blob: eb16e8e1f86857a0f41b4dc8597bca708b6d062d [file] [log] [blame]
Chandler Carruth713aa942012-09-14 09:22:59 +00001//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/Constants.h"
29#include "llvm/DIBuilder.h"
30#include "llvm/DebugInfo.h"
31#include "llvm/DerivedTypes.h"
32#include "llvm/Function.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000033#include "llvm/IRBuilder.h"
34#include "llvm/Instructions.h"
35#include "llvm/IntrinsicInst.h"
36#include "llvm/LLVMContext.h"
37#include "llvm/Module.h"
38#include "llvm/Operator.h"
39#include "llvm/Pass.h"
40#include "llvm/ADT/SetVector.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/STLExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000044#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/Loads.h"
46#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1c8db502012-09-15 11:43:14 +000047#include "llvm/Support/CommandLine.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000048#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/GetElementPtrTypeIterator.h"
51#include "llvm/Support/InstVisitor.h"
52#include "llvm/Support/MathExtras.h"
Chandler Carruth713aa942012-09-14 09:22:59 +000053#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetData.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
62STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
63STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
64STATISTIC(NumDeleted, "Number of instructions deleted");
65STATISTIC(NumVectorized, "Number of vectorized aggregates");
66
Chandler Carruth1c8db502012-09-15 11:43:14 +000067/// Hidden option to force the pass to not use DomTree and mem2reg, instead
68/// forming SSA values through the SSAUpdater infrastructure.
69static cl::opt<bool>
70ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
71
Chandler Carruth713aa942012-09-14 09:22:59 +000072namespace {
73/// \brief Alloca partitioning representation.
74///
75/// This class represents a partitioning of an alloca into slices, and
76/// information about the nature of uses of each slice of the alloca. The goal
77/// is that this information is sufficient to decide if and how to split the
78/// alloca apart and replace slices with scalars. It is also intended that this
Chandler Carruth7f5bede2012-09-14 10:18:49 +000079/// structure can capture the relevant information needed both to decide about
Chandler Carruth713aa942012-09-14 09:22:59 +000080/// and to enact these transformations.
81class AllocaPartitioning {
82public:
83 /// \brief A common base class for representing a half-open byte range.
84 struct ByteRange {
85 /// \brief The beginning offset of the range.
86 uint64_t BeginOffset;
87
88 /// \brief The ending offset, not included in the range.
89 uint64_t EndOffset;
90
91 ByteRange() : BeginOffset(), EndOffset() {}
92 ByteRange(uint64_t BeginOffset, uint64_t EndOffset)
93 : BeginOffset(BeginOffset), EndOffset(EndOffset) {}
94
95 /// \brief Support for ordering ranges.
96 ///
97 /// This provides an ordering over ranges such that start offsets are
98 /// always increasing, and within equal start offsets, the end offsets are
Chandler Carruth7f5bede2012-09-14 10:18:49 +000099 /// decreasing. Thus the spanning range comes first in a cluster with the
Chandler Carruth713aa942012-09-14 09:22:59 +0000100 /// same start position.
101 bool operator<(const ByteRange &RHS) const {
102 if (BeginOffset < RHS.BeginOffset) return true;
103 if (BeginOffset > RHS.BeginOffset) return false;
104 if (EndOffset > RHS.EndOffset) return true;
105 return false;
106 }
107
108 /// \brief Support comparison with a single offset to allow binary searches.
Benjamin Kramer2d1c2a22012-09-17 16:42:36 +0000109 friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) {
110 return LHS.BeginOffset < RHSOffset;
111 }
112
113 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
114 const ByteRange &RHS) {
115 return LHSOffset < RHS.BeginOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000116 }
117
118 bool operator==(const ByteRange &RHS) const {
119 return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset;
120 }
121 bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); }
122 };
123
124 /// \brief A partition of an alloca.
125 ///
126 /// This structure represents a contiguous partition of the alloca. These are
127 /// formed by examining the uses of the alloca. During formation, they may
128 /// overlap but once an AllocaPartitioning is built, the Partitions within it
129 /// are all disjoint.
130 struct Partition : public ByteRange {
131 /// \brief Whether this partition is splittable into smaller partitions.
132 ///
133 /// We flag partitions as splittable when they are formed entirely due to
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000134 /// accesses by trivially splittable operations such as memset and memcpy.
Chandler Carruth713aa942012-09-14 09:22:59 +0000135 ///
136 /// FIXME: At some point we should consider loads and stores of FCAs to be
137 /// splittable and eagerly split them into scalar values.
138 bool IsSplittable;
139
140 Partition() : ByteRange(), IsSplittable() {}
141 Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable)
142 : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {}
143 };
144
145 /// \brief A particular use of a partition of the alloca.
146 ///
147 /// This structure is used to associate uses of a partition with it. They
148 /// mark the range of bytes which are referenced by a particular instruction,
149 /// and includes a handle to the user itself and the pointer value in use.
150 /// The bounds of these uses are determined by intersecting the bounds of the
151 /// memory use itself with a particular partition. As a consequence there is
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000152 /// intentionally overlap between various uses of the same partition.
Chandler Carruth713aa942012-09-14 09:22:59 +0000153 struct PartitionUse : public ByteRange {
Chandler Carruth77c12702012-10-01 01:49:22 +0000154 /// \brief The use in question. Provides access to both user and used value.
Chandler Carruthfdb15852012-10-02 18:57:13 +0000155 ///
156 /// Note that this may be null if the partition use is *dead*, that is, it
157 /// should be ignored.
158 Use *U;
Chandler Carruth713aa942012-09-14 09:22:59 +0000159
Chandler Carruth77c12702012-10-01 01:49:22 +0000160 PartitionUse() : ByteRange(), U() {}
161 PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, Use *U)
162 : ByteRange(BeginOffset, EndOffset), U(U) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000163 };
164
165 /// \brief Construct a partitioning of a particular alloca.
166 ///
167 /// Construction does most of the work for partitioning the alloca. This
168 /// performs the necessary walks of users and builds a partitioning from it.
169 AllocaPartitioning(const TargetData &TD, AllocaInst &AI);
170
171 /// \brief Test whether a pointer to the allocation escapes our analysis.
172 ///
173 /// If this is true, the partitioning is never fully built and should be
174 /// ignored.
175 bool isEscaped() const { return PointerEscapingInstr; }
176
177 /// \brief Support for iterating over the partitions.
178 /// @{
179 typedef SmallVectorImpl<Partition>::iterator iterator;
180 iterator begin() { return Partitions.begin(); }
181 iterator end() { return Partitions.end(); }
182
183 typedef SmallVectorImpl<Partition>::const_iterator const_iterator;
184 const_iterator begin() const { return Partitions.begin(); }
185 const_iterator end() const { return Partitions.end(); }
186 /// @}
187
188 /// \brief Support for iterating over and manipulating a particular
189 /// partition's uses.
190 ///
191 /// The iteration support provided for uses is more limited, but also
192 /// includes some manipulation routines to support rewriting the uses of
193 /// partitions during SROA.
194 /// @{
195 typedef SmallVectorImpl<PartitionUse>::iterator use_iterator;
196 use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); }
197 use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); }
198 use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); }
199 use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); }
Chandler Carruth713aa942012-09-14 09:22:59 +0000200
201 typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator;
202 const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); }
203 const_use_iterator use_begin(const_iterator I) const {
204 return Uses[I - begin()].begin();
205 }
206 const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); }
207 const_use_iterator use_end(const_iterator I) const {
208 return Uses[I - begin()].end();
209 }
Chandler Carrutha346f462012-10-02 17:49:47 +0000210
211 unsigned use_size(unsigned Idx) const { return Uses[Idx].size(); }
212 unsigned use_size(const_iterator I) const { return Uses[I - begin()].size(); }
213 const PartitionUse &getUse(unsigned PIdx, unsigned UIdx) const {
214 return Uses[PIdx][UIdx];
215 }
216 const PartitionUse &getUse(const_iterator I, unsigned UIdx) const {
217 return Uses[I - begin()][UIdx];
218 }
219
220 void use_push_back(unsigned Idx, const PartitionUse &PU) {
221 Uses[Idx].push_back(PU);
222 }
223 void use_push_back(const_iterator I, const PartitionUse &PU) {
224 Uses[I - begin()].push_back(PU);
225 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000226 /// @}
227
228 /// \brief Allow iterating the dead users for this alloca.
229 ///
230 /// These are instructions which will never actually use the alloca as they
231 /// are outside the allocated range. They are safe to replace with undef and
232 /// delete.
233 /// @{
234 typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
235 dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
236 dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
237 /// @}
238
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000239 /// \brief Allow iterating the dead expressions referring to this alloca.
Chandler Carruth713aa942012-09-14 09:22:59 +0000240 ///
241 /// These are operands which have cannot actually be used to refer to the
242 /// alloca as they are outside its range and the user doesn't correct for
243 /// that. These mostly consist of PHI node inputs and the like which we just
244 /// need to replace with undef.
245 /// @{
246 typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
247 dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
248 dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
249 /// @}
250
251 /// \brief MemTransferInst auxiliary data.
252 /// This struct provides some auxiliary data about memory transfer
253 /// intrinsics such as memcpy and memmove. These intrinsics can use two
254 /// different ranges within the same alloca, and provide other challenges to
255 /// correctly represent. We stash extra data to help us untangle this
256 /// after the partitioning is complete.
257 struct MemTransferOffsets {
258 uint64_t DestBegin, DestEnd;
259 uint64_t SourceBegin, SourceEnd;
260 bool IsSplittable;
261 };
262 MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const {
263 return MemTransferInstData.lookup(&II);
264 }
265
266 /// \brief Map from a PHI or select operand back to a partition.
267 ///
268 /// When manipulating PHI nodes or selects, they can use more than one
269 /// partition of an alloca. We store a special mapping to allow finding the
270 /// partition referenced by each of these operands, if any.
Chandler Carruth77c12702012-10-01 01:49:22 +0000271 iterator findPartitionForPHIOrSelectOperand(Use *U) {
272 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
273 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000274 if (MapIt == PHIOrSelectOpMap.end())
275 return end();
276
277 return begin() + MapIt->second.first;
278 }
279
280 /// \brief Map from a PHI or select operand back to the specific use of
281 /// a partition.
282 ///
283 /// Similar to mapping these operands back to the partitions, this maps
284 /// directly to the use structure of that partition.
Chandler Carruth77c12702012-10-01 01:49:22 +0000285 use_iterator findPartitionUseForPHIOrSelectOperand(Use *U) {
286 SmallDenseMap<Use *, std::pair<unsigned, unsigned> >::const_iterator MapIt
287 = PHIOrSelectOpMap.find(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000288 assert(MapIt != PHIOrSelectOpMap.end());
289 return Uses[MapIt->second.first].begin() + MapIt->second.second;
290 }
291
292 /// \brief Compute a common type among the uses of a particular partition.
293 ///
294 /// This routines walks all of the uses of a particular partition and tries
295 /// to find a common type between them. Untyped operations such as memset and
296 /// memcpy are ignored.
297 Type *getCommonType(iterator I) const;
298
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000299#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chandler Carruth713aa942012-09-14 09:22:59 +0000300 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const;
301 void printUsers(raw_ostream &OS, const_iterator I,
302 StringRef Indent = " ") const;
303 void print(raw_ostream &OS) const;
NAKAMURA Takumiad9f5b82012-09-14 10:06:10 +0000304 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
305 void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
Chandler Carruthba13d2e2012-09-14 10:18:51 +0000306#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000307
308private:
309 template <typename DerivedT, typename RetT = void> class BuilderBase;
310 class PartitionBuilder;
311 friend class AllocaPartitioning::PartitionBuilder;
312 class UseBuilder;
313 friend class AllocaPartitioning::UseBuilder;
314
Benjamin Kramerd0807692012-09-14 13:08:09 +0000315#ifndef NDEBUG
Chandler Carruth713aa942012-09-14 09:22:59 +0000316 /// \brief Handle to alloca instruction to simplify method interfaces.
317 AllocaInst &AI;
Benjamin Kramerd0807692012-09-14 13:08:09 +0000318#endif
Chandler Carruth713aa942012-09-14 09:22:59 +0000319
320 /// \brief The instruction responsible for this alloca having no partitioning.
321 ///
322 /// When an instruction (potentially) escapes the pointer to the alloca, we
323 /// store a pointer to that here and abort trying to partition the alloca.
324 /// This will be null if the alloca is partitioned successfully.
325 Instruction *PointerEscapingInstr;
326
327 /// \brief The partitions of the alloca.
328 ///
329 /// We store a vector of the partitions over the alloca here. This vector is
330 /// sorted by increasing begin offset, and then by decreasing end offset. See
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000331 /// the Partition inner class for more details. Initially (during
332 /// construction) there are overlaps, but we form a disjoint sequence of
333 /// partitions while finishing construction and a fully constructed object is
334 /// expected to always have this as a disjoint space.
Chandler Carruth713aa942012-09-14 09:22:59 +0000335 SmallVector<Partition, 8> Partitions;
336
337 /// \brief The uses of the partitions.
338 ///
339 /// This is essentially a mapping from each partition to a list of uses of
340 /// that partition. The mapping is done with a Uses vector that has the exact
341 /// same number of entries as the partition vector. Each entry is itself
342 /// a vector of the uses.
343 SmallVector<SmallVector<PartitionUse, 2>, 8> Uses;
344
345 /// \brief Instructions which will become dead if we rewrite the alloca.
346 ///
347 /// Note that these are not separated by partition. This is because we expect
348 /// a partitioned alloca to be completely rewritten or not rewritten at all.
349 /// If rewritten, all these instructions can simply be removed and replaced
350 /// with undef as they come from outside of the allocated space.
351 SmallVector<Instruction *, 8> DeadUsers;
352
353 /// \brief Operands which will become dead if we rewrite the alloca.
354 ///
355 /// These are operands that in their particular use can be replaced with
356 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
357 /// to PHI nodes and the like. They aren't entirely dead (there might be
358 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
359 /// want to swap this particular input for undef to simplify the use lists of
360 /// the alloca.
361 SmallVector<Use *, 8> DeadOperands;
362
363 /// \brief The underlying storage for auxiliary memcpy and memset info.
364 SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData;
365
366 /// \brief A side datastructure used when building up the partitions and uses.
367 ///
368 /// This mapping is only really used during the initial building of the
369 /// partitioning so that we can retain information about PHI and select nodes
370 /// processed.
371 SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes;
372
373 /// \brief Auxiliary information for particular PHI or select operands.
Chandler Carruth77c12702012-10-01 01:49:22 +0000374 SmallDenseMap<Use *, std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap;
Chandler Carruth713aa942012-09-14 09:22:59 +0000375
376 /// \brief A utility routine called from the constructor.
377 ///
378 /// This does what it says on the tin. It is the key of the alloca partition
379 /// splitting and merging. After it is called we have the desired disjoint
380 /// collection of partitions.
