blob: 7dbc9fc9ded065fe26aa769deb93c995bf629a30 [file] [log] [blame]
cristy701db312009-11-20 03:14:08 +00001/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% M M OOO RRRR PPPP H H OOO L OOO GGGG Y Y %
7% MM MM O O R R P P H H O O L O O G Y Y %
8% M M M O O RRRR PPPP HHHHH O O L O O G GGG Y %
9% M M O O R R P H H O O L O O G G Y %
10% M M OOO R R P H H OOO LLLLL OOO GGG Y %
11% %
12% %
13% MagickCore Morphology Methods %
14% %
15% Software Design %
16% Anthony Thyssen %
anthonyc94cdb02010-01-06 08:15:29 +000017% January 2010 %
cristy701db312009-11-20 03:14:08 +000018% %
19% %
cristy16af1cb2009-12-11 21:38:29 +000020% Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization %
cristy701db312009-11-20 03:14:08 +000021% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% http://www.imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
anthony602ab9b2010-01-05 08:06:50 +000036% Morpology is the the application of various kernals, of any size and even
37% shape, to a image in various ways (typically binary, but not always).
cristy701db312009-11-20 03:14:08 +000038%
anthony602ab9b2010-01-05 08:06:50 +000039% Convolution (weighted sum or average) is just one specific type of
40% morphology. Just one that is very common for image bluring and sharpening
41% effects. Not only 2D Gaussian blurring, but also 2-pass 1D Blurring.
42%
43% This module provides not only a general morphology function, and the ability
44% to apply more advanced or iterative morphologies, but also functions for the
45% generation of many different types of kernel arrays from user supplied
46% arguments. Prehaps even the generation of a kernel from a small image.
cristy701db312009-11-20 03:14:08 +000047*/
48
49/*
50 Include declarations.
51*/
52#include "magick/studio.h"
anthony602ab9b2010-01-05 08:06:50 +000053#include "magick/artifact.h"
cristy701db312009-11-20 03:14:08 +000054#include "magick/cache-view.h"
55#include "magick/color-private.h"
56#include "magick/enhance.h"
57#include "magick/exception.h"
58#include "magick/exception-private.h"
anthony602ab9b2010-01-05 08:06:50 +000059#include "magick/gem.h"
cristy701db312009-11-20 03:14:08 +000060#include "magick/hashmap.h"
61#include "magick/image.h"
cristybba804b2010-01-05 15:39:59 +000062#include "magick/image-private.h"
cristy701db312009-11-20 03:14:08 +000063#include "magick/list.h"
64#include "magick/memory_.h"
65#include "magick/monitor-private.h"
66#include "magick/morphology.h"
anthony602ab9b2010-01-05 08:06:50 +000067#include "magick/option.h"
cristy701db312009-11-20 03:14:08 +000068#include "magick/pixel-private.h"
69#include "magick/prepress.h"
70#include "magick/quantize.h"
71#include "magick/registry.h"
72#include "magick/semaphore.h"
73#include "magick/splay-tree.h"
74#include "magick/statistic.h"
75#include "magick/string_.h"
anthony602ab9b2010-01-05 08:06:50 +000076#include "magick/string-private.h"
77#include "magick/token.h"
78
anthonyc94cdb02010-01-06 08:15:29 +000079
anthony602ab9b2010-01-05 08:06:50 +000080/*
anthonyc94cdb02010-01-06 08:15:29 +000081 * The following test is for special floating point numbers of value NaN (not
82 * a number), that may be used within a Kernel Definition. NaN's are defined
83 * as part of the IEEE standard for floating point number representation.
anthony602ab9b2010-01-05 08:06:50 +000084 *
anthonyc94cdb02010-01-06 08:15:29 +000085 * These are used a Kernel value of NaN means that that kernal position is not
86 * part of the normal convolution or morphology process, and thus allowing the
87 * use of 'shaped' kernels.
anthony602ab9b2010-01-05 08:06:50 +000088 *
anthonyc94cdb02010-01-06 08:15:29 +000089 * Special Properities Two NaN's are never equal, even if they are from the
90 * same variable That is the IsNaN() macro is only true if the value is NaN.
anthony602ab9b2010-01-05 08:06:50 +000091 */
92#define IsNan(a) ((a)!=(a))
93
94
95/*
96%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
97% %
98% %
99% %
100% A c q u i r e K e r n e l F r o m S t r i n g %
101% %
102% %
103% %
104%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105%
cristy2be15382010-01-21 02:38:03 +0000106% AcquireKernelInfo() takes the given string (generally supplied by the
anthony602ab9b2010-01-05 08:06:50 +0000107% user) and converts it into a Morphology/Convolution Kernel. This allows
108% users to specify a kernel from a number of pre-defined kernels, or to fully
109% specify their own kernel for a specific Convolution or Morphology
110% Operation.
111%
112% The kernel so generated can be any rectangular array of floating point
113% values (doubles) with the 'control point' or 'pixel being affected'
114% anywhere within that array of values.
115%
116% ASIDE: Previously IM was restricted to a square of odd size using the exact
117% center.
118%
119% The floating point values in the kernel can also include a special value
120% known as 'NaN' or 'not a number' to indicate that this value is not part
121% of the kernel array. This allows you to specify a non-rectangular shaped
122% kernel, for use in Morphological operators, without the need for some type
123% of kernal mask.
124%
125% The returned kernel should be freed using the DestroyKernel() when you are
126% finished with it.
127%
128% Input kernel defintion strings can consist of any of three types.
129%
130% "num, num, num, num, ..."
131% list of floating point numbers defining an 'old style' odd sized
132% square kernel. At least 9 values should be provided for a 3x3
133% square kernel, 25 for a 5x5 square kernel, 49 for 7x7, etc.
134% Values can be space or comma separated.
135%
136% "WxH[+X+Y]:num, num, num ..."
137% a kernal of size W by H, with W*H floating point numbers following.
138% the 'center' can be optionally be defined at +X+Y (such that +0+0
139% is top left corner). If not defined a pixel closest to the center
140% of the array is automatically defined.
141%
142% "name:args"
143% Select from one of the built in kernels. See AcquireKernelBuiltIn()
144%
145% Note that 'name' kernels will start with an alphabetic character
146% while the new kernel specification has a ':' character in its
147% specification.
148%
149% TODO: bias and auto-scale handling of the kernel
150% The given kernel is assumed to have been pre-scaled appropriatally, usally
151% by the kernel generator.
152%
153% The format of the AcquireKernal method is:
154%
cristy2be15382010-01-21 02:38:03 +0000155% KernelInfo *AcquireKernelInfo(const char *kernel_string)
anthony602ab9b2010-01-05 08:06:50 +0000156%
157% A description of each parameter follows:
158%
159% o kernel_string: the Morphology/Convolution kernel wanted.
