen documentation adding a list of the existing functions.
763 - Add 4D tensors support to
Jenkins975dfe12019-09-02 11:47:54 +0100764 - CLWidthConcatenateLayer
Jenkinsb9abeae2018-11-22 11:58:08 +0000765 - @ref CLFlattenLayer
766 - @ref CLSoftmaxLayer
767 - Add dot product support for @ref CLDepthwiseConvolutionLayer3x3NHWCKernel non-unit stride
768 - Add SVE support
769 - Fused batch normalization into convolution layer weights in @ref CLFuseBatchNormalization
770 - Fuses activation in @ref CLDepthwiseConvolutionLayer3x3NCHWKernel, @ref CLDepthwiseConvolutionLayer3x3NHWCKernel and @ref NEGEMMConvolutionLayer
771 - Added NHWC data layout support to:
772 - @ref CLChannelShuffleLayer
773 - @ref CLDeconvolutionLayer
774 - @ref CLL2NormalizeLayer
775 - Added QASYMM8 support to the following kernels:
776 - @ref CLScaleKernel
777 - @ref NEDepthwiseConvolutionLayer3x3Kernel
778 - @ref CLPixelWiseMultiplicationKernel
779 - Added FP16 support to the following kernels:
780 - @ref CLDepthwiseConvolutionLayer3x3NHWCKernel
781 - @ref NEDepthwiseConvolutionLayer3x3Kernel
782 - @ref CLNormalizePlanarYUVLayerKernel
783 - @ref CLWinogradConvolutionLayer (5x5 kernel)
784 - More tests added to both validation and benchmarking suites.
785
Jenkins52ba29e2018-08-29 15:32:11 +0000786v18.08 Public major release
787 - Various bug fixes.
788 - Various optimisations.
789 - Updated recommended NDK version to r17b.
790 - Removed support for QS8/QS16 data types.
791 - Added support for grouped convolution in @ref CLConvolutionLayer.
792 - Added NHWC data layout support to:
Jenkins975dfe12019-09-02 11:47:54 +0100793 - NEDepthConcatenateLayer / CLDepthConcatenateLayer
Jenkins52ba29e2018-08-29 15:32:11 +0000794 - @ref NEWinogradConvolutionLayer / @ref CLWinogradConvolutionLayer
795 - @ref CLDepthwiseConvolutionLayer
796 - @ref CLDirectConvolutionLayer
797 - @ref CLConvolutionLayer
798 - @ref CLScale
799 - @ref CLIm2ColKernel
800 - New Neon kernels / functions:
801 - @ref NERNNLayer
802 - New OpenCL kernels / functions:
803 - @ref CLArithmeticDivision
804 - Introduced prepare() stage support in the graph API for GLES.
805 - Added support for memory reusage when trying to allocate smaller CLTensors.
806 - Enabled NHWC execution on graph examples.
807 - Added JPEG accessor for validation purposes.
808 - Added validate methods to some kernels / functions.
809
810v18.05 Public major release
Jenkinsb3a371b2018-05-23 11:36:53 +0100811 - Various bug fixes.
812 - Various optimisations.
813 - Major redesign in the interface for the neon kernels implemented in assembly.
814 - Removed arm_compute::NEGEMMLowpAArch64A53Kernel / arm_compute::NEGEMMLowpAArch64Kernel / arm_compute::NEGEMMLowpAArch64V8P4Kernel / arm_compute::NEGEMMInterleavedBlockedKernel / arm_compute::NEGEMMLowpAssemblyMatrixMultiplyCore / arm_compute::NEHGEMMAArch64FP16Kernel
815 - Added NEGEMMAssemblyWrapper and AssemblyKernelGlue which are used to execute assembly kernels in neon functions.
816 - Minor changes to the CPUInfo type to make it compatible with the new assembly gemm interface.
817 - Moved neon assembly kernels to the folder src/core/NEON/kernels/arm_gemm.
818 - Improved doxygen documentation.
819 - Improved memory management for layer's transitions.
820 - Added support for NHWC data layout in tensors.
821 - Added NHWC data layout support to:
822 - @ref NEGEMMConvolutionLayer
823 - @ref NEDirectConvolutionLayer
824 - @ref NEPoolingLayer / @ref CLPoolingLayer
825 - @ref NEBatchNormalizationLayer / @ref CLBatchNormalizationLayer
826 - @ref NEDepthwiseConvolutionLayer
827 - @ref NEScale
828 - @ref NEIm2Col
829 - Added support for dilated convolutions in @ref NEConvolutionLayer and @ref CLConvolutionLayer.
830 - New OpenCL kernels / functions:
831 - @ref CLChannelShuffleLayer / @ref CLChannelShuffleLayerKernel
832 - @ref CLConvertFullyConnectedWeightsKernel / @ref CLConvertFullyConnectedWeights
833 - @ref CLCopy / @ref CLCopyKernel
834 - @ref CLLSTMLayer
835 - @ref CLRNNLayer
Jenkins975dfe12019-09-02 11:47:54 +0100836 - CLWidthConcatenateLayer / @ref CLWidthConcatenateLayerKernel
Jenkinsb3a371b2018-05-23 11:36:53 +0100837 - @ref CLWinogradFilterTransformKernel / @ref CLWinogradInputTransformKernel / @ref CLWinogradConvolutionLayer
838 - @ref CLWinogradInputTransformKernel / @ref CLWinogradInputTransform
839 - New Neon kernels / functions:
Jenkinsb3a371b2018-05-23 11:36:53 +0100840 - @ref NEConvertFullyConnectedWeightsKernel / @ref NEConvertFullyConnectedWeights.
841 - Created the validate method in @ref CLDepthwiseConvolutionLayer.
842 - Beta and gamma are no longer mandatory arguments in @ref NEBatchNormalizationLayer and @ref CLBatchNormalizationLayer.
843 - Added depth multiplier support in @ref NEDepthwiseConvolutionLayer and @ref CLDepthwiseConvolutionLayer.
844 - Added broadcast multiply support in @ref NEPixelWiseMultiplication / @ref NEPixelWiseMultiplicationKernel.
845 - Port mobilenet example to NHWC data layout.
846 - Enabled Winograd method in @ref CLConvolutionLayer.
847 - Renamed NEWinogradLayer to @ref NEWinogradConvolutionLayer.
848 - Updated @ref NEWinogradConvolutionLayer to use highly optimised assembly kernels in src/core/NEON/kernels/arm_gemm.
849 - Added memory manager support in GLES functions.
850 - Major refactoring of the graph API.
851 - Added GLES backend in the graph API.
852 - Added support for the memory manager in the graph API.
853 - Enabled Winograd Convolution method in the graph API.
854 - Added support for grouped convolutions in the graph API.
855 - Replaced NEDeconvolutionLayerUpsampleKernel with @ref NEScaleKernel in @ref NEDeconvolutionLayer.
856 - Added fast maths flag in @ref CLConvolutionLayer.
857 - Added new tests and benchmarks in validation and benchmark frameworks
858 - Merge Activation layer with Convolution Layer (NEON. CL, GLES)
859 - Added support to OpenCL 2.0 SVM
860 - Added support to import memory in OpenCL tensors.
861 - Added the prepare() method to perform any one off pre-processing before running the function.
862 - Added new examples:
863 - graph_inception_v4.cpp
864 - graph_resnext50.cpp
865 - Added memory measurement instrument for CL.
866
Jenkinsc3f34a42018-03-02 12:38:09 +0000867v18.03 Public maintenance release
868 - Various bug fixes.
869 - Fixed bug in @ref NEActivationLayer
870 - Fix in @ref CLTuner when using batches.
871 - Updated recommended NDK version to r16b (And fixed warnings).
872 - Fixed bug in validation code.
873 - Added Inception v4 graph example.
Jenkinsb3a371b2018-05-23 11:36:53 +0100874 - Renamed NEWinogradLayer.cpp to @ref NEWinogradConvolutionLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000875
Anthony Barbier06ea0482018-02-22 15:45:35 +0000876v18.02 Public major release
877 - Various NEON / OpenCL / GLES optimisations.
878 - Various bug fixes.
879 - Changed default number of threads on big LITTLE systems.
880 - Refactored examples and added:
881 - graph_mobilenet_qassym8
882 - graph_resnet
883 - graph_squeezenet_v1_1
Jenkinsc3f34a42018-03-02 12:38:09 +0000884 - Renamed @ref CLConvolutionLayer into @ref CLGEMMConvolutionLayer and created a new @ref CLConvolutionLayer to select the fastest convolution method.
