blob: 3ca766b3a091dcb7bc70ed8a187fbaa4c942c228 [file] [log] [blame]
Chris Lattner4b009652007-07-25 00:24:17 +00001//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Decl.h"
17#include "clang/AST/Expr.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/Lex/LiteralSupport.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/SmallString.h"
Chris Lattner2e64c072007-08-10 20:18:51 +000025#include "llvm/ADT/StringExtras.h"
Chris Lattner4b009652007-07-25 00:24:17 +000026using namespace clang;
27
28/// ParseStringLiteral - The specified tokens were lexed as pasted string
29/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
30/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
31/// multiple tokens. However, the common case is that StringToks points to one
32/// string.
33///
34Action::ExprResult
35Sema::ParseStringLiteral(const Token *StringToks, unsigned NumStringToks) {
36 assert(NumStringToks && "Must have at least one string!");
37
38 StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
39 if (Literal.hadError)
40 return ExprResult(true);
41
42 llvm::SmallVector<SourceLocation, 4> StringTokLocs;
43 for (unsigned i = 0; i != NumStringToks; ++i)
44 StringTokLocs.push_back(StringToks[i].getLocation());
45
46 // FIXME: handle wchar_t
47 QualType t = Context.getPointerType(Context.CharTy);
48
49 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
50 return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
51 Literal.AnyWide, t, StringToks[0].getLocation(),
52 StringToks[NumStringToks-1].getLocation());
53}
54
55
56/// ParseIdentifierExpr - The parser read an identifier in expression context,
57/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
58/// identifier is used in an function call context.
59Sema::ExprResult Sema::ParseIdentifierExpr(Scope *S, SourceLocation Loc,
60 IdentifierInfo &II,
61 bool HasTrailingLParen) {
62 // Could be enum-constant or decl.
63 Decl *D = LookupScopedDecl(&II, Decl::IDNS_Ordinary, Loc, S);
64 if (D == 0) {
65 // Otherwise, this could be an implicitly declared function reference (legal
66 // in C90, extension in C99).
67 if (HasTrailingLParen &&
68 // Not in C++.
69 !getLangOptions().CPlusPlus)
70 D = ImplicitlyDefineFunction(Loc, II, S);
71 else {
72 // If this name wasn't predeclared and if this is not a function call,
73 // diagnose the problem.
74 return Diag(Loc, diag::err_undeclared_var_use, II.getName());
75 }
76 }
Chris Lattner4b009652007-07-25 00:24:17 +000077 if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
78 return new DeclRefExpr(VD, VD->getType(), Loc);
79 if (isa<TypedefDecl>(D))
80 return Diag(Loc, diag::err_unexpected_typedef, II.getName());
81
82 assert(0 && "Invalid decl");
83 abort();
84}
85
86Sema::ExprResult Sema::ParsePreDefinedExpr(SourceLocation Loc,
87 tok::TokenKind Kind) {
88 PreDefinedExpr::IdentType IT;
89
90 switch (Kind) {
91 default:
92 assert(0 && "Unknown simple primary expr!");
93 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
94 IT = PreDefinedExpr::Func;
95 break;
96 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
97 IT = PreDefinedExpr::Function;
98 break;
99 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
100 IT = PreDefinedExpr::PrettyFunction;
101 break;
102 }
103
104 // Pre-defined identifiers are always of type char *.
105 return new PreDefinedExpr(Loc, Context.getPointerType(Context.CharTy), IT);
106}
107
108Sema::ExprResult Sema::ParseCharacterConstant(const Token &Tok) {
109 llvm::SmallString<16> CharBuffer;
110 CharBuffer.resize(Tok.getLength());
111 const char *ThisTokBegin = &CharBuffer[0];
112 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
113
114 CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
115 Tok.getLocation(), PP);
116 if (Literal.hadError())
117 return ExprResult(true);
118 return new CharacterLiteral(Literal.getValue(), Context.IntTy,
119 Tok.getLocation());
120}
121
122Action::ExprResult Sema::ParseNumericConstant(const Token &Tok) {
123 // fast path for a single digit (which is quite common). A single digit
124 // cannot have a trigraph, escaped newline, radix prefix, or type suffix.
125 if (Tok.getLength() == 1) {
126 const char *t = PP.getSourceManager().getCharacterData(Tok.getLocation());
127
128 unsigned IntSize = Context.getTypeSize(Context.IntTy, Tok.getLocation());
129 return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *t-'0'),
130 Context.IntTy,
131 Tok.getLocation()));
132 }
133 llvm::SmallString<512> IntegerBuffer;
134 IntegerBuffer.resize(Tok.getLength());
135 const char *ThisTokBegin = &IntegerBuffer[0];
136
137 // Get the spelling of the token, which eliminates trigraphs, etc.
138 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
139 NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
140 Tok.getLocation(), PP);
141 if (Literal.hadError)
142 return ExprResult(true);
143
144 if (Literal.isIntegerLiteral()) {
145 QualType t;
146
147 // Get the value in the widest-possible width.
148 llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(Tok.getLocation()), 0);
149
150 if (Literal.GetIntegerValue(ResultVal)) {
151 // If this value didn't fit into uintmax_t, warn and force to ull.
152 Diag(Tok.getLocation(), diag::warn_integer_too_large);
153 t = Context.UnsignedLongLongTy;
154 assert(Context.getTypeSize(t, Tok.getLocation()) ==
155 ResultVal.getBitWidth() && "long long is not intmax_t?");
156 } else {
157 // If this value fits into a ULL, try to figure out what else it fits into
158 // according to the rules of C99 6.4.4.1p5.
159
160 // Octal, Hexadecimal, and integers with a U suffix are allowed to
161 // be an unsigned int.
162 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
163
164 // Check from smallest to largest, picking the smallest type we can.
165 if (!Literal.isLong) { // Are int/unsigned possibilities?
166 unsigned IntSize = Context.getTypeSize(Context.IntTy,Tok.getLocation());
167 // Does it fit in a unsigned int?
168 if (ResultVal.isIntN(IntSize)) {
169 // Does it fit in a signed int?
170 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
171 t = Context.IntTy;
172 else if (AllowUnsigned)
173 t = Context.UnsignedIntTy;
174 }
175
176 if (!t.isNull())
177 ResultVal.trunc(IntSize);
178 }
179
180 // Are long/unsigned long possibilities?
181 if (t.isNull() && !Literal.isLongLong) {
182 unsigned LongSize = Context.getTypeSize(Context.LongTy,
183 Tok.getLocation());
184
185 // Does it fit in a unsigned long?
186 if (ResultVal.isIntN(LongSize)) {
187 // Does it fit in a signed long?
188 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
189 t = Context.LongTy;
190 else if (AllowUnsigned)
191 t = Context.UnsignedLongTy;
192 }
193 if (!t.isNull())
194 ResultVal.trunc(LongSize);
195 }
196
197 // Finally, check long long if needed.
198 if (t.isNull()) {
199 unsigned LongLongSize =
200 Context.getTypeSize(Context.LongLongTy, Tok.getLocation());
201
202 // Does it fit in a unsigned long long?
203 if (ResultVal.isIntN(LongLongSize)) {
204 // Does it fit in a signed long long?
205 if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
206 t = Context.LongLongTy;
207 else if (AllowUnsigned)
208 t = Context.UnsignedLongLongTy;
209 }
210 }
211
212 // If we still couldn't decide a type, we probably have something that
213 // does not fit in a signed long long, but has no U suffix.
214 if (t.isNull()) {
215 Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
216 t = Context.UnsignedLongLongTy;
217 }
218 }
219
220 return new IntegerLiteral(ResultVal, t, Tok.getLocation());
221 } else if (Literal.isFloatingLiteral()) {
222 // FIXME: handle float values > 32 (including compute the real type...).
223 return new FloatingLiteral(Literal.GetFloatValue(), Context.FloatTy,
224 Tok.getLocation());
225 }
226 return ExprResult(true);
227}
228
229Action::ExprResult Sema::ParseParenExpr(SourceLocation L, SourceLocation R,
230 ExprTy *Val) {
231 Expr *e = (Expr *)Val;
232 assert((e != 0) && "ParseParenExpr() missing expr");
233 return new ParenExpr(L, R, e);
234}
235
236/// The UsualUnaryConversions() function is *not* called by this routine.
237/// See C99 6.3.2.1p[2-4] for more details.
238QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType,
239 SourceLocation OpLoc, bool isSizeof) {
240 // C99 6.5.3.4p1:
241 if (isa<FunctionType>(exprType) && isSizeof)
242 // alignof(function) is allowed.
