blob: 50330e3f63db0b98a14372eb582d96e7daa3f15a [file] [log] [blame]
Douglas Gregord2baafd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregorbb461502008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregor10f3c502008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregor3d4492e2008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregorddfd9d52008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregore819caf2009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorfcb19192009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregore819caf2009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregore819caf2009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregord2baafd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorfcb19192009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregord2baafd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +0000119 RRefBinding = false;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000120 CopyConstructor = 0;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000121}
122
Douglas Gregord2baafd2008-10-21 16:13:35 +0000123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127 ImplicitConversionRank Rank = ICR_Exact_Match;
128 if (GetConversionRank(First) > Rank)
129 Rank = GetConversionRank(First);
130 if (GetConversionRank(Second) > Rank)
131 Rank = GetConversionRank(Second);
132 if (GetConversionRank(Third) > Rank)
133 Rank = GetConversionRank(Third);
134 return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146 // Note that FromType has not necessarily been transformed by the
147 // array-to-pointer or function-to-pointer implicit conversions, so
148 // check for their presence as well as checking whether FromType is
149 // a pointer.
150 if (ToType->isBooleanType() &&
Douglas Gregor80402cf2008-12-23 00:53:59 +0000151 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000152 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153 return true;
154
155 return false;
156}
157
Douglas Gregor14046502008-10-23 00:40:37 +0000158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169 // Note that FromType has not necessarily been transformed by the
170 // array-to-pointer implicit conversion, so check for its presence
171 // and redo the conversion to get a pointer.
172 if (First == ICK_Array_To_Pointer)
173 FromType = Context.getArrayDecayedType(FromType);
174
175 if (Second == ICK_Pointer_Conversion)
176 if (const PointerType* ToPtrType = ToType->getAsPointerType())
177 return ToPtrType->getPointeeType()->isVoidType();
178
179 return false;
180}
181
Douglas Gregord2baafd2008-10-21 16:13:35 +0000182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185 bool PrintedSomething = false;
186 if (First != ICK_Identity) {
187 fprintf(stderr, "%s", GetImplicitConversionName(First));
188 PrintedSomething = true;
189 }
190
191 if (Second != ICK_Identity) {
192 if (PrintedSomething) {
193 fprintf(stderr, " -> ");
194 }
195 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000196
197 if (CopyConstructor) {
198 fprintf(stderr, " (by copy constructor)");
199 } else if (DirectBinding) {
200 fprintf(stderr, " (direct reference binding)");
201 } else if (ReferenceBinding) {
202 fprintf(stderr, " (reference binding)");
203 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000204 PrintedSomething = true;
205 }
206
207 if (Third != ICK_Identity) {
208 if (PrintedSomething) {
209 fprintf(stderr, " -> ");
210 }
211 fprintf(stderr, "%s", GetImplicitConversionName(Third));
212 PrintedSomething = true;
213 }
214
215 if (!PrintedSomething) {
216 fprintf(stderr, "No conversions required");
217 }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223 if (Before.First || Before.Second || Before.Third) {
224 Before.DebugPrint();
225 fprintf(stderr, " -> ");
226 }
Chris Lattner271d4c22008-11-24 05:29:24 +0000227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000228 if (After.First || After.Second || After.Third) {
229 fprintf(stderr, " -> ");
230 After.DebugPrint();
231 }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237 switch (ConversionKind) {
238 case StandardConversion:
239 fprintf(stderr, "Standard conversion: ");
240 Standard.DebugPrint();
241 break;
242 case UserDefinedConversion:
243 fprintf(stderr, "User-defined conversion: ");
244 UserDefined.DebugPrint();
245 break;
246 case EllipsisConversion:
247 fprintf(stderr, "Ellipsis conversion");
248 break;
249 case BadConversion:
250 fprintf(stderr, "Bad conversion");
251 break;
252 }
253
254 fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267// void f(int, float); // #1
268// void f(int, int); // #2
269// int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1. By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290 // Is this new function an overload of every function in the
291 // overload set?
292 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293 FuncEnd = Ovl->function_end();
294 for (; Func != FuncEnd; ++Func) {
295 if (!IsOverload(New, *Func, MatchedDecl)) {
296 MatchedDecl = Func;
297 return false;
298 }
299 }
300
301 // This function overloads every function in the overload set.
302 return true;
303 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
304 // Is the function New an overload of the function Old?
305 QualType OldQType = Context.getCanonicalType(Old->getType());
306 QualType NewQType = Context.getCanonicalType(New->getType());
307
308 // Compare the signatures (C++ 1.3.10) of the two functions to
309 // determine whether they are overloads. If we find any mismatch
310 // in the signature, they are overloads.
311
312 // If either of these functions is a K&R-style function (no
313 // prototype), then we consider them to have matching signatures.
Douglas Gregor4fa58902009-02-26 23:50:07 +0000314 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
315 isa<FunctionNoProtoType>(NewQType.getTypePtr()))
Douglas Gregord2baafd2008-10-21 16:13:35 +0000316 return false;
317
Douglas Gregor4fa58902009-02-26 23:50:07 +0000318 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType.getTypePtr());
319 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType.getTypePtr());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000320
321 // The signature of a function includes the types of its
322 // parameters (C++ 1.3.10), which includes the presence or absence
323 // of the ellipsis; see C++ DR 357).
324 if (OldQType != NewQType &&
325 (OldType->getNumArgs() != NewType->getNumArgs() ||
326 OldType->isVariadic() != NewType->isVariadic() ||
327 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
328 NewType->arg_type_begin())))
329 return true;
330
331 // If the function is a class member, its signature includes the
332 // cv-qualifiers (if any) on the function itself.
333 //
334 // As part of this, also check whether one of the member functions
335 // is static, in which case they are not overloads (C++
336 // 13.1p2). While not part of the definition of the signature,
337 // this check is important to determine whether these functions
338 // can be overloaded.
339 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
340 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
341 if (OldMethod && NewMethod &&
342 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregora7b56a32008-11-21 15:36:28 +0000343 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregord2baafd2008-10-21 16:13:35 +0000344 return true;
345
346 // The signatures match; this is not an overload.
347 return false;
348 } else {
349 // (C++ 13p1):
350 // Only function declarations can be overloaded; object and type
351 // declarations cannot be overloaded.
352 return false;
353 }
354}
355
Douglas Gregor81c29152008-10-29 00:13:59 +0000356/// TryImplicitConversion - Attempt to perform an implicit conversion
357/// from the given expression (Expr) to the given type (ToType). This
358/// function returns an implicit conversion sequence that can be used
359/// to perform the initialization. Given
Douglas Gregord2baafd2008-10-21 16:13:35 +0000360///
361/// void f(float f);
362/// void g(int i) { f(i); }
363///
364/// this routine would produce an implicit conversion sequence to
365/// describe the initialization of f from i, which will be a standard
366/// conversion sequence containing an lvalue-to-rvalue conversion (C++
367/// 4.1) followed by a floating-integral conversion (C++ 4.9).
368//
369/// Note that this routine only determines how the conversion can be
370/// performed; it does not actually perform the conversion. As such,
371/// it will not produce any diagnostics if no conversion is available,
372/// but will instead return an implicit conversion sequence of kind
373/// "BadConversion".
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000374///
375/// If @p SuppressUserConversions, then user-defined conversions are
376/// not permitted.
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000377/// If @p AllowExplicit, then explicit user-defined conversions are
378/// permitted.
Sebastian Redla55834a2009-04-12 17:16:29 +0000379/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
380/// no matter its actual lvalueness.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000381ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000382Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +0000383 bool SuppressUserConversions,
Sebastian Redla55834a2009-04-12 17:16:29 +0000384 bool AllowExplicit, bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000385{
386 ImplicitConversionSequence ICS;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000387 if (IsStandardConversion(From, ToType, ICS.Standard))
388 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000389 else if (getLangOptions().CPlusPlus &&
390 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Sebastian Redla55834a2009-04-12 17:16:29 +0000391 !SuppressUserConversions, AllowExplicit,
392 ForceRValue)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000393 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000394 // C++ [over.ics.user]p4:
395 // A conversion of an expression of class type to the same class
396 // type is given Exact Match rank, and a conversion of an
397 // expression of class type to a base class of that type is
398 // given Conversion rank, in spite of the fact that a copy
399 // constructor (i.e., a user-defined conversion function) is
400 // called for those cases.
401 if (CXXConstructorDecl *Constructor
402 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregord9176392009-02-02 22:11:10 +0000403 QualType FromCanon
404 = Context.getCanonicalType(From->getType().getUnqualifiedType());
405 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
406 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000407 // Turn this into a "standard" conversion sequence, so that it
408 // gets ranked with standard conversion sequences.
Douglas Gregore640ab62008-11-03 17:51:48 +0000409 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
410 ICS.Standard.setAsIdentityConversion();
411 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
412 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000413 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregord9176392009-02-02 22:11:10 +0000414 if (ToCanon != FromCanon)
Douglas Gregore640ab62008-11-03 17:51:48 +0000415 ICS.Standard.Second = ICK_Derived_To_Base;
416 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000417 }
Douglas Gregorb206cc42009-01-30 23:27:23 +0000418
419 // C++ [over.best.ics]p4:
420 // However, when considering the argument of a user-defined
421 // conversion function that is a candidate by 13.3.1.3 when
422 // invoked for the copying of the temporary in the second step
423 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
424 // 13.3.1.6 in all cases, only standard conversion sequences and
425 // ellipsis conversion sequences are allowed.
426 if (SuppressUserConversions &&
427 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
428 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000429 } else
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000430 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000431
432 return ICS;
433}
434
435/// IsStandardConversion - Determines whether there is a standard
436/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
437/// expression From to the type ToType. Standard conversion sequences
438/// only consider non-class types; for conversions that involve class
439/// types, use TryImplicitConversion. If a conversion exists, SCS will
440/// contain the standard conversion sequence required to perform this
441/// conversion and this routine will return true. Otherwise, this
442/// routine will return false and the value of SCS is unspecified.
443bool
444Sema::IsStandardConversion(Expr* From, QualType ToType,
445 StandardConversionSequence &SCS)
446{
Douglas Gregord2baafd2008-10-21 16:13:35 +0000447 QualType FromType = From->getType();
448
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000449 // Standard conversions (C++ [conv])
Douglas Gregor70d26122008-11-12 17:17:38 +0000450 SCS.setAsIdentityConversion();
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000451 SCS.Deprecated = false;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000452 SCS.IncompatibleObjC = false;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000453 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000454 SCS.CopyConstructor = 0;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000455
Douglas Gregorfcb19192009-02-11 23:02:49 +0000456 // There are no standard conversions for class types in C++, so
457 // abort early. When overloading in C, however, we do permit
458 if (FromType->isRecordType() || ToType->isRecordType()) {
459 if (getLangOptions().CPlusPlus)
460 return false;
461
462 // When we're overloading in C, we allow, as standard conversions,
463 }
464
Douglas Gregord2baafd2008-10-21 16:13:35 +0000465 // The first conversion can be an lvalue-to-rvalue conversion,
466 // array-to-pointer conversion, or function-to-pointer conversion
467 // (C++ 4p1).
468
469 // Lvalue-to-rvalue conversion (C++ 4.1):
470 // An lvalue (3.10) of a non-function, non-array type T can be
471 // converted to an rvalue.
472 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
473 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor45014fd2008-11-10 20:40:00 +0000474 !FromType->isFunctionType() && !FromType->isArrayType() &&
Douglas Gregor00fe3f62009-03-13 18:40:31 +0000475 Context.getCanonicalType(FromType) != Context.OverloadTy) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000476 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000477
478 // If T is a non-class type, the type of the rvalue is the
479 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorfcb19192009-02-11 23:02:49 +0000480 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
481 // just strip the qualifiers because they don't matter.
482
483 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000484 FromType = FromType.getUnqualifiedType();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000485 }
486 // Array-to-pointer conversion (C++ 4.2)
487 else if (FromType->isArrayType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000488 SCS.First = ICK_Array_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000489
490 // An lvalue or rvalue of type "array of N T" or "array of unknown
491 // bound of T" can be converted to an rvalue of type "pointer to
492 // T" (C++ 4.2p1).
493 FromType = Context.getArrayDecayedType(FromType);
494
495 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
496 // This conversion is deprecated. (C++ D.4).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000497 SCS.Deprecated = true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000498
499 // For the purpose of ranking in overload resolution
500 // (13.3.3.1.1), this conversion is considered an
501 // array-to-pointer conversion followed by a qualification
502 // conversion (4.4). (C++ 4.2p2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000503 SCS.Second = ICK_Identity;
504 SCS.Third = ICK_Qualification;
505 SCS.ToTypePtr = ToType.getAsOpaquePtr();
506 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000507 }
508 }
509 // Function-to-pointer conversion (C++ 4.3).
510 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000511 SCS.First = ICK_Function_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000512
513 // An lvalue of function type T can be converted to an rvalue of
514 // type "pointer to T." The result is a pointer to the
515 // function. (C++ 4.3p1).
516 FromType = Context.getPointerType(FromType);
Sebastian Redl7434fc32009-02-04 21:23:32 +0000517 }
Douglas Gregor45014fd2008-11-10 20:40:00 +0000518 // Address of overloaded function (C++ [over.over]).
519 else if (FunctionDecl *Fn
520 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
521 SCS.First = ICK_Function_To_Pointer;
522
523 // We were able to resolve the address of the overloaded function,
524 // so we can convert to the type of that function.
525 FromType = Fn->getType();
Sebastian Redlce6fff02009-03-16 23:22:08 +0000526 if (ToType->isLValueReferenceType())
527 FromType = Context.getLValueReferenceType(FromType);
528 else if (ToType->isRValueReferenceType())
529 FromType = Context.getRValueReferenceType(FromType);
Sebastian Redl7434fc32009-02-04 21:23:32 +0000530 else if (ToType->isMemberPointerType()) {
531 // Resolve address only succeeds if both sides are member pointers,
532 // but it doesn't have to be the same class. See DR 247.
533 // Note that this means that the type of &Derived::fn can be
534 // Ret (Base::*)(Args) if the fn overload actually found is from the
535 // base class, even if it was brought into the derived class via a
536 // using declaration. The standard isn't clear on this issue at all.
537 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
538 FromType = Context.getMemberPointerType(FromType,
539 Context.getTypeDeclType(M->getParent()).getTypePtr());
540 } else
Douglas Gregor45014fd2008-11-10 20:40:00 +0000541 FromType = Context.getPointerType(FromType);
542 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000543 // We don't require any conversions for the first step.
544 else {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000545 SCS.First = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000546 }
547
548 // The second conversion can be an integral promotion, floating
549 // point promotion, integral conversion, floating point conversion,
550 // floating-integral conversion, pointer conversion,
551 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorfcb19192009-02-11 23:02:49 +0000552 // For overloading in C, this can also be a "compatible-type"
553 // conversion.
Douglas Gregor6fd35572008-12-19 17:40:08 +0000554 bool IncompatibleObjC = false;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000555 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000556 // The unqualified versions of the types are the same: there's no
557 // conversion to do.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000558 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000559 }
560 // Integral promotion (C++ 4.5).
561 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000562 SCS.Second = ICK_Integral_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000563 FromType = ToType.getUnqualifiedType();
564 }
565 // Floating point promotion (C++ 4.6).
566 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000567 SCS.Second = ICK_Floating_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000568 FromType = ToType.getUnqualifiedType();
569 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000570 // Complex promotion (Clang extension)
571 else if (IsComplexPromotion(FromType, ToType)) {
572 SCS.Second = ICK_Complex_Promotion;
573 FromType = ToType.getUnqualifiedType();
574 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000575 // Integral conversions (C++ 4.7).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000576 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000577 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000578 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000579 SCS.Second = ICK_Integral_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000580 FromType = ToType.getUnqualifiedType();
581 }
582 // Floating point conversions (C++ 4.8).
583 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000584 SCS.Second = ICK_Floating_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000585 FromType = ToType.getUnqualifiedType();
586 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000587 // Complex conversions (C99 6.3.1.6)
588 else if (FromType->isComplexType() && ToType->isComplexType()) {
589 SCS.Second = ICK_Complex_Conversion;
590 FromType = ToType.getUnqualifiedType();
591 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000592 // Floating-integral conversions (C++ 4.9).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000593 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000594 else if ((FromType->isFloatingType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000595 ToType->isIntegralType() && !ToType->isBooleanType() &&
596 !ToType->isEnumeralType()) ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000597 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
598 ToType->isFloatingType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000599 SCS.Second = ICK_Floating_Integral;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregore819caf2009-02-12 00:15:05 +0000602 // Complex-real conversions (C99 6.3.1.7)
603 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
604 (ToType->isComplexType() && FromType->isArithmeticType())) {
605 SCS.Second = ICK_Complex_Real;
606 FromType = ToType.getUnqualifiedType();
607 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000608 // Pointer conversions (C++ 4.10).
Douglas Gregor6fd35572008-12-19 17:40:08 +0000609 else if (IsPointerConversion(From, FromType, ToType, FromType,
610 IncompatibleObjC)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000611 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000612 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000613 }
Sebastian Redlba387562009-01-25 19:43:20 +0000614 // Pointer to member conversions (4.11).
615 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
616 SCS.Second = ICK_Pointer_Member;
617 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000618 // Boolean conversions (C++ 4.12).
Douglas Gregord2baafd2008-10-21 16:13:35 +0000619 else if (ToType->isBooleanType() &&
620 (FromType->isArithmeticType() ||
621 FromType->isEnumeralType() ||
Douglas Gregor80402cf2008-12-23 00:53:59 +0000622 FromType->isPointerType() ||
Sebastian Redlba387562009-01-25 19:43:20 +0000623 FromType->isBlockPointerType() ||
Sebastian Redl5d0ead72009-05-10 18:38:11 +0000624 FromType->isMemberPointerType() ||
625 FromType->isNullPtrType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000626 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000627 FromType = Context.BoolTy;
Douglas Gregorfcb19192009-02-11 23:02:49 +0000628 }
629 // Compatible conversions (Clang extension for C function overloading)
630 else if (!getLangOptions().CPlusPlus &&
631 Context.typesAreCompatible(ToType, FromType)) {
632 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000633 } else {
634 // No second conversion required.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000635 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000636 }
637
Douglas Gregor81c29152008-10-29 00:13:59 +0000638 QualType CanonFrom;
639 QualType CanonTo;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000640 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000641 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000642 SCS.Third = ICK_Qualification;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000643 FromType = ToType;
Douglas Gregor81c29152008-10-29 00:13:59 +0000644 CanonFrom = Context.getCanonicalType(FromType);
645 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000646 } else {
647 // No conversion required
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000648 SCS.Third = ICK_Identity;
649
650 // C++ [over.best.ics]p6:
651 // [...] Any difference in top-level cv-qualification is
652 // subsumed by the initialization itself and does not constitute
653 // a conversion. [...]
Douglas Gregor81c29152008-10-29 00:13:59 +0000654 CanonFrom = Context.getCanonicalType(FromType);
655 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000656 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor81c29152008-10-29 00:13:59 +0000657 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
658 FromType = ToType;
659 CanonFrom = CanonTo;
660 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000661 }
662
663 // If we have not converted the argument type to the parameter type,
664 // this is a bad conversion sequence.
Douglas Gregor81c29152008-10-29 00:13:59 +0000665 if (CanonFrom != CanonTo)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000666 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000667
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000668 SCS.ToTypePtr = FromType.getAsOpaquePtr();
669 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000670}
671
672/// IsIntegralPromotion - Determines whether the conversion from the
673/// expression From (whose potentially-adjusted type is FromType) to
674/// ToType is an integral promotion (C++ 4.5). If so, returns true and
675/// sets PromotedType to the promoted type.
676bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
677{
678 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redl12aee862008-11-04 15:59:10 +0000679 // All integers are built-in.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000680 if (!To) {
681 return false;
682 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000683
684 // An rvalue of type char, signed char, unsigned char, short int, or
685 // unsigned short int can be converted to an rvalue of type int if
686 // int can represent all the values of the source type; otherwise,
687 // the source rvalue can be converted to an rvalue of type unsigned
688 // int (C++ 4.5p1).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000689 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000690 if (// We can promote any signed, promotable integer type to an int
691 (FromType->isSignedIntegerType() ||
692 // We can promote any unsigned integer type whose size is
693 // less than int to an int.
694 (!FromType->isSignedIntegerType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000695 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000696 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000697 }
698
Douglas Gregord2baafd2008-10-21 16:13:35 +0000699 return To->getKind() == BuiltinType::UInt;
700 }
701
702 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
703 // can be converted to an rvalue of the first of the following types
704 // that can represent all the values of its underlying type: int,
705 // unsigned int, long, or unsigned long (C++ 4.5p2).
706 if ((FromType->isEnumeralType() || FromType->isWideCharType())
707 && ToType->isIntegerType()) {
708 // Determine whether the type we're converting from is signed or
709 // unsigned.
