blob: 249b2ac68cf281d864c23377e16bc5dcb6333ecb [file] [log] [blame]
Dan Gohman2d1be872009-04-16 03:18:22 +00001//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
Nate Begemaneaa13852004-10-18 21:08:22 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
Nate Begemaneaa13852004-10-18 21:08:22 +00008//===----------------------------------------------------------------------===//
9//
Dan Gohmancec8f9d2009-05-19 20:37:36 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
Nate Begemaneaa13852004-10-18 21:08:22 +000014// This pass performs a strength reduction on array references inside loops that
Dan Gohmancec8f9d2009-05-19 20:37:36 +000015// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
Nate Begemaneaa13852004-10-18 21:08:22 +000019//
Dan Gohman572645c2010-02-12 10:34:29 +000020// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24// %i = phi [ 0, %entry ], [ %i.next, %latch ]
25// ...
26// %i.next = add %i, 1
27// %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41// instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44// smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47// multiple base registers, or as the increment expression in an addrec),
48// we may not actually need both reg and (-1 * reg) in registers; the
49// negation can be implemented by using a sub instead of an add. The
50// lack of support for taking this into consideration when making
51// register pressure decisions is partly worked around by the "Special"
52// use kind.
53//
Nate Begemaneaa13852004-10-18 21:08:22 +000054//===----------------------------------------------------------------------===//
55
Chris Lattnerbe3e5212005-08-03 23:30:08 +000056#define DEBUG_TYPE "loop-reduce"
Nate Begemaneaa13852004-10-18 21:08:22 +000057#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
Dan Gohmane5b01be2007-05-04 14:59:09 +000060#include "llvm/IntrinsicInst.h"
Jeff Cohen2f3c9b72005-03-04 04:04:26 +000061#include "llvm/DerivedTypes.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000062#include "llvm/Analysis/IVUsers.h"
Dan Gohman572645c2010-02-12 10:34:29 +000063#include "llvm/Analysis/Dominators.h"
Devang Patel0f54dcb2007-03-06 21:14:09 +000064#include "llvm/Analysis/LoopPass.h"
Nate Begeman16997482005-07-30 00:15:07 +000065#include "llvm/Analysis/ScalarEvolutionExpander.h"
Chris Lattnere0391be2005-08-12 22:06:11 +000066#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Nate Begemaneaa13852004-10-18 21:08:22 +000067#include "llvm/Transforms/Utils/Local.h"
Dan Gohman572645c2010-02-12 10:34:29 +000068#include "llvm/ADT/SmallBitVector.h"
69#include "llvm/ADT/SetVector.h"
70#include "llvm/ADT/DenseSet.h"
Nate Begeman16997482005-07-30 00:15:07 +000071#include "llvm/Support/Debug.h"
Dan Gohmanafc36a92009-05-02 18:29:22 +000072#include "llvm/Support/ValueHandle.h"
Daniel Dunbar460f6562009-07-26 09:48:23 +000073#include "llvm/Support/raw_ostream.h"
Evan Chengd277f2c2006-03-13 23:14:23 +000074#include "llvm/Target/TargetLowering.h"
Jeff Cohencfb1d422005-07-30 18:22:27 +000075#include <algorithm>
Nate Begemaneaa13852004-10-18 21:08:22 +000076using namespace llvm;
77
Dan Gohman572645c2010-02-12 10:34:29 +000078namespace {
Nate Begemaneaa13852004-10-18 21:08:22 +000079
Dan Gohman572645c2010-02-12 10:34:29 +000080/// RegSortData - This class holds data which is used to order reuse candidates.
81class RegSortData {
82public:
83 /// UsedByIndices - This represents the set of LSRUse indices which reference
84 /// a particular register.
85 SmallBitVector UsedByIndices;
86
87 RegSortData() {}
88
89 void print(raw_ostream &OS) const;
90 void dump() const;
91};
92
93}
94
95void RegSortData::print(raw_ostream &OS) const {
96 OS << "[NumUses=" << UsedByIndices.count() << ']';
97}
98
99void RegSortData::dump() const {
100 print(errs()); errs() << '\n';
101}
Dan Gohmanc17e0cf2009-02-20 04:17:46 +0000102
Chris Lattner0e5f4992006-12-19 21:40:18 +0000103namespace {
Dale Johannesendc42f482007-03-20 00:47:50 +0000104
Dan Gohman572645c2010-02-12 10:34:29 +0000105/// RegUseTracker - Map register candidates to information about how they are
106/// used.
107class RegUseTracker {
108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
Dale Johannesendc42f482007-03-20 00:47:50 +0000109
Dan Gohman90bb3552010-05-18 22:33:00 +0000110 RegUsesTy RegUsesMap;
Dan Gohman572645c2010-02-12 10:34:29 +0000111 SmallVector<const SCEV *, 16> RegSequence;
Evan Chengd1d6b5c2006-03-16 21:53:05 +0000112
Dan Gohman572645c2010-02-12 10:34:29 +0000113public:
114 void CountRegister(const SCEV *Reg, size_t LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000115
Dan Gohman572645c2010-02-12 10:34:29 +0000116 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000117
Dan Gohman572645c2010-02-12 10:34:29 +0000118 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
Dan Gohmana10756e2010-01-21 02:09:26 +0000119
Dan Gohman572645c2010-02-12 10:34:29 +0000120 void clear();
Dan Gohmana10756e2010-01-21 02:09:26 +0000121
Dan Gohman572645c2010-02-12 10:34:29 +0000122 typedef SmallVectorImpl<const SCEV *>::iterator iterator;
123 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
124 iterator begin() { return RegSequence.begin(); }
125 iterator end() { return RegSequence.end(); }
126 const_iterator begin() const { return RegSequence.begin(); }
127 const_iterator end() const { return RegSequence.end(); }
128};
Dan Gohmana10756e2010-01-21 02:09:26 +0000129
Dan Gohmana10756e2010-01-21 02:09:26 +0000130}
131
Dan Gohman572645c2010-02-12 10:34:29 +0000132void
133RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
134 std::pair<RegUsesTy::iterator, bool> Pair =
Dan Gohman90bb3552010-05-18 22:33:00 +0000135 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
Dan Gohman572645c2010-02-12 10:34:29 +0000136 RegSortData &RSD = Pair.first->second;
137 if (Pair.second)
138 RegSequence.push_back(Reg);
139 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
140 RSD.UsedByIndices.set(LUIdx);
Dan Gohmana10756e2010-01-21 02:09:26 +0000141}
142
Dan Gohman572645c2010-02-12 10:34:29 +0000143bool
144RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000145 if (!RegUsesMap.count(Reg)) return false;
Dan Gohman572645c2010-02-12 10:34:29 +0000146 const SmallBitVector &UsedByIndices =
Dan Gohman90bb3552010-05-18 22:33:00 +0000147 RegUsesMap.find(Reg)->second.UsedByIndices;
Dan Gohman572645c2010-02-12 10:34:29 +0000148 int i = UsedByIndices.find_first();
149 if (i == -1) return false;
150 if ((size_t)i != LUIdx) return true;
151 return UsedByIndices.find_next(i) != -1;
152}
Dan Gohmana10756e2010-01-21 02:09:26 +0000153
Dan Gohman572645c2010-02-12 10:34:29 +0000154const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
Dan Gohman90bb3552010-05-18 22:33:00 +0000155 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
156 assert(I != RegUsesMap.end() && "Unknown register!");
Dan Gohman572645c2010-02-12 10:34:29 +0000157 return I->second.UsedByIndices;
158}
Dan Gohmana10756e2010-01-21 02:09:26 +0000159
Dan Gohman572645c2010-02-12 10:34:29 +0000160void RegUseTracker::clear() {
Dan Gohman90bb3552010-05-18 22:33:00 +0000161 RegUsesMap.clear();
Dan Gohman572645c2010-02-12 10:34:29 +0000162 RegSequence.clear();
163}
Dan Gohmana10756e2010-01-21 02:09:26 +0000164
Dan Gohman572645c2010-02-12 10:34:29 +0000165namespace {
166
167/// Formula - This class holds information that describes a formula for
168/// computing satisfying a use. It may include broken-out immediates and scaled
169/// registers.
170struct Formula {
171 /// AM - This is used to represent complex addressing, as well as other kinds
172 /// of interesting uses.
173 TargetLowering::AddrMode AM;
174
175 /// BaseRegs - The list of "base" registers for this use. When this is
176 /// non-empty, AM.HasBaseReg should be set to true.
177 SmallVector<const SCEV *, 2> BaseRegs;
178
179 /// ScaledReg - The 'scaled' register for this use. This should be non-null
180 /// when AM.Scale is not zero.
181 const SCEV *ScaledReg;
182
183 Formula() : ScaledReg(0) {}
184
185 void InitialMatch(const SCEV *S, Loop *L,
186 ScalarEvolution &SE, DominatorTree &DT);
187
188 unsigned getNumRegs() const;
189 const Type *getType() const;
190
191 bool referencesReg(const SCEV *S) const;
192 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
193 const RegUseTracker &RegUses) const;
194
195 void print(raw_ostream &OS) const;
196 void dump() const;
197};
198
199}
200
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000201/// DoInitialMatch - Recursion helper for InitialMatch.
Dan Gohman572645c2010-02-12 10:34:29 +0000202static void DoInitialMatch(const SCEV *S, Loop *L,
203 SmallVectorImpl<const SCEV *> &Good,
204 SmallVectorImpl<const SCEV *> &Bad,
205 ScalarEvolution &SE, DominatorTree &DT) {
206 // Collect expressions which properly dominate the loop header.
207 if (S->properlyDominates(L->getHeader(), &DT)) {
208 Good.push_back(S);
209 return;
Dan Gohmana10756e2010-01-21 02:09:26 +0000210 }
Dan Gohman572645c2010-02-12 10:34:29 +0000211
212 // Look at add operands.
213 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
214 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
215 I != E; ++I)
216 DoInitialMatch(*I, L, Good, Bad, SE, DT);
217 return;
218 }
219
220 // Look at addrec operands.
221 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
222 if (!AR->getStart()->isZero()) {
223 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT);
Dan Gohmandeff6212010-05-03 22:09:21 +0000224 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +0000225 AR->getStepRecurrence(SE),
226 AR->getLoop()),
227 L, Good, Bad, SE, DT);
228 return;
229 }
230
231 // Handle a multiplication by -1 (negation) if it didn't fold.
232 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
233 if (Mul->getOperand(0)->isAllOnesValue()) {
234 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
235 const SCEV *NewMul = SE.getMulExpr(Ops);
236
237 SmallVector<const SCEV *, 4> MyGood;
238 SmallVector<const SCEV *, 4> MyBad;
239 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT);
240 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
241 SE.getEffectiveSCEVType(NewMul->getType())));
242 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
243 E = MyGood.end(); I != E; ++I)
244 Good.push_back(SE.getMulExpr(NegOne, *I));
245 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
246 E = MyBad.end(); I != E; ++I)
247 Bad.push_back(SE.getMulExpr(NegOne, *I));
248 return;
249 }
250
251 // Ok, we can't do anything interesting. Just stuff the whole thing into a
252 // register and hope for the best.
253 Bad.push_back(S);
254}
255
256/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
257/// attempting to keep all loop-invariant and loop-computable values in a
258/// single base register.
259void Formula::InitialMatch(const SCEV *S, Loop *L,
260 ScalarEvolution &SE, DominatorTree &DT) {
261 SmallVector<const SCEV *, 4> Good;
262 SmallVector<const SCEV *, 4> Bad;
263 DoInitialMatch(S, L, Good, Bad, SE, DT);
264 if (!Good.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000265 const SCEV *Sum = SE.getAddExpr(Good);
266 if (!Sum->isZero())
267 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000268 AM.HasBaseReg = true;
269 }
270 if (!Bad.empty()) {
Dan Gohmane60bb152010-04-08 23:36:27 +0000271 const SCEV *Sum = SE.getAddExpr(Bad);
272 if (!Sum->isZero())
273 BaseRegs.push_back(Sum);
Dan Gohman572645c2010-02-12 10:34:29 +0000274 AM.HasBaseReg = true;
275 }
276}
277
278/// getNumRegs - Return the total number of register operands used by this
279/// formula. This does not include register uses implied by non-constant
280/// addrec strides.
281unsigned Formula::getNumRegs() const {
282 return !!ScaledReg + BaseRegs.size();
283}
284
285/// getType - Return the type of this formula, if it has one, or null
286/// otherwise. This type is meaningless except for the bit size.
287const Type *Formula::getType() const {
288 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
289 ScaledReg ? ScaledReg->getType() :
290 AM.BaseGV ? AM.BaseGV->getType() :
291 0;
292}
293
294/// referencesReg - Test if this formula references the given register.
295bool Formula::referencesReg(const SCEV *S) const {
296 return S == ScaledReg ||
297 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
298}
299
300/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
301/// which are used by uses other than the use with the given index.
302bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
303 const RegUseTracker &RegUses) const {
304 if (ScaledReg)
305 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
306 return true;
307 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
308 E = BaseRegs.end(); I != E; ++I)
309 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
310 return true;
311 return false;
312}
313
314void Formula::print(raw_ostream &OS) const {
315 bool First = true;
316 if (AM.BaseGV) {
317 if (!First) OS << " + "; else First = false;
318 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
319 }
320 if (AM.BaseOffs != 0) {
321 if (!First) OS << " + "; else First = false;
322 OS << AM.BaseOffs;
323 }
324 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
325 E = BaseRegs.end(); I != E; ++I) {
326 if (!First) OS << " + "; else First = false;
327 OS << "reg(" << **I << ')';
328 }
Dan Gohmanc4cfbaf2010-05-18 22:35:55 +0000329 if (AM.HasBaseReg && BaseRegs.empty()) {
330 if (!First) OS << " + "; else First = false;
331 OS << "**error: HasBaseReg**";
332 } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
333 if (!First) OS << " + "; else First = false;
334 OS << "**error: !HasBaseReg**";
335 }
Dan Gohman572645c2010-02-12 10:34:29 +0000336 if (AM.Scale != 0) {
337 if (!First) OS << " + "; else First = false;
338 OS << AM.Scale << "*reg(";
339 if (ScaledReg)
340 OS << *ScaledReg;
341 else
342 OS << "<unknown>";
343 OS << ')';
344 }
345}
346
347void Formula::dump() const {
348 print(errs()); errs() << '\n';
349}
350
Dan Gohmanaae01f12010-02-19 19:32:49 +0000351/// isAddRecSExtable - Return true if the given addrec can be sign-extended
352/// without changing its value.
353static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
354 const Type *WideTy =
355 IntegerType::get(SE.getContext(),
356 SE.getTypeSizeInBits(AR->getType()) + 1);
357 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
358}
359
360/// isAddSExtable - Return true if the given add can be sign-extended
361/// without changing its value.
362static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
363 const Type *WideTy =
364 IntegerType::get(SE.getContext(),
365 SE.getTypeSizeInBits(A->getType()) + 1);
366 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
367}
368
369/// isMulSExtable - Return true if the given add can be sign-extended
370/// without changing its value.
371static bool isMulSExtable(const SCEVMulExpr *A, ScalarEvolution &SE) {
372 const Type *WideTy =
373 IntegerType::get(SE.getContext(),
374 SE.getTypeSizeInBits(A->getType()) + 1);
375 return isa<SCEVMulExpr>(SE.getSignExtendExpr(A, WideTy));
376}
377
Dan Gohmanf09b7122010-02-19 19:35:48 +0000378/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
379/// and if the remainder is known to be zero, or null otherwise. If
380/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
381/// to Y, ignoring that the multiplication may overflow, which is useful when
382/// the result will be used in a context where the most significant bits are
383/// ignored.
384static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
385 ScalarEvolution &SE,
386 bool IgnoreSignificantBits = false) {
Dan Gohman572645c2010-02-12 10:34:29 +0000387 // Handle the trivial case, which works for any SCEV type.
388 if (LHS == RHS)
Dan Gohmandeff6212010-05-03 22:09:21 +0000389 return SE.getConstant(LHS->getType(), 1);
Dan Gohman572645c2010-02-12 10:34:29 +0000390
391 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some
392 // folding.
393 if (RHS->isAllOnesValue())
394 return SE.getMulExpr(LHS, RHS);
395
396 // Check for a division of a constant by a constant.
397 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
398 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
399 if (!RC)
400 return 0;
401 if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0)
402 return 0;
403 return SE.getConstant(C->getValue()->getValue()
404 .sdiv(RC->getValue()->getValue()));
405 }
406
Dan Gohmanaae01f12010-02-19 19:32:49 +0000407 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000408 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000409 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000410 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
411 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000412 if (!Start) return 0;
Dan Gohmanf09b7122010-02-19 19:35:48 +0000413 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
414 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000415 if (!Step) return 0;
416 return SE.getAddRecExpr(Start, Step, AR->getLoop());
417 }
Dan Gohman572645c2010-02-12 10:34:29 +0000418 }
419
Dan Gohmanaae01f12010-02-19 19:32:49 +0000420 // Distribute the sdiv over add operands, if the add doesn't overflow.
Dan Gohman572645c2010-02-12 10:34:29 +0000421 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanaae01f12010-02-19 19:32:49 +0000422 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
423 SmallVector<const SCEV *, 8> Ops;
424 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
425 I != E; ++I) {
Dan Gohmanf09b7122010-02-19 19:35:48 +0000426 const SCEV *Op = getExactSDiv(*I, RHS, SE,
427 IgnoreSignificantBits);
Dan Gohmanaae01f12010-02-19 19:32:49 +0000428 if (!Op) return 0;
429 Ops.push_back(Op);
430 }
431 return SE.getAddExpr(Ops);
Dan Gohman572645c2010-02-12 10:34:29 +0000432 }
Dan Gohman572645c2010-02-12 10:34:29 +0000433 }
434
435 // Check for a multiply operand that we can pull RHS out of.
436 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS))
Dan Gohmanaae01f12010-02-19 19:32:49 +0000437 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000438 SmallVector<const SCEV *, 4> Ops;
439 bool Found = false;
440 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
441 I != E; ++I) {
442 if (!Found)
Dan Gohmanf09b7122010-02-19 19:35:48 +0000443 if (const SCEV *Q = getExactSDiv(*I, RHS, SE,
444 IgnoreSignificantBits)) {
Dan Gohman572645c2010-02-12 10:34:29 +0000445 Ops.push_back(Q);
446 Found = true;
447 continue;
448 }
449 Ops.push_back(*I);
450 }
451 return Found ? SE.getMulExpr(Ops) : 0;
452 }
453
454 // Otherwise we don't know.