885 - Renamed @ref NEConvolutionLayer into @ref NEGEMMConvolutionLayer and created a new @ref NEConvolutionLayer to select the fastest convolution method.
Anthony Barbier06ea0482018-02-22 15:45:35 +0000886 - Added in place support to:
Jenkinsc3f34a42018-03-02 12:38:09 +0000887 - @ref CLActivationLayer
888 - @ref CLBatchNormalizationLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000889 - Added QASYMM8 support to:
Jenkinsc3f34a42018-03-02 12:38:09 +0000890 - @ref CLActivationLayer
891 - @ref CLDepthwiseConvolutionLayer
892 - @ref NEDepthwiseConvolutionLayer
893 - @ref NESoftmaxLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000894 - Added FP16 support to:
Jenkins6a7771e2020-05-28 11:28:36 +0100895 - CLDepthwiseConvolutionLayer3x3
Jenkinsc3f34a42018-03-02 12:38:09 +0000896 - @ref CLDepthwiseConvolutionLayer
897 - Added broadcasting support to @ref NEArithmeticAddition / @ref CLArithmeticAddition / @ref CLPixelWiseMultiplication
898 - Added fused batched normalization and activation to @ref CLBatchNormalizationLayer and @ref NEBatchNormalizationLayer
899 - Added support for non-square pooling to @ref NEPoolingLayer and @ref CLPoolingLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000900 - New OpenCL kernels / functions:
Jenkins0e205f72019-11-28 16:53:35 +0000901 - CLDirectConvolutionLayerOutputStageKernel
Anthony Barbier06ea0482018-02-22 15:45:35 +0000902 - New NEON kernels / functions
903 - Added name() method to all kernels.
904 - Added support for Winograd 5x5.
Jenkinsc3f34a42018-03-02 12:38:09 +0000905 - @ref NEPermuteKernel / @ref NEPermute
Jenkinsb3a371b2018-05-23 11:36:53 +0100906 - @ref NEWinogradLayerTransformInputKernel / NEWinogradLayer
907 - @ref NEWinogradLayerTransformOutputKernel / NEWinogradLayer
908 - @ref NEWinogradLayerTransformWeightsKernel / NEWinogradLayer
Jenkins52ba29e2018-08-29 15:32:11 +0000909 - Renamed NEWinogradLayerKernel into NEWinogradLayerBatchedGEMMKernel
Anthony Barbier06ea0482018-02-22 15:45:35 +0000910 - New GLES kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000911 - @ref GCTensorShiftKernel / @ref GCTensorShift
Anthony Barbier06ea0482018-02-22 15:45:35 +0000912
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000913v18.01 Public maintenance release
914 - Various bug fixes
915 - Added some of the missing validate() methods
Jenkinsc3f34a42018-03-02 12:38:09 +0000916 - Added @ref CLDeconvolutionLayerUpsampleKernel / @ref CLDeconvolutionLayer @ref CLDeconvolutionLayerUpsample
917 - Added @ref CLPermuteKernel / @ref CLPermute
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000918 - Added method to clean the programs cache in the CL Kernel library.
Jenkinsc3f34a42018-03-02 12:38:09 +0000919 - Added @ref GCArithmeticAdditionKernel / @ref GCArithmeticAddition
920 - Added @ref GCDepthwiseConvolutionLayer3x3Kernel / @ref GCDepthwiseConvolutionLayer3x3
921 - Added @ref GCNormalizePlanarYUVLayerKernel / @ref GCNormalizePlanarYUVLayer
922 - Added @ref GCScaleKernel / @ref GCScale
923 - Added @ref GCWeightsReshapeKernel / @ref GCConvolutionLayer
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000924 - Added FP16 support to the following GLES compute kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +0000925 - @ref GCCol2ImKernel
926 - @ref GCGEMMInterleave4x4Kernel
927 - @ref GCGEMMTranspose1xWKernel
928 - @ref GCIm2ColKernel
929 - Refactored NEON Winograd (NEWinogradLayerKernel)
930 - Added @ref NEDirectConvolutionLayerOutputStageKernel
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000931 - Added QASYMM8 support to the following NEON kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +0000932 - @ref NEDepthwiseConvolutionLayer3x3Kernel
933 - @ref NEFillBorderKernel
934 - @ref NEPoolingLayerKernel
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000935 - Added new examples:
936 - graph_cl_mobilenet_qasymm8.cpp
937 - graph_inception_v3.cpp
938 - gc_dc.cpp
939 - More tests added to both validation and benchmarking suites.
940
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000941v17.12 Public major release
942 - Most machine learning functions on OpenCL support the new data type QASYMM8
943 - Introduced logging interface
944 - Introduced opencl timer
945 - Reworked GEMMLowp interface
946 - Added new NEON assembly kernels for GEMMLowp, SGEMM and HGEMM
947 - Added validation method for most Machine Learning kernels / functions
948 - Added new graph examples such as googlenet, mobilenet, squeezenet, vgg16 and vgg19
949 - Added sgemm example for OpenCL
950 - Added absolute difference example for GLES compute
951 - Added new tests and benchmarks in validation and benchmark frameworks
952 - Added new kernels / functions for GLES compute
953
954 - New OpenGL ES kernels / functions
Jenkinsc3f34a42018-03-02 12:38:09 +0000955 - @ref GCAbsoluteDifferenceKernel / @ref GCAbsoluteDifference
956 - @ref GCActivationLayerKernel / @ref GCActivationLayer
957 - @ref GCBatchNormalizationLayerKernel / @ref GCBatchNormalizationLayer
958 - @ref GCCol2ImKernel
Jenkins975dfe12019-09-02 11:47:54 +0100959 - @ref GCDepthConcatenateLayerKernel / GCDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000960 - @ref GCDirectConvolutionLayerKernel / @ref GCDirectConvolutionLayer
961 - @ref GCDropoutLayerKernel / @ref GCDropoutLayer
962 - @ref GCFillBorderKernel / @ref GCFillBorder
963 - @ref GCGEMMInterleave4x4Kernel / @ref GCGEMMInterleave4x4
964 - @ref GCGEMMMatrixAccumulateBiasesKernel / @ref GCGEMMMatrixAdditionKernel / @ref GCGEMMMatrixMultiplyKernel / @ref GCGEMM
965 - @ref GCGEMMTranspose1xWKernel / @ref GCGEMMTranspose1xW
966 - @ref GCIm2ColKernel
967 - @ref GCNormalizationLayerKernel / @ref GCNormalizationLayer
968 - @ref GCPixelWiseMultiplicationKernel / @ref GCPixelWiseMultiplication
969 - @ref GCPoolingLayerKernel / @ref GCPoolingLayer
970 - @ref GCLogits1DMaxKernel / @ref GCLogits1DShiftExpSumKernel / @ref GCLogits1DNormKernel / @ref GCSoftmaxLayer
971 - @ref GCTransposeKernel / @ref GCTranspose
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000972
973 - New NEON kernels / functions
Jenkinsb3a371b2018-05-23 11:36:53 +0100974 - arm_compute::NEGEMMLowpAArch64A53Kernel / arm_compute::NEGEMMLowpAArch64Kernel / arm_compute::NEGEMMLowpAArch64V8P4Kernel / arm_compute::NEGEMMInterleavedBlockedKernel / arm_compute::NEGEMMLowpAssemblyMatrixMultiplyCore
975 - arm_compute::NEHGEMMAArch64FP16Kernel
Jenkins18b685f2020-08-21 10:26:22 +0100976 - @ref NEDepthwiseConvolutionLayer3x3Kernel / NEDepthwiseIm2ColKernel / NEGEMMMatrixVectorMultiplyKernel / NEDepthwiseVectorToTensorKernel / @ref NEDepthwiseConvolutionLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000977 - @ref NEGEMMLowpOffsetContributionKernel / @ref NEGEMMLowpMatrixAReductionKernel / @ref NEGEMMLowpMatrixBReductionKernel / @ref NEGEMMLowpMatrixMultiplyCore
978 - @ref NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel / @ref NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint
Jenkinsb3a371b2018-05-23 11:36:53 +0100979 - NEWinogradLayer / NEWinogradLayerKernel
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000980
981 - New OpenCL kernels / functions
Jenkinsc3f34a42018-03-02 12:38:09 +0000982 - @ref CLGEMMLowpOffsetContributionKernel / @ref CLGEMMLowpMatrixAReductionKernel / @ref CLGEMMLowpMatrixBReductionKernel / @ref CLGEMMLowpMatrixMultiplyCore
983 - @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel / @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000984
985 - New graph nodes for NEON and OpenCL
Jenkinsb3a371b2018-05-23 11:36:53 +0100986 - graph::BranchLayer
987 - graph::DepthConvertLayer
988 - graph::DepthwiseConvolutionLayer
989 - graph::DequantizationLayer
990 - graph::FlattenLayer
991 - graph::QuantizationLayer
992 - graph::ReshapeLayer
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000993
Kaizenbf8b01d2017-10-12 14:26:51 +0100994v17.10 Public maintenance release
995 - Bug fixes:
996 - Check the maximum local workgroup size supported by OpenCL devices
997 - Minor documentation updates (Fixed instructions to build the examples)
Jenkinsc3f34a42018-03-02 12:38:09 +0000998 - Introduced a graph::GraphContext
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000999 - Added a few new Graph nodes, support for branches and grouping.