160%
161*/
162
cristy2be15382010-01-21 02:38:03 +0000163MagickExport KernelInfo *AcquireKernelInfo(const char *kernel_string)
anthony602ab9b2010-01-05 08:06:50 +0000164{
cristy2be15382010-01-21 02:38:03 +0000165 KernelInfo
anthony602ab9b2010-01-05 08:06:50 +0000166 *kernel;
167
168 char
169 token[MaxTextExtent];
170
171 register unsigned long
172 i;
173
174 const char
175 *p;
176
177 MagickStatusType
178 flags;
179
180 GeometryInfo
181 args;
182
183 assert(kernel_string != (const char *) NULL);
184 SetGeometryInfo(&args);
185
186 /* does it start with an alpha - Return a builtin kernel */
187 GetMagickToken(kernel_string,&p,token);
188 if ( isalpha((int)token[0]) )
189 {
190 long
191 type;
192
cristy2be15382010-01-21 02:38:03 +0000193 type=ParseMagickOption(KernelInfoOptions,MagickFalse,token);
anthony602ab9b2010-01-05 08:06:50 +0000194 if ( type < 0 || type == UserDefinedKernel )
cristy2be15382010-01-21 02:38:03 +0000195 return((KernelInfo *)NULL);
anthony602ab9b2010-01-05 08:06:50 +0000196
197 while (((isspace((int) ((unsigned char) *p)) != 0) ||
198 (*p == ',') || (*p == ':' )) && (*p != '\0'))
199 p++;
200 flags = ParseGeometry(p, &args);
201
202 /* special handling of missing values in input string */
203 if ( type == RectangleKernel ) {
204 if ( (flags & WidthValue) == 0 ) /* if no width then */
205 args.rho = args.sigma; /* then width = height */
206 if ( args.rho < 1.0 ) /* if width too small */
207 args.rho = 3; /* then width = 3 */
208 if ( args.sigma < 1.0 ) /* if height too small */
209 args.sigma = args.rho; /* then height = width */
210 if ( (flags & XValue) == 0 ) /* center offset if not defined */
211 args.xi = (double)(((long)args.rho-1)/2);
212 if ( (flags & YValue) == 0 )
213 args.psi = (double)(((long)args.sigma-1)/2);
214 }
215
cristy2be15382010-01-21 02:38:03 +0000216 return(AcquireKernelBuiltIn((KernelInfoType)type, &args));
anthony602ab9b2010-01-05 08:06:50 +0000217 }
218
cristy2be15382010-01-21 02:38:03 +0000219 kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
220 if (kernel == (KernelInfo *)NULL)
anthony602ab9b2010-01-05 08:06:50 +0000221 return(kernel);
222 (void) ResetMagickMemory(kernel,0,sizeof(*kernel));
223 kernel->type = UserDefinedKernel;
cristyd43a46b2010-01-21 02:13:41 +0000224 kernel->signature = MagickSignature;
anthony602ab9b2010-01-05 08:06:50 +0000225
226 /* Has a ':' in argument - New user kernel specification */
227 p = strchr(kernel_string, ':');
228 if ( p != (char *) NULL)
229 {
230#if 1
231 /* ParseGeometry() needs the geometry separated! -- Arrgghh */
232 memcpy(token, kernel_string, p-kernel_string);
233 token[p-kernel_string] = '\0';
234 flags = ParseGeometry(token, &args);
235#else
236 flags = ParseGeometry(kernel_string, &args);
237#endif
238
239 /* Size Handling and Checks */
240 if ( (flags & WidthValue) == 0 ) /* if no width then */
241 args.rho = args.sigma; /* then width = height */
242 if ( args.rho < 1.0 ) /* if width too small */
243 args.rho = 1.0; /* then width = 1 */
244 if ( args.sigma < 1.0 ) /* if height too small */
245 args.sigma = args.rho; /* then height = width */
246 kernel->width = (unsigned long)args.rho;
247 kernel->height = (unsigned long)args.sigma;
248
249 /* Offset Handling and Checks */
250 if ( args.xi < 0.0 || args.psi < 0.0 )
251 return(DestroyKernel(kernel));
252 kernel->offset_x = ((flags & XValue)!=0) ? (unsigned long)args.xi
253 : (kernel->width-1)/2;
254 kernel->offset_y = ((flags & YValue)!=0) ? (unsigned long)args.psi
255 : (kernel->height-1)/2;
256 if ( kernel->offset_x >= kernel->width ||
257 kernel->offset_y >= kernel->height )
258 return(DestroyKernel(kernel));
259
260 p++; /* advance beyond the ':' */
261 }
262 else
263 { /* ELSE - Old old kernel specification, forming odd-square kernel */
264 /* count up number of values given */
265 p=(const char *) kernel_string;
cristya699b172010-01-06 16:48:49 +0000266 while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\''))
267 p++;
anthony602ab9b2010-01-05 08:06:50 +0000268 for (i=0; *p != '\0'; i++)
269 {
270 GetMagickToken(p,&p,token);
271 if (*token == ',')
272 GetMagickToken(p,&p,token);
273 }
274 /* set the size of the kernel - old sized square */
275 kernel->width = kernel->height= (unsigned long) sqrt((double) i+1.0);
276 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
277 p=(const char *) kernel_string;
278 }
279
280 /* Read in the kernel values from rest of input string argument */
281 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
282 kernel->height*sizeof(double));
283 if (kernel->values == (double *) NULL)
284 return(DestroyKernel(kernel));
285
286 kernel->range_neg = kernel->range_pos = 0.0;
cristya699b172010-01-06 16:48:49 +0000287 while ((isspace((int) ((unsigned char) *p)) != 0) || (*p == '\''))
288 p++;
anthony602ab9b2010-01-05 08:06:50 +0000289 for (i=0; (i < kernel->width*kernel->height) && (*p != '\0'); i++)
290 {
291 GetMagickToken(p,&p,token);
292 if (*token == ',')
293 GetMagickToken(p,&p,token);
294 (( kernel->values[i] = StringToDouble(token) ) < 0)
295 ? ( kernel->range_neg += kernel->values[i] )
296 : ( kernel->range_pos += kernel->values[i] );
297 }
298 for ( ; i < kernel->width*kernel->height; i++)
299 kernel->values[i]=0.0;
300
301 return(kernel);
302}
303
304/*
305%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
306% %
307% %
308% %
309% A c q u i r e K e r n e l B u i l t I n %
310% %
311% %
312% %
313%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
314%
315% AcquireKernelBuiltIn() returned one of the 'named' built-in types of
316% kernels used for special purposes such as gaussian blurring, skeleton
317% pruning, and edge distance determination.
318%
319% They take a KernelType, and a set of geometry style arguments, which were
320% typically decoded from a user supplied string, or from a more complex
321% Morphology Method that was requested.
322%
323% The format of the AcquireKernalBuiltIn method is:
324%
cristy2be15382010-01-21 02:38:03 +0000325% KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
anthony602ab9b2010-01-05 08:06:50 +0000326% const GeometryInfo args)
327%
328% A description of each parameter follows:
329%
330% o type: the pre-defined type of kernel wanted
331%
332% o args: arguments defining or modifying the kernel
333%
334% Convolution Kernels
335%
336% Gaussian "[{radius}]x{sigma}"
337% Generate a two-dimentional gaussian kernel, as used by -gaussian
338% A sigma is required, (with the 'x'), due to historical reasons.
339%
340% NOTE: that the 'radius' is optional, but if provided can limit (clip)
341% the final size of the resulting kernel to a square 2*radius+1 in size.
342% The radius should be at least 2 times that of the sigma value, or
343% sever clipping and aliasing may result. If not given or set to 0 the
344% radius will be determined so as to produce the best minimal error
345% result, which is usally much larger than is normally needed.
346%
347% Blur "[{radius}]x{sigma}[+angle]"
348% As per Gaussian, but generates a 1 dimensional or linear gaussian
349% blur, at the angle given (current restricted to orthogonal angles).
350% If a 'radius' is given the kernel is clipped to a width of 2*radius+1.
351%
352% NOTE that two such blurs perpendicular to each other is equivelent to
353% -blur and the previous gaussian, but is often 10 or more times faster.
354%
355% Comet "[{width}]x{sigma}[+angle]"
356% Blur in one direction only, mush like how a bright object leaves
357% a comet like trail. The Kernel is actually half a gaussian curve,
358% Adding two such blurs in oppiste directions produces a Linear Blur.
359%
360% NOTE: that the first argument is the width of the kernel and not the
361% radius of the kernel.
362%
363% # Still to be implemented...
364% #
365% # Laplacian "{radius}x{sigma}"
366% # Laplacian (a mexican hat like) Function
367% #
368% # LOG "{radius},{sigma1},{sigma2}
369% # Laplacian of Gaussian
370% #
371% # DOG "{radius},{sigma1},{sigma2}
372% # Difference of Gaussians
373%
374% Boolean Kernels
375%
376% Rectangle "{geometry}"
377% Simply generate a rectangle of 1's with the size given. You can also
378% specify the location of the 'control point', otherwise the closest
379% pixel to the center of the rectangle is selected.
380%
381% Properly centered and odd sized rectangles work the best.
382%
383% Diamond "[{radius}]"
384% Generate a diamond shaped kernal with given radius to the points.
385% Kernel size will again be radius*2+1 square and defaults to radius 1,
386% generating a 3x3 kernel that is slightly larger than a square.
387%
388% Square "[{radius}]"
389% Generate a square shaped kernel of size radius*2+1, and defaulting
390% to a 3x3 (radius 1).
391%
392% Note that using a larger radius for the "Square" or the "Diamond"
393% is also equivelent to iterating the basic morphological method
394% that many times. However However iterating with the smaller radius 1
395% default is actually faster than using a larger kernel radius.
396%
397% Disk "[{radius}]
398% Generate a binary disk of the radius given, radius may be a float.
399% Kernel size will be ceil(radius)*2+1 square.
400% NOTE: Here are some disk shapes of specific interest
401% "disk:1" => "diamond" or "cross:1"
402% "disk:1.5" => "square"
403% "disk:2" => "diamond:2"
404% "disk:2.5" => default - radius 2 disk shape
405% "disk:2.9" => "square:2"
406% "disk:3.5" => octagonal/disk shape of radius 3
407% "disk:4.2" => roughly octagonal shape of radius 4
408% "disk:4.3" => disk shape of radius 4
409% After this all the kernel shape becomes more and more circular.
410%
411% Because a "disk" is more circular when using a larger radius, using a
412% larger radius is preferred over iterating the morphological operation.
413%
414% Plus "[{radius}]"
415% Generate a kernel in the shape of a 'plus' sign. The length of each
416% arm is also the radius, which defaults to 2.
417%
418% This kernel is not a good general morphological kernel, but is used
419% more for highlighting and marking any single pixels in an image using,
420% a "Dilate" or "Erode" method as appropriate.
anthonyc94cdb02010-01-06 08:15:29 +0000421%
anthony602ab9b2010-01-05 08:06:50 +0000422% NOTE: "plus:1" is equivelent to a "Diamond" kernel.
423%
424% Note that unlike other kernels iterating a plus does not produce the
425% same result as using a larger radius for the cross.
426%
427% Distance Measuring Kernels
428%
429% Chebyshev "[{radius}][x{scale}]" largest x or y distance (default r=1)
430% Manhatten "[{radius}][x{scale}]" square grid distance (default r=1)
anthonyc94cdb02010-01-06 08:15:29 +0000431% Euclidean "[{radius}][x{scale}]" direct distance (default r=1)
anthony602ab9b2010-01-05 08:06:50 +0000432%
433% Different types of distance measuring methods, which are used with the
434% a 'Distance' morphology method for generating a gradient based on
435% distance from an edge of a binary shape, though there is a technique
436% for handling a anti-aliased shape.