381 void splitAndMergePartitions();
382};
383}
384
385template <typename DerivedT, typename RetT>
386class AllocaPartitioning::BuilderBase
387 : public InstVisitor<DerivedT, RetT> {
388public:
389 BuilderBase(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
390 : TD(TD),
391 AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())),
392 P(P) {
393 enqueueUsers(AI, 0);
394 }
395
396protected:
397 const TargetData &TD;
398 const uint64_t AllocSize;
399 AllocaPartitioning &P;
400
Chandler Carruth77c12702012-10-01 01:49:22 +0000401 SmallPtrSet<Use *, 8> VisitedUses;
402
Chandler Carruth713aa942012-09-14 09:22:59 +0000403 struct OffsetUse {
404 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000405 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000406 };
407 SmallVector<OffsetUse, 8> Queue;
408
409 // The active offset and use while visiting.
410 Use *U;
Chandler Carruth02e92a02012-09-23 11:43:14 +0000411 int64_t Offset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000412
Chandler Carruth02e92a02012-09-23 11:43:14 +0000413 void enqueueUsers(Instruction &I, int64_t UserOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000414 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
415 UI != UE; ++UI) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000416 if (VisitedUses.insert(&UI.getUse())) {
417 OffsetUse OU = { &UI.getUse(), UserOffset };
418 Queue.push_back(OU);
419 }
Chandler Carruth713aa942012-09-14 09:22:59 +0000420 }
421 }
422
Chandler Carruth02e92a02012-09-23 11:43:14 +0000423 bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000424 GEPOffset = Offset;
425 for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI);
426 GTI != GTE; ++GTI) {
427 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
428 if (!OpC)
429 return false;
430 if (OpC->isZero())
431 continue;
432
433 // Handle a struct index, which adds its field offset to the pointer.
434 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
435 unsigned ElementIdx = OpC->getZExtValue();
436 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth02e92a02012-09-23 11:43:14 +0000437 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
438 // Check that we can continue to model this GEP in a signed 64-bit offset.
439 if (ElementOffset > INT64_MAX ||
440 (GEPOffset >= 0 &&
441 ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) {
442 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
443 << "what can be represented in an int64_t!\n"
444 << " alloca: " << P.AI << "\n");
445 return false;
446 }
447 if (GEPOffset < 0)
448 GEPOffset = ElementOffset + (uint64_t)-GEPOffset;
449 else
450 GEPOffset += ElementOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000451 continue;
452 }
453
Chandler Carruth02e92a02012-09-23 11:43:14 +0000454 APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits());
455 Index *= APInt(Index.getBitWidth(),
456 TD.getTypeAllocSize(GTI.getIndexedType()));
457 Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset,
458 /*isSigned*/true);
459 // Check if the result can be stored in our int64_t offset.
460 if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) {
461 DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding "
462 << "what can be represented in an int64_t!\n"
463 << " alloca: " << P.AI << "\n");
464 return false;
465 }
466
467 GEPOffset = Index.getSExtValue();
Chandler Carruth713aa942012-09-14 09:22:59 +0000468 }
469 return true;
470 }
471
472 Value *foldSelectInst(SelectInst &SI) {
473 // If the condition being selected on is a constant or the same value is
474 // being selected between, fold the select. Yes this does (rarely) happen
475 // early on.
476 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
477 return SI.getOperand(1+CI->isZero());
478 if (SI.getOperand(1) == SI.getOperand(2)) {
479 assert(*U == SI.getOperand(1));
480 return SI.getOperand(1);
481 }
482 return 0;
483 }
484};
485
486/// \brief Builder for the alloca partitioning.
487///
488/// This class builds an alloca partitioning by recursively visiting the uses
489/// of an alloca and splitting the partitions for each load and store at each
490/// offset.
491class AllocaPartitioning::PartitionBuilder
492 : public BuilderBase<PartitionBuilder, bool> {
493 friend class InstVisitor<PartitionBuilder, bool>;
494
495 SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap;
496
497public:
498 PartitionBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000499 : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000500
501 /// \brief Run the builder over the allocation.
502 bool operator()() {
503 // Note that we have to re-evaluate size on each trip through the loop as
504 // the queue grows at the tail.
505 for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
506 U = Queue[Idx].U;
507 Offset = Queue[Idx].Offset;
508 if (!visit(cast<Instruction>(U->getUser())))
509 return false;
510 }
511 return true;
512 }
513
514private:
515 bool markAsEscaping(Instruction &I) {
516 P.PointerEscapingInstr = &I;
517 return false;
518 }
519
Chandler Carruth02e92a02012-09-23 11:43:14 +0000520 void insertUse(Instruction &I, int64_t Offset, uint64_t Size,
Chandler Carruth63392ea2012-09-16 19:39:50 +0000521 bool IsSplittable = false) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000522 // Completely skip uses which have a zero size or don't overlap the
523 // allocation.
524 if (Size == 0 ||
525 (Offset >= 0 && (uint64_t)Offset >= AllocSize) ||
Chandler Carruth02e92a02012-09-23 11:43:14 +0000526 (Offset < 0 && (uint64_t)-Offset >= Size)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000527 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
528 << " which starts past the end of the " << AllocSize
529 << " byte alloca:\n"
530 << " alloca: " << P.AI << "\n"
531 << " use: " << I << "\n");
532 return;
533 }
534
Chandler Carruth02e92a02012-09-23 11:43:14 +0000535 // Clamp the start to the beginning of the allocation.
536 if (Offset < 0) {
537 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
538 << " to start at the beginning of the alloca:\n"
539 << " alloca: " << P.AI << "\n"
540 << " use: " << I << "\n");
541 Size -= (uint64_t)-Offset;
542 Offset = 0;
543 }
544
545 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
546
547 // Clamp the end offset to the end of the allocation. Note that this is
548 // formulated to handle even the case where "BeginOffset + Size" overflows.
549 assert(AllocSize >= BeginOffset); // Established above.
550 if (Size > AllocSize - BeginOffset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000551 DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
552 << " to remain within the " << AllocSize << " byte alloca:\n"
553 << " alloca: " << P.AI << "\n"
554 << " use: " << I << "\n");
555 EndOffset = AllocSize;
556 }
557
558 // See if we can just add a user onto the last slot currently occupied.
559 if (!P.Partitions.empty() &&
560 P.Partitions.back().BeginOffset == BeginOffset &&
561 P.Partitions.back().EndOffset == EndOffset) {
562 P.Partitions.back().IsSplittable &= IsSplittable;
563 return;
564 }
565
566 Partition New(BeginOffset, EndOffset, IsSplittable);
567 P.Partitions.push_back(New);
568 }
569
Chandler Carruth02e92a02012-09-23 11:43:14 +0000570 bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000571 uint64_t Size = TD.getTypeStoreSize(Ty);
572
573 // If this memory access can be shown to *statically* extend outside the
574 // bounds of of the allocation, it's behavior is undefined, so simply
575 // ignore it. Note that this is more strict than the generic clamping
576 // behavior of insertUse. We also try to handle cases which might run the
577 // risk of overflow.
578 // FIXME: We should instead consider the pointer to have escaped if this
579 // function is being instrumented for addressing bugs or race conditions.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000580 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
581 Size > (AllocSize - (uint64_t)Offset)) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000582 DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte "
583 << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset
584 << " which extends past the end of the " << AllocSize
585 << " byte alloca:\n"
586 << " alloca: " << P.AI << "\n"
587 << " use: " << I << "\n");
588 return true;
589 }
590
Chandler Carruth63392ea2012-09-16 19:39:50 +0000591 insertUse(I, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000592 return true;
593 }
594
595 bool visitBitCastInst(BitCastInst &BC) {
596 enqueueUsers(BC, Offset);
597 return true;
598 }
599
600 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
Chandler Carruth02e92a02012-09-23 11:43:14 +0000601 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000602 if (!computeConstantGEPOffset(GEPI, GEPOffset))
603 return markAsEscaping(GEPI);
604
605 enqueueUsers(GEPI, GEPOffset);
606 return true;
607 }
608
609 bool visitLoadInst(LoadInst &LI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000610 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
611 "All simple FCA loads should have been pre-split");
Chandler Carruth63392ea2012-09-16 19:39:50 +0000612 return handleLoadOrStore(LI.getType(), LI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000613 }
614
615 bool visitStoreInst(StoreInst &SI) {
Chandler Carruthc370acd2012-09-18 12:57:43 +0000616 Value *ValOp = SI.getValueOperand();
617 if (ValOp == *U)
Chandler Carruth713aa942012-09-14 09:22:59 +0000618 return markAsEscaping(SI);
619
Chandler Carruthc370acd2012-09-18 12:57:43 +0000620 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
621 "All simple FCA stores should have been pre-split");
622 return handleLoadOrStore(ValOp->getType(), SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000623 }
624
625
626 bool visitMemSetInst(MemSetInst &II) {
Chandler Carruthb3dd9a12012-09-14 10:26:34 +0000627 assert(II.getRawDest() == *U && "Pointer use is not the destination?");
Chandler Carruth713aa942012-09-14 09:22:59 +0000628 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000629 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
630 insertUse(II, Offset, Size, Length);
Chandler Carruth713aa942012-09-14 09:22:59 +0000631 return true;
632 }
633
634 bool visitMemTransferInst(MemTransferInst &II) {
635 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
636 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
637 if (!Size)
638 // Zero-length mem transfer intrinsics can be ignored entirely.
639 return true;
640
641 MemTransferOffsets &Offsets = P.MemTransferInstData[&II];
642
643 // Only intrinsics with a constant length can be split.
644 Offsets.IsSplittable = Length;
645
646 if (*U != II.getRawDest()) {
647 assert(*U == II.getRawSource());
648 Offsets.SourceBegin = Offset;
649 Offsets.SourceEnd = Offset + Size;
650 } else {
651 Offsets.DestBegin = Offset;
652 Offsets.DestEnd = Offset + Size;
653 }
654
Chandler Carruth63392ea2012-09-16 19:39:50 +0000655 insertUse(II, Offset, Size, Offsets.IsSplittable);
Chandler Carruth713aa942012-09-14 09:22:59 +0000656 unsigned NewIdx = P.Partitions.size() - 1;
657
658 SmallDenseMap<Instruction *, unsigned>::const_iterator PMI;
659 bool Inserted = false;
660 llvm::tie(PMI, Inserted)
661 = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx));
Chandler Carruthb3dca3f2012-09-26 07:41:40 +0000662 if (Offsets.IsSplittable &&
663 (!Inserted || II.getRawSource() == II.getRawDest())) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000664 // We've found a memory transfer intrinsic which refers to the alloca as
Chandler Carruthb3dca3f2012-09-26 07:41:40 +0000665 // both a source and dest. This is detected either by direct equality of
666 // the operand values, or when we visit the intrinsic twice due to two
667 // different chains of values leading to it. We refuse to split these to
668 // simplify splitting logic. If possible, SROA will still split them into
669 // separate allocas and then re-analyze.
Chandler Carruth713aa942012-09-14 09:22:59 +0000670 Offsets.IsSplittable = false;
671 P.Partitions[PMI->second].IsSplittable = false;
672 P.Partitions[NewIdx].IsSplittable = false;
673 }
674
675 return true;
676 }
677
678 // Disable SRoA for any intrinsics except for lifetime invariants.
Chandler Carruth50754f02012-09-14 10:26:36 +0000679 // FIXME: What about debug instrinsics? This matches old behavior, but
680 // doesn't make sense.
Chandler Carruth713aa942012-09-14 09:22:59 +0000681 bool visitIntrinsicInst(IntrinsicInst &II) {
682 if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
683 II.getIntrinsicID() == Intrinsic::lifetime_end) {
684 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
685 uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000686 insertUse(II, Offset, Size, true);
Chandler Carruth713aa942012-09-14 09:22:59 +0000687 return true;
688 }
689
690 return markAsEscaping(II);
691 }
692
693 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
694 // We consider any PHI or select that results in a direct load or store of
695 // the same offset to be a viable use for partitioning purposes. These uses
696 // are considered unsplittable and the size is the maximum loaded or stored
697 // size.
698 SmallPtrSet<Instruction *, 4> Visited;
699 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
700 Visited.insert(Root);
701 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
Chandler Carruthc3034632012-09-25 10:03:40 +0000702 // If there are no loads or stores, the access is dead. We mark that as
703 // a size zero access.
704 Size = 0;
Chandler Carruth713aa942012-09-14 09:22:59 +0000705 do {
706 Instruction *I, *UsedI;
707 llvm::tie(UsedI, I) = Uses.pop_back_val();
708
709 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
710 Size = std::max(Size, TD.getTypeStoreSize(LI->getType()));
711 continue;
712 }
713 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
714 Value *Op = SI->getOperand(0);
715 if (Op == UsedI)
716 return SI;
717 Size = std::max(Size, TD.getTypeStoreSize(Op->getType()));
718 continue;
719 }
720
721 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
722 if (!GEP->hasAllZeroIndices())
723 return GEP;
724 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
725 !isa<SelectInst>(I)) {
726 return I;
727 }
728
729 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
730 ++UI)
731 if (Visited.insert(cast<Instruction>(*UI)))
732 Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
733 } while (!Uses.empty());
734
735 return 0;
736 }
737
738 bool visitPHINode(PHINode &PN) {
739 // See if we already have computed info on this node.
740 std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN];
741 if (PHIInfo.first) {
742 PHIInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000743 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000744 return true;
745 }
746
747 // Check for an unsafe use of the PHI node.
748 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first))
749 return markAsEscaping(*EscapingI);
750
Chandler Carruth63392ea2012-09-16 19:39:50 +0000751 insertUse(PN, Offset, PHIInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000752 return true;
753 }
754
755 bool visitSelectInst(SelectInst &SI) {
756 if (Value *Result = foldSelectInst(SI)) {
757 if (Result == *U)
758 // If the result of the constant fold will be the pointer, recurse
759 // through the select as if we had RAUW'ed it.
760 enqueueUsers(SI, Offset);
761
762 return true;
763 }
764
765 // See if we already have computed info on this node.
766 std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI];
767 if (SelectInfo.first) {
768 SelectInfo.second = true;
Chandler Carruth63392ea2012-09-16 19:39:50 +0000769 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000770 return true;
771 }
772
773 // Check for an unsafe use of the PHI node.
774 if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first))
775 return markAsEscaping(*EscapingI);
776
Chandler Carruth63392ea2012-09-16 19:39:50 +0000777 insertUse(SI, Offset, SelectInfo.first);
Chandler Carruth713aa942012-09-14 09:22:59 +0000778 return true;
779 }
780
781 /// \brief Disable SROA entirely if there are unhandled users of the alloca.
782 bool visitInstruction(Instruction &I) { return markAsEscaping(I); }
783};
784
785
786/// \brief Use adder for the alloca partitioning.