Kaizenbf8b01d2017-10-12 14:26:51 +01001000 - Automatically enable cl_printf in debug builds
1001 - Fixed bare metal builds for armv7a
1002 - Added AlexNet and cartoon effect examples
1003 - Fixed library builds: libraries are no longer built as supersets of each other.(It means application using the Runtime part of the library now need to link against both libarm_compute_core and libarm_compute)
1004
Kaizen8938bd32017-09-28 14:38:23 +01001005v17.09 Public major release
1006 - Experimental Graph support: initial implementation of a simple stream API to easily chain machine learning layers.
Jenkinsc3f34a42018-03-02 12:38:09 +00001007 - Memory Manager (@ref BlobLifetimeManager, @ref BlobMemoryPool, @ref ILifetimeManager, @ref IMemoryGroup, @ref IMemoryManager, @ref IMemoryPool, @ref IPoolManager, @ref MemoryManagerOnDemand, @ref PoolManager)
Kaizen8938bd32017-09-28 14:38:23 +01001008 - New validation and benchmark frameworks (Boost and Google frameworks replaced by homemade framework).
1009 - Most machine learning functions support both fixed point 8 and 16 bit (QS8, QS16) for both NEON and OpenCL.
1010 - New NEON kernels / functions:
Jenkinsb3a371b2018-05-23 11:36:53 +01001011 - arm_compute::NEGEMMAssemblyBaseKernel arm_compute::NEGEMMAArch64Kernel
Jenkinsc3f34a42018-03-02 12:38:09 +00001012 - @ref NEDequantizationLayerKernel / @ref NEDequantizationLayer
1013 - @ref NEFloorKernel / @ref NEFloor
1014 - @ref NEL2NormalizeLayerKernel / @ref NEL2NormalizeLayer
1015 - @ref NEQuantizationLayerKernel @ref NEMinMaxLayerKernel / @ref NEQuantizationLayer
1016 - @ref NEROIPoolingLayerKernel / @ref NEROIPoolingLayer
1017 - @ref NEReductionOperationKernel / @ref NEReductionOperation
1018 - @ref NEReshapeLayerKernel / @ref NEReshapeLayer
Kaizen8938bd32017-09-28 14:38:23 +01001019
1020 - New OpenCL kernels / functions:
Jenkins6a7771e2020-05-28 11:28:36 +01001021 - @ref CLDepthwiseConvolutionLayer3x3NCHWKernel @ref CLDepthwiseConvolutionLayer3x3NHWCKernel CLDepthwiseIm2ColKernel CLDepthwiseVectorToTensorKernel CLDepthwiseWeightsReshapeKernel / CLDepthwiseConvolutionLayer3x3 @ref CLDepthwiseConvolutionLayer CLDepthwiseSeparableConvolutionLayer
Jenkinsc3f34a42018-03-02 12:38:09 +00001022 - @ref CLDequantizationLayerKernel / @ref CLDequantizationLayer
1023 - @ref CLDirectConvolutionLayerKernel / @ref CLDirectConvolutionLayer
1024 - @ref CLFlattenLayer
1025 - @ref CLFloorKernel / @ref CLFloor
Jenkins975dfe12019-09-02 11:47:54 +01001026 - CLGEMMTranspose1xW
Jenkinsc3f34a42018-03-02 12:38:09 +00001027 - @ref CLGEMMMatrixVectorMultiplyKernel
1028 - @ref CLL2NormalizeLayerKernel / @ref CLL2NormalizeLayer
1029 - @ref CLQuantizationLayerKernel @ref CLMinMaxLayerKernel / @ref CLQuantizationLayer
1030 - @ref CLROIPoolingLayerKernel / @ref CLROIPoolingLayer
1031 - @ref CLReductionOperationKernel / @ref CLReductionOperation
1032 - @ref CLReshapeLayerKernel / @ref CLReshapeLayer
Kaizen8938bd32017-09-28 14:38:23 +01001033
Anthony Barbierdbdab852017-06-23 15:42:00 +01001034v17.06 Public major release
1035 - Various bug fixes
1036 - Added support for fixed point 8 bit (QS8) to the various NEON machine learning kernels.
1037 - Added unit tests and benchmarks (AlexNet, LeNet)
1038 - Added support for sub tensors.
1039 - Added infrastructure to provide GPU specific optimisation for some OpenCL kernels.
Jenkinsc3f34a42018-03-02 12:38:09 +00001040 - Added @ref OMPScheduler (OpenMP) scheduler for NEON
1041 - Added @ref SingleThreadScheduler scheduler for NEON (For bare metal)
1042 - User can specify his own scheduler by implementing the @ref IScheduler interface.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001043 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +00001044 - @ref CLBatchNormalizationLayerKernel / @ref CLBatchNormalizationLayer
Jenkins975dfe12019-09-02 11:47:54 +01001045 - @ref CLDepthConcatenateLayerKernel / CLDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +00001046 - @ref CLHOGOrientationBinningKernel @ref CLHOGBlockNormalizationKernel, @ref CLHOGDetectorKernel / @ref CLHOGDescriptor @ref CLHOGDetector @ref CLHOGGradient @ref CLHOGMultiDetection
1047 - @ref CLLocallyConnectedMatrixMultiplyKernel / @ref CLLocallyConnectedLayer
1048 - @ref CLWeightsReshapeKernel / @ref CLConvolutionLayerReshapeWeights
Anthony Barbierdbdab852017-06-23 15:42:00 +01001049 - New C++ kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +00001050 - @ref CPPDetectionWindowNonMaximaSuppressionKernel
Anthony Barbierdbdab852017-06-23 15:42:00 +01001051 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +00001052 - @ref NEBatchNormalizationLayerKernel / @ref NEBatchNormalizationLayer
Jenkins975dfe12019-09-02 11:47:54 +01001053 - @ref NEDepthConcatenateLayerKernel / NEDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +00001054 - @ref NEDirectConvolutionLayerKernel / @ref NEDirectConvolutionLayer
1055 - @ref NELocallyConnectedMatrixMultiplyKernel / @ref NELocallyConnectedLayer
1056 - @ref NEWeightsReshapeKernel / @ref NEConvolutionLayerReshapeWeights
Anthony Barbierdbdab852017-06-23 15:42:00 +01001057
1058v17.05 Public bug fixes release
1059 - Various bug fixes
1060 - Remaining of the functions ported to use accurate padding.
1061 - Library does not link against OpenCL anymore (It uses dlopen / dlsym at runtime instead to determine whether or not OpenCL is available).
1062 - Added "free" method to allocator.