437%
anthonyc94cdb02010-01-06 08:15:29 +0000438% Chebyshev Distance (also known as Tchebychev Distance) is a value of
439% one to any neighbour, orthogonal or diagonal. One why of thinking of
440% it is the number of squares a 'King' or 'Queen' in chess needs to
441% traverse reach any other position on a chess board. It results in a
442% 'square' like distance function, but one where diagonals are closer
443% than expected.
anthony602ab9b2010-01-05 08:06:50 +0000444%
anthonyc94cdb02010-01-06 08:15:29 +0000445% Manhatten Distance (also known as Rectilinear Distance, or the Taxi
446% Cab metric), is the distance needed when you can only travel in
447% orthogonal (horizontal or vertical) only. It is the distance a 'Rook'
448% in chess would travel. It results in a diamond like distances, where
449% diagonals are further than expected.
anthony602ab9b2010-01-05 08:06:50 +0000450%
anthonyc94cdb02010-01-06 08:15:29 +0000451% Euclidean Distance is the 'direct' or 'as the crow flys distance.
452% However by default the kernel size only has a radius of 1, which
453% limits the distance to 'Knight' like moves, with only orthogonal and
454% diagonal measurements being correct. As such for the default kernel
455% you will get octagonal like distance function, which is reasonally
456% accurate.
457%
458% However if you use a larger radius such as "Euclidean:4" you will
459% get a much smoother distance gradient from the edge of the shape.
460% Of course a larger kernel is slower to use, and generally not needed.
461%
462% To allow the use of fractional distances that you get with diagonals
463% the actual distance is scaled by a fixed value which the user can
464% provide. This is not actually nessary for either ""Chebyshev" or
465% "Manhatten" distance kernels, but is done for all three distance
466% kernels. If no scale is provided it is set to a value of 100,
467% allowing for a maximum distance measurement of 655 pixels using a Q16
468% version of IM, from any edge. However for small images this can
469% result in quite a dark gradient.
470%
471% See the 'Distance' Morphological Method, for information of how it is
472% applied.
anthony602ab9b2010-01-05 08:06:50 +0000473%
474*/
475
cristy2be15382010-01-21 02:38:03 +0000476MagickExport KernelInfo *AcquireKernelBuiltIn(const KernelInfoType type,
anthony602ab9b2010-01-05 08:06:50 +0000477 const GeometryInfo *args)
478{
cristy2be15382010-01-21 02:38:03 +0000479 KernelInfo
anthony602ab9b2010-01-05 08:06:50 +0000480 *kernel;
481
482 register unsigned long
483 i;
484
485 register long
486 u,
487 v;
488
489 double
490 nan = sqrt((double)-1.0); /* Special Value : Not A Number */
491
cristy2be15382010-01-21 02:38:03 +0000492 kernel=(KernelInfo *) AcquireMagickMemory(sizeof(*kernel));
493 if (kernel == (KernelInfo *) NULL)
anthony602ab9b2010-01-05 08:06:50 +0000494 return(kernel);
495 (void) ResetMagickMemory(kernel,0,sizeof(*kernel));
anthonyc94cdb02010-01-06 08:15:29 +0000496 kernel->value_min = kernel->value_max = 0.0;
anthony602ab9b2010-01-05 08:06:50 +0000497 kernel->range_neg = kernel->range_pos = 0.0;
498 kernel->type = type;
cristyd43a46b2010-01-21 02:13:41 +0000499 kernel->signature = MagickSignature;
anthony602ab9b2010-01-05 08:06:50 +0000500
501 switch(type) {
502 /* Convolution Kernels */
503 case GaussianKernel:
504 { double
505 sigma = fabs(args->sigma);
506
507 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
508
509 kernel->width = kernel->height =
510 GetOptimalKernelWidth2D(args->rho,sigma);
511 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
512 kernel->range_neg = kernel->range_pos = 0.0;
513 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
514 kernel->height*sizeof(double));
515 if (kernel->values == (double *) NULL)
516 return(DestroyKernel(kernel));
517
518 sigma = 2.0*sigma*sigma; /* simplify the expression */
519 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
520 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
521 kernel->range_pos += (
522 kernel->values[i] =
523 exp(-((double)(u*u+v*v))/sigma)
524 /* / (MagickPI*sigma) */ );
anthonyc94cdb02010-01-06 08:15:29 +0000525 kernel->value_min = 0;
526 kernel->value_max = kernel->values[
527 kernel->offset_y*kernel->width+kernel->offset_x ];
anthony602ab9b2010-01-05 08:06:50 +0000528
anthonyc94cdb02010-01-06 08:15:29 +0000529 KernelNormalize(kernel);
anthony602ab9b2010-01-05 08:06:50 +0000530
531 break;
532 }
533 case BlurKernel:
534 { double
535 sigma = fabs(args->sigma);
536
537 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
538
539 kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
540 kernel->offset_x = (kernel->width-1)/2;
541 kernel->height = 1;
542 kernel->offset_y = 0;
543 kernel->range_neg = kernel->range_pos = 0.0;
544 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
545 kernel->height*sizeof(double));
546 if (kernel->values == (double *) NULL)
547 return(DestroyKernel(kernel));
548
549#if 1
550#define KernelRank 3
551 /* Formula derived from GetBlurKernel() in "effect.c" (plus bug fix).
552 ** It generates a gaussian 3 times the width, and compresses it into
553 ** the expected range. This produces a closer normalization of the
554 ** resulting kernel, especially for very low sigma values.
555 ** As such while wierd it is prefered.
556 **
557 ** I am told this method originally came from Photoshop.
558 */
559 sigma *= KernelRank; /* simplify expanded curve */
560 v = (kernel->width*KernelRank-1)/2; /* start/end points to fit range */
561 (void) ResetMagickMemory(kernel->values,0, (size_t)
562 kernel->width*sizeof(double));
563 for ( u=-v; u <= v; u++) {
564 kernel->values[(u+v)/KernelRank] +=
565 exp(-((double)(u*u))/(2.0*sigma*sigma))
566 /* / (MagickSQ2PI*sigma/KernelRank) */ ;
567 }
568 for (i=0; i < kernel->width; i++)
569 kernel->range_pos += kernel->values[i];
570#else
571 for ( i=0, u=-kernel->offset_x; i < kernel->width; i++, u++)
572 kernel->range_pos += (
573 kernel->values[i] =
574 exp(-((double)(u*u))/(2.0*sigma*sigma))
575 /* / (MagickSQ2PI*sigma) */ );
576#endif
anthonyc94cdb02010-01-06 08:15:29 +0000577 kernel->value_min = 0;
578 kernel->value_max = kernel->values[ kernel->offset_x ];
anthony602ab9b2010-01-05 08:06:50 +0000579 /* Note that both the above methods do not generate a normalized
580 ** kernel, though it gets close. The kernel may be 'clipped' by a user
581 ** defined radius, producing a smaller (darker) kernel. Also for very
582 ** small sigma's (> 0.1) the central value becomes larger than one,
anthonyc94cdb02010-01-06 08:15:29 +0000583 ** and thus producing a very bright kernel.
anthony602ab9b2010-01-05 08:06:50 +0000584 */
585#if 1
586 /* Normalize the 1D Gaussian Kernel
587 **
588 ** Because of this the divisor in the above kernel generator is
anthonyc94cdb02010-01-06 08:15:29 +0000589 ** not needed, so is not done above.
anthony602ab9b2010-01-05 08:06:50 +0000590 */
anthonyc94cdb02010-01-06 08:15:29 +0000591 KernelNormalize(kernel);
anthony602ab9b2010-01-05 08:06:50 +0000592#endif
593 /* rotate the kernel by given angle */
594 KernelRotate(kernel, args->xi);
595 break;
596 }
597 case CometKernel:
598 { double
599 sigma = fabs(args->sigma);
600
601 sigma = (sigma <= MagickEpsilon) ? 1.0 : sigma;
602
603 if ( args->rho < 1.0 )
604 kernel->width = GetOptimalKernelWidth1D(args->rho,sigma);
605 else
606 kernel->width = (unsigned long)args->rho;
607 kernel->offset_x = kernel->offset_y = 0;
608 kernel->height = 1;
609 kernel->range_neg = kernel->range_pos = 0.0;
610 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
611 kernel->height*sizeof(double));
612 if (kernel->values == (double *) NULL)
613 return(DestroyKernel(kernel));
614
615 /* A comet blur is half a gaussian curve, so that the object is
616 ** blurred in one direction only. This may not be quite the right
617 ** curve so may change in the future. The function must be normalised.