710 bool FromIsSigned;
711 uint64_t FromSize = Context.getTypeSize(FromType);
712 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
713 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
714 FromIsSigned = UnderlyingType->isSignedIntegerType();
715 } else {
716 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
717 FromIsSigned = true;
718 }
719
720 // The types we'll try to promote to, in the appropriate
721 // order. Try each of these types.
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000722 QualType PromoteTypes[6] = {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000723 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000724 Context.LongTy, Context.UnsignedLongTy ,
725 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregord2baafd2008-10-21 16:13:35 +0000726 };
Douglas Gregor6b5e34f2008-12-12 02:00:36 +0000727 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000728 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
729 if (FromSize < ToSize ||
730 (FromSize == ToSize &&
731 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
732 // We found the type that we can promote to. If this is the
733 // type we wanted, we have a promotion. Otherwise, no
734 // promotion.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000735 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregord2baafd2008-10-21 16:13:35 +0000736 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
737 }
738 }
739 }
740
741 // An rvalue for an integral bit-field (9.6) can be converted to an
742 // rvalue of type int if int can represent all the values of the
743 // bit-field; otherwise, it can be converted to unsigned int if
744 // unsigned int can represent all the values of the bit-field. If
745 // the bit-field is larger yet, no integral promotion applies to
746 // it. If the bit-field has an enumerated type, it is treated as any
747 // other value of that type for promotion purposes (C++ 4.5p3).
Douglas Gregor4ff48512009-02-12 00:26:06 +0000748 // FIXME: We should delay checking of bit-fields until we actually
749 // perform the conversion.
Douglas Gregor531434b2009-05-02 02:18:30 +0000750 using llvm::APSInt;
751 if (From)
752 if (FieldDecl *MemberDecl = From->getBitField()) {
Douglas Gregor82d44772008-12-20 23:49:58 +0000753 APSInt BitWidth;
Douglas Gregor531434b2009-05-02 02:18:30 +0000754 if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
755 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
756 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
757 ToSize = Context.getTypeSize(ToType);
Douglas Gregor82d44772008-12-20 23:49:58 +0000758
759 // Are we promoting to an int from a bitfield that fits in an int?
760 if (BitWidth < ToSize ||
761 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
762 return To->getKind() == BuiltinType::Int;
763 }
764
765 // Are we promoting to an unsigned int from an unsigned bitfield
766 // that fits into an unsigned int?
767 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
768 return To->getKind() == BuiltinType::UInt;
769 }
770
771 return false;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000772 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000773 }
Douglas Gregor531434b2009-05-02 02:18:30 +0000774
Douglas Gregord2baafd2008-10-21 16:13:35 +0000775 // An rvalue of type bool can be converted to an rvalue of type int,
776 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000777 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000778 return true;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000779 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000780
781 return false;
782}
783
784/// IsFloatingPointPromotion - Determines whether the conversion from
785/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
786/// returns true and sets PromotedType to the promoted type.
787bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
788{
789 /// An rvalue of type float can be converted to an rvalue of type
790 /// double. (C++ 4.6p1).
791 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregore819caf2009-02-12 00:15:05 +0000792 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000793 if (FromBuiltin->getKind() == BuiltinType::Float &&
794 ToBuiltin->getKind() == BuiltinType::Double)
795 return true;
796
Douglas Gregore819caf2009-02-12 00:15:05 +0000797 // C99 6.3.1.5p1:
798 // When a float is promoted to double or long double, or a
799 // double is promoted to long double [...].
800 if (!getLangOptions().CPlusPlus &&
801 (FromBuiltin->getKind() == BuiltinType::Float ||
802 FromBuiltin->getKind() == BuiltinType::Double) &&
803 (ToBuiltin->getKind() == BuiltinType::LongDouble))
804 return true;
805 }
806
Douglas Gregord2baafd2008-10-21 16:13:35 +0000807 return false;
808}
809
Douglas Gregore819caf2009-02-12 00:15:05 +0000810/// \brief Determine if a conversion is a complex promotion.
811///
812/// A complex promotion is defined as a complex -> complex conversion
813/// where the conversion between the underlying real types is a
Douglas Gregor4ff48512009-02-12 00:26:06 +0000814/// floating-point or integral promotion.
Douglas Gregore819caf2009-02-12 00:15:05 +0000815bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
816 const ComplexType *FromComplex = FromType->getAsComplexType();
817 if (!FromComplex)
818 return false;
819
820 const ComplexType *ToComplex = ToType->getAsComplexType();
821 if (!ToComplex)
822 return false;
823
824 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregor4ff48512009-02-12 00:26:06 +0000825 ToComplex->getElementType()) ||
826 IsIntegralPromotion(0, FromComplex->getElementType(),
827 ToComplex->getElementType());
Douglas Gregore819caf2009-02-12 00:15:05 +0000828}
829
Douglas Gregor24a90a52008-11-26 23:31:11 +0000830/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
831/// the pointer type FromPtr to a pointer to type ToPointee, with the
832/// same type qualifiers as FromPtr has on its pointee type. ToType,
833/// if non-empty, will be a pointer to ToType that may or may not have
834/// the right set of qualifiers on its pointee.
835static QualType
836BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
837 QualType ToPointee, QualType ToType,
838 ASTContext &Context) {
839 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
840 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
841 unsigned Quals = CanonFromPointee.getCVRQualifiers();
842
843 // Exact qualifier match -> return the pointer type we're converting to.
844 if (CanonToPointee.getCVRQualifiers() == Quals) {
845 // ToType is exactly what we need. Return it.
846 if (ToType.getTypePtr())
847 return ToType;
848
849 // Build a pointer to ToPointee. It has the right qualifiers
850 // already.
851 return Context.getPointerType(ToPointee);
852 }
853
854 // Just build a canonical type that has the right qualifiers.
855 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
856}
857
Douglas Gregord2baafd2008-10-21 16:13:35 +0000858/// IsPointerConversion - Determines whether the conversion of the
859/// expression From, which has the (possibly adjusted) type FromType,
860/// can be converted to the type ToType via a pointer conversion (C++
861/// 4.10). If so, returns true and places the converted type (that
862/// might differ from ToType in its cv-qualifiers at some level) into
863/// ConvertedType.
Douglas Gregor9036ef72008-11-27 00:15:41 +0000864///
Douglas Gregor3f5a00c2008-11-27 01:19:21 +0000865/// This routine also supports conversions to and from block pointers
866/// and conversions with Objective-C's 'id', 'id<protocols...>', and
867/// pointers to interfaces. FIXME: Once we've determined the
868/// appropriate overloading rules for Objective-C, we may want to
869/// split the Objective-C checks into a different routine; however,
870/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor6fd35572008-12-19 17:40:08 +0000871/// conversions, so for now they live here. IncompatibleObjC will be
872/// set if the conversion is an allowed Objective-C conversion that
873/// should result in a warning.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000874bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor6fd35572008-12-19 17:40:08 +0000875 QualType& ConvertedType,
876 bool &IncompatibleObjC)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000877{
Douglas Gregor6fd35572008-12-19 17:40:08 +0000878 IncompatibleObjC = false;
Douglas Gregor932778b2008-12-19 19:13:09 +0000879 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
880 return true;
Douglas Gregor6fd35572008-12-19 17:40:08 +0000881
Douglas Gregorf1d75712008-12-22 20:51:52 +0000882 // Conversion from a null pointer constant to any Objective-C pointer type.
883 if (Context.isObjCObjectPointerType(ToType) &&
884 From->isNullPointerConstant(Context)) {
885 ConvertedType = ToType;
886 return true;
887 }
888
Douglas Gregor9036ef72008-11-27 00:15:41 +0000889 // Blocks: Block pointers can be converted to void*.
890 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
891 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
892 ConvertedType = ToType;
893 return true;
894 }
895 // Blocks: A null pointer constant can be converted to a block
896 // pointer type.
897 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
898 ConvertedType = ToType;
899 return true;
900 }
901
Sebastian Redl5d0ead72009-05-10 18:38:11 +0000902 // If the left-hand-side is nullptr_t, the right side can be a null
903 // pointer constant.
904 if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
905 ConvertedType = ToType;
906 return true;
907 }
908
Douglas Gregord2baafd2008-10-21 16:13:35 +0000909 const PointerType* ToTypePtr = ToType->getAsPointerType();
910 if (!ToTypePtr)
911 return false;
912
913 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
914 if (From->isNullPointerConstant(Context)) {
915 ConvertedType = ToType;
916 return true;
917 }
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000918
Douglas Gregor24a90a52008-11-26 23:31:11 +0000919 // Beyond this point, both types need to be pointers.
920 const PointerType *FromTypePtr = FromType->getAsPointerType();
921 if (!FromTypePtr)
922 return false;
923
924 QualType FromPointeeType = FromTypePtr->getPointeeType();
925 QualType ToPointeeType = ToTypePtr->getPointeeType();
926
Douglas Gregord2baafd2008-10-21 16:13:35 +0000927 // An rvalue of type "pointer to cv T," where T is an object type,
928 // can be converted to an rvalue of type "pointer to cv void" (C++
929 // 4.10p2).
Douglas Gregor26ea1222009-03-24 20:32:41 +0000930 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000931 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
932 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000933 ToType, Context);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000934 return true;
935 }
936
Douglas Gregorfcb19192009-02-11 23:02:49 +0000937 // When we're overloading in C, we allow a special kind of pointer
938 // conversion for compatible-but-not-identical pointee types.
939 if (!getLangOptions().CPlusPlus &&
940 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
941 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
942 ToPointeeType,
943 ToType, Context);
944 return true;
945 }
946
Douglas Gregor14046502008-10-23 00:40:37 +0000947 // C++ [conv.ptr]p3:
948 //
949 // An rvalue of type "pointer to cv D," where D is a class type,
950 // can be converted to an rvalue of type "pointer to cv B," where
951 // B is a base class (clause 10) of D. If B is an inaccessible
952 // (clause 11) or ambiguous (10.2) base class of D, a program that
953 // necessitates this conversion is ill-formed. The result of the
954 // conversion is a pointer to the base class sub-object of the
955 // derived class object. The null pointer value is converted to
956 // the null pointer value of the destination type.
957 //
Douglas Gregorbb461502008-10-24 04:54:22 +0000958 // Note that we do not check for ambiguity or inaccessibility
959 // here. That is handled by CheckPointerConversion.
Douglas Gregorfcb19192009-02-11 23:02:49 +0000960 if (getLangOptions().CPlusPlus &&
961 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregor24a90a52008-11-26 23:31:11 +0000962 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +0000963 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
964 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +0000965 ToType, Context);
966 return true;
967 }
Douglas Gregor14046502008-10-23 00:40:37 +0000968
Douglas Gregor932778b2008-12-19 19:13:09 +0000969 return false;
970}
971
972/// isObjCPointerConversion - Determines whether this is an
973/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
974/// with the same arguments and return values.
975bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
976 QualType& ConvertedType,
977 bool &IncompatibleObjC) {
978 if (!getLangOptions().ObjC1)
979 return false;
980
981 // Conversions with Objective-C's id<...>.
982 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
983 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
984 ConvertedType = ToType;
985 return true;
986 }
987
Douglas Gregor80402cf2008-12-23 00:53:59 +0000988 // Beyond this point, both types need to be pointers or block pointers.
989 QualType ToPointeeType;
Douglas Gregor932778b2008-12-19 19:13:09 +0000990 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor80402cf2008-12-23 00:53:59 +0000991 if (ToTypePtr)
992 ToPointeeType = ToTypePtr->getPointeeType();
993 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
994 ToPointeeType = ToBlockPtr->getPointeeType();
995 else
Douglas Gregor932778b2008-12-19 19:13:09 +0000996 return false;
997
Douglas Gregor80402cf2008-12-23 00:53:59 +0000998 QualType FromPointeeType;
Douglas Gregor932778b2008-12-19 19:13:09 +0000999 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor80402cf2008-12-23 00:53:59 +00001000 if (FromTypePtr)
1001 FromPointeeType = FromTypePtr->getPointeeType();
1002 else if (const BlockPointerType *FromBlockPtr
1003 = FromType->getAsBlockPointerType())
1004 FromPointeeType = FromBlockPtr->getPointeeType();
1005 else
Douglas Gregor932778b2008-12-19 19:13:09 +00001006 return false;
1007
Douglas Gregor24a90a52008-11-26 23:31:11 +00001008 // Objective C++: We're able to convert from a pointer to an
1009 // interface to a pointer to a different interface.
1010 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
1011 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1012 if (FromIface && ToIface &&
1013 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor80402cf2008-12-23 00:53:59 +00001014 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor8bb7ad82008-11-27 00:52:49 +00001015 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001016 ToType, Context);
1017 return true;
1018 }
1019
Douglas Gregor6fd35572008-12-19 17:40:08 +00001020 if (FromIface && ToIface &&
1021 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1022 // Okay: this is some kind of implicit downcast of Objective-C
1023 // interfaces, which is permitted. However, we're going to
1024 // complain about it.
1025 IncompatibleObjC = true;
Douglas Gregor80402cf2008-12-23 00:53:59 +00001026 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor6fd35572008-12-19 17:40:08 +00001027 ToPointeeType,
1028 ToType, Context);
1029 return true;
1030 }
1031
Douglas Gregor24a90a52008-11-26 23:31:11 +00001032 // Objective C++: We're able to convert between "id" and a pointer
1033 // to any interface (in both directions).
Steve Naroff17c03822009-02-12 17:52:19 +00001034 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1035 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregor8bb7ad82008-11-27 00:52:49 +00001036 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1037 ToPointeeType,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001038 ToType, Context);
1039 return true;
1040 }
Douglas Gregor14046502008-10-23 00:40:37 +00001041
Douglas Gregord0c653a2008-12-18 23:43:31 +00001042 // Objective C++: Allow conversions between the Objective-C "id" and
1043 // "Class", in either direction.
Steve Naroff17c03822009-02-12 17:52:19 +00001044 if ((Context.isObjCIdStructType(FromPointeeType) &&
1045 Context.isObjCClassStructType(ToPointeeType)) ||
1046 (Context.isObjCClassStructType(FromPointeeType) &&
1047 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregord0c653a2008-12-18 23:43:31 +00001048 ConvertedType = ToType;
1049 return true;
1050 }
1051
Douglas Gregor932778b2008-12-19 19:13:09 +00001052 // If we have pointers to pointers, recursively check whether this
1053 // is an Objective-C conversion.
1054 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1055 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1056 IncompatibleObjC)) {
1057 // We always complain about this conversion.
1058 IncompatibleObjC = true;
1059 ConvertedType = ToType;
1060 return true;
1061 }
1062
Douglas Gregor80402cf2008-12-23 00:53:59 +00001063 // If we have pointers to functions or blocks, check whether the only
Douglas Gregor932778b2008-12-19 19:13:09 +00001064 // differences in the argument and result types are in Objective-C
1065 // pointer conversions. If so, we permit the conversion (but
1066 // complain about it).
Douglas Gregor4fa58902009-02-26 23:50:07 +00001067 const FunctionProtoType *FromFunctionType
1068 = FromPointeeType->getAsFunctionProtoType();
1069 const FunctionProtoType *ToFunctionType
1070 = ToPointeeType->getAsFunctionProtoType();
Douglas Gregor932778b2008-12-19 19:13:09 +00001071 if (FromFunctionType && ToFunctionType) {
1072 // If the function types are exactly the same, this isn't an
1073 // Objective-C pointer conversion.
1074 if (Context.getCanonicalType(FromPointeeType)
1075 == Context.getCanonicalType(ToPointeeType))
1076 return false;
1077
1078 // Perform the quick checks that will tell us whether these
1079 // function types are obviously different.
1080 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1081 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1082 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1083 return false;
1084
1085 bool HasObjCConversion = false;
1086 if (Context.getCanonicalType(FromFunctionType->getResultType())
1087 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1088 // Okay, the types match exactly. Nothing to do.
1089 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1090 ToFunctionType->getResultType(),
1091 ConvertedType, IncompatibleObjC)) {
1092 // Okay, we have an Objective-C pointer conversion.
1093 HasObjCConversion = true;
1094 } else {
1095 // Function types are too different. Abort.
1096 return false;
1097 }
1098
1099 // Check argument types.
1100 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1101 ArgIdx != NumArgs; ++ArgIdx) {
1102 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1103 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1104 if (Context.getCanonicalType(FromArgType)
1105 == Context.getCanonicalType(ToArgType)) {
1106 // Okay, the types match exactly. Nothing to do.
1107 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1108 ConvertedType, IncompatibleObjC)) {
1109 // Okay, we have an Objective-C pointer conversion.
1110 HasObjCConversion = true;
1111 } else {
1112 // Argument types are too different. Abort.
1113 return false;
1114 }
1115 }
1116
1117 if (HasObjCConversion) {
1118 // We had an Objective-C conversion. Allow this pointer
1119 // conversion, but complain about it.
1120 ConvertedType = ToType;
1121 IncompatibleObjC = true;
1122 return true;
1123 }
1124 }
1125
Sebastian Redlba387562009-01-25 19:43:20 +00001126 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001127}
1128
Douglas Gregorbb461502008-10-24 04:54:22 +00001129/// CheckPointerConversion - Check the pointer conversion from the
1130/// expression From to the type ToType. This routine checks for
1131/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1132/// conversions for which IsPointerConversion has already returned
1133/// true. It returns true and produces a diagnostic if there was an
1134/// error, or returns false otherwise.
1135bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1136 QualType FromType = From->getType();
1137
1138 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1139 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregorbb461502008-10-24 04:54:22 +00001140 QualType FromPointeeType = FromPtrType->getPointeeType(),
1141 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregord0c653a2008-12-18 23:43:31 +00001142
1143 // Objective-C++ conversions are always okay.
1144 // FIXME: We should have a different class of conversions for
1145 // the Objective-C++ implicit conversions.
Steve Naroff17c03822009-02-12 17:52:19 +00001146 if (Context.isObjCIdStructType(FromPointeeType) ||
1147 Context.isObjCIdStructType(ToPointeeType) ||
1148 Context.isObjCClassStructType(FromPointeeType) ||
1149 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregord0c653a2008-12-18 23:43:31 +00001150 return false;
1151
Douglas Gregorbb461502008-10-24 04:54:22 +00001152 if (FromPointeeType->isRecordType() &&
1153 ToPointeeType->isRecordType()) {
1154 // We must have a derived-to-base conversion. Check an
1155 // ambiguous or inaccessible conversion.
Douglas Gregor651d1cc2008-10-24 16:17:19 +00001156 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1157 From->getExprLoc(),
1158 From->getSourceRange());
Douglas Gregorbb461502008-10-24 04:54:22 +00001159 }
1160 }
1161
1162 return false;
1163}
1164
Sebastian Redlba387562009-01-25 19:43:20 +00001165/// IsMemberPointerConversion - Determines whether the conversion of the
1166/// expression From, which has the (possibly adjusted) type FromType, can be
1167/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1168/// If so, returns true and places the converted type (that might differ from
1169/// ToType in its cv-qualifiers at some level) into ConvertedType.
1170bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1171 QualType ToType, QualType &ConvertedType)
1172{
1173 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1174 if (!ToTypePtr)
1175 return false;
1176
1177 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1178 if (From->isNullPointerConstant(Context)) {
1179 ConvertedType = ToType;
1180 return true;
1181 }
1182
1183 // Otherwise, both types have to be member pointers.
1184 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1185 if (!FromTypePtr)
1186 return false;
1187
1188 // A pointer to member of B can be converted to a pointer to member of D,
1189 // where D is derived from B (C++ 4.11p2).
1190 QualType FromClass(FromTypePtr->getClass(), 0);
1191 QualType ToClass(ToTypePtr->getClass(), 0);
1192 // FIXME: What happens when these are dependent? Is this function even called?
1193
1194 if (IsDerivedFrom(ToClass, FromClass)) {
1195 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1196 ToClass.getTypePtr());
1197 return true;
1198 }
1199
1200 return false;
1201}
1202
1203/// CheckMemberPointerConversion - Check the member pointer conversion from the
1204/// expression From to the type ToType. This routine checks for ambiguous or
1205/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1206/// for which IsMemberPointerConversion has already returned true. It returns
1207/// true and produces a diagnostic if there was an error, or returns false
1208/// otherwise.
1209bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1210 QualType FromType = From->getType();
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001211 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1212 if (!FromPtrType)
1213 return false;
Sebastian Redlba387562009-01-25 19:43:20 +00001214
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001215 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1216 assert(ToPtrType && "No member pointer cast has a target type "
1217 "that is not a member pointer.");
Sebastian Redlba387562009-01-25 19:43:20 +00001218
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001219 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1220 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redlba387562009-01-25 19:43:20 +00001221
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001222 // FIXME: What about dependent types?
1223 assert(FromClass->isRecordType() && "Pointer into non-class.");
1224 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redlba387562009-01-25 19:43:20 +00001225
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001226 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1227 /*DetectVirtual=*/true);
1228 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1229 assert(DerivationOkay &&
1230 "Should not have been called if derivation isn't OK.");
1231 (void)DerivationOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001232
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001233 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1234 getUnqualifiedType())) {
1235 // Derivation is ambiguous. Redo the check to find the exact paths.