243 Diag(OpLoc, diag::ext_sizeof_function_type);
244 else if (exprType->isVoidType())
245 Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof");
246 else if (exprType->isIncompleteType()) {
247 Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
248 diag::err_alignof_incomplete_type,
249 exprType.getAsString());
250 return QualType(); // error
251 }
252 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
253 return Context.getSizeType();
254}
255
256Action::ExprResult Sema::
257ParseSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof,
258 SourceLocation LPLoc, TypeTy *Ty,
259 SourceLocation RPLoc) {
260 // If error parsing type, ignore.
261 if (Ty == 0) return true;
262
263 // Verify that this is a valid expression.
264 QualType ArgTy = QualType::getFromOpaquePtr(Ty);
265
266 QualType resultType = CheckSizeOfAlignOfOperand(ArgTy, OpLoc, isSizeof);
267
268 if (resultType.isNull())
269 return true;
270 return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc);
271}
272
273
274Action::ExprResult Sema::ParsePostfixUnaryOp(SourceLocation OpLoc,
275 tok::TokenKind Kind,
276 ExprTy *Input) {
277 UnaryOperator::Opcode Opc;
278 switch (Kind) {
279 default: assert(0 && "Unknown unary op!");
280 case tok::plusplus: Opc = UnaryOperator::PostInc; break;
281 case tok::minusminus: Opc = UnaryOperator::PostDec; break;
282 }
283 QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc);
284 if (result.isNull())
285 return true;
286 return new UnaryOperator((Expr *)Input, Opc, result, OpLoc);
287}
288
289Action::ExprResult Sema::
290ParseArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc,
291 ExprTy *Idx, SourceLocation RLoc) {
292 Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
293
294 // Perform default conversions.
295 DefaultFunctionArrayConversion(LHSExp);
296 DefaultFunctionArrayConversion(RHSExp);
297
298 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
299
300 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
301 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
302 // in the subscript position. As a result, we need to derive the array base
303 // and index from the expression types.
304 Expr *BaseExpr, *IndexExpr;
305 QualType ResultType;
Chris Lattner7931f4a2007-07-31 16:53:04 +0000306 if (const PointerType *PTy = LHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000307 BaseExpr = LHSExp;
308 IndexExpr = RHSExp;
309 // FIXME: need to deal with const...
310 ResultType = PTy->getPointeeType();
Chris Lattner7931f4a2007-07-31 16:53:04 +0000311 } else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000312 // Handle the uncommon case of "123[Ptr]".
313 BaseExpr = RHSExp;
314 IndexExpr = LHSExp;
315 // FIXME: need to deal with const...
316 ResultType = PTy->getPointeeType();
Chris Lattnere35a1042007-07-31 19:29:30 +0000317 } else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
318 BaseExpr = LHSExp; // vectors: V[123]
Chris Lattner4b009652007-07-25 00:24:17 +0000319 IndexExpr = RHSExp;
Steve Naroff89345522007-08-03 22:40:33 +0000320
321 // Component access limited to variables (reject vec4.rg[1]).
322 if (!isa<DeclRefExpr>(BaseExpr))
323 return Diag(LLoc, diag::err_ocuvector_component_access,
324 SourceRange(LLoc, RLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000325 // FIXME: need to deal with const...
326 ResultType = VTy->getElementType();
327 } else {
328 return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value,
329 RHSExp->getSourceRange());
330 }
331 // C99 6.5.2.1p1
332 if (!IndexExpr->getType()->isIntegerType())
333 return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript,
334 IndexExpr->getSourceRange());
335
336 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
337 // the following check catches trying to index a pointer to a function (e.g.
338 // void (*)(int)). Functions are not objects in C99.
339 if (!ResultType->isObjectType())
340 return Diag(BaseExpr->getLocStart(),
341 diag::err_typecheck_subscript_not_object,
342 BaseExpr->getType().getAsString(), BaseExpr->getSourceRange());
343
344 return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
345}
346
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000347QualType Sema::
348CheckOCUVectorComponent(QualType baseType, SourceLocation OpLoc,
349 IdentifierInfo &CompName, SourceLocation CompLoc) {
Chris Lattnere35a1042007-07-31 19:29:30 +0000350 const OCUVectorType *vecType = baseType->getAsOCUVectorType();
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000351
352 // The vector accessor can't exceed the number of elements.
353 const char *compStr = CompName.getName();
354 if (strlen(compStr) > vecType->getNumElements()) {
355 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
356 baseType.getAsString(), SourceRange(CompLoc));
357 return QualType();
358 }
359 // The component names must come from the same set.
Chris Lattner9096b792007-08-02 22:33:49 +0000360 if (vecType->getPointAccessorIdx(*compStr) != -1) {
361 do
362 compStr++;
363 while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
364 } else if (vecType->getColorAccessorIdx(*compStr) != -1) {
365 do
366 compStr++;
367 while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
368 } else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
369 do
370 compStr++;
371 while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
372 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000373
374 if (*compStr) {
375 // We didn't get to the end of the string. This means the component names
376 // didn't come from the same set *or* we encountered an illegal name.
377 Diag(OpLoc, diag::err_ocuvector_component_name_illegal,
378 std::string(compStr,compStr+1), SourceRange(CompLoc));
379 return QualType();
380 }
381 // Each component accessor can't exceed the vector type.
382 compStr = CompName.getName();
383 while (*compStr) {
384 if (vecType->isAccessorWithinNumElements(*compStr))
385 compStr++;
386 else
387 break;
388 }
389 if (*compStr) {
390 // We didn't get to the end of the string. This means a component accessor
391 // exceeds the number of elements in the vector.
392 Diag(OpLoc, diag::err_ocuvector_component_exceeds_length,
393 baseType.getAsString(), SourceRange(CompLoc));
394 return QualType();
395 }
396 // The component accessor looks fine - now we need to compute the actual type.
397 // The vector type is implied by the component accessor. For example,
398 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
399 unsigned CompSize = strlen(CompName.getName());
400 if (CompSize == 1)
401 return vecType->getElementType();
Steve Naroff82113e32007-07-29 16:33:31 +0000402
403 QualType VT = Context.getOCUVectorType(vecType->getElementType(), CompSize);
404 // Now look up the TypeDefDecl from the vector type. Without this,
405 // diagostics look bad. We want OCU vector types to appear built-in.
406 for (unsigned i = 0, e = OCUVectorDecls.size(); i != e; ++i) {
407 if (OCUVectorDecls[i]->getUnderlyingType() == VT)
408 return Context.getTypedefType(OCUVectorDecls[i]);
409 }
410 return VT; // should never get here (a typedef type should always be found).
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000411}
412
Chris Lattner4b009652007-07-25 00:24:17 +0000413Action::ExprResult Sema::
414ParseMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
415 tok::TokenKind OpKind, SourceLocation MemberLoc,
416 IdentifierInfo &Member) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000417 Expr *BaseExpr = static_cast<Expr *>(Base);
418 assert(BaseExpr && "no record expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000419
Steve Naroff2cb66382007-07-26 03:11:44 +0000420 QualType BaseType = BaseExpr->getType();
421 assert(!BaseType.isNull() && "no type for member expression");
Chris Lattner4b009652007-07-25 00:24:17 +0000422
Chris Lattner4b009652007-07-25 00:24:17 +0000423 if (OpKind == tok::arrow) {
Chris Lattner7931f4a2007-07-31 16:53:04 +0000424 if (const PointerType *PT = BaseType->getAsPointerType())
Steve Naroff2cb66382007-07-26 03:11:44 +0000425 BaseType = PT->getPointeeType();
426 else
427 return Diag(OpLoc, diag::err_typecheck_member_reference_arrow,
428 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000429 }
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000430 // The base type is either a record or an OCUVectorType.
Chris Lattnere35a1042007-07-31 19:29:30 +0000431 if (const RecordType *RTy = BaseType->getAsRecordType()) {
Steve Naroff2cb66382007-07-26 03:11:44 +0000432 RecordDecl *RDecl = RTy->getDecl();
433 if (RTy->isIncompleteType())
434 return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(),
435 BaseExpr->getSourceRange());
436 // The record definition is complete, now make sure the member is valid.
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000437 FieldDecl *MemberDecl = RDecl->getMember(&Member);
438 if (!MemberDecl)
Steve Naroff2cb66382007-07-26 03:11:44 +0000439 return Diag(OpLoc, diag::err_typecheck_no_member, Member.getName(),
440 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000441 return new MemberExpr(BaseExpr, OpKind==tok::arrow, MemberDecl, MemberLoc);
442 } else if (BaseType->isOCUVectorType() && OpKind == tok::period) {
Steve Naroff89345522007-08-03 22:40:33 +0000443 // Component access limited to variables (reject vec4.rg.g).