787///
Chandler Carruth7f5bede2012-09-14 10:18:49 +0000788/// This class adds the uses of an alloca to all of the partitions which they
789/// use. For splittable partitions, this can end up doing essentially a linear
Chandler Carruth713aa942012-09-14 09:22:59 +0000790/// walk of the partitions, but the number of steps remains bounded by the
791/// total result instruction size:
792/// - The number of partitions is a result of the number unsplittable
793/// instructions using the alloca.
794/// - The number of users of each partition is at worst the total number of
795/// splittable instructions using the alloca.
796/// Thus we will produce N * M instructions in the end, where N are the number
797/// of unsplittable uses and M are the number of splittable. This visitor does
798/// the exact same number of updates to the partitioning.
799///
800/// In the more common case, this visitor will leverage the fact that the
801/// partition space is pre-sorted, and do a logarithmic search for the
802/// partition needed, making the total visit a classical ((N + M) * log(N))
803/// complexity operation.
804class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> {
805 friend class InstVisitor<UseBuilder>;
806
807 /// \brief Set to de-duplicate dead instructions found in the use walk.
808 SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
809
810public:
811 UseBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P)
Chandler Carruth2a9bf252012-09-14 09:30:33 +0000812 : BuilderBase<UseBuilder>(TD, AI, P) {}
Chandler Carruth713aa942012-09-14 09:22:59 +0000813
814 /// \brief Run the builder over the allocation.
815 void operator()() {
816 // Note that we have to re-evaluate size on each trip through the loop as
817 // the queue grows at the tail.
818 for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) {
819 U = Queue[Idx].U;
820 Offset = Queue[Idx].Offset;
821 this->visit(cast<Instruction>(U->getUser()));
822 }
823 }
824
825private:
826 void markAsDead(Instruction &I) {
827 if (VisitedDeadInsts.insert(&I))
828 P.DeadUsers.push_back(&I);
829 }
830
Chandler Carruth02e92a02012-09-23 11:43:14 +0000831 void insertUse(Instruction &User, int64_t Offset, uint64_t Size) {
Chandler Carruthc3034632012-09-25 10:03:40 +0000832 // If the use has a zero size or extends outside of the allocation, record
833 // it as a dead use for elimination later.
834 if (Size == 0 || (uint64_t)Offset >= AllocSize ||
Chandler Carruth02e92a02012-09-23 11:43:14 +0000835 (Offset < 0 && (uint64_t)-Offset >= Size))
Chandler Carruth713aa942012-09-14 09:22:59 +0000836 return markAsDead(User);
837
Chandler Carruth02e92a02012-09-23 11:43:14 +0000838 // Clamp the start to the beginning of the allocation.
839 if (Offset < 0) {
840 Size -= (uint64_t)-Offset;
841 Offset = 0;
842 }
843
844 uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size;
845
846 // Clamp the end offset to the end of the allocation. Note that this is
847 // formulated to handle even the case where "BeginOffset + Size" overflows.
848 assert(AllocSize >= BeginOffset); // Established above.
849 if (Size > AllocSize - BeginOffset)
Chandler Carruth713aa942012-09-14 09:22:59 +0000850 EndOffset = AllocSize;
851
852 // NB: This only works if we have zero overlapping partitions.
853 iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset);
854 if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset)
855 B = llvm::prior(B);
856 for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset;
857 ++I) {
Chandler Carruth77c12702012-10-01 01:49:22 +0000858 PartitionUse NewPU(std::max(I->BeginOffset, BeginOffset),
859 std::min(I->EndOffset, EndOffset), U);
860 P.use_push_back(I, NewPU);
Chandler Carruth713aa942012-09-14 09:22:59 +0000861 if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser()))
Chandler Carruth77c12702012-10-01 01:49:22 +0000862 P.PHIOrSelectOpMap[U]
Chandler Carruth713aa942012-09-14 09:22:59 +0000863 = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1);
864 }
865 }
866
Chandler Carruth02e92a02012-09-23 11:43:14 +0000867 void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000868 uint64_t Size = TD.getTypeStoreSize(Ty);
869
870 // If this memory access can be shown to *statically* extend outside the
871 // bounds of of the allocation, it's behavior is undefined, so simply
872 // ignore it. Note that this is more strict than the generic clamping
873 // behavior of insertUse.
Chandler Carruth02e92a02012-09-23 11:43:14 +0000874 if (Offset < 0 || (uint64_t)Offset >= AllocSize ||
875 Size > (AllocSize - (uint64_t)Offset))
Chandler Carruth713aa942012-09-14 09:22:59 +0000876 return markAsDead(I);
877
Chandler Carruth63392ea2012-09-16 19:39:50 +0000878 insertUse(I, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000879 }
880
881 void visitBitCastInst(BitCastInst &BC) {
882 if (BC.use_empty())
883 return markAsDead(BC);
884
885 enqueueUsers(BC, Offset);
886 }
887
888 void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
889 if (GEPI.use_empty())
890 return markAsDead(GEPI);
891
Chandler Carruth02e92a02012-09-23 11:43:14 +0000892 int64_t GEPOffset;
Chandler Carruth713aa942012-09-14 09:22:59 +0000893 if (!computeConstantGEPOffset(GEPI, GEPOffset))
894 llvm_unreachable("Unable to compute constant offset for use");
895
896 enqueueUsers(GEPI, GEPOffset);
897 }
898
899 void visitLoadInst(LoadInst &LI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000900 handleLoadOrStore(LI.getType(), LI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000901 }
902
903 void visitStoreInst(StoreInst &SI) {
Chandler Carruth63392ea2012-09-16 19:39:50 +0000904 handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000905 }
906
907 void visitMemSetInst(MemSetInst &II) {
908 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000909 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
910 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000911 }
912
913 void visitMemTransferInst(MemTransferInst &II) {
914 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
Chandler Carruth63392ea2012-09-16 19:39:50 +0000915 uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset;
916 insertUse(II, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000917 }
918
919 void visitIntrinsicInst(IntrinsicInst &II) {
920 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
921 II.getIntrinsicID() == Intrinsic::lifetime_end);
922
923 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
Chandler Carruth63392ea2012-09-16 19:39:50 +0000924 insertUse(II, Offset,
925 std::min(AllocSize - Offset, Length->getLimitedValue()));
Chandler Carruth713aa942012-09-14 09:22:59 +0000926 }
927
Chandler Carruth63392ea2012-09-16 19:39:50 +0000928 void insertPHIOrSelect(Instruction &User, uint64_t Offset) {
Chandler Carruth713aa942012-09-14 09:22:59 +0000929 uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first;
930
931 // For PHI and select operands outside the alloca, we can't nuke the entire
932 // phi or select -- the other side might still be relevant, so we special
933 // case them here and use a separate structure to track the operands
934 // themselves which should be replaced with undef.
935 if (Offset >= AllocSize) {
936 P.DeadOperands.push_back(U);
937 return;
938 }
939
Chandler Carruth63392ea2012-09-16 19:39:50 +0000940 insertUse(User, Offset, Size);
Chandler Carruth713aa942012-09-14 09:22:59 +0000941 }
942 void visitPHINode(PHINode &PN) {
943 if (PN.use_empty())
944 return markAsDead(PN);
945
Chandler Carruth63392ea2012-09-16 19:39:50 +0000946 insertPHIOrSelect(PN, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000947 }
948 void visitSelectInst(SelectInst &SI) {
949 if (SI.use_empty())
950 return markAsDead(SI);
951
952 if (Value *Result = foldSelectInst(SI)) {
953 if (Result == *U)
954 // If the result of the constant fold will be the pointer, recurse
955 // through the select as if we had RAUW'ed it.
956 enqueueUsers(SI, Offset);
Chandler Carruthd54a6b52012-09-21 23:36:40 +0000957 else
958 // Otherwise the operand to the select is dead, and we can replace it
959 // with undef.
960 P.DeadOperands.push_back(U);
Chandler Carruth713aa942012-09-14 09:22:59 +0000961
962 return;
963 }
964
Chandler Carruth63392ea2012-09-16 19:39:50 +0000965 insertPHIOrSelect(SI, Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +0000966 }
967
968 /// \brief Unreachable, we've already visited the alloca once.
969 void visitInstruction(Instruction &I) {
970 llvm_unreachable("Unhandled instruction in use builder.");
971 }
972};
973
974void AllocaPartitioning::splitAndMergePartitions() {
975 size_t NumDeadPartitions = 0;
976
977 // Track the range of splittable partitions that we pass when accumulating
978 // overlapping unsplittable partitions.
979 uint64_t SplitEndOffset = 0ull;
980
981 Partition New(0ull, 0ull, false);
982
983 for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) {
984 ++j;
985
986 if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) {
987 assert(New.BeginOffset == New.EndOffset);
988 New = Partitions[i];
989 } else {
990 assert(New.IsSplittable);
991 New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset);
992 }
993 assert(New.BeginOffset != New.EndOffset);
994
995 // Scan the overlapping partitions.
996 while (j != e && New.EndOffset > Partitions[j].BeginOffset) {
997 // If the new partition we are forming is splittable, stop at the first
998 // unsplittable partition.
999 if (New.IsSplittable && !Partitions[j].IsSplittable)
1000 break;
1001
1002 // Grow the new partition to include any equally splittable range. 'j' is
1003 // always equally splittable when New is splittable, but when New is not
1004 // splittable, we may subsume some (or part of some) splitable partition
1005 // without growing the new one.
1006 if (New.IsSplittable == Partitions[j].IsSplittable) {
1007 New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset);
1008 } else {
1009 assert(!New.IsSplittable);
1010 assert(Partitions[j].IsSplittable);
1011 SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset);
1012 }
1013
1014 Partitions[j].BeginOffset = Partitions[j].EndOffset = UINT64_MAX;
1015 ++NumDeadPartitions;
1016 ++j;
1017 }
1018
1019 // If the new partition is splittable, chop off the end as soon as the
1020 // unsplittable subsequent partition starts and ensure we eventually cover
1021 // the splittable area.
1022 if (j != e && New.IsSplittable) {
1023 SplitEndOffset = std::max(SplitEndOffset, New.EndOffset);
1024 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1025 }
1026
1027 // Add the new partition if it differs from the original one and is
1028 // non-empty. We can end up with an empty partition here if it was
1029 // splittable but there is an unsplittable one that starts at the same
1030 // offset.
1031 if (New != Partitions[i]) {
1032 if (New.BeginOffset != New.EndOffset)
1033 Partitions.push_back(New);
1034 // Mark the old one for removal.
1035 Partitions[i].BeginOffset = Partitions[i].EndOffset = UINT64_MAX;
1036 ++NumDeadPartitions;
1037 }
1038
1039 New.BeginOffset = New.EndOffset;
1040 if (!New.IsSplittable) {
1041 New.EndOffset = std::max(New.EndOffset, SplitEndOffset);
1042 if (j != e && !Partitions[j].IsSplittable)
1043 New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset);
1044 New.IsSplittable = true;
1045 // If there is a trailing splittable partition which won't be fused into
1046 // the next splittable partition go ahead and add it onto the partitions
1047 // list.
1048 if (New.BeginOffset < New.EndOffset &&
1049 (j == e || !Partitions[j].IsSplittable ||
1050 New.EndOffset < Partitions[j].BeginOffset)) {
1051 Partitions.push_back(New);
1052 New.BeginOffset = New.EndOffset = 0ull;
1053 }
1054 }
1055 }
1056
1057 // Re-sort the partitions now that they have been split and merged into
1058 // disjoint set of partitions. Also remove any of the dead partitions we've
1059 // replaced in the process.
1060 std::sort(Partitions.begin(), Partitions.end());
1061 if (NumDeadPartitions) {
1062 assert(Partitions.back().BeginOffset == UINT64_MAX);
1063 assert(Partitions.back().EndOffset == UINT64_MAX);
1064 assert((ptrdiff_t)NumDeadPartitions ==
1065 std::count(Partitions.begin(), Partitions.end(), Partitions.back()));
1066 }
1067 Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end());
1068}
1069
1070AllocaPartitioning::AllocaPartitioning(const TargetData &TD, AllocaInst &AI)
Benjamin Kramerd0807692012-09-14 13:08:09 +00001071 :
1072#ifndef NDEBUG
1073 AI(AI),
1074#endif
1075 PointerEscapingInstr(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001076 PartitionBuilder PB(TD, AI, *this);
1077 if (!PB())
1078 return;
1079
1080 if (Partitions.size() > 1) {
1081 // Sort the uses. This arranges for the offsets to be in ascending order,
1082 // and the sizes to be in descending order.
1083 std::sort(Partitions.begin(), Partitions.end());
1084
1085 // Intersect splittability for all partitions with equal offsets and sizes.
1086 // Then remove all but the first so that we have a sequence of non-equal but
1087 // potentially overlapping partitions.
1088 for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E;
1089 I = J) {
1090 ++J;
1091 while (J != E && *I == *J) {
1092 I->IsSplittable &= J->IsSplittable;
1093 ++J;
1094 }
1095 }
1096 Partitions.erase(std::unique(Partitions.begin(), Partitions.end()),
1097 Partitions.end());
1098
1099 // Split splittable and merge unsplittable partitions into a disjoint set
1100 // of partitions over the used space of the allocation.
1101 splitAndMergePartitions();
1102 }
1103
1104 // Now build up the user lists for each of these disjoint partitions by
1105 // re-walking the recursive users of the alloca.
1106 Uses.resize(Partitions.size());
1107 UseBuilder UB(TD, AI, *this);
1108 UB();
Chandler Carruth713aa942012-09-14 09:22:59 +00001109}
1110
1111Type *AllocaPartitioning::getCommonType(iterator I) const {
1112 Type *Ty = 0;
1113 for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001114 if (!UI->U)
1115 continue; // Skip dead uses.
