blob: e822d9c7b958dc8863b3a673a8f93b996f18fed5 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken. If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
Duncan Sands551ec902008-02-18 17:32:13 +000027#include "llvm/Support/CallSite.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
Chris Lattner7bd79da2008-01-14 02:09:12 +000030#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner20846272008-04-26 07:40:11 +000031#include "llvm/Support/MathExtras.h"
Chris Lattnerbdf77462007-09-13 16:30:19 +000032#include "llvm/ADT/SmallPtrSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000037#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038#include <set>
39using namespace llvm;
40
41STATISTIC(NumMarked , "Number of globals marked constant");
42STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
43STATISTIC(NumHeapSRA , "Number of heap objects SRA'd");
44STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
45STATISTIC(NumDeleted , "Number of globals deleted");
46STATISTIC(NumFnDeleted , "Number of functions deleted");
47STATISTIC(NumGlobUses , "Number of global uses devirtualized");
48STATISTIC(NumLocalized , "Number of globals localized");
49STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
50STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
51STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
Duncan Sandsafa10bf2008-02-16 20:56:04 +000052STATISTIC(NumNestRemoved , "Number of nest attributes removed");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053
54namespace {
55 struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
56 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
57 AU.addRequired<TargetData>();
58 }
59 static char ID; // Pass identification, replacement for typeid
60 GlobalOpt() : ModulePass((intptr_t)&ID) {}
61
62 bool runOnModule(Module &M);
63
64 private:
65 GlobalVariable *FindGlobalCtors(Module &M);
66 bool OptimizeFunctions(Module &M);
67 bool OptimizeGlobalVars(Module &M);
68 bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
69 bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
70 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071}
72
Dan Gohman089efff2008-05-13 00:00:25 +000073char GlobalOpt::ID = 0;
74static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
75
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
77
Dan Gohman089efff2008-05-13 00:00:25 +000078namespace {
79
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080/// GlobalStatus - As we analyze each global, keep track of some information
81/// about it. If we find out that the address of the global is taken, none of
82/// this info will be accurate.
83struct VISIBILITY_HIDDEN GlobalStatus {
84 /// isLoaded - True if the global is ever loaded. If the global isn't ever
85 /// loaded it can be deleted.
86 bool isLoaded;
87
88 /// StoredType - Keep track of what stores to the global look like.
89 ///
90 enum StoredType {
91 /// NotStored - There is no store to this global. It can thus be marked
92 /// constant.
93 NotStored,
94
95 /// isInitializerStored - This global is stored to, but the only thing
96 /// stored is the constant it was initialized with. This is only tracked
97 /// for scalar globals.
98 isInitializerStored,
99
100 /// isStoredOnce - This global is stored to, but only its initializer and
101 /// one other value is ever stored to it. If this global isStoredOnce, we
102 /// track the value stored to it in StoredOnceValue below. This is only
103 /// tracked for scalar globals.
104 isStoredOnce,
105
106 /// isStored - This global is stored to by multiple values or something else
107 /// that we cannot track.
108 isStored
109 } StoredType;
110
111 /// StoredOnceValue - If only one value (besides the initializer constant) is
112 /// ever stored to this global, keep track of what value it is.
113 Value *StoredOnceValue;
114
115 /// AccessingFunction/HasMultipleAccessingFunctions - These start out
116 /// null/false. When the first accessing function is noticed, it is recorded.
117 /// When a second different accessing function is noticed,
118 /// HasMultipleAccessingFunctions is set to true.
119 Function *AccessingFunction;
120 bool HasMultipleAccessingFunctions;
121
122 /// HasNonInstructionUser - Set to true if this global has a user that is not
123 /// an instruction (e.g. a constant expr or GV initializer).
124 bool HasNonInstructionUser;
125
126 /// HasPHIUser - Set to true if this global has a user that is a PHI node.
127 bool HasPHIUser;
128
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000129 GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
130 AccessingFunction(0), HasMultipleAccessingFunctions(false),
Chris Lattnercad76212008-01-14 01:32:52 +0000131 HasNonInstructionUser(false), HasPHIUser(false) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000132};
133
Dan Gohman089efff2008-05-13 00:00:25 +0000134}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135
136/// ConstantIsDead - Return true if the specified constant is (transitively)
137/// dead. The constant may be used by other constants (e.g. constant arrays and
138/// constant exprs) as long as they are dead, but it cannot be used by anything
139/// else.
140static bool ConstantIsDead(Constant *C) {
141 if (isa<GlobalValue>(C)) return false;
142
143 for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
144 if (Constant *CU = dyn_cast<Constant>(*UI)) {
145 if (!ConstantIsDead(CU)) return false;
146 } else
147 return false;
148 return true;
149}
150
151
152/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
153/// structure. If the global has its address taken, return true to indicate we
154/// can't do anything with it.
155///
156static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
157 std::set<PHINode*> &PHIUsers) {
158 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
159 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
160 GS.HasNonInstructionUser = true;
161
162 if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000163
164 } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
165 if (!GS.HasMultipleAccessingFunctions) {
166 Function *F = I->getParent()->getParent();
167 if (GS.AccessingFunction == 0)
168 GS.AccessingFunction = F;
169 else if (GS.AccessingFunction != F)
170 GS.HasMultipleAccessingFunctions = true;
171 }
Chris Lattner75a2db82008-01-29 19:01:37 +0000172 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000173 GS.isLoaded = true;
Chris Lattner75a2db82008-01-29 19:01:37 +0000174 if (LI->isVolatile()) return true; // Don't hack on volatile loads.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
176 // Don't allow a store OF the address, only stores TO the address.
177 if (SI->getOperand(0) == V) return true;
178
Chris Lattner75a2db82008-01-29 19:01:37 +0000179 if (SI->isVolatile()) return true; // Don't hack on volatile stores.
180
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000181 // If this is a direct store to the global (i.e., the global is a scalar
182 // value, not an aggregate), keep more specific information about
183 // stores.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000184 if (GS.StoredType != GlobalStatus::isStored) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000185 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
186 Value *StoredVal = SI->getOperand(0);
187 if (StoredVal == GV->getInitializer()) {
188 if (GS.StoredType < GlobalStatus::isInitializerStored)
189 GS.StoredType = GlobalStatus::isInitializerStored;
190 } else if (isa<LoadInst>(StoredVal) &&
191 cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
192 // G = G
193 if (GS.StoredType < GlobalStatus::isInitializerStored)
194 GS.StoredType = GlobalStatus::isInitializerStored;
195 } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
196 GS.StoredType = GlobalStatus::isStoredOnce;
197 GS.StoredOnceValue = StoredVal;
198 } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
199 GS.StoredOnceValue == StoredVal) {
200 // noop.
201 } else {
202 GS.StoredType = GlobalStatus::isStored;
203 }
204 } else {
205 GS.StoredType = GlobalStatus::isStored;
206 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000207 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 } else if (isa<GetElementPtrInst>(I)) {
209 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000210 } else if (isa<SelectInst>(I)) {
211 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
213 // PHI nodes we can check just like select or GEP instructions, but we
214 // have to be careful about infinite recursion.
215 if (PHIUsers.insert(PN).second) // Not already visited.
216 if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 GS.HasPHIUser = true;
218 } else if (isa<CmpInst>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
220 if (I->getOperand(1) == V)
221 GS.StoredType = GlobalStatus::isStored;
222 if (I->getOperand(2) == V)
223 GS.isLoaded = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224 } else if (isa<MemSetInst>(I)) {
225 assert(I->getOperand(1) == V && "Memset only takes one pointer!");
226 GS.StoredType = GlobalStatus::isStored;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000227 } else {
228 return true; // Any other non-load instruction might take address!
229 }
230 } else if (Constant *C = dyn_cast<Constant>(*UI)) {
231 GS.HasNonInstructionUser = true;
232 // We might have a dead and dangling constant hanging off of here.
233 if (!ConstantIsDead(C))
234 return true;
235 } else {
236 GS.HasNonInstructionUser = true;
237 // Otherwise must be some other user.
238 return true;
239 }
240
241 return false;
242}
243
244static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
245 ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
246 if (!CI) return 0;
247 unsigned IdxV = CI->getZExtValue();
248
249 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
250 if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
251 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
252 if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
253 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
254 if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
255 } else if (isa<ConstantAggregateZero>(Agg)) {
256 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
257 if (IdxV < STy->getNumElements())
258 return Constant::getNullValue(STy->getElementType(IdxV));
259 } else if (const SequentialType *STy =
260 dyn_cast<SequentialType>(Agg->getType())) {
261 return Constant::getNullValue(STy->getElementType());
262 }
263 } else if (isa<UndefValue>(Agg)) {
264 if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
265 if (IdxV < STy->getNumElements())
266 return UndefValue::get(STy->getElementType(IdxV));
267 } else if (const SequentialType *STy =
268 dyn_cast<SequentialType>(Agg->getType())) {
269 return UndefValue::get(STy->getElementType());
270 }
271 }
272 return 0;
273}
274
275
276/// CleanupConstantGlobalUsers - We just marked GV constant. Loop over all
277/// users of the global, cleaning up the obvious ones. This is largely just a
278/// quick scan over the use list to clean up the easy and obvious cruft. This
279/// returns true if it made a change.
280static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
281 bool Changed = false;
282 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
283 User *U = *UI++;
284
285 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
286 if (Init) {
287 // Replace the load with the initializer.
288 LI->replaceAllUsesWith(Init);
289 LI->eraseFromParent();
290 Changed = true;
291 }
292 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
293 // Store must be unreachable or storing Init into the global.
294 SI->eraseFromParent();
295 Changed = true;
296 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
297 if (CE->getOpcode() == Instruction::GetElementPtr) {
298 Constant *SubInit = 0;
299 if (Init)
300 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
301 Changed |= CleanupConstantGlobalUsers(CE, SubInit);
302 } else if (CE->getOpcode() == Instruction::BitCast &&
303 isa<PointerType>(CE->getType())) {
304 // Pointer cast, delete any stores and memsets to the global.