455 return 0;
456}
457
458/// ExtractImmediate - If S involves the addition of a constant integer value,
459/// return that integer value, and mutate S to point to a new SCEV with that
460/// value excluded.
461static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
462 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
463 if (C->getValue()->getValue().getMinSignedBits() <= 64) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000464 S = SE.getConstant(C->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000465 return C->getValue()->getSExtValue();
466 }
467 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
468 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
469 int64_t Result = ExtractImmediate(NewOps.front(), SE);
470 S = SE.getAddExpr(NewOps);
471 return Result;
472 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
473 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
474 int64_t Result = ExtractImmediate(NewOps.front(), SE);
475 S = SE.getAddRecExpr(NewOps, AR->getLoop());
476 return Result;
477 }
478 return 0;
479}
480
481/// ExtractSymbol - If S involves the addition of a GlobalValue address,
482/// return that symbol, and mutate S to point to a new SCEV with that
483/// value excluded.
484static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
485 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
486 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000487 S = SE.getConstant(GV->getType(), 0);
Dan Gohman572645c2010-02-12 10:34:29 +0000488 return GV;
489 }
490 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
491 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
492 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
493 S = SE.getAddExpr(NewOps);
494 return Result;
495 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
496 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
497 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
498 S = SE.getAddRecExpr(NewOps, AR->getLoop());
499 return Result;
500 }
501 return 0;
Nate Begemaneaa13852004-10-18 21:08:22 +0000502}
503
Dan Gohmanf284ce22009-02-18 00:08:39 +0000504/// isAddressUse - Returns true if the specified instruction is using the
Dale Johannesen203af582008-12-05 21:47:27 +0000505/// specified value as an address.
506static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
507 bool isAddress = isa<LoadInst>(Inst);
508 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
509 if (SI->getOperand(1) == OperandVal)
510 isAddress = true;
511 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
512 // Addressing modes can also be folded into prefetches and a variety
513 // of intrinsics.
514 switch (II->getIntrinsicID()) {
515 default: break;
516 case Intrinsic::prefetch:
517 case Intrinsic::x86_sse2_loadu_dq:
518 case Intrinsic::x86_sse2_loadu_pd:
519 case Intrinsic::x86_sse_loadu_ps:
520 case Intrinsic::x86_sse_storeu_ps:
521 case Intrinsic::x86_sse2_storeu_pd:
522 case Intrinsic::x86_sse2_storeu_dq:
523 case Intrinsic::x86_sse2_storel_dq:
524 if (II->getOperand(1) == OperandVal)
525 isAddress = true;
526 break;
527 }
528 }
529 return isAddress;
530}
Chris Lattner0ae33eb2005-10-03 01:04:44 +0000531
Dan Gohman21e77222009-03-09 21:01:17 +0000532/// getAccessType - Return the type of the memory being accessed.
533static const Type *getAccessType(const Instruction *Inst) {
Dan Gohmana537bf82009-05-18 16:45:28 +0000534 const Type *AccessTy = Inst->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000535 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
Dan Gohmana537bf82009-05-18 16:45:28 +0000536 AccessTy = SI->getOperand(0)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000537 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
538 // Addressing modes can also be folded into prefetches and a variety
539 // of intrinsics.
540 switch (II->getIntrinsicID()) {
541 default: break;
542 case Intrinsic::x86_sse_storeu_ps:
543 case Intrinsic::x86_sse2_storeu_pd:
544 case Intrinsic::x86_sse2_storeu_dq:
545 case Intrinsic::x86_sse2_storel_dq:
Dan Gohmana537bf82009-05-18 16:45:28 +0000546 AccessTy = II->getOperand(1)->getType();
Dan Gohman21e77222009-03-09 21:01:17 +0000547 break;
548 }
549 }
Dan Gohman572645c2010-02-12 10:34:29 +0000550
551 // All pointers have the same requirements, so canonicalize them to an
552 // arbitrary pointer type to minimize variation.
553 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy))
554 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
555 PTy->getAddressSpace());
556
Dan Gohmana537bf82009-05-18 16:45:28 +0000557 return AccessTy;
Dan Gohman21e77222009-03-09 21:01:17 +0000558}
559
Dan Gohman572645c2010-02-12 10:34:29 +0000560/// DeleteTriviallyDeadInstructions - If any of the instructions is the
561/// specified set are trivially dead, delete them and see if this makes any of
562/// their operands subsequently dead.
563static bool
564DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
565 bool Changed = false;
566
567 while (!DeadInsts.empty()) {
568 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
569
570 if (I == 0 || !isInstructionTriviallyDead(I))
571 continue;
572
573 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
574 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
575 *OI = 0;
576 if (U->use_empty())
577 DeadInsts.push_back(U);
578 }
579
580 I->eraseFromParent();
581 Changed = true;
582 }
583
584 return Changed;
585}
586
Dan Gohman7979b722010-01-22 00:46:49 +0000587namespace {
Jim Grosbach56a1f802009-11-17 17:53:56 +0000588
Dan Gohman572645c2010-02-12 10:34:29 +0000589/// Cost - This class is used to measure and compare candidate formulae.
590class Cost {
591 /// TODO: Some of these could be merged. Also, a lexical ordering
592 /// isn't always optimal.
593 unsigned NumRegs;
594 unsigned AddRecCost;
595 unsigned NumIVMuls;
596 unsigned NumBaseAdds;
597 unsigned ImmCost;
598 unsigned SetupCost;
Nate Begeman16997482005-07-30 00:15:07 +0000599
Dan Gohman572645c2010-02-12 10:34:29 +0000600public:
601 Cost()
602 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
603 SetupCost(0) {}
Jim Grosbach56a1f802009-11-17 17:53:56 +0000604
Dan Gohman572645c2010-02-12 10:34:29 +0000605 unsigned getNumRegs() const { return NumRegs; }
Dan Gohman7979b722010-01-22 00:46:49 +0000606
Dan Gohman572645c2010-02-12 10:34:29 +0000607 bool operator<(const Cost &Other) const;
Dan Gohman7979b722010-01-22 00:46:49 +0000608
Dan Gohman572645c2010-02-12 10:34:29 +0000609 void Loose();
Dan Gohman7979b722010-01-22 00:46:49 +0000610
Dan Gohman572645c2010-02-12 10:34:29 +0000611 void RateFormula(const Formula &F,
612 SmallPtrSet<const SCEV *, 16> &Regs,
613 const DenseSet<const SCEV *> &VisitedRegs,
614 const Loop *L,
615 const SmallVectorImpl<int64_t> &Offsets,
616 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman7979b722010-01-22 00:46:49 +0000617
Dan Gohman572645c2010-02-12 10:34:29 +0000618 void print(raw_ostream &OS) const;
619 void dump() const;
Dan Gohman7979b722010-01-22 00:46:49 +0000620
Dan Gohman572645c2010-02-12 10:34:29 +0000621private:
622 void RateRegister(const SCEV *Reg,
623 SmallPtrSet<const SCEV *, 16> &Regs,
624 const Loop *L,
625 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman9214b822010-02-13 02:06:02 +0000626 void RatePrimaryRegister(const SCEV *Reg,
627 SmallPtrSet<const SCEV *, 16> &Regs,
628 const Loop *L,
629 ScalarEvolution &SE, DominatorTree &DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000630};
631
632}
633
634/// RateRegister - Tally up interesting quantities from the given register.
635void Cost::RateRegister(const SCEV *Reg,
636 SmallPtrSet<const SCEV *, 16> &Regs,
637 const Loop *L,
638 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
640 if (AR->getLoop() == L)
641 AddRecCost += 1; /// TODO: This should be a function of the stride.
Dan Gohman572645c2010-02-12 10:34:29 +0000642
Dan Gohman9214b822010-02-13 02:06:02 +0000643 // If this is an addrec for a loop that's already been visited by LSR,
644 // don't second-guess its addrec phi nodes. LSR isn't currently smart
645 // enough to reason about more than one loop at a time. Consider these
646 // registers free and leave them alone.
647 else if (L->contains(AR->getLoop()) ||
648 (!AR->getLoop()->contains(L) &&
649 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) {
650 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
651 PHINode *PN = dyn_cast<PHINode>(I); ++I)
652 if (SE.isSCEVable(PN->getType()) &&
653 (SE.getEffectiveSCEVType(PN->getType()) ==
654 SE.getEffectiveSCEVType(AR->getType())) &&
655 SE.getSCEV(PN) == AR)
656 return;
Dan Gohman572645c2010-02-12 10:34:29 +0000657
Dan Gohman9214b822010-02-13 02:06:02 +0000658 // If this isn't one of the addrecs that the loop already has, it
659 // would require a costly new phi and add. TODO: This isn't
660 // precisely modeled right now.
661 ++NumBaseAdds;
662 if (!Regs.count(AR->getStart()))
Dan Gohman572645c2010-02-12 10:34:29 +0000663 RateRegister(AR->getStart(), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000664 }
Dan Gohman572645c2010-02-12 10:34:29 +0000665
Dan Gohman9214b822010-02-13 02:06:02 +0000666 // Add the step value register, if it needs one.
667 // TODO: The non-affine case isn't precisely modeled here.
668 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1)))
669 if (!Regs.count(AR->getStart()))
670 RateRegister(AR->getOperand(1), Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000671 }
Dan Gohman9214b822010-02-13 02:06:02 +0000672 ++NumRegs;
673
674 // Rough heuristic; favor registers which don't require extra setup
675 // instructions in the preheader.
676 if (!isa<SCEVUnknown>(Reg) &&
677 !isa<SCEVConstant>(Reg) &&
678 !(isa<SCEVAddRecExpr>(Reg) &&
679 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
680 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
681 ++SetupCost;
682}
683
684/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
685/// before, rate it.
686void Cost::RatePrimaryRegister(const SCEV *Reg,
Dan Gohman7fca2292010-02-16 19:42:34 +0000687 SmallPtrSet<const SCEV *, 16> &Regs,
688 const Loop *L,
689 ScalarEvolution &SE, DominatorTree &DT) {
Dan Gohman9214b822010-02-13 02:06:02 +0000690 if (Regs.insert(Reg))
691 RateRegister(Reg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000692}
693
694void Cost::RateFormula(const Formula &F,
695 SmallPtrSet<const SCEV *, 16> &Regs,
696 const DenseSet<const SCEV *> &VisitedRegs,
697 const Loop *L,
698 const SmallVectorImpl<int64_t> &Offsets,
699 ScalarEvolution &SE, DominatorTree &DT) {
700 // Tally up the registers.
701 if (const SCEV *ScaledReg = F.ScaledReg) {
702 if (VisitedRegs.count(ScaledReg)) {
703 Loose();
704 return;
705 }
Dan Gohman9214b822010-02-13 02:06:02 +0000706 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000707 }
708 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
709 E = F.BaseRegs.end(); I != E; ++I) {
710 const SCEV *BaseReg = *I;
711 if (VisitedRegs.count(BaseReg)) {
712 Loose();
713 return;
714 }
Dan Gohman9214b822010-02-13 02:06:02 +0000715 RatePrimaryRegister(BaseReg, Regs, L, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +0000716
717 NumIVMuls += isa<SCEVMulExpr>(BaseReg) &&
718 BaseReg->hasComputableLoopEvolution(L);
719 }
720
721 if (F.BaseRegs.size() > 1)
722 NumBaseAdds += F.BaseRegs.size() - 1;
723
724 // Tally up the non-zero immediates.
725 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
726 E = Offsets.end(); I != E; ++I) {
727 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
728 if (F.AM.BaseGV)
729 ImmCost += 64; // Handle symbolic values conservatively.
730 // TODO: This should probably be the pointer size.
731 else if (Offset != 0)
732 ImmCost += APInt(64, Offset, true).getMinSignedBits();
733 }
734}
735
736/// Loose - Set this cost to a loosing value.
737void Cost::Loose() {
738 NumRegs = ~0u;
739 AddRecCost = ~0u;
740 NumIVMuls = ~0u;
741 NumBaseAdds = ~0u;
742 ImmCost = ~0u;
743 SetupCost = ~0u;
744}
745
746/// operator< - Choose the lower cost.
747bool Cost::operator<(const Cost &Other) const {
748 if (NumRegs != Other.NumRegs)
749 return NumRegs < Other.NumRegs;
750 if (AddRecCost != Other.AddRecCost)
751 return AddRecCost < Other.AddRecCost;
752 if (NumIVMuls != Other.NumIVMuls)
753 return NumIVMuls < Other.NumIVMuls;
754 if (NumBaseAdds != Other.NumBaseAdds)
755 return NumBaseAdds < Other.NumBaseAdds;
756 if (ImmCost != Other.ImmCost)
757 return ImmCost < Other.ImmCost;
758 if (SetupCost != Other.SetupCost)
759 return SetupCost < Other.SetupCost;
760 return false;
761}
762
763void Cost::print(raw_ostream &OS) const {
764 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
765 if (AddRecCost != 0)
766 OS << ", with addrec cost " << AddRecCost;
767 if (NumIVMuls != 0)
768 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
769 if (NumBaseAdds != 0)
770 OS << ", plus " << NumBaseAdds << " base add"
771 << (NumBaseAdds == 1 ? "" : "s");
772 if (ImmCost != 0)
773 OS << ", plus " << ImmCost << " imm cost";
774 if (SetupCost != 0)
775 OS << ", plus " << SetupCost << " setup cost";
776}
777
778void Cost::dump() const {
779 print(errs()); errs() << '\n';
780}
781
782namespace {
783
784/// LSRFixup - An operand value in an instruction which is to be replaced
785/// with some equivalent, possibly strength-reduced, replacement.
786struct LSRFixup {
787 /// UserInst - The instruction which will be updated.
788 Instruction *UserInst;
789
790 /// OperandValToReplace - The operand of the instruction which will
791 /// be replaced. The operand may be used more than once; every instance
792 /// will be replaced.
793 Value *OperandValToReplace;
794
Dan Gohman448db1c2010-04-07 22:27:08 +0000795 /// PostIncLoops - If this user is to use the post-incremented value of an
Dan Gohman572645c2010-02-12 10:34:29 +0000796 /// induction variable, this variable is non-null and holds the loop
797 /// associated with the induction variable.
Dan Gohman448db1c2010-04-07 22:27:08 +0000798 PostIncLoopSet PostIncLoops;
Dan Gohman572645c2010-02-12 10:34:29 +0000799
800 /// LUIdx - The index of the LSRUse describing the expression which
801 /// this fixup needs, minus an offset (below).
802 size_t LUIdx;
803
804 /// Offset - A constant offset to be added to the LSRUse expression.
805 /// This allows multiple fixups to share the same LSRUse with different
806 /// offsets, for example in an unrolled loop.
807 int64_t Offset;
808
Dan Gohman448db1c2010-04-07 22:27:08 +0000809 bool isUseFullyOutsideLoop(const Loop *L) const;
810
Dan Gohman572645c2010-02-12 10:34:29 +0000811 LSRFixup();
812
813 void print(raw_ostream &OS) const;
814 void dump() const;
815};
816
817}
818
819LSRFixup::LSRFixup()
Dan Gohman448db1c2010-04-07 22:27:08 +0000820 : UserInst(0), OperandValToReplace(0),
Dan Gohman572645c2010-02-12 10:34:29 +0000821 LUIdx(~size_t(0)), Offset(0) {}
822
Dan Gohman448db1c2010-04-07 22:27:08 +0000823/// isUseFullyOutsideLoop - Test whether this fixup always uses its
824/// value outside of the given loop.
825bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
826 // PHI nodes use their value in their incoming blocks.
827 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
828 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
829 if (PN->getIncomingValue(i) == OperandValToReplace &&
830 L->contains(PN->getIncomingBlock(i)))
831 return false;
832 return true;
833 }
834
835 return !L->contains(UserInst);
836}
837
Dan Gohman572645c2010-02-12 10:34:29 +0000838void LSRFixup::print(raw_ostream &OS) const {
839 OS << "UserInst=";
840 // Store is common and interesting enough to be worth special-casing.
841 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
842 OS << "store ";
843 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
844 } else if (UserInst->getType()->isVoidTy())
845 OS << UserInst->getOpcodeName();
846 else
847 WriteAsOperand(OS, UserInst, /*PrintType=*/false);
848
849 OS << ", OperandValToReplace=";
850 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
851
Dan Gohman448db1c2010-04-07 22:27:08 +0000852 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
853 E = PostIncLoops.end(); I != E; ++I) {
Dan Gohman572645c2010-02-12 10:34:29 +0000854 OS << ", PostIncLoop=";
Dan Gohman448db1c2010-04-07 22:27:08 +0000855 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
Dan Gohman572645c2010-02-12 10:34:29 +0000856 }
857
858 if (LUIdx != ~size_t(0))
859 OS << ", LUIdx=" << LUIdx;
860
861 if (Offset != 0)
862 OS << ", Offset=" << Offset;
863}
864
865void LSRFixup::dump() const {
866 print(errs()); errs() << '\n';
867}
868
869namespace {
870
871/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
872/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
873struct UniquifierDenseMapInfo {
874 static SmallVector<const SCEV *, 2> getEmptyKey() {
875 SmallVector<const SCEV *, 2> V;
876 V.push_back(reinterpret_cast<const SCEV *>(-1));
877 return V;
878 }
879
880 static SmallVector<const SCEV *, 2> getTombstoneKey() {
881 SmallVector<const SCEV *, 2> V;
882 V.push_back(reinterpret_cast<const SCEV *>(-2));
883 return V;
884 }
885
886 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
887 unsigned Result = 0;
888 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
889 E = V.end(); I != E; ++I)
890 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
891 return Result;
892 }
893
894 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
895 const SmallVector<const SCEV *, 2> &RHS) {
896 return LHS == RHS;
897 }
898};
899
900/// LSRUse - This class holds the state that LSR keeps for each use in
901/// IVUsers, as well as uses invented by LSR itself. It includes information
902/// about what kinds of things can be folded into the user, information about
903/// the user itself, and information about how the use may be satisfied.