Chandler Carruth77c12702012-10-01 01:49:22 +00001116 if (isa<IntrinsicInst>(*UI->U->getUser()))
Chandler Carruth713aa942012-09-14 09:22:59 +00001117 continue;
1118 if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset)
Chandler Carruth7c8df7a2012-09-18 17:49:37 +00001119 continue;
Chandler Carruth713aa942012-09-14 09:22:59 +00001120
1121 Type *UserTy = 0;
Chandler Carruth77c12702012-10-01 01:49:22 +00001122 if (LoadInst *LI = dyn_cast<LoadInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001123 UserTy = LI->getType();
Chandler Carruth77c12702012-10-01 01:49:22 +00001124 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001125 UserTy = SI->getValueOperand()->getType();
Chandler Carruth713aa942012-09-14 09:22:59 +00001126 }
1127
1128 if (Ty && Ty != UserTy)
1129 return 0;
1130
1131 Ty = UserTy;
1132 }
1133 return Ty;
1134}
1135
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001136#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1137
Chandler Carruth713aa942012-09-14 09:22:59 +00001138void AllocaPartitioning::print(raw_ostream &OS, const_iterator I,
1139 StringRef Indent) const {
1140 OS << Indent << "partition #" << (I - begin())
1141 << " [" << I->BeginOffset << "," << I->EndOffset << ")"
1142 << (I->IsSplittable ? " (splittable)" : "")
1143 << (Uses[I - begin()].empty() ? " (zero uses)" : "")
1144 << "\n";
1145}
1146
1147void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I,
1148 StringRef Indent) const {
1149 for (const_use_iterator UI = use_begin(I), UE = use_end(I);
1150 UI != UE; ++UI) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001151 if (!UI->U)
1152 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00001153 OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") "
Chandler Carruth77c12702012-10-01 01:49:22 +00001154 << "used by: " << *UI->U->getUser() << "\n";
1155 if (MemTransferInst *II = dyn_cast<MemTransferInst>(UI->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001156 const MemTransferOffsets &MTO = MemTransferInstData.lookup(II);
1157 bool IsDest;
1158 if (!MTO.IsSplittable)
1159 IsDest = UI->BeginOffset == MTO.DestBegin;
1160 else
1161 IsDest = MTO.DestBegin != 0u;
1162 OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": "
1163 << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin)
1164 << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n";
1165 }
1166 }
1167}
1168
1169void AllocaPartitioning::print(raw_ostream &OS) const {
1170 if (PointerEscapingInstr) {
1171 OS << "No partitioning for alloca: " << AI << "\n"
1172 << " A pointer to this alloca escaped by:\n"
1173 << " " << *PointerEscapingInstr << "\n";
1174 return;
1175 }
1176
1177 OS << "Partitioning of alloca: " << AI << "\n";
1178 unsigned Num = 0;
1179 for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) {
1180 print(OS, I);
1181 printUsers(OS, I);
1182 }
1183}
1184
1185void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); }
1186void AllocaPartitioning::dump() const { print(dbgs()); }
1187
Chandler Carruthba13d2e2012-09-14 10:18:51 +00001188#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1189
Chandler Carruth713aa942012-09-14 09:22:59 +00001190
1191namespace {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001192/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
1193///
1194/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
1195/// the loads and stores of an alloca instruction, as well as updating its
1196/// debug information. This is used when a domtree is unavailable and thus
1197/// mem2reg in its full form can't be used to handle promotion of allocas to
1198/// scalar values.
1199class AllocaPromoter : public LoadAndStorePromoter {
1200 AllocaInst &AI;
1201 DIBuilder &DIB;
1202
1203 SmallVector<DbgDeclareInst *, 4> DDIs;
1204 SmallVector<DbgValueInst *, 4> DVIs;
1205
1206public:
1207 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1208 AllocaInst &AI, DIBuilder &DIB)
1209 : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
1210
1211 void run(const SmallVectorImpl<Instruction*> &Insts) {
1212 // Remember which alloca we're promoting (for isInstInList).
1213 if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
1214 for (Value::use_iterator UI = DebugNode->use_begin(),
1215 UE = DebugNode->use_end();
1216 UI != UE; ++UI)
1217 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1218 DDIs.push_back(DDI);
1219 else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1220 DVIs.push_back(DVI);
1221 }
1222
1223 LoadAndStorePromoter::run(Insts);
1224 AI.eraseFromParent();
1225 while (!DDIs.empty())
1226 DDIs.pop_back_val()->eraseFromParent();
1227 while (!DVIs.empty())
1228 DVIs.pop_back_val()->eraseFromParent();
1229 }
1230
1231 virtual bool isInstInList(Instruction *I,
1232 const SmallVectorImpl<Instruction*> &Insts) const {
1233 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1234 return LI->getOperand(0) == &AI;
1235 return cast<StoreInst>(I)->getPointerOperand() == &AI;
1236 }
1237
1238 virtual void updateDebugInfo(Instruction *Inst) const {
1239 for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1240 E = DDIs.end(); I != E; ++I) {
1241 DbgDeclareInst *DDI = *I;
1242 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1243 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1244 else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1245 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1246 }
1247 for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1248 E = DVIs.end(); I != E; ++I) {
1249 DbgValueInst *DVI = *I;
1250 Value *Arg = NULL;
1251 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1252 // If an argument is zero extended then use argument directly. The ZExt
1253 // may be zapped by an optimization pass in future.
1254 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1255 Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1256 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1257 Arg = dyn_cast<Argument>(SExt->getOperand(0));
1258 if (!Arg)
1259 Arg = SI->getOperand(0);
1260 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1261 Arg = LI->getOperand(0);
1262 } else {
1263 continue;
1264 }
1265 Instruction *DbgVal =
1266 DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1267 Inst);
1268 DbgVal->setDebugLoc(DVI->getDebugLoc());
1269 }
1270 }
1271};
1272} // end anon namespace
1273
1274
1275namespace {
Chandler Carruth713aa942012-09-14 09:22:59 +00001276/// \brief An optimization pass providing Scalar Replacement of Aggregates.
1277///
1278/// This pass takes allocations which can be completely analyzed (that is, they
1279/// don't escape) and tries to turn them into scalar SSA values. There are
1280/// a few steps to this process.
1281///
1282/// 1) It takes allocations of aggregates and analyzes the ways in which they
1283/// are used to try to split them into smaller allocations, ideally of
1284/// a single scalar data type. It will split up memcpy and memset accesses
1285/// as necessary and try to isolate invidual scalar accesses.
1286/// 2) It will transform accesses into forms which are suitable for SSA value
1287/// promotion. This can be replacing a memset with a scalar store of an
1288/// integer value, or it can involve speculating operations on a PHI or
1289/// select to be a PHI or select of the results.
1290/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
1291/// onto insert and extract operations on a vector value, and convert them to
1292/// this form. By doing so, it will enable promotion of vector aggregates to
1293/// SSA vector values.
1294class SROA : public FunctionPass {
Chandler Carruth1c8db502012-09-15 11:43:14 +00001295 const bool RequiresDomTree;
1296
Chandler Carruth713aa942012-09-14 09:22:59 +00001297 LLVMContext *C;
1298 const TargetData *TD;
1299 DominatorTree *DT;
1300
1301 /// \brief Worklist of alloca instructions to simplify.
1302 ///
1303 /// Each alloca in the function is added to this. Each new alloca formed gets
1304 /// added to it as well to recursively simplify unless that alloca can be
1305 /// directly promoted. Finally, each time we rewrite a use of an alloca other
1306 /// the one being actively rewritten, we add it back onto the list if not
1307 /// already present to ensure it is re-visited.
1308 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
1309
1310 /// \brief A collection of instructions to delete.
1311 /// We try to batch deletions to simplify code and make things a bit more
1312 /// efficient.
1313 SmallVector<Instruction *, 8> DeadInsts;
1314
1315 /// \brief A set to prevent repeatedly marking an instruction split into many
1316 /// uses as dead. Only used to guard insertion into DeadInsts.
1317 SmallPtrSet<Instruction *, 4> DeadSplitInsts;
1318
Chandler Carruthb2d98c22012-10-04 12:33:50 +00001319 /// \brief Post-promotion worklist.
1320 ///
1321 /// Sometimes we discover an alloca which has a high probability of becoming
1322 /// viable for SROA after a round of promotion takes place. In those cases,
1323 /// the alloca is enqueued here for re-processing.
1324 ///
1325 /// Note that we have to be very careful to clear allocas out of this list in
1326 /// the event they are deleted.
1327 SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
1328
Chandler Carruth713aa942012-09-14 09:22:59 +00001329 /// \brief A collection of alloca instructions we can directly promote.
1330 std::vector<AllocaInst *> PromotableAllocas;
1331
1332public:
Chandler Carruth1c8db502012-09-15 11:43:14 +00001333 SROA(bool RequiresDomTree = true)
1334 : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
1335 C(0), TD(0), DT(0) {
Chandler Carruth713aa942012-09-14 09:22:59 +00001336 initializeSROAPass(*PassRegistry::getPassRegistry());
1337 }
1338 bool runOnFunction(Function &F);
1339 void getAnalysisUsage(AnalysisUsage &AU) const;
1340
1341 const char *getPassName() const { return "SROA"; }
1342 static char ID;
1343
1344private:
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00001345 friend class PHIOrSelectSpeculator;
Chandler Carruth713aa942012-09-14 09:22:59 +00001346 friend class AllocaPartitionRewriter;
1347 friend class AllocaPartitionVectorRewriter;
1348
1349 bool rewriteAllocaPartition(AllocaInst &AI,
1350 AllocaPartitioning &P,
1351 AllocaPartitioning::iterator PI);
1352 bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P);
1353 bool runOnAlloca(AllocaInst &AI);
Chandler Carruth8615cd22012-09-14 10:26:38 +00001354 void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
Chandler Carruth1c8db502012-09-15 11:43:14 +00001355 bool promoteAllocas(Function &F);
Chandler Carruth713aa942012-09-14 09:22:59 +00001356};
1357}
1358
1359char SROA::ID = 0;
1360
Chandler Carruth1c8db502012-09-15 11:43:14 +00001361FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
1362 return new SROA(RequiresDomTree);
Chandler Carruth713aa942012-09-14 09:22:59 +00001363}
1364
1365INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
1366 false, false)
1367INITIALIZE_PASS_DEPENDENCY(DominatorTree)
1368INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
1369 false, false)
1370
Chandler Carruth0e9da582012-10-05 01:29:06 +00001371namespace {
1372/// \brief Visitor to speculate PHIs and Selects where possible.
1373class PHIOrSelectSpeculator : public InstVisitor<PHIOrSelectSpeculator> {
1374 // Befriend the base class so it can delegate to private visit methods.
1375 friend class llvm::InstVisitor<PHIOrSelectSpeculator>;
1376
1377 const TargetData &TD;
1378 AllocaPartitioning &P;
1379 SROA &Pass;
1380
1381public:
1382 PHIOrSelectSpeculator(const TargetData &TD, AllocaPartitioning &P, SROA &Pass)
1383 : TD(TD), P(P), Pass(Pass) {}
1384
1385 /// \brief Visit the users of an alloca partition and rewrite them.
1386 void visitUsers(AllocaPartitioning::const_iterator PI) {
1387 // Note that we need to use an index here as the underlying vector of uses
1388 // may be grown during speculation. However, we never need to re-visit the
1389 // new uses, and so we can use the initial size bound.
1390 for (unsigned Idx = 0, Size = P.use_size(PI); Idx != Size; ++Idx) {
1391 const AllocaPartitioning::PartitionUse &PU = P.getUse(PI, Idx);
1392 if (!PU.U)
1393 continue; // Skip dead use.
1394
1395 visit(cast<Instruction>(PU.U->getUser()));
1396 }
1397 }
1398
1399private:
1400 // By default, skip this instruction.
1401 void visitInstruction(Instruction &I) {}
1402
1403 /// PHI instructions that use an alloca and are subsequently loaded can be
1404 /// rewritten to load both input pointers in the pred blocks and then PHI the
1405 /// results, allowing the load of the alloca to be promoted.
1406 /// From this:
1407 /// %P2 = phi [i32* %Alloca, i32* %Other]
1408 /// %V = load i32* %P2
1409 /// to:
1410 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1411 /// ...
1412 /// %V2 = load i32* %Other
1413 /// ...
1414 /// %V = phi [i32 %V1, i32 %V2]
1415 ///
1416 /// We can do this to a select if its only uses are loads and if the operands
1417 /// to the select can be loaded unconditionally.
1418 ///
1419 /// FIXME: This should be hoisted into a generic utility, likely in
1420 /// Transforms/Util/Local.h
1421 bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) {
1422 // For now, we can only do this promotion if the load is in the same block
1423 // as the PHI, and if there are no stores between the phi and load.
1424 // TODO: Allow recursive phi users.
1425 // TODO: Allow stores.
1426 BasicBlock *BB = PN.getParent();
1427 unsigned MaxAlign = 0;
1428 for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end();
1429 UI != UE; ++UI) {
1430 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1431 if (LI == 0 || !LI->isSimple()) return false;
1432
1433 // For now we only allow loads in the same block as the PHI. This is
1434 // a common case that happens when instcombine merges two loads through
1435 // a PHI.
1436 if (LI->getParent() != BB) return false;
1437
1438 // Ensure that there are no instructions between the PHI and the load that
1439 // could store.
1440 for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
1441 if (BBI->mayWriteToMemory())
1442 return false;
1443
1444 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1445 Loads.push_back(LI);
1446 }
1447
1448 // We can only transform this if it is safe to push the loads into the
1449 // predecessor blocks. The only thing to watch out for is that we can't put
1450 // a possibly trapping load in the predecessor if it is a critical edge.
1451 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num;
1452 ++Idx) {
1453 TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1454 Value *InVal = PN.getIncomingValue(Idx);
1455
1456 // If the value is produced by the terminator of the predecessor (an
1457 // invoke) or it has side-effects, there is no valid place to put a load
1458 // in the predecessor.
1459 if (TI == InVal || TI->mayHaveSideEffects())
1460 return false;
1461
1462 // If the predecessor has a single successor, then the edge isn't
1463 // critical.
1464 if (TI->getNumSuccessors() == 1)
1465 continue;
1466
1467 // If this pointer is always safe to load, or if we can prove that there
1468 // is already a load in the block, then we can move the load to the pred
1469 // block.
1470 if (InVal->isDereferenceablePointer() ||
1471 isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD))
1472 continue;
1473
1474 return false;
1475 }
1476
1477 return true;
1478 }
1479
1480 void visitPHINode(PHINode &PN) {
1481 DEBUG(dbgs() << " original: " << PN << "\n");
1482
1483 SmallVector<LoadInst *, 4> Loads;
1484 if (!isSafePHIToSpeculate(PN, Loads))
1485 return;
1486
1487 assert(!Loads.empty());
1488
1489 Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1490 IRBuilder<> PHIBuilder(&PN);
1491 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1492 PN.getName() + ".sroa.speculated");
1493
1494 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1495 // matter which one we get and if any differ, it doesn't matter.
1496 LoadInst *SomeLoad = cast<LoadInst>(Loads.back());
1497 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1498 unsigned Align = SomeLoad->getAlignment();
1499
1500 // Rewrite all loads of the PN to use the new PHI.
1501 do {
1502 LoadInst *LI = Loads.pop_back_val();
1503 LI->replaceAllUsesWith(NewPN);
1504 Pass.DeadInsts.push_back(LI);
1505 } while (!Loads.empty());
1506
1507 // Inject loads into all of the pred blocks.
1508 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1509 BasicBlock *Pred = PN.getIncomingBlock(Idx);
1510 TerminatorInst *TI = Pred->getTerminator();
1511 Use *InUse = &PN.getOperandUse(PN.getOperandNumForIncomingValue(Idx));
1512 Value *InVal = PN.getIncomingValue(Idx);
1513 IRBuilder<> PredBuilder(TI);
1514
1515 LoadInst *Load
1516 = PredBuilder.CreateLoad(InVal, (PN.getName() + ".sroa.speculate.load." +
1517 Pred->getName()));
1518 ++NumLoadsSpeculated;
1519 Load->setAlignment(Align);
1520 if (TBAATag)
1521 Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1522 NewPN->addIncoming(Load, Pred);
1523
1524 Instruction *Ptr = dyn_cast<Instruction>(InVal);
1525 if (!Ptr)
1526 // No uses to rewrite.