1236 Paths.clear();
1237 Paths.setRecordingPaths(true);
1238 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1239 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1240 (void)StillOkay;
Sebastian Redlba387562009-01-25 19:43:20 +00001241
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001242 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1243 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1244 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1245 return true;
Sebastian Redlba387562009-01-25 19:43:20 +00001246 }
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001247
Douglas Gregor2e047592009-02-28 01:32:25 +00001248 if (const RecordType *VBase = Paths.getDetectedVirtual()) {
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001249 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1250 << FromClass << ToClass << QualType(VBase, 0)
1251 << From->getSourceRange();
1252 return true;
1253 }
1254
Sebastian Redlba387562009-01-25 19:43:20 +00001255 return false;
1256}
1257
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001258/// IsQualificationConversion - Determines whether the conversion from
1259/// an rvalue of type FromType to ToType is a qualification conversion
1260/// (C++ 4.4).
1261bool
1262Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1263{
1264 FromType = Context.getCanonicalType(FromType);
1265 ToType = Context.getCanonicalType(ToType);
1266
1267 // If FromType and ToType are the same type, this is not a
1268 // qualification conversion.
1269 if (FromType == ToType)
1270 return false;
Sebastian Redlf41a58c2009-01-28 18:33:18 +00001271
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001272 // (C++ 4.4p4):
1273 // A conversion can add cv-qualifiers at levels other than the first
1274 // in multi-level pointers, subject to the following rules: [...]
1275 bool PreviousToQualsIncludeConst = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001276 bool UnwrappedAnyPointer = false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001277 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001278 // Within each iteration of the loop, we check the qualifiers to
1279 // determine if this still looks like a qualification
1280 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001281 // pointers or pointers-to-members and do it all again
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001282 // until there are no more pointers or pointers-to-members left to
1283 // unwrap.
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001284 UnwrappedAnyPointer = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001285
1286 // -- for every j > 0, if const is in cv 1,j then const is in cv
1287 // 2,j, and similarly for volatile.
Douglas Gregore5db4f72008-10-22 00:38:21 +00001288 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001289 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001290
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001291 // -- if the cv 1,j and cv 2,j are different, then const is in
1292 // every cv for 0 < k < j.
1293 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001294 && !PreviousToQualsIncludeConst)
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001295 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001296
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001297 // Keep track of whether all prior cv-qualifiers in the "to" type
1298 // include const.
1299 PreviousToQualsIncludeConst
1300 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001301 }
Douglas Gregor6573cfd2008-10-21 23:43:52 +00001302
1303 // We are left with FromType and ToType being the pointee types
1304 // after unwrapping the original FromType and ToType the same number
1305 // of types. If we unwrapped any pointers, and if FromType and
1306 // ToType have the same unqualified type (since we checked
1307 // qualifiers above), then this is a qualification conversion.
1308 return UnwrappedAnyPointer &&
1309 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1310}
1311
Douglas Gregorb206cc42009-01-30 23:27:23 +00001312/// Determines whether there is a user-defined conversion sequence
1313/// (C++ [over.ics.user]) that converts expression From to the type
1314/// ToType. If such a conversion exists, User will contain the
1315/// user-defined conversion sequence that performs such a conversion
1316/// and this routine will return true. Otherwise, this routine returns
1317/// false and User is unspecified.
1318///
1319/// \param AllowConversionFunctions true if the conversion should
1320/// consider conversion functions at all. If false, only constructors
1321/// will be considered.
1322///
1323/// \param AllowExplicit true if the conversion should consider C++0x
1324/// "explicit" conversion functions as well as non-explicit conversion
1325/// functions (C++0x [class.conv.fct]p2).
Sebastian Redla55834a2009-04-12 17:16:29 +00001326///
1327/// \param ForceRValue true if the expression should be treated as an rvalue
1328/// for overload resolution.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001329bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00001330 UserDefinedConversionSequence& User,
Douglas Gregorb206cc42009-01-30 23:27:23 +00001331 bool AllowConversionFunctions,
Sebastian Redla55834a2009-04-12 17:16:29 +00001332 bool AllowExplicit, bool ForceRValue)
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001333{
1334 OverloadCandidateSet CandidateSet;
Douglas Gregor2e047592009-02-28 01:32:25 +00001335 if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1336 if (CXXRecordDecl *ToRecordDecl
1337 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1338 // C++ [over.match.ctor]p1:
1339 // When objects of class type are direct-initialized (8.5), or
1340 // copy-initialized from an expression of the same or a
1341 // derived class type (8.5), overload resolution selects the
1342 // constructor. [...] For copy-initialization, the candidate
1343 // functions are all the converting constructors (12.3.1) of
1344 // that class. The argument list is the expression-list within
1345 // the parentheses of the initializer.
1346 DeclarationName ConstructorName
1347 = Context.DeclarationNames.getCXXConstructorName(
1348 Context.getCanonicalType(ToType).getUnqualifiedType());
1349 DeclContext::lookup_iterator Con, ConEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00001350 for (llvm::tie(Con, ConEnd)
1351 = ToRecordDecl->lookup(Context, ConstructorName);
Douglas Gregor2e047592009-02-28 01:32:25 +00001352 Con != ConEnd; ++Con) {
1353 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1354 if (Constructor->isConvertingConstructor())
1355 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00001356 /*SuppressUserConversions=*/true, ForceRValue);
Douglas Gregor2e047592009-02-28 01:32:25 +00001357 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001358 }
1359 }
1360
Douglas Gregorb206cc42009-01-30 23:27:23 +00001361 if (!AllowConversionFunctions) {
1362 // Don't allow any conversion functions to enter the overload set.
Douglas Gregor2e047592009-02-28 01:32:25 +00001363 } else if (const RecordType *FromRecordType
1364 = From->getType()->getAsRecordType()) {
1365 if (CXXRecordDecl *FromRecordDecl
1366 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1367 // Add all of the conversion functions as candidates.
1368 // FIXME: Look for conversions in base classes!
1369 OverloadedFunctionDecl *Conversions
1370 = FromRecordDecl->getConversionFunctions();
1371 for (OverloadedFunctionDecl::function_iterator Func
1372 = Conversions->function_begin();
1373 Func != Conversions->function_end(); ++Func) {
1374 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1375 if (AllowExplicit || !Conv->isExplicit())
1376 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1377 }
Douglas Gregor60714f92008-11-07 22:36:19 +00001378 }
1379 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001380
1381 OverloadCandidateSet::iterator Best;
1382 switch (BestViableFunction(CandidateSet, Best)) {
1383 case OR_Success:
1384 // Record the standard conversion we used and the conversion function.
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001385 if (CXXConstructorDecl *Constructor
1386 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1387 // C++ [over.ics.user]p1:
1388 // If the user-defined conversion is specified by a
1389 // constructor (12.3.1), the initial standard conversion
1390 // sequence converts the source type to the type required by
1391 // the argument of the constructor.
1392 //
1393 // FIXME: What about ellipsis conversions?
1394 QualType ThisType = Constructor->getThisType(Context);
1395 User.Before = Best->Conversions[0].Standard;
1396 User.ConversionFunction = Constructor;
1397 User.After.setAsIdentityConversion();
1398 User.After.FromTypePtr
1399 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1400 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1401 return true;
Douglas Gregor60714f92008-11-07 22:36:19 +00001402 } else if (CXXConversionDecl *Conversion
1403 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1404 // C++ [over.ics.user]p1:
1405 //
1406 // [...] If the user-defined conversion is specified by a
1407 // conversion function (12.3.2), the initial standard
1408 // conversion sequence converts the source type to the
1409 // implicit object parameter of the conversion function.
1410 User.Before = Best->Conversions[0].Standard;
1411 User.ConversionFunction = Conversion;
1412
1413 // C++ [over.ics.user]p2:
1414 // The second standard conversion sequence converts the
1415 // result of the user-defined conversion to the target type
1416 // for the sequence. Since an implicit conversion sequence
1417 // is an initialization, the special rules for
1418 // initialization by user-defined conversion apply when
1419 // selecting the best user-defined conversion for a
1420 // user-defined conversion sequence (see 13.3.3 and
1421 // 13.3.3.1).
1422 User.After = Best->FinalConversion;
1423 return true;
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001424 } else {
Douglas Gregor60714f92008-11-07 22:36:19 +00001425 assert(false && "Not a constructor or conversion function?");
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001426 return false;
1427 }
1428
1429 case OR_No_Viable_Function:
Douglas Gregoraa57e862009-02-18 21:56:37 +00001430 case OR_Deleted:
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001431 // No conversion here! We're done.
1432 return false;
1433
1434 case OR_Ambiguous:
1435 // FIXME: See C++ [over.best.ics]p10 for the handling of
1436 // ambiguous conversion sequences.
1437 return false;
1438 }
1439
1440 return false;
1441}
1442
Douglas Gregord2baafd2008-10-21 16:13:35 +00001443/// CompareImplicitConversionSequences - Compare two implicit
1444/// conversion sequences to determine whether one is better than the
1445/// other or if they are indistinguishable (C++ 13.3.3.2).
1446ImplicitConversionSequence::CompareKind
1447Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1448 const ImplicitConversionSequence& ICS2)
1449{
1450 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1451 // conversion sequences (as defined in 13.3.3.1)
1452 // -- a standard conversion sequence (13.3.3.1.1) is a better
1453 // conversion sequence than a user-defined conversion sequence or
1454 // an ellipsis conversion sequence, and
1455 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1456 // conversion sequence than an ellipsis conversion sequence
1457 // (13.3.3.1.3).
1458 //
1459 if (ICS1.ConversionKind < ICS2.ConversionKind)
1460 return ImplicitConversionSequence::Better;
1461 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1462 return ImplicitConversionSequence::Worse;
1463
1464 // Two implicit conversion sequences of the same form are
1465 // indistinguishable conversion sequences unless one of the
1466 // following rules apply: (C++ 13.3.3.2p3):
1467 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1468 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1469 else if (ICS1.ConversionKind ==
1470 ImplicitConversionSequence::UserDefinedConversion) {
1471 // User-defined conversion sequence U1 is a better conversion
1472 // sequence than another user-defined conversion sequence U2 if
1473 // they contain the same user-defined conversion function or
1474 // constructor and if the second standard conversion sequence of
1475 // U1 is better than the second standard conversion sequence of
1476 // U2 (C++ 13.3.3.2p3).
1477 if (ICS1.UserDefined.ConversionFunction ==
1478 ICS2.UserDefined.ConversionFunction)
1479 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1480 ICS2.UserDefined.After);
1481 }
1482
1483 return ImplicitConversionSequence::Indistinguishable;
1484}
1485
1486/// CompareStandardConversionSequences - Compare two standard
1487/// conversion sequences to determine whether one is better than the
1488/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1489ImplicitConversionSequence::CompareKind
1490Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1491 const StandardConversionSequence& SCS2)
1492{
1493 // Standard conversion sequence S1 is a better conversion sequence
1494 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1495
1496 // -- S1 is a proper subsequence of S2 (comparing the conversion
1497 // sequences in the canonical form defined by 13.3.3.1.1,
1498 // excluding any Lvalue Transformation; the identity conversion
1499 // sequence is considered to be a subsequence of any
1500 // non-identity conversion sequence) or, if not that,
1501 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1502 // Neither is a proper subsequence of the other. Do nothing.
1503 ;
1504 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1505 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1506 (SCS1.Second == ICK_Identity &&
1507 SCS1.Third == ICK_Identity))
1508 // SCS1 is a proper subsequence of SCS2.
1509 return ImplicitConversionSequence::Better;
1510 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1511 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1512 (SCS2.Second == ICK_Identity &&
1513 SCS2.Third == ICK_Identity))
1514 // SCS2 is a proper subsequence of SCS1.
1515 return ImplicitConversionSequence::Worse;
1516
1517 // -- the rank of S1 is better than the rank of S2 (by the rules
1518 // defined below), or, if not that,
1519 ImplicitConversionRank Rank1 = SCS1.getRank();
1520 ImplicitConversionRank Rank2 = SCS2.getRank();
1521 if (Rank1 < Rank2)
1522 return ImplicitConversionSequence::Better;
1523 else if (Rank2 < Rank1)
1524 return ImplicitConversionSequence::Worse;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001525
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001526 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1527 // are indistinguishable unless one of the following rules
1528 // applies:
1529
1530 // A conversion that is not a conversion of a pointer, or
1531 // pointer to member, to bool is better than another conversion
1532 // that is such a conversion.
1533 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1534 return SCS2.isPointerConversionToBool()
1535 ? ImplicitConversionSequence::Better
1536 : ImplicitConversionSequence::Worse;
1537
Douglas Gregor14046502008-10-23 00:40:37 +00001538 // C++ [over.ics.rank]p4b2:
1539 //
1540 // If class B is derived directly or indirectly from class A,
Douglas Gregor0e343382008-10-29 14:50:44 +00001541 // conversion of B* to A* is better than conversion of B* to
1542 // void*, and conversion of A* to void* is better than conversion
1543 // of B* to void*.
Douglas Gregor14046502008-10-23 00:40:37 +00001544 bool SCS1ConvertsToVoid
1545 = SCS1.isPointerConversionToVoidPointer(Context);
1546 bool SCS2ConvertsToVoid
1547 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregor0e343382008-10-29 14:50:44 +00001548 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1549 // Exactly one of the conversion sequences is a conversion to
1550 // a void pointer; it's the worse conversion.
Douglas Gregor14046502008-10-23 00:40:37 +00001551 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1552 : ImplicitConversionSequence::Worse;
Douglas Gregor0e343382008-10-29 14:50:44 +00001553 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1554 // Neither conversion sequence converts to a void pointer; compare
1555 // their derived-to-base conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001556 if (ImplicitConversionSequence::CompareKind DerivedCK
1557 = CompareDerivedToBaseConversions(SCS1, SCS2))
1558 return DerivedCK;
Douglas Gregor0e343382008-10-29 14:50:44 +00001559 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1560 // Both conversion sequences are conversions to void
1561 // pointers. Compare the source types to determine if there's an
1562 // inheritance relationship in their sources.
1563 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1564 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1565
1566 // Adjust the types we're converting from via the array-to-pointer
1567 // conversion, if we need to.
1568 if (SCS1.First == ICK_Array_To_Pointer)
1569 FromType1 = Context.getArrayDecayedType(FromType1);
1570 if (SCS2.First == ICK_Array_To_Pointer)
1571 FromType2 = Context.getArrayDecayedType(FromType2);
1572
1573 QualType FromPointee1
1574 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1575 QualType FromPointee2
1576 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1577
1578 if (IsDerivedFrom(FromPointee2, FromPointee1))
1579 return ImplicitConversionSequence::Better;
1580 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1581 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001582
1583 // Objective-C++: If one interface is more specific than the
1584 // other, it is the better one.
1585 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1586 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1587 if (FromIface1 && FromIface1) {
1588 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1589 return ImplicitConversionSequence::Better;
1590 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1591 return ImplicitConversionSequence::Worse;
1592 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001593 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001594
1595 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1596 // bullet 3).
Douglas Gregor14046502008-10-23 00:40:37 +00001597 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001598 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregor14046502008-10-23 00:40:37 +00001599 return QualCK;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001600
Douglas Gregor0e343382008-10-29 14:50:44 +00001601 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001602 // C++0x [over.ics.rank]p3b4:
1603 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1604 // implicit object parameter of a non-static member function declared
1605 // without a ref-qualifier, and S1 binds an rvalue reference to an
1606 // rvalue and S2 binds an lvalue reference.
Sebastian Redldfc30332009-03-29 15:27:50 +00001607 // FIXME: We don't know if we're dealing with the implicit object parameter,
1608 // or if the member function in this case has a ref qualifier.
1609 // (Of course, we don't have ref qualifiers yet.)
1610 if (SCS1.RRefBinding != SCS2.RRefBinding)
1611 return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1612 : ImplicitConversionSequence::Worse;
Sebastian Redl8a8b3512009-03-22 23:49:27 +00001613
1614 // C++ [over.ics.rank]p3b4:
1615 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1616 // which the references refer are the same type except for
1617 // top-level cv-qualifiers, and the type to which the reference
1618 // initialized by S2 refers is more cv-qualified than the type
1619 // to which the reference initialized by S1 refers.
Sebastian Redldfc30332009-03-29 15:27:50 +00001620 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1621 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
Douglas Gregor0e343382008-10-29 14:50:44 +00001622 T1 = Context.getCanonicalType(T1);
1623 T2 = Context.getCanonicalType(T2);
1624 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1625 if (T2.isMoreQualifiedThan(T1))
1626 return ImplicitConversionSequence::Better;
1627 else if (T1.isMoreQualifiedThan(T2))
1628 return ImplicitConversionSequence::Worse;
1629 }
1630 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001631
1632 return ImplicitConversionSequence::Indistinguishable;
1633}
1634
1635/// CompareQualificationConversions - Compares two standard conversion
1636/// sequences to determine whether they can be ranked based on their
1637/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1638ImplicitConversionSequence::CompareKind
1639Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1640 const StandardConversionSequence& SCS2)
1641{
Douglas Gregor4459bbe2008-10-22 15:04:37 +00001642 // C++ 13.3.3.2p3:
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001643 // -- S1 and S2 differ only in their qualification conversion and
1644 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1645 // cv-qualification signature of type T1 is a proper subset of
1646 // the cv-qualification signature of type T2, and S1 is not the
1647 // deprecated string literal array-to-pointer conversion (4.2).
1648 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1649 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1650 return ImplicitConversionSequence::Indistinguishable;
1651
1652 // FIXME: the example in the standard doesn't use a qualification
1653 // conversion (!)
1654 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1655 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1656 T1 = Context.getCanonicalType(T1);
1657 T2 = Context.getCanonicalType(T2);
1658
1659 // If the types are the same, we won't learn anything by unwrapped
1660 // them.
1661 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1662 return ImplicitConversionSequence::Indistinguishable;
1663
1664 ImplicitConversionSequence::CompareKind Result
1665 = ImplicitConversionSequence::Indistinguishable;
1666 while (UnwrapSimilarPointerTypes(T1, T2)) {
1667 // Within each iteration of the loop, we check the qualifiers to
1668 // determine if this still looks like a qualification
1669 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001670 // pointers or pointers-to-members and do it all again
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001671 // until there are no more pointers or pointers-to-members left
1672 // to unwrap. This essentially mimics what
1673 // IsQualificationConversion does, but here we're checking for a
1674 // strict subset of qualifiers.
1675 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1676 // The qualifiers are the same, so this doesn't tell us anything
1677 // about how the sequences rank.
1678 ;
1679 else if (T2.isMoreQualifiedThan(T1)) {
1680 // T1 has fewer qualifiers, so it could be the better sequence.
1681 if (Result == ImplicitConversionSequence::Worse)
1682 // Neither has qualifiers that are a subset of the other's
1683 // qualifiers.
1684 return ImplicitConversionSequence::Indistinguishable;
1685
1686 Result = ImplicitConversionSequence::Better;
1687 } else if (T1.isMoreQualifiedThan(T2)) {
1688 // T2 has fewer qualifiers, so it could be the better sequence.
1689 if (Result == ImplicitConversionSequence::Better)
1690 // Neither has qualifiers that are a subset of the other's
1691 // qualifiers.
1692 return ImplicitConversionSequence::Indistinguishable;
1693
1694 Result = ImplicitConversionSequence::Worse;
1695 } else {
1696 // Qualifiers are disjoint.
1697 return ImplicitConversionSequence::Indistinguishable;
1698 }
1699
1700 // If the types after this point are equivalent, we're done.
1701 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1702 break;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001703 }
1704
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001705 // Check that the winning standard conversion sequence isn't using
1706 // the deprecated string literal array to pointer conversion.
1707 switch (Result) {
1708 case ImplicitConversionSequence::Better:
1709 if (SCS1.Deprecated)
1710 Result = ImplicitConversionSequence::Indistinguishable;
1711 break;
1712
1713 case ImplicitConversionSequence::Indistinguishable:
1714 break;
1715
1716 case ImplicitConversionSequence::Worse:
1717 if (SCS2.Deprecated)
1718 Result = ImplicitConversionSequence::Indistinguishable;
1719 break;
1720 }
1721
1722 return Result;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001723}
1724
Douglas Gregor14046502008-10-23 00:40:37 +00001725/// CompareDerivedToBaseConversions - Compares two standard conversion
1726/// sequences to determine whether they can be ranked based on their
Douglas Gregor24a90a52008-11-26 23:31:11 +00001727/// various kinds of derived-to-base conversions (C++
1728/// [over.ics.rank]p4b3). As part of these checks, we also look at
1729/// conversions between Objective-C interface types.
Douglas Gregor14046502008-10-23 00:40:37 +00001730ImplicitConversionSequence::CompareKind
1731Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1732 const StandardConversionSequence& SCS2) {
1733 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1734 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1735 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1736 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1737
1738 // Adjust the types we're converting from via the array-to-pointer
1739 // conversion, if we need to.
