blob: c27191f5da41ed2d93ab3769fb0b1095c0baed28 [file] [log] [blame]
Josh Coalsonbb7f6b92000-12-10 04:09:52 +00001/* libFLAC - Free Lossless Audio Coder library
2 * Copyright (C) 2000 Josh Coalson
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
13 *
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 */
19
20#include <assert.h>
21#include <stdio.h>
22#include <stdlib.h> /* for malloc() */
23#include <string.h> /* for memcpy() */
24#include "FLAC/encoder.h"
25#include "private/bitbuffer.h"
26#include "private/encoder_framing.h"
27#include "private/fixed.h"
28#include "private/lpc.h"
29
30#ifdef min
31#undef min
32#endif
33#define min(x,y) ((x)<(y)?(x):(y))
34
35#ifdef max
36#undef max
37#endif
38#define max(x,y) ((x)>(y)?(x):(y))
39
40#ifdef RICE_BITS
41#undef RICE_BITS
42#endif
43#define RICE_BITS(value, parameter) (2 + (parameter) + (((unsigned)((value) < 0? -(value) : (value))) >> (parameter)))
44
45typedef struct FLAC__EncoderPrivate {
46 unsigned input_capacity; /* current size (in samples) of the signal and residual buffers */
47 int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */
48 int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */
49 real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */
50 real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */
51 int32 *residual[2]; /* where the candidate and best subframe residual signals will be stored */
52 unsigned best_residual; /* index into the above */
53 FLAC__BitBuffer frame; /* the current frame being worked on */
54 FLAC__BitBuffer frame_mid_side; /* special parallel workspace for the mid-side coded version of the current frame */
55 FLAC__BitBuffer frame_left_side; /* special parallel workspace for the left-side coded version of the current frame */
56 FLAC__BitBuffer frame_right_side; /* special parallel workspace for the right-side coded version of the current frame */
57 FLAC__SubframeHeader best_subframe, candidate_subframe;
58 bool current_frame_can_do_mid_side; /* encoder sets this false when any given sample of a frame's side channel exceeds 16 bits */
59 FLAC__StreamMetaData metadata;
60 unsigned current_sample_number;
61 unsigned current_frame_number;
62 FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data);
63 void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data);
64 void *client_data;
65} FLAC__EncoderPrivate;
66
67static bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size);
68static bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame);
69static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *bitbuffer);
70static unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__SubframeHeader *subframe);
71static unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe);
72static unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe);
73static unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__SubframeHeader *subframe);
74static unsigned encoder_find_best_partition_order_(int32 residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[]);
75static bool encoder_generate_constant_subframe_(const FLAC__SubframeHeader *header, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
76static bool encoder_generate_fixed_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
77static bool encoder_generate_lpc_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
78static bool encoder_generate_verbatim_subframe_(const FLAC__SubframeHeader *header, const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer);
79static void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder);
80static bool encoder_set_partitioned_rice_(const int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits);
81
Josh Coalsoncbf595f2000-12-22 22:35:33 +000082const char *FLAC__EncoderWriteStatusString[] = {
83 "FLAC__ENCODER_WRITE_OK",
84 "FLAC__ENCODER_WRITE_FATAL_ERROR"
85};
86
87const char *FLAC__EncoderStateString[] = {
88 "FLAC__ENCODER_OK",
89 "FLAC__ENCODER_UNINITIALIZED",
90 "FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS",
91 "FLAC__ENCODER_INVALID_BITS_PER_SAMPLE",
92 "FLAC__ENCODER_INVALID_SAMPLE_RATE",
93 "FLAC__ENCODER_INVALID_BLOCK_SIZE",
94 "FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION",
95 "FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH",
96 "FLAC__ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH",
97 "FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER",
98 "FLAC__ENCODER_NOT_STREAMABLE",
99 "FLAC__ENCODER_FRAMING_ERROR",
100 "FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING",
101 "FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING",
102 "FLAC__ENCODER_MEMORY_ALLOCATION_ERROR"
103};