1527 continue;
1528
1529 // Try to lookup and rewrite any partition uses corresponding to this phi
1530 // input.
1531 AllocaPartitioning::iterator PI
1532 = P.findPartitionForPHIOrSelectOperand(InUse);
1533 if (PI == P.end())
1534 continue;
1535
1536 // Replace the Use in the PartitionUse for this operand with the Use
1537 // inside the load.
1538 AllocaPartitioning::use_iterator UI
1539 = P.findPartitionUseForPHIOrSelectOperand(InUse);
1540 assert(isa<PHINode>(*UI->U->getUser()));
1541 UI->U = &Load->getOperandUse(Load->getPointerOperandIndex());
1542 }
1543 DEBUG(dbgs() << " speculated to: " << *NewPN << "\n");
1544 }
1545
1546 /// Select instructions that use an alloca and are subsequently loaded can be
1547 /// rewritten to load both input pointers and then select between the result,
1548 /// allowing the load of the alloca to be promoted.
1549 /// From this:
1550 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1551 /// %V = load i32* %P2
1552 /// to:
1553 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1554 /// %V2 = load i32* %Other
1555 /// %V = select i1 %cond, i32 %V1, i32 %V2
1556 ///
1557 /// We can do this to a select if its only uses are loads and if the operand
1558 /// to the select can be loaded unconditionally.
1559 bool isSafeSelectToSpeculate(SelectInst &SI,
1560 SmallVectorImpl<LoadInst *> &Loads) {
1561 Value *TValue = SI.getTrueValue();
1562 Value *FValue = SI.getFalseValue();
1563 bool TDerefable = TValue->isDereferenceablePointer();
1564 bool FDerefable = FValue->isDereferenceablePointer();
1565
1566 for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end();
1567 UI != UE; ++UI) {
1568 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1569 if (LI == 0 || !LI->isSimple()) return false;
1570
1571 // Both operands to the select need to be dereferencable, either
1572 // absolutely (e.g. allocas) or at this point because we can see other
1573 // accesses to it.
1574 if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI,
1575 LI->getAlignment(), &TD))
1576 return false;
1577 if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI,
1578 LI->getAlignment(), &TD))
1579 return false;
1580 Loads.push_back(LI);
1581 }
1582
1583 return true;
1584 }
1585
1586 void visitSelectInst(SelectInst &SI) {
1587 DEBUG(dbgs() << " original: " << SI << "\n");
1588 IRBuilder<> IRB(&SI);
1589
1590 // If the select isn't safe to speculate, just use simple logic to emit it.
1591 SmallVector<LoadInst *, 4> Loads;
1592 if (!isSafeSelectToSpeculate(SI, Loads))
1593 return;
1594
1595 Use *Ops[2] = { &SI.getOperandUse(1), &SI.getOperandUse(2) };
1596 AllocaPartitioning::iterator PIs[2];
1597 AllocaPartitioning::PartitionUse PUs[2];
1598 for (unsigned i = 0, e = 2; i != e; ++i) {
1599 PIs[i] = P.findPartitionForPHIOrSelectOperand(Ops[i]);
1600 if (PIs[i] != P.end()) {
1601 // If the pointer is within the partitioning, remove the select from
1602 // its uses. We'll add in the new loads below.
1603 AllocaPartitioning::use_iterator UI
1604 = P.findPartitionUseForPHIOrSelectOperand(Ops[i]);
1605 PUs[i] = *UI;
1606 // Clear out the use here so that the offsets into the use list remain
1607 // stable but this use is ignored when rewriting.
1608 UI->U = 0;
1609 }
1610 }
1611
1612 Value *TV = SI.getTrueValue();
1613 Value *FV = SI.getFalseValue();
1614 // Replace the loads of the select with a select of two loads.
1615 while (!Loads.empty()) {
1616 LoadInst *LI = Loads.pop_back_val();
1617
1618 IRB.SetInsertPoint(LI);
1619 LoadInst *TL =
1620 IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1621 LoadInst *FL =
1622 IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1623 NumLoadsSpeculated += 2;
1624
1625 // Transfer alignment and TBAA info if present.
1626 TL->setAlignment(LI->getAlignment());
1627 FL->setAlignment(LI->getAlignment());
1628 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1629 TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1630 FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1631 }
1632
1633 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1634 LI->getName() + ".sroa.speculated");
1635
1636 LoadInst *Loads[2] = { TL, FL };
1637 for (unsigned i = 0, e = 2; i != e; ++i) {
1638 if (PIs[i] != P.end()) {
1639 Use *LoadUse = &Loads[i]->getOperandUse(0);
1640 assert(PUs[i].U->get() == LoadUse->get());
1641 PUs[i].U = LoadUse;
1642 P.use_push_back(PIs[i], PUs[i]);
1643 }
1644 }
1645
1646 DEBUG(dbgs() << " speculated to: " << *V << "\n");
1647 LI->replaceAllUsesWith(V);
1648 Pass.DeadInsts.push_back(LI);
1649 }
1650 }
1651};
1652}
1653
Chandler Carruth713aa942012-09-14 09:22:59 +00001654/// \brief Accumulate the constant offsets in a GEP into a single APInt offset.
1655///
1656/// If the provided GEP is all-constant, the total byte offset formed by the
1657/// GEP is computed and Offset is set to it. If the GEP has any non-constant
1658/// operands, the function returns false and the value of Offset is unmodified.
1659static bool accumulateGEPOffsets(const TargetData &TD, GEPOperator &GEP,
1660 APInt &Offset) {
1661 APInt GEPOffset(Offset.getBitWidth(), 0);
1662 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1663 GTI != GTE; ++GTI) {
1664 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1665 if (!OpC)
1666 return false;
1667 if (OpC->isZero()) continue;
1668
1669 // Handle a struct index, which adds its field offset to the pointer.
1670 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1671 unsigned ElementIdx = OpC->getZExtValue();
1672 const StructLayout *SL = TD.getStructLayout(STy);
1673 GEPOffset += APInt(Offset.getBitWidth(),
1674 SL->getElementOffset(ElementIdx));
1675 continue;
1676 }
1677
1678 APInt TypeSize(Offset.getBitWidth(),
1679 TD.getTypeAllocSize(GTI.getIndexedType()));
1680 if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) {
1681 assert((VTy->getScalarSizeInBits() % 8) == 0 &&
1682 "vector element size is not a multiple of 8, cannot GEP over it");
1683 TypeSize = VTy->getScalarSizeInBits() / 8;
1684 }
1685
1686 GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize;
1687 }
1688 Offset = GEPOffset;
1689 return true;
1690}
1691
1692/// \brief Build a GEP out of a base pointer and indices.
1693///
1694/// This will return the BasePtr if that is valid, or build a new GEP
1695/// instruction using the IRBuilder if GEP-ing is needed.
1696static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr,
1697 SmallVectorImpl<Value *> &Indices,
1698 const Twine &Prefix) {
1699 if (Indices.empty())
1700 return BasePtr;
1701
1702 // A single zero index is a no-op, so check for this and avoid building a GEP
1703 // in that case.
1704 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1705 return BasePtr;
1706
1707 return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx");
1708}
1709
1710/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1711/// TargetTy without changing the offset of the pointer.
1712///
1713/// This routine assumes we've already established a properly offset GEP with
1714/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1715/// zero-indices down through type layers until we find one the same as
1716/// TargetTy. If we can't find one with the same type, we at least try to use
1717/// one with the same size. If none of that works, we just produce the GEP as
1718/// indicated by Indices to have the correct offset.
1719static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const TargetData &TD,
1720 Value *BasePtr, Type *Ty, Type *TargetTy,
1721 SmallVectorImpl<Value *> &Indices,
1722 const Twine &Prefix) {
1723 if (Ty == TargetTy)
1724 return buildGEP(IRB, BasePtr, Indices, Prefix);
1725
1726 // See if we can descend into a struct and locate a field with the correct
1727 // type.
1728 unsigned NumLayers = 0;
1729 Type *ElementTy = Ty;
1730 do {
1731 if (ElementTy->isPointerTy())
1732 break;
1733 if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1734 ElementTy = SeqTy->getElementType();
1735 Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0)));
1736 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1737 ElementTy = *STy->element_begin();
1738 Indices.push_back(IRB.getInt32(0));
1739 } else {
1740 break;
1741 }
1742 ++NumLayers;
1743 } while (ElementTy != TargetTy);
1744 if (ElementTy != TargetTy)
1745 Indices.erase(Indices.end() - NumLayers, Indices.end());
1746
1747 return buildGEP(IRB, BasePtr, Indices, Prefix);
1748}
1749
1750/// \brief Recursively compute indices for a natural GEP.
1751///
1752/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1753/// element types adding appropriate indices for the GEP.
1754static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const TargetData &TD,
1755 Value *Ptr, Type *Ty, APInt &Offset,
1756 Type *TargetTy,
1757 SmallVectorImpl<Value *> &Indices,
1758 const Twine &Prefix) {
1759 if (Offset == 0)
1760 return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix);
1761
1762 // We can't recurse through pointer types.
1763 if (Ty->isPointerTy())
1764 return 0;
1765
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001766 // We try to analyze GEPs over vectors here, but note that these GEPs are
1767 // extremely poorly defined currently. The long-term goal is to remove GEPing
1768 // over a vector from the IR completely.
Chandler Carruth713aa942012-09-14 09:22:59 +00001769 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1770 unsigned ElementSizeInBits = VecTy->getScalarSizeInBits();
1771 if (ElementSizeInBits % 8)
Chandler Carruth8ed1ed82012-09-14 10:30:40 +00001772 return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
Chandler Carruth713aa942012-09-14 09:22:59 +00001773 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1774 APInt NumSkippedElements = Offset.udiv(ElementSize);
1775 if (NumSkippedElements.ugt(VecTy->getNumElements()))
1776 return 0;
1777 Offset -= NumSkippedElements * ElementSize;
1778 Indices.push_back(IRB.getInt(NumSkippedElements));
1779 return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(),
1780 Offset, TargetTy, Indices, Prefix);
1781 }
1782
1783 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1784 Type *ElementTy = ArrTy->getElementType();
1785 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1786 APInt NumSkippedElements = Offset.udiv(ElementSize);
1787 if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1788 return 0;
1789
1790 Offset -= NumSkippedElements * ElementSize;
1791 Indices.push_back(IRB.getInt(NumSkippedElements));
1792 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1793 Indices, Prefix);
1794 }
1795
1796 StructType *STy = dyn_cast<StructType>(Ty);
1797 if (!STy)
1798 return 0;
1799
1800 const StructLayout *SL = TD.getStructLayout(STy);
1801 uint64_t StructOffset = Offset.getZExtValue();
Chandler Carruthad41dcf2012-09-14 10:30:42 +00001802 if (StructOffset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00001803 return 0;
1804 unsigned Index = SL->getElementContainingOffset(StructOffset);
1805 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1806 Type *ElementTy = STy->getElementType(Index);
1807 if (Offset.uge(TD.getTypeAllocSize(ElementTy)))
1808 return 0; // The offset points into alignment padding.
1809
1810 Indices.push_back(IRB.getInt32(Index));
1811 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1812 Indices, Prefix);
1813}
1814
1815/// \brief Get a natural GEP from a base pointer to a particular offset and
1816/// resulting in a particular type.
1817///
1818/// The goal is to produce a "natural" looking GEP that works with the existing
1819/// composite types to arrive at the appropriate offset and element type for
1820/// a pointer. TargetTy is the element type the returned GEP should point-to if
1821/// possible. We recurse by decreasing Offset, adding the appropriate index to
1822/// Indices, and setting Ty to the result subtype.
1823///
Chandler Carruth7f5bede2012-09-14 10:18:49 +00001824/// If no natural GEP can be constructed, this function returns null.
Chandler Carruth713aa942012-09-14 09:22:59 +00001825static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const TargetData &TD,
1826 Value *Ptr, APInt Offset, Type *TargetTy,
1827 SmallVectorImpl<Value *> &Indices,
1828 const Twine &Prefix) {
1829 PointerType *Ty = cast<PointerType>(Ptr->getType());
1830
1831 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1832 // an i8.
1833 if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1834 return 0;
1835
1836 Type *ElementTy = Ty->getElementType();
Chandler Carruth38f35fd2012-09-18 22:37:19 +00001837 if (!ElementTy->isSized())
1838 return 0; // We can't GEP through an unsized element.
Chandler Carruth713aa942012-09-14 09:22:59 +00001839 APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy));
1840 if (ElementSize == 0)
1841 return 0; // Zero-length arrays can't help us build a natural GEP.
1842 APInt NumSkippedElements = Offset.udiv(ElementSize);
1843
1844 Offset -= NumSkippedElements * ElementSize;
1845 Indices.push_back(IRB.getInt(NumSkippedElements));
1846 return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy,
1847 Indices, Prefix);
1848}
1849
1850/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1851/// resulting pointer has PointerTy.
1852///
1853/// This tries very hard to compute a "natural" GEP which arrives at the offset
1854/// and produces the pointer type desired. Where it cannot, it will try to use
1855/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1856/// fails, it will try to use an existing i8* and GEP to the byte offset and
1857/// bitcast to the type.
1858///
1859/// The strategy for finding the more natural GEPs is to peel off layers of the
1860/// pointer, walking back through bit casts and GEPs, searching for a base
1861/// pointer from which we can compute a natural GEP with the desired
1862/// properities. The algorithm tries to fold as many constant indices into
1863/// a single GEP as possible, thus making each GEP more independent of the
1864/// surrounding code.
1865static Value *getAdjustedPtr(IRBuilder<> &IRB, const TargetData &TD,
1866 Value *Ptr, APInt Offset, Type *PointerTy,
1867 const Twine &Prefix) {
1868 // Even though we don't look through PHI nodes, we could be called on an
1869 // instruction in an unreachable block, which may be on a cycle.
1870 SmallPtrSet<Value *, 4> Visited;
1871 Visited.insert(Ptr);
1872 SmallVector<Value *, 4> Indices;
1873
1874 // We may end up computing an offset pointer that has the wrong type. If we
1875 // never are able to compute one directly that has the correct type, we'll
1876 // fall back to it, so keep it around here.
1877 Value *OffsetPtr = 0;
1878
1879 // Remember any i8 pointer we come across to re-use if we need to do a raw
1880 // byte offset.
1881 Value *Int8Ptr = 0;
1882 APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1883
1884 Type *TargetTy = PointerTy->getPointerElementType();
1885
1886 do {
1887 // First fold any existing GEPs into the offset.
1888 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1889 APInt GEPOffset(Offset.getBitWidth(), 0);
1890 if (!accumulateGEPOffsets(TD, *GEP, GEPOffset))
1891 break;
1892 Offset += GEPOffset;
1893 Ptr = GEP->getPointerOperand();
1894 if (!Visited.insert(Ptr))
1895 break;
1896 }
1897
1898 // See if we can perform a natural GEP here.