305 Changed |= CleanupConstantGlobalUsers(CE, 0);
306 }
307
308 if (CE->use_empty()) {
309 CE->destroyConstant();
310 Changed = true;
311 }
312 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
Chris Lattner7ebafca2007-11-09 17:33:02 +0000313 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
314 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
315 // and will invalidate our notion of what Init is.
Chris Lattner2dd9c042007-11-13 21:46:23 +0000316 Constant *SubInit = 0;
Chris Lattner7ebafca2007-11-09 17:33:02 +0000317 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
318 ConstantExpr *CE =
319 dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
320 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
Chris Lattner2dd9c042007-11-13 21:46:23 +0000321 SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
Chris Lattner7ebafca2007-11-09 17:33:02 +0000322 }
Chris Lattner2dd9c042007-11-13 21:46:23 +0000323 Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000324
325 if (GEP->use_empty()) {
326 GEP->eraseFromParent();
327 Changed = true;
328 }
329 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
330 if (MI->getRawDest() == V) {
331 MI->eraseFromParent();
332 Changed = true;
333 }
334
335 } else if (Constant *C = dyn_cast<Constant>(U)) {
336 // If we have a chain of dead constantexprs or other things dangling from
337 // us, and if they are all dead, nuke them without remorse.
338 if (ConstantIsDead(C)) {
339 C->destroyConstant();
340 // This could have invalidated UI, start over from scratch.
341 CleanupConstantGlobalUsers(V, Init);
342 return true;
343 }
344 }
345 }
346 return Changed;
347}
348
Chris Lattner7bd79da2008-01-14 02:09:12 +0000349/// isSafeSROAElementUse - Return true if the specified instruction is a safe
350/// user of a derived expression from a global that we want to SROA.
351static bool isSafeSROAElementUse(Value *V) {
352 // We might have a dead and dangling constant hanging off of here.
353 if (Constant *C = dyn_cast<Constant>(V))
354 return ConstantIsDead(C);
Chris Lattner7329c662008-01-14 01:31:05 +0000355
Chris Lattner7bd79da2008-01-14 02:09:12 +0000356 Instruction *I = dyn_cast<Instruction>(V);
357 if (!I) return false;
358
359 // Loads are ok.
360 if (isa<LoadInst>(I)) return true;
361
362 // Stores *to* the pointer are ok.
363 if (StoreInst *SI = dyn_cast<StoreInst>(I))
364 return SI->getOperand(0) != V;
365
366 // Otherwise, it must be a GEP.
367 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
368 if (GEPI == 0) return false;
369
370 if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
371 !cast<Constant>(GEPI->getOperand(1))->isNullValue())
372 return false;
373
374 for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
375 I != E; ++I)
376 if (!isSafeSROAElementUse(*I))
377 return false;
Chris Lattner7329c662008-01-14 01:31:05 +0000378 return true;
379}
380
Chris Lattner7bd79da2008-01-14 02:09:12 +0000381
382/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
383/// Look at it and its uses and decide whether it is safe to SROA this global.
384///
385static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
386 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
387 if (!isa<GetElementPtrInst>(U) &&
388 (!isa<ConstantExpr>(U) ||
389 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
390 return false;
391
392 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
393 // don't like < 3 operand CE's, and we don't like non-constant integer
394 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
395 // value of C.
396 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
397 !cast<Constant>(U->getOperand(1))->isNullValue() ||
398 !isa<ConstantInt>(U->getOperand(2)))
399 return false;
400
401 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
402 ++GEPI; // Skip over the pointer index.
403
404 // If this is a use of an array allocation, do a bit more checking for sanity.
405 if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
406 uint64_t NumElements = AT->getNumElements();
407 ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
408
409 // Check to make sure that index falls within the array. If not,
410 // something funny is going on, so we won't do the optimization.
411 //
412 if (Idx->getZExtValue() >= NumElements)
413 return false;
414
415 // We cannot scalar repl this level of the array unless any array
416 // sub-indices are in-range constants. In particular, consider:
417 // A[0][i]. We cannot know that the user isn't doing invalid things like
418 // allowing i to index an out-of-range subscript that accesses A[1].
419 //
420 // Scalar replacing *just* the outer index of the array is probably not
421 // going to be a win anyway, so just give up.
422 for (++GEPI; // Skip array index.
423 GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
424 ++GEPI) {
425 uint64_t NumElements;
426 if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
427 NumElements = SubArrayTy->getNumElements();
428 else
429 NumElements = cast<VectorType>(*GEPI)->getNumElements();
430
431 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
432 if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
433 return false;
434 }
435 }
436
437 for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
438 if (!isSafeSROAElementUse(*I))
439 return false;
440 return true;
441}
442
443/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
444/// is safe for us to perform this transformation.
445///
446static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
447 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
448 UI != E; ++UI) {
449 if (!IsUserOfGlobalSafeForSRA(*UI, GV))
450 return false;
451 }
452 return true;
453}
454
455
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
457/// variable. This opens the door for other optimizations by exposing the
458/// behavior of the program in a more fine-grained way. We have determined that
459/// this transformation is safe already. We return the first global variable we
460/// insert so that the caller can reprocess it.
Chris Lattner20846272008-04-26 07:40:11 +0000461static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
Chris Lattner7329c662008-01-14 01:31:05 +0000462 // Make sure this global only has simple uses that we can SRA.
Chris Lattner7bd79da2008-01-14 02:09:12 +0000463 if (!GlobalUsersSafeToSRA(GV))
Chris Lattner7329c662008-01-14 01:31:05 +0000464 return 0;
465
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000466 assert(GV->hasInternalLinkage() && !GV->isConstant());
467 Constant *Init = GV->getInitializer();
468 const Type *Ty = Init->getType();
469
470 std::vector<GlobalVariable*> NewGlobals;
471 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
472
Chris Lattner20846272008-04-26 07:40:11 +0000473 // Get the alignment of the global, either explicit or target-specific.
474 unsigned StartAlignment = GV->getAlignment();
475 if (StartAlignment == 0)
476 StartAlignment = TD.getABITypeAlignment(GV->getType());
477
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000478 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
479 NewGlobals.reserve(STy->getNumElements());
Chris Lattner20846272008-04-26 07:40:11 +0000480 const StructLayout &Layout = *TD.getStructLayout(STy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000481 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
482 Constant *In = getAggregateConstantElement(Init,
483 ConstantInt::get(Type::Int32Ty, i));
484 assert(In && "Couldn't get element of initializer?");
485 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
486 GlobalVariable::InternalLinkage,
487 In, GV->getName()+"."+utostr(i),
488 (Module *)NULL,
489 GV->isThreadLocal());
490 Globals.insert(GV, NGV);
491 NewGlobals.push_back(NGV);
Chris Lattner20846272008-04-26 07:40:11 +0000492
493 // Calculate the known alignment of the field. If the original aggregate
494 // had 256 byte alignment for example, something might depend on that:
495 // propagate info to each field.
496 uint64_t FieldOffset = Layout.getElementOffset(i);
497 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
498 if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
499 NGV->setAlignment(NewAlign);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000500 }
501 } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
502 unsigned NumElements = 0;
503 if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
504 NumElements = ATy->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000505 else
Chris Lattner20846272008-04-26 07:40:11 +0000506 NumElements = cast<VectorType>(STy)->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507
508 if (NumElements > 16 && GV->hasNUsesOrMore(16))
509 return 0; // It's not worth it.
510 NewGlobals.reserve(NumElements);
Chris Lattner20846272008-04-26 07:40:11 +0000511
512 uint64_t EltSize = TD.getABITypeSize(STy->getElementType());
513 unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000514 for (unsigned i = 0, e = NumElements; i != e; ++i) {
515 Constant *In = getAggregateConstantElement(Init,
516 ConstantInt::get(Type::Int32Ty, i));
517 assert(In && "Couldn't get element of initializer?");
518
519 GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
520 GlobalVariable::InternalLinkage,
521 In, GV->getName()+"."+utostr(i),
522 (Module *)NULL,
523 GV->isThreadLocal());
524 Globals.insert(GV, NGV);
525 NewGlobals.push_back(NGV);
Chris Lattner20846272008-04-26 07:40:11 +0000526
527 // Calculate the known alignment of the field. If the original aggregate
528 // had 256 byte alignment for example, something might depend on that:
529 // propagate info to each field.
530 unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
531 if (NewAlign > EltAlign)
532 NGV->setAlignment(NewAlign);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000533 }
534 }
535
536 if (NewGlobals.empty())
537 return 0;
538
539 DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
540
541 Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
542
543 // Loop over all of the uses of the global, replacing the constantexpr geps,
544 // with smaller constantexpr geps or direct references.
545 while (!GV->use_empty()) {
546 User *GEP = GV->use_back();
547 assert(((isa<ConstantExpr>(GEP) &&
548 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
549 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
550
551 // Ignore the 1th operand, which has to be zero or else the program is quite
552 // broken (undefined). Get the 2nd operand, which is the structure or array
553 // index.
554 unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
555 if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
556
557 Value *NewPtr = NewGlobals[Val];
558
559 // Form a shorter GEP if needed.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000560 if (GEP->getNumOperands() > 3) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000561 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
562 SmallVector<Constant*, 8> Idxs;
563 Idxs.push_back(NullInt);
564 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
565 Idxs.push_back(CE->getOperand(i));
566 NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
567 &Idxs[0], Idxs.size());
568 } else {
569 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
570 SmallVector<Value*, 8> Idxs;
571 Idxs.push_back(NullInt);
572 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
573 Idxs.push_back(GEPI->getOperand(i));
Gabor Greifd6da1d02008-04-06 20:25:17 +0000574 NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
575 GEPI->getName()+"."+utostr(Val), GEPI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000576 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000577 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578 GEP->replaceAllUsesWith(NewPtr);
579
580 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
581 GEPI->eraseFromParent();
582 else
583 cast<ConstantExpr>(GEP)->destroyConstant();
584 }
585
586 // Delete the old global, now that it is dead.