104
Josh Coalsonbb7f6b92000-12-10 04:09:52 +0000105
106bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size)
107{
108 bool ok;
109 unsigned i;
110 int32 *previous_is, *current_is;
111 real *previous_rs, *current_rs;
112 int32 *residual;
113
114 assert(new_size > 0);
115 assert(encoder->state == FLAC__ENCODER_OK);
116 assert(encoder->guts->current_sample_number == 0);
117
118 /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */
119 if(new_size <= encoder->guts->input_capacity)
120 return true;
121
122 ok = 1;
123 if(ok) {
124 for(i = 0; ok && i < encoder->channels; i++) {
125 /* integer version of the signal */
126 previous_is = encoder->guts->integer_signal[i];
127 current_is = (int32*)malloc(sizeof(int32) * new_size);
128 if(0 == current_is) {
129 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
130 ok = 0;
131 }
132 else {
133 encoder->guts->integer_signal[i] = current_is;
134 if(previous_is != 0)
135 free(previous_is);
136 }
137 /* real version of the signal */
138 previous_rs = encoder->guts->real_signal[i];
139 current_rs = (real*)malloc(sizeof(real) * new_size);
140 if(0 == current_rs) {
141 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
142 ok = 0;
143 }
144 else {
145 encoder->guts->real_signal[i] = current_rs;
146 if(previous_rs != 0)
147 free(previous_rs);
148 }
149 }
150 }
151 if(ok) {
152 for(i = 0; ok && i < 2; i++) {
153 /* integer version of the signal */
154 previous_is = encoder->guts->integer_signal_mid_side[i];
155 current_is = (int32*)malloc(sizeof(int32) * new_size);
156 if(0 == current_is) {
157 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
158 ok = 0;
159 }
160 else {
161 encoder->guts->integer_signal_mid_side[i] = current_is;
162 if(previous_is != 0)
163 free(previous_is);
164 }
165 /* real version of the signal */
166 previous_rs = encoder->guts->real_signal_mid_side[i];
167 current_rs = (real*)malloc(sizeof(real) * new_size);
168 if(0 == current_rs) {
169 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
170 ok = 0;
171 }
172 else {
173 encoder->guts->real_signal_mid_side[i] = current_rs;
174 if(previous_rs != 0)
175 free(previous_rs);
176 }
177 }
178 }
179 if(ok) {
180 for(i = 0; i < 2; i++) {
181 residual = (int32*)malloc(sizeof(int32) * new_size);
182 if(0 == residual) {
183 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
184 ok = 0;
185 }
186 else {
187 if(encoder->guts->residual[i] != 0)
188 free(encoder->guts->residual[i]);
189 encoder->guts->residual[i] = residual;
190 }
191 }
192 }
193 if(ok)
194 encoder->guts->input_capacity = new_size;
195
196 return ok;
197}
198
199FLAC__Encoder *FLAC__encoder_get_new_instance()
200{
201 FLAC__Encoder *encoder = (FLAC__Encoder*)malloc(sizeof(FLAC__Encoder));
202 if(encoder != 0) {
203 encoder->state = FLAC__ENCODER_UNINITIALIZED;
204 encoder->guts = 0;
205 }
206 return encoder;
207}
208
209void FLAC__encoder_free_instance(FLAC__Encoder *encoder)
210{
211 assert(encoder != 0);
212 free(encoder);
213}
214
215FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWriteStatus (*write_callback)(const FLAC__Encoder *encoder, const byte buffer[], unsigned bytes, unsigned samples, unsigned current_frame, void *client_data), void (*metadata_callback)(const FLAC__Encoder *encoder, const FLAC__StreamMetaData *metadata, void *client_data), void *client_data)
216{
217 unsigned i;
218
219 assert(sizeof(int) >= 4); /* we want to die right away if this is not true */
220 assert(encoder != 0);
221 assert(write_callback != 0);
222 assert(metadata_callback != 0);
223 assert(encoder->state == FLAC__ENCODER_UNINITIALIZED);
224 assert(encoder->guts == 0);
225
226 encoder->state = FLAC__ENCODER_OK;
227
228 if(encoder->channels == 0 || encoder->channels > FLAC__MAX_CHANNELS)
229 return encoder->state = FLAC__ENCODER_INVALID_NUMBER_OF_CHANNELS;
230
231 if(encoder->do_mid_side_stereo && encoder->channels != 2)
232 return encoder->state = FLAC__ENCODER_MID_SIDE_CHANNELS_MISMATCH;
233
234 if(encoder->do_mid_side_stereo && encoder->bits_per_sample > 16)
235 return encoder->state = FLAC__ENCODER_MID_SIDE_SAMPLE_SIZE_MISMATCH;
236
237 if(encoder->bits_per_sample == 0 || encoder->bits_per_sample > FLAC__MAX_BITS_PER_SAMPLE)
238 return encoder->state = FLAC__ENCODER_INVALID_BITS_PER_SAMPLE;
239
240 if(encoder->sample_rate == 0 || encoder->sample_rate > FLAC__MAX_SAMPLE_RATE)
241 return encoder->state = FLAC__ENCODER_INVALID_SAMPLE_RATE;
242
243 if(encoder->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->blocksize > FLAC__MAX_BLOCK_SIZE)
244 return encoder->state = FLAC__ENCODER_INVALID_BLOCK_SIZE;
245
246 if(encoder->blocksize < encoder->max_lpc_order)