1063 - Minimum version of g++ required for armv7 Linux changed from 4.8 to 4.9
1064
1065v17.04 Public bug fixes release
1066
1067 The following functions have been ported to use the new accurate padding:
Jenkinsc3f34a42018-03-02 12:38:09 +00001068 - @ref CLColorConvertKernel
1069 - @ref CLEdgeNonMaxSuppressionKernel
1070 - @ref CLEdgeTraceKernel
1071 - @ref CLGaussianPyramidHorKernel
1072 - @ref CLGaussianPyramidVertKernel
1073 - @ref CLGradientKernel
1074 - @ref NEChannelCombineKernel
1075 - @ref NEFillArrayKernel
1076 - @ref NEGaussianPyramidHorKernel
1077 - @ref NEGaussianPyramidVertKernel
Jenkinsb9abeae2018-11-22 11:58:08 +00001078 - NEHarrisScoreFP16Kernel
Jenkinsc3f34a42018-03-02 12:38:09 +00001079 - @ref NEHarrisScoreKernel
1080 - @ref NEHOGDetectorKernel
1081 - @ref NELogits1DMaxKernel
1082 - NELogits1DShiftExpSumKernel
1083 - NELogits1DNormKernel
1084 - @ref NENonMaximaSuppression3x3FP16Kernel
1085 - @ref NENonMaximaSuppression3x3Kernel
Anthony Barbierdbdab852017-06-23 15:42:00 +01001086
Anthony Barbierdbdab852017-06-23 15:42:00 +01001087v17.03.1 First Major public release of the sources
1088 - Renamed the library to arm_compute
1089 - New CPP target introduced for C++ kernels shared between NEON and CL functions.
1090 - New padding calculation interface introduced and ported most kernels / functions to use it.
1091 - New OpenCL kernels / functions:
Jenkins6a7771e2020-05-28 11:28:36 +01001092 - CLGEMMLowpMatrixMultiplyKernel / CLGEMMLowp
Anthony Barbierdbdab852017-06-23 15:42:00 +01001093 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +00001094 - @ref NENormalizationLayerKernel / @ref NENormalizationLayer
1095 - @ref NETransposeKernel / @ref NETranspose
1096 - @ref NELogits1DMaxKernel, NELogits1DShiftExpSumKernel, NELogits1DNormKernel / @ref NESoftmaxLayer
1097 - @ref NEIm2ColKernel, @ref NECol2ImKernel, NEConvolutionLayerWeightsReshapeKernel / @ref NEConvolutionLayer
Jenkins18b685f2020-08-21 10:26:22 +01001098 - NEGEMMMatrixAccumulateBiasesKernel / @ref NEFullyConnectedLayer
Jenkinsc3f34a42018-03-02 12:38:09 +00001099 - @ref NEGEMMLowpMatrixMultiplyKernel / NEGEMMLowp
Anthony Barbierdbdab852017-06-23 15:42:00 +01001100
1101v17.03 Sources preview
1102 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +00001103 - @ref CLGradientKernel, @ref CLEdgeNonMaxSuppressionKernel, @ref CLEdgeTraceKernel / @ref CLCannyEdge
Jenkins0e205f72019-11-28 16:53:35 +00001104 - GEMM refactoring + FP16 support: CLGEMMInterleave4x4Kernel, CLGEMMTranspose1xWKernel, @ref CLGEMMMatrixMultiplyKernel, CLGEMMMatrixAdditionKernel / @ref CLGEMM
Jenkins18b685f2020-08-21 10:26:22 +01001105 - CLGEMMMatrixAccumulateBiasesKernel / @ref CLFullyConnectedLayer
Jenkinsc3f34a42018-03-02 12:38:09 +00001106 - @ref CLTransposeKernel / @ref CLTranspose
1107 - @ref CLLKTrackerInitKernel, @ref CLLKTrackerStage0Kernel, @ref CLLKTrackerStage1Kernel, @ref CLLKTrackerFinalizeKernel / @ref CLOpticalFlow
1108 - @ref CLNormalizationLayerKernel / @ref CLNormalizationLayer
1109 - @ref CLLaplacianPyramid, @ref CLLaplacianReconstruct
Anthony Barbierdbdab852017-06-23 15:42:00 +01001110 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +00001111 - @ref NEActivationLayerKernel / @ref NEActivationLayer
1112 - GEMM refactoring + FP16 support (Requires armv8.2 CPU): @ref NEGEMMInterleave4x4Kernel, @ref NEGEMMTranspose1xWKernel, @ref NEGEMMMatrixMultiplyKernel, @ref NEGEMMMatrixAdditionKernel / @ref NEGEMM
1113 - @ref NEPoolingLayerKernel / @ref NEPoolingLayer
Anthony Barbierdbdab852017-06-23 15:42:00 +01001114
1115v17.02.1 Sources preview
1116 - New OpenCL kernels / functions:
Jenkins18b685f2020-08-21 10:26:22 +01001117 - CLLogits1DMaxKernel, CLLogits1DShiftExpSumKernel, @ref CLLogits1DNormKernel / @ref CLSoftmaxLayer
Jenkinsc3f34a42018-03-02 12:38:09 +00001118 - @ref CLPoolingLayerKernel / @ref CLPoolingLayer
1119 - @ref CLIm2ColKernel, @ref CLCol2ImKernel, CLConvolutionLayerWeightsReshapeKernel / @ref CLConvolutionLayer
1120 - @ref CLRemapKernel / @ref CLRemap
1121 - @ref CLGaussianPyramidHorKernel, @ref CLGaussianPyramidVertKernel / @ref CLGaussianPyramid, @ref CLGaussianPyramidHalf, @ref CLGaussianPyramidOrb
1122 - @ref CLMinMaxKernel, @ref CLMinMaxLocationKernel / @ref CLMinMaxLocation
1123 - @ref CLNonLinearFilterKernel / @ref CLNonLinearFilter
Anthony Barbierdbdab852017-06-23 15:42:00 +01001124 - New NEON FP16 kernels (Requires armv8.2 CPU)
Jenkinsc3f34a42018-03-02 12:38:09 +00001125 - @ref NEAccumulateWeightedFP16Kernel
1126 - @ref NEBox3x3FP16Kernel
1127 - @ref NENonMaximaSuppression3x3FP16Kernel
Anthony Barbierdbdab852017-06-23 15:42:00 +01001128
1129v17.02 Sources preview
1130 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +00001131 - @ref CLActivationLayerKernel / @ref CLActivationLayer
1132 - @ref CLChannelCombineKernel / @ref CLChannelCombine
1133 - @ref CLDerivativeKernel / @ref CLChannelExtract
1134 - @ref CLFastCornersKernel / @ref CLFastCorners
1135 - @ref CLMeanStdDevKernel / @ref CLMeanStdDev
Anthony Barbierdbdab852017-06-23 15:42:00 +01001136 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +00001137 - HOG / SVM: @ref NEHOGOrientationBinningKernel, @ref NEHOGBlockNormalizationKernel, @ref NEHOGDetectorKernel, NEHOGNonMaximaSuppressionKernel / @ref NEHOGDescriptor, @ref NEHOGDetector, @ref NEHOGGradient, @ref NEHOGMultiDetection
1138 - @ref NENonLinearFilterKernel / @ref NENonLinearFilter
Anthony Barbierdbdab852017-06-23 15:42:00 +01001139 - Introduced a CLScheduler to manage the default context and command queue used by the runtime library and create synchronisation events.
1140 - Switched all the kernels / functions to use tensors instead of images.
1141 - Updated documentation to include instructions to build the library from sources.
1142
1143v16.12 Binary preview release
1144 - Original release
1145
1146@section S3_how_to_build How to build the library and the examples
1147
1148@subsection S3_1_build_options Build options
1149
1150scons 2.3 or above is required to build the library.
1151To see the build options available simply run ```scons -h```:
1152
1153 debug: Debug (yes|no)
1154 default: False
1155 actual: False
1156
1157 asserts: Enable asserts (this flag is forced to 1 for debug=1) (yes|no)
1158 default: False
1159 actual: False
1160
1161 arch: Target Architecture (armv7a|arm64-v8a|arm64-v8.2-a|x86_32|x86_64)
1162 default: armv7a
1163 actual: armv7a
1164
1165 os: Target OS (linux|android|bare_metal)
1166 default: linux
1167 actual: linux
1168
Anthony Barbier06ea0482018-02-22 15:45:35 +00001169 build: Build type (native|cross_compile|embed_only)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001170 default: cross_compile
1171 actual: cross_compile
1172
1173 examples: Build example programs (yes|no)
1174 default: True
1175 actual: True
1176
1177 Werror: Enable/disable the -Werror compilation flag (yes|no)
1178 default: True
1179 actual: True
1180
1181 opencl: Enable OpenCL support (yes|no)
1182 default: True
1183 actual: True
1184
1185 neon: Enable Neon support (yes|no)
1186 default: False
1187 actual: False
1188
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001189 gles_compute: Enable OpenGL ES Compute Shader support (yes|no)
1190 default: False
1191 actual: False
1192
1193 embed_kernels: Embed OpenCL kernels and OpenGL ES compute shader in library binary (yes|no)
Anthony Barbierf45d5a92018-01-24 16:23:15 +00001194 default: True
1195 actual: True
Anthony Barbierdbdab852017-06-23 15:42:00 +01001196
1197 set_soname: Set the library's soname and shlibversion (requires SCons 2.4 or above) (yes|no)
1198 default: False
1199 actual: False
1200
1201 openmp: Enable OpenMP backend (yes|no)
1202 default: False
1203 actual: False
1204
1205 cppthreads: Enable C++11 threads backend (yes|no)
1206 default: True
1207 actual: True
1208
1209 build_dir: Specify sub-folder for the build ( /path/to/build_dir )
1210 default: .