444 if (!isa<DeclRefExpr>(BaseExpr))
445 return Diag(OpLoc, diag::err_ocuvector_component_access,
446 SourceRange(MemberLoc));
Steve Naroff1b8a46c2007-07-27 22:15:19 +0000447 QualType ret = CheckOCUVectorComponent(BaseType, OpLoc, Member, MemberLoc);
448 if (ret.isNull())
449 return true;
Chris Lattnera0d03a72007-08-03 17:31:20 +0000450 return new OCUVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
Steve Naroff2cb66382007-07-26 03:11:44 +0000451 } else
452 return Diag(OpLoc, diag::err_typecheck_member_reference_structUnion,
453 SourceRange(MemberLoc));
Chris Lattner4b009652007-07-25 00:24:17 +0000454}
455
456/// ParseCallExpr - Handle a call to Fn with the specified array of arguments.
457/// This provides the location of the left/right parens and a list of comma
458/// locations.
459Action::ExprResult Sema::
460ParseCallExpr(ExprTy *fn, SourceLocation LParenLoc,
461 ExprTy **args, unsigned NumArgsInCall,
462 SourceLocation *CommaLocs, SourceLocation RParenLoc) {
463 Expr *Fn = static_cast<Expr *>(fn);
464 Expr **Args = reinterpret_cast<Expr**>(args);
465 assert(Fn && "no function call expression");
466
467 UsualUnaryConversions(Fn);
468 QualType funcType = Fn->getType();
469
470 // C99 6.5.2.2p1 - "The expression that denotes the called function shall have
471 // type pointer to function".
Chris Lattner71225142007-07-31 21:27:01 +0000472 const PointerType *PT = funcType->getAsPointerType();
Chris Lattner4b009652007-07-25 00:24:17 +0000473 if (PT == 0)
474 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
475 SourceRange(Fn->getLocStart(), RParenLoc));
476
Chris Lattner71225142007-07-31 21:27:01 +0000477 const FunctionType *funcT = PT->getPointeeType()->getAsFunctionType();
Chris Lattner4b009652007-07-25 00:24:17 +0000478 if (funcT == 0)
479 return Diag(Fn->getLocStart(), diag::err_typecheck_call_not_function,
480 SourceRange(Fn->getLocStart(), RParenLoc));
481
482 // If a prototype isn't declared, the parser implicitly defines a func decl
483 QualType resultType = funcT->getResultType();
484
485 if (const FunctionTypeProto *proto = dyn_cast<FunctionTypeProto>(funcT)) {
486 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
487 // assignment, to the types of the corresponding parameter, ...
488
489 unsigned NumArgsInProto = proto->getNumArgs();
490 unsigned NumArgsToCheck = NumArgsInCall;
491
492 if (NumArgsInCall < NumArgsInProto)
493 Diag(RParenLoc, diag::err_typecheck_call_too_few_args,
494 Fn->getSourceRange());
495 else if (NumArgsInCall > NumArgsInProto) {
496 if (!proto->isVariadic()) {
497 Diag(Args[NumArgsInProto]->getLocStart(),
498 diag::err_typecheck_call_too_many_args, Fn->getSourceRange(),
499 SourceRange(Args[NumArgsInProto]->getLocStart(),
500 Args[NumArgsInCall-1]->getLocEnd()));
501 }
502 NumArgsToCheck = NumArgsInProto;
503 }
504 // Continue to check argument types (even if we have too few/many args).
505 for (unsigned i = 0; i < NumArgsToCheck; i++) {
506 Expr *argExpr = Args[i];
507 assert(argExpr && "ParseCallExpr(): missing argument expression");
508
509 QualType lhsType = proto->getArgType(i);
510 QualType rhsType = argExpr->getType();
511
Steve Naroff75644062007-07-25 20:45:33 +0000512 // If necessary, apply function/array conversion. C99 6.7.5.3p[7,8].
Chris Lattnere35a1042007-07-31 19:29:30 +0000513 if (const ArrayType *ary = lhsType->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000514 lhsType = Context.getPointerType(ary->getElementType());
Steve Naroff75644062007-07-25 20:45:33 +0000515 else if (lhsType->isFunctionType())
Chris Lattner4b009652007-07-25 00:24:17 +0000516 lhsType = Context.getPointerType(lhsType);
517
518 AssignmentCheckResult result = CheckSingleAssignmentConstraints(lhsType,
519 argExpr);
520 SourceLocation l = argExpr->getLocStart();
521
522 // decode the result (notice that AST's are still created for extensions).
523 switch (result) {
524 case Compatible:
525 break;
526 case PointerFromInt:
527 // check for null pointer constant (C99 6.3.2.3p3)
528 if (!argExpr->isNullPointerConstant(Context)) {
529 Diag(l, diag::ext_typecheck_passing_pointer_int,
530 lhsType.getAsString(), rhsType.getAsString(),
531 Fn->getSourceRange(), argExpr->getSourceRange());
532 }
533 break;
534 case IntFromPointer:
535 Diag(l, diag::ext_typecheck_passing_pointer_int,
536 lhsType.getAsString(), rhsType.getAsString(),
537 Fn->getSourceRange(), argExpr->getSourceRange());
538 break;
539 case IncompatiblePointer:
540 Diag(l, diag::ext_typecheck_passing_incompatible_pointer,
541 rhsType.getAsString(), lhsType.getAsString(),
542 Fn->getSourceRange(), argExpr->getSourceRange());
543 break;
544 case CompatiblePointerDiscardsQualifiers:
545 Diag(l, diag::ext_typecheck_passing_discards_qualifiers,
546 rhsType.getAsString(), lhsType.getAsString(),
547 Fn->getSourceRange(), argExpr->getSourceRange());
548 break;
549 case Incompatible:
550 return Diag(l, diag::err_typecheck_passing_incompatible,
551 rhsType.getAsString(), lhsType.getAsString(),
552 Fn->getSourceRange(), argExpr->getSourceRange());
553 }
554 }
555 // Even if the types checked, bail if we had the wrong number of arguments.
556 if (NumArgsInCall != NumArgsInProto && !proto->isVariadic())
557 return true;
558 }
Chris Lattner2e64c072007-08-10 20:18:51 +0000559
560 // Do special checking on direct calls to functions.
561 if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
562 if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr()))
563 if (FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()))
Anders Carlsson3e9b43b2007-08-17 15:44:17 +0000564 if (CheckFunctionCall(Fn, LParenLoc, RParenLoc, FDecl, Args, NumArgsInCall))
Anders Carlssone7e7aa22007-08-17 05:31:46 +0000565 return true;
Chris Lattner2e64c072007-08-10 20:18:51 +0000566
Chris Lattner4b009652007-07-25 00:24:17 +0000567 return new CallExpr(Fn, Args, NumArgsInCall, resultType, RParenLoc);
568}
569
570Action::ExprResult Sema::
571ParseCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
572 SourceLocation RParenLoc, ExprTy *InitExpr) {
573 assert((Ty != 0) && "ParseCompoundLiteral(): missing type");
574 QualType literalType = QualType::getFromOpaquePtr(Ty);
575 // FIXME: put back this assert when initializers are worked out.
576 //assert((InitExpr != 0) && "ParseCompoundLiteral(): missing expression");
577 Expr *literalExpr = static_cast<Expr*>(InitExpr);
578
579 // FIXME: add semantic analysis (C99 6.5.2.5).
580 return new CompoundLiteralExpr(literalType, literalExpr);
581}
582
583Action::ExprResult Sema::
584ParseInitList(SourceLocation LParenLoc, ExprTy **InitList, unsigned NumInit,
585 SourceLocation RParenLoc) {
586 // FIXME: add semantic analysis (C99 6.7.8). This involves
587 // knowledge of the object being intialized. As a result, the code for
588 // doing the semantic analysis will likely be located elsewhere (i.e. in
589 // consumers of InitListExpr (e.g. ParseDeclarator, ParseCompoundLiteral).
590 return false; // FIXME instantiate an InitListExpr.
591}
592
593Action::ExprResult Sema::
594ParseCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
595 SourceLocation RParenLoc, ExprTy *Op) {
596 assert((Ty != 0) && (Op != 0) && "ParseCastExpr(): missing type or expr");
597
598 Expr *castExpr = static_cast<Expr*>(Op);
599 QualType castType = QualType::getFromOpaquePtr(Ty);
600
601 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
602 // type needs to be scalar.