247 return encoder->state = FLAC__ENCODER_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
248
249 if(encoder->qlp_coeff_precision == 0) {
250 if(encoder->bits_per_sample < 16) {
251 /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */
252 /* @@@ until then we'll make a guess */
253 encoder->qlp_coeff_precision = max(5, 2 + encoder->bits_per_sample / 2);
254 }
255 else if(encoder->bits_per_sample == 16) {
256 if(encoder->blocksize <= 192)
257 encoder->qlp_coeff_precision = 7;
258 else if(encoder->blocksize <= 384)
259 encoder->qlp_coeff_precision = 8;
260 else if(encoder->blocksize <= 576)
261 encoder->qlp_coeff_precision = 9;
262 else if(encoder->blocksize <= 1152)
263 encoder->qlp_coeff_precision = 10;
264 else if(encoder->blocksize <= 2304)
265 encoder->qlp_coeff_precision = 11;
266 else if(encoder->blocksize <= 4608)
267 encoder->qlp_coeff_precision = 12;
268 else
269 encoder->qlp_coeff_precision = 13;
270 }
271 else {
272 encoder->qlp_coeff_precision = min(13, 8*sizeof(int32) - encoder->bits_per_sample - 1);
273 }
274 }
275 else if(encoder->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->qlp_coeff_precision + encoder->bits_per_sample >= 8*sizeof(uint32))
276 return encoder->state = FLAC__ENCODER_INVALID_QLP_COEFF_PRECISION;
277
278 if(encoder->streamable_subset) {
279 if(encoder->bits_per_sample != 8 && encoder->bits_per_sample != 12 && encoder->bits_per_sample != 16 && encoder->bits_per_sample != 20 && encoder->bits_per_sample != 24)
280 return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
281 if(encoder->sample_rate > 655350)
282 return encoder->state = FLAC__ENCODER_NOT_STREAMABLE;
283 }
284
285 if(encoder->rice_optimization_level >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
286 encoder->rice_optimization_level = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
287
288 encoder->guts = (FLAC__EncoderPrivate*)malloc(sizeof(FLAC__EncoderPrivate));
289 if(encoder->guts == 0)
290 return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
291
292 encoder->guts->input_capacity = 0;
293 for(i = 0; i < encoder->channels; i++) {
294 encoder->guts->integer_signal[i] = 0;
295 encoder->guts->real_signal[i] = 0;
296 }
297 for(i = 0; i < 2; i++) {
298 encoder->guts->integer_signal_mid_side[i] = 0;
299 encoder->guts->real_signal_mid_side[i] = 0;
300 }
301 encoder->guts->residual[0] = 0;
302 encoder->guts->residual[1] = 0;
303 encoder->guts->best_residual = 0;
304 encoder->guts->current_frame_can_do_mid_side = true;
305 encoder->guts->current_sample_number = 0;
306 encoder->guts->current_frame_number = 0;
307
308 if(!encoder_resize_buffers_(encoder, encoder->blocksize)) {
309 /* the above function sets the state for us in case of an error */
310 return encoder->state;
311 }
312 FLAC__bitbuffer_init(&encoder->guts->frame);
313 encoder->guts->write_callback = write_callback;
314 encoder->guts->metadata_callback = metadata_callback;
315 encoder->guts->client_data = client_data;
316
317 /*
318 * write the stream header
319 */
320 if(!FLAC__bitbuffer_clear(&encoder->guts->frame))
321 return encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
322
323 if(!FLAC__bitbuffer_write_raw_uint32(&encoder->guts->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN))
324 return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
325
326 encoder->guts->metadata.type = FLAC__METADATA_TYPE_ENCODING;
327 encoder->guts->metadata.is_last = true;
328 encoder->guts->metadata.length = FLAC__STREAM_METADATA_ENCODING_LENGTH;
329 encoder->guts->metadata.data.encoding.min_blocksize = encoder->blocksize; /* this encoder uses the same blocksize for the whole stream */
330 encoder->guts->metadata.data.encoding.max_blocksize = encoder->blocksize;
331 encoder->guts->metadata.data.encoding.min_framesize = 0; /* we don't know this yet; have to fill it in later */
332 encoder->guts->metadata.data.encoding.max_framesize = 0; /* we don't know this yet; have to fill it in later */
333 encoder->guts->metadata.data.encoding.sample_rate = encoder->sample_rate;
334 encoder->guts->metadata.data.encoding.channels = encoder->channels;
335 encoder->guts->metadata.data.encoding.bits_per_sample = encoder->bits_per_sample;
336 encoder->guts->metadata.data.encoding.total_samples = 0; /* we don't know this yet; have to fill it in later */
337 if(!FLAC__add_metadata_block(&encoder->guts->metadata, &encoder->guts->frame))
338 return encoder->state = FLAC__ENCODER_FRAMING_ERROR;
339
340 assert(encoder->guts->frame.bits == 0); /* assert that we're byte-aligned before writing */
341 assert(encoder->guts->frame.total_consumed_bits == 0); /* assert that no reading of the buffer was done */