587 Globals.erase(GV);
588 ++NumSRA;
589
590 // Loop over the new globals array deleting any globals that are obviously
591 // dead. This can arise due to scalarization of a structure or an array that
592 // has elements that are dead.
593 unsigned FirstGlobal = 0;
594 for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
595 if (NewGlobals[i]->use_empty()) {
596 Globals.erase(NewGlobals[i]);
597 if (FirstGlobal == i) ++FirstGlobal;
598 }
599
600 return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
601}
602
603/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
Chris Lattnerbdf77462007-09-13 16:30:19 +0000604/// value will trap if the value is dynamically null. PHIs keeps track of any
605/// phi nodes we've seen to avoid reprocessing them.
606static bool AllUsesOfValueWillTrapIfNull(Value *V,
607 SmallPtrSet<PHINode*, 8> &PHIs) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000608 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
609 if (isa<LoadInst>(*UI)) {
610 // Will trap.
611 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
612 if (SI->getOperand(0) == V) {
613 //cerr << "NONTRAPPING USE: " << **UI;
614 return false; // Storing the value.
615 }
616 } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
617 if (CI->getOperand(0) != V) {
618 //cerr << "NONTRAPPING USE: " << **UI;
619 return false; // Not calling the ptr
620 }
621 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
622 if (II->getOperand(0) != V) {
623 //cerr << "NONTRAPPING USE: " << **UI;
624 return false; // Not calling the ptr
625 }
Chris Lattnerbdf77462007-09-13 16:30:19 +0000626 } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
627 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
Chris Lattnerbdf77462007-09-13 16:30:19 +0000629 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
630 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
631 // If we've already seen this phi node, ignore it, it has already been
632 // checked.
633 if (PHIs.insert(PN))
634 return AllUsesOfValueWillTrapIfNull(PN, PHIs);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 } else if (isa<ICmpInst>(*UI) &&
636 isa<ConstantPointerNull>(UI->getOperand(1))) {
637 // Ignore setcc X, null
638 } else {
639 //cerr << "NONTRAPPING USE: " << **UI;
640 return false;
641 }
642 return true;
643}
644
645/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
646/// from GV will trap if the loaded value is null. Note that this also permits
647/// comparisons of the loaded value against null, as a special case.
648static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
649 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
650 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
Chris Lattnerbdf77462007-09-13 16:30:19 +0000651 SmallPtrSet<PHINode*, 8> PHIs;
652 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653 return false;
654 } else if (isa<StoreInst>(*UI)) {
655 // Ignore stores to the global.
656 } else {
657 // We don't know or understand this user, bail out.
658 //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
659 return false;
660 }
661
662 return true;
663}
664
665static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
666 bool Changed = false;
667 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
668 Instruction *I = cast<Instruction>(*UI++);
669 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
670 LI->setOperand(0, NewV);
671 Changed = true;
672 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
673 if (SI->getOperand(1) == V) {
674 SI->setOperand(1, NewV);
675 Changed = true;
676 }
677 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
678 if (I->getOperand(0) == V) {
679 // Calling through the pointer! Turn into a direct call, but be careful
680 // that the pointer is not also being passed as an argument.
681 I->setOperand(0, NewV);
682 Changed = true;
683 bool PassedAsArg = false;
684 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
685 if (I->getOperand(i) == V) {
686 PassedAsArg = true;
687 I->setOperand(i, NewV);
688 }
689
690 if (PassedAsArg) {
691 // Being passed as an argument also. Be careful to not invalidate UI!
692 UI = V->use_begin();
693 }
694 }
695 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
696 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
697 ConstantExpr::getCast(CI->getOpcode(),
698 NewV, CI->getType()));
699 if (CI->use_empty()) {
700 Changed = true;
701 CI->eraseFromParent();
702 }
703 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
704 // Should handle GEP here.
705 SmallVector<Constant*, 8> Idxs;
706 Idxs.reserve(GEPI->getNumOperands()-1);
707 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
708 if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
709 Idxs.push_back(C);
710 else
711 break;
712 if (Idxs.size() == GEPI->getNumOperands()-1)
713 Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
714 ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
715 Idxs.size()));
716 if (GEPI->use_empty()) {
717 Changed = true;
718 GEPI->eraseFromParent();
719 }
720 }
721 }
722
723 return Changed;
724}
725
726
727/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
728/// value stored into it. If there are uses of the loaded value that would trap
729/// if the loaded value is dynamically null, then we know that they cannot be
730/// reachable with a null optimize away the load.
731static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
732 std::vector<LoadInst*> Loads;
733 bool Changed = false;
734
735 // Replace all uses of loads with uses of uses of the stored value.
736 for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
737 GUI != E; ++GUI)
738 if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
739 Loads.push_back(LI);
740 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
741 } else {
742 // If we get here we could have stores, selects, or phi nodes whose values
743 // are loaded.
744 assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
Chris Lattnerad8665a2008-01-04 05:04:53 +0000745 isa<SelectInst>(*GUI) || isa<ConstantExpr>(*GUI)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000746 "Only expect load and stores!");
747 }
748
749 if (Changed) {
750 DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
751 ++NumGlobUses;
752 }
753
754 // Delete all of the loads we can, keeping track of whether we nuked them all!
755 bool AllLoadsGone = true;
756 while (!Loads.empty()) {
757 LoadInst *L = Loads.back();
758 if (L->use_empty()) {
759 L->eraseFromParent();
760 Changed = true;
761 } else {
762 AllLoadsGone = false;
763 }
764 Loads.pop_back();
765 }
766
767 // If we nuked all of the loads, then none of the stores are needed either,
768 // nor is the global.
769 if (AllLoadsGone) {
770 DOUT << " *** GLOBAL NOW DEAD!\n";
771 CleanupConstantGlobalUsers(GV, 0);
772 if (GV->use_empty()) {
773 GV->eraseFromParent();
774 ++NumDeleted;
775 }
776 Changed = true;
777 }
778 return Changed;
779}
780
781/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
782/// instructions that are foldable.
783static void ConstantPropUsersOf(Value *V) {
784 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
785 if (Instruction *I = dyn_cast<Instruction>(*UI++))
786 if (Constant *NewC = ConstantFoldInstruction(I)) {
787 I->replaceAllUsesWith(NewC);
788
789 // Advance UI to the next non-I use to avoid invalidating it!
790 // Instructions could multiply use V.
791 while (UI != E && *UI == I)
792 ++UI;
793 I->eraseFromParent();
794 }
795}
796
797/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
798/// variable, and transforms the program as if it always contained the result of
799/// the specified malloc. Because it is always the result of the specified
800/// malloc, there is no reason to actually DO the malloc. Instead, turn the
801/// malloc into a global, and any loads of GV as uses of the new global.
802static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
803 MallocInst *MI) {
804 DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << " MALLOC = " << *MI;
805 ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
806
807 if (NElements->getZExtValue() != 1) {
808 // If we have an array allocation, transform it to a single element
809 // allocation to make the code below simpler.
810 Type *NewTy = ArrayType::get(MI->getAllocatedType(),
811 NElements->getZExtValue());
812 MallocInst *NewMI =
813 new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
814 MI->getAlignment(), MI->getName(), MI);
815 Value* Indices[2];
816 Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
Gabor Greifd6da1d02008-04-06 20:25:17 +0000817 Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
818 NewMI->getName()+".el0", MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000819 MI->replaceAllUsesWith(NewGEP);
820 MI->eraseFromParent();
821 MI = NewMI;
822 }
823
824 // Create the new global variable. The contents of the malloc'd memory is
825 // undefined, so initialize with an undef value.
826 Constant *Init = UndefValue::get(MI->getAllocatedType());
827 GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
828 GlobalValue::InternalLinkage, Init,
829 GV->getName()+".body",
830 (Module *)NULL,
831 GV->isThreadLocal());
Chris Lattner20846272008-04-26 07:40:11 +0000832 // FIXME: This new global should have the alignment returned by malloc. Code
833 // could depend on malloc returning large alignment (on the mac, 16 bytes) but
834 // this would only guarantee some lower alignment.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000835 GV->getParent()->getGlobalList().insert(GV, NewGV);
836
837 // Anything that used the malloc now uses the global directly.
838 MI->replaceAllUsesWith(NewGV);
839
840 Constant *RepValue = NewGV;
841 if (NewGV->getType() != GV->getType()->getElementType())
842 RepValue = ConstantExpr::getBitCast(RepValue,
843 GV->getType()->getElementType());
844
845 // If there is a comparison against null, we will insert a global bool to
846 // keep track of whether the global was initialized yet or not.
847 GlobalVariable *InitBool =
848 new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
849 ConstantInt::getFalse(), GV->getName()+".init",
850 (Module *)NULL, GV->isThreadLocal());
851 bool InitBoolUsed = false;
852
853 // Loop over all uses of GV, processing them in turn.
854 std::vector<StoreInst*> Stores;
855 while (!GV->use_empty())
856 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
857 while (!LI->use_empty()) {
858 Use &LoadUse = LI->use_begin().getUse();
859 if (!isa<ICmpInst>(LoadUse.getUser()))
860 LoadUse = RepValue;
861 else {
862 ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
863 // Replace the cmp X, 0 with a use of the bool value.
864 Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
865 InitBoolUsed = true;
866 switch (CI->getPredicate()) {
867 default: assert(0 && "Unknown ICmp Predicate!");
868 case ICmpInst::ICMP_ULT:
869 case ICmpInst::ICMP_SLT:
870 LV = ConstantInt::getFalse(); // X < null -> always false
871 break;
872 case ICmpInst::ICMP_ULE:
873 case ICmpInst::ICMP_SLE:
874 case ICmpInst::ICMP_EQ:
875 LV = BinaryOperator::createNot(LV, "notinit", CI);
876 break;
877 case ICmpInst::ICMP_NE:
878 case ICmpInst::ICMP_UGE:
879 case ICmpInst::ICMP_SGE:
880 case ICmpInst::ICMP_UGT:
881 case ICmpInst::ICMP_SGT:
882 break; // no change.