603 if (!castType->isScalarType() && !castType->isVoidType()) {
604 return Diag(LParenLoc, diag::err_typecheck_cond_expect_scalar,
605 castType.getAsString(), SourceRange(LParenLoc, RParenLoc));
606 }
607 if (!castExpr->getType()->isScalarType()) {
608 return Diag(castExpr->getLocStart(),
609 diag::err_typecheck_expect_scalar_operand,
610 castExpr->getType().getAsString(), castExpr->getSourceRange());
611 }
612 return new CastExpr(castType, castExpr, LParenLoc);
613}
614
615inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
616 Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
617 UsualUnaryConversions(cond);
618 UsualUnaryConversions(lex);
619 UsualUnaryConversions(rex);
620 QualType condT = cond->getType();
621 QualType lexT = lex->getType();
622 QualType rexT = rex->getType();
623
624 // first, check the condition.
625 if (!condT->isScalarType()) { // C99 6.5.15p2
626 Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar,
627 condT.getAsString());
628 return QualType();
629 }
630 // now check the two expressions.
631 if (lexT->isArithmeticType() && rexT->isArithmeticType()) { // C99 6.5.15p3,5
632 UsualArithmeticConversions(lex, rex);
633 return lex->getType();
634 }
Chris Lattner71225142007-07-31 21:27:01 +0000635 if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
636 if (const RecordType *RHSRT = rexT->getAsRecordType()) {
637
638 if (LHSRT->getDecl()->getIdentifier() ==RHSRT->getDecl()->getIdentifier())
639 return lexT;
640
Chris Lattner4b009652007-07-25 00:24:17 +0000641 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
642 lexT.getAsString(), rexT.getAsString(),
643 lex->getSourceRange(), rex->getSourceRange());
644 return QualType();
645 }
646 }
647 // C99 6.5.15p3
648 if (lexT->isPointerType() && rex->isNullPointerConstant(Context))
649 return lexT;
650 if (rexT->isPointerType() && lex->isNullPointerConstant(Context))
651 return rexT;
652
Chris Lattner71225142007-07-31 21:27:01 +0000653 if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
654 if (const PointerType *RHSPT = rexT->getAsPointerType()) {
655 // get the "pointed to" types
656 QualType lhptee = LHSPT->getPointeeType();
657 QualType rhptee = RHSPT->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000658
Chris Lattner71225142007-07-31 21:27:01 +0000659 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
660 if (lhptee->isVoidType() &&
661 (rhptee->isObjectType() || rhptee->isIncompleteType()))
662 return lexT;
663 if (rhptee->isVoidType() &&
664 (lhptee->isObjectType() || lhptee->isIncompleteType()))
665 return rexT;
Chris Lattner4b009652007-07-25 00:24:17 +0000666
Chris Lattner71225142007-07-31 21:27:01 +0000667 if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
668 rhptee.getUnqualifiedType())) {
669 Diag(questionLoc, diag::ext_typecheck_cond_incompatible_pointers,
670 lexT.getAsString(), rexT.getAsString(),
671 lex->getSourceRange(), rex->getSourceRange());
672 return lexT; // FIXME: this is an _ext - is this return o.k?
673 }
674 // The pointer types are compatible.
675 // C99 6.5.15p6: If both operands are pointers to compatible types *or* to
676 // differently qualified versions of compatible types, the result type is a
677 // pointer to an appropriately qualified version of the *composite* type.
678 return lexT; // FIXME: Need to return the composite type.
Chris Lattner4b009652007-07-25 00:24:17 +0000679 }
Chris Lattner4b009652007-07-25 00:24:17 +0000680 }
Chris Lattner71225142007-07-31 21:27:01 +0000681
Chris Lattner4b009652007-07-25 00:24:17 +0000682 if (lexT->isVoidType() && rexT->isVoidType()) // C99 6.5.15p3
683 return lexT;
684
685 Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands,
686 lexT.getAsString(), rexT.getAsString(),
687 lex->getSourceRange(), rex->getSourceRange());
688 return QualType();
689}
690
691/// ParseConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
692/// in the case of a the GNU conditional expr extension.
693Action::ExprResult Sema::ParseConditionalOp(SourceLocation QuestionLoc,
694 SourceLocation ColonLoc,
695 ExprTy *Cond, ExprTy *LHS,
696 ExprTy *RHS) {
697 Expr *CondExpr = (Expr *) Cond;
698 Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
699 QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
700 RHSExpr, QuestionLoc);
701 if (result.isNull())
702 return true;
703 return new ConditionalOperator(CondExpr, LHSExpr, RHSExpr, result);
704}
705
706// promoteExprToType - a helper function to ensure we create exactly one
707// ImplicitCastExpr. As a convenience (to the caller), we return the type.
708static void promoteExprToType(Expr *&expr, QualType type) {
709 if (ImplicitCastExpr *impCast = dyn_cast<ImplicitCastExpr>(expr))
710 impCast->setType(type);
711 else
712 expr = new ImplicitCastExpr(type, expr);
713 return;
714}
715
716/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
717void Sema::DefaultFunctionArrayConversion(Expr *&e) {
718 QualType t = e->getType();
719 assert(!t.isNull() && "DefaultFunctionArrayConversion - missing type");
720
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000721 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000722 promoteExprToType(e, ref->getReferenceeType()); // C++ [expr]
723 t = e->getType();
724 }
725 if (t->isFunctionType())
726 promoteExprToType(e, Context.getPointerType(t));
Chris Lattnere35a1042007-07-31 19:29:30 +0000727 else if (const ArrayType *ary = t->getAsArrayType())
Chris Lattner4b009652007-07-25 00:24:17 +0000728 promoteExprToType(e, Context.getPointerType(ary->getElementType()));
729}
730
731/// UsualUnaryConversion - Performs various conversions that are common to most
732/// operators (C99 6.3). The conversions of array and function types are
733/// sometimes surpressed. For example, the array->pointer conversion doesn't
734/// apply if the array is an argument to the sizeof or address (&) operators.
735/// In these instances, this routine should *not* be called.
736void Sema::UsualUnaryConversions(Expr *&expr) {
737 QualType t = expr->getType();
738 assert(!t.isNull() && "UsualUnaryConversions - missing type");
739
Chris Lattnerf0c4a0a2007-07-31 16:56:34 +0000740 if (const ReferenceType *ref = t->getAsReferenceType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000741 promoteExprToType(expr, ref->getReferenceeType()); // C++ [expr]
742 t = expr->getType();
743 }
744 if (t->isPromotableIntegerType()) // C99 6.3.1.1p2
745 promoteExprToType(expr, Context.IntTy);
746 else
747 DefaultFunctionArrayConversion(expr);
748}
749
750/// UsualArithmeticConversions - Performs various conversions that are common to
751/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
752/// routine returns the first non-arithmetic type found. The client is
753/// responsible for emitting appropriate error diagnostics.
754void Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr) {
755 UsualUnaryConversions(lhsExpr);
756 UsualUnaryConversions(rhsExpr);
757
758 QualType lhs = lhsExpr->getType();
759 QualType rhs = rhsExpr->getType();
760
761 // If both types are identical, no conversion is needed.
762 if (lhs == rhs)
763 return;
764
765 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
766 // The caller can deal with this (e.g. pointer + int).
767 if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
768 return;
769
770 // At this point, we have two different arithmetic types.
771
772 // Handle complex types first (C99 6.3.1.8p1).
773 if (lhs->isComplexType() || rhs->isComplexType()) {
774 // if we have an integer operand, the result is the complex type.
775 if (rhs->isIntegerType()) { // convert the rhs to the lhs complex type.
776 promoteExprToType(rhsExpr, lhs);
777 return;
778 }
779 if (lhs->isIntegerType()) { // convert the lhs to the rhs complex type.
780 promoteExprToType(lhsExpr, rhs);
781 return;
782 }
783 // Two complex types. Convert the smaller operand to the bigger result.
784 if (Context.maxComplexType(lhs, rhs) == lhs) { // convert the rhs
785 promoteExprToType(rhsExpr, lhs);
786 return;
787 }
788 promoteExprToType(lhsExpr, rhs); // convert the lhs
789 return;
790 }
791 // Now handle "real" floating types (i.e. float, double, long double).
792 if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
793 // if we have an integer operand, the result is the real floating type.
794 if (rhs->isIntegerType()) { // convert rhs to the lhs floating point type.
795 promoteExprToType(rhsExpr, lhs);
796 return;
797 }
798 if (lhs->isIntegerType()) { // convert lhs to the rhs floating point type.
799 promoteExprToType(lhsExpr, rhs);
800 return;
801 }
802 // We have two real floating types, float/complex combos were handled above.
803 // Convert the smaller operand to the bigger result.
804 if (Context.maxFloatingType(lhs, rhs) == lhs) { // convert the rhs
805 promoteExprToType(rhsExpr, lhs);
806 return;
807 }
808 promoteExprToType(lhsExpr, rhs); // convert the lhs
809 return;
810 }
811 // Finally, we have two differing integer types.