1211 actual: .
1212
1213 extra_cxx_flags: Extra CXX flags to be appended to the build command
1214 default:
1215 actual:
1216
1217 pmu: Enable PMU counters (yes|no)
1218 default: False
1219 actual: False
1220
Kaizen8938bd32017-09-28 14:38:23 +01001221 mali: Enable Mali hardware counters (yes|no)
1222 default: False
1223 actual: False
1224
Anthony Barbierdbdab852017-06-23 15:42:00 +01001225 validation_tests: Build validation test programs (yes|no)
1226 default: False
1227 actual: False
1228
1229 benchmark_tests: Build benchmark test programs (yes|no)
1230 default: False
1231 actual: False
1232
1233@b debug / @b asserts:
1234 - With debug=1 asserts are enabled, and the library is built with symbols and no optimisations enabled.
1235 - With debug=0 and asserts=1: Optimisations are enabled and symbols are removed, however all the asserts are still present (This is about 20% slower than the release build)
1236 - With debug=0 and asserts=0: All optimisations are enable and no validation is performed, if the application misuses the library it is likely to result in a crash. (Only use this mode once you are sure your application is working as expected).
1237
1238@b arch: The x86_32 and x86_64 targets can only be used with neon=0 and opencl=1.
1239
1240@b os: Choose the operating system you are targeting: Linux, Android or bare metal.
1241@note bare metal can only be used for NEON (not OpenCL), only static libraries get built and NEON's multi-threading support is disabled.
1242
1243@b build: you can either build directly on your device (native) or cross compile from your desktop machine (cross-compile). In both cases make sure the compiler is available in your path.
1244
1245@note If you want to natively compile for 32bit on a 64bit ARM device running a 64bit OS then you will have to use cross-compile too.
1246
Anthony Barbier06ea0482018-02-22 15:45:35 +00001247There is also an 'embed_only' option which will generate all the .embed files for the OpenCL kernels and / or OpenGLES compute shaders. This might be useful if using a different build system to compile the library.
1248
Anthony Barbierdbdab852017-06-23 15:42:00 +01001249@b Werror: If you are compiling using the same toolchains as the ones used in this guide then there shouldn't be any warning and therefore you should be able to keep Werror=1. If with a different compiler version the library fails to build because of warnings interpreted as errors then, if you are sure the warnings are not important, you might want to try to build with Werror=0 (But please do report the issue either on Github or by an email to developer@arm.com so that the issue can be addressed).
1250
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001251@b opencl / @b neon / @b gles_compute: Choose which SIMD technology you want to target. (NEON for ARM Cortex-A CPUs or OpenCL / GLES_COMPUTE for ARM Mali GPUs)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001252
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001253@b embed_kernels: For OpenCL / GLES_COMPUTE only: set embed_kernels=1 if you want the OpenCL / GLES_COMPUTE kernels to be built in the library's binaries instead of being read from separate ".cl" / ".cs" files. If embed_kernels is set to 0 then the application can set the path to the folder containing the OpenCL / GLES_COMPUTE kernel files by calling CLKernelLibrary::init() / GCKernelLibrary::init(). By default the path is set to "./cl_kernels" / "./cs_shaders".
Anthony Barbierdbdab852017-06-23 15:42:00 +01001254
1255@b set_soname: Do you want to build the versioned version of the library ?
1256
1257If enabled the library will contain a SONAME and SHLIBVERSION and some symlinks will automatically be created between the objects.
1258Example:
1259 libarm_compute_core.so -> libarm_compute_core.so.1.0.0
1260 libarm_compute_core.so.1 -> libarm_compute_core.so.1.0.0
1261 libarm_compute_core.so.1.0.0
1262
1263@note This options is disabled by default as it requires SCons version 2.4 or above.
1264
1265@b extra_cxx_flags: Custom CXX flags which will be appended to the end of the build command.
1266
1267@b build_dir: Build the library in a subfolder of the "build" folder. (Allows to build several configurations in parallel).
1268
1269@b examples: Build or not the examples
1270
1271@b validation_tests: Enable the build of the validation suite.
1272
Anthony Barbierdbdab852017-06-23 15:42:00 +01001273@b benchmark_tests: Enable the build of the benchmark tests
1274
1275@b pmu: Enable the PMU cycle counter to measure execution time in benchmark tests. (Your device needs to support it)
1276
Kaizen8938bd32017-09-28 14:38:23 +01001277@b mali: Enable the collection of Mali hardware counters to measure execution time in benchmark tests. (Your device needs to have a Mali driver that supports it)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001278
1279@b openmp Build in the OpenMP scheduler for NEON.
1280
1281@note Only works when building with g++ not clang++
1282
1283@b cppthreads Build in the C++11 scheduler for NEON.
1284
Jenkinsc3f34a42018-03-02 12:38:09 +00001285@sa Scheduler::set
Anthony Barbierdbdab852017-06-23 15:42:00 +01001286
Kaizen8938bd32017-09-28 14:38:23 +01001287@subsection S3_2_linux Building for Linux
Anthony Barbierdbdab852017-06-23 15:42:00 +01001288
1289@subsubsection S3_2_1_library How to build the library ?
1290
1291For Linux, the library was successfully built and tested using the following Linaro GCC toolchain:
1292
Jenkins6a7771e2020-05-28 11:28:36 +01001293 - gcc-linaro-6.3.1-2017.05-x86_64_arm-linux-gnueabihf
1294 - gcc-linaro-6.3.1-2017.05-x86_64_aarch64-linux-gnu
Anthony Barbierdbdab852017-06-23 15:42:00 +01001295
Anthony Barbierdbdab852017-06-23 15:42:00 +01001296To cross-compile the library in debug mode, with NEON only support, for Linux 32bit:
1297
1298 scons Werror=1 -j8 debug=1 neon=1 opencl=0 os=linux arch=armv7a
1299
1300To cross-compile the library in asserts mode, with OpenCL only support, for Linux 64bit:
1301
1302 scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=linux arch=arm64-v8a
1303
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001304To cross-compile the library in asserts mode, with GLES_COMPUTE only support, for Linux 64bit:
1305
1306 scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=0 gles_compute=1 embed_kernels=1 os=linux arch=arm64-v8a
1307
Anthony Barbierdbdab852017-06-23 15:42:00 +01001308You can also compile the library natively on an ARM device by using <b>build=native</b>:
1309
1310 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=arm64-v8a build=native
1311 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a build=native
1312
1313@note g++ for ARM is mono-arch, therefore if you want to compile for Linux 32bit on a Linux 64bit platform you will have to use a cross compiler.
1314
1315For example on a 64bit Debian based system you would have to install <b>g++-arm-linux-gnueabihf</b>
1316
1317 apt-get install g++-arm-linux-gnueabihf
1318
1319Then run
1320
1321 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a build=cross_compile
1322
1323or simply remove the build parameter as build=cross_compile is the default value:
1324
1325 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a
1326
Anthony Barbierdbdab852017-06-23 15:42:00 +01001327@subsubsection S3_2_2_examples How to manually build the examples ?
1328
1329The examples get automatically built by scons as part of the build process of the library described above. This section just describes how you can build and link your own application against our library.