1740 if (SCS1.First == ICK_Array_To_Pointer)
1741 FromType1 = Context.getArrayDecayedType(FromType1);
1742 if (SCS2.First == ICK_Array_To_Pointer)
1743 FromType2 = Context.getArrayDecayedType(FromType2);
1744
1745 // Canonicalize all of the types.
1746 FromType1 = Context.getCanonicalType(FromType1);
1747 ToType1 = Context.getCanonicalType(ToType1);
1748 FromType2 = Context.getCanonicalType(FromType2);
1749 ToType2 = Context.getCanonicalType(ToType2);
1750
Douglas Gregor0e343382008-10-29 14:50:44 +00001751 // C++ [over.ics.rank]p4b3:
Douglas Gregor14046502008-10-23 00:40:37 +00001752 //
1753 // If class B is derived directly or indirectly from class A and
1754 // class C is derived directly or indirectly from B,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001755 //
1756 // For Objective-C, we let A, B, and C also be Objective-C
1757 // interfaces.
Douglas Gregor0e343382008-10-29 14:50:44 +00001758
1759 // Compare based on pointer conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001760 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor3f5a00c2008-11-27 01:19:21 +00001761 SCS2.Second == ICK_Pointer_Conversion &&
1762 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1763 FromType1->isPointerType() && FromType2->isPointerType() &&
1764 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregor14046502008-10-23 00:40:37 +00001765 QualType FromPointee1
1766 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1767 QualType ToPointee1
1768 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1769 QualType FromPointee2
1770 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1771 QualType ToPointee2
1772 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregor24a90a52008-11-26 23:31:11 +00001773
1774 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1775 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1776 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1777 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1778
Douglas Gregor0e343382008-10-29 14:50:44 +00001779 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregor14046502008-10-23 00:40:37 +00001780 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1781 if (IsDerivedFrom(ToPointee1, ToPointee2))
1782 return ImplicitConversionSequence::Better;
1783 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1784 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001785
1786 if (ToIface1 && ToIface2) {
1787 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1788 return ImplicitConversionSequence::Better;
1789 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1790 return ImplicitConversionSequence::Worse;
1791 }
Douglas Gregor14046502008-10-23 00:40:37 +00001792 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001793
1794 // -- conversion of B* to A* is better than conversion of C* to A*,
1795 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1796 if (IsDerivedFrom(FromPointee2, FromPointee1))
1797 return ImplicitConversionSequence::Better;
1798 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1799 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001800
1801 if (FromIface1 && FromIface2) {
1802 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1803 return ImplicitConversionSequence::Better;
1804 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1805 return ImplicitConversionSequence::Worse;
1806 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001807 }
Douglas Gregor14046502008-10-23 00:40:37 +00001808 }
1809
Douglas Gregor0e343382008-10-29 14:50:44 +00001810 // Compare based on reference bindings.
1811 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1812 SCS1.Second == ICK_Derived_To_Base) {
1813 // -- binding of an expression of type C to a reference of type
1814 // B& is better than binding an expression of type C to a
1815 // reference of type A&,
1816 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1817 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1818 if (IsDerivedFrom(ToType1, ToType2))
1819 return ImplicitConversionSequence::Better;
1820 else if (IsDerivedFrom(ToType2, ToType1))
1821 return ImplicitConversionSequence::Worse;
1822 }
1823
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001824 // -- binding of an expression of type B to a reference of type
1825 // A& is better than binding an expression of type C to a
1826 // reference of type A&,
Douglas Gregor0e343382008-10-29 14:50:44 +00001827 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1828 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1829 if (IsDerivedFrom(FromType2, FromType1))
1830 return ImplicitConversionSequence::Better;
1831 else if (IsDerivedFrom(FromType1, FromType2))
1832 return ImplicitConversionSequence::Worse;
1833 }
1834 }
1835
1836
1837 // FIXME: conversion of A::* to B::* is better than conversion of
1838 // A::* to C::*,
1839
1840 // FIXME: conversion of B::* to C::* is better than conversion of
1841 // A::* to C::*, and
1842
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001843 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1844 SCS1.Second == ICK_Derived_To_Base) {
1845 // -- conversion of C to B is better than conversion of C to A,
1846 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1847 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1848 if (IsDerivedFrom(ToType1, ToType2))
1849 return ImplicitConversionSequence::Better;
1850 else if (IsDerivedFrom(ToType2, ToType1))
1851 return ImplicitConversionSequence::Worse;
1852 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001853
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001854 // -- conversion of B to A is better than conversion of C to A.
1855 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1856 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1857 if (IsDerivedFrom(FromType2, FromType1))
1858 return ImplicitConversionSequence::Better;
1859 else if (IsDerivedFrom(FromType1, FromType2))
1860 return ImplicitConversionSequence::Worse;
1861 }
1862 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001863
Douglas Gregor14046502008-10-23 00:40:37 +00001864 return ImplicitConversionSequence::Indistinguishable;
1865}
1866
Douglas Gregor81c29152008-10-29 00:13:59 +00001867/// TryCopyInitialization - Try to copy-initialize a value of type
1868/// ToType from the expression From. Return the implicit conversion
1869/// sequence required to pass this argument, which may be a bad
1870/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001871/// a parameter of this type). If @p SuppressUserConversions, then we
Sebastian Redla55834a2009-04-12 17:16:29 +00001872/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1873/// then we treat @p From as an rvalue, even if it is an lvalue.
Douglas Gregor81c29152008-10-29 00:13:59 +00001874ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001875Sema::TryCopyInitialization(Expr *From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001876 bool SuppressUserConversions, bool ForceRValue) {
Douglas Gregorfcb19192009-02-11 23:02:49 +00001877 if (ToType->isReferenceType()) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001878 ImplicitConversionSequence ICS;
Sebastian Redla55834a2009-04-12 17:16:29 +00001879 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1880 /*AllowExplicit=*/false, ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001881 return ICS;
1882 } else {
Sebastian Redla55834a2009-04-12 17:16:29 +00001883 return TryImplicitConversion(From, ToType, SuppressUserConversions,
1884 ForceRValue);
Douglas Gregor81c29152008-10-29 00:13:59 +00001885 }
1886}
1887
Sebastian Redla55834a2009-04-12 17:16:29 +00001888/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1889/// the expression @p From. Returns true (and emits a diagnostic) if there was
1890/// an error, returns false if the initialization succeeded. Elidable should
1891/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1892/// differently in C++0x for this case.
Douglas Gregor81c29152008-10-29 00:13:59 +00001893bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
Sebastian Redla55834a2009-04-12 17:16:29 +00001894 const char* Flavor, bool Elidable) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001895 if (!getLangOptions().CPlusPlus) {
1896 // In C, argument passing is the same as performing an assignment.
1897 QualType FromType = From->getType();
Douglas Gregor144b06c2009-04-29 22:16:16 +00001898
Douglas Gregor81c29152008-10-29 00:13:59 +00001899 AssignConvertType ConvTy =
1900 CheckSingleAssignmentConstraints(ToType, From);
Douglas Gregor144b06c2009-04-29 22:16:16 +00001901 if (ConvTy != Compatible &&
1902 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1903 ConvTy = Compatible;
1904
Douglas Gregor81c29152008-10-29 00:13:59 +00001905 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1906 FromType, From, Flavor);
Douglas Gregor81c29152008-10-29 00:13:59 +00001907 }
Sebastian Redla55834a2009-04-12 17:16:29 +00001908
Chris Lattner271d4c22008-11-24 05:29:24 +00001909 if (ToType->isReferenceType())
1910 return CheckReferenceInit(From, ToType);
1911
Sebastian Redla55834a2009-04-12 17:16:29 +00001912 if (!PerformImplicitConversion(From, ToType, Flavor,
1913 /*AllowExplicit=*/false, Elidable))
Chris Lattner271d4c22008-11-24 05:29:24 +00001914 return false;
Sebastian Redla55834a2009-04-12 17:16:29 +00001915
Chris Lattner271d4c22008-11-24 05:29:24 +00001916 return Diag(From->getSourceRange().getBegin(),
1917 diag::err_typecheck_convert_incompatible)
1918 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor81c29152008-10-29 00:13:59 +00001919}
1920
Douglas Gregor5ed15042008-11-18 23:14:02 +00001921/// TryObjectArgumentInitialization - Try to initialize the object
1922/// parameter of the given member function (@c Method) from the
1923/// expression @p From.
1924ImplicitConversionSequence
1925Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1926 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1927 unsigned MethodQuals = Method->getTypeQualifiers();
1928 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1929
1930 // Set up the conversion sequence as a "bad" conversion, to allow us
1931 // to exit early.
1932 ImplicitConversionSequence ICS;
1933 ICS.Standard.setAsIdentityConversion();
1934 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1935
1936 // We need to have an object of class type.
1937 QualType FromType = From->getType();
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001938 if (const PointerType *PT = FromType->getAsPointerType())
1939 FromType = PT->getPointeeType();
1940
1941 assert(FromType->isRecordType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00001942
1943 // The implicit object parmeter is has the type "reference to cv X",
1944 // where X is the class of which the function is a member
1945 // (C++ [over.match.funcs]p4). However, when finding an implicit
1946 // conversion sequence for the argument, we are not allowed to
1947 // create temporaries or perform user-defined conversions
1948 // (C++ [over.match.funcs]p5). We perform a simplified version of
1949 // reference binding here, that allows class rvalues to bind to
1950 // non-constant references.
1951
1952 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1953 // with the implicit object parameter (C++ [over.match.funcs]p5).
1954 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1955 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1956 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1957 return ICS;
1958
1959 // Check that we have either the same type or a derived type. It
1960 // affects the conversion rank.
1961 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1962 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1963 ICS.Standard.Second = ICK_Identity;
1964 else if (IsDerivedFrom(FromType, ClassType))
1965 ICS.Standard.Second = ICK_Derived_To_Base;
1966 else
1967 return ICS;
1968
1969 // Success. Mark this as a reference binding.
1970 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1971 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1972 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1973 ICS.Standard.ReferenceBinding = true;
1974 ICS.Standard.DirectBinding = true;
Sebastian Redl9bc16ad2009-03-29 22:46:24 +00001975 ICS.Standard.RRefBinding = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00001976 return ICS;
1977}
1978
1979/// PerformObjectArgumentInitialization - Perform initialization of
1980/// the implicit object parameter for the given Method with the given
1981/// expression.
1982bool
1983Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00001984 QualType FromRecordType, DestType;
1985 QualType ImplicitParamRecordType =
1986 Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1987
1988 if (const PointerType *PT = From->getType()->getAsPointerType()) {
1989 FromRecordType = PT->getPointeeType();
1990 DestType = Method->getThisType(Context);
1991 } else {
1992 FromRecordType = From->getType();
1993 DestType = ImplicitParamRecordType;
1994 }
1995
Douglas Gregor5ed15042008-11-18 23:14:02 +00001996 ImplicitConversionSequence ICS
1997 = TryObjectArgumentInitialization(From, Method);
1998 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1999 return Diag(From->getSourceRange().getBegin(),
Chris Lattner8ba580c2008-11-19 05:08:23 +00002000 diag::err_implicit_object_parameter_init)
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00002001 << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2002
Douglas Gregor5ed15042008-11-18 23:14:02 +00002003 if (ICS.Standard.Second == ICK_Derived_To_Base &&
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00002004 CheckDerivedToBaseConversion(FromRecordType,
2005 ImplicitParamRecordType,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002006 From->getSourceRange().getBegin(),
2007 From->getSourceRange()))
2008 return true;
2009
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00002010 ImpCastExprToType(From, DestType, /*isLvalue=*/true);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002011 return false;
2012}
2013
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002014/// TryContextuallyConvertToBool - Attempt to contextually convert the
2015/// expression From to bool (C++0x [conv]p3).
2016ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2017 return TryImplicitConversion(From, Context.BoolTy, false, true);
2018}
2019
2020/// PerformContextuallyConvertToBool - Perform a contextual conversion
2021/// of the expression From to bool (C++0x [conv]p3).
2022bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2023 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2024 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2025 return false;
2026
2027 return Diag(From->getSourceRange().getBegin(),
2028 diag::err_typecheck_bool_condition)
2029 << From->getType() << From->getSourceRange();
2030}
2031
Douglas Gregord2baafd2008-10-21 16:13:35 +00002032/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002033/// candidate functions, using the given function call arguments. If
2034/// @p SuppressUserConversions, then don't allow user-defined
2035/// conversions via constructors or conversion operators.
Sebastian Redla55834a2009-04-12 17:16:29 +00002036/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2037/// hacky way to implement the overloading rules for elidable copy
2038/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregord2baafd2008-10-21 16:13:35 +00002039void
2040Sema::AddOverloadCandidate(FunctionDecl *Function,
2041 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002042 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002043 bool SuppressUserConversions,
2044 bool ForceRValue)
Douglas Gregord2baafd2008-10-21 16:13:35 +00002045{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002046 const FunctionProtoType* Proto
2047 = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
Douglas Gregord2baafd2008-10-21 16:13:35 +00002048 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregor60714f92008-11-07 22:36:19 +00002049 assert(!isa<CXXConversionDecl>(Function) &&
2050 "Use AddConversionCandidate for conversion functions");
Douglas Gregord2baafd2008-10-21 16:13:35 +00002051
Douglas Gregor3257fb52008-12-22 05:46:06 +00002052 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
Sebastian Redlbd261962009-04-16 17:51:27 +00002053 if (!isa<CXXConstructorDecl>(Method)) {
2054 // If we get here, it's because we're calling a member function
2055 // that is named without a member access expression (e.g.,
2056 // "this->f") that was either written explicitly or created
2057 // implicitly. This can happen with a qualified call to a member
2058 // function, e.g., X::f(). We use a NULL object as the implied
2059 // object argument (C++ [over.call.func]p3).
2060 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2061 SuppressUserConversions, ForceRValue);
2062 return;
2063 }
2064 // We treat a constructor like a non-member function, since its object
2065 // argument doesn't participate in overload resolution.
Douglas Gregor3257fb52008-12-22 05:46:06 +00002066 }
2067
2068
Douglas Gregord2baafd2008-10-21 16:13:35 +00002069 // Add this candidate
2070 CandidateSet.push_back(OverloadCandidate());
2071 OverloadCandidate& Candidate = CandidateSet.back();
2072 Candidate.Function = Function;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002073 Candidate.Viable = true;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002074 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002075 Candidate.IgnoreObjectArgument = false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00002076
2077 unsigned NumArgsInProto = Proto->getNumArgs();
2078
2079 // (C++ 13.3.2p2): A candidate function having fewer than m
2080 // parameters is viable only if it has an ellipsis in its parameter
2081 // list (8.3.5).
2082 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2083 Candidate.Viable = false;
2084 return;
2085 }
2086
2087 // (C++ 13.3.2p2): A candidate function having more than m parameters
2088 // is viable only if the (m+1)st parameter has a default argument
2089 // (8.3.6). For the purposes of overload resolution, the
2090 // parameter list is truncated on the right, so that there are
2091 // exactly m parameters.
2092 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2093 if (NumArgs < MinRequiredArgs) {
2094 // Not enough arguments.
2095 Candidate.Viable = false;
2096 return;
2097 }
2098
2099 // Determine the implicit conversion sequences for each of the
2100 // arguments.
Douglas Gregord2baafd2008-10-21 16:13:35 +00002101 Candidate.Conversions.resize(NumArgs);
2102 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2103 if (ArgIdx < NumArgsInProto) {
2104 // (C++ 13.3.2p3): for F to be a viable function, there shall
2105 // exist for each argument an implicit conversion sequence
2106 // (13.3.3.1) that converts that argument to the corresponding
2107 // parameter of F.
2108 QualType ParamType = Proto->getArgType(ArgIdx);
2109 Candidate.Conversions[ArgIdx]
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002110 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002111 SuppressUserConversions, ForceRValue);
Douglas Gregord2baafd2008-10-21 16:13:35 +00002112 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002113 == ImplicitConversionSequence::BadConversion) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00002114 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002115 break;
2116 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002117 } else {
2118 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2119 // argument for which there is no corresponding parameter is
2120 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2121 Candidate.Conversions[ArgIdx].ConversionKind
2122 = ImplicitConversionSequence::EllipsisConversion;
2123 }
2124 }
2125}
2126
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002127/// \brief Add all of the function declarations in the given function set to
2128/// the overload canddiate set.
2129void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2130 Expr **Args, unsigned NumArgs,
2131 OverloadCandidateSet& CandidateSet,
2132 bool SuppressUserConversions) {
2133 for (FunctionSet::const_iterator F = Functions.begin(),
2134 FEnd = Functions.end();
2135 F != FEnd; ++F)
2136 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2137 SuppressUserConversions);
2138}
2139
Douglas Gregor5ed15042008-11-18 23:14:02 +00002140/// AddMethodCandidate - Adds the given C++ member function to the set
2141/// of candidate functions, using the given function call arguments
2142/// and the object argument (@c Object). For example, in a call
2143/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2144/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2145/// allow user-defined conversions via constructors or conversion
Sebastian Redla55834a2009-04-12 17:16:29 +00002146/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2147/// a slightly hacky way to implement the overloading rules for elidable copy
2148/// initialization in C++0x (C++0x 12.8p15).
Douglas Gregor5ed15042008-11-18 23:14:02 +00002149void
2150Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2151 Expr **Args, unsigned NumArgs,
2152 OverloadCandidateSet& CandidateSet,
Sebastian Redla55834a2009-04-12 17:16:29 +00002153 bool SuppressUserConversions, bool ForceRValue)
Douglas Gregor5ed15042008-11-18 23:14:02 +00002154{
Douglas Gregor4fa58902009-02-26 23:50:07 +00002155 const FunctionProtoType* Proto
2156 = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
Douglas Gregor5ed15042008-11-18 23:14:02 +00002157 assert(Proto && "Methods without a prototype cannot be overloaded");
Sebastian Redlbd261962009-04-16 17:51:27 +00002158 assert(!isa<CXXConversionDecl>(Method) &&
Douglas Gregor5ed15042008-11-18 23:14:02 +00002159 "Use AddConversionCandidate for conversion functions");
Sebastian Redlbd261962009-04-16 17:51:27 +00002160 assert(!isa<CXXConstructorDecl>(Method) &&
2161 "Use AddOverloadCandidate for constructors");
Douglas Gregor5ed15042008-11-18 23:14:02 +00002162
2163 // Add this candidate
2164 CandidateSet.push_back(OverloadCandidate());
2165 OverloadCandidate& Candidate = CandidateSet.back();
2166 Candidate.Function = Method;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002167 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002168 Candidate.IgnoreObjectArgument = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002169
2170 unsigned NumArgsInProto = Proto->getNumArgs();
2171
2172 // (C++ 13.3.2p2): A candidate function having fewer than m
2173 // parameters is viable only if it has an ellipsis in its parameter
2174 // list (8.3.5).
2175 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2176 Candidate.Viable = false;
2177 return;
2178 }
2179
2180 // (C++ 13.3.2p2): A candidate function having more than m parameters
2181 // is viable only if the (m+1)st parameter has a default argument
2182 // (8.3.6). For the purposes of overload resolution, the
2183 // parameter list is truncated on the right, so that there are
2184 // exactly m parameters.
2185 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2186 if (NumArgs < MinRequiredArgs) {
2187 // Not enough arguments.
2188 Candidate.Viable = false;
2189 return;
2190 }
2191
2192 Candidate.Viable = true;
2193 Candidate.Conversions.resize(NumArgs + 1);
2194
Douglas Gregor3257fb52008-12-22 05:46:06 +00002195 if (Method->isStatic() || !Object)
2196 // The implicit object argument is ignored.
2197 Candidate.IgnoreObjectArgument = true;
2198 else {
2199 // Determine the implicit conversion sequence for the object
2200 // parameter.
2201 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2202 if (Candidate.Conversions[0].ConversionKind
2203 == ImplicitConversionSequence::BadConversion) {
2204 Candidate.Viable = false;
2205 return;
2206 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002207 }
2208
2209 // Determine the implicit conversion sequences for each of the
2210 // arguments.
2211 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2212 if (ArgIdx < NumArgsInProto) {
2213 // (C++ 13.3.2p3): for F to be a viable function, there shall
2214 // exist for each argument an implicit conversion sequence
2215 // (13.3.3.1) that converts that argument to the corresponding
2216 // parameter of F.
2217 QualType ParamType = Proto->getArgType(ArgIdx);
2218 Candidate.Conversions[ArgIdx + 1]
2219 = TryCopyInitialization(Args[ArgIdx], ParamType,
Sebastian Redla55834a2009-04-12 17:16:29 +00002220 SuppressUserConversions, ForceRValue);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002221 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2222 == ImplicitConversionSequence::BadConversion) {
2223 Candidate.Viable = false;
2224 break;
2225 }
2226 } else {
2227 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2228 // argument for which there is no corresponding parameter is
2229 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2230 Candidate.Conversions[ArgIdx + 1].ConversionKind
2231 = ImplicitConversionSequence::EllipsisConversion;
2232 }
2233 }
2234}
2235
Douglas Gregor60714f92008-11-07 22:36:19 +00002236/// AddConversionCandidate - Add a C++ conversion function as a
2237/// candidate in the candidate set (C++ [over.match.conv],
2238/// C++ [over.match.copy]). From is the expression we're converting from,
2239/// and ToType is the type that we're eventually trying to convert to
2240/// (which may or may not be the same type as the type that the
2241/// conversion function produces).