883 }
884 CI->replaceAllUsesWith(LV);
885 CI->eraseFromParent();
886 }
887 }
888 LI->eraseFromParent();
889 } else {
890 StoreInst *SI = cast<StoreInst>(GV->use_back());
891 // The global is initialized when the store to it occurs.
892 new StoreInst(ConstantInt::getTrue(), InitBool, SI);
893 SI->eraseFromParent();
894 }
895
896 // If the initialization boolean was used, insert it, otherwise delete it.
897 if (!InitBoolUsed) {
898 while (!InitBool->use_empty()) // Delete initializations
899 cast<Instruction>(InitBool->use_back())->eraseFromParent();
900 delete InitBool;
901 } else
902 GV->getParent()->getGlobalList().insert(GV, InitBool);
903
904
905 // Now the GV is dead, nuke it and the malloc.
906 GV->eraseFromParent();
907 MI->eraseFromParent();
908
909 // To further other optimizations, loop over all users of NewGV and try to
910 // constant prop them. This will promote GEP instructions with constant
911 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
912 ConstantPropUsersOf(NewGV);
913 if (RepValue != NewGV)
914 ConstantPropUsersOf(RepValue);
915
916 return NewGV;
917}
918
919/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
920/// to make sure that there are no complex uses of V. We permit simple things
921/// like dereferencing the pointer, but not storing through the address, unless
922/// it is to the specified global.
923static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
Chris Lattnere7606f42007-09-13 16:37:20 +0000924 GlobalVariable *GV,
925 SmallPtrSet<PHINode*, 8> &PHIs) {
Chris Lattner4bde3c42007-09-14 03:41:21 +0000926 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000927 if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
928 // Fine, ignore.
929 } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
930 if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
931 return false; // Storing the pointer itself... bad.
932 // Otherwise, storing through it, or storing into GV... fine.
Chris Lattner4bde3c42007-09-14 03:41:21 +0000933 } else if (isa<GetElementPtrInst>(*UI)) {
Chris Lattnere7606f42007-09-13 16:37:20 +0000934 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
935 GV, PHIs))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 return false;
Chris Lattnere7606f42007-09-13 16:37:20 +0000937 } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
938 // PHIs are ok if all uses are ok. Don't infinitely recurse through PHI
939 // cycles.
940 if (PHIs.insert(PN))
Chris Lattner4bde3c42007-09-14 03:41:21 +0000941 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
942 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 } else {
944 return false;
945 }
946 return true;
947}
948
949/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
950/// somewhere. Transform all uses of the allocation into loads from the
951/// global and uses of the resultant pointer. Further, delete the store into
952/// GV. This assumes that these value pass the
953/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
954static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
955 GlobalVariable *GV) {
956 while (!Alloc->use_empty()) {
Chris Lattner20eef0f2007-09-13 18:00:31 +0000957 Instruction *U = cast<Instruction>(*Alloc->use_begin());
958 Instruction *InsertPt = U;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
960 // If this is the store of the allocation into the global, remove it.
961 if (SI->getOperand(1) == GV) {
962 SI->eraseFromParent();
963 continue;
964 }
Chris Lattner20eef0f2007-09-13 18:00:31 +0000965 } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
966 // Insert the load in the corresponding predecessor, not right before the
967 // PHI.
968 unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
969 InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000970 }
971
972 // Insert a load from the global, and use it instead of the malloc.
Chris Lattner20eef0f2007-09-13 18:00:31 +0000973 Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000974 U->replaceUsesOfWith(Alloc, NL);
975 }
976}
977
978/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
979/// GV are simple enough to perform HeapSRA, return true.
Chris Lattnereefff982007-09-13 21:31:36 +0000980static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
981 MallocInst *MI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
983 ++UI)
984 if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
985 // We permit two users of the load: setcc comparing against the null
986 // pointer, and a getelementptr of a specific form.
987 for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
988 ++UI) {
989 // Comparison against null is ok.
990 if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
991 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
992 return false;
993 continue;
994 }
995
996 // getelementptr is also ok, but only a simple form.
Chris Lattnereefff982007-09-13 21:31:36 +0000997 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
998 // Must index into the array and into the struct.
999 if (GEPI->getNumOperands() < 3)
1000 return false;
1001
1002 // Otherwise the GEP is ok.
1003 continue;
1004 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005
Chris Lattnereefff982007-09-13 21:31:36 +00001006 if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
1007 // We have a phi of a load from the global. We can only handle this
1008 // if the other PHI'd values are actually the same. In this case,
1009 // the rewriter will just drop the phi entirely.
1010 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1011 Value *IV = PN->getIncomingValue(i);
1012 if (IV == LI) continue; // Trivial the same.
1013
1014 // If the phi'd value is from the malloc that initializes the value,
1015 // we can xform it.
1016 if (IV == MI) continue;
1017
1018 // Otherwise, we don't know what it is.
1019 return false;
1020 }
1021 return true;
1022 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001023
Chris Lattnereefff982007-09-13 21:31:36 +00001024 // Otherwise we don't know what this is, not ok.
1025 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001026 }
1027 }
1028 return true;
1029}
1030
Chris Lattner20eef0f2007-09-13 18:00:31 +00001031/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
1032/// value, lazily creating it on demand.
Chris Lattnereefff982007-09-13 21:31:36 +00001033static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
Chris Lattner20eef0f2007-09-13 18:00:31 +00001034 const std::vector<GlobalVariable*> &FieldGlobals,
1035 std::vector<Value *> &InsertedLoadsForPtr) {
1036 if (InsertedLoadsForPtr.size() <= FieldNo)
1037 InsertedLoadsForPtr.resize(FieldNo+1);
1038 if (InsertedLoadsForPtr[FieldNo] == 0)
1039 InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
1040 Load->getName()+".f" +
1041 utostr(FieldNo), Load);
1042 return InsertedLoadsForPtr[FieldNo];
1043}
1044
Chris Lattneraf82fb82007-09-13 17:29:05 +00001045/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1046/// the load, rewrite the derived value to use the HeapSRoA'd load.
1047static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
1048 const std::vector<GlobalVariable*> &FieldGlobals,
1049 std::vector<Value *> &InsertedLoadsForPtr) {
1050 // If this is a comparison against null, handle it.
1051 if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1052 assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1053 // If we have a setcc of the loaded pointer, we can use a setcc of any
1054 // field.
1055 Value *NPtr;
1056 if (InsertedLoadsForPtr.empty()) {
Chris Lattner20eef0f2007-09-13 18:00:31 +00001057 NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
Chris Lattneraf82fb82007-09-13 17:29:05 +00001058 } else {
1059 NPtr = InsertedLoadsForPtr.back();
1060 }
1061
1062 Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1063 Constant::getNullValue(NPtr->getType()),
1064 SCI->getName(), SCI);
1065 SCI->replaceAllUsesWith(New);
1066 SCI->eraseFromParent();
1067 return;
1068 }
1069
Chris Lattner20eef0f2007-09-13 18:00:31 +00001070 // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
1071 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1072 assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1073 && "Unexpected GEPI!");
Chris Lattneraf82fb82007-09-13 17:29:05 +00001074
Chris Lattner20eef0f2007-09-13 18:00:31 +00001075 // Load the pointer for this field.
1076 unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1077 Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
1078 FieldGlobals, InsertedLoadsForPtr);
1079
1080 // Create the new GEP idx vector.
1081 SmallVector<Value*, 8> GEPIdx;
1082 GEPIdx.push_back(GEPI->getOperand(1));
1083 GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1084
Gabor Greifd6da1d02008-04-06 20:25:17 +00001085 Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx.begin(), GEPIdx.end(),
1086 GEPI->getName(), GEPI);
Chris Lattner20eef0f2007-09-13 18:00:31 +00001087 GEPI->replaceAllUsesWith(NGEPI);
1088 GEPI->eraseFromParent();
1089 return;
1090 }
Chris Lattneraf82fb82007-09-13 17:29:05 +00001091
Chris Lattnereefff982007-09-13 21:31:36 +00001092 // Handle PHI nodes. PHI nodes must be merging in the same values, plus
1093 // potentially the original malloc. Insert phi nodes for each field, then
1094 // process uses of the PHI.
Chris Lattner20eef0f2007-09-13 18:00:31 +00001095 PHINode *PN = cast<PHINode>(LoadUser);
Chris Lattnereefff982007-09-13 21:31:36 +00001096 std::vector<Value *> PHIsForField;
1097 PHIsForField.resize(FieldGlobals.size());
1098 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1099 Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
1100
Gabor Greifd6da1d02008-04-06 20:25:17 +00001101 PHINode *FieldPN = PHINode::Create(LoadV->getType(),
1102 PN->getName()+"."+utostr(i), PN);
Chris Lattnereefff982007-09-13 21:31:36 +00001103 // Fill in the predecessor values.
1104 for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
1105 // Each predecessor either uses the load or the original malloc.
1106 Value *InVal = PN->getIncomingValue(pred);
1107 BasicBlock *BB = PN->getIncomingBlock(pred);
1108 Value *NewVal;
1109 if (isa<MallocInst>(InVal)) {
1110 // Insert a reload from the global in the predecessor.
1111 NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1112 PHIsForField);
1113 } else {
1114 NewVal = InsertedLoadsForPtr[i];
1115 }
1116 FieldPN->addIncoming(NewVal, BB);
1117 }
1118 PHIsForField[i] = FieldPN;
1119 }
1120
1121 // Since PHIsForField specifies a phi for every input value, the lazy inserter
1122 // will never insert a load.