1330
Jenkinsb3a371b2018-05-23 11:36:53 +01001331@note The following command lines assume the arm_compute binaries are present in the current directory or in the system library path. If this is not the case you can specify the location of the pre-built library with the compiler option -L. When building the OpenCL example the commands below assume that the CL headers are located in the include folder where the command is executed.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001332
1333To cross compile a NEON example for Linux 32bit:
1334
Kaizenbf8b01d2017-10-12 14:26:51 +01001335 arm-linux-gnueabihf-g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001336
1337To cross compile a NEON example for Linux 64bit:
1338
Kaizenbf8b01d2017-10-12 14:26:51 +01001339 aarch64-linux-gnu-g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -L. -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001340
1341(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1342
1343To cross compile an OpenCL example for Linux 32bit:
1344
Jenkinsb3a371b2018-05-23 11:36:53 +01001345 arm-linux-gnueabihf-g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001346
1347To cross compile an OpenCL example for Linux 64bit:
1348
Jenkinsb3a371b2018-05-23 11:36:53 +01001349 aarch64-linux-gnu-g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -L. -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Kaizenbf8b01d2017-10-12 14:26:51 +01001350
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001351To cross compile a GLES example for Linux 32bit:
1352
1353 arm-linux-gnueabihf-g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -mfpu=neon -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
1354
1355To cross compile a GLES example for Linux 64bit:
1356
1357 aarch64-linux-gnu-g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
1358
Kaizenbf8b01d2017-10-12 14:26:51 +01001359(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1360
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001361To cross compile the examples with the Graph API, such as graph_lenet.cpp, you need to link the examples against arm_compute_graph.so too.
1362
Kaizenbf8b01d2017-10-12 14:26:51 +01001363i.e. to cross compile the "graph_lenet" example for Linux 32bit:
1364
Jenkins52ba29e2018-08-29 15:32:11 +00001365 arm-linux-gnueabihf-g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Kaizenbf8b01d2017-10-12 14:26:51 +01001366
1367i.e. to cross compile the "graph_lenet" example for Linux 64bit:
1368
Jenkins52ba29e2018-08-29 15:32:11 +00001369 aarch64-linux-gnu-g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Anthony Barbierdbdab852017-06-23 15:42:00 +01001370
1371(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1372
giorgio-arena869d4242017-10-23 16:58:59 +01001373@note If compiling using static libraries, this order must be followed when linking: arm_compute_graph_static, arm_compute, arm_compute_core
1374
Anthony Barbierdbdab852017-06-23 15:42:00 +01001375To compile natively (i.e directly on an ARM device) for NEON for Linux 32bit:
1376
Kaizenbf8b01d2017-10-12 14:26:51 +01001377 g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001378
1379To compile natively (i.e directly on an ARM device) for NEON for Linux 64bit:
1380
Kaizenbf8b01d2017-10-12 14:26:51 +01001381 g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001382
1383(notice the only difference with the 32 bit command is that we don't need the -mfpu option)
1384
1385To compile natively (i.e directly on an ARM device) for OpenCL for Linux 32bit or Linux 64bit:
1386
Jenkinsb3a371b2018-05-23 11:36:53 +01001387 g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001388
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001389To compile natively (i.e directly on an ARM device) for GLES for Linux 32bit or Linux 64bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001390
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001391 g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
Kaizenbf8b01d2017-10-12 14:26:51 +01001392
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001393To compile natively the examples with the Graph API, such as graph_lenet.cpp, you need to link the examples against arm_compute_graph.so too.
Kaizenbf8b01d2017-10-12 14:26:51 +01001394
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001395i.e. to natively compile the "graph_lenet" example for Linux 32bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001396
Jenkins52ba29e2018-08-29 15:32:11 +00001397 g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001398
1399i.e. to natively compile the "graph_lenet" example for Linux 64bit:
1400
Jenkins18b685f2020-08-21 10:26:22 +01001401 g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Kaizenbf8b01d2017-10-12 14:26:51 +01001402
1403(notice the only difference with the 32 bit command is that we don't need the -mfpu option)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001404
giorgio-arena869d4242017-10-23 16:58:59 +01001405@note If compiling using static libraries, this order must be followed when linking: arm_compute_graph_static, arm_compute, arm_compute_core
1406
Jenkins18b685f2020-08-21 10:26:22 +01001407@note These two commands assume libarm_compute.so is available in your library path, if not add the path to it using -L (e.g. -Llib/linux-arm64-v8a-neon-cl-asserts/)
Jenkins6a7771e2020-05-28 11:28:36 +01001408@note You might need to export the path to OpenCL library as well in your LD_LIBRARY_PATH if Compute Library was built with OpenCL enabled.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001409
1410To run the built executable simply run:
1411
1412 LD_LIBRARY_PATH=build ./neon_convolution
1413
1414or
1415
1416 LD_LIBRARY_PATH=build ./cl_convolution
1417
Jenkins52ba29e2018-08-29 15:32:11 +00001418@note Examples accept different types of arguments, to find out what they are run the example with \a --help as an argument. If no arguments are specified then random values will be used to execute the graph.
Jenkinsc3f34a42018-03-02 12:38:09 +00001419
1420For example:
Jenkinsb3a371b2018-05-23 11:36:53 +01001421
Jenkins52ba29e2018-08-29 15:32:11 +00001422 LD_LIBRARY_PATH=. ./graph_lenet --help
Jenkinsc3f34a42018-03-02 12:38:09 +00001423
Jenkins52ba29e2018-08-29 15:32:11 +00001424Below is a list of the common parameters among the graph examples :
1425@snippet utils/CommonGraphOptions.h Common graph examples parameters
Jenkinsc3f34a42018-03-02 12:38:09 +00001426
Kaizen8938bd32017-09-28 14:38:23 +01001427@subsection S3_3_android Building for Android
Anthony Barbierdbdab852017-06-23 15:42:00 +01001428
1429For Android, the library was successfully built and tested using Google's standalone toolchains:
Jenkins6a7771e2020-05-28 11:28:36 +01001430 - clang++ from NDK r18b for armv7a
1431 - clang++ from NDK r18b for arm64-v8a
1432 - clang++ from NDK r18b for arm64-v8.2-a with FP16 support
Anthony Barbierdbdab852017-06-23 15:42:00 +01001433
1434Here is a guide to <a href="https://developer.android.com/ndk/guides/standalone_toolchain.html">create your Android standalone toolchains from the NDK</a>
1435
Jenkins6a7771e2020-05-28 11:28:36 +01001436- Download the NDK r18b from here: https://developer.android.com/ndk/downloads/index.html
Jenkins4ba87db2019-05-23 17:11:51 +01001437- Make sure you have Python 2.7 installed on your machine.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001438- Generate the 32 and/or 64 toolchains by running the following commands:
1439
Jenkinsb3a371b2018-05-23 11:36:53 +01001440
Jenkins6a7771e2020-05-28 11:28:36 +01001441 $NDK/build/tools/make_standalone_toolchain.py --arch arm64 --install-dir $MY_TOOLCHAINS/aarch64-linux-android-ndk-r18b --stl libc++ --api 21
1442 $NDK/build/tools/make_standalone_toolchain.py --arch arm --install-dir $MY_TOOLCHAINS/arm-linux-android-ndk-r18b --stl libc++ --api 21
Anthony Barbierdbdab852017-06-23 15:42:00 +01001443
Jenkins52ba29e2018-08-29 15:32:11 +00001444@attention We used to use gnustl but as of NDK r17 it is deprecated so we switched to libc++
Anthony Barbierdbdab852017-06-23 15:42:00 +01001445
Jenkinsb3a371b2018-05-23 11:36:53 +01001446@note Make sure to add the toolchains to your PATH:
1447
Jenkins6a7771e2020-05-28 11:28:36 +01001448 export PATH=$PATH:$MY_TOOLCHAINS/aarch64-linux-android-ndk-r18b/bin:$MY_TOOLCHAINS/arm-linux-android-ndk-r18b/bin
Anthony Barbierdbdab852017-06-23 15:42:00 +01001449
1450@subsubsection S3_3_1_library How to build the library ?
1451
Anthony Barbierdbdab852017-06-23 15:42:00 +01001452To cross-compile the library in debug mode, with NEON only support, for Android 32bit:
1453
1454 CXX=clang++ CC=clang scons Werror=1 -j8 debug=1 neon=1 opencl=0 os=android arch=armv7a
1455
1456To cross-compile the library in asserts mode, with OpenCL only support, for Android 64bit:
1457
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001458 CXX=clang++ CC=clang scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=android arch=arm64-v8a
1459
1460To cross-compile the library in asserts mode, with GLES_COMPUTE only support, for Android 64bit:
1461
1462 CXX=clang++ CC=clang scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=0 gles_compute=1 embed_kernels=1 os=android arch=arm64-v8a
Anthony Barbierdbdab852017-06-23 15:42:00 +01001463
1464@subsubsection S3_3_2_examples How to manually build the examples ?
