blob: f78fe5d506ffdb096bf2c6c00f8a6e2a7659fc39 [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Jenkins514be652019-02-28 12:25:18 +00002 * Copyright (c) 2017-2019 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000032using namespace arm_compute::graph_utils;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000033
Jenkinsb9abeae2018-11-22 11:58:08 +000034/** Example demonstrating how to implement Squeezenet's network using the Compute Library's graph API */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000035class GraphSqueezenetExample : public Example
Anthony Barbier8140e1e2017-12-14 23:48:46 +000036{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000037public:
Jenkins52ba29e2018-08-29 15:32:11 +000038 GraphSqueezenetExample()
39 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "SqueezeNetV1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000040 {
Jenkins52ba29e2018-08-29 15:32:11 +000041 }
42 bool do_setup(int argc, char **argv) override
43 {
44 // Parse arguments
45 cmd_parser.parse(argc, argv);
46
47 // Consume common parameters
48 common_params = consume_common_graph_parameters(common_opts);
49
50 // Return when help menu is requested
51 if(common_params.help)
52 {
53 cmd_parser.print_help(argv[0]);
54 return false;
55 }
56
57 // Checks
58 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
Jenkins52ba29e2018-08-29 15:32:11 +000059
60 // Print parameter values
61 std::cout << common_params << std::endl;
62
63 // Get trainable parameters data path
64 std::string data_path = common_params.data_path;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000065
Anthony Barbier06ea0482018-02-22 15:45:35 +000066 // Create a preprocessor object
67 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
68 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000069
Jenkins52ba29e2018-08-29 15:32:11 +000070 // Create input descriptor
71 const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
72 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000073
Jenkins52ba29e2018-08-29 15:32:11 +000074 // Set weights trained layout
75 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbierf45d5a92018-01-24 16:23:15 +000076
Jenkins52ba29e2018-08-29 15:32:11 +000077 graph << common_params.target
78 << common_params.fast_math_hint
79 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000080 << ConvolutionLayer(
81 7U, 7U, 96U,
Jenkins52ba29e2018-08-29 15:32:11 +000082 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000083 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv1_b.npy"),
84 PadStrideInfo(2, 2, 0, 0))
Jenkins514be652019-02-28 12:25:18 +000085 .set_name("conv1")
86 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv1")
87 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000088 << ConvolutionLayer(
89 1U, 1U, 16U,
Jenkins52ba29e2018-08-29 15:32:11 +000090 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire2_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000091 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire2_squeeze1x1_b.npy"),
92 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +000093 .set_name("fire2/squeeze1x1")
94 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire2/relu_squeeze1x1");
95 graph << get_expand_fire_node(data_path, "fire2", weights_layout, 64U, 64U).set_name("fire2/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +010096 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +000097 1U, 1U, 16U,
Jenkins52ba29e2018-08-29 15:32:11 +000098 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire3_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000099 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire3_squeeze1x1_b.npy"),
100 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000101 .set_name("fire3/squeeze1x1")
102 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire3/relu_squeeze1x1");
103 graph << get_expand_fire_node(data_path, "fire3", weights_layout, 64U, 64U).set_name("fire3/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100104 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000105 1U, 1U, 32U,
Jenkins52ba29e2018-08-29 15:32:11 +0000106 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire4_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000107 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire4_squeeze1x1_b.npy"),
108 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000109 .set_name("fire4/squeeze1x1")
110 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire4/relu_squeeze1x1");
111 graph << get_expand_fire_node(data_path, "fire4", weights_layout, 128U, 128U).set_name("fire4/concat");
112 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool4")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000113 << ConvolutionLayer(
114 1U, 1U, 32U,
Jenkins52ba29e2018-08-29 15:32:11 +0000115 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire5_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000116 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire5_squeeze1x1_b.npy"),
117 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000118 .set_name("fire5/squeeze1x1")
119 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire5/relu_squeeze1x1");
120 graph << get_expand_fire_node(data_path, "fire5", weights_layout, 128U, 128U).set_name("fire5/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100121 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000122 1U, 1U, 48U,
Jenkins52ba29e2018-08-29 15:32:11 +0000123 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire6_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000124 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire6_squeeze1x1_b.npy"),
125 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000126 .set_name("fire6/squeeze1x1")
127 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire6/relu_squeeze1x1");
128 graph << get_expand_fire_node(data_path, "fire6", weights_layout, 192U, 192U).set_name("fire6/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100129 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000130 1U, 1U, 48U,
Jenkins52ba29e2018-08-29 15:32:11 +0000131 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire7_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000132 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire7_squeeze1x1_b.npy"),