904/// TODO: Represent multiple users of the same expression in common?
905class LSRUse {
906 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
907
908public:
909 /// KindType - An enum for a kind of use, indicating what types of
910 /// scaled and immediate operands it might support.
911 enum KindType {
912 Basic, ///< A normal use, with no folding.
913 Special, ///< A special case of basic, allowing -1 scales.
914 Address, ///< An address use; folding according to TargetLowering
915 ICmpZero ///< An equality icmp with both operands folded into one.
916 // TODO: Add a generic icmp too?
Dan Gohman7979b722010-01-22 00:46:49 +0000917 };
Dan Gohman572645c2010-02-12 10:34:29 +0000918
919 KindType Kind;
920 const Type *AccessTy;
921
922 SmallVector<int64_t, 8> Offsets;
923 int64_t MinOffset;
924 int64_t MaxOffset;
925
926 /// AllFixupsOutsideLoop - This records whether all of the fixups using this
927 /// LSRUse are outside of the loop, in which case some special-case heuristics
928 /// may be used.
929 bool AllFixupsOutsideLoop;
930
931 /// Formulae - A list of ways to build a value that can satisfy this user.
932 /// After the list is populated, one of these is selected heuristically and
933 /// used to formulate a replacement for OperandValToReplace in UserInst.
934 SmallVector<Formula, 12> Formulae;
935
936 /// Regs - The set of register candidates used by all formulae in this LSRUse.
937 SmallPtrSet<const SCEV *, 4> Regs;
938
939 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T),
940 MinOffset(INT64_MAX),
941 MaxOffset(INT64_MIN),
942 AllFixupsOutsideLoop(true) {}
943
Dan Gohman454d26d2010-02-22 04:11:59 +0000944 bool InsertFormula(const Formula &F);
Dan Gohmand69d6282010-05-18 22:39:15 +0000945 void DeleteFormula(Formula &F);
Dan Gohman572645c2010-02-12 10:34:29 +0000946
947 void check() const;
948
949 void print(raw_ostream &OS) const;
950 void dump() const;
951};
952
953/// InsertFormula - If the given formula has not yet been inserted, add it to
954/// the list, and return true. Return false otherwise.
Dan Gohman454d26d2010-02-22 04:11:59 +0000955bool LSRUse::InsertFormula(const Formula &F) {
Dan Gohman572645c2010-02-12 10:34:29 +0000956 SmallVector<const SCEV *, 2> Key = F.BaseRegs;
957 if (F.ScaledReg) Key.push_back(F.ScaledReg);
958 // Unstable sort by host order ok, because this is only used for uniquifying.
959 std::sort(Key.begin(), Key.end());
960
961 if (!Uniquifier.insert(Key).second)
962 return false;
963
964 // Using a register to hold the value of 0 is not profitable.
965 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
966 "Zero allocated in a scaled register!");
967#ifndef NDEBUG
968 for (SmallVectorImpl<const SCEV *>::const_iterator I =
969 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
970 assert(!(*I)->isZero() && "Zero allocated in a base register!");
971#endif
972
973 // Add the formula to the list.
974 Formulae.push_back(F);
975
976 // Record registers now being used by this use.
977 if (F.ScaledReg) Regs.insert(F.ScaledReg);
978 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
979
980 return true;
Dan Gohman7979b722010-01-22 00:46:49 +0000981}
982
Dan Gohmand69d6282010-05-18 22:39:15 +0000983/// DeleteFormula - Remove the given formula from this use's list.
984void LSRUse::DeleteFormula(Formula &F) {
985 std::swap(F, Formulae.back());
986 Formulae.pop_back();
987}
988
Dan Gohman572645c2010-02-12 10:34:29 +0000989void LSRUse::print(raw_ostream &OS) const {
990 OS << "LSR Use: Kind=";
991 switch (Kind) {
992 case Basic: OS << "Basic"; break;
993 case Special: OS << "Special"; break;
994 case ICmpZero: OS << "ICmpZero"; break;
995 case Address:
996 OS << "Address of ";
Duncan Sands1df98592010-02-16 11:11:14 +0000997 if (AccessTy->isPointerTy())
Dan Gohman572645c2010-02-12 10:34:29 +0000998 OS << "pointer"; // the full pointer type could be really verbose
999 else
1000 OS << *AccessTy;
Evan Chengcdf43b12007-10-25 09:11:16 +00001001 }
1002
Dan Gohman572645c2010-02-12 10:34:29 +00001003 OS << ", Offsets={";
1004 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1005 E = Offsets.end(); I != E; ++I) {
1006 OS << *I;
1007 if (next(I) != E)
1008 OS << ',';
Dan Gohman7979b722010-01-22 00:46:49 +00001009 }
Dan Gohman572645c2010-02-12 10:34:29 +00001010 OS << '}';
Dan Gohman7979b722010-01-22 00:46:49 +00001011
Dan Gohman572645c2010-02-12 10:34:29 +00001012 if (AllFixupsOutsideLoop)
1013 OS << ", all-fixups-outside-loop";
Dan Gohman7979b722010-01-22 00:46:49 +00001014}
1015
Dan Gohman572645c2010-02-12 10:34:29 +00001016void LSRUse::dump() const {
1017 print(errs()); errs() << '\n';
1018}
Dan Gohman7979b722010-01-22 00:46:49 +00001019
Dan Gohman572645c2010-02-12 10:34:29 +00001020/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1021/// be completely folded into the user instruction at isel time. This includes
1022/// address-mode folding and special icmp tricks.
1023static bool isLegalUse(const TargetLowering::AddrMode &AM,
1024 LSRUse::KindType Kind, const Type *AccessTy,
1025 const TargetLowering *TLI) {
1026 switch (Kind) {
1027 case LSRUse::Address:
1028 // If we have low-level target information, ask the target if it can
1029 // completely fold this address.
1030 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1031
1032 // Otherwise, just guess that reg+reg addressing is legal.
1033 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1034
1035 case LSRUse::ICmpZero:
1036 // There's not even a target hook for querying whether it would be legal to
1037 // fold a GV into an ICmp.
1038 if (AM.BaseGV)
1039 return false;
1040
1041 // ICmp only has two operands; don't allow more than two non-trivial parts.
1042 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1043 return false;
1044
1045 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1046 // putting the scaled register in the other operand of the icmp.
1047 if (AM.Scale != 0 && AM.Scale != -1)
1048 return false;
1049
1050 // If we have low-level target information, ask the target if it can fold an
1051 // integer immediate on an icmp.
1052 if (AM.BaseOffs != 0) {
1053 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs);
1054 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001055 }
Dan Gohman572645c2010-02-12 10:34:29 +00001056
1057 return true;
1058
1059 case LSRUse::Basic:
1060 // Only handle single-register values.
1061 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1062
1063 case LSRUse::Special:
1064 // Only handle -1 scales, or no scale.
1065 return AM.Scale == 0 || AM.Scale == -1;
Dan Gohman7979b722010-01-22 00:46:49 +00001066 }
1067
Dan Gohman7979b722010-01-22 00:46:49 +00001068 return false;
1069}
1070
Dan Gohman572645c2010-02-12 10:34:29 +00001071static bool isLegalUse(TargetLowering::AddrMode AM,
1072 int64_t MinOffset, int64_t MaxOffset,
1073 LSRUse::KindType Kind, const Type *AccessTy,
1074 const TargetLowering *TLI) {
1075 // Check for overflow.
1076 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1077 (MinOffset > 0))
1078 return false;
1079 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1080 if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1081 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1082 // Check for overflow.
1083 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1084 (MaxOffset > 0))
1085 return false;
1086 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1087 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001088 }
Dan Gohman572645c2010-02-12 10:34:29 +00001089 return false;
Dan Gohman7979b722010-01-22 00:46:49 +00001090}
1091
Dan Gohman572645c2010-02-12 10:34:29 +00001092static bool isAlwaysFoldable(int64_t BaseOffs,
1093 GlobalValue *BaseGV,
1094 bool HasBaseReg,
1095 LSRUse::KindType Kind, const Type *AccessTy,
Dan Gohman454d26d2010-02-22 04:11:59 +00001096 const TargetLowering *TLI) {
Dan Gohman572645c2010-02-12 10:34:29 +00001097 // Fast-path: zero is always foldable.
1098 if (BaseOffs == 0 && !BaseGV) return true;
Dan Gohman7979b722010-01-22 00:46:49 +00001099
Dan Gohman572645c2010-02-12 10:34:29 +00001100 // Conservatively, create an address with an immediate and a
1101 // base and a scale.
1102 TargetLowering::AddrMode AM;
1103 AM.BaseOffs = BaseOffs;
1104 AM.BaseGV = BaseGV;
1105 AM.HasBaseReg = HasBaseReg;
1106 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001107
Dan Gohman572645c2010-02-12 10:34:29 +00001108 return isLegalUse(AM, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001109}
1110
Dan Gohman572645c2010-02-12 10:34:29 +00001111static bool isAlwaysFoldable(const SCEV *S,
1112 int64_t MinOffset, int64_t MaxOffset,
1113 bool HasBaseReg,
1114 LSRUse::KindType Kind, const Type *AccessTy,
1115 const TargetLowering *TLI,
1116 ScalarEvolution &SE) {
1117 // Fast-path: zero is always foldable.
1118 if (S->isZero()) return true;
1119
1120 // Conservatively, create an address with an immediate and a
1121 // base and a scale.
1122 int64_t BaseOffs = ExtractImmediate(S, SE);
1123 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1124
1125 // If there's anything else involved, it's not foldable.
1126 if (!S->isZero()) return false;
1127
1128 // Fast-path: zero is always foldable.
1129 if (BaseOffs == 0 && !BaseGV) return true;
1130
1131 // Conservatively, create an address with an immediate and a
1132 // base and a scale.
1133 TargetLowering::AddrMode AM;
1134 AM.BaseOffs = BaseOffs;
1135 AM.BaseGV = BaseGV;
1136 AM.HasBaseReg = HasBaseReg;
1137 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1138
1139 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
Dan Gohman7979b722010-01-22 00:46:49 +00001140}
1141
Dan Gohman572645c2010-02-12 10:34:29 +00001142/// FormulaSorter - This class implements an ordering for formulae which sorts
1143/// the by their standalone cost.
1144class FormulaSorter {
1145 /// These two sets are kept empty, so that we compute standalone costs.
1146 DenseSet<const SCEV *> VisitedRegs;
1147 SmallPtrSet<const SCEV *, 16> Regs;
1148 Loop *L;
1149 LSRUse *LU;
1150 ScalarEvolution &SE;
1151 DominatorTree &DT;
1152
1153public:
1154 FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt)
1155 : L(l), LU(&lu), SE(se), DT(dt) {}
1156
1157 bool operator()(const Formula &A, const Formula &B) {
1158 Cost CostA;
1159 CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1160 Regs.clear();
1161 Cost CostB;
1162 CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT);
1163 Regs.clear();
1164 return CostA < CostB;
1165 }
1166};
1167
1168/// LSRInstance - This class holds state for the main loop strength reduction
1169/// logic.
1170class LSRInstance {
1171 IVUsers &IU;
1172 ScalarEvolution &SE;
1173 DominatorTree &DT;
Dan Gohmane5f76872010-04-09 22:07:05 +00001174 LoopInfo &LI;
Dan Gohman572645c2010-02-12 10:34:29 +00001175 const TargetLowering *const TLI;
1176 Loop *const L;
1177 bool Changed;
1178
1179 /// IVIncInsertPos - This is the insert position that the current loop's
1180 /// induction variable increment should be placed. In simple loops, this is
1181 /// the latch block's terminator. But in more complicated cases, this is a
1182 /// position which will dominate all the in-loop post-increment users.
1183 Instruction *IVIncInsertPos;
1184
1185 /// Factors - Interesting factors between use strides.
1186 SmallSetVector<int64_t, 8> Factors;
1187
1188 /// Types - Interesting use types, to facilitate truncation reuse.
1189 SmallSetVector<const Type *, 4> Types;
1190
1191 /// Fixups - The list of operands which are to be replaced.
1192 SmallVector<LSRFixup, 16> Fixups;
1193
1194 /// Uses - The list of interesting uses.
1195 SmallVector<LSRUse, 16> Uses;
1196
1197 /// RegUses - Track which uses use which register candidates.
1198 RegUseTracker RegUses;
1199
1200 void OptimizeShadowIV();
1201 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1202 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1203 bool OptimizeLoopTermCond();
1204
1205 void CollectInterestingTypesAndFactors();
1206 void CollectFixupsAndInitialFormulae();
1207
1208 LSRFixup &getNewFixup() {
1209 Fixups.push_back(LSRFixup());
1210 return Fixups.back();
1211 }
1212
1213 // Support for sharing of LSRUses between LSRFixups.
1214 typedef DenseMap<const SCEV *, size_t> UseMapTy;
1215 UseMapTy UseMap;
1216
1217 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1218 LSRUse::KindType Kind, const Type *AccessTy);
1219
1220 std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1221 LSRUse::KindType Kind,
1222 const Type *AccessTy);
1223
1224public:
Dan Gohman454d26d2010-02-22 04:11:59 +00001225 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001226 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1227 void CountRegisters(const Formula &F, size_t LUIdx);
1228 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1229
1230 void CollectLoopInvariantFixupsAndFormulae();
1231
1232 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1233 unsigned Depth = 0);
1234 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1235 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1236 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1237 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1238 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1239 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1240 void GenerateCrossUseConstantOffsets();
1241 void GenerateAllReuseFormulae();
1242
1243 void FilterOutUndesirableDedicatedRegisters();
1244 void NarrowSearchSpaceUsingHeuristics();
1245
1246 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1247 Cost &SolutionCost,
1248 SmallVectorImpl<const Formula *> &Workspace,
1249 const Cost &CurCost,
1250 const SmallPtrSet<const SCEV *, 16> &CurRegs,
1251 DenseSet<const SCEV *> &VisitedRegs) const;
1252 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1253
Dan Gohmane5f76872010-04-09 22:07:05 +00001254 BasicBlock::iterator
1255 HoistInsertPosition(BasicBlock::iterator IP,
1256 const SmallVectorImpl<Instruction *> &Inputs) const;
1257 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1258 const LSRFixup &LF,
1259 const LSRUse &LU) const;
Dan Gohmand96eae82010-04-09 02:00:38 +00001260
Dan Gohman572645c2010-02-12 10:34:29 +00001261 Value *Expand(const LSRFixup &LF,
1262 const Formula &F,
Dan Gohman454d26d2010-02-22 04:11:59 +00001263 BasicBlock::iterator IP,
Dan Gohman572645c2010-02-12 10:34:29 +00001264 SCEVExpander &Rewriter,
Dan Gohman454d26d2010-02-22 04:11:59 +00001265 SmallVectorImpl<WeakVH> &DeadInsts) const;
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001266 void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1267 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001268 SCEVExpander &Rewriter,
1269 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00001270 Pass *P) const;
Dan Gohman572645c2010-02-12 10:34:29 +00001271 void Rewrite(const LSRFixup &LF,
1272 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00001273 SCEVExpander &Rewriter,
1274 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00001275 Pass *P) const;
1276 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1277 Pass *P);
1278
1279 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1280
1281 bool getChanged() const { return Changed; }
1282
1283 void print_factors_and_types(raw_ostream &OS) const;
1284 void print_fixups(raw_ostream &OS) const;
1285 void print_uses(raw_ostream &OS) const;
1286 void print(raw_ostream &OS) const;
1287 void dump() const;
1288};
1289
1290}
1291
1292/// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001293/// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00001294void LSRInstance::OptimizeShadowIV() {
1295 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1296 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1297 return;
1298
1299 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1300 UI != E; /* empty */) {
1301 IVUsers::const_iterator CandidateUI = UI;
1302 ++UI;
1303 Instruction *ShadowUse = CandidateUI->getUser();
1304 const Type *DestTy = NULL;
1305
1306 /* If shadow use is a int->float cast then insert a second IV
1307 to eliminate this cast.
1308
1309 for (unsigned i = 0; i < n; ++i)
1310 foo((double)i);
1311
1312 is transformed into
1313
1314 double d = 0.0;
1315 for (unsigned i = 0; i < n; ++i, ++d)
1316 foo(d);
1317 */
1318 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
1319 DestTy = UCast->getDestTy();
1320 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
1321 DestTy = SCast->getDestTy();
1322 if (!DestTy) continue;
1323
1324 if (TLI) {
1325 // If target does not support DestTy natively then do not apply
1326 // this transformation.
1327 EVT DVT = TLI->getValueType(DestTy);
1328 if (!TLI->isTypeLegal(DVT)) continue;
1329 }
1330
1331 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1332 if (!PH) continue;
1333 if (PH->getNumIncomingValues() != 2) continue;
1334
1335 const Type *SrcTy = PH->getType();
1336 int Mantissa = DestTy->getFPMantissaWidth();
1337 if (Mantissa == -1) continue;
1338 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1339 continue;
1340
1341 unsigned Entry, Latch;
1342 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1343 Entry = 0;
1344 Latch = 1;
Dan Gohman7979b722010-01-22 00:46:49 +00001345 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001346 Entry = 1;
1347 Latch = 0;
Dan Gohman7979b722010-01-22 00:46:49 +00001348 }
Dan Gohman7979b722010-01-22 00:46:49 +00001349
Dan Gohman572645c2010-02-12 10:34:29 +00001350 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1351 if (!Init) continue;
1352 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());
Dan Gohman7979b722010-01-22 00:46:49 +00001353
Dan Gohman572645c2010-02-12 10:34:29 +00001354 BinaryOperator *Incr =
1355 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1356 if (!Incr) continue;
1357 if (Incr->getOpcode() != Instruction::Add
1358 && Incr->getOpcode() != Instruction::Sub)
Dan Gohman7979b722010-01-22 00:46:49 +00001359 continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001360
Dan Gohman572645c2010-02-12 10:34:29 +00001361 /* Initialize new IV, double d = 0.0 in above example. */
1362 ConstantInt *C = NULL;
1363 if (Incr->getOperand(0) == PH)
1364 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1365 else if (Incr->getOperand(1) == PH)
1366 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001367 else
Dan Gohman7979b722010-01-22 00:46:49 +00001368 continue;
1369
Dan Gohman572645c2010-02-12 10:34:29 +00001370 if (!C) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001371
Dan Gohman572645c2010-02-12 10:34:29 +00001372 // Ignore negative constants, as the code below doesn't handle them
1373 // correctly. TODO: Remove this restriction.