1465
1466The examples get automatically built by scons as part of the build process of the library described above. This section just describes how you can build and link your own application against our library.
1467
Jenkinsb3a371b2018-05-23 11:36:53 +01001468@note The following command lines assume the arm_compute binaries are present in the current directory or in the system library path. If this is not the case you can specify the location of the pre-built library with the compiler option -L. When building the OpenCL example the commands below assume that the CL headers are located in the include folder where the command is executed.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001469
1470Once you've got your Android standalone toolchain built and added to your path you can do the following:
1471
1472To cross compile a NEON example:
1473
1474 #32 bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001475 arm-linux-androideabi-clang++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o neon_convolution_arm -static-libstdc++ -pie
Anthony Barbierdbdab852017-06-23 15:42:00 +01001476 #64 bit:
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001477 aarch64-linux-android-clang++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o neon_convolution_aarch64 -static-libstdc++ -pie
Anthony Barbierdbdab852017-06-23 15:42:00 +01001478
1479To cross compile an OpenCL example:
1480
1481 #32 bit:
Jenkinsb3a371b2018-05-23 11:36:53 +01001482 arm-linux-androideabi-clang++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o cl_convolution_arm -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001483 #64 bit:
Jenkinsb3a371b2018-05-23 11:36:53 +01001484 aarch64-linux-android-clang++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o cl_convolution_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001485
1486To cross compile a GLES example:
Anthony Barbierf45d5a92018-01-24 16:23:15 +00001487
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001488 #32 bit:
1489 arm-linux-androideabi-clang++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o gc_absdiff_arm -static-libstdc++ -pie -DARM_COMPUTE_GC
1490 #64 bit:
1491 aarch64-linux-android-clang++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o gc_absdiff_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_GC
Kaizenbf8b01d2017-10-12 14:26:51 +01001492
1493To cross compile the examples with the Graph API, such as graph_lenet.cpp, you need to link the library arm_compute_graph also.
Kaizenbf8b01d2017-10-12 14:26:51 +01001494
1495 #32 bit:
Jenkins52ba29e2018-08-29 15:32:11 +00001496 arm-linux-androideabi-clang++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -Wl,--whole-archive -larm_compute_graph-static -Wl,--no-whole-archive -larm_compute-static -larm_compute_core-static -L. -o graph_lenet_arm -static-libstdc++ -pie -DARM_COMPUTE_CL
Kaizenbf8b01d2017-10-12 14:26:51 +01001497 #64 bit:
Jenkins52ba29e2018-08-29 15:32:11 +00001498 aarch64-linux-android-clang++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -Wl,--whole-archive -larm_compute_graph-static -Wl,--no-whole-archive -larm_compute-static -larm_compute_core-static -L. -o graph_lenet_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001499
1500@note Due to some issues in older versions of the Mali OpenCL DDK (<= r13p0), we recommend to link arm_compute statically on Android.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001501@note When linked statically the arm_compute_graph library currently needs the --whole-archive linker flag in order to work properly
Anthony Barbierdbdab852017-06-23 15:42:00 +01001502
1503Then you need to do is upload the executable and the shared library to the device using ADB:
1504
1505 adb push neon_convolution_arm /data/local/tmp/
1506 adb push cl_convolution_arm /data/local/tmp/
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001507 adb push gc_absdiff_arm /data/local/tmp/
Anthony Barbierdbdab852017-06-23 15:42:00 +01001508 adb shell chmod 777 -R /data/local/tmp/
1509
1510And finally to run the example:
1511
1512 adb shell /data/local/tmp/neon_convolution_arm
1513 adb shell /data/local/tmp/cl_convolution_arm
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001514 adb shell /data/local/tmp/gc_absdiff_arm
Anthony Barbierdbdab852017-06-23 15:42:00 +01001515
1516For 64bit:
1517
1518 adb push neon_convolution_aarch64 /data/local/tmp/
1519 adb push cl_convolution_aarch64 /data/local/tmp/
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001520 adb push gc_absdiff_aarch64 /data/local/tmp/
Anthony Barbierdbdab852017-06-23 15:42:00 +01001521 adb shell chmod 777 -R /data/local/tmp/
1522
1523And finally to run the example:
1524
1525 adb shell /data/local/tmp/neon_convolution_aarch64
1526 adb shell /data/local/tmp/cl_convolution_aarch64
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001527 adb shell /data/local/tmp/gc_absdiff_aarch64
Anthony Barbierdbdab852017-06-23 15:42:00 +01001528
Jenkins52ba29e2018-08-29 15:32:11 +00001529@note Examples accept different types of arguments, to find out what they are run the example with \a --help as an argument. If no arguments are specified then random values will be used to execute the graph.
Jenkinsc3f34a42018-03-02 12:38:09 +00001530
1531For example:
Jenkins52ba29e2018-08-29 15:32:11 +00001532 adb shell /data/local/tmp/graph_lenet --help
Jenkinsc3f34a42018-03-02 12:38:09 +00001533
1534In this case the first argument of LeNet (like all the graph examples) is the target (i.e 0 to run on NEON, 1 to run on OpenCL if available, 2 to run on OpenCL using the CLTuner), the second argument is the path to the folder containing the npy files for the weights and finally the third argument is the number of batches to run.
1535
Kaizenbf8b01d2017-10-12 14:26:51 +01001536@subsection S3_4_bare_metal Building for bare metal
1537
Jenkins6a7771e2020-05-28 11:28:36 +01001538For bare metal, the library was successfully built using linaro's latest (gcc-linaro-6.3.1-2017.05) bare metal toolchains:
Kaizenbf8b01d2017-10-12 14:26:51 +01001539 - arm-eabi for armv7a
1540 - aarch64-elf for arm64-v8a
1541
1542Download linaro for <a href="https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/arm-eabi/">armv7a</a> and <a href="https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/aarch64-elf/">arm64-v8a</a>.
1543
1544@note Make sure to add the toolchains to your PATH: export PATH=$PATH:$MY_TOOLCHAINS/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-elf/bin:$MY_TOOLCHAINS/gcc-linaro-6.3.1-2017.05-x86_64_arm-eabi/bin
1545
1546@subsubsection S3_4_1_library How to build the library ?
1547
1548To cross-compile the library with NEON support for baremetal arm64-v8a:
1549
1550 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=bare_metal arch=arm64-v8a build=cross_compile cppthreads=0 openmp=0 standalone=1
1551
1552@subsubsection S3_4_2_examples How to manually build the examples ?
1553
1554Examples are disabled when building for bare metal. If you want to build the examples you need to provide a custom bootcode depending on the target architecture and link against the compute library. More information about bare metal bootcode can be found <a href="http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0527a/index.html">here</a>.
1555
1556@subsection S3_5_windows_host Building on a Windows host system
Kaizen8938bd32017-09-28 14:38:23 +01001557
1558Using `scons` directly from the Windows command line is known to cause
1559problems. The reason seems to be that if `scons` is setup for cross-compilation
1560it gets confused about Windows style paths (using backslashes). Thus it is
1561recommended to follow one of the options outlined below.
1562
Kaizenbf8b01d2017-10-12 14:26:51 +01001563@subsubsection S3_5_1_ubuntu_on_windows Bash on Ubuntu on Windows
Kaizen8938bd32017-09-28 14:38:23 +01001564
Jenkins975dfe12019-09-02 11:47:54 +01001565The best and easiest option is to use
1566<a href="https://msdn.microsoft.com/en-gb/commandline/wsl/about">Ubuntu on Windows</a>.
Kaizen8938bd32017-09-28 14:38:23 +01001567This feature is still marked as *beta* and thus might not be available.
1568However, if it is building the library is as simple as opening a *Bash on
1569Ubuntu on Windows* shell and following the general guidelines given above.