342 if(encoder->guts->write_callback(encoder, encoder->guts->frame.buffer, encoder->guts->frame.bytes, 0, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK)
343 return encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
344
345 /* now that the metadata block is written, we can init this to an absurdly-high value */
346 encoder->guts->metadata.data.encoding.min_framesize = (1u << FLAC__STREAM_METADATA_ENCODING_MIN_FRAME_SIZE_LEN) - 1;
347
348 return encoder->state;
349}
350
351void FLAC__encoder_finish(FLAC__Encoder *encoder)
352{
353 unsigned i;
354
355 assert(encoder != 0);
356 if(encoder->state == FLAC__ENCODER_UNINITIALIZED)
357 return;
358 if(encoder->guts->current_sample_number != 0) {
359 encoder->blocksize = encoder->guts->current_sample_number;
360 encoder_process_frame_(encoder, true); /* true => is last frame */
361 }
362 encoder->guts->metadata_callback(encoder, &encoder->guts->metadata, encoder->guts->client_data);
363 if(encoder->guts != 0) {
364 for(i = 0; i < encoder->channels; i++) {
365 if(encoder->guts->integer_signal[i] != 0) {
366 free(encoder->guts->integer_signal[i]);
367 encoder->guts->integer_signal[i] = 0;
368 }
369 if(encoder->guts->real_signal[i] != 0) {
370 free(encoder->guts->real_signal[i]);
371 encoder->guts->real_signal[i] = 0;
372 }
373 }
374 for(i = 0; i < 2; i++) {
375 if(encoder->guts->integer_signal_mid_side[i] != 0) {
376 free(encoder->guts->integer_signal_mid_side[i]);
377 encoder->guts->integer_signal_mid_side[i] = 0;
378 }
379 if(encoder->guts->real_signal_mid_side[i] != 0) {
380 free(encoder->guts->real_signal_mid_side[i]);
381 encoder->guts->real_signal_mid_side[i] = 0;
382 }
383 }
384 for(i = 0; i < 2; i++) {
385 if(encoder->guts->residual[i] != 0) {
386 free(encoder->guts->residual[i]);
387 encoder->guts->residual[i] = 0;
388 }
389 }
390 FLAC__bitbuffer_free(&encoder->guts->frame);
391 free(encoder->guts);
392 encoder->guts = 0;
393 }
394 encoder->state = FLAC__ENCODER_UNINITIALIZED;
395}
396
397bool FLAC__encoder_process(FLAC__Encoder *encoder, const int32 *buf[], unsigned samples)
398{
399 unsigned i, j, channel;
400 int32 x, mid, side;
401 const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
402 const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
403 const int32 max_side = ((int64)1 << (encoder->bits_per_sample-1)) - 1;
404
405 assert(encoder != 0);
406 assert(encoder->state == FLAC__ENCODER_OK);
407
408 j = 0;
409 do {
410 for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++) {
411 for(channel = 0; channel < encoder->channels; channel++) {
412 x = buf[channel][j];
413 encoder->guts->integer_signal[channel][i] = x;
414 encoder->guts->real_signal[channel][i] = (real)x;
415 }
416 if(ms && encoder->guts->current_frame_can_do_mid_side) {
417 side = buf[0][j] - buf[1][j];
418 if(side < min_side || side > max_side) {
419 encoder->guts->current_frame_can_do_mid_side = false;
420 }
421 else {
422 mid = (buf[0][j] + buf[1][j]) >> 1; /* NOTE: not the same as divide-by-two ! */
423 encoder->guts->integer_signal_mid_side[0][i] = mid;
424 encoder->guts->integer_signal_mid_side[1][i] = side;
425 encoder->guts->real_signal_mid_side[0][i] = (real)mid;
426 encoder->guts->real_signal_mid_side[1][i] = (real)side;
427 }
428 }
429 encoder->guts->current_sample_number++;
430 }
431 if(i == encoder->blocksize) {
432 if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
433 return false;
434 }
435 } while(j < samples);
436
437 return true;
438}
439
440/* 'samples' is channel-wide samples, e.g. for 1 second at 44100Hz, 'samples' = 44100 regardless of the number of channels */
441bool FLAC__encoder_process_interleaved(FLAC__Encoder *encoder, const int32 buf[], unsigned samples)
442{
443 unsigned i, j, k, channel;
444 int32 x, left = 0, mid, side;
445 const bool ms = encoder->do_mid_side_stereo && encoder->channels == 2;
446 const int32 min_side = -((int64)1 << (encoder->bits_per_sample-1));
447 const int32 max_side = ((int64)1 << (encoder->bits_per_sample-1)) - 1;
448
449 assert(encoder != 0);
450 assert(encoder->state == FLAC__ENCODER_OK);
451
452 j = k = 0;
453 do {
454 for(i = encoder->guts->current_sample_number; i < encoder->blocksize && j < samples; i++, j++, k++) {
455 for(channel = 0; channel < encoder->channels; channel++, k++) {
456 x = buf[k];
457 encoder->guts->integer_signal[channel][i] = x;
458 encoder->guts->real_signal[channel][i] = (real)x;
459 if(ms && encoder->guts->current_frame_can_do_mid_side) {
460 if(channel == 0) {
461 left = x;
462 }
463 else {
464 side = left - x;
465 if(side < min_side || side > max_side) {
466 encoder->guts->current_frame_can_do_mid_side = false;
467 }
468 else {