1374 if (!C->getValue().isStrictlyPositive()) continue;
Dan Gohman7979b722010-01-22 00:46:49 +00001375
Dan Gohman572645c2010-02-12 10:34:29 +00001376 /* Add new PHINode. */
1377 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);
Dan Gohman7979b722010-01-22 00:46:49 +00001378
Dan Gohman572645c2010-02-12 10:34:29 +00001379 /* create new increment. '++d' in above example. */
1380 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1381 BinaryOperator *NewIncr =
1382 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1383 Instruction::FAdd : Instruction::FSub,
1384 NewPH, CFP, "IV.S.next.", Incr);
Dan Gohman7979b722010-01-22 00:46:49 +00001385
Dan Gohman572645c2010-02-12 10:34:29 +00001386 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1387 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
Dan Gohman7979b722010-01-22 00:46:49 +00001388
Dan Gohman572645c2010-02-12 10:34:29 +00001389 /* Remove cast operation */
1390 ShadowUse->replaceAllUsesWith(NewPH);
1391 ShadowUse->eraseFromParent();
1392 break;
Dan Gohman7979b722010-01-22 00:46:49 +00001393 }
1394}
1395
1396/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1397/// set the IV user and stride information and return true, otherwise return
1398/// false.
Dan Gohman572645c2010-02-12 10:34:29 +00001399bool LSRInstance::FindIVUserForCond(ICmpInst *Cond,
1400 IVStrideUse *&CondUse) {
1401 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1402 if (UI->getUser() == Cond) {
1403 // NOTE: we could handle setcc instructions with multiple uses here, but
1404 // InstCombine does it as well for simple uses, it's not clear that it
1405 // occurs enough in real life to handle.
1406 CondUse = UI;
1407 return true;
1408 }
Dan Gohman7979b722010-01-22 00:46:49 +00001409 return false;
Evan Chengcdf43b12007-10-25 09:11:16 +00001410}
1411
Dan Gohman7979b722010-01-22 00:46:49 +00001412/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1413/// a max computation.
1414///
1415/// This is a narrow solution to a specific, but acute, problem. For loops
1416/// like this:
1417///
1418/// i = 0;
1419/// do {
1420/// p[i] = 0.0;
1421/// } while (++i < n);
1422///
1423/// the trip count isn't just 'n', because 'n' might not be positive. And
1424/// unfortunately this can come up even for loops where the user didn't use
1425/// a C do-while loop. For example, seemingly well-behaved top-test loops
1426/// will commonly be lowered like this:
1427//
1428/// if (n > 0) {
1429/// i = 0;
1430/// do {
1431/// p[i] = 0.0;
1432/// } while (++i < n);
1433/// }
1434///
1435/// and then it's possible for subsequent optimization to obscure the if
1436/// test in such a way that indvars can't find it.
1437///
1438/// When indvars can't find the if test in loops like this, it creates a
1439/// max expression, which allows it to give the loop a canonical
1440/// induction variable:
1441///
1442/// i = 0;
1443/// max = n < 1 ? 1 : n;
1444/// do {
1445/// p[i] = 0.0;
1446/// } while (++i != max);
1447///
1448/// Canonical induction variables are necessary because the loop passes
1449/// are designed around them. The most obvious example of this is the
1450/// LoopInfo analysis, which doesn't remember trip count values. It
1451/// expects to be able to rediscover the trip count each time it is
Dan Gohman572645c2010-02-12 10:34:29 +00001452/// needed, and it does this using a simple analysis that only succeeds if
Dan Gohman7979b722010-01-22 00:46:49 +00001453/// the loop has a canonical induction variable.
1454///
1455/// However, when it comes time to generate code, the maximum operation
1456/// can be quite costly, especially if it's inside of an outer loop.
1457///
1458/// This function solves this problem by detecting this type of loop and
1459/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1460/// the instructions for the maximum computation.
1461///
Dan Gohman572645c2010-02-12 10:34:29 +00001462ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
Dan Gohman7979b722010-01-22 00:46:49 +00001463 // Check that the loop matches the pattern we're looking for.
1464 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1465 Cond->getPredicate() != CmpInst::ICMP_NE)
1466 return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001467
Dan Gohman7979b722010-01-22 00:46:49 +00001468 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1469 if (!Sel || !Sel->hasOneUse()) return Cond;
Dan Gohmana10756e2010-01-21 02:09:26 +00001470
Dan Gohman572645c2010-02-12 10:34:29 +00001471 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
Dan Gohman7979b722010-01-22 00:46:49 +00001472 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1473 return Cond;
Dan Gohmandeff6212010-05-03 22:09:21 +00001474 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
Dan Gohmana10756e2010-01-21 02:09:26 +00001475
Dan Gohman7979b722010-01-22 00:46:49 +00001476 // Add one to the backedge-taken count to get the trip count.
Dan Gohman572645c2010-02-12 10:34:29 +00001477 const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One);
Dan Gohman1d367982010-04-24 03:13:44 +00001478 if (IterationCount != SE.getSCEV(Sel)) return Cond;
Dan Gohman7979b722010-01-22 00:46:49 +00001479
Dan Gohman1d367982010-04-24 03:13:44 +00001480 // Check for a max calculation that matches the pattern. There's no check
1481 // for ICMP_ULE here because the comparison would be with zero, which
1482 // isn't interesting.
1483 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1484 const SCEVNAryExpr *Max = 0;
1485 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1486 Pred = ICmpInst::ICMP_SLE;
1487 Max = S;
1488 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1489 Pred = ICmpInst::ICMP_SLT;
1490 Max = S;
1491 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1492 Pred = ICmpInst::ICMP_ULT;
1493 Max = U;
1494 } else {
1495 // No match; bail.
Dan Gohman7979b722010-01-22 00:46:49 +00001496 return Cond;
Dan Gohman1d367982010-04-24 03:13:44 +00001497 }
Dan Gohman7979b722010-01-22 00:46:49 +00001498
1499 // To handle a max with more than two operands, this optimization would
1500 // require additional checking and setup.
1501 if (Max->getNumOperands() != 2)
1502 return Cond;
1503
1504 const SCEV *MaxLHS = Max->getOperand(0);
1505 const SCEV *MaxRHS = Max->getOperand(1);
Dan Gohman1d367982010-04-24 03:13:44 +00001506
1507 // ScalarEvolution canonicalizes constants to the left. For < and >, look
1508 // for a comparison with 1. For <= and >=, a comparison with zero.
1509 if (!MaxLHS ||
1510 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1511 return Cond;
1512
Dan Gohman7979b722010-01-22 00:46:49 +00001513 // Check the relevant induction variable for conformance to
1514 // the pattern.
Dan Gohman572645c2010-02-12 10:34:29 +00001515 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
Dan Gohman7979b722010-01-22 00:46:49 +00001516 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1517 if (!AR || !AR->isAffine() ||
1518 AR->getStart() != One ||
Dan Gohman572645c2010-02-12 10:34:29 +00001519 AR->getStepRecurrence(SE) != One)
Dan Gohman7979b722010-01-22 00:46:49 +00001520 return Cond;
1521
1522 assert(AR->getLoop() == L &&
1523 "Loop condition operand is an addrec in a different loop!");
1524
1525 // Check the right operand of the select, and remember it, as it will
1526 // be used in the new comparison instruction.
1527 Value *NewRHS = 0;
Dan Gohman1d367982010-04-24 03:13:44 +00001528 if (ICmpInst::isTrueWhenEqual(Pred)) {
1529 // Look for n+1, and grab n.
1530 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1531 if (isa<ConstantInt>(BO->getOperand(1)) &&
1532 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1533 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1534 NewRHS = BO->getOperand(0);
1535 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1536 if (isa<ConstantInt>(BO->getOperand(1)) &&
1537 cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1538 SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1539 NewRHS = BO->getOperand(0);
1540 if (!NewRHS)
1541 return Cond;
1542 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001543 NewRHS = Sel->getOperand(1);
Dan Gohman572645c2010-02-12 10:34:29 +00001544 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
Dan Gohman7979b722010-01-22 00:46:49 +00001545 NewRHS = Sel->getOperand(2);
Dan Gohman1d367982010-04-24 03:13:44 +00001546 else
1547 llvm_unreachable("Max doesn't match expected pattern!");
Dan Gohman7979b722010-01-22 00:46:49 +00001548
1549 // Determine the new comparison opcode. It may be signed or unsigned,
1550 // and the original comparison may be either equality or inequality.
Dan Gohman7979b722010-01-22 00:46:49 +00001551 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1552 Pred = CmpInst::getInversePredicate(Pred);
1553
1554 // Ok, everything looks ok to change the condition into an SLT or SGE and
1555 // delete the max calculation.
1556 ICmpInst *NewCond =
1557 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1558
1559 // Delete the max calculation instructions.
1560 Cond->replaceAllUsesWith(NewCond);
1561 CondUse->setUser(NewCond);
1562 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1563 Cond->eraseFromParent();
1564 Sel->eraseFromParent();
1565 if (Cmp->use_empty())
1566 Cmp->eraseFromParent();
1567 return NewCond;
Dan Gohmanad7321f2008-09-15 21:22:06 +00001568}
1569
Jim Grosbach56a1f802009-11-17 17:53:56 +00001570/// OptimizeLoopTermCond - Change loop terminating condition to use the
Evan Cheng586f69a2009-11-12 07:35:05 +00001571/// postinc iv when possible.
Dan Gohman572645c2010-02-12 10:34:29 +00001572bool
1573LSRInstance::OptimizeLoopTermCond() {
1574 SmallPtrSet<Instruction *, 4> PostIncs;
1575
Evan Cheng586f69a2009-11-12 07:35:05 +00001576 BasicBlock *LatchBlock = L->getLoopLatch();
Evan Cheng076e0852009-11-17 18:10:11 +00001577 SmallVector<BasicBlock*, 8> ExitingBlocks;
1578 L->getExitingBlocks(ExitingBlocks);
Jim Grosbach56a1f802009-11-17 17:53:56 +00001579
Evan Cheng076e0852009-11-17 18:10:11 +00001580 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1581 BasicBlock *ExitingBlock = ExitingBlocks[i];
Evan Cheng586f69a2009-11-12 07:35:05 +00001582
Dan Gohman572645c2010-02-12 10:34:29 +00001583 // Get the terminating condition for the loop if possible. If we
Evan Cheng076e0852009-11-17 18:10:11 +00001584 // can, we want to change it to use a post-incremented version of its
1585 // induction variable, to allow coalescing the live ranges for the IV into
1586 // one register value.
Evan Cheng586f69a2009-11-12 07:35:05 +00001587
Evan Cheng076e0852009-11-17 18:10:11 +00001588 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1589 if (!TermBr)
1590 continue;
1591 // FIXME: Overly conservative, termination condition could be an 'or' etc..
1592 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1593 continue;
Evan Cheng586f69a2009-11-12 07:35:05 +00001594
Evan Cheng076e0852009-11-17 18:10:11 +00001595 // Search IVUsesByStride to find Cond's IVUse if there is one.
1596 IVStrideUse *CondUse = 0;
Evan Cheng076e0852009-11-17 18:10:11 +00001597 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
Dan Gohman572645c2010-02-12 10:34:29 +00001598 if (!FindIVUserForCond(Cond, CondUse))
Evan Cheng076e0852009-11-17 18:10:11 +00001599 continue;
1600
Evan Cheng076e0852009-11-17 18:10:11 +00001601 // If the trip count is computed in terms of a max (due to ScalarEvolution
1602 // being unable to find a sufficient guard, for example), change the loop
1603 // comparison to use SLT or ULT instead of NE.
Dan Gohman572645c2010-02-12 10:34:29 +00001604 // One consequence of doing this now is that it disrupts the count-down
1605 // optimization. That's not always a bad thing though, because in such
1606 // cases it may still be worthwhile to avoid a max.
1607 Cond = OptimizeMax(Cond, CondUse);
Evan Cheng076e0852009-11-17 18:10:11 +00001608
Dan Gohman572645c2010-02-12 10:34:29 +00001609 // If this exiting block dominates the latch block, it may also use
1610 // the post-inc value if it won't be shared with other uses.
1611 // Check for dominance.
1612 if (!DT.dominates(ExitingBlock, LatchBlock))
Dan Gohman7979b722010-01-22 00:46:49 +00001613 continue;
Evan Cheng076e0852009-11-17 18:10:11 +00001614
Dan Gohman572645c2010-02-12 10:34:29 +00001615 // Conservatively avoid trying to use the post-inc value in non-latch
1616 // exits if there may be pre-inc users in intervening blocks.
Dan Gohman590bfe82010-02-14 03:21:49 +00001617 if (LatchBlock != ExitingBlock)
Dan Gohman572645c2010-02-12 10:34:29 +00001618 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1619 // Test if the use is reachable from the exiting block. This dominator
1620 // query is a conservative approximation of reachability.
1621 if (&*UI != CondUse &&
1622 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1623 // Conservatively assume there may be reuse if the quotient of their
1624 // strides could be a legal scale.
Dan Gohmanc0564542010-04-19 21:48:58 +00001625 const SCEV *A = IU.getStride(*CondUse, L);
1626 const SCEV *B = IU.getStride(*UI, L);
Dan Gohman448db1c2010-04-07 22:27:08 +00001627 if (!A || !B) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001628 if (SE.getTypeSizeInBits(A->getType()) !=
1629 SE.getTypeSizeInBits(B->getType())) {
1630 if (SE.getTypeSizeInBits(A->getType()) >
1631 SE.getTypeSizeInBits(B->getType()))
1632 B = SE.getSignExtendExpr(B, A->getType());
1633 else
1634 A = SE.getSignExtendExpr(A, B->getType());
1635 }
1636 if (const SCEVConstant *D =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001637 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001638 // Stride of one or negative one can have reuse with non-addresses.
1639 if (D->getValue()->isOne() ||
1640 D->getValue()->isAllOnesValue())
1641 goto decline_post_inc;
1642 // Avoid weird situations.
1643 if (D->getValue()->getValue().getMinSignedBits() >= 64 ||
1644 D->getValue()->getValue().isMinSignedValue())
1645 goto decline_post_inc;
Dan Gohman590bfe82010-02-14 03:21:49 +00001646 // Without TLI, assume that any stride might be valid, and so any
1647 // use might be shared.
1648 if (!TLI)
1649 goto decline_post_inc;
Dan Gohman572645c2010-02-12 10:34:29 +00001650 // Check for possible scaled-address reuse.
1651 const Type *AccessTy = getAccessType(UI->getUser());
1652 TargetLowering::AddrMode AM;
1653 AM.Scale = D->getValue()->getSExtValue();
Dan Gohman2763dfd2010-02-14 02:45:21 +00001654 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001655 goto decline_post_inc;
1656 AM.Scale = -AM.Scale;
Dan Gohman2763dfd2010-02-14 02:45:21 +00001657 if (TLI->isLegalAddressingMode(AM, AccessTy))
Dan Gohman572645c2010-02-12 10:34:29 +00001658 goto decline_post_inc;
1659 }
1660 }
1661
David Greene63c94632009-12-23 22:58:38 +00001662 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
Dan Gohman572645c2010-02-12 10:34:29 +00001663 << *Cond << '\n');
Evan Cheng076e0852009-11-17 18:10:11 +00001664
1665 // It's possible for the setcc instruction to be anywhere in the loop, and
1666 // possible for it to have multiple users. If it is not immediately before
1667 // the exiting block branch, move it.
Dan Gohman572645c2010-02-12 10:34:29 +00001668 if (&*++BasicBlock::iterator(Cond) != TermBr) {
1669 if (Cond->hasOneUse()) {
Evan Cheng076e0852009-11-17 18:10:11 +00001670 Cond->moveBefore(TermBr);
1671 } else {
Dan Gohman572645c2010-02-12 10:34:29 +00001672 // Clone the terminating condition and insert into the loopend.
1673 ICmpInst *OldCond = Cond;
Evan Cheng076e0852009-11-17 18:10:11 +00001674 Cond = cast<ICmpInst>(Cond->clone());
1675 Cond->setName(L->getHeader()->getName() + ".termcond");
1676 ExitingBlock->getInstList().insert(TermBr, Cond);
1677
1678 // Clone the IVUse, as the old use still exists!
Dan Gohmanc0564542010-04-19 21:48:58 +00001679 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
Dan Gohman572645c2010-02-12 10:34:29 +00001680 TermBr->replaceUsesOfWith(OldCond, Cond);
Evan Cheng076e0852009-11-17 18:10:11 +00001681 }
Evan Cheng586f69a2009-11-12 07:35:05 +00001682 }
1683
Evan Cheng076e0852009-11-17 18:10:11 +00001684 // If we get to here, we know that we can transform the setcc instruction to
1685 // use the post-incremented version of the IV, allowing us to coalesce the
1686 // live ranges for the IV correctly.
Dan Gohman448db1c2010-04-07 22:27:08 +00001687 CondUse->transformToPostInc(L);
Evan Cheng076e0852009-11-17 18:10:11 +00001688 Changed = true;
1689
Dan Gohman572645c2010-02-12 10:34:29 +00001690 PostIncs.insert(Cond);
1691 decline_post_inc:;
Dan Gohmana10756e2010-01-21 02:09:26 +00001692 }
Dan Gohman572645c2010-02-12 10:34:29 +00001693
1694 // Determine an insertion point for the loop induction variable increment. It
1695 // must dominate all the post-inc comparisons we just set up, and it must
1696 // dominate the loop latch edge.