812 if (Context.maxIntegerType(lhs, rhs) == lhs) { // convert the rhs
813 promoteExprToType(rhsExpr, lhs);
814 return;
815 }
816 promoteExprToType(lhsExpr, rhs); // convert the lhs
817 return;
818}
819
820// CheckPointerTypesForAssignment - This is a very tricky routine (despite
821// being closely modeled after the C99 spec:-). The odd characteristic of this
822// routine is it effectively iqnores the qualifiers on the top level pointee.
823// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
824// FIXME: add a couple examples in this comment.
825Sema::AssignmentCheckResult
826Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
827 QualType lhptee, rhptee;
828
829 // get the "pointed to" type (ignoring qualifiers at the top level)
Chris Lattner71225142007-07-31 21:27:01 +0000830 lhptee = lhsType->getAsPointerType()->getPointeeType();
831 rhptee = rhsType->getAsPointerType()->getPointeeType();
Chris Lattner4b009652007-07-25 00:24:17 +0000832
833 // make sure we operate on the canonical type
834 lhptee = lhptee.getCanonicalType();
835 rhptee = rhptee.getCanonicalType();
836
837 AssignmentCheckResult r = Compatible;
838
839 // C99 6.5.16.1p1: This following citation is common to constraints
840 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
841 // qualifiers of the type *pointed to* by the right;
842 if ((lhptee.getQualifiers() & rhptee.getQualifiers()) !=
843 rhptee.getQualifiers())
844 r = CompatiblePointerDiscardsQualifiers;
845
846 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
847 // incomplete type and the other is a pointer to a qualified or unqualified
848 // version of void...
849 if (lhptee.getUnqualifiedType()->isVoidType() &&
850 (rhptee->isObjectType() || rhptee->isIncompleteType()))
851 ;
852 else if (rhptee.getUnqualifiedType()->isVoidType() &&
853 (lhptee->isObjectType() || lhptee->isIncompleteType()))
854 ;
855 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
856 // unqualified versions of compatible types, ...
857 else if (!Type::typesAreCompatible(lhptee.getUnqualifiedType(),
858 rhptee.getUnqualifiedType()))
859 r = IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
860 return r;
861}
862
863/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
864/// has code to accommodate several GCC extensions when type checking
865/// pointers. Here are some objectionable examples that GCC considers warnings:
866///
867/// int a, *pint;
868/// short *pshort;
869/// struct foo *pfoo;
870///
871/// pint = pshort; // warning: assignment from incompatible pointer type
872/// a = pint; // warning: assignment makes integer from pointer without a cast
873/// pint = a; // warning: assignment makes pointer from integer without a cast
874/// pint = pfoo; // warning: assignment from incompatible pointer type
875///
876/// As a result, the code for dealing with pointers is more complex than the
877/// C99 spec dictates.
878/// Note: the warning above turn into errors when -pedantic-errors is enabled.
879///
880Sema::AssignmentCheckResult
881Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
882 if (lhsType == rhsType) // common case, fast path...
883 return Compatible;
884
885 if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) {
886 if (lhsType->isVectorType() || rhsType->isVectorType()) {
887 if (lhsType.getCanonicalType() != rhsType.getCanonicalType())
888 return Incompatible;
889 }
890 return Compatible;
891 } else if (lhsType->isPointerType()) {
892 if (rhsType->isIntegerType())
893 return PointerFromInt;
894
895 if (rhsType->isPointerType())
896 return CheckPointerTypesForAssignment(lhsType, rhsType);
897 } else if (rhsType->isPointerType()) {
898 // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
899 if ((lhsType->isIntegerType()) && (lhsType != Context.BoolTy))
900 return IntFromPointer;
901
902 if (lhsType->isPointerType())
903 return CheckPointerTypesForAssignment(lhsType, rhsType);
904 } else if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
905 if (Type::tagTypesAreCompatible(lhsType, rhsType))
906 return Compatible;
907 } else if (lhsType->isReferenceType() || rhsType->isReferenceType()) {
908 if (Type::referenceTypesAreCompatible(lhsType, rhsType))
909 return Compatible;
910 }
911 return Incompatible;
912}
913
914Sema::AssignmentCheckResult
915Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
916 // This check seems unnatural, however it is necessary to insure the proper
917 // conversion of functions/arrays. If the conversion were done for all
918 // DeclExpr's (created by ParseIdentifierExpr), it would mess up the unary
919 // expressions that surpress this implicit conversion (&, sizeof).
920 DefaultFunctionArrayConversion(rExpr);
921
922 return CheckAssignmentConstraints(lhsType, rExpr->getType());
923}
924
925Sema::AssignmentCheckResult
926Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
927 return CheckAssignmentConstraints(lhsType, rhsType);
928}
929
930inline void Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) {
931 Diag(loc, diag::err_typecheck_invalid_operands,
932 lex->getType().getAsString(), rex->getType().getAsString(),
933 lex->getSourceRange(), rex->getSourceRange());
934}
935
936inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex,
937 Expr *&rex) {
938 QualType lhsType = lex->getType(), rhsType = rex->getType();
939
940 // make sure the vector types are identical.
941 if (lhsType == rhsType)
942 return lhsType;
943 // You cannot convert between vector values of different size.
944 Diag(loc, diag::err_typecheck_vector_not_convertable,
945 lex->getType().getAsString(), rex->getType().getAsString(),
946 lex->getSourceRange(), rex->getSourceRange());
947 return QualType();
948}
949
950inline QualType Sema::CheckMultiplyDivideOperands(
951 Expr *&lex, Expr *&rex, SourceLocation loc)
952{
953 QualType lhsType = lex->getType(), rhsType = rex->getType();
954
955 if (lhsType->isVectorType() || rhsType->isVectorType())
956 return CheckVectorOperands(loc, lex, rex);
957
958 UsualArithmeticConversions(lex, rex);
959
960 // handle the common case first (both operands are arithmetic).
961 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
962 return lex->getType();
963 InvalidOperands(loc, lex, rex);
964 return QualType();
965}
966
967inline QualType Sema::CheckRemainderOperands(
968 Expr *&lex, Expr *&rex, SourceLocation loc)
969{
970 QualType lhsType = lex->getType(), rhsType = rex->getType();
971
972 UsualArithmeticConversions(lex, rex);
973
974 // handle the common case first (both operands are arithmetic).
975 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
976 return lex->getType();
977 InvalidOperands(loc, lex, rex);
978 return QualType();
979}
980
981inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
982 Expr *&lex, Expr *&rex, SourceLocation loc)
983{
984 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
985 return CheckVectorOperands(loc, lex, rex);
986
987 UsualArithmeticConversions(lex, rex);
988
989 // handle the common case first (both operands are arithmetic).
990 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
991 return lex->getType();
992
993 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
994 return lex->getType();
995 if (lex->getType()->isIntegerType() && rex->getType()->isPointerType())
996 return rex->getType();
997 InvalidOperands(loc, lex, rex);
998 return QualType();
999}
1000
1001inline QualType Sema::CheckSubtractionOperands( // C99 6.5.6
1002 Expr *&lex, Expr *&rex, SourceLocation loc)
1003{
1004 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1005 return CheckVectorOperands(loc, lex, rex);
1006
1007 UsualArithmeticConversions(lex, rex);
1008
1009 // handle the common case first (both operands are arithmetic).
1010 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1011 return lex->getType();
1012
1013 if (lex->getType()->isPointerType() && rex->getType()->isIntegerType())
1014 return lex->getType();
1015 if (lex->getType()->isPointerType() && rex->getType()->isPointerType())
1016 return Context.getPointerDiffType();
1017 InvalidOperands(loc, lex, rex);
1018 return QualType();
1019}
1020
1021inline QualType Sema::CheckShiftOperands( // C99 6.5.7
1022 Expr *&lex, Expr *&rex, SourceLocation loc)
1023{
1024 // FIXME: Shifts don't perform usual arithmetic conversions. This is wrong
1025 // for int << longlong -> the result type should be int, not long long.
1026 UsualArithmeticConversions(lex, rex);
1027
1028 // handle the common case first (both operands are arithmetic).
1029 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1030 return lex->getType();
1031 InvalidOperands(loc, lex, rex);
1032 return QualType();
1033}
1034
1035inline QualType Sema::CheckRelationalOperands( // C99 6.5.8
1036 Expr *&lex, Expr *&rex, SourceLocation loc)
1037{
Steve Naroffecc4fa12007-08-10 18:26:40 +00001038 // C99 6.5.8p3
1039 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1040 UsualArithmeticConversions(lex, rex);
1041 else {
1042 UsualUnaryConversions(lex);
1043 UsualUnaryConversions(rex);
1044 }
Chris Lattner4b009652007-07-25 00:24:17 +00001045 QualType lType = lex->getType();
1046 QualType rType = rex->getType();
1047
1048 if (lType->isRealType() && rType->isRealType())
1049 return Context.IntTy;
1050
Steve Naroff4462cb02007-08-16 21:48:38 +00001051 // All of the following pointer related warnings are GCC extensions. One
1052 // day, we can consider making them errors (when -pedantic-errors is enabled).