469 mid = (left + x) >> 1; /* NOTE: not the same as divide-by-two ! */
470 encoder->guts->integer_signal_mid_side[0][i] = mid;
471 encoder->guts->integer_signal_mid_side[1][i] = side;
472 encoder->guts->real_signal_mid_side[0][i] = (real)mid;
473 encoder->guts->real_signal_mid_side[1][i] = (real)side;
474 }
475 }
476 }
477 }
478 encoder->guts->current_sample_number++;
479 }
480 if(i == encoder->blocksize) {
481 if(!encoder_process_frame_(encoder, false)) /* false => not last frame */
482 return false;
483 }
484 } while(j < samples);
485
486 return true;
487}
488
489bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
490{
491 FLAC__FrameHeader frame_header;
492 FLAC__BitBuffer *smallest_frame;
493
494 assert(encoder->state == FLAC__ENCODER_OK);
495
496 /*
497 * First do a normal encoding pass
498 */
499 frame_header.blocksize = encoder->blocksize;
500 frame_header.sample_rate = encoder->sample_rate;
501 frame_header.channels = encoder->channels;
502 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
503 frame_header.bits_per_sample = encoder->bits_per_sample;
504 frame_header.number.frame_number = encoder->guts->current_frame_number;
505
506 if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) {
507 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
508 return false;
509 }
510 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
511 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
512 return false;
513 }
514
515 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, encoder->guts->integer_signal, encoder->guts->real_signal, &encoder->guts->frame))
516 return false;
517
518 smallest_frame = &encoder->guts->frame;
519
520 /*
521 * Now try a mid-side version if necessary; otherwise, just use the previous step's frame
522 */
523 if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) {
524 int32 *integer_signal[2];
525 real *real_signal[2];
526
527 assert(encoder->channels == 2);
528
529 /* mid-side */
530 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE;
531 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_mid_side)) {
532 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
533 return false;
534 }
535 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_mid_side)) {
536 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
537 return false;
538 }
539 integer_signal[0] = encoder->guts->integer_signal_mid_side[0]; /* mid channel */
540 integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
541 real_signal[0] = encoder->guts->real_signal_mid_side[0]; /* mid channel */
542 real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
543 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_mid_side))
544 return false;
545 if(encoder->guts->frame_mid_side.total_bits < smallest_frame->total_bits)
546 smallest_frame = &encoder->guts->frame_mid_side;
547
548 /* left-side */
549 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE;
550 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_left_side)) {
551 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
552 return false;
553 }
554 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_left_side)) {
555 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
556 return false;
557 }
558 integer_signal[0] = encoder->guts->integer_signal[0]; /* left channel */
559 integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
560 real_signal[0] = encoder->guts->real_signal[0]; /* left channel */
561 real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
562 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_left_side))
563 return false;
564 if(encoder->guts->frame_left_side.total_bits < smallest_frame->total_bits)
565 smallest_frame = &encoder->guts->frame_left_side;
566
567 /* right-side */
568 frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE;
569 if(!FLAC__bitbuffer_clear(&encoder->guts->frame_right_side)) {
570 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
571 return false;
572 }
573 if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_right_side)) {
574 encoder->state = FLAC__ENCODER_FRAMING_ERROR;
575 return false;
576 }
577 integer_signal[0] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
578 integer_signal[1] = encoder->guts->integer_signal[1]; /* right channel */
579 real_signal[0] = encoder->guts->real_signal_mid_side[1]; /* side channel */
580 real_signal[1] = encoder->guts->real_signal[1]; /* right channel */
581 if(!encoder_process_subframes_(encoder, is_last_frame, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_right_side))
582 return false;
583 if(encoder->guts->frame_right_side.total_bits < smallest_frame->total_bits)