1697 IVIncInsertPos = L->getLoopLatch()->getTerminator();
1698 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
1699 E = PostIncs.end(); I != E; ++I) {
1700 BasicBlock *BB =
1701 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
1702 (*I)->getParent());
1703 if (BB == (*I)->getParent())
1704 IVIncInsertPos = *I;
1705 else if (BB != IVIncInsertPos->getParent())
1706 IVIncInsertPos = BB->getTerminator();
1707 }
1708
1709 return Changed;
Dan Gohmana10756e2010-01-21 02:09:26 +00001710}
1711
Dan Gohman572645c2010-02-12 10:34:29 +00001712bool
1713LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
1714 LSRUse::KindType Kind, const Type *AccessTy) {
1715 int64_t NewMinOffset = LU.MinOffset;
1716 int64_t NewMaxOffset = LU.MaxOffset;
1717 const Type *NewAccessTy = AccessTy;
Dan Gohman7979b722010-01-22 00:46:49 +00001718
Dan Gohman572645c2010-02-12 10:34:29 +00001719 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
1720 // something conservative, however this can pessimize in the case that one of
1721 // the uses will have all its uses outside the loop, for example.
1722 if (LU.Kind != Kind)
Dan Gohman7979b722010-01-22 00:46:49 +00001723 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001724 // Conservatively assume HasBaseReg is true for now.
1725 if (NewOffset < LU.MinOffset) {
1726 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, /*HasBaseReg=*/true,
Dan Gohman454d26d2010-02-22 04:11:59 +00001727 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001728 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001729 NewMinOffset = NewOffset;
1730 } else if (NewOffset > LU.MaxOffset) {
1731 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, /*HasBaseReg=*/true,
Dan Gohman454d26d2010-02-22 04:11:59 +00001732 Kind, AccessTy, TLI))
Dan Gohman7979b722010-01-22 00:46:49 +00001733 return false;
Dan Gohman572645c2010-02-12 10:34:29 +00001734 NewMaxOffset = NewOffset;
Dan Gohmana10756e2010-01-21 02:09:26 +00001735 }
Dan Gohman572645c2010-02-12 10:34:29 +00001736 // Check for a mismatched access type, and fall back conservatively as needed.
1737 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
1738 NewAccessTy = Type::getVoidTy(AccessTy->getContext());
Dan Gohmana10756e2010-01-21 02:09:26 +00001739
Dan Gohman572645c2010-02-12 10:34:29 +00001740 // Update the use.
1741 LU.MinOffset = NewMinOffset;
1742 LU.MaxOffset = NewMaxOffset;
1743 LU.AccessTy = NewAccessTy;
1744 if (NewOffset != LU.Offsets.back())
1745 LU.Offsets.push_back(NewOffset);
Dan Gohman8b0ade32010-01-21 22:42:49 +00001746 return true;
1747}
1748
Dan Gohman572645c2010-02-12 10:34:29 +00001749/// getUse - Return an LSRUse index and an offset value for a fixup which
1750/// needs the given expression, with the given kind and optional access type.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001751/// Either reuse an existing use or create a new one, as needed.
Dan Gohman572645c2010-02-12 10:34:29 +00001752std::pair<size_t, int64_t>
1753LSRInstance::getUse(const SCEV *&Expr,
1754 LSRUse::KindType Kind, const Type *AccessTy) {
1755 const SCEV *Copy = Expr;
1756 int64_t Offset = ExtractImmediate(Expr, SE);
Evan Cheng586f69a2009-11-12 07:35:05 +00001757
Dan Gohman572645c2010-02-12 10:34:29 +00001758 // Basic uses can't accept any offset, for example.
Dan Gohman454d26d2010-02-22 04:11:59 +00001759 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
Dan Gohman572645c2010-02-12 10:34:29 +00001760 Expr = Copy;
1761 Offset = 0;
1762 }
1763
1764 std::pair<UseMapTy::iterator, bool> P =
1765 UseMap.insert(std::make_pair(Expr, 0));
1766 if (!P.second) {
1767 // A use already existed with this base.
1768 size_t LUIdx = P.first->second;
1769 LSRUse &LU = Uses[LUIdx];
1770 if (reconcileNewOffset(LU, Offset, Kind, AccessTy))
1771 // Reuse this use.
1772 return std::make_pair(LUIdx, Offset);
1773 }
1774
1775 // Create a new use.
1776 size_t LUIdx = Uses.size();
1777 P.first->second = LUIdx;
1778 Uses.push_back(LSRUse(Kind, AccessTy));
1779 LSRUse &LU = Uses[LUIdx];
1780
1781 // We don't need to track redundant offsets, but we don't need to go out
1782 // of our way here to avoid them.
1783 if (LU.Offsets.empty() || Offset != LU.Offsets.back())
1784 LU.Offsets.push_back(Offset);
1785
1786 LU.MinOffset = Offset;
1787 LU.MaxOffset = Offset;
1788 return std::make_pair(LUIdx, Offset);
1789}
1790
1791void LSRInstance::CollectInterestingTypesAndFactors() {
1792 SmallSetVector<const SCEV *, 4> Strides;
1793
Dan Gohman1b7bf182010-02-19 00:05:23 +00001794 // Collect interesting types and strides.
Dan Gohman448db1c2010-04-07 22:27:08 +00001795 SmallVector<const SCEV *, 4> Worklist;
Dan Gohman572645c2010-02-12 10:34:29 +00001796 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
Dan Gohmanc0564542010-04-19 21:48:58 +00001797 const SCEV *Expr = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001798
1799 // Collect interesting types.
Dan Gohman448db1c2010-04-07 22:27:08 +00001800 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
Dan Gohman572645c2010-02-12 10:34:29 +00001801
Dan Gohman448db1c2010-04-07 22:27:08 +00001802 // Add strides for mentioned loops.
1803 Worklist.push_back(Expr);
1804 do {
1805 const SCEV *S = Worklist.pop_back_val();
1806 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1807 Strides.insert(AR->getStepRecurrence(SE));
1808 Worklist.push_back(AR->getStart());
1809 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1810 Worklist.insert(Worklist.end(), Add->op_begin(), Add->op_end());
1811 }
1812 } while (!Worklist.empty());
Dan Gohman1b7bf182010-02-19 00:05:23 +00001813 }
1814
1815 // Compute interesting factors from the set of interesting strides.
1816 for (SmallSetVector<const SCEV *, 4>::const_iterator
1817 I = Strides.begin(), E = Strides.end(); I != E; ++I)
Dan Gohman572645c2010-02-12 10:34:29 +00001818 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
Dan Gohman1b7bf182010-02-19 00:05:23 +00001819 next(I); NewStrideIter != E; ++NewStrideIter) {
1820 const SCEV *OldStride = *I;
Dan Gohman572645c2010-02-12 10:34:29 +00001821 const SCEV *NewStride = *NewStrideIter;
Dan Gohman572645c2010-02-12 10:34:29 +00001822
1823 if (SE.getTypeSizeInBits(OldStride->getType()) !=
1824 SE.getTypeSizeInBits(NewStride->getType())) {
1825 if (SE.getTypeSizeInBits(OldStride->getType()) >
1826 SE.getTypeSizeInBits(NewStride->getType()))
1827 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
1828 else
1829 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
1830 }
1831 if (const SCEVConstant *Factor =
Dan Gohmanf09b7122010-02-19 19:35:48 +00001832 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
1833 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001834 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1835 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1836 } else if (const SCEVConstant *Factor =
Dan Gohman454d26d2010-02-22 04:11:59 +00001837 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
1838 NewStride,
Dan Gohmanf09b7122010-02-19 19:35:48 +00001839 SE, true))) {
Dan Gohman572645c2010-02-12 10:34:29 +00001840 if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
1841 Factors.insert(Factor->getValue()->getValue().getSExtValue());
1842 }
1843 }
Dan Gohman572645c2010-02-12 10:34:29 +00001844
1845 // If all uses use the same type, don't bother looking for truncation-based
1846 // reuse.
1847 if (Types.size() == 1)
1848 Types.clear();
1849
1850 DEBUG(print_factors_and_types(dbgs()));
1851}
1852
1853void LSRInstance::CollectFixupsAndInitialFormulae() {
1854 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
1855 // Record the uses.
1856 LSRFixup &LF = getNewFixup();
1857 LF.UserInst = UI->getUser();
1858 LF.OperandValToReplace = UI->getOperandValToReplace();
Dan Gohman448db1c2010-04-07 22:27:08 +00001859 LF.PostIncLoops = UI->getPostIncLoops();
Dan Gohman572645c2010-02-12 10:34:29 +00001860
1861 LSRUse::KindType Kind = LSRUse::Basic;
1862 const Type *AccessTy = 0;
1863 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
1864 Kind = LSRUse::Address;
1865 AccessTy = getAccessType(LF.UserInst);
1866 }
1867
Dan Gohmanc0564542010-04-19 21:48:58 +00001868 const SCEV *S = IU.getExpr(*UI);
Dan Gohman572645c2010-02-12 10:34:29 +00001869
1870 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
1871 // (N - i == 0), and this allows (N - i) to be the expression that we work
1872 // with rather than just N or i, so we can consider the register
1873 // requirements for both N and i at the same time. Limiting this code to
1874 // equality icmps is not a problem because all interesting loops use
1875 // equality icmps, thanks to IndVarSimplify.
1876 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
1877 if (CI->isEquality()) {
1878 // Swap the operands if needed to put the OperandValToReplace on the
1879 // left, for consistency.
1880 Value *NV = CI->getOperand(1);
1881 if (NV == LF.OperandValToReplace) {
1882 CI->setOperand(1, CI->getOperand(0));
1883 CI->setOperand(0, NV);
1884 }
1885
1886 // x == y --> x - y == 0
1887 const SCEV *N = SE.getSCEV(NV);
1888 if (N->isLoopInvariant(L)) {
1889 Kind = LSRUse::ICmpZero;
1890 S = SE.getMinusSCEV(N, S);
1891 }
1892
1893 // -1 and the negations of all interesting strides (except the negation
1894 // of -1) are now also interesting.
1895 for (size_t i = 0, e = Factors.size(); i != e; ++i)
1896 if (Factors[i] != -1)
1897 Factors.insert(-(uint64_t)Factors[i]);
1898 Factors.insert(-1);
1899 }
1900
1901 // Set up the initial formula for this use.
1902 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
1903 LF.LUIdx = P.first;
1904 LF.Offset = P.second;
1905 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00001906 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00001907
1908 // If this is the first use of this LSRUse, give it a formula.
1909 if (LU.Formulae.empty()) {
Dan Gohman454d26d2010-02-22 04:11:59 +00001910 InsertInitialFormula(S, LU, LF.LUIdx);
Dan Gohman572645c2010-02-12 10:34:29 +00001911 CountRegisters(LU.Formulae.back(), LF.LUIdx);
1912 }
1913 }
1914
1915 DEBUG(print_fixups(dbgs()));
1916}
1917
1918void
Dan Gohman454d26d2010-02-22 04:11:59 +00001919LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Dan Gohman572645c2010-02-12 10:34:29 +00001920 Formula F;
1921 F.InitialMatch(S, L, SE, DT);
1922 bool Inserted = InsertFormula(LU, LUIdx, F);
1923 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
1924}
1925
1926void
1927LSRInstance::InsertSupplementalFormula(const SCEV *S,
1928 LSRUse &LU, size_t LUIdx) {
1929 Formula F;
1930 F.BaseRegs.push_back(S);
1931 F.AM.HasBaseReg = true;
1932 bool Inserted = InsertFormula(LU, LUIdx, F);
1933 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
1934}
1935
1936/// CountRegisters - Note which registers are used by the given formula,
1937/// updating RegUses.
1938void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
1939 if (F.ScaledReg)
1940 RegUses.CountRegister(F.ScaledReg, LUIdx);
1941 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
1942 E = F.BaseRegs.end(); I != E; ++I)
1943 RegUses.CountRegister(*I, LUIdx);
1944}
1945
1946/// InsertFormula - If the given formula has not yet been inserted, add it to
1947/// the list, and return true. Return false otherwise.
1948bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
Dan Gohman454d26d2010-02-22 04:11:59 +00001949 if (!LU.InsertFormula(F))
Dan Gohman572645c2010-02-12 10:34:29 +00001950 return false;
1951
1952 CountRegisters(F, LUIdx);
1953 return true;
1954}
1955
1956/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
1957/// loop-invariant values which we're tracking. These other uses will pin these
1958/// values in registers, making them less profitable for elimination.
1959/// TODO: This currently misses non-constant addrec step registers.
1960/// TODO: Should this give more weight to users inside the loop?
1961void
1962LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
1963 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
1964 SmallPtrSet<const SCEV *, 8> Inserted;
1965
1966 while (!Worklist.empty()) {
1967 const SCEV *S = Worklist.pop_back_val();
1968
1969 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
1970 Worklist.insert(Worklist.end(), N->op_begin(), N->op_end());
1971 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1972 Worklist.push_back(C->getOperand());
1973 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
1974 Worklist.push_back(D->getLHS());
1975 Worklist.push_back(D->getRHS());
1976 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
1977 if (!Inserted.insert(U)) continue;
1978 const Value *V = U->getValue();
1979 if (const Instruction *Inst = dyn_cast<Instruction>(V))
1980 if (L->contains(Inst)) continue;
Gabor Greif60ad7812010-03-25 23:06:16 +00001981 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
Dan Gohman572645c2010-02-12 10:34:29 +00001982 UI != UE; ++UI) {
1983 const Instruction *UserInst = dyn_cast<Instruction>(*UI);
1984 // Ignore non-instructions.
1985 if (!UserInst)
Dan Gohman7979b722010-01-22 00:46:49 +00001986 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001987 // Ignore instructions in other functions (as can happen with
1988 // Constants).
1989 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
Dan Gohman7979b722010-01-22 00:46:49 +00001990 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00001991 // Ignore instructions not dominated by the loop.
1992 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
1993 UserInst->getParent() :
1994 cast<PHINode>(UserInst)->getIncomingBlock(
1995 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
1996 if (!DT.dominates(L->getHeader(), UseBB))
1997 continue;
1998 // Ignore uses which are part of other SCEV expressions, to avoid
1999 // analyzing them multiple times.
Dan Gohman4a2a6832010-04-09 19:12:34 +00002000 if (SE.isSCEVable(UserInst->getType())) {
2001 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2002 // If the user is a no-op, look through to its uses.
2003 if (!isa<SCEVUnknown>(UserS))
2004 continue;
2005 if (UserS == U) {
2006 Worklist.push_back(
2007 SE.getUnknown(const_cast<Instruction *>(UserInst)));
2008 continue;
2009 }
2010 }
Dan Gohman572645c2010-02-12 10:34:29 +00002011 // Ignore icmp instructions which are already being analyzed.
2012 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2013 unsigned OtherIdx = !UI.getOperandNo();
2014 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2015 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L))
2016 continue;
2017 }
2018
2019 LSRFixup &LF = getNewFixup();
2020 LF.UserInst = const_cast<Instruction *>(UserInst);
2021 LF.OperandValToReplace = UI.getUse();
2022 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
2023 LF.LUIdx = P.first;
2024 LF.Offset = P.second;
2025 LSRUse &LU = Uses[LF.LUIdx];
Dan Gohman448db1c2010-04-07 22:27:08 +00002026 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
Dan Gohman572645c2010-02-12 10:34:29 +00002027 InsertSupplementalFormula(U, LU, LF.LUIdx);
2028 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
2029 break;
2030 }
2031 }
2032 }
2033}
2034
2035/// CollectSubexprs - Split S into subexpressions which can be pulled out into
2036/// separate registers. If C is non-null, multiply each subexpression by C.
2037static void CollectSubexprs(const SCEV *S, const SCEVConstant *C,
2038 SmallVectorImpl<const SCEV *> &Ops,
2039 ScalarEvolution &SE) {
2040 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2041 // Break out add operands.
2042 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
2043 I != E; ++I)
2044 CollectSubexprs(*I, C, Ops, SE);
2045 return;
2046 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2047 // Split a non-zero base out of an addrec.
2048 if (!AR->getStart()->isZero()) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002049 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
Dan Gohman572645c2010-02-12 10:34:29 +00002050 AR->getStepRecurrence(SE),
2051 AR->getLoop()), C, Ops, SE);
Dan Gohman68d6da12010-02-12 19:35:25 +00002052 CollectSubexprs(AR->getStart(), C, Ops, SE);
Dan Gohman572645c2010-02-12 10:34:29 +00002053 return;
2054 }
2055 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2056 // Break (C * (a + b + c)) into C*a + C*b + C*c.
2057 if (Mul->getNumOperands() == 2)
2058 if (const SCEVConstant *Op0 =
2059 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2060 CollectSubexprs(Mul->getOperand(1),
2061 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0,
2062 Ops, SE);
2063 return;
2064 }
2065 }
2066
2067 // Otherwise use the value itself.
2068 Ops.push_back(C ? SE.getMulExpr(C, S) : S);
2069}
2070
2071/// GenerateReassociations - Split out subexpressions from adds and the bases of
2072/// addrecs.
2073void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
2074 Formula Base,
2075 unsigned Depth) {
2076 // Arbitrarily cap recursion to protect compile time.
2077 if (Depth >= 3) return;
2078
2079 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2080 const SCEV *BaseReg = Base.BaseRegs[i];
2081
2082 SmallVector<const SCEV *, 8> AddOps;
2083 CollectSubexprs(BaseReg, 0, AddOps, SE);
2084 if (AddOps.size() == 1) continue;
2085
2086 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
2087 JE = AddOps.end(); J != JE; ++J) {
2088 // Don't pull a constant into a register if the constant could be folded
2089 // into an immediate field.
2090 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
2091 Base.getNumRegs() > 1,
2092 LU.Kind, LU.AccessTy, TLI, SE))
2093 continue;
2094
2095 // Collect all operands except *J.
2096 SmallVector<const SCEV *, 8> InnerAddOps;
2097 for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(),
2098 KE = AddOps.end(); K != KE; ++K)
2099 if (K != J)
2100 InnerAddOps.push_back(*K);
2101
2102 // Don't leave just a constant behind in a register if the constant could
2103 // be folded into an immediate field.
2104 if (InnerAddOps.size() == 1 &&
2105 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
2106 Base.getNumRegs() > 1,
2107 LU.Kind, LU.AccessTy, TLI, SE))
2108 continue;
2109
Dan Gohmanfafb8902010-04-23 01:55:05 +00002110 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
2111 if (InnerSum->isZero())
2112 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002113 Formula F = Base;
Dan Gohmanfafb8902010-04-23 01:55:05 +00002114 F.BaseRegs[i] = InnerSum;
Dan Gohman572645c2010-02-12 10:34:29 +00002115 F.BaseRegs.push_back(*J);
2116 if (InsertFormula(LU, LUIdx, F))
2117 // If that formula hadn't been seen before, recurse to find more like
2118 // it.