1053 if (lType->isPointerType() && rType->isPointerType()) {
1054 if (!Type::pointerTypesAreCompatible(lType, rType)) {
1055 Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1056 lType.getAsString(), rType.getAsString(),
1057 lex->getSourceRange(), rex->getSourceRange());
1058 promoteExprToType(rex, lType); // promote the pointer to pointer
Chris Lattner4b009652007-07-25 00:24:17 +00001059 }
Steve Naroff4462cb02007-08-16 21:48:38 +00001060 return Context.IntTy;
1061 }
1062 if (lType->isPointerType() && rType->isIntegerType()) {
1063 if (!rex->isNullPointerConstant(Context)) {
1064 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1065 lType.getAsString(), rType.getAsString(),
1066 lex->getSourceRange(), rex->getSourceRange());
1067 promoteExprToType(rex, lType); // promote the integer to pointer
Chris Lattner4b009652007-07-25 00:24:17 +00001068 }
Steve Naroff4462cb02007-08-16 21:48:38 +00001069 return Context.IntTy;
1070 }
1071 if (lType->isIntegerType() && rType->isPointerType()) {
1072 if (!lex->isNullPointerConstant(Context)) {
1073 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1074 lType.getAsString(), rType.getAsString(),
1075 lex->getSourceRange(), rex->getSourceRange());
1076 promoteExprToType(lex, rType); // promote the integer to pointer
1077 }
1078 return Context.IntTy;
Chris Lattner4b009652007-07-25 00:24:17 +00001079 }
1080 InvalidOperands(loc, lex, rex);
1081 return QualType();
1082}
1083
1084inline QualType Sema::CheckEqualityOperands( // C99 6.5.9
1085 Expr *&lex, Expr *&rex, SourceLocation loc)
1086{
Steve Naroffecc4fa12007-08-10 18:26:40 +00001087 // C99 6.5.9p4
1088 if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
1089 UsualArithmeticConversions(lex, rex);
1090 else {
1091 UsualUnaryConversions(lex);
1092 UsualUnaryConversions(rex);
1093 }
Chris Lattner4b009652007-07-25 00:24:17 +00001094 QualType lType = lex->getType();
1095 QualType rType = rex->getType();
1096
1097 if (lType->isArithmeticType() && rType->isArithmeticType())
1098 return Context.IntTy;
1099
Steve Naroff4462cb02007-08-16 21:48:38 +00001100 // All of the following pointer related warnings are GCC extensions. One
1101 // day, we can consider making them errors (when -pedantic-errors is enabled).
1102 if (lType->isPointerType() && rType->isPointerType()) {
1103 if (!Type::pointerTypesAreCompatible(lType, rType)) {
1104 Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers,
1105 lType.getAsString(), rType.getAsString(),
1106 lex->getSourceRange(), rex->getSourceRange());
1107 promoteExprToType(rex, lType); // promote the pointer to pointer
Chris Lattner4b009652007-07-25 00:24:17 +00001108 }
Steve Naroff4462cb02007-08-16 21:48:38 +00001109 return Context.IntTy;
1110 }
1111 if (lType->isPointerType() && rType->isIntegerType()) {
1112 if (!rex->isNullPointerConstant(Context)) {
1113 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1114 lType.getAsString(), rType.getAsString(),
1115 lex->getSourceRange(), rex->getSourceRange());
1116 promoteExprToType(rex, lType); // promote the integer to pointer
Chris Lattner4b009652007-07-25 00:24:17 +00001117 }
Steve Naroff4462cb02007-08-16 21:48:38 +00001118 return Context.IntTy;
1119 }
1120 if (lType->isIntegerType() && rType->isPointerType()) {
1121 if (!lex->isNullPointerConstant(Context)) {
1122 Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer,
1123 lType.getAsString(), rType.getAsString(),
1124 lex->getSourceRange(), rex->getSourceRange());
1125 promoteExprToType(lex, rType); // promote the integer to pointer
1126 }
1127 return Context.IntTy;
Chris Lattner4b009652007-07-25 00:24:17 +00001128 }
1129 InvalidOperands(loc, lex, rex);
1130 return QualType();
1131}
1132
1133inline QualType Sema::CheckBitwiseOperands(
1134 Expr *&lex, Expr *&rex, SourceLocation loc)
1135{
1136 if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
1137 return CheckVectorOperands(loc, lex, rex);
1138
1139 UsualArithmeticConversions(lex, rex);
1140
1141 if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
1142 return lex->getType();
1143 InvalidOperands(loc, lex, rex);
1144 return QualType();
1145}
1146
1147inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
1148 Expr *&lex, Expr *&rex, SourceLocation loc)
1149{
1150 UsualUnaryConversions(lex);
1151 UsualUnaryConversions(rex);
1152
1153 if (lex->getType()->isScalarType() || rex->getType()->isScalarType())
1154 return Context.IntTy;
1155 InvalidOperands(loc, lex, rex);
1156 return QualType();
1157}
1158
1159inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1
1160 Expr *lex, Expr *rex, SourceLocation loc, QualType compoundType)
1161{
1162 QualType lhsType = lex->getType();
1163 QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType;
1164 bool hadError = false;
1165 Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue();
1166
1167 switch (mlval) { // C99 6.5.16p2
1168 case Expr::MLV_Valid:
1169 break;
1170 case Expr::MLV_ConstQualified:
1171 Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange());
1172 hadError = true;
1173 break;
1174 case Expr::MLV_ArrayType:
1175 Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue,
1176 lhsType.getAsString(), lex->getSourceRange());
1177 return QualType();
1178 case Expr::MLV_NotObjectType:
1179 Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue,
1180 lhsType.getAsString(), lex->getSourceRange());
1181 return QualType();
1182 case Expr::MLV_InvalidExpression:
1183 Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue,
1184 lex->getSourceRange());
1185 return QualType();
1186 case Expr::MLV_IncompleteType:
1187 case Expr::MLV_IncompleteVoidType:
1188 Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
1189 lhsType.getAsString(), lex->getSourceRange());
1190 return QualType();
Steve Naroffba67f692007-07-30 03:29:09 +00001191 case Expr::MLV_DuplicateVectorComponents:
1192 Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue,
1193 lex->getSourceRange());
1194 return QualType();
Chris Lattner4b009652007-07-25 00:24:17 +00001195 }
1196 AssignmentCheckResult result;
1197
1198 if (compoundType.isNull())
1199 result = CheckSingleAssignmentConstraints(lhsType, rex);
1200 else
1201 result = CheckCompoundAssignmentConstraints(lhsType, rhsType);
Steve Naroff7cbb1462007-07-31 12:34:36 +00001202
Chris Lattner4b009652007-07-25 00:24:17 +00001203 // decode the result (notice that extensions still return a type).
1204 switch (result) {
1205 case Compatible:
1206 break;
1207 case Incompatible:
1208 Diag(loc, diag::err_typecheck_assign_incompatible,
1209 lhsType.getAsString(), rhsType.getAsString(),
1210 lex->getSourceRange(), rex->getSourceRange());
1211 hadError = true;
1212 break;
1213 case PointerFromInt:
1214 // check for null pointer constant (C99 6.3.2.3p3)
1215 if (compoundType.isNull() && !rex->isNullPointerConstant(Context)) {
1216 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1217 lhsType.getAsString(), rhsType.getAsString(),
1218 lex->getSourceRange(), rex->getSourceRange());
1219 }
1220 break;
1221 case IntFromPointer:
1222 Diag(loc, diag::ext_typecheck_assign_pointer_int,
1223 lhsType.getAsString(), rhsType.getAsString(),
1224 lex->getSourceRange(), rex->getSourceRange());
1225 break;
1226 case IncompatiblePointer:
1227 Diag(loc, diag::ext_typecheck_assign_incompatible_pointer,
1228 lhsType.getAsString(), rhsType.getAsString(),
1229 lex->getSourceRange(), rex->getSourceRange());
1230 break;
1231 case CompatiblePointerDiscardsQualifiers:
1232 Diag(loc, diag::ext_typecheck_assign_discards_qualifiers,
1233 lhsType.getAsString(), rhsType.getAsString(),
1234 lex->getSourceRange(), rex->getSourceRange());
1235 break;
1236 }
1237 // C99 6.5.16p3: The type of an assignment expression is the type of the
1238 // left operand unless the left operand has qualified type, in which case
1239 // it is the unqualified version of the type of the left operand.