584 smallest_frame = &encoder->guts->frame_right_side;
585 }
586
587 /*
588 * Zero-pad the frame to a byte_boundary
589 */
590 if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(smallest_frame)) {
591 encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
592 return false;
593 }
594
595 /*
596 * Write it
597 */
598 assert(smallest_frame->bits == 0); /* assert that we're byte-aligned before writing */
599 assert(smallest_frame->total_consumed_bits == 0); /* assert that no reading of the buffer was done */
600 if(encoder->guts->write_callback(encoder, smallest_frame->buffer, smallest_frame->bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) {
601 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
602 return false;
603 }
604
605 /*
606 * Get ready for the next frame
607 */
608 encoder->guts->current_frame_can_do_mid_side = true;
609 encoder->guts->current_sample_number = 0;
610 encoder->guts->current_frame_number++;
611 encoder->guts->metadata.data.encoding.total_samples += (uint64)encoder->blocksize;
612 encoder->guts->metadata.data.encoding.min_framesize = min(smallest_frame->bytes, encoder->guts->metadata.data.encoding.min_framesize);
613 encoder->guts->metadata.data.encoding.max_framesize = max(smallest_frame->bytes, encoder->guts->metadata.data.encoding.max_framesize);
614
615 return true;
616}
617
618bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *frame)
619{
620 real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
621 real lpc_residual_bits_per_sample;
622 real autoc[FLAC__MAX_LPC_ORDER+1];
623 real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER];
624 real lpc_error[FLAC__MAX_LPC_ORDER];
625 unsigned channel;
626 unsigned min_lpc_order, max_lpc_order, lpc_order;
627 unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
628 unsigned max_partition_order;
629 unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
630 unsigned rice_parameter;
631 unsigned candidate_bits, best_bits;
632
633 if(is_last_frame) {
634 max_partition_order = 0;
635 }
636 else {
637 unsigned limit = 0, b = encoder->blocksize;
638 while(!(b & 1)) {
639 limit++;
640 b >>= 1;
641 }
642 max_partition_order = min(encoder->rice_optimization_level, limit);
643 }
644
645 for(channel = 0; channel < channels; channel++) {
646 /* verbatim subframe is the baseline against which we measure other compressed subframes */
647 best_bits = encoder_evaluate_verbatim_subframe_(frame_header->blocksize, frame_header->bits_per_sample, &(encoder->guts->best_subframe));
648
649 if(frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) {
650 /* check for constant subframe */
651 guess_fixed_order = FLAC__fixed_compute_best_predictor(integer_signal[channel]+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
652 if(fixed_residual_bits_per_sample[1] == 0.0) {
Josh Coalsond44feb12000-12-17 19:07:46 +0000653 /* the above means integer_signal[channel]+FLAC__MAX_FIXED_ORDER is constant, now we just have to check the warmup samples */
654 unsigned i, signal_is_constant = true;
655 for(i = 1; i <= FLAC__MAX_FIXED_ORDER; i++) {
656 if(integer_signal[channel][0] != integer_signal[channel][i]) {
657 signal_is_constant = false;
658 break;
659 }
660 }
661 if(signal_is_constant) {
662 candidate_bits = encoder_evaluate_constant_subframe_(integer_signal[channel][0], frame_header->bits_per_sample, &(encoder->guts->candidate_subframe));
663 if(candidate_bits < best_bits) {
664 encoder_promote_candidate_subframe_(encoder);
665 best_bits = candidate_bits;
666 }
Josh Coalsonbb7f6b92000-12-10 04:09:52 +0000667 }
668 }
669 else {
670 /* encode fixed */
671 if(encoder->do_exhaustive_model_search) {
672 min_fixed_order = 0;
673 max_fixed_order = FLAC__MAX_FIXED_ORDER;
674 }
675 else {
676 min_fixed_order = max_fixed_order = guess_fixed_order;
677 }
678 for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
679 if(fixed_residual_bits_per_sample[fixed_order] >= (real)frame_header->bits_per_sample)
680 continue; /* don't even try */
681 rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+0.5) : 0;
682 if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
683 rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
684 candidate_bits = encoder_evaluate_fixed_subframe_(integer_signal[channel], encoder->guts->residual[!encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, fixed_order, rice_parameter, max_partition_order, &(encoder->guts->candidate_subframe));
685 if(candidate_bits < best_bits) {
686 encoder_promote_candidate_subframe_(encoder);
687 best_bits = candidate_bits;
688 }
689 }
690
691 /* encode lpc */
692 if(encoder->max_lpc_order > 0) {
693 if(encoder->max_lpc_order >= frame_header->blocksize)