2242void
2243Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2244 Expr *From, QualType ToType,
2245 OverloadCandidateSet& CandidateSet) {
2246 // Add this candidate
2247 CandidateSet.push_back(OverloadCandidate());
2248 OverloadCandidate& Candidate = CandidateSet.back();
2249 Candidate.Function = Conversion;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002250 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002251 Candidate.IgnoreObjectArgument = false;
Douglas Gregor60714f92008-11-07 22:36:19 +00002252 Candidate.FinalConversion.setAsIdentityConversion();
2253 Candidate.FinalConversion.FromTypePtr
2254 = Conversion->getConversionType().getAsOpaquePtr();
2255 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2256
Douglas Gregor5ed15042008-11-18 23:14:02 +00002257 // Determine the implicit conversion sequence for the implicit
2258 // object parameter.
Douglas Gregor60714f92008-11-07 22:36:19 +00002259 Candidate.Viable = true;
2260 Candidate.Conversions.resize(1);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002261 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregor60714f92008-11-07 22:36:19 +00002262
Douglas Gregor60714f92008-11-07 22:36:19 +00002263 if (Candidate.Conversions[0].ConversionKind
2264 == ImplicitConversionSequence::BadConversion) {
2265 Candidate.Viable = false;
2266 return;
2267 }
2268
2269 // To determine what the conversion from the result of calling the
2270 // conversion function to the type we're eventually trying to
2271 // convert to (ToType), we need to synthesize a call to the
2272 // conversion function and attempt copy initialization from it. This
2273 // makes sure that we get the right semantics with respect to
2274 // lvalues/rvalues and the type. Fortunately, we can allocate this
2275 // call on the stack and we don't need its arguments to be
2276 // well-formed.
2277 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2278 SourceLocation());
2279 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregor70d26122008-11-12 17:17:38 +00002280 &ConversionRef, false);
Ted Kremenek362abcd2009-02-09 20:51:47 +00002281
2282 // Note that it is safe to allocate CallExpr on the stack here because
2283 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2284 // allocator).
2285 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregor60714f92008-11-07 22:36:19 +00002286 Conversion->getConversionType().getNonReferenceType(),
2287 SourceLocation());
2288 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2289 switch (ICS.ConversionKind) {
2290 case ImplicitConversionSequence::StandardConversion:
2291 Candidate.FinalConversion = ICS.Standard;
2292 break;
2293
2294 case ImplicitConversionSequence::BadConversion:
2295 Candidate.Viable = false;
2296 break;
2297
2298 default:
2299 assert(false &&
2300 "Can only end up with a standard conversion sequence or failure");
2301 }
2302}
2303
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002304/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2305/// converts the given @c Object to a function pointer via the
2306/// conversion function @c Conversion, and then attempts to call it
2307/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2308/// the type of function that we'll eventually be calling.
2309void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
Douglas Gregor4fa58902009-02-26 23:50:07 +00002310 const FunctionProtoType *Proto,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002311 Expr *Object, Expr **Args, unsigned NumArgs,
2312 OverloadCandidateSet& CandidateSet) {
2313 CandidateSet.push_back(OverloadCandidate());
2314 OverloadCandidate& Candidate = CandidateSet.back();
2315 Candidate.Function = 0;
2316 Candidate.Surrogate = Conversion;
2317 Candidate.Viable = true;
2318 Candidate.IsSurrogate = true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002319 Candidate.IgnoreObjectArgument = false;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002320 Candidate.Conversions.resize(NumArgs + 1);
2321
2322 // Determine the implicit conversion sequence for the implicit
2323 // object parameter.
2324 ImplicitConversionSequence ObjectInit
2325 = TryObjectArgumentInitialization(Object, Conversion);
2326 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2327 Candidate.Viable = false;
2328 return;
2329 }
2330
2331 // The first conversion is actually a user-defined conversion whose
2332 // first conversion is ObjectInit's standard conversion (which is
2333 // effectively a reference binding). Record it as such.
2334 Candidate.Conversions[0].ConversionKind
2335 = ImplicitConversionSequence::UserDefinedConversion;
2336 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2337 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2338 Candidate.Conversions[0].UserDefined.After
2339 = Candidate.Conversions[0].UserDefined.Before;
2340 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2341
2342 // Find the
2343 unsigned NumArgsInProto = Proto->getNumArgs();
2344
2345 // (C++ 13.3.2p2): A candidate function having fewer than m
2346 // parameters is viable only if it has an ellipsis in its parameter
2347 // list (8.3.5).
2348 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2349 Candidate.Viable = false;
2350 return;
2351 }
2352
2353 // Function types don't have any default arguments, so just check if
2354 // we have enough arguments.
2355 if (NumArgs < NumArgsInProto) {
2356 // Not enough arguments.
2357 Candidate.Viable = false;
2358 return;
2359 }
2360
2361 // Determine the implicit conversion sequences for each of the
2362 // arguments.
2363 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2364 if (ArgIdx < NumArgsInProto) {
2365 // (C++ 13.3.2p3): for F to be a viable function, there shall
2366 // exist for each argument an implicit conversion sequence
2367 // (13.3.3.1) that converts that argument to the corresponding
2368 // parameter of F.
2369 QualType ParamType = Proto->getArgType(ArgIdx);
2370 Candidate.Conversions[ArgIdx + 1]
2371 = TryCopyInitialization(Args[ArgIdx], ParamType,
2372 /*SuppressUserConversions=*/false);
2373 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2374 == ImplicitConversionSequence::BadConversion) {
2375 Candidate.Viable = false;
2376 break;
2377 }
2378 } else {
2379 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2380 // argument for which there is no corresponding parameter is
2381 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2382 Candidate.Conversions[ArgIdx + 1].ConversionKind
2383 = ImplicitConversionSequence::EllipsisConversion;
2384 }
2385 }
2386}
2387
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002388// FIXME: This will eventually be removed, once we've migrated all of
2389// the operator overloading logic over to the scheme used by binary
2390// operators, which works for template instantiation.
2391void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
Douglas Gregor48a87322009-02-04 16:44:47 +00002392 SourceLocation OpLoc,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002393 Expr **Args, unsigned NumArgs,
Douglas Gregor48a87322009-02-04 16:44:47 +00002394 OverloadCandidateSet& CandidateSet,
2395 SourceRange OpRange) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002396
2397 FunctionSet Functions;
2398
2399 QualType T1 = Args[0]->getType();
2400 QualType T2;
2401 if (NumArgs > 1)
2402 T2 = Args[1]->getType();
2403
2404 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2405 LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2406 ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2407 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2408 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2409 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2410}
2411
2412/// \brief Add overload candidates for overloaded operators that are
2413/// member functions.
2414///
2415/// Add the overloaded operator candidates that are member functions
2416/// for the operator Op that was used in an operator expression such
2417/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2418/// CandidateSet will store the added overload candidates. (C++
2419/// [over.match.oper]).
2420void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2421 SourceLocation OpLoc,
2422 Expr **Args, unsigned NumArgs,
2423 OverloadCandidateSet& CandidateSet,
2424 SourceRange OpRange) {
Douglas Gregor5ed15042008-11-18 23:14:02 +00002425 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2426
2427 // C++ [over.match.oper]p3:
2428 // For a unary operator @ with an operand of a type whose
2429 // cv-unqualified version is T1, and for a binary operator @ with
2430 // a left operand of a type whose cv-unqualified version is T1 and
2431 // a right operand of a type whose cv-unqualified version is T2,
2432 // three sets of candidate functions, designated member
2433 // candidates, non-member candidates and built-in candidates, are
2434 // constructed as follows:
2435 QualType T1 = Args[0]->getType();
2436 QualType T2;
2437 if (NumArgs > 1)
2438 T2 = Args[1]->getType();
2439
2440 // -- If T1 is a class type, the set of member candidates is the
2441 // result of the qualified lookup of T1::operator@
2442 // (13.3.1.1.1); otherwise, the set of member candidates is
2443 // empty.
Douglas Gregor00fe3f62009-03-13 18:40:31 +00002444 // FIXME: Lookup in base classes, too!
Douglas Gregor5ed15042008-11-18 23:14:02 +00002445 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002446 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00002447 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(Context, OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00002448 Oper != OperEnd; ++Oper)
2449 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2450 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor5ed15042008-11-18 23:14:02 +00002451 /*SuppressUserConversions=*/false);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002452 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002453}
2454
Douglas Gregor70d26122008-11-12 17:17:38 +00002455/// AddBuiltinCandidate - Add a candidate for a built-in
2456/// operator. ResultTy and ParamTys are the result and parameter types
2457/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregorab141112009-01-13 00:52:54 +00002458/// arguments being passed to the candidate. IsAssignmentOperator
2459/// should be true when this built-in candidate is an assignment
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002460/// operator. NumContextualBoolArguments is the number of arguments
2461/// (at the beginning of the argument list) that will be contextually
2462/// converted to bool.
Douglas Gregor70d26122008-11-12 17:17:38 +00002463void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2464 Expr **Args, unsigned NumArgs,
Douglas Gregorab141112009-01-13 00:52:54 +00002465 OverloadCandidateSet& CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002466 bool IsAssignmentOperator,
2467 unsigned NumContextualBoolArguments) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002468 // Add this candidate
2469 CandidateSet.push_back(OverloadCandidate());
2470 OverloadCandidate& Candidate = CandidateSet.back();
2471 Candidate.Function = 0;
Douglas Gregor6b5e34f2008-12-12 02:00:36 +00002472 Candidate.IsSurrogate = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00002473 Candidate.IgnoreObjectArgument = false;
Douglas Gregor70d26122008-11-12 17:17:38 +00002474 Candidate.BuiltinTypes.ResultTy = ResultTy;
2475 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2476 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2477
2478 // Determine the implicit conversion sequences for each of the
2479 // arguments.
2480 Candidate.Viable = true;
2481 Candidate.Conversions.resize(NumArgs);
2482 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregorab141112009-01-13 00:52:54 +00002483 // C++ [over.match.oper]p4:
2484 // For the built-in assignment operators, conversions of the
2485 // left operand are restricted as follows:
2486 // -- no temporaries are introduced to hold the left operand, and
2487 // -- no user-defined conversions are applied to the left
2488 // operand to achieve a type match with the left-most
2489 // parameter of a built-in candidate.
2490 //
2491 // We block these conversions by turning off user-defined
2492 // conversions, since that is the only way that initialization of
2493 // a reference to a non-class type can occur from something that
2494 // is not of the same type.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002495 if (ArgIdx < NumContextualBoolArguments) {
2496 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2497 "Contextual conversion to bool requires bool type");
2498 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2499 } else {
2500 Candidate.Conversions[ArgIdx]
2501 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2502 ArgIdx == 0 && IsAssignmentOperator);
2503 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002504 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002505 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002506 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002507 break;
2508 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002509 }
2510}
2511
2512/// BuiltinCandidateTypeSet - A set of types that will be used for the
2513/// candidate operator functions for built-in operators (C++
2514/// [over.built]). The types are separated into pointer types and
2515/// enumeration types.
2516class BuiltinCandidateTypeSet {
2517 /// TypeSet - A set of types.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002518 typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
Douglas Gregor70d26122008-11-12 17:17:38 +00002519
2520 /// PointerTypes - The set of pointer types that will be used in the
2521 /// built-in candidates.
2522 TypeSet PointerTypes;
2523
Sebastian Redl674d1b72009-04-19 21:53:20 +00002524 /// MemberPointerTypes - The set of member pointer types that will be
2525 /// used in the built-in candidates.
2526 TypeSet MemberPointerTypes;
2527
Douglas Gregor70d26122008-11-12 17:17:38 +00002528 /// EnumerationTypes - The set of enumeration types that will be
2529 /// used in the built-in candidates.
2530 TypeSet EnumerationTypes;
2531
2532 /// Context - The AST context in which we will build the type sets.
2533 ASTContext &Context;
2534
Sebastian Redl674d1b72009-04-19 21:53:20 +00002535 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2536 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002537
2538public:
2539 /// iterator - Iterates through the types that are part of the set.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002540 typedef TypeSet::iterator iterator;
Douglas Gregor70d26122008-11-12 17:17:38 +00002541
2542 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2543
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002544 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2545 bool AllowExplicitConversions);
Douglas Gregor70d26122008-11-12 17:17:38 +00002546
2547 /// pointer_begin - First pointer type found;
2548 iterator pointer_begin() { return PointerTypes.begin(); }
2549
Sebastian Redl674d1b72009-04-19 21:53:20 +00002550 /// pointer_end - Past the last pointer type found;
Douglas Gregor70d26122008-11-12 17:17:38 +00002551 iterator pointer_end() { return PointerTypes.end(); }
2552
Sebastian Redl674d1b72009-04-19 21:53:20 +00002553 /// member_pointer_begin - First member pointer type found;
2554 iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2555
2556 /// member_pointer_end - Past the last member pointer type found;
2557 iterator member_pointer_end() { return MemberPointerTypes.end(); }
2558
Douglas Gregor70d26122008-11-12 17:17:38 +00002559 /// enumeration_begin - First enumeration type found;
2560 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2561
Sebastian Redl674d1b72009-04-19 21:53:20 +00002562 /// enumeration_end - Past the last enumeration type found;
Douglas Gregor70d26122008-11-12 17:17:38 +00002563 iterator enumeration_end() { return EnumerationTypes.end(); }
2564};
2565
Sebastian Redl674d1b72009-04-19 21:53:20 +00002566/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
Douglas Gregor70d26122008-11-12 17:17:38 +00002567/// the set of pointer types along with any more-qualified variants of
2568/// that type. For example, if @p Ty is "int const *", this routine
2569/// will add "int const *", "int const volatile *", "int const
2570/// restrict *", and "int const volatile restrict *" to the set of
2571/// pointer types. Returns true if the add of @p Ty itself succeeded,
2572/// false otherwise.
Sebastian Redl674d1b72009-04-19 21:53:20 +00002573bool
2574BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002575 // Insert this type.
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002576 if (!PointerTypes.insert(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002577 return false;
2578
2579 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2580 QualType PointeeTy = PointerTy->getPointeeType();
2581 // FIXME: Optimize this so that we don't keep trying to add the same types.
2582
2583 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2584 // with all pointer conversions that don't cast away constness?
2585 if (!PointeeTy.isConstQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002586 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002587 (Context.getPointerType(PointeeTy.withConst()));
2588 if (!PointeeTy.isVolatileQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002589 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002590 (Context.getPointerType(PointeeTy.withVolatile()));
2591 if (!PointeeTy.isRestrictQualified())
Sebastian Redl674d1b72009-04-19 21:53:20 +00002592 AddPointerWithMoreQualifiedTypeVariants
Douglas Gregor70d26122008-11-12 17:17:38 +00002593 (Context.getPointerType(PointeeTy.withRestrict()));
2594 }
2595
2596 return true;
2597}
2598
Sebastian Redl674d1b72009-04-19 21:53:20 +00002599/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2600/// to the set of pointer types along with any more-qualified variants of
2601/// that type. For example, if @p Ty is "int const *", this routine
2602/// will add "int const *", "int const volatile *", "int const
2603/// restrict *", and "int const volatile restrict *" to the set of
2604/// pointer types. Returns true if the add of @p Ty itself succeeded,
2605/// false otherwise.
2606bool
2607BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2608 QualType Ty) {
2609 // Insert this type.
2610 if (!MemberPointerTypes.insert(Ty))
2611 return false;
2612
2613 if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2614 QualType PointeeTy = PointerTy->getPointeeType();
2615 const Type *ClassTy = PointerTy->getClass();
2616 // FIXME: Optimize this so that we don't keep trying to add the same types.
2617
2618 if (!PointeeTy.isConstQualified())
2619 AddMemberPointerWithMoreQualifiedTypeVariants
2620 (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2621 if (!PointeeTy.isVolatileQualified())
2622 AddMemberPointerWithMoreQualifiedTypeVariants
2623 (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2624 if (!PointeeTy.isRestrictQualified())
2625 AddMemberPointerWithMoreQualifiedTypeVariants
2626 (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2627 }
2628
2629 return true;
2630}
2631
Douglas Gregor70d26122008-11-12 17:17:38 +00002632/// AddTypesConvertedFrom - Add each of the types to which the type @p
2633/// Ty can be implicit converted to the given set of @p Types. We're
Sebastian Redl674d1b72009-04-19 21:53:20 +00002634/// primarily interested in pointer types and enumeration types. We also
2635/// take member pointer types, for the conditional operator.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002636/// AllowUserConversions is true if we should look at the conversion
2637/// functions of a class type, and AllowExplicitConversions if we
2638/// should also include the explicit conversion functions of a class
2639/// type.
2640void
2641BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2642 bool AllowUserConversions,
2643 bool AllowExplicitConversions) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002644 // Only deal with canonical types.
2645 Ty = Context.getCanonicalType(Ty);
2646
2647 // Look through reference types; they aren't part of the type of an
2648 // expression for the purposes of conversions.
2649 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2650 Ty = RefTy->getPointeeType();
2651
2652 // We don't care about qualifiers on the type.
2653 Ty = Ty.getUnqualifiedType();
2654
2655 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2656 QualType PointeeTy = PointerTy->getPointeeType();
2657
2658 // Insert our type, and its more-qualified variants, into the set
2659 // of types.
Sebastian Redl674d1b72009-04-19 21:53:20 +00002660 if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
Douglas Gregor70d26122008-11-12 17:17:38 +00002661 return;
2662
2663 // Add 'cv void*' to our set of types.
2664 if (!Ty->isVoidType()) {
2665 QualType QualVoid
2666 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
Sebastian Redl674d1b72009-04-19 21:53:20 +00002667 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
Douglas Gregor70d26122008-11-12 17:17:38 +00002668 }
2669
2670 // If this is a pointer to a class type, add pointers to its bases
2671 // (with the same level of cv-qualification as the original
2672 // derived class, of course).
2673 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2674 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2675 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2676 Base != ClassDecl->bases_end(); ++Base) {
2677 QualType BaseTy = Context.getCanonicalType(Base->getType());
2678 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2679
2680 // Add the pointer type, recursively, so that we get all of
2681 // the indirect base classes, too.
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002682 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002683 }
2684 }
Sebastian Redl674d1b72009-04-19 21:53:20 +00002685 } else if (Ty->isMemberPointerType()) {
2686 // Member pointers are far easier, since the pointee can't be converted.
2687 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2688 return;
Douglas Gregor70d26122008-11-12 17:17:38 +00002689 } else if (Ty->isEnumeralType()) {
Chris Lattnerf0bb03c2009-03-29 00:04:01 +00002690 EnumerationTypes.insert(Ty);
Douglas Gregor70d26122008-11-12 17:17:38 +00002691 } else if (AllowUserConversions) {
2692 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2693 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2694 // FIXME: Visit conversion functions in the base classes, too.
2695 OverloadedFunctionDecl *Conversions
2696 = ClassDecl->getConversionFunctions();
2697 for (OverloadedFunctionDecl::function_iterator Func
2698 = Conversions->function_begin();
2699 Func != Conversions->function_end(); ++Func) {
2700 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002701 if (AllowExplicitConversions || !Conv->isExplicit())
2702 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregor70d26122008-11-12 17:17:38 +00002703 }
2704 }
2705 }
2706}
2707
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002708/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2709/// operator overloads to the candidate set (C++ [over.built]), based
2710/// on the operator @p Op and the arguments given. For example, if the
2711/// operator is a binary '+', this routine might add "int
2712/// operator+(int, int)" to cover integer addition.
Douglas Gregor70d26122008-11-12 17:17:38 +00002713void
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002714Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2715 Expr **Args, unsigned NumArgs,
2716 OverloadCandidateSet& CandidateSet) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002717 // The set of "promoted arithmetic types", which are the arithmetic
2718 // types are that preserved by promotion (C++ [over.built]p2). Note
2719 // that the first few of these types are the promoted integral
2720 // types; these types need to be first.
2721 // FIXME: What about complex?
2722 const unsigned FirstIntegralType = 0;
2723 const unsigned LastIntegralType = 13;
2724 const unsigned FirstPromotedIntegralType = 7,
2725 LastPromotedIntegralType = 13;
2726 const unsigned FirstPromotedArithmeticType = 7,
2727 LastPromotedArithmeticType = 16;
2728 const unsigned NumArithmeticTypes = 16;
2729 QualType ArithmeticTypes[NumArithmeticTypes] = {
2730 Context.BoolTy, Context.CharTy, Context.WCharTy,
2731 Context.SignedCharTy, Context.ShortTy,
2732 Context.UnsignedCharTy, Context.UnsignedShortTy,
2733 Context.IntTy, Context.LongTy, Context.LongLongTy,
2734 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2735 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2736 };
2737
2738 // Find all of the types that the arguments can convert to, but only
2739 // if the operator we're looking at has built-in operator candidates
2740 // that make use of these types.