618 */
619#if 1
620#define KernelRank 3
621 sigma *= KernelRank; /* simplify expanded curve */
622 v = kernel->width*KernelRank; /* start/end points to fit range */
623 (void) ResetMagickMemory(kernel->values,0, (size_t)
624 kernel->width*sizeof(double));
625 for ( u=0; u < v; u++) {
626 kernel->values[u/KernelRank] +=
627 exp(-((double)(u*u))/(2.0*sigma*sigma))
628 /* / (MagickSQ2PI*sigma/KernelRank) */ ;
629 }
630 for (i=0; i < kernel->width; i++)
631 kernel->range_pos += kernel->values[i];
632#else
633 for ( i=0; i < kernel->width; i++)
634 kernel->range_pos += (
635 kernel->values[i] =
636 exp(-((double)(i*i))/(2.0*sigma*sigma))
637 /* / (MagickSQ2PI*sigma) */ );
638#endif
anthonyc94cdb02010-01-06 08:15:29 +0000639 kernel->value_min = 0;
640 kernel->value_max = kernel->values[0];
anthony602ab9b2010-01-05 08:06:50 +0000641
anthonyc94cdb02010-01-06 08:15:29 +0000642 KernelNormalize(kernel);
anthony602ab9b2010-01-05 08:06:50 +0000643 KernelRotate(kernel, args->xi);
644 break;
645 }
646 /* Boolean Kernels */
647 case RectangleKernel:
648 case SquareKernel:
649 {
650 if ( type == SquareKernel )
651 {
652 if (args->rho < 1.0)
anthonyc94cdb02010-01-06 08:15:29 +0000653 kernel->width = kernel->height = 3; /* default radius = 1 */
anthony602ab9b2010-01-05 08:06:50 +0000654 else
655 kernel->width = kernel->height = 2*(long)args->rho+1;
656 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
657 }
658 else {
cristy2be15382010-01-21 02:38:03 +0000659 /* NOTE: user defaults set in "AcquireKernelInfo()" */
anthony602ab9b2010-01-05 08:06:50 +0000660 if ( args->rho < 1.0 || args->sigma < 1.0 )
anthonyc94cdb02010-01-06 08:15:29 +0000661 return(DestroyKernel(kernel)); /* invalid args given */
anthony602ab9b2010-01-05 08:06:50 +0000662 kernel->width = (unsigned long)args->rho;
663 kernel->height = (unsigned long)args->sigma;
664 if ( args->xi < 0.0 || args->xi > (double)kernel->width ||
665 args->psi < 0.0 || args->psi > (double)kernel->height )
anthonyc94cdb02010-01-06 08:15:29 +0000666 return(DestroyKernel(kernel)); /* invalid args given */
anthony602ab9b2010-01-05 08:06:50 +0000667 kernel->offset_x = (unsigned long)args->xi;
668 kernel->offset_y = (unsigned long)args->psi;
669 }
670 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
671 kernel->height*sizeof(double));
672 if (kernel->values == (double *) NULL)
673 return(DestroyKernel(kernel));
674
675 u=kernel->width*kernel->height;
676 for ( i=0; i < (unsigned long)u; i++)
677 kernel->values[i] = 1.0;
678 break;
anthonyc94cdb02010-01-06 08:15:29 +0000679 kernel->value_min = kernel->value_max = 1.0; /* a flat kernel */
680 kernel->range_pos = (double) u;
anthony602ab9b2010-01-05 08:06:50 +0000681 }
682 case DiamondKernel:
683 {
684 if (args->rho < 1.0)
anthonyc94cdb02010-01-06 08:15:29 +0000685 kernel->width = kernel->height = 3; /* default radius = 1 */
anthony602ab9b2010-01-05 08:06:50 +0000686 else
687 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
688 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
689
690 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
691 kernel->height*sizeof(double));
692 if (kernel->values == (double *) NULL)
693 return(DestroyKernel(kernel));
694
695 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
696 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
697 if ((labs(u)+labs(v)) <= (long)kernel->offset_x)
698 kernel->range_pos += kernel->values[i] = 1.0;
699 else
700 kernel->values[i] = nan;
anthonyc94cdb02010-01-06 08:15:29 +0000701 kernel->value_min = kernel->value_max = 1.0; /* a flat kernel */
anthony602ab9b2010-01-05 08:06:50 +0000702 break;
703 }
704 case DiskKernel:
705 {
706 long
707 limit;
708
709 limit = (long)(args->rho*args->rho);
anthonyc94cdb02010-01-06 08:15:29 +0000710 if (args->rho < 1.0) /* default radius approx 2.5 */
anthony602ab9b2010-01-05 08:06:50 +0000711 kernel->width = kernel->height = 5L, limit = 5L;
712 else
713 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
714 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
715
716 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
717 kernel->height*sizeof(double));
718 if (kernel->values == (double *) NULL)
719 return(DestroyKernel(kernel));
720
721 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
722 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
723 if ((u*u+v*v) <= limit)
724 kernel->range_pos += kernel->values[i] = 1.0;
725 else
726 kernel->values[i] = nan;
anthonyc94cdb02010-01-06 08:15:29 +0000727 kernel->value_min = kernel->value_max = 1.0; /* a flat kernel */
anthony602ab9b2010-01-05 08:06:50 +0000728 break;
729 }
730 case PlusKernel:
731 {
732 if (args->rho < 1.0)
anthonyc94cdb02010-01-06 08:15:29 +0000733 kernel->width = kernel->height = 5; /* default radius 2 */
anthony602ab9b2010-01-05 08:06:50 +0000734 else
735 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
736 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
737
738 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
739 kernel->height*sizeof(double));
740 if (kernel->values == (double *) NULL)
741 return(DestroyKernel(kernel));
742
743 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
744 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
745 kernel->values[i] = (u == 0 || v == 0) ? 1.0 : nan;
anthonyc94cdb02010-01-06 08:15:29 +0000746 kernel->value_min = kernel->value_max = 1.0; /* a flat kernel */
anthony602ab9b2010-01-05 08:06:50 +0000747 kernel->range_pos = kernel->width*2.0 - 1.0;
748 break;
749 }
750 /* Distance Measuring Kernels */
751 case ChebyshevKernel:
752 {
753 double
754 scale;
755
756 if (args->rho < 1.0)
anthonyc94cdb02010-01-06 08:15:29 +0000757 kernel->width = kernel->height = 3; /* default radius = 1 */
anthony602ab9b2010-01-05 08:06:50 +0000758 else
759 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
760 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
761
762 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
763 kernel->height*sizeof(double));
764 if (kernel->values == (double *) NULL)
765 return(DestroyKernel(kernel));
766
767 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
768 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
769 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
770 kernel->range_pos += ( kernel->values[i] =
771 scale*((labs(u)>labs(v)) ? labs(u) : labs(v)) );
anthonyc94cdb02010-01-06 08:15:29 +0000772 kernel->value_max = kernel->values[0];
anthony602ab9b2010-01-05 08:06:50 +0000773 break;
774 }
775 case ManhattenKernel:
776 {
777 double
778 scale;
779
780 if (args->rho < 1.0)
anthonyc94cdb02010-01-06 08:15:29 +0000781 kernel->width = kernel->height = 3; /* default radius = 1 */
anthony602ab9b2010-01-05 08:06:50 +0000782 else
783 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
784 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
785
786 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
787 kernel->height*sizeof(double));
788 if (kernel->values == (double *) NULL)
789 return(DestroyKernel(kernel));
790
791 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
792 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
793 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
794 kernel->range_pos += ( kernel->values[i] =
795 scale*(labs(u)+labs(v)) );
anthonyc94cdb02010-01-06 08:15:29 +0000796 kernel->value_max = kernel->values[0];
anthony602ab9b2010-01-05 08:06:50 +0000797 break;
798 }
799 case EuclideanKernel:
800 {
801 double
802 scale;
803
804 if (args->rho < 1.0)
anthonyc94cdb02010-01-06 08:15:29 +0000805 kernel->width = kernel->height = 3; /* default radius = 1 */
anthony602ab9b2010-01-05 08:06:50 +0000806 else
807 kernel->width = kernel->height = ((unsigned long)args->rho)*2+1;
808 kernel->offset_x = kernel->offset_y = (kernel->width-1)/2;
809
810 kernel->values=(double *) AcquireQuantumMemory(kernel->width,
811 kernel->height*sizeof(double));
812 if (kernel->values == (double *) NULL)
813 return(DestroyKernel(kernel));
814
815 scale = (args->sigma < 1.0) ? 100.0 : args->sigma;
816 for ( i=0, v=-kernel->offset_y; v <= (long)kernel->offset_y; v++)
817 for ( u=-kernel->offset_x; u <= (long)kernel->offset_x; u++, i++)
818 kernel->range_pos += ( kernel->values[i] =
819 scale*sqrt((double)(u*u+v*v)) );
anthonyc94cdb02010-01-06 08:15:29 +0000820 kernel->value_max = kernel->values[0];
anthony602ab9b2010-01-05 08:06:50 +0000821 break;
822 }
823 /* Undefined Kernels */
824 case LaplacianKernel:
825 case LOGKernel:
826 case DOGKernel:
827 assert("Kernel Type has not been defined yet");
828 /* FALL THRU */
829 default:
830 /* Generate a No-Op minimal kernel - 1x1 pixel */
831 kernel->values=(double *)AcquireQuantumMemory((size_t)1,sizeof(double));
832 if (kernel->values == (double *) NULL)
833 return(DestroyKernel(kernel));
anthony602ab9b2010-01-05 08:06:50 +0000834 kernel->width = kernel->height = 1;
835 kernel->offset_x = kernel->offset_x = 0;
836 kernel->type = UndefinedKernel;
anthonyc94cdb02010-01-06 08:15:29 +0000837 kernel->value_max =
838 kernel->range_pos =
839 kernel->values[0] = 1.0; /* a flat single-point no-op kernel! */
anthony602ab9b2010-01-05 08:06:50 +0000840 break;
841 }
842
843 return(kernel);
844}
anthonyc94cdb02010-01-06 08:15:29 +0000845
anthony602ab9b2010-01-05 08:06:50 +0000846/*
847%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
848% %
849% %
850% %
851% D e s t r o y K e r n e l %
852% %
853% %
854% %
855%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
856%
857% DestroyKernel() frees the memory used by a Convolution/Morphology kernel.