1240 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
1241 // is converted to the type of the assignment expression (above).
1242 // C++ 5.17p1: the type of the assignment expression is that of its left oprdu.
1243 return hadError ? QualType() : lhsType.getUnqualifiedType();
1244}
1245
1246inline QualType Sema::CheckCommaOperands( // C99 6.5.17
1247 Expr *&lex, Expr *&rex, SourceLocation loc) {
1248 UsualUnaryConversions(rex);
1249 return rex->getType();
1250}
1251
1252/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
1253/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
1254QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) {
1255 QualType resType = op->getType();
1256 assert(!resType.isNull() && "no type for increment/decrement expression");
1257
1258 // C99 6.5.2.4p1
1259 if (const PointerType *pt = dyn_cast<PointerType>(resType)) {
1260 if (!pt->getPointeeType()->isObjectType()) { // C99 6.5.2.4p2, 6.5.6p2
1261 Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type,
1262 resType.getAsString(), op->getSourceRange());
1263 return QualType();
1264 }
1265 } else if (!resType->isRealType()) {
1266 // FIXME: Allow Complex as a GCC extension.
1267 Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement,
1268 resType.getAsString(), op->getSourceRange());
1269 return QualType();
1270 }
1271 // At this point, we know we have a real or pointer type. Now make sure
1272 // the operand is a modifiable lvalue.
1273 Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue();
1274 if (mlval != Expr::MLV_Valid) {
1275 // FIXME: emit a more precise diagnostic...
1276 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr,
1277 op->getSourceRange());
1278 return QualType();
1279 }
1280 return resType;
1281}
1282
1283/// getPrimaryDeclaration - Helper function for CheckAddressOfOperand().
1284/// This routine allows us to typecheck complex/recursive expressions
1285/// where the declaration is needed for type checking. Here are some
1286/// examples: &s.xx, &s.zz[1].yy, &(1+2), &(XX), &"123"[2].
1287static Decl *getPrimaryDeclaration(Expr *e) {
1288 switch (e->getStmtClass()) {
1289 case Stmt::DeclRefExprClass:
1290 return cast<DeclRefExpr>(e)->getDecl();
1291 case Stmt::MemberExprClass:
1292 return getPrimaryDeclaration(cast<MemberExpr>(e)->getBase());
1293 case Stmt::ArraySubscriptExprClass:
1294 return getPrimaryDeclaration(cast<ArraySubscriptExpr>(e)->getBase());
1295 case Stmt::CallExprClass:
1296 return getPrimaryDeclaration(cast<CallExpr>(e)->getCallee());
1297 case Stmt::UnaryOperatorClass:
1298 return getPrimaryDeclaration(cast<UnaryOperator>(e)->getSubExpr());
1299 case Stmt::ParenExprClass:
1300 return getPrimaryDeclaration(cast<ParenExpr>(e)->getSubExpr());
1301 default:
1302 return 0;
1303 }
1304}
1305
1306/// CheckAddressOfOperand - The operand of & must be either a function
1307/// designator or an lvalue designating an object. If it is an lvalue, the
1308/// object cannot be declared with storage class register or be a bit field.
1309/// Note: The usual conversions are *not* applied to the operand of the &
1310/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
1311QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
1312 Decl *dcl = getPrimaryDeclaration(op);
1313 Expr::isLvalueResult lval = op->isLvalue();
1314
1315 if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
1316 if (dcl && isa<FunctionDecl>(dcl)) // allow function designators
1317 ;
1318 else { // FIXME: emit more specific diag...
1319 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof,
1320 op->getSourceRange());
1321 return QualType();
1322 }
1323 } else if (dcl) {
1324 // We have an lvalue with a decl. Make sure the decl is not declared
1325 // with the register storage-class specifier.
1326 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
1327 if (vd->getStorageClass() == VarDecl::Register) {
1328 Diag(OpLoc, diag::err_typecheck_address_of_register,
1329 op->getSourceRange());
1330 return QualType();
1331 }
1332 } else
1333 assert(0 && "Unknown/unexpected decl type");
1334
1335 // FIXME: add check for bitfields!
1336 }
1337 // If the operand has type "type", the result has type "pointer to type".
1338 return Context.getPointerType(op->getType());
1339}
1340
1341QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) {
1342 UsualUnaryConversions(op);
1343 QualType qType = op->getType();
1344
Chris Lattner7931f4a2007-07-31 16:53:04 +00001345 if (const PointerType *PT = qType->getAsPointerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +00001346 QualType ptype = PT->getPointeeType();
1347 // C99 6.5.3.2p4. "if it points to an object,...".
1348 if (ptype->isIncompleteType()) { // An incomplete type is not an object
1349 // GCC compat: special case 'void *' (treat as warning).
1350 if (ptype->isVoidType()) {
1351 Diag(OpLoc, diag::ext_typecheck_deref_ptr_to_void,
1352 qType.getAsString(), op->getSourceRange());
1353 } else {
1354 Diag(OpLoc, diag::err_typecheck_deref_incomplete_type,
1355 ptype.getAsString(), op->getSourceRange());
1356 return QualType();
1357 }
1358 }
1359 return ptype;
1360 }
1361 Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer,
1362 qType.getAsString(), op->getSourceRange());
1363 return QualType();
1364}
1365
1366static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
1367 tok::TokenKind Kind) {
1368 BinaryOperator::Opcode Opc;
1369 switch (Kind) {
1370 default: assert(0 && "Unknown binop!");
1371 case tok::star: Opc = BinaryOperator::Mul; break;
1372 case tok::slash: Opc = BinaryOperator::Div; break;
1373 case tok::percent: Opc = BinaryOperator::Rem; break;
1374 case tok::plus: Opc = BinaryOperator::Add; break;
1375 case tok::minus: Opc = BinaryOperator::Sub; break;
1376 case tok::lessless: Opc = BinaryOperator::Shl; break;
1377 case tok::greatergreater: Opc = BinaryOperator::Shr; break;
1378 case tok::lessequal: Opc = BinaryOperator::LE; break;
1379 case tok::less: Opc = BinaryOperator::LT; break;
1380 case tok::greaterequal: Opc = BinaryOperator::GE; break;
1381 case tok::greater: Opc = BinaryOperator::GT; break;
1382 case tok::exclaimequal: Opc = BinaryOperator::NE; break;
1383 case tok::equalequal: Opc = BinaryOperator::EQ; break;
1384 case tok::amp: Opc = BinaryOperator::And; break;
1385 case tok::caret: Opc = BinaryOperator::Xor; break;
1386 case tok::pipe: Opc = BinaryOperator::Or; break;
1387 case tok::ampamp: Opc = BinaryOperator::LAnd; break;
1388 case tok::pipepipe: Opc = BinaryOperator::LOr; break;
1389 case tok::equal: Opc = BinaryOperator::Assign; break;
1390 case tok::starequal: Opc = BinaryOperator::MulAssign; break;
1391 case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
1392 case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
1393 case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
1394 case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
1395 case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
1396 case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
1397 case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
1398 case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
1399 case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
1400 case tok::comma: Opc = BinaryOperator::Comma; break;
1401 }
1402 return Opc;
1403}
1404
1405static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
1406 tok::TokenKind Kind) {
1407 UnaryOperator::Opcode Opc;
1408 switch (Kind) {
1409 default: assert(0 && "Unknown unary op!");
1410 case tok::plusplus: Opc = UnaryOperator::PreInc; break;
1411 case tok::minusminus: Opc = UnaryOperator::PreDec; break;
1412 case tok::amp: Opc = UnaryOperator::AddrOf; break;
1413 case tok::star: Opc = UnaryOperator::Deref; break;
1414 case tok::plus: Opc = UnaryOperator::Plus; break;
1415 case tok::minus: Opc = UnaryOperator::Minus; break;
1416 case tok::tilde: Opc = UnaryOperator::Not; break;
1417 case tok::exclaim: Opc = UnaryOperator::LNot; break;
1418 case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break;
1419 case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break;
1420 case tok::kw___real: Opc = UnaryOperator::Real; break;
1421 case tok::kw___imag: Opc = UnaryOperator::Imag; break;
1422 case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
1423 }
1424 return Opc;
1425}
1426
1427// Binary Operators. 'Tok' is the token for the operator.