1899 Indices.clear();
1900 if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy,
1901 Indices, Prefix)) {
1902 if (P->getType() == PointerTy) {
1903 // Zap any offset pointer that we ended up computing in previous rounds.
1904 if (OffsetPtr && OffsetPtr->use_empty())
1905 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1906 I->eraseFromParent();
1907 return P;
1908 }
1909 if (!OffsetPtr) {
1910 OffsetPtr = P;
1911 }
1912 }
1913
1914 // Stash this pointer if we've found an i8*.
1915 if (Ptr->getType()->isIntegerTy(8)) {
1916 Int8Ptr = Ptr;
1917 Int8PtrOffset = Offset;
1918 }
1919
1920 // Peel off a layer of the pointer and update the offset appropriately.
1921 if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1922 Ptr = cast<Operator>(Ptr)->getOperand(0);
1923 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1924 if (GA->mayBeOverridden())
1925 break;
1926 Ptr = GA->getAliasee();
1927 } else {
1928 break;
1929 }
1930 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1931 } while (Visited.insert(Ptr));
1932
1933 if (!OffsetPtr) {
1934 if (!Int8Ptr) {
1935 Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1936 Prefix + ".raw_cast");
1937 Int8PtrOffset = Offset;
1938 }
1939
1940 OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1941 IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1942 Prefix + ".raw_idx");
1943 }
1944 Ptr = OffsetPtr;
1945
1946 // On the off chance we were targeting i8*, guard the bitcast here.
1947 if (Ptr->getType() != PointerTy)
1948 Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast");
1949
1950 return Ptr;
1951}
1952
1953/// \brief Test whether the given alloca partition can be promoted to a vector.
1954///
1955/// This is a quick test to check whether we can rewrite a particular alloca
1956/// partition (and its newly formed alloca) into a vector alloca with only
1957/// whole-vector loads and stores such that it could be promoted to a vector
1958/// SSA value. We only can ensure this for a limited set of operations, and we
1959/// don't want to do the rewrites unless we are confident that the result will
1960/// be promotable, so we have an early test here.
1961static bool isVectorPromotionViable(const TargetData &TD,
1962 Type *AllocaTy,
1963 AllocaPartitioning &P,
1964 uint64_t PartitionBeginOffset,
1965 uint64_t PartitionEndOffset,
1966 AllocaPartitioning::const_use_iterator I,
1967 AllocaPartitioning::const_use_iterator E) {
1968 VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1969 if (!Ty)
1970 return false;
1971
1972 uint64_t VecSize = TD.getTypeSizeInBits(Ty);
1973 uint64_t ElementSize = Ty->getScalarSizeInBits();
1974
1975 // While the definition of LLVM vectors is bitpacked, we don't support sizes
1976 // that aren't byte sized.
1977 if (ElementSize % 8)
1978 return false;
1979 assert((VecSize % 8) == 0 && "vector size not a multiple of element size?");
1980 VecSize /= 8;
1981 ElementSize /= 8;
1982
1983 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00001984 if (!I->U)
1985 continue; // Skip dead use.
1986
Chandler Carruth713aa942012-09-14 09:22:59 +00001987 uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset;
1988 uint64_t BeginIndex = BeginOffset / ElementSize;
1989 if (BeginIndex * ElementSize != BeginOffset ||
1990 BeginIndex >= Ty->getNumElements())
1991 return false;
1992 uint64_t EndOffset = I->EndOffset - PartitionBeginOffset;
1993 uint64_t EndIndex = EndOffset / ElementSize;
1994 if (EndIndex * ElementSize != EndOffset ||
1995 EndIndex > Ty->getNumElements())
1996 return false;
1997
1998 // FIXME: We should build shuffle vector instructions to handle
1999 // non-element-sized accesses.
2000 if ((EndOffset - BeginOffset) != ElementSize &&
2001 (EndOffset - BeginOffset) != VecSize)
2002 return false;
2003
Chandler Carruth77c12702012-10-01 01:49:22 +00002004 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002005 if (MI->isVolatile())
2006 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002007 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002008 const AllocaPartitioning::MemTransferOffsets &MTO
2009 = P.getMemTransferOffsets(*MTI);
2010 if (!MTO.IsSplittable)
2011 return false;
2012 }
Chandler Carruth77c12702012-10-01 01:49:22 +00002013 } else if (I->U->get()->getType()->getPointerElementType()->isStructTy()) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002014 // Disable vector promotion when there are loads or stores of an FCA.
2015 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002016 } else if (!isa<LoadInst>(I->U->getUser()) &&
2017 !isa<StoreInst>(I->U->getUser())) {
Chandler Carruth713aa942012-09-14 09:22:59 +00002018 return false;
2019 }
2020 }
2021 return true;
2022}
2023
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002024/// \brief Test whether the given alloca partition can be promoted to an int.
2025///
2026/// This is a quick test to check whether we can rewrite a particular alloca
2027/// partition (and its newly formed alloca) into an integer alloca suitable for
2028/// promotion to an SSA value. We only can ensure this for a limited set of
2029/// operations, and we don't want to do the rewrites unless we are confident
2030/// that the result will be promotable, so we have an early test here.
2031static bool isIntegerPromotionViable(const TargetData &TD,
2032 Type *AllocaTy,
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002033 uint64_t AllocBeginOffset,
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002034 AllocaPartitioning &P,
2035 AllocaPartitioning::const_use_iterator I,
2036 AllocaPartitioning::const_use_iterator E) {
2037 IntegerType *Ty = dyn_cast<IntegerType>(AllocaTy);
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002038 if (!Ty || 8*TD.getTypeStoreSize(Ty) != Ty->getBitWidth())
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002039 return false;
2040
2041 // Check the uses to ensure the uses are (likely) promoteable integer uses.
2042 // Also ensure that the alloca has a covering load or store. We don't want
2043 // promote because of some other unsplittable entry (which we may make
2044 // splittable later) and lose the ability to promote each element access.
2045 bool WholeAllocaOp = false;
2046 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002047 if (!I->U)
2048 continue; // Skip dead use.
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002049
2050 // We can't reasonably handle cases where the load or store extends past
2051 // the end of the aloca's type and into its padding.
2052 if ((I->EndOffset - AllocBeginOffset) > TD.getTypeStoreSize(Ty))
2053 return false;
2054
Chandler Carruth77c12702012-10-01 01:49:22 +00002055 if (LoadInst *LI = dyn_cast<LoadInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002056 if (LI->isVolatile() || !LI->getType()->isIntegerTy())
2057 return false;
2058 if (LI->getType() == Ty)
2059 WholeAllocaOp = true;
Chandler Carruth77c12702012-10-01 01:49:22 +00002060 } else if (StoreInst *SI = dyn_cast<StoreInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002061 if (SI->isVolatile() || !SI->getValueOperand()->getType()->isIntegerTy())
2062 return false;
2063 if (SI->getValueOperand()->getType() == Ty)
2064 WholeAllocaOp = true;
Chandler Carruth77c12702012-10-01 01:49:22 +00002065 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002066 if (MI->isVolatile())
2067 return false;
Chandler Carruth77c12702012-10-01 01:49:22 +00002068 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(I->U->getUser())) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002069 const AllocaPartitioning::MemTransferOffsets &MTO
2070 = P.getMemTransferOffsets(*MTI);
2071 if (!MTO.IsSplittable)
2072 return false;
2073 }
2074 } else {
2075 return false;
2076 }
2077 }
2078 return WholeAllocaOp;
2079}
2080
Chandler Carruth713aa942012-09-14 09:22:59 +00002081namespace {
2082/// \brief Visitor to rewrite instructions using a partition of an alloca to
2083/// use a new alloca.
2084///
2085/// Also implements the rewriting to vector-based accesses when the partition
2086/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2087/// lives here.
2088class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter,
2089 bool> {
2090 // Befriend the base class so it can delegate to private visit methods.
2091 friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>;
2092
2093 const TargetData &TD;
2094 AllocaPartitioning &P;
2095 SROA &Pass;
2096 AllocaInst &OldAI, &NewAI;
2097 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2098
2099 // If we are rewriting an alloca partition which can be written as pure
2100 // vector operations, we stash extra information here. When VecTy is
2101 // non-null, we have some strict guarantees about the rewriten alloca:
2102 // - The new alloca is exactly the size of the vector type here.
2103 // - The accesses all either map to the entire vector or to a single
2104 // element.
2105 // - The set of accessing instructions is only one of those handled above
2106 // in isVectorPromotionViable. Generally these are the same access kinds
2107 // which are promotable via mem2reg.
2108 VectorType *VecTy;
2109 Type *ElementTy;
2110 uint64_t ElementSize;
2111
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002112 // This is a convenience and flag variable that will be null unless the new
2113 // alloca has a promotion-targeted integer type due to passing
2114 // isIntegerPromotionViable above. If it is non-null does, the desired
2115 // integer type will be stored here for easy access during rewriting.
2116 IntegerType *IntPromotionTy;
2117
Chandler Carruth713aa942012-09-14 09:22:59 +00002118 // The offset of the partition user currently being rewritten.
2119 uint64_t BeginOffset, EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002120 Use *OldUse;
Chandler Carruth713aa942012-09-14 09:22:59 +00002121 Instruction *OldPtr;
2122
2123 // The name prefix to use when rewriting instructions for this alloca.
2124 std::string NamePrefix;
2125
2126public:
2127 AllocaPartitionRewriter(const TargetData &TD, AllocaPartitioning &P,
2128 AllocaPartitioning::iterator PI,
2129 SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI,
2130 uint64_t NewBeginOffset, uint64_t NewEndOffset)
2131 : TD(TD), P(P), Pass(Pass),
2132 OldAI(OldAI), NewAI(NewAI),
2133 NewAllocaBeginOffset(NewBeginOffset),
2134 NewAllocaEndOffset(NewEndOffset),
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002135 VecTy(), ElementTy(), ElementSize(), IntPromotionTy(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002136 BeginOffset(), EndOffset() {
2137 }
2138
2139 /// \brief Visit the users of the alloca partition and rewrite them.
2140 bool visitUsers(AllocaPartitioning::const_use_iterator I,
2141 AllocaPartitioning::const_use_iterator E) {
2142 if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P,
2143 NewAllocaBeginOffset, NewAllocaEndOffset,
2144 I, E)) {
2145 ++NumVectorized;
2146 VecTy = cast<VectorType>(NewAI.getAllocatedType());
2147 ElementTy = VecTy->getElementType();
2148 assert((VecTy->getScalarSizeInBits() % 8) == 0 &&
2149 "Only multiple-of-8 sized vector elements are viable");
2150 ElementSize = VecTy->getScalarSizeInBits() / 8;
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002151 } else if (isIntegerPromotionViable(TD, NewAI.getAllocatedType(),
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002152 NewAllocaBeginOffset, P, I, E)) {
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002153 IntPromotionTy = cast<IntegerType>(NewAI.getAllocatedType());
Chandler Carruth713aa942012-09-14 09:22:59 +00002154 }
2155 bool CanSROA = true;
2156 for (; I != E; ++I) {
Chandler Carruthfdb15852012-10-02 18:57:13 +00002157 if (!I->U)
2158 continue; // Skip dead uses.
Chandler Carruth713aa942012-09-14 09:22:59 +00002159 BeginOffset = I->BeginOffset;
2160 EndOffset = I->EndOffset;
Chandler Carruth77c12702012-10-01 01:49:22 +00002161 OldUse = I->U;
2162 OldPtr = cast<Instruction>(I->U->get());
Chandler Carruth713aa942012-09-14 09:22:59 +00002163 NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str();
Chandler Carruth77c12702012-10-01 01:49:22 +00002164 CanSROA &= visit(cast<Instruction>(I->U->getUser()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002165 }
2166 if (VecTy) {
2167 assert(CanSROA);
2168 VecTy = 0;
2169 ElementTy = 0;
2170 ElementSize = 0;
2171 }
2172 return CanSROA;
2173 }
2174
2175private:
2176 // Every instruction which can end up as a user must have a rewrite rule.
2177 bool visitInstruction(Instruction &I) {
2178 DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n");
2179 llvm_unreachable("No rewrite rule for this instruction!");
2180 }
2181
2182 Twine getName(const Twine &Suffix) {
2183 return NamePrefix + Suffix;
2184 }
2185
2186 Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) {
2187 assert(BeginOffset >= NewAllocaBeginOffset);
2188 APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset);
2189 return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName(""));
2190 }
2191
Chandler Carruthf710fb12012-10-03 08:14:02 +00002192 /// \brief Compute suitable alignment to access an offset into the new alloca.
2193 unsigned getOffsetAlign(uint64_t Offset) {
Chandler Carruth673850a2012-10-01 12:16:54 +00002194 unsigned NewAIAlign = NewAI.getAlignment();
2195 if (!NewAIAlign)
2196 NewAIAlign = TD.getABITypeAlignment(NewAI.getAllocatedType());
2197 return MinAlign(NewAIAlign, Offset);
2198 }
Chandler Carruthf710fb12012-10-03 08:14:02 +00002199
2200 /// \brief Compute suitable alignment to access this partition of the new
2201 /// alloca.
2202 unsigned getPartitionAlign() {
2203 return getOffsetAlign(BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002204 }
2205
Chandler Carruthf710fb12012-10-03 08:14:02 +00002206 /// \brief Compute suitable alignment to access a type at an offset of the
2207 /// new alloca.
2208 ///
2209 /// \returns zero if the type's ABI alignment is a suitable alignment,
2210 /// otherwise returns the maximal suitable alignment.
2211 unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
2212 unsigned Align = getOffsetAlign(Offset);
2213 return Align == TD.getABITypeAlignment(Ty) ? 0 : Align;
2214 }
2215
2216 /// \brief Compute suitable alignment to access a type at the beginning of
2217 /// this partition of the new alloca.
2218 ///
2219 /// See \c getOffsetTypeAlign for details; this routine delegates to it.