Chris Lattner20eef0f2007-09-13 18:00:31 +00001123 while (!PN->use_empty())
Chris Lattnereefff982007-09-13 21:31:36 +00001124 RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
Chris Lattner20eef0f2007-09-13 18:00:31 +00001125 PN->eraseFromParent();
Chris Lattneraf82fb82007-09-13 17:29:05 +00001126}
1127
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001128/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global. Ptr
1129/// is a value loaded from the global. Eliminate all uses of Ptr, making them
1130/// use FieldGlobals instead. All uses of loaded values satisfy
1131/// GlobalLoadUsesSimpleEnoughForHeapSRA.
Chris Lattneraf82fb82007-09-13 17:29:05 +00001132static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001133 const std::vector<GlobalVariable*> &FieldGlobals) {
1134 std::vector<Value *> InsertedLoadsForPtr;
1135 //InsertedLoadsForPtr.resize(FieldGlobals.size());
Chris Lattneraf82fb82007-09-13 17:29:05 +00001136 while (!Load->use_empty())
1137 RewriteHeapSROALoadUser(Load, Load->use_back(),
1138 FieldGlobals, InsertedLoadsForPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001139}
1140
1141/// PerformHeapAllocSRoA - MI is an allocation of an array of structures. Break
1142/// it up into multiple allocations of arrays of the fields.
1143static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1144 DOUT << "SROA HEAP ALLOC: " << *GV << " MALLOC = " << *MI;
1145 const StructType *STy = cast<StructType>(MI->getAllocatedType());
1146
1147 // There is guaranteed to be at least one use of the malloc (storing
1148 // it into GV). If there are other uses, change them to be uses of
1149 // the global to simplify later code. This also deletes the store
1150 // into GV.
1151 ReplaceUsesOfMallocWithGlobal(MI, GV);
1152
1153 // Okay, at this point, there are no users of the malloc. Insert N
1154 // new mallocs at the same place as MI, and N globals.
1155 std::vector<GlobalVariable*> FieldGlobals;
1156 std::vector<MallocInst*> FieldMallocs;
1157
1158 for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1159 const Type *FieldTy = STy->getElementType(FieldNo);
Christopher Lambbb2f2222007-12-17 01:12:55 +00001160 const Type *PFieldTy = PointerType::getUnqual(FieldTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001161
1162 GlobalVariable *NGV =
1163 new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1164 Constant::getNullValue(PFieldTy),
1165 GV->getName() + ".f" + utostr(FieldNo), GV,
1166 GV->isThreadLocal());
1167 FieldGlobals.push_back(NGV);
1168
1169 MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1170 MI->getName() + ".f" + utostr(FieldNo),MI);
1171 FieldMallocs.push_back(NMI);
1172 new StoreInst(NMI, NGV, MI);
1173 }
1174
1175 // The tricky aspect of this transformation is handling the case when malloc
1176 // fails. In the original code, malloc failing would set the result pointer
1177 // of malloc to null. In this case, some mallocs could succeed and others
1178 // could fail. As such, we emit code that looks like this:
1179 // F0 = malloc(field0)
1180 // F1 = malloc(field1)
1181 // F2 = malloc(field2)
1182 // if (F0 == 0 || F1 == 0 || F2 == 0) {
1183 // if (F0) { free(F0); F0 = 0; }
1184 // if (F1) { free(F1); F1 = 0; }
1185 // if (F2) { free(F2); F2 = 0; }
1186 // }
1187 Value *RunningOr = 0;
1188 for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1189 Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1190 Constant::getNullValue(FieldMallocs[i]->getType()),
1191 "isnull", MI);
1192 if (!RunningOr)
1193 RunningOr = Cond; // First seteq
1194 else
1195 RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1196 }
1197
1198 // Split the basic block at the old malloc.
1199 BasicBlock *OrigBB = MI->getParent();
1200 BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1201
1202 // Create the block to check the first condition. Put all these blocks at the
1203 // end of the function as they are unlikely to be executed.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001204 BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
1205 OrigBB->getParent());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001206
1207 // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1208 // branch on RunningOr.
1209 OrigBB->getTerminator()->eraseFromParent();
Gabor Greifd6da1d02008-04-06 20:25:17 +00001210 BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001211
1212 // Within the NullPtrBlock, we need to emit a comparison and branch for each
1213 // pointer, because some may be null while others are not.
1214 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1215 Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1216 Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1217 Constant::getNullValue(GVVal->getType()),
1218 "tmp", NullPtrBlock);
Gabor Greifd6da1d02008-04-06 20:25:17 +00001219 BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
1220 BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
1221 BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222
1223 // Fill in FreeBlock.
1224 new FreeInst(GVVal, FreeBlock);
1225 new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1226 FreeBlock);
Gabor Greifd6da1d02008-04-06 20:25:17 +00001227 BranchInst::Create(NextBlock, FreeBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001228
1229 NullPtrBlock = NextBlock;
1230 }
1231
Gabor Greifd6da1d02008-04-06 20:25:17 +00001232 BranchInst::Create(ContBB, NullPtrBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001233
1234 // MI is no longer needed, remove it.
1235 MI->eraseFromParent();
1236
1237
1238 // Okay, the malloc site is completely handled. All of the uses of GV are now
1239 // loads, and all uses of those loads are simple. Rewrite them to use loads
1240 // of the per-field globals instead.
1241 while (!GV->use_empty()) {
1242 if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1243 RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1244 LI->eraseFromParent();
1245 } else {
1246 // Must be a store of null.
1247 StoreInst *SI = cast<StoreInst>(GV->use_back());
1248 assert(isa<Constant>(SI->getOperand(0)) &&
1249 cast<Constant>(SI->getOperand(0))->isNullValue() &&
1250 "Unexpected heap-sra user!");
1251
1252 // Insert a store of null into each global.
1253 for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1254 Constant *Null =
1255 Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1256 new StoreInst(Null, FieldGlobals[i], SI);
1257 }
1258 // Erase the original store.
1259 SI->eraseFromParent();
1260 }
1261 }
1262
1263 // The old global is now dead, remove it.
1264 GV->eraseFromParent();
1265
1266 ++NumHeapSRA;
1267 return FieldGlobals[0];
1268}
1269
1270
1271// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1272// that only one value (besides its initializer) is ever stored to the global.
1273static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1274 Module::global_iterator &GVI,
1275 TargetData &TD) {
1276 if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1277 StoredOnceVal = CI->getOperand(0);
1278 else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1279 // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1280 bool IsJustACast = true;
1281 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1282 if (!isa<Constant>(GEPI->getOperand(i)) ||
1283 !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1284 IsJustACast = false;
1285 break;
1286 }
1287 if (IsJustACast)
1288 StoredOnceVal = GEPI->getOperand(0);
1289 }
1290
1291 // If we are dealing with a pointer global that is initialized to null and
1292 // only has one (non-null) value stored into it, then we can optimize any
1293 // users of the loaded value (often calls and loads) that would trap if the
1294 // value was null.
1295 if (isa<PointerType>(GV->getInitializer()->getType()) &&
1296 GV->getInitializer()->isNullValue()) {
1297 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1298 if (GV->getInitializer()->getType() != SOVC->getType())
1299 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1300
1301 // Optimize away any trapping uses of the loaded value.
1302 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1303 return true;
1304 } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1305 // If this is a malloc of an abstract type, don't touch it.
1306 if (!MI->getAllocatedType()->isSized())
1307 return false;
1308
1309 // We can't optimize this global unless all uses of it are *known* to be
1310 // of the malloc value, not of the null initializer value (consider a use
1311 // that compares the global's value against zero to see if the malloc has
1312 // been reached). To do this, we check to see if all uses of the global
1313 // would trap if the global were null: this proves that they must all
1314 // happen after the malloc.
1315 if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1316 return false;
1317
1318 // We can't optimize this if the malloc itself is used in a complex way,
1319 // for example, being stored into multiple globals. This allows the
1320 // malloc to be stored into the specified global, loaded setcc'd, and
1321 // GEP'd. These are all things we could transform to using the global
1322 // for.
Chris Lattnere7606f42007-09-13 16:37:20 +00001323 {
1324 SmallPtrSet<PHINode*, 8> PHIs;
1325 if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1326 return false;
1327 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328
1329
1330 // If we have a global that is only initialized with a fixed size malloc,
1331 // transform the program to use global memory instead of malloc'd memory.
1332 // This eliminates dynamic allocation, avoids an indirection accessing the
1333 // data, and exposes the resultant global to further GlobalOpt.
1334 if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1335 // Restrict this transformation to only working on small allocations
1336 // (2048 bytes currently), as we don't want to introduce a 16M global or
1337 // something.
1338 if (NElements->getZExtValue()*
Duncan Sandsf99fdc62007-11-01 20:53:16 +00001339 TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001340 GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1341 return true;
1342 }
1343 }
1344
1345 // If the allocation is an array of structures, consider transforming this
1346 // into multiple malloc'd arrays, one for each field. This is basically
1347 // SRoA for malloc'd memory.
1348 if (const StructType *AllocTy =
1349 dyn_cast<StructType>(MI->getAllocatedType())) {
1350 // This the structure has an unreasonable number of fields, leave it
1351 // alone.
1352 if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
Chris Lattnereefff982007-09-13 21:31:36 +00001353 GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001354 GVI = PerformHeapAllocSRoA(GV, MI);
1355 return true;
1356 }
1357 }
1358 }
1359 }
1360
1361 return false;
1362}
1363
Chris Lattnerece46db2008-01-14 01:17:44 +00001364/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1365/// two values ever stored into GV are its initializer and OtherVal. See if we
1366/// can shrink the global into a boolean and select between the two values
1367/// whenever it is used. This exposes the values to other scalar optimizations.
1368static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1369 const Type *GVElType = GV->getType()->getElementType();
1370
1371 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1372 // an FP value or vector, don't do this optimization because a select between
1373 // them is very expensive and unlikely to lead to later simplification.