2119 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
2120 }
2121 }
2122}
2123
2124/// GenerateCombinations - Generate a formula consisting of all of the
2125/// loop-dominating registers added into a single register.
2126void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Dan Gohman441a3892010-02-14 18:51:39 +00002127 Formula Base) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002128 // This method is only interesting on a plurality of registers.
Dan Gohman572645c2010-02-12 10:34:29 +00002129 if (Base.BaseRegs.size() <= 1) return;
2130
2131 Formula F = Base;
2132 F.BaseRegs.clear();
2133 SmallVector<const SCEV *, 4> Ops;
2134 for (SmallVectorImpl<const SCEV *>::const_iterator
2135 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
2136 const SCEV *BaseReg = *I;
2137 if (BaseReg->properlyDominates(L->getHeader(), &DT) &&
2138 !BaseReg->hasComputableLoopEvolution(L))
2139 Ops.push_back(BaseReg);
2140 else
2141 F.BaseRegs.push_back(BaseReg);
2142 }
2143 if (Ops.size() > 1) {
Dan Gohmance947362010-02-14 18:50:49 +00002144 const SCEV *Sum = SE.getAddExpr(Ops);
2145 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
2146 // opportunity to fold something. For now, just ignore such cases
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002147 // rather than proceed with zero in a register.
Dan Gohmance947362010-02-14 18:50:49 +00002148 if (!Sum->isZero()) {
2149 F.BaseRegs.push_back(Sum);
2150 (void)InsertFormula(LU, LUIdx, F);
2151 }
Dan Gohman572645c2010-02-12 10:34:29 +00002152 }
2153}
2154
2155/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
2156void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
2157 Formula Base) {
2158 // We can't add a symbolic offset if the address already contains one.
2159 if (Base.AM.BaseGV) return;
2160
2161 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2162 const SCEV *G = Base.BaseRegs[i];
2163 GlobalValue *GV = ExtractSymbol(G, SE);
2164 if (G->isZero() || !GV)
2165 continue;
2166 Formula F = Base;
2167 F.AM.BaseGV = GV;
2168 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2169 LU.Kind, LU.AccessTy, TLI))
2170 continue;
2171 F.BaseRegs[i] = G;
2172 (void)InsertFormula(LU, LUIdx, F);
2173 }
2174}
2175
2176/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
2177void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
2178 Formula Base) {
2179 // TODO: For now, just add the min and max offset, because it usually isn't
2180 // worthwhile looking at everything inbetween.
2181 SmallVector<int64_t, 4> Worklist;
2182 Worklist.push_back(LU.MinOffset);
2183 if (LU.MaxOffset != LU.MinOffset)
2184 Worklist.push_back(LU.MaxOffset);
2185
2186 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
2187 const SCEV *G = Base.BaseRegs[i];
2188
2189 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
2190 E = Worklist.end(); I != E; ++I) {
2191 Formula F = Base;
2192 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
2193 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
2194 LU.Kind, LU.AccessTy, TLI)) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002195 F.BaseRegs[i] = SE.getAddExpr(G, SE.getConstant(G->getType(), *I));
Dan Gohman572645c2010-02-12 10:34:29 +00002196
2197 (void)InsertFormula(LU, LUIdx, F);
2198 }
2199 }
2200
2201 int64_t Imm = ExtractImmediate(G, SE);
2202 if (G->isZero() || Imm == 0)
2203 continue;
2204 Formula F = Base;
2205 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
2206 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
2207 LU.Kind, LU.AccessTy, TLI))
2208 continue;
2209 F.BaseRegs[i] = G;
2210 (void)InsertFormula(LU, LUIdx, F);
2211 }
2212}
2213
2214/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
2215/// the comparison. For example, x == y -> x*c == y*c.
2216void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
2217 Formula Base) {
2218 if (LU.Kind != LSRUse::ICmpZero) return;
2219
2220 // Determine the integer type for the base formula.
2221 const Type *IntTy = Base.getType();
2222 if (!IntTy) return;
2223 if (SE.getTypeSizeInBits(IntTy) > 64) return;
2224
2225 // Don't do this if there is more than one offset.
2226 if (LU.MinOffset != LU.MaxOffset) return;
2227
2228 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
2229
2230 // Check each interesting stride.
2231 for (SmallSetVector<int64_t, 8>::const_iterator
2232 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2233 int64_t Factor = *I;
2234 Formula F = Base;
2235
2236 // Check that the multiplication doesn't overflow.
Dan Gohman968cb932010-02-17 00:41:53 +00002237 if (F.AM.BaseOffs == INT64_MIN && Factor == -1)
2238 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002239 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002240 if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs)
Dan Gohman572645c2010-02-12 10:34:29 +00002241 continue;
2242
2243 // Check that multiplying with the use offset doesn't overflow.
2244 int64_t Offset = LU.MinOffset;
Dan Gohman968cb932010-02-17 00:41:53 +00002245 if (Offset == INT64_MIN && Factor == -1)
2246 continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002247 Offset = (uint64_t)Offset * Factor;
Dan Gohman378c0b32010-02-17 00:42:19 +00002248 if (Offset / Factor != LU.MinOffset)
Dan Gohman572645c2010-02-12 10:34:29 +00002249 continue;
2250
2251 // Check that this scale is legal.
2252 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
2253 continue;
2254
2255 // Compensate for the use having MinOffset built into it.
2256 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
2257
Dan Gohmandeff6212010-05-03 22:09:21 +00002258 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002259
2260 // Check that multiplying with each base register doesn't overflow.
2261 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
2262 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002263 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
Dan Gohman572645c2010-02-12 10:34:29 +00002264 goto next;
2265 }
2266
2267 // Check that multiplying with the scaled register doesn't overflow.
2268 if (F.ScaledReg) {
2269 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
Dan Gohmanf09b7122010-02-19 19:35:48 +00002270 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
Dan Gohman572645c2010-02-12 10:34:29 +00002271 continue;
2272 }
2273
2274 // If we make it here and it's legal, add it.
2275 (void)InsertFormula(LU, LUIdx, F);
2276 next:;
2277 }
2278}
2279
2280/// GenerateScales - Generate stride factor reuse formulae by making use of
2281/// scaled-offset address modes, for example.
2282void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx,
2283 Formula Base) {
2284 // Determine the integer type for the base formula.
2285 const Type *IntTy = Base.getType();
2286 if (!IntTy) return;
2287
2288 // If this Formula already has a scaled register, we can't add another one.
2289 if (Base.AM.Scale != 0) return;
2290
2291 // Check each interesting stride.
2292 for (SmallSetVector<int64_t, 8>::const_iterator
2293 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
2294 int64_t Factor = *I;
2295
2296 Base.AM.Scale = Factor;
2297 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
2298 // Check whether this scale is going to be legal.
2299 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2300 LU.Kind, LU.AccessTy, TLI)) {
2301 // As a special-case, handle special out-of-loop Basic users specially.
2302 // TODO: Reconsider this special case.
2303 if (LU.Kind == LSRUse::Basic &&
2304 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
2305 LSRUse::Special, LU.AccessTy, TLI) &&
2306 LU.AllFixupsOutsideLoop)
2307 LU.Kind = LSRUse::Special;
2308 else
2309 continue;
2310 }
2311 // For an ICmpZero, negating a solitary base register won't lead to
2312 // new solutions.
2313 if (LU.Kind == LSRUse::ICmpZero &&
2314 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
2315 continue;
2316 // For each addrec base reg, apply the scale, if possible.
2317 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
2318 if (const SCEVAddRecExpr *AR =
2319 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
Dan Gohmandeff6212010-05-03 22:09:21 +00002320 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
Dan Gohman572645c2010-02-12 10:34:29 +00002321 if (FactorS->isZero())
2322 continue;
2323 // Divide out the factor, ignoring high bits, since we'll be
2324 // scaling the value back up in the end.
Dan Gohmanf09b7122010-02-19 19:35:48 +00002325 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
Dan Gohman572645c2010-02-12 10:34:29 +00002326 // TODO: This could be optimized to avoid all the copying.
2327 Formula F = Base;
2328 F.ScaledReg = Quotient;
2329 std::swap(F.BaseRegs[i], F.BaseRegs.back());
2330 F.BaseRegs.pop_back();
2331 (void)InsertFormula(LU, LUIdx, F);
2332 }
2333 }
2334 }
2335}
2336
2337/// GenerateTruncates - Generate reuse formulae from different IV types.
2338void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx,
2339 Formula Base) {
2340 // This requires TargetLowering to tell us which truncates are free.
2341 if (!TLI) return;
2342
2343 // Don't bother truncating symbolic values.
2344 if (Base.AM.BaseGV) return;
2345
2346 // Determine the integer type for the base formula.
2347 const Type *DstTy = Base.getType();
2348 if (!DstTy) return;
2349 DstTy = SE.getEffectiveSCEVType(DstTy);
2350
2351 for (SmallSetVector<const Type *, 4>::const_iterator
2352 I = Types.begin(), E = Types.end(); I != E; ++I) {
2353 const Type *SrcTy = *I;
2354 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
2355 Formula F = Base;
2356
2357 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
2358 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
2359 JE = F.BaseRegs.end(); J != JE; ++J)
2360 *J = SE.getAnyExtendExpr(*J, SrcTy);
2361
2362 // TODO: This assumes we've done basic processing on all uses and
2363 // have an idea what the register usage is.
2364 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
2365 continue;
2366
2367 (void)InsertFormula(LU, LUIdx, F);
2368 }
2369 }
2370}
2371
2372namespace {
2373
Dan Gohman6020d852010-02-14 18:51:20 +00002374/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
Dan Gohman572645c2010-02-12 10:34:29 +00002375/// defer modifications so that the search phase doesn't have to worry about
2376/// the data structures moving underneath it.
2377struct WorkItem {
2378 size_t LUIdx;
2379 int64_t Imm;
2380 const SCEV *OrigReg;
2381
2382 WorkItem(size_t LI, int64_t I, const SCEV *R)
2383 : LUIdx(LI), Imm(I), OrigReg(R) {}
2384
2385 void print(raw_ostream &OS) const;
2386 void dump() const;
2387};
2388
2389}
2390
2391void WorkItem::print(raw_ostream &OS) const {
2392 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
2393 << " , add offset " << Imm;
2394}
2395
2396void WorkItem::dump() const {
2397 print(errs()); errs() << '\n';
2398}
2399
2400/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
2401/// distance apart and try to form reuse opportunities between them.
2402void LSRInstance::GenerateCrossUseConstantOffsets() {
2403 // Group the registers by their value without any added constant offset.
2404 typedef std::map<int64_t, const SCEV *> ImmMapTy;
2405 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
2406 RegMapTy Map;
2407 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
2408 SmallVector<const SCEV *, 8> Sequence;
2409 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2410 I != E; ++I) {
2411 const SCEV *Reg = *I;
2412 int64_t Imm = ExtractImmediate(Reg, SE);
2413 std::pair<RegMapTy::iterator, bool> Pair =
2414 Map.insert(std::make_pair(Reg, ImmMapTy()));
2415 if (Pair.second)
2416 Sequence.push_back(Reg);
2417 Pair.first->second.insert(std::make_pair(Imm, *I));
2418 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
2419 }
2420
2421 // Now examine each set of registers with the same base value. Build up
2422 // a list of work to do and do the work in a separate step so that we're
2423 // not adding formulae and register counts while we're searching.
2424 SmallVector<WorkItem, 32> WorkItems;
2425 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
2426 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
2427 E = Sequence.end(); I != E; ++I) {
2428 const SCEV *Reg = *I;
2429 const ImmMapTy &Imms = Map.find(Reg)->second;
2430
Dan Gohmancd045c02010-02-12 19:20:37 +00002431 // It's not worthwhile looking for reuse if there's only one offset.
2432 if (Imms.size() == 1)
2433 continue;
2434
Dan Gohman572645c2010-02-12 10:34:29 +00002435 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
2436 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2437 J != JE; ++J)
2438 dbgs() << ' ' << J->first;
2439 dbgs() << '\n');
2440
2441 // Examine each offset.
2442 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
2443 J != JE; ++J) {
2444 const SCEV *OrigReg = J->second;
2445
2446 int64_t JImm = J->first;
2447 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
2448
2449 if (!isa<SCEVConstant>(OrigReg) &&
2450 UsedByIndicesMap[Reg].count() == 1) {
2451 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
2452 continue;
2453 }
2454
2455 // Conservatively examine offsets between this orig reg a few selected
2456 // other orig regs.
2457 ImmMapTy::const_iterator OtherImms[] = {
2458 Imms.begin(), prior(Imms.end()),
2459 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
2460 };
2461 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
2462 ImmMapTy::const_iterator M = OtherImms[i];
Dan Gohmancd045c02010-02-12 19:20:37 +00002463 if (M == J || M == JE) continue;
Dan Gohman572645c2010-02-12 10:34:29 +00002464
2465 // Compute the difference between the two.
2466 int64_t Imm = (uint64_t)JImm - M->first;
2467 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
2468 LUIdx = UsedByIndices.find_next(LUIdx))
2469 // Make a memo of this use, offset, and register tuple.
2470 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
2471 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
Evan Cheng586f69a2009-11-12 07:35:05 +00002472 }
2473 }
2474 }
2475
Dan Gohman572645c2010-02-12 10:34:29 +00002476 Map.clear();
2477 Sequence.clear();
2478 UsedByIndicesMap.clear();
2479 UniqueItems.clear();
2480
2481 // Now iterate through the worklist and add new formulae.
2482 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
2483 E = WorkItems.end(); I != E; ++I) {
2484 const WorkItem &WI = *I;
2485 size_t LUIdx = WI.LUIdx;
2486 LSRUse &LU = Uses[LUIdx];
2487 int64_t Imm = WI.Imm;
2488 const SCEV *OrigReg = WI.OrigReg;
2489
2490 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
2491 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
2492 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
2493
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002494 // TODO: Use a more targeted data structure.
Dan Gohman572645c2010-02-12 10:34:29 +00002495 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
2496 Formula F = LU.Formulae[L];
2497 // Use the immediate in the scaled register.
2498 if (F.ScaledReg == OrigReg) {
2499 int64_t Offs = (uint64_t)F.AM.BaseOffs +
2500 Imm * (uint64_t)F.AM.Scale;
2501 // Don't create 50 + reg(-50).
2502 if (F.referencesReg(SE.getSCEV(
2503 ConstantInt::get(IntTy, -(uint64_t)Offs))))
2504 continue;
2505 Formula NewF = F;
2506 NewF.AM.BaseOffs = Offs;
2507 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2508 LU.Kind, LU.AccessTy, TLI))
2509 continue;
2510 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
2511
2512 // If the new scale is a constant in a register, and adding the constant
2513 // value to the immediate would produce a value closer to zero than the
2514 // immediate itself, then the formula isn't worthwhile.
2515 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
2516 if (C->getValue()->getValue().isNegative() !=
2517 (NewF.AM.BaseOffs < 0) &&
2518 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
Dan Gohmane0567812010-04-08 23:03:40 +00002519 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002520 continue;
2521
2522 // OK, looks good.
2523 (void)InsertFormula(LU, LUIdx, NewF);
2524 } else {
2525 // Use the immediate in a base register.
2526 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
2527 const SCEV *BaseReg = F.BaseRegs[N];
2528 if (BaseReg != OrigReg)
2529 continue;
2530 Formula NewF = F;
2531 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
2532 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
2533 LU.Kind, LU.AccessTy, TLI))
2534 continue;
2535 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
2536
2537 // If the new formula has a constant in a register, and adding the
2538 // constant value to the immediate would produce a value closer to
2539 // zero than the immediate itself, then the formula isn't worthwhile.
2540 for (SmallVectorImpl<const SCEV *>::const_iterator
2541 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
2542 J != JE; ++J)
2543 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
2544 if (C->getValue()->getValue().isNegative() !=
2545 (NewF.AM.BaseOffs < 0) &&
2546 C->getValue()->getValue().abs()
Dan Gohmane0567812010-04-08 23:03:40 +00002547 .ule(abs64(NewF.AM.BaseOffs)))
Dan Gohman572645c2010-02-12 10:34:29 +00002548 goto skip_formula;
2549
2550 // Ok, looks good.
2551 (void)InsertFormula(LU, LUIdx, NewF);
2552 break;
2553 skip_formula:;
2554 }
2555 }
2556 }
2557 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00002558}
2559
Dan Gohman572645c2010-02-12 10:34:29 +00002560/// GenerateAllReuseFormulae - Generate formulae for each use.
2561void
2562LSRInstance::GenerateAllReuseFormulae() {
Dan Gohmanc2385a02010-02-16 01:42:53 +00002563 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
Dan Gohman572645c2010-02-12 10:34:29 +00002564 // queries are more precise.
2565 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2566 LSRUse &LU = Uses[LUIdx];
2567 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2568 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
2569 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2570 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
2571 }
2572 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2573 LSRUse &LU = Uses[LUIdx];
2574 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2575 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
2576 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2577 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
2578 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2579 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
2580 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2581 GenerateScales(LU, LUIdx, LU.Formulae[i]);
Dan Gohmanc2385a02010-02-16 01:42:53 +00002582 }
2583 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2584 LSRUse &LU = Uses[LUIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002585 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
2586 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
2587 }
2588
2589 GenerateCrossUseConstantOffsets();
2590}
2591
2592/// If their are multiple formulae with the same set of registers used
2593/// by other uses, pick the best one and delete the others.
2594void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
2595#ifndef NDEBUG
2596 bool Changed = false;
2597#endif
2598
2599 // Collect the best formula for each unique set of shared registers. This
2600 // is reset for each use.