2220 unsigned getPartitionTypeAlign(Type *Ty) {
2221 return getOffsetTypeAlign(Ty, BeginOffset - NewAllocaBeginOffset);
Chandler Carruth673850a2012-10-01 12:16:54 +00002222 }
2223
Chandler Carruth713aa942012-09-14 09:22:59 +00002224 ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) {
2225 assert(VecTy && "Can only call getIndex when rewriting a vector");
2226 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2227 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2228 uint32_t Index = RelOffset / ElementSize;
2229 assert(Index * ElementSize == RelOffset);
2230 return IRB.getInt32(Index);
2231 }
2232
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002233 Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy,
2234 uint64_t Offset) {
2235 assert(IntPromotionTy && "Alloca is not an integer we can extract from");
Chandler Carruth81b001a2012-09-26 10:27:46 +00002236 Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2237 getName(".load"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002238 assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2239 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002240 assert(TD.getTypeStoreSize(TargetTy) + RelOffset <=
2241 TD.getTypeStoreSize(IntPromotionTy) &&
2242 "Element load outside of alloca store");
2243 uint64_t ShAmt = 8*RelOffset;
2244 if (TD.isBigEndian())
2245 ShAmt = 8*(TD.getTypeStoreSize(IntPromotionTy) -
2246 TD.getTypeStoreSize(TargetTy) - RelOffset);
2247 if (ShAmt)
2248 V = IRB.CreateLShr(V, ShAmt, getName(".shift"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002249 if (TargetTy != IntPromotionTy) {
2250 assert(TargetTy->getBitWidth() < IntPromotionTy->getBitWidth() &&
2251 "Cannot extract to a larger integer!");
2252 V = IRB.CreateTrunc(V, TargetTy, getName(".trunc"));
2253 }
2254 return V;
2255 }
2256
2257 StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) {
2258 IntegerType *Ty = cast<IntegerType>(V->getType());
2259 if (Ty == IntPromotionTy)
Chandler Carruth81b001a2012-09-26 10:27:46 +00002260 return IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002261
2262 assert(Ty->getBitWidth() < IntPromotionTy->getBitWidth() &&
2263 "Cannot insert a larger integer!");
2264 V = IRB.CreateZExt(V, IntPromotionTy, getName(".ext"));
2265 assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset");
2266 uint64_t RelOffset = Offset - NewAllocaBeginOffset;
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002267 assert(TD.getTypeStoreSize(Ty) + RelOffset <=
2268 TD.getTypeStoreSize(IntPromotionTy) &&
2269 "Element store outside of alloca store");
2270 uint64_t ShAmt = 8*RelOffset;
2271 if (TD.isBigEndian())
2272 ShAmt = 8*(TD.getTypeStoreSize(IntPromotionTy) - TD.getTypeStoreSize(Ty)
2273 - RelOffset);
2274 if (ShAmt)
2275 V = IRB.CreateShl(V, ShAmt, getName(".shift"));
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002276
Chandler Carruthaa3cb332012-10-04 10:39:28 +00002277 APInt Mask = ~Ty->getMask().zext(IntPromotionTy->getBitWidth()).shl(ShAmt);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002278 Value *Old = IRB.CreateAnd(IRB.CreateAlignedLoad(&NewAI,
2279 NewAI.getAlignment(),
2280 getName(".oldload")),
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002281 Mask, getName(".mask"));
Chandler Carruth81b001a2012-09-26 10:27:46 +00002282 return IRB.CreateAlignedStore(IRB.CreateOr(Old, V, getName(".insert")),
2283 &NewAI, NewAI.getAlignment());
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002284 }
2285
Chandler Carruth713aa942012-09-14 09:22:59 +00002286 void deleteIfTriviallyDead(Value *V) {
2287 Instruction *I = cast<Instruction>(V);
2288 if (isInstructionTriviallyDead(I))
2289 Pass.DeadInsts.push_back(I);
2290 }
2291
2292 Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) {
2293 if (V->getType()->isIntegerTy() && Ty->isPointerTy())
2294 return IRB.CreateIntToPtr(V, Ty);
2295 if (V->getType()->isPointerTy() && Ty->isIntegerTy())
2296 return IRB.CreatePtrToInt(V, Ty);
2297
2298 return IRB.CreateBitCast(V, Ty);
2299 }
2300
2301 bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) {
2302 Value *Result;
2303 if (LI.getType() == VecTy->getElementType() ||
2304 BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002305 Result = IRB.CreateExtractElement(
2306 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2307 getIndex(IRB, BeginOffset), getName(".extract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002308 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002309 Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2310 getName(".load"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002311 }
2312 if (Result->getType() != LI.getType())
2313 Result = getValueCast(IRB, Result, LI.getType());
2314 LI.replaceAllUsesWith(Result);
2315 Pass.DeadInsts.push_back(&LI);
2316
2317 DEBUG(dbgs() << " to: " << *Result << "\n");
2318 return true;
2319 }
2320
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002321 bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) {
2322 assert(!LI.isVolatile());
2323 Value *Result = extractInteger(IRB, cast<IntegerType>(LI.getType()),
2324 BeginOffset);
2325 LI.replaceAllUsesWith(Result);
2326 Pass.DeadInsts.push_back(&LI);
2327 DEBUG(dbgs() << " to: " << *Result << "\n");
2328 return true;
2329 }
2330
Chandler Carruth713aa942012-09-14 09:22:59 +00002331 bool visitLoadInst(LoadInst &LI) {
2332 DEBUG(dbgs() << " original: " << LI << "\n");
2333 Value *OldOp = LI.getOperand(0);
2334 assert(OldOp == OldPtr);
2335 IRBuilder<> IRB(&LI);
2336
2337 if (VecTy)
2338 return rewriteVectorizedLoadInst(IRB, LI, OldOp);
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002339 if (IntPromotionTy)
2340 return rewriteIntegerLoad(IRB, LI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002341
2342 Value *NewPtr = getAdjustedAllocaPtr(IRB,
2343 LI.getPointerOperand()->getType());
2344 LI.setOperand(0, NewPtr);
Chandler Carruthf710fb12012-10-03 08:14:02 +00002345 LI.setAlignment(getPartitionTypeAlign(LI.getType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002346 DEBUG(dbgs() << " to: " << LI << "\n");
2347
2348 deleteIfTriviallyDead(OldOp);
2349 return NewPtr == &NewAI && !LI.isVolatile();
2350 }
2351
2352 bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI,
2353 Value *OldOp) {
2354 Value *V = SI.getValueOperand();
2355 if (V->getType() == ElementTy ||
2356 BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) {
2357 if (V->getType() != ElementTy)
2358 V = getValueCast(IRB, V, ElementTy);
Chandler Carruth81b001a2012-09-26 10:27:46 +00002359 LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2360 getName(".load"));
2361 V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset),
Chandler Carruth713aa942012-09-14 09:22:59 +00002362 getName(".insert"));
2363 } else if (V->getType() != VecTy) {
2364 V = getValueCast(IRB, V, VecTy);
2365 }
Chandler Carruth81b001a2012-09-26 10:27:46 +00002366 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002367 Pass.DeadInsts.push_back(&SI);
2368
2369 (void)Store;
2370 DEBUG(dbgs() << " to: " << *Store << "\n");
2371 return true;
2372 }
2373
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002374 bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) {
2375 assert(!SI.isVolatile());
2376 StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset);
2377 Pass.DeadInsts.push_back(&SI);
2378 (void)Store;
2379 DEBUG(dbgs() << " to: " << *Store << "\n");
2380 return true;
2381 }
2382
Chandler Carruth713aa942012-09-14 09:22:59 +00002383 bool visitStoreInst(StoreInst &SI) {
2384 DEBUG(dbgs() << " original: " << SI << "\n");
2385 Value *OldOp = SI.getOperand(1);
2386 assert(OldOp == OldPtr);
2387 IRBuilder<> IRB(&SI);
2388
2389 if (VecTy)
2390 return rewriteVectorizedStoreInst(IRB, SI, OldOp);
Chandler Carruthbc4021f2012-09-24 00:34:20 +00002391 if (IntPromotionTy)
2392 return rewriteIntegerStore(IRB, SI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002393
Chandler Carruthb2d98c22012-10-04 12:33:50 +00002394 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2395 // alloca that should be re-examined after promoting this alloca.
2396 if (SI.getValueOperand()->getType()->isPointerTy())
2397 if (AllocaInst *AI = dyn_cast<AllocaInst>(SI.getValueOperand()
2398 ->stripInBoundsOffsets()))
2399 Pass.PostPromotionWorklist.insert(AI);
2400
Chandler Carruth713aa942012-09-14 09:22:59 +00002401 Value *NewPtr = getAdjustedAllocaPtr(IRB,
2402 SI.getPointerOperand()->getType());
2403 SI.setOperand(1, NewPtr);
Chandler Carruthf710fb12012-10-03 08:14:02 +00002404 SI.setAlignment(getPartitionTypeAlign(SI.getValueOperand()->getType()));
Chandler Carruth713aa942012-09-14 09:22:59 +00002405 DEBUG(dbgs() << " to: " << SI << "\n");
2406
2407 deleteIfTriviallyDead(OldOp);
2408 return NewPtr == &NewAI && !SI.isVolatile();
2409 }
2410
2411 bool visitMemSetInst(MemSetInst &II) {
2412 DEBUG(dbgs() << " original: " << II << "\n");
2413 IRBuilder<> IRB(&II);
2414 assert(II.getRawDest() == OldPtr);
2415
2416 // If the memset has a variable size, it cannot be split, just adjust the
2417 // pointer to the new alloca.
2418 if (!isa<Constant>(II.getLength())) {
2419 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002420 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruthf710fb12012-10-03 08:14:02 +00002421 II.setAlignment(ConstantInt::get(CstTy, getPartitionAlign()));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002422
Chandler Carruth713aa942012-09-14 09:22:59 +00002423 deleteIfTriviallyDead(OldPtr);
2424 return false;
2425 }
2426
2427 // Record this instruction for deletion.
2428 if (Pass.DeadSplitInsts.insert(&II))
2429 Pass.DeadInsts.push_back(&II);
2430
2431 Type *AllocaTy = NewAI.getAllocatedType();
2432 Type *ScalarTy = AllocaTy->getScalarType();
2433
2434 // If this doesn't map cleanly onto the alloca type, and that type isn't
2435 // a single value type, just emit a memset.
2436 if (!VecTy && (BeginOffset != NewAllocaBeginOffset ||
2437 EndOffset != NewAllocaEndOffset ||
2438 !AllocaTy->isSingleValueType() ||
2439 !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) {
2440 Type *SizeTy = II.getLength()->getType();
2441 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
Chandler Carruth713aa942012-09-14 09:22:59 +00002442 CallInst *New
2443 = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB,
2444 II.getRawDest()->getType()),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002445 II.getValue(), Size, getPartitionAlign(),
Chandler Carruth713aa942012-09-14 09:22:59 +00002446 II.isVolatile());
2447 (void)New;
2448 DEBUG(dbgs() << " to: " << *New << "\n");
2449 return false;
2450 }
2451
2452 // If we can represent this as a simple value, we have to build the actual
2453 // value to store, which requires expanding the byte present in memset to
2454 // a sensible representation for the alloca type. This is essentially
2455 // splatting the byte to a sufficiently wide integer, bitcasting to the
2456 // desired scalar type, and splatting it across any desired vector type.
2457 Value *V = II.getValue();
2458 IntegerType *VTy = cast<IntegerType>(V->getType());
2459 Type *IntTy = Type::getIntNTy(VTy->getContext(),
2460 TD.getTypeSizeInBits(ScalarTy));
2461 if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth())
2462 V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")),
2463 ConstantExpr::getUDiv(
2464 Constant::getAllOnesValue(IntTy),
2465 ConstantExpr::getZExt(
2466 Constant::getAllOnesValue(V->getType()),
2467 IntTy)),
2468 getName(".isplat"));
2469 if (V->getType() != ScalarTy) {
2470 if (ScalarTy->isPointerTy())
2471 V = IRB.CreateIntToPtr(V, ScalarTy);
2472 else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy())
2473 V = IRB.CreateBitCast(V, ScalarTy);
2474 else if (ScalarTy->isIntegerTy())
2475 llvm_unreachable("Computed different integer types with equal widths");
2476 else
2477 llvm_unreachable("Invalid scalar type");
2478 }
2479
2480 // If this is an element-wide memset of a vectorizable alloca, insert it.
2481 if (VecTy && (BeginOffset > NewAllocaBeginOffset ||
2482 EndOffset < NewAllocaEndOffset)) {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002483 StoreInst *Store = IRB.CreateAlignedStore(
2484 IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI,
2485 NewAI.getAlignment(),
2486 getName(".load")),
2487 V, getIndex(IRB, BeginOffset),
Chandler Carruth713aa942012-09-14 09:22:59 +00002488 getName(".insert")),
Chandler Carruth81b001a2012-09-26 10:27:46 +00002489 &NewAI, NewAI.getAlignment());
Chandler Carruth713aa942012-09-14 09:22:59 +00002490 (void)Store;
2491 DEBUG(dbgs() << " to: " << *Store << "\n");
2492 return true;
2493 }
2494
2495 // Splat to a vector if needed.
2496 if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) {
2497 VectorType *SplatSourceTy = VectorType::get(V->getType(), 1);
2498 V = IRB.CreateShuffleVector(
2499 IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V,
2500 IRB.getInt32(0), getName(".vsplat.insert")),
2501 UndefValue::get(SplatSourceTy),
2502 ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)),
2503 getName(".vsplat.shuffle"));
2504 assert(V->getType() == VecTy);
2505 }
2506
Chandler Carruth81b001a2012-09-26 10:27:46 +00002507 Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2508 II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002509 (void)New;
2510 DEBUG(dbgs() << " to: " << *New << "\n");
2511 return !II.isVolatile();
2512 }
2513
2514 bool visitMemTransferInst(MemTransferInst &II) {
2515 // Rewriting of memory transfer instructions can be a bit tricky. We break
2516 // them into two categories: split intrinsics and unsplit intrinsics.
2517
2518 DEBUG(dbgs() << " original: " << II << "\n");
2519 IRBuilder<> IRB(&II);
2520
2521 assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2522 bool IsDest = II.getRawDest() == OldPtr;
2523
2524 const AllocaPartitioning::MemTransferOffsets &MTO
2525 = P.getMemTransferOffsets(II);
2526
Chandler Carruth673850a2012-10-01 12:16:54 +00002527 // Compute the relative offset within the transfer.
2528 unsigned IntPtrWidth = TD.getPointerSizeInBits();
2529 APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin
2530 : MTO.SourceBegin));
2531
2532 unsigned Align = II.getAlignment();
2533 if (Align > 1)
2534 Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
Chandler Carruthf710fb12012-10-03 08:14:02 +00002535 MinAlign(II.getAlignment(), getPartitionAlign()));
Chandler Carruth673850a2012-10-01 12:16:54 +00002536
Chandler Carruth713aa942012-09-14 09:22:59 +00002537 // For unsplit intrinsics, we simply modify the source and destination
2538 // pointers in place. This isn't just an optimization, it is a matter of
2539 // correctness. With unsplit intrinsics we may be dealing with transfers
2540 // within a single alloca before SROA ran, or with transfers that have
2541 // a variable length. We may also be dealing with memmove instead of
2542 // memcpy, and so simply updating the pointers is the necessary for us to
2543 // update both source and dest of a single call.
2544 if (!MTO.IsSplittable) {
2545 Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2546 if (IsDest)
2547 II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType()));
2548 else
2549 II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType()));
2550
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002551 Type *CstTy = II.getAlignmentCst()->getType();
Chandler Carruth673850a2012-10-01 12:16:54 +00002552 II.setAlignment(ConstantInt::get(CstTy, Align));
Chandler Carruthd0ac06d2012-09-26 10:59:22 +00002553
Chandler Carruth713aa942012-09-14 09:22:59 +00002554 DEBUG(dbgs() << " to: " << II << "\n");
2555 deleteIfTriviallyDead(OldOp);
2556 return false;
2557 }
2558 // For split transfer intrinsics we have an incredibly useful assurance:
2559 // the source and destination do not reside within the same alloca, and at
2560 // least one of them does not escape. This means that we can replace
2561 // memmove with memcpy, and we don't need to worry about all manner of
2562 // downsides to splitting and transforming the operations.