694 max_lpc_order = frame_header->blocksize-1;
695 else
696 max_lpc_order = encoder->max_lpc_order;
697 if(max_lpc_order > 0) {
698 FLAC__lpc_compute_autocorrelation(real_signal[channel], frame_header->blocksize, max_lpc_order+1, autoc);
699 FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error);
700 if(encoder->do_exhaustive_model_search) {
701 min_lpc_order = 1;
702 }
703 else {
704 unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, frame_header->bits_per_sample);
705 min_lpc_order = max_lpc_order = guess_lpc_order;
706 }
707 if(encoder->do_qlp_coeff_prec_search) {
708 min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION;
709 max_qlp_coeff_precision = 32 - frame_header->bits_per_sample - 1;
710 }
711 else {
712 min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->qlp_coeff_precision;
713 }
714 for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
715 lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize);
716 if(lpc_residual_bits_per_sample >= (real)frame_header->bits_per_sample)
717 continue; /* don't even try */
718 rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+0.5) : 0;
719 if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
720 rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
721 for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
722 candidate_bits = encoder_evaluate_lpc_subframe_(integer_signal[channel], encoder->guts->residual[!encoder->guts->best_residual], lp_coeff[lpc_order-1], frame_header->blocksize, frame_header->bits_per_sample, lpc_order, qlp_coeff_precision, rice_parameter, max_partition_order, &(encoder->guts->candidate_subframe));
723 if(candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */
724 if(candidate_bits < best_bits) {
725 encoder_promote_candidate_subframe_(encoder);
726 best_bits = candidate_bits;
727 }
728 }
729 }
730 }
731 }
732 }
733 }
734 }
735
736 /* add the best subframe */
737 switch(encoder->guts->best_subframe.type) {
738 case FLAC__SUBFRAME_TYPE_CONSTANT:
739 if(!encoder_generate_constant_subframe_(&(encoder->guts->best_subframe), frame_header->bits_per_sample, frame)) {
740 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
741 return false;
742 }
743 break;
744 case FLAC__SUBFRAME_TYPE_FIXED:
745 if(!encoder_generate_fixed_subframe_(&(encoder->guts->best_subframe), encoder->guts->residual[encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
746 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
747 return false;
748 }
749 break;
750 case FLAC__SUBFRAME_TYPE_LPC:
751 if(!encoder_generate_lpc_subframe_(&(encoder->guts->best_subframe), encoder->guts->residual[encoder->guts->best_residual], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
752 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
753 return false;
754 }
755 break;
756 case FLAC__SUBFRAME_TYPE_VERBATIM:
757 if(!encoder_generate_verbatim_subframe_(&(encoder->guts->best_subframe), integer_signal[channel], frame_header->blocksize, frame_header->bits_per_sample, frame)) {
758 encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
759 return false;
760 }
761 break;
762 }
763 }
764
765 return true;
766}
767
768unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__SubframeHeader *subframe)
769{
770 subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
771 subframe->data.constant.value = signal;
772
773 return 8 + bits_per_sample;
774}
775
776unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe)
777{
778 unsigned i, residual_bits;
779 const unsigned residual_samples = blocksize - order;
780
781 FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual);
782
783 subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
784
785 subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
786
787 residual_bits = encoder_find_best_partition_order_(residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters);
788
789 subframe->data.fixed.order = order;
790 for(i = 0; i < order; i++)
791 subframe->data.fixed.warmup[i] = signal[i];
792
793 return 8 + (order * bits_per_sample) + residual_bits;
794}
795
796unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__SubframeHeader *subframe)
797{
798 int32 qlp_coeff[FLAC__MAX_LPC_ORDER];
799 unsigned i, residual_bits;
800 int quantization, ret;
801 const unsigned residual_samples = blocksize - order;
802
803 ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, bits_per_sample, qlp_coeff, &quantization);
804 if(ret != 0)
805 return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
806
807 FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
808
809 subframe->type = FLAC__SUBFRAME_TYPE_LPC;
810
811 subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