1374 if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1375 isa<VectorType>(GVElType))
1376 return false;
1377
1378 // Walk the use list of the global seeing if all the uses are load or store.
1379 // If there is anything else, bail out.
1380 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1381 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1382 return false;
1383
1384 DOUT << " *** SHRINKING TO BOOL: " << *GV;
1385
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001386 // Create the new global, initializing it to false.
1387 GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1388 GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1389 GV->getName()+".b",
1390 (Module *)NULL,
1391 GV->isThreadLocal());
1392 GV->getParent()->getGlobalList().insert(GV, NewGV);
1393
1394 Constant *InitVal = GV->getInitializer();
1395 assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1396
1397 // If initialized to zero and storing one into the global, we can use a cast
1398 // instead of a select to synthesize the desired value.
1399 bool IsOneZero = false;
1400 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1401 IsOneZero = InitVal->isNullValue() && CI->isOne();
1402
1403 while (!GV->use_empty()) {
1404 Instruction *UI = cast<Instruction>(GV->use_back());
1405 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1406 // Change the store into a boolean store.
1407 bool StoringOther = SI->getOperand(0) == OtherVal;
1408 // Only do this if we weren't storing a loaded value.
1409 Value *StoreVal;
1410 if (StoringOther || SI->getOperand(0) == InitVal)
1411 StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1412 else {
1413 // Otherwise, we are storing a previously loaded copy. To do this,
1414 // change the copy from copying the original value to just copying the
1415 // bool.
1416 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1417
1418 // If we're already replaced the input, StoredVal will be a cast or
1419 // select instruction. If not, it will be a load of the original
1420 // global.
1421 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1422 assert(LI->getOperand(0) == GV && "Not a copy!");
1423 // Insert a new load, to preserve the saved value.
1424 StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1425 } else {
1426 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1427 "This is not a form that we understand!");
1428 StoreVal = StoredVal->getOperand(0);
1429 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1430 }
1431 }
1432 new StoreInst(StoreVal, NewGV, SI);
Chris Lattnerece46db2008-01-14 01:17:44 +00001433 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001434 // Change the load into a load of bool then a select.
1435 LoadInst *LI = cast<LoadInst>(UI);
1436 LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1437 Value *NSI;
1438 if (IsOneZero)
1439 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1440 else
Gabor Greifd6da1d02008-04-06 20:25:17 +00001441 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001442 NSI->takeName(LI);
1443 LI->replaceAllUsesWith(NSI);
1444 }
1445 UI->eraseFromParent();
1446 }
1447
1448 GV->eraseFromParent();
Chris Lattnerece46db2008-01-14 01:17:44 +00001449 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001450}
1451
1452
1453/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1454/// it if possible. If we make a change, return true.
1455bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1456 Module::global_iterator &GVI) {
1457 std::set<PHINode*> PHIUsers;
1458 GlobalStatus GS;
1459 GV->removeDeadConstantUsers();
1460
1461 if (GV->use_empty()) {
1462 DOUT << "GLOBAL DEAD: " << *GV;
1463 GV->eraseFromParent();
1464 ++NumDeleted;
1465 return true;
1466 }
1467
1468 if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1469#if 0
1470 cerr << "Global: " << *GV;
1471 cerr << " isLoaded = " << GS.isLoaded << "\n";
1472 cerr << " StoredType = ";
1473 switch (GS.StoredType) {
1474 case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1475 case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1476 case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1477 case GlobalStatus::isStored: cerr << "stored\n"; break;
1478 }
1479 if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1480 cerr << " StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1481 if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1482 cerr << " AccessingFunction = " << GS.AccessingFunction->getName()
1483 << "\n";
1484 cerr << " HasMultipleAccessingFunctions = "
1485 << GS.HasMultipleAccessingFunctions << "\n";
1486 cerr << " HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001487 cerr << "\n";
1488#endif
1489
1490 // If this is a first class global and has only one accessing function
1491 // and this function is main (which we know is not recursive we can make
1492 // this global a local variable) we replace the global with a local alloca
1493 // in this function.
1494 //
1495 // NOTE: It doesn't make sense to promote non first class types since we
1496 // are just replacing static memory to stack memory.
1497 if (!GS.HasMultipleAccessingFunctions &&
1498 GS.AccessingFunction && !GS.HasNonInstructionUser &&
1499 GV->getType()->getElementType()->isFirstClassType() &&
1500 GS.AccessingFunction->getName() == "main" &&
1501 GS.AccessingFunction->hasExternalLinkage()) {
1502 DOUT << "LOCALIZING GLOBAL: " << *GV;
1503 Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1504 const Type* ElemTy = GV->getType()->getElementType();
1505 // FIXME: Pass Global's alignment when globals have alignment
1506 AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1507 if (!isa<UndefValue>(GV->getInitializer()))
1508 new StoreInst(GV->getInitializer(), Alloca, FirstI);
1509
1510 GV->replaceAllUsesWith(Alloca);
1511 GV->eraseFromParent();
1512 ++NumLocalized;
1513 return true;
1514 }
1515
1516 // If the global is never loaded (but may be stored to), it is dead.
1517 // Delete it now.
1518 if (!GS.isLoaded) {
1519 DOUT << "GLOBAL NEVER LOADED: " << *GV;
1520
1521 // Delete any stores we can find to the global. We may not be able to
1522 // make it completely dead though.
1523 bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1524
1525 // If the global is dead now, delete it.
1526 if (GV->use_empty()) {
1527 GV->eraseFromParent();
1528 ++NumDeleted;
1529 Changed = true;
1530 }
1531 return Changed;
1532
1533 } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1534 DOUT << "MARKING CONSTANT: " << *GV;
1535 GV->setConstant(true);
1536
1537 // Clean up any obviously simplifiable users now.
1538 CleanupConstantGlobalUsers(GV, GV->getInitializer());
1539
1540 // If the global is dead now, just nuke it.
1541 if (GV->use_empty()) {
1542 DOUT << " *** Marking constant allowed us to simplify "
1543 << "all users and delete global!\n";
1544 GV->eraseFromParent();
1545 ++NumDeleted;
1546 }
1547
1548 ++NumMarked;
1549 return true;
Chris Lattner7329c662008-01-14 01:31:05 +00001550 } else if (!GV->getInitializer()->getType()->isFirstClassType()) {
Chris Lattner20846272008-04-26 07:40:11 +00001551 if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
1552 getAnalysis<TargetData>())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001553 GVI = FirstNewGV; // Don't skip the newly produced globals!
1554 return true;
1555 }
1556 } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1557 // If the initial value for the global was an undef value, and if only
1558 // one other value was stored into it, we can just change the
1559 // initializer to be an undef value, then delete all stores to the
1560 // global. This allows us to mark it constant.
1561 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1562 if (isa<UndefValue>(GV->getInitializer())) {
1563 // Change the initial value here.
1564 GV->setInitializer(SOVConstant);
1565
1566 // Clean up any obviously simplifiable users now.
1567 CleanupConstantGlobalUsers(GV, GV->getInitializer());
1568
1569 if (GV->use_empty()) {
1570 DOUT << " *** Substituting initializer allowed us to "
1571 << "simplify all users and delete global!\n";
1572 GV->eraseFromParent();
1573 ++NumDeleted;
1574 } else {
1575 GVI = GV;
1576 }
1577 ++NumSubstitute;
1578 return true;
1579 }
1580
1581 // Try to optimize globals based on the knowledge that only one value
1582 // (besides its initializer) is ever stored to the global.
1583 if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1584 getAnalysis<TargetData>()))
1585 return true;
1586
1587 // Otherwise, if the global was not a boolean, we can shrink it to be a
1588 // boolean.
1589 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
Chris Lattnerece46db2008-01-14 01:17:44 +00001590 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001591 ++NumShrunkToBool;
1592 return true;
1593 }
1594 }
1595 }
1596 return false;
1597}
1598
1599/// OnlyCalledDirectly - Return true if the specified function is only called
1600/// directly. In other words, its address is never taken.
1601static bool OnlyCalledDirectly(Function *F) {
1602 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1603 Instruction *User = dyn_cast<Instruction>(*UI);
1604 if (!User) return false;
1605 if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1606
1607 // See if the function address is passed as an argument.
1608 for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1609 if (User->getOperand(i) == F) return false;
1610 }
1611 return true;
1612}
1613
1614/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1615/// function, changing them to FastCC.
1616static void ChangeCalleesToFastCall(Function *F) {
1617 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
Duncan Sands551ec902008-02-18 17:32:13 +00001618 CallSite User(cast<Instruction>(*UI));
1619 User.setCallingConv(CallingConv::Fast);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001620 }
1621}
1622
Chris Lattner1c8733e2008-03-12 17:45:29 +00001623static PAListPtr StripNest(const PAListPtr &Attrs) {
1624 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1625 if ((Attrs.getSlot(i).Attrs & ParamAttr::Nest) == 0)
Duncan Sands551ec902008-02-18 17:32:13 +00001626 continue;
1627
Duncan Sands551ec902008-02-18 17:32:13 +00001628 // There can be only one.
Chris Lattner1c8733e2008-03-12 17:45:29 +00001629 return Attrs.removeAttr(Attrs.getSlot(i).Index, ParamAttr::Nest);
Duncan Sandsafa10bf2008-02-16 20:56:04 +00001630 }
1631
1632 return Attrs;
1633}
1634
1635static void RemoveNestAttribute(Function *F) {
1636 F->setParamAttrs(StripNest(F->getParamAttrs()));
1637 for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
Duncan Sands551ec902008-02-18 17:32:13 +00001638 CallSite User(cast<Instruction>(*UI));
1639 User.setParamAttrs(StripNest(User.getParamAttrs()));
Duncan Sandsafa10bf2008-02-16 20:56:04 +00001640 }
1641}
1642
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001643bool GlobalOpt::OptimizeFunctions(Module &M) {
1644 bool Changed = false;
1645 // Optimize functions.