1570
Kaizenbf8b01d2017-10-12 14:26:51 +01001571@subsubsection S3_5_2_cygwin Cygwin
Kaizen8938bd32017-09-28 14:38:23 +01001572
Jenkins975dfe12019-09-02 11:47:54 +01001573If the Windows subsystem for Linux is not available <a href="https://www.cygwin.com/">Cygwin</a>
1574can be used to install and run `scons`, the minimum Cygwin version must be 3.0.7 or later. In addition
1575to the default packages installed by Cygwin `scons` has to be selected in the installer. (`git` might
Kaizen8938bd32017-09-28 14:38:23 +01001576also be useful but is not strictly required if you already have got the source
Jenkins975dfe12019-09-02 11:47:54 +01001577code of the library.) Linaro provides pre-built versions of
1578<a href="http://releases.linaro.org/components/toolchain/binaries/">GCC cross-compilers</a>
Kaizen8938bd32017-09-28 14:38:23 +01001579that can be used from the Cygwin terminal. When building for Android the
1580compiler is included in the Android standalone toolchain. After everything has
1581been set up in the Cygwin terminal the general guide on building the library
1582can be followed.
1583
Jenkins6a7771e2020-05-28 11:28:36 +01001584@subsection S3_6_cl_requirements OpenCL DDK Requirements
Anthony Barbierdbdab852017-06-23 15:42:00 +01001585
Jenkins6a7771e2020-05-28 11:28:36 +01001586@subsubsection S3_6_1_cl_hard_requirements Hard Requirements
Jenkins52ba29e2018-08-29 15:32:11 +00001587
1588Compute Library requires OpenCL 1.1 and above with support of non uniform workgroup sizes, which is officially supported in the Mali OpenCL DDK r8p0 and above as an extension (respective extension flag is \a -cl-arm-non-uniform-work-group-size).
1589
1590Enabling 16-bit floating point calculations require \a cl_khr_fp16 extension to be supported. All Mali GPUs with compute capabilities have native support for half precision floating points.
1591
1592Use of @ref CLMeanStdDev function requires 64-bit atomics support, thus \a cl_khr_int64_base_atomics should be supported in order to use.
1593
Jenkins6a7771e2020-05-28 11:28:36 +01001594@subsubsection S3_6_2_cl_performance_requirements Performance improvements
Jenkins52ba29e2018-08-29 15:32:11 +00001595
1596Integer dot product built-in function extensions (and therefore optimized kernels) are available with Mali OpenCL DDK r22p0 and above for the following GPUs : G71, G76. The relevant extensions are \a cl_arm_integer_dot_product_int8, \a cl_arm_integer_dot_product_accumulate_int8 and \a cl_arm_integer_dot_product_accumulate_int16.
1597
1598OpenCL kernel level debugging can be simplified with the use of printf, this requires the \a cl_arm_printf extension to be supported.
1599
1600SVM allocations are supported for all the underlying allocations in Compute Library. To enable this OpenCL 2.0 and above is a requirement.
1601
Jenkins6a7771e2020-05-28 11:28:36 +01001602@subsection S3_7_cl_tuner OpenCL Tuner
Jenkins52ba29e2018-08-29 15:32:11 +00001603
1604The OpenCL tuner, a.k.a. CLTuner, is a module of Arm Compute Library that can improve the performance of the OpenCL kernels tuning the Local-Workgroup-Size (LWS).
1605The optimal LWS for each unique OpenCL kernel configuration is stored in a table. This table can be either imported or exported from/to a file.
Jenkins4ba87db2019-05-23 17:11:51 +01001606The OpenCL tuner runs the same OpenCL kernel for a range of local workgroup sizes and keeps the local workgroup size of the fastest run to use in subsequent calls to the kernel. It supports three modes of tuning with different trade-offs between the time taken to tune and the kernel execution time achieved using the best LWS found. In the Exhaustive mode, it searches all the supported values of LWS. This mode takes the longest time to tune and is the most likely to find the optimal LWS. Normal mode searches a subset of LWS values to yield a good approximation of the optimal LWS. It takes less time to tune than Exhaustive mode. Rapid mode takes the shortest time to tune and finds an LWS value that is at least as good or better than the default LWS value. The mode affects only the search for the optimal LWS and has no effect when the LWS value is imported from a file.
Jenkins52ba29e2018-08-29 15:32:11 +00001607In order for the performance numbers to be meaningful you must disable the GPU power management and set it to a fixed frequency for the entire duration of the tuning phase.
1608
1609If you wish to know more about LWS and the important role on improving the GPU cache utilization, we suggest having a look at the presentation "Even Faster CNNs: Exploring the New Class of Winograd Algorithms available at the following link:
1610
1611https://www.embedded-vision.com/platinum-members/arm/embedded-vision-training/videos/pages/may-2018-embedded-vision-summit-iodice
1612
1613Tuning a network from scratch can be long and affect considerably the execution time for the first run of your network. It is recommended for this reason to store the CLTuner's result in a file to amortize this time when you either re-use the same network or the functions with the same configurations. The tuning is performed only once for each OpenCL kernel.
1614
1615CLTuner looks for the optimal LWS for each unique OpenCL kernel configuration. Since a function (i.e. Convolution Layer, Pooling Layer, Fully Connected Layer ...) can be called multiple times but with different parameters, we associate an "id" (called "config_id") to each kernel to distinguish the unique configurations.
1616
1617 #Example: 2 unique Matrix Multiply configurations
1618@code{.cpp}
1619 TensorShape a0 = TensorShape(32,32);
1620 TensorShape b0 = TensorShape(32,32);
1621 TensorShape c0 = TensorShape(32,32);
1622 TensorShape a1 = TensorShape(64,64);
1623 TensorShape b1 = TensorShape(64,64);
1624 TensorShape c1 = TensorShape(64,64);
1625
1626 Tensor a0_tensor;
1627 Tensor b0_tensor;
1628 Tensor c0_tensor;
1629 Tensor a1_tensor;
1630 Tensor b1_tensor;
1631 Tensor c1_tensor;
1632
1633 a0_tensor.allocator()->init(TensorInfo(a0, 1, DataType::F32));
1634 b0_tensor.allocator()->init(TensorInfo(b0, 1, DataType::F32));
1635 c0_tensor.allocator()->init(TensorInfo(c0, 1, DataType::F32));
1636 a1_tensor.allocator()->init(TensorInfo(a1, 1, DataType::F32));
1637 b1_tensor.allocator()->init(TensorInfo(b1, 1, DataType::F32));
1638 c1_tensor.allocator()->init(TensorInfo(c1 1, DataType::F32));
1639
1640 CLGEMM gemm0;
1641 CLGEMM gemm1;
1642
1643 // Configuration 0
1644 gemm0.configure(&a0, &b0, nullptr, &c0, 1.0f, 0.0f);
1645
1646 // Configuration 1
1647 gemm1.configure(&a1, &b1, nullptr, &c1, 1.0f, 0.0f);
1648@endcode
1649
Jenkins6a7771e2020-05-28 11:28:36 +01001650@subsubsection S3_7_1_cl_tuner_how_to How to use it
Jenkins52ba29e2018-08-29 15:32:11 +00001651
1652All the graph examples in the ACL's folder "examples" and the arm_compute_benchmark accept an argument to enable the OpenCL tuner and an argument to export/import the LWS values to/from a file
1653
1654 #Enable CL tuner
1655 ./graph_mobilenet --enable-tuner –-target=CL
1656 ./arm_compute_benchmark --enable-tuner
1657
1658 #Export/Import to/from a file
1659 ./graph_mobilenet --enable-tuner --target=CL --tuner-file=acl_tuner.csv
1660 ./arm_compute_benchmark --enable-tuner --tuner-file=acl_tuner.csv
1661
1662If you are importing the CLTuner'results from a file, the new tuned LWS values will be appended to it.
1663
1664Either you are benchmarking the graph examples or the test cases in the arm_compute_benchmark remember to:
1665
1666 -# Disable the power management
1667 -# Keep the GPU frequency constant
1668 -# Run multiple times the network (i.e. 10).
1669
1670If you are not using the graph API or the benchmark infrastructure you will need to manually pass a CLTuner object to CLScheduler before configuring any function.
1671
1672@code{.cpp}
1673CLTuner tuner;
1674
1675// Setup Scheduler
1676CLScheduler::get().default_init(&tuner);
1677@endcode
1678
1679After the first run, the CLTuner's results can be exported to a file using the method "save_to_file()".
1680- tuner.save_to_file("results.csv");
1681
1682This file can be also imported using the method "load_from_file("results.csv")".
1683- tuner.load_from_file("results.csv");
Anthony Barbierdbdab852017-06-23 15:42:00 +01001684*/
Jenkinsc3f34a42018-03-02 12:38:09 +00001685} // namespace arm_compute