858%
859% The format of the DestroyKernel method is:
860%
cristy2be15382010-01-21 02:38:03 +0000861% KernelInfo *DestroyKernel(KernelInfo *kernel)
anthony602ab9b2010-01-05 08:06:50 +0000862%
863% A description of each parameter follows:
864%
865% o kernel: the Morphology/Convolution kernel to be destroyed
866%
867*/
868
cristy2be15382010-01-21 02:38:03 +0000869MagickExport KernelInfo *DestroyKernel(KernelInfo *kernel)
anthony602ab9b2010-01-05 08:06:50 +0000870{
cristy2be15382010-01-21 02:38:03 +0000871 assert(kernel != (KernelInfo *) NULL);
anthony602ab9b2010-01-05 08:06:50 +0000872 kernel->values=(double *)RelinquishMagickMemory(kernel->values);
cristy2be15382010-01-21 02:38:03 +0000873 kernel=(KernelInfo *) RelinquishMagickMemory(kernel);
anthony602ab9b2010-01-05 08:06:50 +0000874 return(kernel);
875}
anthonyc94cdb02010-01-06 08:15:29 +0000876
877/*
878%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
879% %
880% %
881% %
882% K e r n e l N o r m a l i z e %
883% %
884% %
885% %
886%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
887%
888% KernelNormalize() normalize the kernel so its convolution output will
889% be over a unit range.
890%
891% The format of the KernelNormalize method is:
892%
cristy2be15382010-01-21 02:38:03 +0000893% void KernelRotate (KernelInfo *kernel)
anthonyc94cdb02010-01-06 08:15:29 +0000894%
895% A description of each parameter follows:
896%
897% o kernel: the Morphology/Convolution kernel
898%
899*/
cristy2be15382010-01-21 02:38:03 +0000900MagickExport void KernelNormalize(KernelInfo *kernel)
anthonyc94cdb02010-01-06 08:15:29 +0000901{
902 register unsigned long
903 i;
anthony602ab9b2010-01-05 08:06:50 +0000904
anthonyc94cdb02010-01-06 08:15:29 +0000905 for (i=0; i < kernel->width; i++)
906 kernel->values[i] /= (kernel->range_pos - kernel->range_neg);
907
908 kernel->range_pos /= (kernel->range_pos - kernel->range_neg);
909 kernel->range_neg /= (kernel->range_pos - kernel->range_neg);
910 kernel->value_max /= (kernel->range_pos - kernel->range_neg);
911 kernel->value_min /= (kernel->range_pos - kernel->range_neg);
912
913 return;
914}
915
916/*
917%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
918% %
919% %
920% %
921% K e r n e l P r i n t %
922% %
923% %
924% %
925%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
926%
927% KernelPrint() Print out the kernel details to standard error
928%
929% The format of the KernelNormalize method is:
930%
cristy2be15382010-01-21 02:38:03 +0000931% void KernelPrint (KernelInfo *kernel)
anthonyc94cdb02010-01-06 08:15:29 +0000932%
933% A description of each parameter follows:
934%
935% o kernel: the Morphology/Convolution kernel
936%
937*/
cristy2be15382010-01-21 02:38:03 +0000938MagickExport void KernelPrint(KernelInfo *kernel)
anthonyc94cdb02010-01-06 08:15:29 +0000939{
940 unsigned long
941 i, u, v;
942
943 fprintf(stderr,
944 "Kernel \"%s\" of size %lux%lu%+ld%+ld with value from %lg to %lg\n",
cristy2be15382010-01-21 02:38:03 +0000945 MagickOptionToMnemonic(KernelInfoOptions, kernel->type),
anthonyc94cdb02010-01-06 08:15:29 +0000946 kernel->width, kernel->height,
947 kernel->offset_x, kernel->offset_y,
948 kernel->value_min, kernel->value_max);
949 fprintf(stderr, " Forming an output range from %lg to %lg%s\n",
950 kernel->range_neg, kernel->range_pos,
951 kernel->normalized == MagickTrue ? " (normalized)" : "" );
952 for (i=v=0; v < kernel->height; v++) {
953 fprintf(stderr,"%2ld: ",v);
954 for (u=0; u < kernel->width; u++, i++)
955 fprintf(stderr,"%5.3lf ",kernel->values[i]);
956 fprintf(stderr,"\n");
957 }
958}
959
960/*
961%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
962% %
963% %
964% %
965% K e r n e l R o t a t e %
966% %
967% %
968% %
969%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
970%
971% KernelRotate() rotates the kernel by the angle given. Currently it is
972% restricted to 90 degree angles, but this may be improved in the future.
973%
974% The format of the KernelRotate method is:
975%
cristy2be15382010-01-21 02:38:03 +0000976% void KernelRotate (KernelInfo *kernel, double angle)
anthonyc94cdb02010-01-06 08:15:29 +0000977%
978% A description of each parameter follows:
979%
980% o kernel: the Morphology/Convolution kernel
981%
982% o angle: angle to rotate in degrees
983%
984*/
cristy2be15382010-01-21 02:38:03 +0000985MagickExport void KernelRotate(KernelInfo *kernel, double angle)
anthonyc94cdb02010-01-06 08:15:29 +0000986{
987 /* WARNING: Currently assumes the kernel (rightly) is horizontally symetrical
988 **
989 ** TODO: expand beyond simple 90 degree rotates, flips and flops
990 */
991
992 /* Modulus the angle */
993 angle = fmod(angle, 360.0);
994 if ( angle < 0 )
995 angle += 360.0;
996
997 if ( 315.0 < angle || angle <= 45.0 )
998 return; /* no change! - At least at this time */
999
1000 switch (kernel->type) {
1001 /* These built-in kernels are cylindrical kernel, rotating is useless */
1002 case GaussianKernel:
1003 case LaplacianKernel:
1004 case LOGKernel:
1005 case DOGKernel:
1006 case DiskKernel:
1007 case ChebyshevKernel:
1008 case ManhattenKernel:
1009 case EuclideanKernel:
1010 return;
1011
1012 /* These may be rotatable at non-90 angles in the future */
1013 /* but simply rotating them 90 degrees is useless */
1014 case SquareKernel:
1015 case DiamondKernel:
1016 case PlusKernel:
1017 return;
1018
1019 /* These only allows a +/-90 degree rotation (transpose) */
1020 case BlurKernel:
1021 case RectangleKernel:
1022 if ( 135.0 < angle && angle <= 225.0 )
1023 return;
1024 if ( 225.0 < angle && angle <= 315.0 )
1025 angle -= 180;
1026 break;
1027
1028 /* these are freely rotatable in 90 degree units */
1029 case CometKernel:
1030 case UndefinedKernel:
1031 case UserDefinedKernel:
1032 break;
1033 }
1034
1035 if ( 135.0 < angle && angle <= 315.0 )
1036 {
1037 /* Do a flop, this assumes kernel is horizontally symetrical. */
1038 /* Each kernel data row need to be reversed! */
1039 unsigned long
1040 y;
1041 register unsigned long
1042 x,r;
1043 register double
1044 *k,t;
1045 for ( y=0, k=kernel->values; y < kernel->height; y++, k+=kernel->width) {
1046 for ( x=0, r=kernel->width-1; x<kernel->width/2; x++, r--)
1047 t=k[x], k[x]=k[r], k[r]=t;
1048 }
1049 kernel->offset_x = kernel->width - kernel->offset_x - 1;
1050 angle = fmod(angle+180.0, 360.0);
1051 }
1052 if ( 45.0 < angle && angle <= 135.0 )
1053 {
1054 /* Do a transpose, this assumes the kernel is orthoginally symetrical */
1055 /* The data is the same, just the size and offsets needs to be swapped. */
1056 unsigned long
1057 t;
1058 t = kernel->width;
1059 kernel->width = kernel->height;
1060 kernel->height = t;
1061 t = kernel->offset_x;
1062 kernel->offset_x = kernel->offset_y;
1063 kernel->offset_y = t;
1064 angle = fmod(450.0 - angle, 360.0);
1065 }
1066 /* at this point angle should be between +45 and -45 (315) degrees */
1067 return;
1068}
anthony602ab9b2010-01-05 08:06:50 +00001069
1070/*
1071%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1072% %
1073% %
1074% %
1075% M o r p h o l o g y I m a g e %
1076% %
1077% %
1078% %
1079%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1080%
1081% MorphologyImage() applies a user supplied kernel to the image according to
1082% the given mophology method.