1646 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1647 Function *F = FI++;
1648 F->removeDeadConstantUsers();
1649 if (F->use_empty() && (F->hasInternalLinkage() ||
1650 F->hasLinkOnceLinkage())) {
1651 M.getFunctionList().erase(F);
1652 Changed = true;
1653 ++NumFnDeleted;
Duncan Sandsafa10bf2008-02-16 20:56:04 +00001654 } else if (F->hasInternalLinkage()) {
1655 if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1656 OnlyCalledDirectly(F)) {
1657 // If this function has C calling conventions, is not a varargs
1658 // function, and is only called directly, promote it to use the Fast
1659 // calling convention.
1660 F->setCallingConv(CallingConv::Fast);
1661 ChangeCalleesToFastCall(F);
1662 ++NumFastCallFns;
1663 Changed = true;
1664 }
1665
Chris Lattner1c8733e2008-03-12 17:45:29 +00001666 if (F->getParamAttrs().hasAttrSomewhere(ParamAttr::Nest) &&
Duncan Sandsafa10bf2008-02-16 20:56:04 +00001667 OnlyCalledDirectly(F)) {
1668 // The function is not used by a trampoline intrinsic, so it is safe
1669 // to remove the 'nest' attribute.
1670 RemoveNestAttribute(F);
1671 ++NumNestRemoved;
1672 Changed = true;
1673 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001674 }
1675 }
1676 return Changed;
1677}
1678
1679bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1680 bool Changed = false;
1681 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1682 GVI != E; ) {
1683 GlobalVariable *GV = GVI++;
1684 if (!GV->isConstant() && GV->hasInternalLinkage() &&
1685 GV->hasInitializer())
1686 Changed |= ProcessInternalGlobal(GV, GVI);
1687 }
1688 return Changed;
1689}
1690
1691/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1692/// initializers have an init priority of 65535.
1693GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1694 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1695 I != E; ++I)
1696 if (I->getName() == "llvm.global_ctors") {
1697 // Found it, verify it's an array of { int, void()* }.
1698 const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1699 if (!ATy) return 0;
1700 const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1701 if (!STy || STy->getNumElements() != 2 ||
1702 STy->getElementType(0) != Type::Int32Ty) return 0;
1703 const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1704 if (!PFTy) return 0;
1705 const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1706 if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1707 FTy->getNumParams() != 0)
1708 return 0;
1709
1710 // Verify that the initializer is simple enough for us to handle.
1711 if (!I->hasInitializer()) return 0;
1712 ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1713 if (!CA) return 0;
1714 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1715 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1716 if (isa<ConstantPointerNull>(CS->getOperand(1)))
1717 continue;
1718
1719 // Must have a function or null ptr.
1720 if (!isa<Function>(CS->getOperand(1)))
1721 return 0;
1722
1723 // Init priority must be standard.
1724 ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1725 if (!CI || CI->getZExtValue() != 65535)
1726 return 0;
1727 } else {
1728 return 0;
1729 }
1730
1731 return I;
1732 }
1733 return 0;
1734}
1735
1736/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1737/// return a list of the functions and null terminator as a vector.
1738static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1739 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1740 std::vector<Function*> Result;
1741 Result.reserve(CA->getNumOperands());
1742 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1743 ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1744 Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1745 }
1746 return Result;
1747}
1748
1749/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1750/// specified array, returning the new global to use.
1751static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1752 const std::vector<Function*> &Ctors) {
1753 // If we made a change, reassemble the initializer list.
1754 std::vector<Constant*> CSVals;
1755 CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1756 CSVals.push_back(0);
1757
1758 // Create the new init list.
1759 std::vector<Constant*> CAList;
1760 for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1761 if (Ctors[i]) {
1762 CSVals[1] = Ctors[i];
1763 } else {
1764 const Type *FTy = FunctionType::get(Type::VoidTy,
1765 std::vector<const Type*>(), false);
Christopher Lambbb2f2222007-12-17 01:12:55 +00001766 const PointerType *PFTy = PointerType::getUnqual(FTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001767 CSVals[1] = Constant::getNullValue(PFTy);
1768 CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1769 }
1770 CAList.push_back(ConstantStruct::get(CSVals));
1771 }
1772
1773 // Create the array initializer.
1774 const Type *StructTy =
1775 cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1776 Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1777 CAList);
1778
1779 // If we didn't change the number of elements, don't create a new GV.
1780 if (CA->getType() == GCL->getInitializer()->getType()) {
1781 GCL->setInitializer(CA);
1782 return GCL;
1783 }
1784
1785 // Create the new global and insert it next to the existing list.
1786 GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1787 GCL->getLinkage(), CA, "",
1788 (Module *)NULL,
1789 GCL->isThreadLocal());
1790 GCL->getParent()->getGlobalList().insert(GCL, NGV);
1791 NGV->takeName(GCL);
1792
1793 // Nuke the old list, replacing any uses with the new one.
1794 if (!GCL->use_empty()) {
1795 Constant *V = NGV;
1796 if (V->getType() != GCL->getType())
1797 V = ConstantExpr::getBitCast(V, GCL->getType());
1798 GCL->replaceAllUsesWith(V);
1799 }
1800 GCL->eraseFromParent();
1801
1802 if (Ctors.size())
1803 return NGV;
1804 else
1805 return 0;
1806}
1807
1808
1809static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1810 Value *V) {
1811 if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1812 Constant *R = ComputedValues[V];
1813 assert(R && "Reference to an uncomputed value!");
1814 return R;
1815}
1816
1817/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1818/// enough for us to understand. In particular, if it is a cast of something,
1819/// we punt. We basically just support direct accesses to globals and GEP's of
1820/// globals. This should be kept up to date with CommitValueTo.
1821static bool isSimpleEnoughPointerToCommit(Constant *C) {
1822 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1823 if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1824 return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
1825 return !GV->isDeclaration(); // reject external globals.
1826 }
1827 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1828 // Handle a constantexpr gep.
1829 if (CE->getOpcode() == Instruction::GetElementPtr &&
1830 isa<GlobalVariable>(CE->getOperand(0))) {
1831 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1832 if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1833 return false; // do not allow weak/linkonce/dllimport/dllexport linkage.
1834 return GV->hasInitializer() &&
1835 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1836 }
1837 return false;
1838}
1839
1840/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1841/// initializer. This returns 'Init' modified to reflect 'Val' stored into it.
1842/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1843static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1844 ConstantExpr *Addr, unsigned OpNo) {
1845 // Base case of the recursion.
1846 if (OpNo == Addr->getNumOperands()) {
1847 assert(Val->getType() == Init->getType() && "Type mismatch!");
1848 return Val;
1849 }
1850
1851 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1852 std::vector<Constant*> Elts;
1853
1854 // Break up the constant into its elements.
1855 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1856 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1857 Elts.push_back(CS->getOperand(i));
1858 } else if (isa<ConstantAggregateZero>(Init)) {
1859 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1860 Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1861 } else if (isa<UndefValue>(Init)) {
1862 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1863 Elts.push_back(UndefValue::get(STy->getElementType(i)));
1864 } else {
1865 assert(0 && "This code is out of sync with "
1866 " ConstantFoldLoadThroughGEPConstantExpr");
1867 }
1868
1869 // Replace the element that we are supposed to.
1870 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1871 unsigned Idx = CU->getZExtValue();
1872 assert(Idx < STy->getNumElements() && "Struct index out of range!");
1873 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1874
1875 // Return the modified struct.
1876 return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1877 } else {
1878 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1879 const ArrayType *ATy = cast<ArrayType>(Init->getType());
1880
1881 // Break up the array into elements.
1882 std::vector<Constant*> Elts;
1883 if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1884 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1885 Elts.push_back(CA->getOperand(i));
1886 } else if (isa<ConstantAggregateZero>(Init)) {
1887 Constant *Elt = Constant::getNullValue(ATy->getElementType());
1888 Elts.assign(ATy->getNumElements(), Elt);
1889 } else if (isa<UndefValue>(Init)) {
1890 Constant *Elt = UndefValue::get(ATy->getElementType());
1891 Elts.assign(ATy->getNumElements(), Elt);
1892 } else {
1893 assert(0 && "This code is out of sync with "
1894 " ConstantFoldLoadThroughGEPConstantExpr");
1895 }
1896
1897 assert(CI->getZExtValue() < ATy->getNumElements());
1898 Elts[CI->getZExtValue()] =
1899 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1900 return ConstantArray::get(ATy, Elts);
1901 }
1902}
1903
1904/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1905/// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
1906static void CommitValueTo(Constant *Val, Constant *Addr) {
1907 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1908 assert(GV->hasInitializer());
1909 GV->setInitializer(Val);
1910 return;
1911 }
1912
1913 ConstantExpr *CE = cast<ConstantExpr>(Addr);
1914 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1915
1916 Constant *Init = GV->getInitializer();
1917 Init = EvaluateStoreInto(Init, Val, CE, 2);
1918 GV->setInitializer(Init);
1919}
1920
1921/// ComputeLoadResult - Return the value that would be computed by a load from
1922/// P after the stores reflected by 'memory' have been performed. If we can't
1923/// decide, return null.
1924static Constant *ComputeLoadResult(Constant *P,
1925 const std::map<Constant*, Constant*> &Memory) {
1926 // If this memory location has been recently stored, use the stored value: it
1927 // is the most up-to-date.
1928 std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1929 if (I != Memory.end()) return I->second;
1930
1931 // Access it.
1932 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1933 if (GV->hasInitializer())
1934 return GV->getInitializer();
1935 return 0;
1936 }
1937
1938 // Handle a constantexpr getelementptr.
1939 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1940 if (CE->getOpcode() == Instruction::GetElementPtr &&
1941 isa<GlobalVariable>(CE->getOperand(0))) {
1942 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1943 if (GV->hasInitializer())
1944 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1945 }
1946
1947 return 0; // don't know how to evaluate.