812
813 residual_bits = encoder_find_best_partition_order_(residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters);
814
815 subframe->data.lpc.order = order;
816 subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
817 subframe->data.lpc.quantization_level = quantization;
818 memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER);
819 for(i = 0; i < order; i++)
820 subframe->data.lpc.warmup[i] = signal[i];
821
822 return 8 + 9 + (order * (qlp_coeff_precision + bits_per_sample)) + residual_bits;
823}
824
825unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__SubframeHeader *subframe)
826{
827 subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
828
829 return 8 + (blocksize * bits_per_sample);
830}
831
832unsigned encoder_find_best_partition_order_(int32 residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[])
833{
834 unsigned residual_bits, best_residual_bits = 0;
835 unsigned partition_order;
836 unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER];
837
838 for(partition_order = 0; partition_order <= max_partition_order; partition_order++) {
839 if(!encoder_set_partitioned_rice_(residual, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], &residual_bits)) {
840 assert(best_residual_bits != 0);
841 break;
842 }
843 if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
844 best_residual_bits = residual_bits;
845 *best_partition_order = partition_order;
846 best_parameters_index = !best_parameters_index;
847 }
848 }
849 memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order)));
850
851 return best_residual_bits;
852}
853
854bool encoder_generate_constant_subframe_(const FLAC__SubframeHeader *header, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
855{
856 assert(header->type == FLAC__SUBFRAME_TYPE_CONSTANT);
857 return FLAC__subframe_add_constant(bits_per_sample, header, bitbuffer);
858}
859
860bool encoder_generate_fixed_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
861{
862 assert(header->type == FLAC__SUBFRAME_TYPE_FIXED);
863 return FLAC__subframe_add_fixed(residual, blocksize - header->data.fixed.order, bits_per_sample, header, bitbuffer);
864}
865
866bool encoder_generate_lpc_subframe_(const FLAC__SubframeHeader *header, int32 residual[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
867{
868 assert(header->type == FLAC__SUBFRAME_TYPE_LPC);
869 return FLAC__subframe_add_lpc(residual, blocksize - header->data.lpc.order, bits_per_sample, header, bitbuffer);
870}
871
872bool encoder_generate_verbatim_subframe_(const FLAC__SubframeHeader *header, const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__BitBuffer *bitbuffer)
873{
874 assert(header->type == FLAC__SUBFRAME_TYPE_VERBATIM);
875#ifdef NDEBUG
876 (void)header; /* silence compiler warning about unused parameter */
877#endif
878 return FLAC__subframe_add_verbatim(signal, blocksize, bits_per_sample, bitbuffer);
879}
880
881void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder)
882{
883 assert(encoder->state == FLAC__ENCODER_OK);
884 encoder->guts->best_subframe = encoder->guts->candidate_subframe;
885 encoder->guts->best_residual = !encoder->guts->best_residual;
886}
887
888bool encoder_set_partitioned_rice_(const int32 residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits)
889{
890 unsigned bits_ = 2 + 3;
891
892 if(partition_order == 0) {
893 unsigned i;
894 parameters[0] = rice_parameter;
895 bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
896 for(i = 0; i < residual_samples; i++)
897 bits_ += RICE_BITS(residual[i], rice_parameter);
898 }
899 else {
900 unsigned i, j, k = 0, k_last = 0, z;
901 unsigned mean;
902 unsigned parameter, partition_samples;
903 const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
904 for(i = 0; i < (1u<<partition_order); i++) {
905 partition_samples = (residual_samples+predictor_order) >> partition_order;
906 if(i == 0) {
907 if(partition_samples <= predictor_order)
908 return false;
909 else
910 partition_samples -= predictor_order;
911 }
912 mean = partition_samples >> 1;
913 for(j = 0; j < partition_samples; j++, k++)
914 mean += ((residual[k] < 0)? (unsigned)(-residual[k]) : (unsigned)residual[k]);
915 mean /= partition_samples;
916 z = 0x80000000;
917 for(j = 0; j < 32; j++, z >>= 1)
918 if(mean & z)
919 break;
920 parameter = j > 31? 0 : 32 - j - 1;
921 if(parameter > max_parameter)
922 parameter = max_parameter;
923 parameters[i] = parameter;
924 bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
925 for(j = k_last; j < k; j++)
926 bits_ += RICE_BITS(residual[j], parameter);
927 k_last = k;
928 }
929 }
930
931 *bits = bits_;
932 return true;
933}