2741 BuiltinCandidateTypeSet CandidateTypes(Context);
2742 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2743 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002744 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregor70d26122008-11-12 17:17:38 +00002745 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002746 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
Sebastian Redlbd261962009-04-16 17:51:27 +00002747 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002748 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor6214d8a2009-01-14 15:45:31 +00002749 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2750 true,
2751 (Op == OO_Exclaim ||
2752 Op == OO_AmpAmp ||
2753 Op == OO_PipePipe));
Douglas Gregor70d26122008-11-12 17:17:38 +00002754 }
2755
2756 bool isComparison = false;
2757 switch (Op) {
2758 case OO_None:
2759 case NUM_OVERLOADED_OPERATORS:
2760 assert(false && "Expected an overloaded operator");
2761 break;
2762
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002763 case OO_Star: // '*' is either unary or binary
2764 if (NumArgs == 1)
2765 goto UnaryStar;
2766 else
2767 goto BinaryStar;
2768 break;
2769
2770 case OO_Plus: // '+' is either unary or binary
2771 if (NumArgs == 1)
2772 goto UnaryPlus;
2773 else
2774 goto BinaryPlus;
2775 break;
2776
2777 case OO_Minus: // '-' is either unary or binary
2778 if (NumArgs == 1)
2779 goto UnaryMinus;
2780 else
2781 goto BinaryMinus;
2782 break;
2783
2784 case OO_Amp: // '&' is either unary or binary
2785 if (NumArgs == 1)
2786 goto UnaryAmp;
2787 else
2788 goto BinaryAmp;
2789
2790 case OO_PlusPlus:
2791 case OO_MinusMinus:
2792 // C++ [over.built]p3:
2793 //
2794 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2795 // is either volatile or empty, there exist candidate operator
2796 // functions of the form
2797 //
2798 // VQ T& operator++(VQ T&);
2799 // T operator++(VQ T&, int);
2800 //
2801 // C++ [over.built]p4:
2802 //
2803 // For every pair (T, VQ), where T is an arithmetic type other
2804 // than bool, and VQ is either volatile or empty, there exist
2805 // candidate operator functions of the form
2806 //
2807 // VQ T& operator--(VQ T&);
2808 // T operator--(VQ T&, int);
2809 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2810 Arith < NumArithmeticTypes; ++Arith) {
2811 QualType ArithTy = ArithmeticTypes[Arith];
2812 QualType ParamTypes[2]
Sebastian Redlce6fff02009-03-16 23:22:08 +00002813 = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002814
2815 // Non-volatile version.
2816 if (NumArgs == 1)
2817 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2818 else
2819 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2820
2821 // Volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00002822 ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002823 if (NumArgs == 1)
2824 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2825 else
2826 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2827 }
2828
2829 // C++ [over.built]p5:
2830 //
2831 // For every pair (T, VQ), where T is a cv-qualified or
2832 // cv-unqualified object type, and VQ is either volatile or
2833 // empty, there exist candidate operator functions of the form
2834 //
2835 // T*VQ& operator++(T*VQ&);
2836 // T*VQ& operator--(T*VQ&);
2837 // T* operator++(T*VQ&, int);
2838 // T* operator--(T*VQ&, int);
2839 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2840 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2841 // Skip pointer types that aren't pointers to object types.
Douglas Gregor26ea1222009-03-24 20:32:41 +00002842 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002843 continue;
2844
2845 QualType ParamTypes[2] = {
Sebastian Redlce6fff02009-03-16 23:22:08 +00002846 Context.getLValueReferenceType(*Ptr), Context.IntTy
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002847 };
2848
2849 // Without volatile
2850 if (NumArgs == 1)
2851 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2852 else
2853 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2854
2855 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2856 // With volatile
Sebastian Redlce6fff02009-03-16 23:22:08 +00002857 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002858 if (NumArgs == 1)
2859 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2860 else
2861 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2862 }
2863 }
2864 break;
2865
2866 UnaryStar:
2867 // C++ [over.built]p6:
2868 // For every cv-qualified or cv-unqualified object type T, there
2869 // exist candidate operator functions of the form
2870 //
2871 // T& operator*(T*);
2872 //
2873 // C++ [over.built]p7:
2874 // For every function type T, there exist candidate operator
2875 // functions of the form
2876 // T& operator*(T*);
2877 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2878 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2879 QualType ParamTy = *Ptr;
2880 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00002881 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002882 &ParamTy, Args, 1, CandidateSet);
2883 }
2884 break;
2885
2886 UnaryPlus:
2887 // C++ [over.built]p8:
2888 // For every type T, there exist candidate operator functions of
2889 // the form
2890 //
2891 // T* operator+(T*);
2892 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2893 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2894 QualType ParamTy = *Ptr;
2895 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2896 }
2897
2898 // Fall through
2899
2900 UnaryMinus:
2901 // C++ [over.built]p9:
2902 // For every promoted arithmetic type T, there exist candidate
2903 // operator functions of the form
2904 //
2905 // T operator+(T);
2906 // T operator-(T);
2907 for (unsigned Arith = FirstPromotedArithmeticType;
2908 Arith < LastPromotedArithmeticType; ++Arith) {
2909 QualType ArithTy = ArithmeticTypes[Arith];
2910 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2911 }
2912 break;
2913
2914 case OO_Tilde:
2915 // C++ [over.built]p10:
2916 // For every promoted integral type T, there exist candidate
2917 // operator functions of the form
2918 //
2919 // T operator~(T);
2920 for (unsigned Int = FirstPromotedIntegralType;
2921 Int < LastPromotedIntegralType; ++Int) {
2922 QualType IntTy = ArithmeticTypes[Int];
2923 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2924 }
2925 break;
2926
Douglas Gregor70d26122008-11-12 17:17:38 +00002927 case OO_New:
2928 case OO_Delete:
2929 case OO_Array_New:
2930 case OO_Array_Delete:
Douglas Gregor70d26122008-11-12 17:17:38 +00002931 case OO_Call:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002932 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregor70d26122008-11-12 17:17:38 +00002933 break;
2934
2935 case OO_Comma:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002936 UnaryAmp:
2937 case OO_Arrow:
Douglas Gregor70d26122008-11-12 17:17:38 +00002938 // C++ [over.match.oper]p3:
2939 // -- For the operator ',', the unary operator '&', or the
2940 // operator '->', the built-in candidates set is empty.
Douglas Gregor70d26122008-11-12 17:17:38 +00002941 break;
2942
2943 case OO_Less:
2944 case OO_Greater:
2945 case OO_LessEqual:
2946 case OO_GreaterEqual:
2947 case OO_EqualEqual:
2948 case OO_ExclaimEqual:
2949 // C++ [over.built]p15:
2950 //
2951 // For every pointer or enumeration type T, there exist
2952 // candidate operator functions of the form
2953 //
2954 // bool operator<(T, T);
2955 // bool operator>(T, T);
2956 // bool operator<=(T, T);
2957 // bool operator>=(T, T);
2958 // bool operator==(T, T);
2959 // bool operator!=(T, T);
2960 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2961 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2962 QualType ParamTypes[2] = { *Ptr, *Ptr };
2963 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2964 }
2965 for (BuiltinCandidateTypeSet::iterator Enum
2966 = CandidateTypes.enumeration_begin();
2967 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2968 QualType ParamTypes[2] = { *Enum, *Enum };
2969 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2970 }
2971
2972 // Fall through.
2973 isComparison = true;
2974
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002975 BinaryPlus:
2976 BinaryMinus:
Douglas Gregor70d26122008-11-12 17:17:38 +00002977 if (!isComparison) {
2978 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2979
2980 // C++ [over.built]p13:
2981 //
2982 // For every cv-qualified or cv-unqualified object type T
2983 // there exist candidate operator functions of the form
2984 //
2985 // T* operator+(T*, ptrdiff_t);
2986 // T& operator[](T*, ptrdiff_t); [BELOW]
2987 // T* operator-(T*, ptrdiff_t);
2988 // T* operator+(ptrdiff_t, T*);
2989 // T& operator[](ptrdiff_t, T*); [BELOW]
2990 //
2991 // C++ [over.built]p14:
2992 //
2993 // For every T, where T is a pointer to object type, there
2994 // exist candidate operator functions of the form
2995 //
2996 // ptrdiff_t operator-(T, T);
2997 for (BuiltinCandidateTypeSet::iterator Ptr
2998 = CandidateTypes.pointer_begin();
2999 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3000 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3001
3002 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3003 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3004
3005 if (Op == OO_Plus) {
3006 // T* operator+(ptrdiff_t, T*);
3007 ParamTypes[0] = ParamTypes[1];
3008 ParamTypes[1] = *Ptr;
3009 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3010 } else {
3011 // ptrdiff_t operator-(T, T);
3012 ParamTypes[1] = *Ptr;
3013 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3014 Args, 2, CandidateSet);
3015 }
3016 }
3017 }
3018 // Fall through
3019
Douglas Gregor70d26122008-11-12 17:17:38 +00003020 case OO_Slash:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003021 BinaryStar:
Sebastian Redlbd261962009-04-16 17:51:27 +00003022 Conditional:
Douglas Gregor70d26122008-11-12 17:17:38 +00003023 // C++ [over.built]p12:
3024 //
3025 // For every pair of promoted arithmetic types L and R, there
3026 // exist candidate operator functions of the form
3027 //
3028 // LR operator*(L, R);
3029 // LR operator/(L, R);
3030 // LR operator+(L, R);
3031 // LR operator-(L, R);
3032 // bool operator<(L, R);
3033 // bool operator>(L, R);
3034 // bool operator<=(L, R);
3035 // bool operator>=(L, R);
3036 // bool operator==(L, R);
3037 // bool operator!=(L, R);
3038 //
3039 // where LR is the result of the usual arithmetic conversions
3040 // between types L and R.
Sebastian Redlbd261962009-04-16 17:51:27 +00003041 //
3042 // C++ [over.built]p24:
3043 //
3044 // For every pair of promoted arithmetic types L and R, there exist
3045 // candidate operator functions of the form
3046 //
3047 // LR operator?(bool, L, R);
3048 //
3049 // where LR is the result of the usual arithmetic conversions
3050 // between types L and R.
3051 // Our candidates ignore the first parameter.
Douglas Gregor70d26122008-11-12 17:17:38 +00003052 for (unsigned Left = FirstPromotedArithmeticType;
3053 Left < LastPromotedArithmeticType; ++Left) {
3054 for (unsigned Right = FirstPromotedArithmeticType;
3055 Right < LastPromotedArithmeticType; ++Right) {
3056 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3057 QualType Result
3058 = isComparison? Context.BoolTy
3059 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3060 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3061 }
3062 }
3063 break;
3064
3065 case OO_Percent:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003066 BinaryAmp:
Douglas Gregor70d26122008-11-12 17:17:38 +00003067 case OO_Caret:
3068 case OO_Pipe:
3069 case OO_LessLess:
3070 case OO_GreaterGreater:
3071 // C++ [over.built]p17:
3072 //
3073 // For every pair of promoted integral types L and R, there
3074 // exist candidate operator functions of the form
3075 //
3076 // LR operator%(L, R);
3077 // LR operator&(L, R);
3078 // LR operator^(L, R);
3079 // LR operator|(L, R);
3080 // L operator<<(L, R);
3081 // L operator>>(L, R);
3082 //
3083 // where LR is the result of the usual arithmetic conversions
3084 // between types L and R.
3085 for (unsigned Left = FirstPromotedIntegralType;
3086 Left < LastPromotedIntegralType; ++Left) {
3087 for (unsigned Right = FirstPromotedIntegralType;
3088 Right < LastPromotedIntegralType; ++Right) {
3089 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3090 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3091 ? LandR[0]
3092 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3093 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3094 }
3095 }
3096 break;
3097
3098 case OO_Equal:
3099 // C++ [over.built]p20:
3100 //
3101 // For every pair (T, VQ), where T is an enumeration or
3102 // (FIXME:) pointer to member type and VQ is either volatile or
3103 // empty, there exist candidate operator functions of the form
3104 //
3105 // VQ T& operator=(VQ T&, T);
3106 for (BuiltinCandidateTypeSet::iterator Enum
3107 = CandidateTypes.enumeration_begin();
3108 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3109 QualType ParamTypes[2];
3110
3111 // T& operator=(T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003112 ParamTypes[0] = Context.getLValueReferenceType(*Enum);
Douglas Gregor70d26122008-11-12 17:17:38 +00003113 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003114 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003115 /*IsAssignmentOperator=*/false);
Douglas Gregor70d26122008-11-12 17:17:38 +00003116
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003117 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3118 // volatile T& operator=(volatile T&, T)
Sebastian Redlce6fff02009-03-16 23:22:08 +00003119 ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003120 ParamTypes[1] = *Enum;
Douglas Gregorab141112009-01-13 00:52:54 +00003121 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003122 /*IsAssignmentOperator=*/false);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003123 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003124 }
3125 // Fall through.
3126
3127 case OO_PlusEqual:
3128 case OO_MinusEqual:
3129 // C++ [over.built]p19:
3130 //
3131 // For every pair (T, VQ), where T is any type and VQ is either
3132 // volatile or empty, there exist candidate operator functions
3133 // of the form
3134 //
3135 // T*VQ& operator=(T*VQ&, T*);
3136 //
3137 // C++ [over.built]p21:
3138 //
3139 // For every pair (T, VQ), where T is a cv-qualified or
3140 // cv-unqualified object type and VQ is either volatile or
3141 // empty, there exist candidate operator functions of the form
3142 //
3143 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3144 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3145 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3146 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3147 QualType ParamTypes[2];
3148 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3149
3150 // non-volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003151 ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
Douglas Gregorab141112009-01-13 00:52:54 +00003152 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3153 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003154
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003155 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3156 // volatile version
Sebastian Redlce6fff02009-03-16 23:22:08 +00003157 ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
Douglas Gregorab141112009-01-13 00:52:54 +00003158 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3159 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003160 }
Douglas Gregor70d26122008-11-12 17:17:38 +00003161 }
3162 // Fall through.
3163
3164 case OO_StarEqual:
3165 case OO_SlashEqual:
3166 // C++ [over.built]p18:
3167 //
3168 // For every triple (L, VQ, R), where L is an arithmetic type,
3169 // VQ is either volatile or empty, and R is a promoted
3170 // arithmetic type, there exist candidate operator functions of
3171 // the form
3172 //
3173 // VQ L& operator=(VQ L&, R);
3174 // VQ L& operator*=(VQ L&, R);
3175 // VQ L& operator/=(VQ L&, R);
3176 // VQ L& operator+=(VQ L&, R);
3177 // VQ L& operator-=(VQ L&, R);
3178 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3179 for (unsigned Right = FirstPromotedArithmeticType;
3180 Right < LastPromotedArithmeticType; ++Right) {
3181 QualType ParamTypes[2];
3182 ParamTypes[1] = ArithmeticTypes[Right];
3183
3184 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003185 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregorab141112009-01-13 00:52:54 +00003186 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3187 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003188
3189 // Add this built-in operator as a candidate (VQ is 'volatile').
3190 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003191 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregorab141112009-01-13 00:52:54 +00003192 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3193 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor70d26122008-11-12 17:17:38 +00003194 }
3195 }
3196 break;
3197
3198 case OO_PercentEqual:
3199 case OO_LessLessEqual:
3200 case OO_GreaterGreaterEqual:
3201 case OO_AmpEqual:
3202 case OO_CaretEqual:
3203 case OO_PipeEqual:
3204 // C++ [over.built]p22:
3205 //
3206 // For every triple (L, VQ, R), where L is an integral type, VQ
3207 // is either volatile or empty, and R is a promoted integral
3208 // type, there exist candidate operator functions of the form
3209 //
3210 // VQ L& operator%=(VQ L&, R);
3211 // VQ L& operator<<=(VQ L&, R);
3212 // VQ L& operator>>=(VQ L&, R);
3213 // VQ L& operator&=(VQ L&, R);
3214 // VQ L& operator^=(VQ L&, R);
3215 // VQ L& operator|=(VQ L&, R);
3216 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3217 for (unsigned Right = FirstPromotedIntegralType;
3218 Right < LastPromotedIntegralType; ++Right) {
3219 QualType ParamTypes[2];
3220 ParamTypes[1] = ArithmeticTypes[Right];
3221
3222 // Add this built-in operator as a candidate (VQ is empty).
Sebastian Redlce6fff02009-03-16 23:22:08 +00003223 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003224 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3225
3226 // Add this built-in operator as a candidate (VQ is 'volatile').
3227 ParamTypes[0] = ArithmeticTypes[Left];
3228 ParamTypes[0].addVolatile();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003229 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
Douglas Gregor70d26122008-11-12 17:17:38 +00003230 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3231 }
3232 }
3233 break;
3234
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003235 case OO_Exclaim: {
3236 // C++ [over.operator]p23:
3237 //
3238 // There also exist candidate operator functions of the form
3239 //
3240 // bool operator!(bool);
3241 // bool operator&&(bool, bool); [BELOW]
3242 // bool operator||(bool, bool); [BELOW]
3243 QualType ParamTy = Context.BoolTy;
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003244 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3245 /*IsAssignmentOperator=*/false,
3246 /*NumContextualBoolArguments=*/1);
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003247 break;
3248 }
3249
Douglas Gregor70d26122008-11-12 17:17:38 +00003250 case OO_AmpAmp:
3251 case OO_PipePipe: {
3252 // C++ [over.operator]p23:
3253 //
3254 // There also exist candidate operator functions of the form
3255 //
Douglas Gregor4f6904d2008-11-19 15:42:04 +00003256 // bool operator!(bool); [ABOVE]
Douglas Gregor70d26122008-11-12 17:17:38 +00003257 // bool operator&&(bool, bool);
3258 // bool operator||(bool, bool);
3259 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor6214d8a2009-01-14 15:45:31 +00003260 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3261 /*IsAssignmentOperator=*/false,
3262 /*NumContextualBoolArguments=*/2);
Douglas Gregor70d26122008-11-12 17:17:38 +00003263 break;
3264 }
3265
3266 case OO_Subscript:
3267 // C++ [over.built]p13:
3268 //
3269 // For every cv-qualified or cv-unqualified object type T there
3270 // exist candidate operator functions of the form
3271 //
3272 // T* operator+(T*, ptrdiff_t); [ABOVE]
3273 // T& operator[](T*, ptrdiff_t);
3274 // T* operator-(T*, ptrdiff_t); [ABOVE]
3275 // T* operator+(ptrdiff_t, T*); [ABOVE]
3276 // T& operator[](ptrdiff_t, T*);
3277 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3278 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3279 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3280 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003281 QualType ResultTy = Context.getLValueReferenceType(PointeeType);
Douglas Gregor70d26122008-11-12 17:17:38 +00003282
3283 // T& operator[](T*, ptrdiff_t)
3284 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3285
3286 // T& operator[](ptrdiff_t, T*);
3287 ParamTypes[0] = ParamTypes[1];
3288 ParamTypes[1] = *Ptr;
3289 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3290 }
3291 break;
3292
3293 case OO_ArrowStar:
3294 // FIXME: No support for pointer-to-members yet.
3295 break;
Sebastian Redlbd261962009-04-16 17:51:27 +00003296
3297 case OO_Conditional:
3298 // Note that we don't consider the first argument, since it has been
3299 // contextually converted to bool long ago. The candidates below are
3300 // therefore added as binary.
3301 //
3302 // C++ [over.built]p24:
3303 // For every type T, where T is a pointer or pointer-to-member type,
3304 // there exist candidate operator functions of the form
3305 //
3306 // T operator?(bool, T, T);
3307 //
Sebastian Redlbd261962009-04-16 17:51:27 +00003308 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3309 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3310 QualType ParamTypes[2] = { *Ptr, *Ptr };
3311 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3312 }
Sebastian Redl674d1b72009-04-19 21:53:20 +00003313 for (BuiltinCandidateTypeSet::iterator Ptr =
3314 CandidateTypes.member_pointer_begin(),
3315 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3316 QualType ParamTypes[2] = { *Ptr, *Ptr };
3317 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3318 }
Sebastian Redlbd261962009-04-16 17:51:27 +00003319 goto Conditional;
Douglas Gregor70d26122008-11-12 17:17:38 +00003320 }
3321}
3322
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003323/// \brief Add function candidates found via argument-dependent lookup
3324/// to the set of overloading candidates.
3325///
3326/// This routine performs argument-dependent name lookup based on the
3327/// given function name (which may also be an operator name) and adds
3328/// all of the overload candidates found by ADL to the overload
3329/// candidate set (C++ [basic.lookup.argdep]).
3330void
3331Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3332 Expr **Args, unsigned NumArgs,
3333 OverloadCandidateSet& CandidateSet) {
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003334 FunctionSet Functions;
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003335
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003336 // Record all of the function candidates that we've already
3337 // added to the overload set, so that we don't add those same
3338 // candidates a second time.