1948}
1949
1950/// EvaluateFunction - Evaluate a call to function F, returning true if
1951/// successful, false if we can't evaluate it. ActualArgs contains the formal
1952/// arguments for the function.
1953static bool EvaluateFunction(Function *F, Constant *&RetVal,
1954 const std::vector<Constant*> &ActualArgs,
1955 std::vector<Function*> &CallStack,
1956 std::map<Constant*, Constant*> &MutatedMemory,
1957 std::vector<GlobalVariable*> &AllocaTmps) {
1958 // Check to see if this function is already executing (recursion). If so,
1959 // bail out. TODO: we might want to accept limited recursion.
1960 if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1961 return false;
1962
1963 CallStack.push_back(F);
1964
1965 /// Values - As we compute SSA register values, we store their contents here.
1966 std::map<Value*, Constant*> Values;
1967
1968 // Initialize arguments to the incoming values specified.
1969 unsigned ArgNo = 0;
1970 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1971 ++AI, ++ArgNo)
1972 Values[AI] = ActualArgs[ArgNo];
1973
1974 /// ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
1975 /// we can only evaluate any one basic block at most once. This set keeps
1976 /// track of what we have executed so we can detect recursive cases etc.
1977 std::set<BasicBlock*> ExecutedBlocks;
1978
1979 // CurInst - The current instruction we're evaluating.
1980 BasicBlock::iterator CurInst = F->begin()->begin();
1981
1982 // This is the main evaluation loop.
1983 while (1) {
1984 Constant *InstResult = 0;
1985
1986 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1987 if (SI->isVolatile()) return false; // no volatile accesses.
1988 Constant *Ptr = getVal(Values, SI->getOperand(1));
1989 if (!isSimpleEnoughPointerToCommit(Ptr))
1990 // If this is too complex for us to commit, reject it.
1991 return false;
1992 Constant *Val = getVal(Values, SI->getOperand(0));
1993 MutatedMemory[Ptr] = Val;
1994 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1995 InstResult = ConstantExpr::get(BO->getOpcode(),
1996 getVal(Values, BO->getOperand(0)),
1997 getVal(Values, BO->getOperand(1)));
1998 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
1999 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2000 getVal(Values, CI->getOperand(0)),
2001 getVal(Values, CI->getOperand(1)));
2002 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2003 InstResult = ConstantExpr::getCast(CI->getOpcode(),
2004 getVal(Values, CI->getOperand(0)),
2005 CI->getType());
2006 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2007 InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2008 getVal(Values, SI->getOperand(1)),
2009 getVal(Values, SI->getOperand(2)));
2010 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2011 Constant *P = getVal(Values, GEP->getOperand(0));
2012 SmallVector<Constant*, 8> GEPOps;
2013 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
2014 GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
2015 InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2016 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2017 if (LI->isVolatile()) return false; // no volatile accesses.
2018 InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2019 MutatedMemory);
2020 if (InstResult == 0) return false; // Could not evaluate load.
2021 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2022 if (AI->isArrayAllocation()) return false; // Cannot handle array allocs.
2023 const Type *Ty = AI->getType()->getElementType();
2024 AllocaTmps.push_back(new GlobalVariable(Ty, false,
2025 GlobalValue::InternalLinkage,
2026 UndefValue::get(Ty),
2027 AI->getName()));
2028 InstResult = AllocaTmps.back();
2029 } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2030 // Cannot handle inline asm.
2031 if (isa<InlineAsm>(CI->getOperand(0))) return false;
2032
2033 // Resolve function pointers.
2034 Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2035 if (!Callee) return false; // Cannot resolve.
2036
2037 std::vector<Constant*> Formals;
2038 for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
2039 Formals.push_back(getVal(Values, CI->getOperand(i)));
2040
2041 if (Callee->isDeclaration()) {
2042 // If this is a function we can constant fold, do it.
2043 if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2044 Formals.size())) {
2045 InstResult = C;
2046 } else {
2047 return false;
2048 }
2049 } else {
2050 if (Callee->getFunctionType()->isVarArg())
2051 return false;
2052
2053 Constant *RetVal;
2054
2055 // Execute the call, if successful, use the return value.
2056 if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2057 MutatedMemory, AllocaTmps))
2058 return false;
2059 InstResult = RetVal;
2060 }
2061 } else if (isa<TerminatorInst>(CurInst)) {
2062 BasicBlock *NewBB = 0;
2063 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2064 if (BI->isUnconditional()) {
2065 NewBB = BI->getSuccessor(0);
2066 } else {
2067 ConstantInt *Cond =
2068 dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2069 if (!Cond) return false; // Cannot determine.
2070
2071 NewBB = BI->getSuccessor(!Cond->getZExtValue());
2072 }
2073 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2074 ConstantInt *Val =
2075 dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2076 if (!Val) return false; // Cannot determine.
2077 NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2078 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2079 if (RI->getNumOperands())
2080 RetVal = getVal(Values, RI->getOperand(0));
2081
2082 CallStack.pop_back(); // return from fn.
2083 return true; // We succeeded at evaluating this ctor!
2084 } else {
2085 // invoke, unwind, unreachable.
2086 return false; // Cannot handle this terminator.
2087 }
2088
2089 // Okay, we succeeded in evaluating this control flow. See if we have
2090 // executed the new block before. If so, we have a looping function,
2091 // which we cannot evaluate in reasonable time.
2092 if (!ExecutedBlocks.insert(NewBB).second)
2093 return false; // looped!
2094
2095 // Okay, we have never been in this block before. Check to see if there
2096 // are any PHI nodes. If so, evaluate them with information about where
2097 // we came from.
2098 BasicBlock *OldBB = CurInst->getParent();
2099 CurInst = NewBB->begin();
2100 PHINode *PN;
2101 for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2102 Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2103
2104 // Do NOT increment CurInst. We know that the terminator had no value.
2105 continue;
2106 } else {
2107 // Did not know how to evaluate this!
2108 return false;
2109 }
2110
2111 if (!CurInst->use_empty())
2112 Values[CurInst] = InstResult;
2113
2114 // Advance program counter.
2115 ++CurInst;
2116 }
2117}
2118
2119/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2120/// we can. Return true if we can, false otherwise.
2121static bool EvaluateStaticConstructor(Function *F) {
2122 /// MutatedMemory - For each store we execute, we update this map. Loads
2123 /// check this to get the most up-to-date value. If evaluation is successful,
2124 /// this state is committed to the process.
2125 std::map<Constant*, Constant*> MutatedMemory;
2126
2127 /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2128 /// to represent its body. This vector is needed so we can delete the
2129 /// temporary globals when we are done.
2130 std::vector<GlobalVariable*> AllocaTmps;
2131
2132 /// CallStack - This is used to detect recursion. In pathological situations
2133 /// we could hit exponential behavior, but at least there is nothing
2134 /// unbounded.
2135 std::vector<Function*> CallStack;
2136
2137 // Call the function.
2138 Constant *RetValDummy;
2139 bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2140 CallStack, MutatedMemory, AllocaTmps);
2141 if (EvalSuccess) {
2142 // We succeeded at evaluation: commit the result.
2143 DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2144 << F->getName() << "' to " << MutatedMemory.size()
2145 << " stores.\n";
2146 for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2147 E = MutatedMemory.end(); I != E; ++I)
2148 CommitValueTo(I->second, I->first);
2149 }
2150
2151 // At this point, we are done interpreting. If we created any 'alloca'
2152 // temporaries, release them now.
2153 while (!AllocaTmps.empty()) {
2154 GlobalVariable *Tmp = AllocaTmps.back();
2155 AllocaTmps.pop_back();
2156
2157 // If there are still users of the alloca, the program is doing something
2158 // silly, e.g. storing the address of the alloca somewhere and using it
2159 // later. Since this is undefined, we'll just make it be null.
2160 if (!Tmp->use_empty())
2161 Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2162 delete Tmp;
2163 }
2164
2165 return EvalSuccess;
2166}
2167
2168
2169
2170/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2171/// Return true if anything changed.
2172bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2173 std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2174 bool MadeChange = false;
2175 if (Ctors.empty()) return false;
2176
2177 // Loop over global ctors, optimizing them when we can.
2178 for (unsigned i = 0; i != Ctors.size(); ++i) {
2179 Function *F = Ctors[i];
2180 // Found a null terminator in the middle of the list, prune off the rest of
2181 // the list.
2182 if (F == 0) {
2183 if (i != Ctors.size()-1) {
2184 Ctors.resize(i+1);
2185 MadeChange = true;
2186 }
2187 break;
2188 }
2189
2190 // We cannot simplify external ctor functions.
2191 if (F->empty()) continue;
2192
2193 // If we can evaluate the ctor at compile time, do.
2194 if (EvaluateStaticConstructor(F)) {
2195 Ctors.erase(Ctors.begin()+i);
2196 MadeChange = true;
2197 --i;
2198 ++NumCtorsEvaluated;
2199 continue;
2200 }
2201 }
2202
2203 if (!MadeChange) return false;
2204
2205 GCL = InstallGlobalCtors(GCL, Ctors);
2206 return true;
2207}
2208
2209
2210bool GlobalOpt::runOnModule(Module &M) {
2211 bool Changed = false;
2212
2213 // Try to find the llvm.globalctors list.
2214 GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2215
2216 bool LocalChange = true;
2217 while (LocalChange) {
2218 LocalChange = false;
2219
2220 // Delete functions that are trivially dead, ccc -> fastcc
2221 LocalChange |= OptimizeFunctions(M);
2222
2223 // Optimize global_ctors list.
2224 if (GlobalCtors)
2225 LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2226
2227 // Optimize non-address-taken globals.
2228 LocalChange |= OptimizeGlobalVars(M);
2229 Changed |= LocalChange;
2230 }
2231
2232 // TODO: Move all global ctors functions to the end of the module for code
2233 // layout.
2234
2235 return Changed;
2236}