2601 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
2602 BestFormulaeTy;
2603 BestFormulaeTy BestFormulae;
2604
2605 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2606 LSRUse &LU = Uses[LUIdx];
2607 FormulaSorter Sorter(L, LU, SE, DT);
Dan Gohman6458ff92010-05-18 22:37:37 +00002608 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << "\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002609
Dan Gohman572645c2010-02-12 10:34:29 +00002610 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2611 FIdx != NumForms; ++FIdx) {
2612 Formula &F = LU.Formulae[FIdx];
2613
2614 SmallVector<const SCEV *, 2> Key;
2615 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
2616 JE = F.BaseRegs.end(); J != JE; ++J) {
2617 const SCEV *Reg = *J;
2618 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
2619 Key.push_back(Reg);
2620 }
2621 if (F.ScaledReg &&
2622 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
2623 Key.push_back(F.ScaledReg);
2624 // Unstable sort by host order ok, because this is only used for
2625 // uniquifying.
2626 std::sort(Key.begin(), Key.end());
2627
2628 std::pair<BestFormulaeTy::const_iterator, bool> P =
2629 BestFormulae.insert(std::make_pair(Key, FIdx));
2630 if (!P.second) {
2631 Formula &Best = LU.Formulae[P.first->second];
2632 if (Sorter.operator()(F, Best))
2633 std::swap(F, Best);
Dan Gohman6458ff92010-05-18 22:37:37 +00002634 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002635 dbgs() << "\n"
Dan Gohman6458ff92010-05-18 22:37:37 +00002636 " in favor of formula "; Best.print(dbgs());
Dan Gohman572645c2010-02-12 10:34:29 +00002637 dbgs() << '\n');
2638#ifndef NDEBUG
2639 Changed = true;
2640#endif
Dan Gohmand69d6282010-05-18 22:39:15 +00002641 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002642 --FIdx;
2643 --NumForms;
2644 continue;
2645 }
Dan Gohman59dc6032010-05-07 23:36:59 +00002646 }
2647
2648 // Now that we've filtered out some formulae, recompute the Regs set.
2649 LU.Regs.clear();
2650 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
2651 FIdx != NumForms; ++FIdx) {
2652 Formula &F = LU.Formulae[FIdx];
Dan Gohman572645c2010-02-12 10:34:29 +00002653 if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2654 LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2655 }
Dan Gohman59dc6032010-05-07 23:36:59 +00002656
2657 // Reset this to prepare for the next use.
Dan Gohman572645c2010-02-12 10:34:29 +00002658 BestFormulae.clear();
2659 }
2660
2661 DEBUG(if (Changed) {
Dan Gohman9214b822010-02-13 02:06:02 +00002662 dbgs() << "\n"
2663 "After filtering out undesirable candidates:\n";
Dan Gohman572645c2010-02-12 10:34:29 +00002664 print_uses(dbgs());
2665 });
2666}
2667
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002668/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
Dan Gohman572645c2010-02-12 10:34:29 +00002669/// formulae to choose from, use some rough heuristics to prune down the number
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002670/// of formulae. This keeps the main solver from taking an extraordinary amount
Dan Gohman572645c2010-02-12 10:34:29 +00002671/// of time in some worst-case scenarios.
2672void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
2673 // This is a rough guess that seems to work fairly well.
2674 const size_t Limit = UINT16_MAX;
2675
2676 SmallPtrSet<const SCEV *, 4> Taken;
2677 for (;;) {
2678 // Estimate the worst-case number of solutions we might consider. We almost
2679 // never consider this many solutions because we prune the search space,
2680 // but the pruning isn't always sufficient.
2681 uint32_t Power = 1;
2682 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
2683 E = Uses.end(); I != E; ++I) {
2684 size_t FSize = I->Formulae.size();
2685 if (FSize >= Limit) {
2686 Power = Limit;
2687 break;
2688 }
2689 Power *= FSize;
2690 if (Power >= Limit)
2691 break;
2692 }
2693 if (Power < Limit)
2694 break;
2695
2696 // Ok, we have too many of formulae on our hands to conveniently handle.
2697 // Use a rough heuristic to thin out the list.
Dan Gohman0da751b2010-05-18 22:41:32 +00002698 DEBUG(dbgs() << "The search space is too complex.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002699
2700 // Pick the register which is used by the most LSRUses, which is likely
2701 // to be a good reuse register candidate.
2702 const SCEV *Best = 0;
2703 unsigned BestNum = 0;
2704 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
2705 I != E; ++I) {
2706 const SCEV *Reg = *I;
2707 if (Taken.count(Reg))
2708 continue;
2709 if (!Best)
2710 Best = Reg;
2711 else {
2712 unsigned Count = RegUses.getUsedByIndices(Reg).count();
2713 if (Count > BestNum) {
2714 Best = Reg;
2715 BestNum = Count;
2716 }
2717 }
2718 }
2719
2720 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002721 << " will yield profitable reuse.\n");
Dan Gohman572645c2010-02-12 10:34:29 +00002722 Taken.insert(Best);
2723
2724 // In any use with formulae which references this register, delete formulae
2725 // which don't reference it.
2726 for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(),
2727 E = Uses.end(); I != E; ++I) {
2728 LSRUse &LU = *I;
2729 if (!LU.Regs.count(Best)) continue;
2730
2731 // Clear out the set of used regs; it will be recomputed.
2732 LU.Regs.clear();
2733
2734 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
2735 Formula &F = LU.Formulae[i];
2736 if (!F.referencesReg(Best)) {
2737 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
Dan Gohmand69d6282010-05-18 22:39:15 +00002738 LU.DeleteFormula(F);
Dan Gohman572645c2010-02-12 10:34:29 +00002739 --e;
2740 --i;
Dan Gohman59dc6032010-05-07 23:36:59 +00002741 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
Dan Gohman572645c2010-02-12 10:34:29 +00002742 continue;
2743 }
2744
2745 if (F.ScaledReg) LU.Regs.insert(F.ScaledReg);
2746 LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
2747 }
2748 }
2749
2750 DEBUG(dbgs() << "After pre-selection:\n";
2751 print_uses(dbgs()));
2752 }
2753}
2754
2755/// SolveRecurse - This is the recursive solver.
2756void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2757 Cost &SolutionCost,
2758 SmallVectorImpl<const Formula *> &Workspace,
2759 const Cost &CurCost,
2760 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2761 DenseSet<const SCEV *> &VisitedRegs) const {
2762 // Some ideas:
2763 // - prune more:
2764 // - use more aggressive filtering
2765 // - sort the formula so that the most profitable solutions are found first
2766 // - sort the uses too
2767 // - search faster:
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002768 // - don't compute a cost, and then compare. compare while computing a cost
Dan Gohman572645c2010-02-12 10:34:29 +00002769 // and bail early.
2770 // - track register sets with SmallBitVector
2771
2772 const LSRUse &LU = Uses[Workspace.size()];
2773
2774 // If this use references any register that's already a part of the
2775 // in-progress solution, consider it a requirement that a formula must
2776 // reference that register in order to be considered. This prunes out
2777 // unprofitable searching.
2778 SmallSetVector<const SCEV *, 4> ReqRegs;
2779 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
2780 E = CurRegs.end(); I != E; ++I)
Dan Gohman9214b822010-02-13 02:06:02 +00002781 if (LU.Regs.count(*I))
Dan Gohman572645c2010-02-12 10:34:29 +00002782 ReqRegs.insert(*I);
Dan Gohman572645c2010-02-12 10:34:29 +00002783
Dan Gohman9214b822010-02-13 02:06:02 +00002784 bool AnySatisfiedReqRegs = false;
Dan Gohman572645c2010-02-12 10:34:29 +00002785 SmallPtrSet<const SCEV *, 16> NewRegs;
2786 Cost NewCost;
Dan Gohman9214b822010-02-13 02:06:02 +00002787retry:
Dan Gohman572645c2010-02-12 10:34:29 +00002788 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2789 E = LU.Formulae.end(); I != E; ++I) {
2790 const Formula &F = *I;
2791
2792 // Ignore formulae which do not use any of the required registers.
2793 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
2794 JE = ReqRegs.end(); J != JE; ++J) {
2795 const SCEV *Reg = *J;
2796 if ((!F.ScaledReg || F.ScaledReg != Reg) &&
2797 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
2798 F.BaseRegs.end())
2799 goto skip;
2800 }
Dan Gohman9214b822010-02-13 02:06:02 +00002801 AnySatisfiedReqRegs = true;
Dan Gohman572645c2010-02-12 10:34:29 +00002802
2803 // Evaluate the cost of the current formula. If it's already worse than
2804 // the current best, prune the search at that point.
2805 NewCost = CurCost;
2806 NewRegs = CurRegs;
2807 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
2808 if (NewCost < SolutionCost) {
2809 Workspace.push_back(&F);
2810 if (Workspace.size() != Uses.size()) {
2811 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
2812 NewRegs, VisitedRegs);
2813 if (F.getNumRegs() == 1 && Workspace.size() == 1)
2814 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
2815 } else {
2816 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
2817 dbgs() << ". Regs:";
2818 for (SmallPtrSet<const SCEV *, 16>::const_iterator
2819 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
2820 dbgs() << ' ' << **I;
2821 dbgs() << '\n');
2822
2823 SolutionCost = NewCost;
2824 Solution = Workspace;
2825 }
2826 Workspace.pop_back();
2827 }
2828 skip:;
2829 }
Dan Gohman9214b822010-02-13 02:06:02 +00002830
2831 // If none of the formulae had all of the required registers, relax the
2832 // constraint so that we don't exclude all formulae.
2833 if (!AnySatisfiedReqRegs) {
Dan Gohman59dc6032010-05-07 23:36:59 +00002834 assert(!ReqRegs.empty() && "Solver failed even without required registers");
Dan Gohman9214b822010-02-13 02:06:02 +00002835 ReqRegs.clear();
2836 goto retry;
2837 }
Dan Gohman572645c2010-02-12 10:34:29 +00002838}
2839
2840void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
2841 SmallVector<const Formula *, 8> Workspace;
2842 Cost SolutionCost;
2843 SolutionCost.Loose();
2844 Cost CurCost;
2845 SmallPtrSet<const SCEV *, 16> CurRegs;
2846 DenseSet<const SCEV *> VisitedRegs;
2847 Workspace.reserve(Uses.size());
2848
2849 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
2850 CurRegs, VisitedRegs);
2851
2852 // Ok, we've now made all our decisions.
2853 DEBUG(dbgs() << "\n"
2854 "The chosen solution requires "; SolutionCost.print(dbgs());
2855 dbgs() << ":\n";
2856 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
2857 dbgs() << " ";
2858 Uses[i].print(dbgs());
2859 dbgs() << "\n"
2860 " ";
2861 Solution[i]->print(dbgs());
2862 dbgs() << '\n';
2863 });
2864}
2865
2866/// getImmediateDominator - A handy utility for the specific DominatorTree
2867/// query that we need here.
2868///
2869static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) {
2870 DomTreeNode *Node = DT.getNode(BB);
2871 if (!Node) return 0;
2872 Node = Node->getIDom();
2873 if (!Node) return 0;
2874 return Node->getBlock();
2875}
2876
Dan Gohmane5f76872010-04-09 22:07:05 +00002877/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
2878/// the dominator tree far as we can go while still being dominated by the
2879/// input positions. This helps canonicalize the insert position, which
2880/// encourages sharing.
2881BasicBlock::iterator
2882LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
2883 const SmallVectorImpl<Instruction *> &Inputs)
2884 const {
2885 for (;;) {
2886 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
2887 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
2888
2889 BasicBlock *IDom;
2890 for (BasicBlock *Rung = IP->getParent(); ; Rung = IDom) {
2891 IDom = getImmediateDominator(Rung, DT);
2892 if (!IDom) return IP;
2893
2894 // Don't climb into a loop though.
2895 const Loop *IDomLoop = LI.getLoopFor(IDom);
2896 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
2897 if (IDomDepth <= IPLoopDepth &&
2898 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
2899 break;
2900 }
2901
2902 bool AllDominate = true;
2903 Instruction *BetterPos = 0;
2904 Instruction *Tentative = IDom->getTerminator();
2905 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
2906 E = Inputs.end(); I != E; ++I) {
2907 Instruction *Inst = *I;
2908 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
2909 AllDominate = false;
2910 break;
2911 }
2912 // Attempt to find an insert position in the middle of the block,
2913 // instead of at the end, so that it can be used for other expansions.
2914 if (IDom == Inst->getParent() &&
2915 (!BetterPos || DT.dominates(BetterPos, Inst)))
Douglas Gregor7d9663c2010-05-11 06:17:44 +00002916 BetterPos = llvm::next(BasicBlock::iterator(Inst));
Dan Gohmane5f76872010-04-09 22:07:05 +00002917 }
2918 if (!AllDominate)
2919 break;
2920 if (BetterPos)
2921 IP = BetterPos;
2922 else
2923 IP = Tentative;
2924 }
2925
2926 return IP;
2927}
2928
2929/// AdjustInsertPositionForExpand - Determine an input position which will be
Dan Gohmand96eae82010-04-09 02:00:38 +00002930/// dominated by the operands and which will dominate the result.
2931BasicBlock::iterator
Dan Gohmane5f76872010-04-09 22:07:05 +00002932LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2933 const LSRFixup &LF,
2934 const LSRUse &LU) const {
Dan Gohmand96eae82010-04-09 02:00:38 +00002935 // Collect some instructions which must be dominated by the
Dan Gohman448db1c2010-04-07 22:27:08 +00002936 // expanding replacement. These must be dominated by any operands that
Dan Gohman572645c2010-02-12 10:34:29 +00002937 // will be required in the expansion.
2938 SmallVector<Instruction *, 4> Inputs;
2939 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
2940 Inputs.push_back(I);
2941 if (LU.Kind == LSRUse::ICmpZero)
2942 if (Instruction *I =
2943 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
2944 Inputs.push_back(I);
Dan Gohman448db1c2010-04-07 22:27:08 +00002945 if (LF.PostIncLoops.count(L)) {
2946 if (LF.isUseFullyOutsideLoop(L))
Dan Gohman069d6f32010-03-02 01:59:21 +00002947 Inputs.push_back(L->getLoopLatch()->getTerminator());
2948 else
2949 Inputs.push_back(IVIncInsertPos);
2950 }
Dan Gohman701a4ae2010-04-08 05:57:57 +00002951 // The expansion must also be dominated by the increment positions of any
2952 // loops it for which it is using post-inc mode.
2953 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
2954 E = LF.PostIncLoops.end(); I != E; ++I) {
2955 const Loop *PIL = *I;
2956 if (PIL == L) continue;
2957
Dan Gohmane5f76872010-04-09 22:07:05 +00002958 // Be dominated by the loop exit.
Dan Gohman701a4ae2010-04-08 05:57:57 +00002959 SmallVector<BasicBlock *, 4> ExitingBlocks;
2960 PIL->getExitingBlocks(ExitingBlocks);
2961 if (!ExitingBlocks.empty()) {
2962 BasicBlock *BB = ExitingBlocks[0];
2963 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
2964 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
2965 Inputs.push_back(BB->getTerminator());
2966 }
2967 }
Dan Gohman572645c2010-02-12 10:34:29 +00002968
2969 // Then, climb up the immediate dominator tree as far as we can go while
2970 // still being dominated by the input positions.
Dan Gohmane5f76872010-04-09 22:07:05 +00002971 IP = HoistInsertPosition(IP, Inputs);
Dan Gohmand96eae82010-04-09 02:00:38 +00002972
2973 // Don't insert instructions before PHI nodes.
Dan Gohman572645c2010-02-12 10:34:29 +00002974 while (isa<PHINode>(IP)) ++IP;
Dan Gohmand96eae82010-04-09 02:00:38 +00002975
2976 // Ignore debug intrinsics.
Dan Gohman449f31c2010-03-26 00:33:27 +00002977 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
Dan Gohman572645c2010-02-12 10:34:29 +00002978
Dan Gohmand96eae82010-04-09 02:00:38 +00002979 return IP;
2980}
2981
2982Value *LSRInstance::Expand(const LSRFixup &LF,
2983 const Formula &F,
2984 BasicBlock::iterator IP,
2985 SCEVExpander &Rewriter,
2986 SmallVectorImpl<WeakVH> &DeadInsts) const {
2987 const LSRUse &LU = Uses[LF.LUIdx];
2988
2989 // Determine an input position which will be dominated by the operands and
2990 // which will dominate the result.
Dan Gohmane5f76872010-04-09 22:07:05 +00002991 IP = AdjustInsertPositionForExpand(IP, LF, LU);
Dan Gohmand96eae82010-04-09 02:00:38 +00002992
Dan Gohman572645c2010-02-12 10:34:29 +00002993 // Inform the Rewriter if we have a post-increment use, so that it can
2994 // perform an advantageous expansion.
Dan Gohman448db1c2010-04-07 22:27:08 +00002995 Rewriter.setPostInc(LF.PostIncLoops);
Dan Gohman572645c2010-02-12 10:34:29 +00002996
2997 // This is the type that the user actually needs.
2998 const Type *OpTy = LF.OperandValToReplace->getType();
2999 // This will be the type that we'll initially expand to.
3000 const Type *Ty = F.getType();
3001 if (!Ty)
3002 // No type known; just expand directly to the ultimate type.
3003 Ty = OpTy;
3004 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
3005 // Expand directly to the ultimate type if it's the right size.
3006 Ty = OpTy;
3007 // This is the type to do integer arithmetic in.
3008 const Type *IntTy = SE.getEffectiveSCEVType(Ty);
3009
3010 // Build up a list of operands to add together to form the full base.
3011 SmallVector<const SCEV *, 8> Ops;
3012
3013 // Expand the BaseRegs portion.
3014 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3015 E = F.BaseRegs.end(); I != E; ++I) {
3016 const SCEV *Reg = *I;
3017 assert(!Reg->isZero() && "Zero allocated in a base register!");
3018
Dan Gohman448db1c2010-04-07 22:27:08 +00003019 // If we're expanding for a post-inc user, make the post-inc adjustment.
3020 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3021 Reg = TransformForPostIncUse(Denormalize, Reg,
3022 LF.UserInst, LF.OperandValToReplace,
3023 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003024
3025 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
3026 }
3027
Dan Gohman087bd1e2010-03-03 05:29:13 +00003028 // Flush the operand list to suppress SCEVExpander hoisting.
3029 if (!Ops.empty()) {
3030 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3031 Ops.clear();
3032 Ops.push_back(SE.getUnknown(FullV));
3033 }
3034
Dan Gohman572645c2010-02-12 10:34:29 +00003035 // Expand the ScaledReg portion.