133 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000134 .set_name("fire7/squeeze1x1")
135 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire7/relu_squeeze1x1");
136 graph << get_expand_fire_node(data_path, "fire7", weights_layout, 192U, 192U).set_name("fire7/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100137 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000138 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +0000139 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire8_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000140 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire8_squeeze1x1_b.npy"),
141 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000142 .set_name("fire8/squeeze1x1")
143 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire8/relu_squeeze1x1");
144 graph << get_expand_fire_node(data_path, "fire8", weights_layout, 256U, 256U).set_name("fire8/concat");
145 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool8")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000146 << ConvolutionLayer(
147 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +0000148 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire9_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000149 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire9_squeeze1x1_b.npy"),
150 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000151 .set_name("fire9/squeeze1x1")
152 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire9/relu_squeeze1x1");
153 graph << get_expand_fire_node(data_path, "fire9", weights_layout, 256U, 256U).set_name("fire9/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100154 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000155 1U, 1U, 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000156 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv10_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000157 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv10_b.npy"),
158 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000159 .set_name("conv10")
160 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv10")
161 << PoolingLayer(PoolingLayerInfo(PoolingType::AVG)).set_name("pool10")
162 << FlattenLayer().set_name("flatten")
163 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000164 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000165
Jenkinsb3a371b2018-05-23 11:36:53 +0100166 // Finalize graph
167 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000168 config.num_threads = common_params.threads;
169 config.use_tuner = common_params.enable_tuner;
170 config.tuner_file = common_params.tuner_file;
171
172 graph.finalize(common_params.target, config);
173
174 return true;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000175 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000176 void do_run() override
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000177 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000178 // Run graph
179 graph.run();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000180 }
181
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000182private:
Jenkins52ba29e2018-08-29 15:32:11 +0000183 CommandLineParser cmd_parser;
184 CommonGraphOptions common_opts;
185 CommonGraphParams common_params;
186 Stream graph;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000187
Jenkinsb9abeae2018-11-22 11:58:08 +0000188 ConcatLayer get_expand_fire_node(const std::string &data_path, std::string &&param_path, DataLayout weights_layout,
Jenkins52ba29e2018-08-29 15:32:11 +0000189 unsigned int expand1_filt, unsigned int expand3_filt)
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000190 {
191 std::string total_path = "/cnn_data/squeezenet_v1.0_model/" + param_path + "_";
Jenkinsb3a371b2018-05-23 11:36:53 +0100192 SubStream i_a(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000193 i_a << ConvolutionLayer(
194 1U, 1U, expand1_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000195 get_weights_accessor(data_path, total_path + "expand1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000196 get_weights_accessor(data_path, total_path + "expand1x1_b.npy"),
197 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000198 .set_name(param_path + "/expand1x1")
199 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand1x1");
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000200
Jenkinsb3a371b2018-05-23 11:36:53 +0100201 SubStream i_b(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000202 i_b << ConvolutionLayer(
203 3U, 3U, expand3_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000204 get_weights_accessor(data_path, total_path + "expand3x3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000205 get_weights_accessor(data_path, total_path + "expand3x3_b.npy"),
206 PadStrideInfo(1, 1, 1, 1))
Jenkins514be652019-02-28 12:25:18 +0000207 .set_name(param_path + "/expand3x3")
208 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand3x3");
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000209
Jenkinsb9abeae2018-11-22 11:58:08 +0000210 return ConcatLayer(std::move(i_a), std::move(i_b));
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000211 }
212};
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000213
214/** Main program for Squeezenet v1.0
215 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000216 * Model is based on:
217 * https://arxiv.org/abs/1602.07360
218 * "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
219 * Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
220 *
Jenkins514be652019-02-28 12:25:18 +0000221 * Provenance: https://github.com/DeepScale/SqueezeNet/blob/master/SqueezeNet_v1.0/squeezenet_v1.0.caffemodel
222 *
Jenkins52ba29e2018-08-29 15:32:11 +0000223 * @note To list all the possible arguments execute the binary appended with the --help option
224 *
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000225 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000226 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000227 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000228int main(int argc, char **argv)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000229{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000230 return arm_compute::utils::run_example<GraphSqueezenetExample>(argc, argv);
231}