1083%
1084% The given kernel is assumed to have been pre-scaled appropriatally, usally
1085% by the kernel generator.
1086%
1087% The format of the MorphologyImage method is:
1088%
1089% Image *MorphologyImage(const Image *image, const MorphologyMethod
cristy2be15382010-01-21 02:38:03 +00001090% method, const long iterations, const KernelInfo *kernel,
1091% ExceptionInfo *exception)
1092% Image *MorphologyImage(const Image *image, const ChannelType channel,
1093% const MorphologyMethod method, const long iterations,
1094% const KernelInfo *kernel, ExceptionInfo *exception)
anthony602ab9b2010-01-05 08:06:50 +00001095%
1096% A description of each parameter follows:
1097%
1098% o image: the image.
1099%
1100% o method: the morphology method to be applied.
1101%
1102% o iterations: apply the operation this many times (or no change).
1103% A value of -1 means loop until no change found.
1104% How this is applied may depend on the morphology method.
1105% Typically this is a value of 1.
1106%
1107% o channel: the channel type.
1108%
1109% o kernel: An array of double representing the morphology kernel.
anthonyc94cdb02010-01-06 08:15:29 +00001110% Warning: kernel may be normalized for a Convolve.
anthony602ab9b2010-01-05 08:06:50 +00001111%
1112% o exception: return any errors or warnings in this structure.
1113%
1114%
1115% TODO: bias and auto-scale handling of the kernel for convolution
1116% The given kernel is assumed to have been pre-scaled appropriatally, usally
1117% by the kernel generator.
1118%
1119*/
1120
1121static inline double MagickMin(const MagickRealType x,const MagickRealType y)
1122{
1123 return( x < y ? x : y);
1124}
1125static inline double MagickMax(const MagickRealType x,const MagickRealType y)
1126{
1127 return( x > y ? x : y);
1128}
1129#define Minimize(assign,value) assign=MagickMin(assign,value)
1130#define Maximize(assign,value) assign=MagickMax(assign,value)
1131
1132/* incr change if the value being assigned changed */
1133#define Assign(channel,value) \
cristyce70c172010-01-07 17:15:30 +00001134 { q->channel = ClampToQuantum(value); \
anthony602ab9b2010-01-05 08:06:50 +00001135 if ( p[r].channel != q->channel ) changed++; \
1136 }
1137#define AssignIndex(value) \
cristyce70c172010-01-07 17:15:30 +00001138 { q_indexes[x] = ClampToQuantum(value); \
anthony602ab9b2010-01-05 08:06:50 +00001139 if ( p_indexes[r] != q_indexes[x] ) changed++; \
1140 }
1141
1142/* Internal function
1143 * Apply the Morphology method with the given Kernel
1144 * And return the number of values changed.
1145 */
1146static unsigned long MorphologyApply(const Image *image, Image
1147 *result_image, const MorphologyMethod method, const ChannelType channel,
cristy2be15382010-01-21 02:38:03 +00001148 const KernelInfo *kernel, ExceptionInfo *exception)
anthony602ab9b2010-01-05 08:06:50 +00001149{
cristy2be15382010-01-21 02:38:03 +00001150#define MorphologyTag "Morphology/Image"
anthony602ab9b2010-01-05 08:06:50 +00001151
1152 long
1153 progress,
1154 y;
1155
1156 unsigned long
1157 changed;
1158
1159 MagickBooleanType
1160 status;
1161
1162 MagickPixelPacket
1163 bias;
1164
1165 CacheView
1166 *p_view,
1167 *q_view;
1168
1169 /*
1170 Apply Morphology to Image.
1171 */
1172 status=MagickTrue;
1173 changed=0;
1174 progress=0;
1175
1176 GetMagickPixelPacket(image,&bias);
1177 SetMagickPixelPacketBias(image,&bias);
1178
1179 p_view=AcquireCacheView(image);
1180 q_view=AcquireCacheView(result_image);
1181#if defined(MAGICKCORE_OPENMP_SUPPORT)
1182 #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
1183#endif
1184 for (y=0; y < (long) image->rows; y++)
1185 {
1186 MagickBooleanType
1187 sync;
1188
1189 register const PixelPacket
1190 *restrict p;
1191
1192 register const IndexPacket
1193 *restrict p_indexes;
1194
1195 register PixelPacket
1196 *restrict q;
1197
1198 register IndexPacket
1199 *restrict q_indexes;
1200
1201 register long
1202 x;
1203
1204 long
1205 r;
1206
1207 if (status == MagickFalse)
1208 continue;
1209 p=GetCacheViewVirtualPixels(p_view, -kernel->offset_x, y-kernel->offset_y,
1210 image->columns+kernel->width, kernel->height, exception);
1211 q=GetCacheViewAuthenticPixels(q_view,0,y,result_image->columns,1,
1212 exception);
1213 if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
1214 {
1215 status=MagickFalse;
1216 continue;
1217 }
1218 p_indexes=GetCacheViewVirtualIndexQueue(p_view);
1219 q_indexes=GetCacheViewAuthenticIndexQueue(q_view);
1220 r = (image->columns+kernel->width)*kernel->offset_y+kernel->offset_x;
1221 for (x=0; x < (long) image->columns; x++)
1222 {
1223 long
1224 v;
1225
1226 register long
1227 u;
1228
1229 register const double
1230 *restrict k;
1231
1232 register const PixelPacket
1233 *restrict k_pixels;
1234
1235 register const IndexPacket
1236 *restrict k_indexes;
1237
1238 MagickPixelPacket
1239 result;
1240
1241 /* Copy input to ouput image - removes need for 'cloning' new images */
1242 *q = p[r];
1243 if (image->colorspace == CMYKColorspace)
1244 q_indexes[x] = p_indexes[r];
1245
cristybba804b2010-01-05 15:39:59 +00001246 result.index=0;
anthony602ab9b2010-01-05 08:06:50 +00001247 switch (method) {
1248 case ConvolveMorphology:
1249 result=bias;
1250 break; /* default result is the convolution bias */
1251 case DialateIntensityMorphology:
1252 case ErodeIntensityMorphology:
1253 /* result is the pixel as is */
1254 result.red = p[r].red;
1255 result.green = p[r].green;
1256 result.blue = p[r].blue;
1257 result.opacity = p[r].opacity;
1258 if ( image->colorspace == CMYKColorspace)
1259 result.index = p_indexes[r];
1260 break;
1261 default:
1262 /* most need to handle transparency as alpha */
1263 result.red = p[r].red;
1264 result.green = p[r].green;
1265 result.blue = p[r].blue;
1266 result.opacity = QuantumRange - p[r].opacity;
1267 if ( image->colorspace == CMYKColorspace)
1268 result.index = p_indexes[r];
1269 break;
1270 }
1271
1272 switch ( method ) {
1273 case ConvolveMorphology:
1274 /* Weighted Average of pixels */
1275 if (((channel & OpacityChannel) == 0) ||
1276 (image->matte == MagickFalse))
1277 {
1278 /* Kernel Weighted Convolution (no transparency) */
1279 k = kernel->values;
1280 k_pixels = p;
1281 k_indexes = p_indexes;
1282 for (v=0; v < (long) kernel->height; v++) {
1283 for (u=0; u < (long) kernel->width; u++, k++) {
1284 if ( IsNan(*k) ) continue;
1285 result.red += (*k)*k_pixels[u].red;
1286 result.green += (*k)*k_pixels[u].green;
1287 result.blue += (*k)*k_pixels[u].blue;
1288 /* result.opacity += no involvment */
1289 if ( image->colorspace == CMYKColorspace)
1290 result.index += (*k)*k_indexes[u];
1291 }
1292 k_pixels += image->columns+kernel->width;
1293 k_indexes += image->columns+kernel->width;
1294 }
1295 if ((channel & RedChannel) != 0)
1296 Assign(red,result.red);
1297 if ((channel & GreenChannel) != 0)
1298 Assign(green,result.green);
1299 if ((channel & BlueChannel) != 0)
1300 Assign(blue,result.blue);
1301 /* no transparency involved */
1302 if ((channel & IndexChannel) != 0
1303 && image->colorspace == CMYKColorspace)
1304 AssignIndex(result.index);
1305 }
1306 else
1307 { /* Kernel & Alpha weighted Convolution */
1308 MagickRealType
1309 alpha, /* alpha value * kernel weighting */
1310 gamma; /* weighting divisor */
1311
1312 gamma=0.0;
1313 k = kernel->values;
1314 k_pixels = p;
1315 k_indexes = p_indexes;
1316 for (v=0; v < (long) kernel->height; v++) {
1317 for (u=0; u < (long) kernel->width; u++, k++) {
1318 if ( IsNan(*k) ) continue;
1319 alpha=(*k)*(QuantumScale*(QuantumRange-
1320 k_pixels[u].opacity));