3036 Value *ICmpScaledV = 0;
3037 if (F.AM.Scale != 0) {
3038 const SCEV *ScaledS = F.ScaledReg;
3039
Dan Gohman448db1c2010-04-07 22:27:08 +00003040 // If we're expanding for a post-inc user, make the post-inc adjustment.
3041 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
3042 ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
3043 LF.UserInst, LF.OperandValToReplace,
3044 Loops, SE, DT);
Dan Gohman572645c2010-02-12 10:34:29 +00003045
3046 if (LU.Kind == LSRUse::ICmpZero) {
3047 // An interesting way of "folding" with an icmp is to use a negated
3048 // scale, which we'll implement by inserting it into the other operand
3049 // of the icmp.
3050 assert(F.AM.Scale == -1 &&
3051 "The only scale supported by ICmpZero uses is -1!");
3052 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
3053 } else {
3054 // Otherwise just expand the scaled register and an explicit scale,
3055 // which is expected to be matched as part of the address.
3056 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
3057 ScaledS = SE.getMulExpr(ScaledS,
Dan Gohmandeff6212010-05-03 22:09:21 +00003058 SE.getConstant(ScaledS->getType(), F.AM.Scale));
Dan Gohman572645c2010-02-12 10:34:29 +00003059 Ops.push_back(ScaledS);
Dan Gohman087bd1e2010-03-03 05:29:13 +00003060
3061 // Flush the operand list to suppress SCEVExpander hoisting.
3062 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3063 Ops.clear();
3064 Ops.push_back(SE.getUnknown(FullV));
Dan Gohman572645c2010-02-12 10:34:29 +00003065 }
3066 }
3067
Dan Gohman087bd1e2010-03-03 05:29:13 +00003068 // Expand the GV portion.
3069 if (F.AM.BaseGV) {
3070 Ops.push_back(SE.getUnknown(F.AM.BaseGV));
3071
3072 // Flush the operand list to suppress SCEVExpander hoisting.
3073 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
3074 Ops.clear();
3075 Ops.push_back(SE.getUnknown(FullV));
3076 }
3077
3078 // Expand the immediate portion.
Dan Gohman572645c2010-02-12 10:34:29 +00003079 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
3080 if (Offset != 0) {
3081 if (LU.Kind == LSRUse::ICmpZero) {
3082 // The other interesting way of "folding" with an ICmpZero is to use a
3083 // negated immediate.
3084 if (!ICmpScaledV)
3085 ICmpScaledV = ConstantInt::get(IntTy, -Offset);
3086 else {
3087 Ops.push_back(SE.getUnknown(ICmpScaledV));
3088 ICmpScaledV = ConstantInt::get(IntTy, Offset);
3089 }
3090 } else {
3091 // Just add the immediate values. These again are expected to be matched
3092 // as part of the address.
Dan Gohman087bd1e2010-03-03 05:29:13 +00003093 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
Dan Gohman572645c2010-02-12 10:34:29 +00003094 }
3095 }
3096
3097 // Emit instructions summing all the operands.
3098 const SCEV *FullS = Ops.empty() ?
Dan Gohmandeff6212010-05-03 22:09:21 +00003099 SE.getConstant(IntTy, 0) :
Dan Gohman572645c2010-02-12 10:34:29 +00003100 SE.getAddExpr(Ops);
3101 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
3102
3103 // We're done expanding now, so reset the rewriter.
Dan Gohman448db1c2010-04-07 22:27:08 +00003104 Rewriter.clearPostInc();
Dan Gohman572645c2010-02-12 10:34:29 +00003105
3106 // An ICmpZero Formula represents an ICmp which we're handling as a
3107 // comparison against zero. Now that we've expanded an expression for that
3108 // form, update the ICmp's other operand.
3109 if (LU.Kind == LSRUse::ICmpZero) {
3110 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
3111 DeadInsts.push_back(CI->getOperand(1));
3112 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
3113 "a scale at the same time!");
3114 if (F.AM.Scale == -1) {
3115 if (ICmpScaledV->getType() != OpTy) {
3116 Instruction *Cast =
3117 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
3118 OpTy, false),
3119 ICmpScaledV, OpTy, "tmp", CI);
3120 ICmpScaledV = Cast;
3121 }
3122 CI->setOperand(1, ICmpScaledV);
3123 } else {
3124 assert(F.AM.Scale == 0 &&
3125 "ICmp does not support folding a global value and "
3126 "a scale at the same time!");
3127 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
3128 -(uint64_t)Offset);
3129 if (C->getType() != OpTy)
3130 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3131 OpTy, false),
3132 C, OpTy);
3133
3134 CI->setOperand(1, C);
3135 }
3136 }
3137
3138 return FullV;
3139}
3140
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003141/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
3142/// of their operands effectively happens in their predecessor blocks, so the
3143/// expression may need to be expanded in multiple places.
3144void LSRInstance::RewriteForPHI(PHINode *PN,
3145 const LSRFixup &LF,
3146 const Formula &F,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003147 SCEVExpander &Rewriter,
3148 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003149 Pass *P) const {
3150 DenseMap<BasicBlock *, Value *> Inserted;
3151 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3152 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3153 BasicBlock *BB = PN->getIncomingBlock(i);
3154
3155 // If this is a critical edge, split the edge so that we do not insert
3156 // the code on all predecessor/successor paths. We do this unless this
3157 // is the canonical backedge for this loop, which complicates post-inc
3158 // users.
3159 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
3160 !isa<IndirectBrInst>(BB->getTerminator()) &&
3161 (PN->getParent() != L->getHeader() || !L->contains(BB))) {
3162 // Split the critical edge.
3163 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P);
3164
3165 // If PN is outside of the loop and BB is in the loop, we want to
3166 // move the block to be immediately before the PHI block, not
3167 // immediately after BB.
3168 if (L->contains(BB) && !L->contains(PN))
3169 NewBB->moveBefore(PN->getParent());
3170
3171 // Splitting the edge can reduce the number of PHI entries we have.
3172 e = PN->getNumIncomingValues();
3173 BB = NewBB;
3174 i = PN->getBasicBlockIndex(BB);
3175 }
3176
3177 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
3178 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
3179 if (!Pair.second)
3180 PN->setIncomingValue(i, Pair.first->second);
3181 else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003182 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003183
3184 // If this is reuse-by-noop-cast, insert the noop cast.
3185 const Type *OpTy = LF.OperandValToReplace->getType();
3186 if (FullV->getType() != OpTy)
3187 FullV =
3188 CastInst::Create(CastInst::getCastOpcode(FullV, false,
3189 OpTy, false),
3190 FullV, LF.OperandValToReplace->getType(),
3191 "tmp", BB->getTerminator());
3192
3193 PN->setIncomingValue(i, FullV);
3194 Pair.first->second = FullV;
3195 }
3196 }
3197}
3198
Dan Gohman572645c2010-02-12 10:34:29 +00003199/// Rewrite - Emit instructions for the leading candidate expression for this
3200/// LSRUse (this is called "expanding"), and update the UserInst to reference
3201/// the newly expanded value.
3202void LSRInstance::Rewrite(const LSRFixup &LF,
3203 const Formula &F,
Dan Gohman572645c2010-02-12 10:34:29 +00003204 SCEVExpander &Rewriter,
3205 SmallVectorImpl<WeakVH> &DeadInsts,
Dan Gohman572645c2010-02-12 10:34:29 +00003206 Pass *P) const {
Dan Gohman572645c2010-02-12 10:34:29 +00003207 // First, find an insertion point that dominates UserInst. For PHI nodes,
3208 // find the nearest block which dominates all the relevant uses.
3209 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
Dan Gohman454d26d2010-02-22 04:11:59 +00003210 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003211 } else {
Dan Gohman454d26d2010-02-22 04:11:59 +00003212 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
Dan Gohman572645c2010-02-12 10:34:29 +00003213
3214 // If this is reuse-by-noop-cast, insert the noop cast.
Dan Gohman3a02cbc2010-02-16 20:25:07 +00003215 const Type *OpTy = LF.OperandValToReplace->getType();
Dan Gohman572645c2010-02-12 10:34:29 +00003216 if (FullV->getType() != OpTy) {
3217 Instruction *Cast =
3218 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
3219 FullV, OpTy, "tmp", LF.UserInst);
3220 FullV = Cast;
3221 }
3222
3223 // Update the user. ICmpZero is handled specially here (for now) because
3224 // Expand may have updated one of the operands of the icmp already, and
3225 // its new value may happen to be equal to LF.OperandValToReplace, in
3226 // which case doing replaceUsesOfWith leads to replacing both operands
3227 // with the same value. TODO: Reorganize this.
3228 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
3229 LF.UserInst->setOperand(0, FullV);
3230 else
3231 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
3232 }
3233
3234 DeadInsts.push_back(LF.OperandValToReplace);
3235}
3236
3237void
3238LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
3239 Pass *P) {
3240 // Keep track of instructions we may have made dead, so that
3241 // we can remove them after we are done working.
3242 SmallVector<WeakVH, 16> DeadInsts;
3243
3244 SCEVExpander Rewriter(SE);
3245 Rewriter.disableCanonicalMode();
3246 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
3247
3248 // Expand the new value definitions and update the users.
3249 for (size_t i = 0, e = Fixups.size(); i != e; ++i) {
3250 size_t LUIdx = Fixups[i].LUIdx;
3251
Dan Gohman454d26d2010-02-22 04:11:59 +00003252 Rewrite(Fixups[i], *Solution[LUIdx], Rewriter, DeadInsts, P);
Dan Gohman572645c2010-02-12 10:34:29 +00003253
3254 Changed = true;
3255 }
3256
3257 // Clean up after ourselves. This must be done before deleting any
3258 // instructions.
3259 Rewriter.clear();
3260
3261 Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
3262}
3263
3264LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
3265 : IU(P->getAnalysis<IVUsers>()),
3266 SE(P->getAnalysis<ScalarEvolution>()),
3267 DT(P->getAnalysis<DominatorTree>()),
Dan Gohmane5f76872010-04-09 22:07:05 +00003268 LI(P->getAnalysis<LoopInfo>()),
Dan Gohman572645c2010-02-12 10:34:29 +00003269 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
Devang Patel0f54dcb2007-03-06 21:14:09 +00003270
Dan Gohman03e896b2009-11-05 21:11:53 +00003271 // If LoopSimplify form is not available, stay out of trouble.
Dan Gohman572645c2010-02-12 10:34:29 +00003272 if (!L->isLoopSimplifyForm()) return;
Dan Gohman03e896b2009-11-05 21:11:53 +00003273
Dan Gohman572645c2010-02-12 10:34:29 +00003274 // If there's no interesting work to be done, bail early.
3275 if (IU.empty()) return;
Dan Gohman80b0f8c2009-03-09 20:34:59 +00003276
Dan Gohman572645c2010-02-12 10:34:29 +00003277 DEBUG(dbgs() << "\nLSR on loop ";
3278 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
3279 dbgs() << ":\n");
Dan Gohmanf7912df2009-03-09 20:46:50 +00003280
Dan Gohman572645c2010-02-12 10:34:29 +00003281 /// OptimizeShadowIV - If IV is used in a int-to-float cast
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003282 /// inside the loop then try to eliminate the cast operation.
Dan Gohman572645c2010-02-12 10:34:29 +00003283 OptimizeShadowIV();
Chris Lattner010de252005-08-08 05:28:22 +00003284
Dan Gohman572645c2010-02-12 10:34:29 +00003285 // Change loop terminating condition to use the postinc iv when possible.
3286 Changed |= OptimizeLoopTermCond();
Evan Cheng5792f512009-05-11 22:33:01 +00003287
Dan Gohman572645c2010-02-12 10:34:29 +00003288 CollectInterestingTypesAndFactors();
3289 CollectFixupsAndInitialFormulae();
3290 CollectLoopInvariantFixupsAndFormulae();
Chris Lattner010de252005-08-08 05:28:22 +00003291
Dan Gohman572645c2010-02-12 10:34:29 +00003292 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
3293 print_uses(dbgs()));
Misha Brukmanfd939082005-04-21 23:48:37 +00003294
Dan Gohman572645c2010-02-12 10:34:29 +00003295 // Now use the reuse data to generate a bunch of interesting ways
3296 // to formulate the values needed for the uses.
3297 GenerateAllReuseFormulae();
Evan Chengd1d6b5c2006-03-16 21:53:05 +00003298
Dan Gohman572645c2010-02-12 10:34:29 +00003299 DEBUG(dbgs() << "\n"
3300 "After generating reuse formulae:\n";
3301 print_uses(dbgs()));
Nate Begemaneaa13852004-10-18 21:08:22 +00003302
Dan Gohman572645c2010-02-12 10:34:29 +00003303 FilterOutUndesirableDedicatedRegisters();
3304 NarrowSearchSpaceUsingHeuristics();
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003305
Dan Gohman572645c2010-02-12 10:34:29 +00003306 SmallVector<const Formula *, 8> Solution;
3307 Solve(Solution);
3308 assert(Solution.size() == Uses.size() && "Malformed solution!");
Dan Gohman6bec5bb2009-12-18 00:06:20 +00003309
Dan Gohman572645c2010-02-12 10:34:29 +00003310 // Release memory that is no longer needed.
3311 Factors.clear();
3312 Types.clear();
3313 RegUses.clear();
3314
3315#ifndef NDEBUG
3316 // Formulae should be legal.
3317 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3318 E = Uses.end(); I != E; ++I) {
3319 const LSRUse &LU = *I;
3320 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3321 JE = LU.Formulae.end(); J != JE; ++J)
3322 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
3323 LU.Kind, LU.AccessTy, TLI) &&
3324 "Illegal formula generated!");
3325 };
3326#endif
3327
3328 // Now that we've decided what we want, make it so.
3329 ImplementSolution(Solution, P);
3330}
3331
3332void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
3333 if (Factors.empty() && Types.empty()) return;
3334
3335 OS << "LSR has identified the following interesting factors and types: ";
3336 bool First = true;
3337
3338 for (SmallSetVector<int64_t, 8>::const_iterator
3339 I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3340 if (!First) OS << ", ";
3341 First = false;
3342 OS << '*' << *I;
Evan Cheng81ebdcf2009-11-10 21:14:05 +00003343 }
Dale Johannesenc1acc3f2009-05-11 17:15:42 +00003344
Dan Gohman572645c2010-02-12 10:34:29 +00003345 for (SmallSetVector<const Type *, 4>::const_iterator
3346 I = Types.begin(), E = Types.end(); I != E; ++I) {
3347 if (!First) OS << ", ";
3348 First = false;
3349 OS << '(' << **I << ')';
3350 }
3351 OS << '\n';
3352}
3353
3354void LSRInstance::print_fixups(raw_ostream &OS) const {
3355 OS << "LSR is examining the following fixup sites:\n";
3356 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
3357 E = Fixups.end(); I != E; ++I) {
3358 const LSRFixup &LF = *I;
3359 dbgs() << " ";
3360 LF.print(OS);
3361 OS << '\n';
3362 }
3363}
3364
3365void LSRInstance::print_uses(raw_ostream &OS) const {
3366 OS << "LSR is examining the following uses:\n";
3367 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3368 E = Uses.end(); I != E; ++I) {
3369 const LSRUse &LU = *I;
3370 dbgs() << " ";
3371 LU.print(OS);
3372 OS << '\n';
3373 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
3374 JE = LU.Formulae.end(); J != JE; ++J) {
3375 OS << " ";
3376 J->print(OS);
3377 OS << '\n';
3378 }
3379 }
3380}
3381
3382void LSRInstance::print(raw_ostream &OS) const {
3383 print_factors_and_types(OS);
3384 print_fixups(OS);
3385 print_uses(OS);
3386}
3387
3388void LSRInstance::dump() const {
3389 print(errs()); errs() << '\n';
3390}
3391
3392namespace {
3393
3394class LoopStrengthReduce : public LoopPass {
3395 /// TLI - Keep a pointer of a TargetLowering to consult for determining
3396 /// transformation profitability.
3397 const TargetLowering *const TLI;
3398
3399public:
3400 static char ID; // Pass ID, replacement for typeid
3401 explicit LoopStrengthReduce(const TargetLowering *tli = 0);
3402
3403private:
3404 bool runOnLoop(Loop *L, LPPassManager &LPM);
3405 void getAnalysisUsage(AnalysisUsage &AU) const;
3406};
3407
3408}
3409
3410char LoopStrengthReduce::ID = 0;
3411static RegisterPass<LoopStrengthReduce>
3412X("loop-reduce", "Loop Strength Reduction");
3413
3414Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
3415 return new LoopStrengthReduce(TLI);
3416}
3417
3418LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
3419 : LoopPass(&ID), TLI(tli) {}
3420
3421void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
3422 // We split critical edges, so we change the CFG. However, we do update
3423 // many analyses if they are around.
3424 AU.addPreservedID(LoopSimplifyID);
Dan Gohman572645c2010-02-12 10:34:29 +00003425 AU.addPreserved("domfrontier");
3426
Dan Gohmane5f76872010-04-09 22:07:05 +00003427 AU.addRequired<LoopInfo>();
3428 AU.addPreserved<LoopInfo>();
Dan Gohman572645c2010-02-12 10:34:29 +00003429 AU.addRequiredID(LoopSimplifyID);
3430 AU.addRequired<DominatorTree>();
3431 AU.addPreserved<DominatorTree>();
3432 AU.addRequired<ScalarEvolution>();
3433 AU.addPreserved<ScalarEvolution>();
3434 AU.addRequired<IVUsers>();
3435 AU.addPreserved<IVUsers>();
3436}
3437
3438bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
3439 bool Changed = false;
3440
3441 // Run the main LSR transformation.
3442 Changed |= LSRInstance(TLI, L, this).getChanged();
3443
Dan Gohmanafc36a92009-05-02 18:29:22 +00003444 // At this point, it is worth checking to see if any recurrence PHIs are also
Dan Gohman35738ac2009-05-04 22:30:44 +00003445 // dead, so that we can remove them as well.
Dan Gohman9fff2182010-01-05 16:31:45 +00003446 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmanafc36a92009-05-02 18:29:22 +00003447
Evan Cheng1ce75dc2008-07-07 19:51:32 +00003448 return Changed;
Nate Begemaneaa13852004-10-18 21:08:22 +00003449}