3339 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3340 CandEnd = CandidateSet.end();
3341 Cand != CandEnd; ++Cand)
3342 if (Cand->Function)
3343 Functions.insert(Cand->Function);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003344
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003345 ArgumentDependentLookup(Name, Args, NumArgs, Functions);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003346
Douglas Gregor3fc092f2009-03-13 00:33:25 +00003347 // Erase all of the candidates we already knew about.
3348 // FIXME: This is suboptimal. Is there a better way?
3349 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3350 CandEnd = CandidateSet.end();
3351 Cand != CandEnd; ++Cand)
3352 if (Cand->Function)
3353 Functions.erase(Cand->Function);
3354
3355 // For each of the ADL candidates we found, add it to the overload
3356 // set.
3357 for (FunctionSet::iterator Func = Functions.begin(),
3358 FuncEnd = Functions.end();
3359 Func != FuncEnd; ++Func)
3360 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003361}
3362
Douglas Gregord2baafd2008-10-21 16:13:35 +00003363/// isBetterOverloadCandidate - Determines whether the first overload
3364/// candidate is a better candidate than the second (C++ 13.3.3p1).
3365bool
3366Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3367 const OverloadCandidate& Cand2)
3368{
3369 // Define viable functions to be better candidates than non-viable
3370 // functions.
3371 if (!Cand2.Viable)
3372 return Cand1.Viable;
3373 else if (!Cand1.Viable)
3374 return false;
3375
Douglas Gregor3257fb52008-12-22 05:46:06 +00003376 // C++ [over.match.best]p1:
3377 //
3378 // -- if F is a static member function, ICS1(F) is defined such
3379 // that ICS1(F) is neither better nor worse than ICS1(G) for
3380 // any function G, and, symmetrically, ICS1(G) is neither
3381 // better nor worse than ICS1(F).
3382 unsigned StartArg = 0;
3383 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3384 StartArg = 1;
Douglas Gregord2baafd2008-10-21 16:13:35 +00003385
3386 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3387 // function than another viable function F2 if for all arguments i,
3388 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3389 // then...
3390 unsigned NumArgs = Cand1.Conversions.size();
3391 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3392 bool HasBetterConversion = false;
Douglas Gregor3257fb52008-12-22 05:46:06 +00003393 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00003394 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3395 Cand2.Conversions[ArgIdx])) {
3396 case ImplicitConversionSequence::Better:
3397 // Cand1 has a better conversion sequence.
3398 HasBetterConversion = true;
3399 break;
3400
3401 case ImplicitConversionSequence::Worse:
3402 // Cand1 can't be better than Cand2.
3403 return false;
3404
3405 case ImplicitConversionSequence::Indistinguishable:
3406 // Do nothing.
3407 break;
3408 }
3409 }
3410
3411 if (HasBetterConversion)
3412 return true;
3413
Douglas Gregor70d26122008-11-12 17:17:38 +00003414 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3415 // implemented, but they require template support.
Douglas Gregord2baafd2008-10-21 16:13:35 +00003416
Douglas Gregor60714f92008-11-07 22:36:19 +00003417 // C++ [over.match.best]p1b4:
3418 //
3419 // -- the context is an initialization by user-defined conversion
3420 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3421 // from the return type of F1 to the destination type (i.e.,
3422 // the type of the entity being initialized) is a better
3423 // conversion sequence than the standard conversion sequence
3424 // from the return type of F2 to the destination type.
Douglas Gregor849ea9c2008-11-19 03:25:36 +00003425 if (Cand1.Function && Cand2.Function &&
3426 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregor60714f92008-11-07 22:36:19 +00003427 isa<CXXConversionDecl>(Cand2.Function)) {
3428 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3429 Cand2.FinalConversion)) {
3430 case ImplicitConversionSequence::Better:
3431 // Cand1 has a better conversion sequence.
3432 return true;
3433
3434 case ImplicitConversionSequence::Worse:
3435 // Cand1 can't be better than Cand2.
3436 return false;
3437
3438 case ImplicitConversionSequence::Indistinguishable:
3439 // Do nothing
3440 break;
3441 }
3442 }
3443
Douglas Gregord2baafd2008-10-21 16:13:35 +00003444 return false;
3445}
3446
3447/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3448/// within an overload candidate set. If overloading is successful,
3449/// the result will be OR_Success and Best will be set to point to the
3450/// best viable function within the candidate set. Otherwise, one of
3451/// several kinds of errors will be returned; see
3452/// Sema::OverloadingResult.
3453Sema::OverloadingResult
3454Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3455 OverloadCandidateSet::iterator& Best)
3456{
3457 // Find the best viable function.
3458 Best = CandidateSet.end();
3459 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3460 Cand != CandidateSet.end(); ++Cand) {
3461 if (Cand->Viable) {
3462 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3463 Best = Cand;
3464 }
3465 }
3466
3467 // If we didn't find any viable functions, abort.
3468 if (Best == CandidateSet.end())
3469 return OR_No_Viable_Function;
3470
3471 // Make sure that this function is better than every other viable
3472 // function. If not, we have an ambiguity.
3473 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3474 Cand != CandidateSet.end(); ++Cand) {
3475 if (Cand->Viable &&
3476 Cand != Best &&
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003477 !isBetterOverloadCandidate(*Best, *Cand)) {
3478 Best = CandidateSet.end();
Douglas Gregord2baafd2008-10-21 16:13:35 +00003479 return OR_Ambiguous;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003480 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003481 }
3482
3483 // Best is the best viable function.
Douglas Gregoraa57e862009-02-18 21:56:37 +00003484 if (Best->Function &&
3485 (Best->Function->isDeleted() ||
3486 Best->Function->getAttr<UnavailableAttr>()))
3487 return OR_Deleted;
3488
3489 // If Best refers to a function that is either deleted (C++0x) or
3490 // unavailable (Clang extension) report an error.
3491
Douglas Gregord2baafd2008-10-21 16:13:35 +00003492 return OR_Success;
3493}
3494
3495/// PrintOverloadCandidates - When overload resolution fails, prints
3496/// diagnostic messages containing the candidates in the candidate
3497/// set. If OnlyViable is true, only viable candidates will be printed.
3498void
3499Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3500 bool OnlyViable)
3501{
3502 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3503 LastCand = CandidateSet.end();
3504 for (; Cand != LastCand; ++Cand) {
Douglas Gregor70d26122008-11-12 17:17:38 +00003505 if (Cand->Viable || !OnlyViable) {
3506 if (Cand->Function) {
Douglas Gregoraa57e862009-02-18 21:56:37 +00003507 if (Cand->Function->isDeleted() ||
3508 Cand->Function->getAttr<UnavailableAttr>()) {
3509 // Deleted or "unavailable" function.
3510 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3511 << Cand->Function->isDeleted();
3512 } else {
3513 // Normal function
3514 // FIXME: Give a better reason!
3515 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3516 }
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003517 } else if (Cand->IsSurrogate) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003518 // Desugar the type of the surrogate down to a function type,
3519 // retaining as many typedefs as possible while still showing
3520 // the function type (and, therefore, its parameter types).
3521 QualType FnType = Cand->Surrogate->getConversionType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003522 bool isLValueReference = false;
3523 bool isRValueReference = false;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003524 bool isPointer = false;
Sebastian Redlce6fff02009-03-16 23:22:08 +00003525 if (const LValueReferenceType *FnTypeRef =
3526 FnType->getAsLValueReferenceType()) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003527 FnType = FnTypeRef->getPointeeType();
Sebastian Redlce6fff02009-03-16 23:22:08 +00003528 isLValueReference = true;
3529 } else if (const RValueReferenceType *FnTypeRef =
3530 FnType->getAsRValueReferenceType()) {
3531 FnType = FnTypeRef->getPointeeType();
3532 isRValueReference = true;
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003533 }
3534 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3535 FnType = FnTypePtr->getPointeeType();
3536 isPointer = true;
3537 }
3538 // Desugar down to a function type.
3539 FnType = QualType(FnType->getAsFunctionType(), 0);
3540 // Reconstruct the pointer/reference as appropriate.
3541 if (isPointer) FnType = Context.getPointerType(FnType);
Sebastian Redlce6fff02009-03-16 23:22:08 +00003542 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3543 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003544
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003545 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003546 << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003547 } else {
3548 // FIXME: We need to get the identifier in here
3549 // FIXME: Do we want the error message to point at the
3550 // operator? (built-ins won't have a location)
3551 QualType FnType
3552 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3553 Cand->BuiltinTypes.ParamTypes,
3554 Cand->Conversions.size(),
3555 false, 0);
3556
Chris Lattner4bfd2232008-11-24 06:25:27 +00003557 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00003558 }
3559 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00003560 }
3561}
3562
Douglas Gregor45014fd2008-11-10 20:40:00 +00003563/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3564/// an overloaded function (C++ [over.over]), where @p From is an
3565/// expression with overloaded function type and @p ToType is the type
3566/// we're trying to resolve to. For example:
3567///
3568/// @code
3569/// int f(double);
3570/// int f(int);
3571///
3572/// int (*pfd)(double) = f; // selects f(double)
3573/// @endcode
3574///
3575/// This routine returns the resulting FunctionDecl if it could be
3576/// resolved, and NULL otherwise. When @p Complain is true, this
3577/// routine will emit diagnostics if there is an error.
3578FunctionDecl *
Sebastian Redl7434fc32009-02-04 21:23:32 +00003579Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor45014fd2008-11-10 20:40:00 +00003580 bool Complain) {
3581 QualType FunctionType = ToType;
Sebastian Redl7434fc32009-02-04 21:23:32 +00003582 bool IsMember = false;
Daniel Dunbarf6c06ce2009-02-26 19:13:44 +00003583 if (const PointerType *ToTypePtr = ToType->getAsPointerType())
Douglas Gregor45014fd2008-11-10 20:40:00 +00003584 FunctionType = ToTypePtr->getPointeeType();
Daniel Dunbarf6c06ce2009-02-26 19:13:44 +00003585 else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3586 FunctionType = ToTypeRef->getPointeeType();
Sebastian Redl7434fc32009-02-04 21:23:32 +00003587 else if (const MemberPointerType *MemTypePtr =
3588 ToType->getAsMemberPointerType()) {
3589 FunctionType = MemTypePtr->getPointeeType();
3590 IsMember = true;
3591 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00003592
3593 // We only look at pointers or references to functions.
3594 if (!FunctionType->isFunctionType())
3595 return 0;
3596
3597 // Find the actual overloaded function declaration.
3598 OverloadedFunctionDecl *Ovl = 0;
3599
3600 // C++ [over.over]p1:
3601 // [...] [Note: any redundant set of parentheses surrounding the
3602 // overloaded function name is ignored (5.1). ]
3603 Expr *OvlExpr = From->IgnoreParens();
3604
3605 // C++ [over.over]p1:
3606 // [...] The overloaded function name can be preceded by the &
3607 // operator.
3608 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3609 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3610 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3611 }
3612
3613 // Try to dig out the overloaded function.
3614 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3615 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3616
3617 // If there's no overloaded function declaration, we're done.
3618 if (!Ovl)
3619 return 0;
3620
3621 // Look through all of the overloaded functions, searching for one
3622 // whose type matches exactly.
3623 // FIXME: When templates or using declarations come along, we'll actually
3624 // have to deal with duplicates, partial ordering, etc. For now, we
3625 // can just do a simple search.
3626 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3627 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3628 Fun != Ovl->function_end(); ++Fun) {
3629 // C++ [over.over]p3:
3630 // Non-member functions and static member functions match
Sebastian Redl3a75abf2009-02-05 12:33:33 +00003631 // targets of type "pointer-to-function" or "reference-to-function."
3632 // Nonstatic member functions match targets of
Sebastian Redl7434fc32009-02-04 21:23:32 +00003633 // type "pointer-to-member-function."
3634 // Note that according to DR 247, the containing class does not matter.
3635 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3636 // Skip non-static functions when converting to pointer, and static
3637 // when converting to member pointer.
3638 if (Method->isStatic() == IsMember)
Douglas Gregor45014fd2008-11-10 20:40:00 +00003639 continue;
Sebastian Redl7434fc32009-02-04 21:23:32 +00003640 } else if (IsMember)
3641 continue;
Douglas Gregor45014fd2008-11-10 20:40:00 +00003642
3643 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3644 return *Fun;
3645 }
3646
3647 return 0;
3648}
3649
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003650/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003651/// (which eventually refers to the declaration Func) and the call
3652/// arguments Args/NumArgs, attempt to resolve the function call down
3653/// to a specific function. If overload resolution succeeds, returns
3654/// the function declaration produced by overload
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003655/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003656/// arguments and Fn, and returns NULL.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003657FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003658 DeclarationName UnqualifiedName,
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003659 SourceLocation LParenLoc,
3660 Expr **Args, unsigned NumArgs,
3661 SourceLocation *CommaLocs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003662 SourceLocation RParenLoc,
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003663 bool &ArgumentDependentLookup) {
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003664 OverloadCandidateSet CandidateSet;
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003665
3666 // Add the functions denoted by Callee to the set of candidate
3667 // functions. While we're doing so, track whether argument-dependent
3668 // lookup still applies, per:
3669 //
3670 // C++0x [basic.lookup.argdep]p3:
3671 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3672 // and let Y be the lookup set produced by argument dependent
3673 // lookup (defined as follows). If X contains
3674 //
3675 // -- a declaration of a class member, or
3676 //
3677 // -- a block-scope function declaration that is not a
3678 // using-declaration, or
3679 //
3680 // -- a declaration that is neither a function or a function
3681 // template
3682 //
3683 // then Y is empty.
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003684 if (OverloadedFunctionDecl *Ovl
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003685 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3686 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3687 FuncEnd = Ovl->function_end();
3688 Func != FuncEnd; ++Func) {
3689 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3690
3691 if ((*Func)->getDeclContext()->isRecord() ||
3692 (*Func)->getDeclContext()->isFunctionOrMethod())
3693 ArgumentDependentLookup = false;
3694 }
3695 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3696 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3697
3698 if (Func->getDeclContext()->isRecord() ||
3699 Func->getDeclContext()->isFunctionOrMethod())
3700 ArgumentDependentLookup = false;
3701 }
3702
3703 if (Callee)
3704 UnqualifiedName = Callee->getDeclName();
3705
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003706 if (ArgumentDependentLookup)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003707 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregoraa1da4a2009-02-04 00:32:51 +00003708 CandidateSet);
3709
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003710 OverloadCandidateSet::iterator Best;
3711 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003712 case OR_Success:
3713 return Best->Function;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003714
3715 case OR_No_Viable_Function:
Chris Lattner4a526112009-02-17 07:29:20 +00003716 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003717 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00003718 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003719 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3720 break;
3721
3722 case OR_Ambiguous:
3723 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor4646f9c2009-02-04 15:01:18 +00003724 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003725 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3726 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00003727
3728 case OR_Deleted:
3729 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3730 << Best->Function->isDeleted()
3731 << UnqualifiedName
3732 << Fn->getSourceRange();
3733 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3734 break;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003735 }
3736
3737 // Overload resolution failed. Destroy all of the subexpressions and
3738 // return NULL.
3739 Fn->Destroy(Context);
3740 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3741 Args[Arg]->Destroy(Context);
3742 return 0;
3743}
3744
Douglas Gregorc78182d2009-03-13 23:49:33 +00003745/// \brief Create a unary operation that may resolve to an overloaded
3746/// operator.
3747///
3748/// \param OpLoc The location of the operator itself (e.g., '*').
3749///
3750/// \param OpcIn The UnaryOperator::Opcode that describes this
3751/// operator.
3752///
3753/// \param Functions The set of non-member functions that will be
3754/// considered by overload resolution. The caller needs to build this
3755/// set based on the context using, e.g.,
3756/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3757/// set should not contain any member functions; those will be added
3758/// by CreateOverloadedUnaryOp().
3759///
3760/// \param input The input argument.
3761Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3762 unsigned OpcIn,
3763 FunctionSet &Functions,
3764 ExprArg input) {
3765 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3766 Expr *Input = (Expr *)input.get();
3767
3768 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3769 assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3770 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3771
3772 Expr *Args[2] = { Input, 0 };
3773 unsigned NumArgs = 1;
3774
3775 // For post-increment and post-decrement, add the implicit '0' as
3776 // the second argument, so that we know this is a post-increment or
3777 // post-decrement.
3778 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3779 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3780 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3781 SourceLocation());
3782 NumArgs = 2;
3783 }
3784
3785 if (Input->isTypeDependent()) {
3786 OverloadedFunctionDecl *Overloads
3787 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3788 for (FunctionSet::iterator Func = Functions.begin(),
3789 FuncEnd = Functions.end();
3790 Func != FuncEnd; ++Func)
3791 Overloads->addOverload(*Func);
3792
3793 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3794 OpLoc, false, false);
3795
3796 input.release();
3797 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3798 &Args[0], NumArgs,
3799 Context.DependentTy,
3800 OpLoc));
3801 }
3802
3803 // Build an empty overload set.
3804 OverloadCandidateSet CandidateSet;
3805
3806 // Add the candidates from the given function set.
3807 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
3808
3809 // Add operator candidates that are member functions.
3810 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
3811
3812 // Add builtin operator candidates.
3813 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
3814
3815 // Perform overload resolution.
3816 OverloadCandidateSet::iterator Best;
3817 switch (BestViableFunction(CandidateSet, Best)) {
3818 case OR_Success: {
3819 // We found a built-in operator or an overloaded operator.
3820 FunctionDecl *FnDecl = Best->Function;
3821
3822 if (FnDecl) {
3823 // We matched an overloaded operator. Build a call to that
3824 // operator.
3825
3826 // Convert the arguments.
3827 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3828 if (PerformObjectArgumentInitialization(Input, Method))
3829 return ExprError();
3830 } else {
3831 // Convert the arguments.
3832 if (PerformCopyInitialization(Input,
3833 FnDecl->getParamDecl(0)->getType(),
3834 "passing"))
3835 return ExprError();
3836 }
3837
3838 // Determine the result type
3839 QualType ResultTy
3840 = FnDecl->getType()->getAsFunctionType()->getResultType();
3841 ResultTy = ResultTy.getNonReferenceType();
3842
3843 // Build the actual expression node.
3844 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
3845 SourceLocation());
3846 UsualUnaryConversions(FnExpr);
3847
3848 input.release();
3849 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
3850 &Input, 1, ResultTy,
3851 OpLoc));
3852 } else {
3853 // We matched a built-in operator. Convert the arguments, then
3854 // break out so that we will build the appropriate built-in
3855 // operator node.
3856 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
3857 Best->Conversions[0], "passing"))
3858 return ExprError();
3859
3860 break;
3861 }
3862 }
3863
3864 case OR_No_Viable_Function:
3865 // No viable function; fall through to handling this as a
3866 // built-in operator, which will produce an error message for us.
3867 break;
3868
3869 case OR_Ambiguous:
3870 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
3871 << UnaryOperator::getOpcodeStr(Opc)
3872 << Input->getSourceRange();
3873 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3874 return ExprError();
3875
3876 case OR_Deleted:
3877 Diag(OpLoc, diag::err_ovl_deleted_oper)
3878 << Best->Function->isDeleted()
3879 << UnaryOperator::getOpcodeStr(Opc)
3880 << Input->getSourceRange();
3881 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3882 return ExprError();
3883 }
3884
3885 // Either we found no viable overloaded operator or we matched a
3886 // built-in operator. In either case, fall through to trying to
3887 // build a built-in operation.
3888 input.release();
3889 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
3890}
3891
Douglas Gregor00fe3f62009-03-13 18:40:31 +00003892/// \brief Create a binary operation that may resolve to an overloaded
3893/// operator.
3894///
3895/// \param OpLoc The location of the operator itself (e.g., '+').
3896///
3897/// \param OpcIn The BinaryOperator::Opcode that describes this
3898/// operator.
3899///
3900/// \param Functions The set of non-member functions that will be
3901/// considered by overload resolution. The caller needs to build this
3902/// set based on the context using, e.g.,
3903/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3904/// set should not contain any member functions; those will be added
3905/// by CreateOverloadedBinOp().
3906///
3907/// \param LHS Left-hand argument.
3908/// \param RHS Right-hand argument.
3909Sema::OwningExprResult
3910Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
3911 unsigned OpcIn,
3912 FunctionSet &Functions,
3913 Expr *LHS, Expr *RHS) {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00003914 Expr *Args[2] = { LHS, RHS };
3915
3916 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
3917 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
3918 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3919
3920 // If either side is type-dependent, create an appropriate dependent
3921 // expression.
3922 if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
3923 // .* cannot be overloaded.
3924 if (Opc == BinaryOperator::PtrMemD)
3925 return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
3926 Context.DependentTy, OpLoc));
3927
3928 OverloadedFunctionDecl *Overloads
3929 = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3930 for (FunctionSet::iterator Func = Functions.begin(),
3931 FuncEnd = Functions.end();
3932 Func != FuncEnd; ++Func)
3933 Overloads->addOverload(*Func);
3934
3935 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
3936 OpLoc, false, false);
3937
3938 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
3939 Args, 2,
3940 Context.DependentTy,
3941 OpLoc));
3942 }
3943
3944 // If this is the .* operator, which is not overloadable, just
3945 // create a built-in binary operator.