1321 gamma += alpha;
1322 result.red += alpha*k_pixels[u].red;
1323 result.green += alpha*k_pixels[u].green;
1324 result.blue += alpha*k_pixels[u].blue;
1325 result.opacity += (*k)*k_pixels[u].opacity;
1326 if ( image->colorspace == CMYKColorspace)
1327 result.index += alpha*k_indexes[u];
1328 }
1329 k_pixels += image->columns+kernel->width;
1330 k_indexes += image->columns+kernel->width;
1331 }
1332 gamma=1.0/(fabs((double) gamma) <= MagickEpsilon ? 1.0 : gamma);
1333 if ((channel & RedChannel) != 0)
1334 Assign(red,gamma*result.red);
1335 if ((channel & GreenChannel) != 0)
1336 Assign(green,gamma*result.green);
1337 if ((channel & BlueChannel) != 0)
1338 Assign(blue,gamma*result.blue);
1339 if ((channel & OpacityChannel) != 0
1340 && image->matte == MagickTrue )
1341 Assign(opacity,result.opacity);
1342 if ((channel & IndexChannel) != 0
1343 && image->colorspace == CMYKColorspace)
1344 AssignIndex(gamma*result.index);
1345 }
1346 break;
1347
1348 case DialateMorphology:
1349 /* Maximize Value - Kernel should be boolean */
1350 k = kernel->values;
1351 k_pixels = p;
1352 k_indexes = p_indexes;
1353 for (v=0; v < (long) kernel->height; v++) {
1354 for (u=0; u < (long) kernel->width; u++, k++) {
1355 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1356 Maximize(result.red, k_pixels[u].red);
1357 Maximize(result.green, k_pixels[u].green);
1358 Maximize(result.blue, k_pixels[u].blue);
1359 Maximize(result.opacity, QuantumRange-k_pixels[u].opacity);
1360 if ( image->colorspace == CMYKColorspace)
1361 Maximize(result.index, k_indexes[u]);
1362 }
1363 k_pixels += image->columns+kernel->width;
1364 k_indexes += image->columns+kernel->width;
1365 }
1366 if ((channel & RedChannel) != 0)
1367 Assign(red,result.red);
1368 if ((channel & GreenChannel) != 0)
1369 Assign(green,result.green);
1370 if ((channel & BlueChannel) != 0)
1371 Assign(blue,result.blue);
1372 if ((channel & OpacityChannel) != 0
1373 && image->matte == MagickTrue )
1374 Assign(opacity,QuantumRange-result.opacity);
1375 if ((channel & IndexChannel) != 0
1376 && image->colorspace == CMYKColorspace)
1377 AssignIndex(result.index);
1378 break;
1379
1380 case ErodeMorphology:
1381 /* Minimize Value - Kernel should be boolean */
1382 k = kernel->values;
1383 k_pixels = p;
1384 k_indexes = p_indexes;
1385 for (v=0; v < (long) kernel->height; v++) {
1386 for (u=0; u < (long) kernel->width; u++, k++) {
1387 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1388 Minimize(result.red, k_pixels[u].red);
1389 Minimize(result.green, k_pixels[u].green);
1390 Minimize(result.blue, k_pixels[u].blue);
1391 Minimize(result.opacity, QuantumRange-k_pixels[u].opacity);
1392 if ( image->colorspace == CMYKColorspace)
1393 Minimize(result.index, k_indexes[u]);
1394 }
1395 k_pixels += image->columns+kernel->width;
1396 k_indexes += image->columns+kernel->width;
1397 }
1398 if ((channel & RedChannel) != 0)
1399 Assign(red,result.red);
1400 if ((channel & GreenChannel) != 0)
1401 Assign(green,result.green);
1402 if ((channel & BlueChannel) != 0)
1403 Assign(blue,result.blue);
1404 if ((channel & OpacityChannel) != 0
1405 && image->matte == MagickTrue )
1406 Assign(opacity,QuantumRange-result.opacity);
1407 if ((channel & IndexChannel) != 0
1408 && image->colorspace == CMYKColorspace)
1409 AssignIndex(result.index);
1410 break;
1411
1412 case DialateIntensityMorphology:
1413 /* Maximum Intensity Pixel - Kernel should be boolean */
1414 k = kernel->values;
1415 k_pixels = p;
1416 k_indexes = p_indexes;
1417 for (v=0; v < (long) kernel->height; v++) {
1418 for (u=0; u < (long) kernel->width; u++, k++) {
1419 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1420 if ( PixelIntensity(&p[r]) >
1421 PixelIntensity(&(k_pixels[u])) ) continue;
1422 result.red = k_pixels[u].red;
1423 result.green = k_pixels[u].green;
1424 result.blue = k_pixels[u].blue;
1425 result.opacity = k_pixels[u].opacity;
1426 if ( image->colorspace == CMYKColorspace)
1427 result.index = k_indexes[u];
1428 }
1429 k_pixels += image->columns+kernel->width;
1430 k_indexes += image->columns+kernel->width;
1431 }
1432 if ((channel & RedChannel) != 0)
1433 Assign(red,result.red);
1434 if ((channel & GreenChannel) != 0)
1435 Assign(green,result.green);
1436 if ((channel & BlueChannel) != 0)
1437 Assign(blue,result.blue);
1438 if ((channel & OpacityChannel) != 0
1439 && image->matte == MagickTrue )
1440 Assign(opacity,result.opacity);
1441 if ((channel & IndexChannel) != 0
1442 && image->colorspace == CMYKColorspace)
1443 AssignIndex(result.index);
1444 break;
1445
1446 case ErodeIntensityMorphology:
1447 /* Minimum Intensity Pixel - Kernel should be boolean */
1448 k = kernel->values;
1449 k_pixels = p;
1450 k_indexes = p_indexes;
1451 for (v=0; v < (long) kernel->height; v++) {
1452 for (u=0; u < (long) kernel->width; u++, k++) {
1453 if ( IsNan(*k) || (*k) < 0.5 ) continue;
1454 if ( PixelIntensity(&p[r]) <
1455 PixelIntensity(&(k_pixels[u])) ) continue;
1456 result.red = k_pixels[u].red;
1457 result.green = k_pixels[u].green;
1458 result.blue = k_pixels[u].blue;
1459 result.opacity = k_pixels[u].opacity;
1460 if ( image->colorspace == CMYKColorspace)
1461 result.index = k_indexes[u];
1462 }
1463 k_pixels += image->columns+kernel->width;
1464 k_indexes += image->columns+kernel->width;
1465 }
1466 if ((channel & RedChannel) != 0)
1467 Assign(red,result.red);
1468 if ((channel & GreenChannel) != 0)
1469 Assign(green,result.green);
1470 if ((channel & BlueChannel) != 0)
1471 Assign(blue,result.blue);
1472 if ((channel & OpacityChannel) != 0
1473 && image->matte == MagickTrue )
1474 Assign(opacity,result.opacity);
1475 if ((channel & IndexChannel) != 0
1476 && image->colorspace == CMYKColorspace)
1477 AssignIndex(result.index);
1478 break;
1479
1480 case DistanceMorphology:
1481#if 0
1482 /* No need to do distance morphology if all values are zero */
1483 /* Unfortunatally I have not been able to get this right! */
1484 if ( ((channel & RedChannel) == 0 && p[r].red == 0)
1485 || ((channel & GreenChannel) == 0 && p[r].green == 0)
1486 || ((channel & BlueChannel) == 0 && p[r].blue == 0)
1487 || ((channel & OpacityChannel) == 0 && p[r].opacity == 0)
1488 || (( (channel & IndexChannel) == 0
1489 || image->colorspace != CMYKColorspace
1490 ) && p_indexes[x] ==0 )
1491 )
1492 break;
1493#endif
1494 k = kernel->values;
1495 k_pixels = p;
1496 k_indexes = p_indexes;
1497 for (v=0; v < (long) kernel->height; v++) {
1498 for (u=0; u < (long) kernel->width; u++, k++) {
1499 if ( IsNan(*k) ) continue;
1500 Minimize(result.red, (*k)+k_pixels[u].red);
1501 Minimize(result.green, (*k)+k_pixels[u].green);
1502 Minimize(result.blue, (*k)+k_pixels[u].blue);
1503 Minimize(result.opacity, (*k)+QuantumRange-k_pixels[u].opacity);
1504 if ( image->colorspace == CMYKColorspace)
1505 Minimize(result.index, (*k)+k_indexes[u]);
1506 }
1507 k_pixels += image->columns+kernel->width;
1508 k_indexes += image->columns+kernel->width;
1509 }
1510#if 1
1511 if ((channel & RedChannel) != 0)
1512 Assign(red,result.red);
1513 if ((channel & GreenChannel) != 0)
1514 Assign(green,result.green);
1515 if ((channel & BlueChannel) != 0)
1516 Assign(blue,result.blue);
1517 if ((channel & OpacityChannel) != 0
1518 && image->matte == MagickTrue )
1519 Assign(opacity,QuantumRange-result.opacity);
1520 if ((channel & IndexChannel) != 0
1521 && image->colorspace == CMYKColorspace)
1522 AssignIndex(result.index);
1523#else
1524 /* By returning the number of 'maximum' values still to process
1525 ** we can get the Distance iteration to finish faster.
