blob: 124f672e72ab3989663ee17c80d0b28602de886e [file] [log] [blame]
Kaizenbf8b01d2017-10-12 14:26:51 +01001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Kaizenbf8b01d2017-10-12 14:26:51 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Kaizenbf8b01d2017-10-12 14:26:51 +010032using namespace arm_compute::graph_utils;
33
Kaizenbf8b01d2017-10-12 14:26:51 +010034/** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API
35 *
36 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +000037 * @param[in] argv Arguments
Kaizenbf8b01d2017-10-12 14:26:51 +010038 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000039class GraphAlexnetExample : public Example
Kaizenbf8b01d2017-10-12 14:26:51 +010040{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000041public:
Jenkins52ba29e2018-08-29 15:32:11 +000042 GraphAlexnetExample()
43 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "AlexNet")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000044 {
Jenkins52ba29e2018-08-29 15:32:11 +000045 }
46 bool do_setup(int argc, char **argv) override
47 {
48 // Parse arguments
49 cmd_parser.parse(argc, argv);
50
51 // Consume common parameters
52 common_params = consume_common_graph_parameters(common_opts);
53
54 // Return when help menu is requested
55 if(common_params.help)
56 {
57 cmd_parser.print_help(argv[0]);
58 return false;
59 }
60
61 // Set default layout if needed
62 if(!common_opts.data_layout->is_set() && common_params.target == Target::NEON)
63 {
64 common_params.data_layout = DataLayout::NCHW;
65 }
66
67 // Checks
68 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
69
70 // Print parameter values
71 std::cout << common_params << std::endl;
72
73 // Get trainable parameters data path
74 std::string data_path = common_params.data_path;
Anthony Barbier8a3da6f2017-10-23 18:55:17 +010075
Anthony Barbier06ea0482018-02-22 15:45:35 +000076 // Create a preprocessor object
77 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
78 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Kaizenbf8b01d2017-10-12 14:26:51 +010079
Jenkins52ba29e2018-08-29 15:32:11 +000080 // Create input descriptor
81 const TensorShape tensor_shape = permute_shape(TensorShape(227U, 227U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
82 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier06ea0482018-02-22 15:45:35 +000083
Jenkins52ba29e2018-08-29 15:32:11 +000084 // Set weights trained layout
85 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000086
Jenkins52ba29e2018-08-29 15:32:11 +000087 graph << common_params.target
88 << common_params.fast_math_hint
89 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000090 // Layer 1
91 << ConvolutionLayer(
92 11U, 11U, 96U,
Jenkins52ba29e2018-08-29 15:32:11 +000093 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000094 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
95 PadStrideInfo(4, 4, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +010096 .set_name("conv1")
97 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu1")
98 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm1")
99 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000100 // Layer 2
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000101 << ConvolutionLayer(
102 5U, 5U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000103 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000104 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
105 PadStrideInfo(1, 1, 2, 2), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100106 .set_name("conv2")
107 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu2")
108 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm2")
109 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000110 // Layer 3
111 << ConvolutionLayer(
112 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000113 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000114 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
115 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100116 .set_name("conv3")
117 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu3")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000118 // Layer 4
119 << ConvolutionLayer(
120 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000121 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000122 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
123 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100124 .set_name("conv4")
125 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu4")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000126 // Layer 5
127 << ConvolutionLayer(
128 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000129 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000130 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
131 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100132 .set_name("conv5")
133 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu5")
134 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000135 // Layer 6
136 << FullyConnectedLayer(
137 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000138 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000139 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100140 .set_name("fc6")
141 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu6")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000142 // Layer 7
143 << FullyConnectedLayer(
144 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000145 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000146 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100147 .set_name("fc7")
148 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu7")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000149 // Layer 8
150 << FullyConnectedLayer(
151 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000152 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000153 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100154 .set_name("fc8")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000155 // Softmax
Jenkinsb3a371b2018-05-23 11:36:53 +0100156 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000157 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000158
Jenkinsb3a371b2018-05-23 11:36:53 +0100159 // Finalize graph
160 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000161 config.num_threads = common_params.threads;
162 config.use_tuner = common_params.enable_tuner;
163 config.tuner_file = common_params.tuner_file;
164
165 graph.finalize(common_params.target, config);
166
167 return true;
Kaizenbf8b01d2017-10-12 14:26:51 +0100168 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000169 void do_run() override
Kaizenbf8b01d2017-10-12 14:26:51 +0100170 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000171 // Run graph
172 graph.run();
Kaizenbf8b01d2017-10-12 14:26:51 +0100173 }
174
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000175private:
Jenkins52ba29e2018-08-29 15:32:11 +0000176 CommandLineParser cmd_parser;
177 CommonGraphOptions common_opts;
178 CommonGraphParams common_params;
179 Stream graph;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000180};
Kaizenbf8b01d2017-10-12 14:26:51 +0100181
182/** Main program for AlexNet
183 *
Jenkins52ba29e2018-08-29 15:32:11 +0000184 * @note To list all the possible arguments execute the binary appended with the --help option
185 *
Kaizenbf8b01d2017-10-12 14:26:51 +0100186 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000187 * @param[in] argv Arguments
188 *
189 * @return Return code
Kaizenbf8b01d2017-10-12 14:26:51 +0100190 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000191int main(int argc, char **argv)
Kaizenbf8b01d2017-10-12 14:26:51 +0100192{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000193 return arm_compute::utils::run_example<GraphAlexnetExample>(argc, argv);
Kaizenbf8b01d2017-10-12 14:26:51 +0100194}