3946 if (Opc == BinaryOperator::PtrMemD)
3947 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3948
3949 // If this is one of the assignment operators, we only perform
3950 // overload resolution if the left-hand side is a class or
3951 // enumeration type (C++ [expr.ass]p3).
3952 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
3953 !LHS->getType()->isOverloadableType())
3954 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
3955
Douglas Gregorc78182d2009-03-13 23:49:33 +00003956 // Build an empty overload set.
3957 OverloadCandidateSet CandidateSet;
Douglas Gregor00fe3f62009-03-13 18:40:31 +00003958
3959 // Add the candidates from the given function set.
3960 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
3961
3962 // Add operator candidates that are member functions.
3963 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
3964
3965 // Add builtin operator candidates.
3966 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
3967
3968 // Perform overload resolution.
3969 OverloadCandidateSet::iterator Best;
3970 switch (BestViableFunction(CandidateSet, Best)) {
Sebastian Redlbd261962009-04-16 17:51:27 +00003971 case OR_Success: {
Douglas Gregor00fe3f62009-03-13 18:40:31 +00003972 // We found a built-in operator or an overloaded operator.
3973 FunctionDecl *FnDecl = Best->Function;
3974
3975 if (FnDecl) {
3976 // We matched an overloaded operator. Build a call to that
3977 // operator.
3978
3979 // Convert the arguments.
3980 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
3981 if (PerformObjectArgumentInitialization(LHS, Method) ||
3982 PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
3983 "passing"))
3984 return ExprError();
3985 } else {
3986 // Convert the arguments.
3987 if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
3988 "passing") ||
3989 PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
3990 "passing"))
3991 return ExprError();
3992 }
3993
3994 // Determine the result type
3995 QualType ResultTy
3996 = FnDecl->getType()->getAsFunctionType()->getResultType();
3997 ResultTy = ResultTy.getNonReferenceType();
3998
3999 // Build the actual expression node.
4000 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4001 SourceLocation());
4002 UsualUnaryConversions(FnExpr);
4003
4004 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4005 Args, 2, ResultTy,
4006 OpLoc));
4007 } else {
4008 // We matched a built-in operator. Convert the arguments, then
4009 // break out so that we will build the appropriate built-in
4010 // operator node.
4011 if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4012 Best->Conversions[0], "passing") ||
4013 PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4014 Best->Conversions[1], "passing"))
4015 return ExprError();
4016
4017 break;
4018 }
4019 }
4020
4021 case OR_No_Viable_Function:
4022 // No viable function; fall through to handling this as a
4023 // built-in operator, which will produce an error message for us.
4024 break;
4025
4026 case OR_Ambiguous:
4027 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
4028 << BinaryOperator::getOpcodeStr(Opc)
4029 << LHS->getSourceRange() << RHS->getSourceRange();
4030 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4031 return ExprError();
4032
4033 case OR_Deleted:
4034 Diag(OpLoc, diag::err_ovl_deleted_oper)
4035 << Best->Function->isDeleted()
4036 << BinaryOperator::getOpcodeStr(Opc)
4037 << LHS->getSourceRange() << RHS->getSourceRange();
4038 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4039 return ExprError();
4040 }
4041
4042 // Either we found no viable overloaded operator or we matched a
4043 // built-in operator. In either case, try to build a built-in
4044 // operation.
4045 return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4046}
4047
Douglas Gregor3257fb52008-12-22 05:46:06 +00004048/// BuildCallToMemberFunction - Build a call to a member
4049/// function. MemExpr is the expression that refers to the member
4050/// function (and includes the object parameter), Args/NumArgs are the
4051/// arguments to the function call (not including the object
4052/// parameter). The caller needs to validate that the member
4053/// expression refers to a member function or an overloaded member
4054/// function.
4055Sema::ExprResult
4056Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4057 SourceLocation LParenLoc, Expr **Args,
4058 unsigned NumArgs, SourceLocation *CommaLocs,
4059 SourceLocation RParenLoc) {
4060 // Dig out the member expression. This holds both the object
4061 // argument and the member function we're referring to.
4062 MemberExpr *MemExpr = 0;
4063 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4064 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4065 else
4066 MemExpr = dyn_cast<MemberExpr>(MemExprE);
4067 assert(MemExpr && "Building member call without member expression");
4068
4069 // Extract the object argument.
4070 Expr *ObjectArg = MemExpr->getBase();
Anders Carlsson2d30f6b2009-05-01 18:34:30 +00004071
Douglas Gregor3257fb52008-12-22 05:46:06 +00004072 CXXMethodDecl *Method = 0;
4073 if (OverloadedFunctionDecl *Ovl
4074 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4075 // Add overload candidates
4076 OverloadCandidateSet CandidateSet;
4077 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4078 FuncEnd = Ovl->function_end();
4079 Func != FuncEnd; ++Func) {
4080 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4081 Method = cast<CXXMethodDecl>(*Func);
4082 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4083 /*SuppressUserConversions=*/false);
4084 }
4085
4086 OverloadCandidateSet::iterator Best;
4087 switch (BestViableFunction(CandidateSet, Best)) {
4088 case OR_Success:
4089 Method = cast<CXXMethodDecl>(Best->Function);
4090 break;
4091
4092 case OR_No_Viable_Function:
4093 Diag(MemExpr->getSourceRange().getBegin(),
4094 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4a526112009-02-17 07:29:20 +00004095 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004096 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4097 // FIXME: Leaking incoming expressions!
4098 return true;
4099
4100 case OR_Ambiguous:
4101 Diag(MemExpr->getSourceRange().getBegin(),
4102 diag::err_ovl_ambiguous_member_call)
4103 << Ovl->getDeclName() << MemExprE->getSourceRange();
4104 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4105 // FIXME: Leaking incoming expressions!
4106 return true;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004107
4108 case OR_Deleted:
4109 Diag(MemExpr->getSourceRange().getBegin(),
4110 diag::err_ovl_deleted_member_call)
4111 << Best->Function->isDeleted()
4112 << Ovl->getDeclName() << MemExprE->getSourceRange();
4113 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4114 // FIXME: Leaking incoming expressions!
4115 return true;
Douglas Gregor3257fb52008-12-22 05:46:06 +00004116 }
4117
4118 FixOverloadedFunctionReference(MemExpr, Method);
4119 } else {
4120 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4121 }
4122
4123 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek0c97e042009-02-07 01:47:29 +00004124 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek362abcd2009-02-09 20:51:47 +00004125 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4126 NumArgs,
Douglas Gregor3257fb52008-12-22 05:46:06 +00004127 Method->getResultType().getNonReferenceType(),
4128 RParenLoc));
4129
4130 // Convert the object argument (for a non-static member function call).
4131 if (!Method->isStatic() &&
4132 PerformObjectArgumentInitialization(ObjectArg, Method))
4133 return true;
4134 MemExpr->setBase(ObjectArg);
4135
4136 // Convert the rest of the arguments
Douglas Gregor4fa58902009-02-26 23:50:07 +00004137 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004138 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4139 RParenLoc))
4140 return true;
4141
Sebastian Redl8b769972009-01-19 00:08:26 +00004142 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor3257fb52008-12-22 05:46:06 +00004143}
4144
Douglas Gregor10f3c502008-11-19 21:05:33 +00004145/// BuildCallToObjectOfClassType - Build a call to an object of class
4146/// type (C++ [over.call.object]), which can end up invoking an
4147/// overloaded function call operator (@c operator()) or performing a
4148/// user-defined conversion on the object argument.
Douglas Gregor3257fb52008-12-22 05:46:06 +00004149Sema::ExprResult
Douglas Gregora133e262008-12-06 00:22:45 +00004150Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4151 SourceLocation LParenLoc,
Douglas Gregor10f3c502008-11-19 21:05:33 +00004152 Expr **Args, unsigned NumArgs,
4153 SourceLocation *CommaLocs,
4154 SourceLocation RParenLoc) {
4155 assert(Object->getType()->isRecordType() && "Requires object type argument");
4156 const RecordType *Record = Object->getType()->getAsRecordType();
4157
4158 // C++ [over.call.object]p1:
4159 // If the primary-expression E in the function call syntax
4160 // evaluates to a class object of type “cv T”, then the set of
4161 // candidate functions includes at least the function call
4162 // operators of T. The function call operators of T are obtained by
4163 // ordinary lookup of the name operator() in the context of
4164 // (E).operator().
4165 OverloadCandidateSet CandidateSet;
Douglas Gregor8acb7272008-12-11 16:49:14 +00004166 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004167 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00004168 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(Context, OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004169 Oper != OperEnd; ++Oper)
4170 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4171 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004172
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004173 // C++ [over.call.object]p2:
4174 // In addition, for each conversion function declared in T of the
4175 // form
4176 //
4177 // operator conversion-type-id () cv-qualifier;
4178 //
4179 // where cv-qualifier is the same cv-qualification as, or a
4180 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregor261afa72008-11-20 13:33:37 +00004181 // denotes the type "pointer to function of (P1,...,Pn) returning
4182 // R", or the type "reference to pointer to function of
4183 // (P1,...,Pn) returning R", or the type "reference to function
4184 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004185 // is also considered as a candidate function. Similarly,
4186 // surrogate call functions are added to the set of candidate
4187 // functions for each conversion function declared in an
4188 // accessible base class provided the function is not hidden
4189 // within T by another intervening declaration.
4190 //
4191 // FIXME: Look in base classes for more conversion operators!
4192 OverloadedFunctionDecl *Conversions
4193 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00004194 for (OverloadedFunctionDecl::function_iterator
4195 Func = Conversions->function_begin(),
4196 FuncEnd = Conversions->function_end();
4197 Func != FuncEnd; ++Func) {
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004198 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4199
4200 // Strip the reference type (if any) and then the pointer type (if
4201 // any) to get down to what might be a function type.
4202 QualType ConvType = Conv->getConversionType().getNonReferenceType();
4203 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4204 ConvType = ConvPtrType->getPointeeType();
4205
Douglas Gregor4fa58902009-02-26 23:50:07 +00004206 if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004207 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4208 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004209
4210 // Perform overload resolution.
4211 OverloadCandidateSet::iterator Best;
4212 switch (BestViableFunction(CandidateSet, Best)) {
4213 case OR_Success:
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004214 // Overload resolution succeeded; we'll build the appropriate call
4215 // below.
Douglas Gregor10f3c502008-11-19 21:05:33 +00004216 break;
4217
4218 case OR_No_Viable_Function:
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004219 Diag(Object->getSourceRange().getBegin(),
4220 diag::err_ovl_no_viable_object_call)
Chris Lattner4a526112009-02-17 07:29:20 +00004221 << Object->getType() << Object->getSourceRange();
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00004222 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004223 break;
4224
4225 case OR_Ambiguous:
4226 Diag(Object->getSourceRange().getBegin(),
4227 diag::err_ovl_ambiguous_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004228 << Object->getType() << Object->getSourceRange();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004229 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4230 break;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004231
4232 case OR_Deleted:
4233 Diag(Object->getSourceRange().getBegin(),
4234 diag::err_ovl_deleted_object_call)
4235 << Best->Function->isDeleted()
4236 << Object->getType() << Object->getSourceRange();
4237 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4238 break;
Douglas Gregor10f3c502008-11-19 21:05:33 +00004239 }
4240
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004241 if (Best == CandidateSet.end()) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004242 // We had an error; delete all of the subexpressions and return
4243 // the error.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004244 Object->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004245 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004246 Args[ArgIdx]->Destroy(Context);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004247 return true;
4248 }
4249
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004250 if (Best->Function == 0) {
4251 // Since there is no function declaration, this is one of the
4252 // surrogate candidates. Dig out the conversion function.
4253 CXXConversionDecl *Conv
4254 = cast<CXXConversionDecl>(
4255 Best->Conversions[0].UserDefined.ConversionFunction);
4256
4257 // We selected one of the surrogate functions that converts the
4258 // object parameter to a function pointer. Perform the conversion
4259 // on the object argument, then let ActOnCallExpr finish the job.
4260 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl8b769972009-01-19 00:08:26 +00004261 ImpCastExprToType(Object,
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004262 Conv->getConversionType().getNonReferenceType(),
Sebastian Redlce6fff02009-03-16 23:22:08 +00004263 Conv->getConversionType()->isLValueReferenceType());
Sebastian Redl8b769972009-01-19 00:08:26 +00004264 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4265 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4266 CommaLocs, RParenLoc).release();
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00004267 }
4268
4269 // We found an overloaded operator(). Build a CXXOperatorCallExpr
4270 // that calls this method, using Object for the implicit object
4271 // parameter and passing along the remaining arguments.
4272 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor4fa58902009-02-26 23:50:07 +00004273 const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004274
4275 unsigned NumArgsInProto = Proto->getNumArgs();
4276 unsigned NumArgsToCheck = NumArgs;
4277
4278 // Build the full argument list for the method call (the
4279 // implicit object parameter is placed at the beginning of the
4280 // list).
4281 Expr **MethodArgs;
4282 if (NumArgs < NumArgsInProto) {
4283 NumArgsToCheck = NumArgsInProto;
4284 MethodArgs = new Expr*[NumArgsInProto + 1];
4285 } else {
4286 MethodArgs = new Expr*[NumArgs + 1];
4287 }
4288 MethodArgs[0] = Object;
4289 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4290 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4291
Ted Kremenek0c97e042009-02-07 01:47:29 +00004292 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4293 SourceLocation());
Douglas Gregor10f3c502008-11-19 21:05:33 +00004294 UsualUnaryConversions(NewFn);
4295
4296 // Once we've built TheCall, all of the expressions are properly
4297 // owned.
4298 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek0c97e042009-02-07 01:47:29 +00004299 ExprOwningPtr<CXXOperatorCallExpr>
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004300 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4301 MethodArgs, NumArgs + 1,
Ted Kremenek0c97e042009-02-07 01:47:29 +00004302 ResultTy, RParenLoc));
Douglas Gregor10f3c502008-11-19 21:05:33 +00004303 delete [] MethodArgs;
4304
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004305 // We may have default arguments. If so, we need to allocate more
4306 // slots in the call for them.
4307 if (NumArgs < NumArgsInProto)
Ted Kremenek0c97e042009-02-07 01:47:29 +00004308 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004309 else if (NumArgs > NumArgsInProto)
4310 NumArgsToCheck = NumArgsInProto;
4311
Chris Lattner81f00ed2009-04-12 08:11:20 +00004312 bool IsError = false;
4313
Douglas Gregor10f3c502008-11-19 21:05:33 +00004314 // Initialize the implicit object parameter.
Chris Lattner81f00ed2009-04-12 08:11:20 +00004315 IsError |= PerformObjectArgumentInitialization(Object, Method);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004316 TheCall->setArg(0, Object);
4317
Chris Lattner81f00ed2009-04-12 08:11:20 +00004318
Douglas Gregor10f3c502008-11-19 21:05:33 +00004319 // Check the argument types.
4320 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004321 Expr *Arg;
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004322 if (i < NumArgs) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00004323 Arg = Args[i];
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004324
4325 // Pass the argument.
4326 QualType ProtoArgType = Proto->getArgType(i);
Chris Lattner81f00ed2009-04-12 08:11:20 +00004327 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004328 } else {
Ted Kremenek0c97e042009-02-07 01:47:29 +00004329 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregordb0ae4a2009-01-13 05:10:00 +00004330 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00004331
4332 TheCall->setArg(i + 1, Arg);
4333 }
4334
4335 // If this is a variadic call, handle args passed through "...".
4336 if (Proto->isVariadic()) {
4337 // Promote the arguments (C99 6.5.2.2p7).
4338 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4339 Expr *Arg = Args[i];
Chris Lattner81f00ed2009-04-12 08:11:20 +00004340 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregor10f3c502008-11-19 21:05:33 +00004341 TheCall->setArg(i + 1, Arg);
4342 }
4343 }
4344
Chris Lattner81f00ed2009-04-12 08:11:20 +00004345 if (IsError) return true;
4346
Sebastian Redl8b769972009-01-19 00:08:26 +00004347 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor10f3c502008-11-19 21:05:33 +00004348}
4349
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004350/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4351/// (if one exists), where @c Base is an expression of class type and
4352/// @c Member is the name of the member we're trying to find.
4353Action::ExprResult
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004354Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004355 SourceLocation MemberLoc,
4356 IdentifierInfo &Member) {
4357 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4358
4359 // C++ [over.ref]p1:
4360 //
4361 // [...] An expression x->m is interpreted as (x.operator->())->m
4362 // for a class object x of type T if T::operator->() exists and if
4363 // the operator is selected as the best match function by the
4364 // overload resolution mechanism (13.3).
4365 // FIXME: look in base classes.
4366 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4367 OverloadCandidateSet CandidateSet;
4368 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004369
4370 DeclContext::lookup_const_iterator Oper, OperEnd;
Douglas Gregorc55b0b02009-04-09 21:40:53 +00004371 for (llvm::tie(Oper, OperEnd)
4372 = BaseRecord->getDecl()->lookup(Context, OpName);
Douglas Gregorddfd9d52008-12-23 00:26:44 +00004373 Oper != OperEnd; ++Oper)
4374 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004375 /*SuppressUserConversions=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004376
Ted Kremenek0c97e042009-02-07 01:47:29 +00004377 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregor9c690e92008-11-21 03:04:22 +00004378
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004379 // Perform overload resolution.
4380 OverloadCandidateSet::iterator Best;
4381 switch (BestViableFunction(CandidateSet, Best)) {
4382 case OR_Success:
4383 // Overload resolution succeeded; we'll build the call below.
4384 break;
4385
4386 case OR_No_Viable_Function:
4387 if (CandidateSet.empty())
4388 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004389 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004390 else
4391 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4a526112009-02-17 07:29:20 +00004392 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004393 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004394 return true;
4395
4396 case OR_Ambiguous:
4397 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattner4bfd2232008-11-24 06:25:27 +00004398 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004399 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004400 return true;
Douglas Gregoraa57e862009-02-18 21:56:37 +00004401
4402 case OR_Deleted:
4403 Diag(OpLoc, diag::err_ovl_deleted_oper)
4404 << Best->Function->isDeleted()
4405 << "operator->" << BasePtr->getSourceRange();
4406 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4407 return true;
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004408 }
4409
4410 // Convert the object parameter.
4411 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor9c690e92008-11-21 03:04:22 +00004412 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004413 return true;
Douglas Gregor9c690e92008-11-21 03:04:22 +00004414
4415 // No concerns about early exits now.
4416 BasePtr.take();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004417
4418 // Build the operator call.
Ted Kremenek0c97e042009-02-07 01:47:29 +00004419 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4420 SourceLocation());
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004421 UsualUnaryConversions(FnExpr);
Douglas Gregor00fe3f62009-03-13 18:40:31 +00004422 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004423 Method->getResultType().getNonReferenceType(),
4424 OpLoc);
Sebastian Redl8b769972009-01-19 00:08:26 +00004425 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
Chris Lattner5261d0c2009-03-28 19:18:32 +00004426 MemberLoc, Member, DeclPtrTy()).release();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00004427}
4428
Douglas Gregor45014fd2008-11-10 20:40:00 +00004429/// FixOverloadedFunctionReference - E is an expression that refers to
4430/// a C++ overloaded function (possibly with some parentheses and
4431/// perhaps a '&' around it). We have resolved the overloaded function
4432/// to the function declaration Fn, so patch up the expression E to
4433/// refer (possibly indirectly) to Fn.
4434void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4435 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4436 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4437 E->setType(PE->getSubExpr()->getType());
4438 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4439 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4440 "Can only take the address of an overloaded function");
Douglas Gregor3f411962009-02-11 01:18:59 +00004441 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4442 if (Method->isStatic()) {
4443 // Do nothing: static member functions aren't any different
4444 // from non-member functions.
4445 }
4446 else if (QualifiedDeclRefExpr *DRE
4447 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4448 // We have taken the address of a pointer to member
4449 // function. Perform the computation here so that we get the
4450 // appropriate pointer to member type.
4451 DRE->setDecl(Fn);
4452 DRE->setType(Fn->getType());
4453 QualType ClassType
4454 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4455 E->setType(Context.getMemberPointerType(Fn->getType(),
4456 ClassType.getTypePtr()));
4457 return;
4458 }
4459 }
Douglas Gregor45014fd2008-11-10 20:40:00 +00004460 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregor2eedd992009-02-11 00:19:33 +00004461 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor45014fd2008-11-10 20:40:00 +00004462 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4463 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4464 "Expected overloaded function");
4465 DR->setDecl(Fn);
4466 E->setType(Fn->getType());
Douglas Gregor3257fb52008-12-22 05:46:06 +00004467 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4468 MemExpr->setMemberDecl(Fn);
4469 E->setType(Fn->getType());
Douglas Gregor45014fd2008-11-10 20:40:00 +00004470 } else {
4471 assert(false && "Invalid reference to overloaded function");
4472 }
4473}
4474
Douglas Gregord2baafd2008-10-21 16:13:35 +00004475} // end namespace clang