1526 ** BUT this may cause an infinite loop on very large shapes,
1527 ** which may have a distance that reachs a maximum gradient.
1528 */
1529 if ((channel & RedChannel) != 0)
cristyce70c172010-01-07 17:15:30 +00001530 { q->red = ClampToQuantum(result.red);
anthony602ab9b2010-01-05 08:06:50 +00001531 if ( q->red == QuantumRange ) changed++; /* more to do */
1532 }
1533 if ((channel & GreenChannel) != 0)
cristyce70c172010-01-07 17:15:30 +00001534 { q->green = ClampToQuantum(result.green);
anthony602ab9b2010-01-05 08:06:50 +00001535 if ( q->green == QuantumRange ) changed++; /* more to do */
1536 }
1537 if ((channel & BlueChannel) != 0)
cristyce70c172010-01-07 17:15:30 +00001538 { q->blue = ClampToQuantum(result.blue);
anthony602ab9b2010-01-05 08:06:50 +00001539 if ( q->blue == QuantumRange ) changed++; /* more to do */
1540 }
1541 if ((channel & OpacityChannel) != 0)
cristyce70c172010-01-07 17:15:30 +00001542 { q->opacity = ClampToQuantum(QuantumRange-result.opacity);
anthony602ab9b2010-01-05 08:06:50 +00001543 if ( q->opacity == 0 ) changed++; /* more to do */
1544 }
1545 if (((channel & IndexChannel) != 0) &&
1546 (image->colorspace == CMYKColorspace))
cristyce70c172010-01-07 17:15:30 +00001547 { q_indexes[x] = ClampToQuantum(result.index);
anthony602ab9b2010-01-05 08:06:50 +00001548 if ( q_indexes[x] == QuantumRange ) changed++;
1549 }
1550#endif
1551 break;
1552
1553 case UndefinedMorphology:
1554 default:
1555 break; /* Do nothing */
1556 }
1557 p++;
1558 q++;
1559 }
1560 sync=SyncCacheViewAuthenticPixels(q_view,exception);
1561 if (sync == MagickFalse)
1562 status=MagickFalse;
1563 if (image->progress_monitor != (MagickProgressMonitor) NULL)
1564 {
1565 MagickBooleanType
1566 proceed;
1567
1568#if defined(MAGICKCORE_OPENMP_SUPPORT)
1569 #pragma omp critical (MagickCore_MorphologyImage)
1570#endif
1571 proceed=SetImageProgress(image,MorphologyTag,progress++,image->rows);
1572 if (proceed == MagickFalse)
1573 status=MagickFalse;
1574 }
1575 }
1576 result_image->type=image->type;
1577 q_view=DestroyCacheView(q_view);
1578 p_view=DestroyCacheView(p_view);
1579 return(status ? changed : 0);
1580}
1581
cristy2be15382010-01-21 02:38:03 +00001582MagickExport Image *MorphologyImage(const Image *image,MorphologyMethod method,
1583 const long iterations,KernelInfo *kernel, ExceptionInfo *exception)
1584{
1585 Image
1586 *morphology_image;
1587
1588 morphology_image=MorphologyImageChannel(image,DefaultChannels,method,
1589 iterations,kernel,exception);
1590 return(morphology_image);
1591}
1592
1593MagickExport Image *MorphologyImageChannel(const Image *image,
cristy672da672010-01-10 15:43:07 +00001594 const ChannelType channel, MorphologyMethod method, const long iterations,
cristy2be15382010-01-21 02:38:03 +00001595 KernelInfo *kernel, ExceptionInfo *exception)
anthony602ab9b2010-01-05 08:06:50 +00001596{
1597 unsigned long
1598 count,
1599 limit,
1600 changed;
1601
1602 Image
1603 *new_image,
1604 *old_image;
1605
1606 assert(image != (Image *) NULL);
1607 assert(image->signature == MagickSignature);
1608 assert(exception != (ExceptionInfo *) NULL);
1609 assert(exception->signature == MagickSignature);
1610
1611 if ( GetImageArtifact(image,"showkernel") != (const char *) NULL)
anthonyc94cdb02010-01-06 08:15:29 +00001612 KernelPrint(kernel);
anthony602ab9b2010-01-05 08:06:50 +00001613
1614 if ( iterations == 0 )
1615 return((Image *)NULL); /* null operation - nothing to do! */
1616
1617 /* kernel must be valid at this point
1618 * (except maybe for posible future morphology methods like "Prune"
1619 */
cristy2be15382010-01-21 02:38:03 +00001620 assert(kernel != (KernelInfo *)NULL);
anthony602ab9b2010-01-05 08:06:50 +00001621
1622 count = 0;
1623 limit = iterations;
1624 if ( iterations < 0 )
1625 limit = image->columns > image->rows ? image->columns : image->rows;
1626
1627 /* Special morphology cases */
cristybba804b2010-01-05 15:39:59 +00001628 changed=MagickFalse;
anthony602ab9b2010-01-05 08:06:50 +00001629 switch( method ) {
1630 case CloseMorphology:
cristy2be15382010-01-21 02:38:03 +00001631 new_image = MorphologyImageChannel(image, DialateMorphology, iterations, channel,
anthony602ab9b2010-01-05 08:06:50 +00001632 kernel, exception);
1633 if (new_image == (Image *) NULL)
1634 return((Image *) NULL);
1635 method = ErodeMorphology;
1636 break;
1637 case OpenMorphology:
cristy2be15382010-01-21 02:38:03 +00001638 new_image = MorphologyImageChannel(image, ErodeMorphology, iterations, channel,
anthony602ab9b2010-01-05 08:06:50 +00001639 kernel, exception);
1640 if (new_image == (Image *) NULL)
1641 return((Image *) NULL);
1642 method = DialateMorphology;
1643 break;
1644 case CloseIntensityMorphology:
cristy2be15382010-01-21 02:38:03 +00001645 new_image = MorphologyImageChannel(image, DialateIntensityMorphology,
anthony602ab9b2010-01-05 08:06:50 +00001646 iterations, channel, kernel, exception);
1647 if (new_image == (Image *) NULL)
1648 return((Image *) NULL);
1649 method = ErodeIntensityMorphology;
1650 break;
1651 case OpenIntensityMorphology:
cristy2be15382010-01-21 02:38:03 +00001652 new_image = MorphologyImageChannel(image, ErodeIntensityMorphology,
anthony602ab9b2010-01-05 08:06:50 +00001653 iterations, channel, kernel, exception);
1654 if (new_image == (Image *) NULL)
1655 return((Image *) NULL);
1656 method = DialateIntensityMorphology;
1657 break;
1658
anthonyc94cdb02010-01-06 08:15:29 +00001659 case ConvolveMorphology:
1660 KernelNormalize(kernel);
1661 /* FALL-THRU */
anthony602ab9b2010-01-05 08:06:50 +00001662 default:
anthonyc94cdb02010-01-06 08:15:29 +00001663 /* Do a morphology just once at this point!
anthony602ab9b2010-01-05 08:06:50 +00001664 This ensures a new_image has been generated, but allows us
anthonyc94cdb02010-01-06 08:15:29 +00001665 to skip the creation of 'old_image' if it isn't needed.
anthony602ab9b2010-01-05 08:06:50 +00001666 */
1667 new_image=CloneImage(image,0,0,MagickTrue,exception);
1668 if (new_image == (Image *) NULL)
1669 return((Image *) NULL);
1670 if (SetImageStorageClass(new_image,DirectClass) == MagickFalse)
1671 {
1672 InheritException(exception,&new_image->exception);
1673 new_image=DestroyImage(new_image);
1674 return((Image *) NULL);
1675 }
1676 changed = MorphologyApply(image,new_image,method,channel,kernel,
1677 exception);
1678 count++;
1679 if ( GetImageArtifact(image,"verbose") != (const char *) NULL )
1680 fprintf(stderr, "Morphology %s:%lu => Changed %lu\n",
1681 MagickOptionToMnemonic(MagickMorphologyOptions, method),
1682 count, changed);
1683 }
1684
1685 /* Repeat the interative morphology until count or no change */
1686 if ( count < limit && changed > 0 ) {
1687 old_image = CloneImage(new_image,0,0,MagickTrue,exception);
1688 if (old_image == (Image *) NULL)
1689 return(DestroyImage(new_image));
1690 if (SetImageStorageClass(old_image,DirectClass) == MagickFalse)
1691 {
1692 InheritException(exception,&old_image->exception);
1693 old_image=DestroyImage(old_image);
1694 return(DestroyImage(new_image));
1695 }
1696 while( count < limit && changed != 0 )
1697 {
1698 Image *tmp = old_image;
1699 old_image = new_image;
1700 new_image = tmp;
1701 changed = MorphologyApply(old_image,new_image,method,channel,kernel,
1702 exception);
1703 count++;
1704 if ( GetImageArtifact(image,"verbose") != (const char *) NULL )
1705 fprintf(stderr, "Morphology %s:%lu => Changed %lu\n",
1706 MagickOptionToMnemonic(MagickMorphologyOptions, method),
1707 count, changed);
1708 }
1709 DestroyImage(old_image);
1710 }
1711
1712 return(new_image);
1713}
1714