1428Action::ExprResult Sema::ParseBinOp(SourceLocation TokLoc, tok::TokenKind Kind,
1429 ExprTy *LHS, ExprTy *RHS) {
1430 BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
1431 Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
1432
1433 assert((lhs != 0) && "ParseBinOp(): missing left expression");
1434 assert((rhs != 0) && "ParseBinOp(): missing right expression");
1435
1436 QualType ResultTy; // Result type of the binary operator.
1437 QualType CompTy; // Computation type for compound assignments (e.g. '+=')
1438
1439 switch (Opc) {
1440 default:
1441 assert(0 && "Unknown binary expr!");
1442 case BinaryOperator::Assign:
1443 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType());
1444 break;
1445 case BinaryOperator::Mul:
1446 case BinaryOperator::Div:
1447 ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1448 break;
1449 case BinaryOperator::Rem:
1450 ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1451 break;
1452 case BinaryOperator::Add:
1453 ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1454 break;
1455 case BinaryOperator::Sub:
1456 ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1457 break;
1458 case BinaryOperator::Shl:
1459 case BinaryOperator::Shr:
1460 ResultTy = CheckShiftOperands(lhs, rhs, TokLoc);
1461 break;
1462 case BinaryOperator::LE:
1463 case BinaryOperator::LT:
1464 case BinaryOperator::GE:
1465 case BinaryOperator::GT:
1466 ResultTy = CheckRelationalOperands(lhs, rhs, TokLoc);
1467 break;
1468 case BinaryOperator::EQ:
1469 case BinaryOperator::NE:
1470 ResultTy = CheckEqualityOperands(lhs, rhs, TokLoc);
1471 break;
1472 case BinaryOperator::And:
1473 case BinaryOperator::Xor:
1474 case BinaryOperator::Or:
1475 ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1476 break;
1477 case BinaryOperator::LAnd:
1478 case BinaryOperator::LOr:
1479 ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc);
1480 break;
1481 case BinaryOperator::MulAssign:
1482 case BinaryOperator::DivAssign:
1483 CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc);
1484 if (!CompTy.isNull())
1485 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1486 break;
1487 case BinaryOperator::RemAssign:
1488 CompTy = CheckRemainderOperands(lhs, rhs, TokLoc);
1489 if (!CompTy.isNull())
1490 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1491 break;
1492 case BinaryOperator::AddAssign:
1493 CompTy = CheckAdditionOperands(lhs, rhs, TokLoc);
1494 if (!CompTy.isNull())
1495 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1496 break;
1497 case BinaryOperator::SubAssign:
1498 CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc);
1499 if (!CompTy.isNull())
1500 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1501 break;
1502 case BinaryOperator::ShlAssign:
1503 case BinaryOperator::ShrAssign:
1504 CompTy = CheckShiftOperands(lhs, rhs, TokLoc);
1505 if (!CompTy.isNull())
1506 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1507 break;
1508 case BinaryOperator::AndAssign:
1509 case BinaryOperator::XorAssign:
1510 case BinaryOperator::OrAssign:
1511 CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc);
1512 if (!CompTy.isNull())
1513 ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy);
1514 break;
1515 case BinaryOperator::Comma:
1516 ResultTy = CheckCommaOperands(lhs, rhs, TokLoc);
1517 break;
1518 }
1519 if (ResultTy.isNull())
1520 return true;
1521 if (CompTy.isNull())
1522 return new BinaryOperator(lhs, rhs, Opc, ResultTy);
1523 else
1524 return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy);
1525}
1526
1527// Unary Operators. 'Tok' is the token for the operator.
1528Action::ExprResult Sema::ParseUnaryOp(SourceLocation OpLoc, tok::TokenKind Op,
1529 ExprTy *input) {
1530 Expr *Input = (Expr*)input;
1531 UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
1532 QualType resultType;
1533 switch (Opc) {
1534 default:
1535 assert(0 && "Unimplemented unary expr!");
1536 case UnaryOperator::PreInc:
1537 case UnaryOperator::PreDec:
1538 resultType = CheckIncrementDecrementOperand(Input, OpLoc);
1539 break;
1540 case UnaryOperator::AddrOf:
1541 resultType = CheckAddressOfOperand(Input, OpLoc);
1542 break;
1543 case UnaryOperator::Deref:
1544 resultType = CheckIndirectionOperand(Input, OpLoc);
1545 break;
1546 case UnaryOperator::Plus:
1547 case UnaryOperator::Minus:
1548 UsualUnaryConversions(Input);
1549 resultType = Input->getType();
1550 if (!resultType->isArithmeticType()) // C99 6.5.3.3p1
1551 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1552 resultType.getAsString());
1553 break;
1554 case UnaryOperator::Not: // bitwise complement
1555 UsualUnaryConversions(Input);
1556 resultType = Input->getType();
1557 if (!resultType->isIntegerType()) // C99 6.5.3.3p1
1558 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1559 resultType.getAsString());
1560 break;
1561 case UnaryOperator::LNot: // logical negation
1562 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
1563 DefaultFunctionArrayConversion(Input);
1564 resultType = Input->getType();
1565 if (!resultType->isScalarType()) // C99 6.5.3.3p1
1566 return Diag(OpLoc, diag::err_typecheck_unary_expr,
1567 resultType.getAsString());
1568 // LNot always has type int. C99 6.5.3.3p5.
1569 resultType = Context.IntTy;
1570 break;
1571 case UnaryOperator::SizeOf:
1572 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, true);
1573 break;
1574 case UnaryOperator::AlignOf:
1575 resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, false);
1576 break;
1577 case UnaryOperator::Extension:
1578 // FIXME: does __extension__ cause any promotions? I would think not.
1579 resultType = Input->getType();
1580 break;
1581 }
1582 if (resultType.isNull())
1583 return true;
1584 return new UnaryOperator(Input, Opc, resultType, OpLoc);
1585}
1586
1587/// ParseAddrLabel - Parse the GNU address of label extension: "&&foo".
1588Sema::ExprResult Sema::ParseAddrLabel(SourceLocation OpLoc,
1589 SourceLocation LabLoc,
1590 IdentifierInfo *LabelII) {
1591 // Look up the record for this label identifier.
1592 LabelStmt *&LabelDecl = LabelMap[LabelII];
1593
1594 // If we haven't seen this label yet, create a forward reference.
1595 if (LabelDecl == 0)
1596 LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
1597
1598 // Create the AST node. The address of a label always has type 'void*'.
Chris Lattnera0d03a72007-08-03 17:31:20 +00001599 return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
1600 Context.getPointerType(Context.VoidTy));
Chris Lattner4b009652007-07-25 00:24:17 +00001601}
1602
1603Sema::ExprResult Sema::ParseStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
1604 SourceLocation RPLoc) { // "({..})"
1605 Stmt *SubStmt = static_cast<Stmt*>(substmt);
1606 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
1607 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
1608
1609 // FIXME: there are a variety of strange constraints to enforce here, for
1610 // example, it is not possible to goto into a stmt expression apparently.
1611 // More semantic analysis is needed.
1612
1613 // FIXME: the last statement in the compount stmt has its value used. We
1614 // should not warn about it being unused.
1615
1616 // If there are sub stmts in the compound stmt, take the type of the last one
1617 // as the type of the stmtexpr.
1618 QualType Ty = Context.VoidTy;
1619
1620 if (!Compound->body_empty())
1621 if (Expr *LastExpr = dyn_cast<Expr>(Compound->body_back()))
1622 Ty = LastExpr->getType();
1623
1624 return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
1625}
Steve Naroff63bad2d2007-08-01 22:05:33 +00001626
Steve Naroff5b528922007-08-01 23:45:51 +00001627Sema::ExprResult Sema::ParseTypesCompatibleExpr(SourceLocation BuiltinLoc,
Steve Naroff63bad2d2007-08-01 22:05:33 +00001628 TypeTy *arg1, TypeTy *arg2,
1629 SourceLocation RPLoc) {
1630 QualType argT1 = QualType::getFromOpaquePtr(arg1);
1631 QualType argT2 = QualType::getFromOpaquePtr(arg2);
1632
1633 assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
1634
Steve Naroff5b528922007-08-01 23:45:51 +00001635 return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2, RPLoc);
Steve Naroff63bad2d2007-08-01 22:05:33 +00001636}
1637
Steve Naroff93c53012007-08-03 21:21:27 +00001638Sema::ExprResult Sema::ParseChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
1639 ExprTy *expr1, ExprTy *expr2,
1640 SourceLocation RPLoc) {
1641 Expr *CondExpr = static_cast<Expr*>(cond);
1642 Expr *LHSExpr = static_cast<Expr*>(expr1);
1643 Expr *RHSExpr = static_cast<Expr*>(expr2);
1644
1645 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
1646
1647 // The conditional expression is required to be a constant expression.
1648 llvm::APSInt condEval(32);
1649 SourceLocation ExpLoc;
1650 if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
1651 return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant,
1652 CondExpr->getSourceRange());
1653
1654 // If the condition is > zero, then the AST type is the same as the LSHExpr.
1655 QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
1656 RHSExpr->getType();
1657 return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
1658}
1659