2563
Chandler Carruth713aa942012-09-14 09:22:59 +00002564 // If this doesn't map cleanly onto the alloca type, and that type isn't
2565 // a single value type, just emit a memcpy.
2566 bool EmitMemCpy
2567 = !VecTy && (BeginOffset != NewAllocaBeginOffset ||
2568 EndOffset != NewAllocaEndOffset ||
2569 !NewAI.getAllocatedType()->isSingleValueType());
2570
2571 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2572 // size hasn't been shrunk based on analysis of the viable range, this is
2573 // a no-op.
2574 if (EmitMemCpy && &OldAI == &NewAI) {
2575 uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin;
2576 uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd;
2577 // Ensure the start lines up.
2578 assert(BeginOffset == OrigBegin);
Benjamin Kramerd0807692012-09-14 13:08:09 +00002579 (void)OrigBegin;
Chandler Carruth713aa942012-09-14 09:22:59 +00002580
2581 // Rewrite the size as needed.
2582 if (EndOffset != OrigEnd)
2583 II.setLength(ConstantInt::get(II.getLength()->getType(),
2584 EndOffset - BeginOffset));
2585 return false;
2586 }
2587 // Record this instruction for deletion.
2588 if (Pass.DeadSplitInsts.insert(&II))
2589 Pass.DeadInsts.push_back(&II);
2590
2591 bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset ||
2592 EndOffset < NewAllocaEndOffset);
2593
2594 Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2595 : II.getRawDest()->getType();
2596 if (!EmitMemCpy)
2597 OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo()
2598 : NewAI.getType();
2599
2600 // Compute the other pointer, folding as much as possible to produce
2601 // a single, simple GEP in most cases.
2602 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2603 OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy,
2604 getName("." + OtherPtr->getName()));
2605
2606 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2607 // alloca that should be re-examined after rewriting this instruction.
2608 if (AllocaInst *AI
2609 = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
Chandler Carruthb3dca3f2012-09-26 07:41:40 +00002610 Pass.Worklist.insert(AI);
Chandler Carruth713aa942012-09-14 09:22:59 +00002611
2612 if (EmitMemCpy) {
2613 Value *OurPtr
2614 = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType()
2615 : II.getRawSource()->getType());
2616 Type *SizeTy = II.getLength()->getType();
2617 Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset);
2618
2619 CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2620 IsDest ? OtherPtr : OurPtr,
Chandler Carruth81b001a2012-09-26 10:27:46 +00002621 Size, Align, II.isVolatile());
Chandler Carruth713aa942012-09-14 09:22:59 +00002622 (void)New;
2623 DEBUG(dbgs() << " to: " << *New << "\n");
2624 return false;
2625 }
2626
Chandler Carruth322e9ba2012-10-03 08:26:28 +00002627 // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2628 // is equivalent to 1, but that isn't true if we end up rewriting this as
2629 // a load or store.
2630 if (!Align)
2631 Align = 1;
2632
Chandler Carruth713aa942012-09-14 09:22:59 +00002633 Value *SrcPtr = OtherPtr;
2634 Value *DstPtr = &NewAI;
2635 if (!IsDest)
2636 std::swap(SrcPtr, DstPtr);
2637
2638 Value *Src;
2639 if (IsVectorElement && !IsDest) {
2640 // We have to extract rather than load.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002641 Src = IRB.CreateExtractElement(
2642 IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")),
2643 getIndex(IRB, BeginOffset),
2644 getName(".copyextract"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002645 } else {
Chandler Carruth81b001a2012-09-26 10:27:46 +00002646 Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2647 getName(".copyload"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002648 }
2649
2650 if (IsVectorElement && IsDest) {
2651 // We have to insert into a loaded copy before storing.
Chandler Carruth81b001a2012-09-26 10:27:46 +00002652 Src = IRB.CreateInsertElement(
2653 IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")),
2654 Src, getIndex(IRB, BeginOffset),
2655 getName(".insert"));
Chandler Carruth713aa942012-09-14 09:22:59 +00002656 }
2657
Chandler Carruth81b001a2012-09-26 10:27:46 +00002658 StoreInst *Store = cast<StoreInst>(
2659 IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2660 (void)Store;
Chandler Carruth713aa942012-09-14 09:22:59 +00002661 DEBUG(dbgs() << " to: " << *Store << "\n");
2662 return !II.isVolatile();
2663 }
2664
2665 bool visitIntrinsicInst(IntrinsicInst &II) {
2666 assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2667 II.getIntrinsicID() == Intrinsic::lifetime_end);
2668 DEBUG(dbgs() << " original: " << II << "\n");
2669 IRBuilder<> IRB(&II);
2670 assert(II.getArgOperand(1) == OldPtr);
2671
2672 // Record this instruction for deletion.
2673 if (Pass.DeadSplitInsts.insert(&II))
2674 Pass.DeadInsts.push_back(&II);
2675
2676 ConstantInt *Size
2677 = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2678 EndOffset - BeginOffset);
2679 Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType());
2680 Value *New;
2681 if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2682 New = IRB.CreateLifetimeStart(Ptr, Size);
2683 else
2684 New = IRB.CreateLifetimeEnd(Ptr, Size);
2685
2686 DEBUG(dbgs() << " to: " << *New << "\n");
2687 return true;
2688 }
2689
Chandler Carruth713aa942012-09-14 09:22:59 +00002690 bool visitPHINode(PHINode &PN) {
2691 DEBUG(dbgs() << " original: " << PN << "\n");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002692
Chandler Carruth713aa942012-09-14 09:22:59 +00002693 // We would like to compute a new pointer in only one place, but have it be
2694 // as local as possible to the PHI. To do that, we re-use the location of
2695 // the old pointer, which necessarily must be in the right position to
2696 // dominate the PHI.
2697 IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr));
2698
Chandler Carruth713aa942012-09-14 09:22:59 +00002699 Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002700 // Replace the operands which were using the old pointer.
2701 User::op_iterator OI = PN.op_begin(), OE = PN.op_end();
2702 for (; OI != OE; ++OI)
2703 if (*OI == OldPtr)
2704 *OI = NewPtr;
Chandler Carruth713aa942012-09-14 09:22:59 +00002705
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002706 DEBUG(dbgs() << " to: " << PN << "\n");
2707 deleteIfTriviallyDead(OldPtr);
2708 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00002709 }
2710
2711 bool visitSelectInst(SelectInst &SI) {
2712 DEBUG(dbgs() << " original: " << SI << "\n");
2713 IRBuilder<> IRB(&SI);
2714
2715 // Find the operand we need to rewrite here.
2716 bool IsTrueVal = SI.getTrueValue() == OldPtr;
2717 if (IsTrueVal)
2718 assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!");
2719 else
2720 assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!");
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002721
Chandler Carruth713aa942012-09-14 09:22:59 +00002722 Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType());
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002723 SI.setOperand(IsTrueVal ? 1 : 2, NewPtr);
2724 DEBUG(dbgs() << " to: " << SI << "\n");
Chandler Carruth713aa942012-09-14 09:22:59 +00002725 deleteIfTriviallyDead(OldPtr);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00002726 return false;
Chandler Carruth713aa942012-09-14 09:22:59 +00002727 }
2728
2729};
2730}
2731
Chandler Carruthc370acd2012-09-18 12:57:43 +00002732namespace {
2733/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2734///
2735/// This pass aggressively rewrites all aggregate loads and stores on
2736/// a particular pointer (or any pointer derived from it which we can identify)
2737/// with scalar loads and stores.
2738class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2739 // Befriend the base class so it can delegate to private visit methods.
2740 friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2741
2742 const TargetData &TD;
2743
2744 /// Queue of pointer uses to analyze and potentially rewrite.
2745 SmallVector<Use *, 8> Queue;
2746
2747 /// Set to prevent us from cycling with phi nodes and loops.
2748 SmallPtrSet<User *, 8> Visited;
2749
2750 /// The current pointer use being rewritten. This is used to dig up the used
2751 /// value (as opposed to the user).
2752 Use *U;
2753
2754public:
2755 AggLoadStoreRewriter(const TargetData &TD) : TD(TD) {}
2756
2757 /// Rewrite loads and stores through a pointer and all pointers derived from
2758 /// it.
2759 bool rewrite(Instruction &I) {
2760 DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
2761 enqueueUsers(I);
2762 bool Changed = false;
2763 while (!Queue.empty()) {
2764 U = Queue.pop_back_val();
2765 Changed |= visit(cast<Instruction>(U->getUser()));
2766 }
2767 return Changed;
2768 }
2769
2770private:
2771 /// Enqueue all the users of the given instruction for further processing.
2772 /// This uses a set to de-duplicate users.
2773 void enqueueUsers(Instruction &I) {
2774 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2775 ++UI)
2776 if (Visited.insert(*UI))
2777 Queue.push_back(&UI.getUse());
2778 }
2779
2780 // Conservative default is to not rewrite anything.
2781 bool visitInstruction(Instruction &I) { return false; }
2782
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002783 /// \brief Generic recursive split emission class.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002784 template <typename Derived>
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002785 class OpSplitter {
2786 protected:
2787 /// The builder used to form new instructions.
2788 IRBuilder<> IRB;
2789 /// The indices which to be used with insert- or extractvalue to select the
2790 /// appropriate value within the aggregate.
2791 SmallVector<unsigned, 4> Indices;
2792 /// The indices to a GEP instruction which will move Ptr to the correct slot
2793 /// within the aggregate.
2794 SmallVector<Value *, 4> GEPIndices;
2795 /// The base pointer of the original op, used as a base for GEPing the
2796 /// split operations.
2797 Value *Ptr;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002798
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002799 /// Initialize the splitter with an insertion point, Ptr and start with a
2800 /// single zero GEP index.
2801 OpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002802 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002803
2804 public:
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002805 /// \brief Generic recursive split emission routine.
2806 ///
2807 /// This method recursively splits an aggregate op (load or store) into
2808 /// scalar or vector ops. It splits recursively until it hits a single value
2809 /// and emits that single value operation via the template argument.
2810 ///
2811 /// The logic of this routine relies on GEPs and insertvalue and
2812 /// extractvalue all operating with the same fundamental index list, merely
2813 /// formatted differently (GEPs need actual values).
2814 ///
2815 /// \param Ty The type being split recursively into smaller ops.
2816 /// \param Agg The aggregate value being built up or stored, depending on
2817 /// whether this is splitting a load or a store respectively.
2818 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2819 if (Ty->isSingleValueType())
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002820 return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002821
2822 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2823 unsigned OldSize = Indices.size();
2824 (void)OldSize;
2825 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2826 ++Idx) {
2827 assert(Indices.size() == OldSize && "Did not return to the old size");
2828 Indices.push_back(Idx);
2829 GEPIndices.push_back(IRB.getInt32(Idx));
2830 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2831 GEPIndices.pop_back();
2832 Indices.pop_back();
2833 }
2834 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002835 }
Chandler Carruthc370acd2012-09-18 12:57:43 +00002836
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002837 if (StructType *STy = dyn_cast<StructType>(Ty)) {
2838 unsigned OldSize = Indices.size();
2839 (void)OldSize;
2840 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2841 ++Idx) {
2842 assert(Indices.size() == OldSize && "Did not return to the old size");
2843 Indices.push_back(Idx);
2844 GEPIndices.push_back(IRB.getInt32(Idx));
2845 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2846 GEPIndices.pop_back();
2847 Indices.pop_back();
2848 }
2849 return;
Chandler Carruthc370acd2012-09-18 12:57:43 +00002850 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002851
2852 llvm_unreachable("Only arrays and structs are aggregate loadable types");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002853 }
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002854 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002855
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002856 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002857 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00002858 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
Chandler Carruthc370acd2012-09-18 12:57:43 +00002859
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002860 /// Emit a leaf load of a single value. This is called at the leaves of the
2861 /// recursive emission to actually load values.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002862 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002863 assert(Ty->isSingleValueType());
2864 // Load the single value and insert it using the indices.
2865 Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices,
2866 Name + ".gep"),
2867 Name + ".load");
2868 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2869 DEBUG(dbgs() << " to: " << *Load << "\n");
2870 }
2871 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002872
2873 bool visitLoadInst(LoadInst &LI) {
2874 assert(LI.getPointerOperand() == *U);
2875 if (!LI.isSimple() || LI.getType()->isSingleValueType())
2876 return false;
2877
2878 // We have an aggregate being loaded, split it apart.
2879 DEBUG(dbgs() << " original: " << LI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002880 LoadOpSplitter Splitter(&LI, *U);
Chandler Carruthc370acd2012-09-18 12:57:43 +00002881 Value *V = UndefValue::get(LI.getType());
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002882 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002883 LI.replaceAllUsesWith(V);
2884 LI.eraseFromParent();
2885 return true;
2886 }
2887
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002888 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002889 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
Benjamin Kramer3b682bd2012-09-18 17:11:47 +00002890 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002891
2892 /// Emit a leaf store of a single value. This is called at the leaves of the
2893 /// recursive emission to actually produce stores.
Benjamin Kramer371d5d82012-09-18 17:06:32 +00002894 void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002895 assert(Ty->isSingleValueType());
2896 // Extract the single value and store it using the indices.
2897 Value *Store = IRB.CreateStore(
2898 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2899 IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2900 (void)Store;
2901 DEBUG(dbgs() << " to: " << *Store << "\n");
2902 }
2903 };
Chandler Carruthc370acd2012-09-18 12:57:43 +00002904
2905 bool visitStoreInst(StoreInst &SI) {
2906 if (!SI.isSimple() || SI.getPointerOperand() != *U)
2907 return false;
2908 Value *V = SI.getValueOperand();
2909 if (V->getType()->isSingleValueType())
2910 return false;
2911
2912 // We have an aggregate being stored, split it apart.
2913 DEBUG(dbgs() << " original: " << SI << "\n");
Benjamin Kramer6e67b252012-09-18 16:20:46 +00002914 StoreOpSplitter Splitter(&SI, *U);
2915 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
Chandler Carruthc370acd2012-09-18 12:57:43 +00002916 SI.eraseFromParent();
2917 return true;
2918 }
2919
2920 bool visitBitCastInst(BitCastInst &BC) {
2921 enqueueUsers(BC);
2922 return false;
2923 }
2924
2925 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2926 enqueueUsers(GEPI);
2927 return false;
2928 }
2929
2930 bool visitPHINode(PHINode &PN) {
2931 enqueueUsers(PN);
2932 return false;
2933 }
2934
2935 bool visitSelectInst(SelectInst &SI) {
2936 enqueueUsers(SI);
2937 return false;
2938 }
2939};
2940}
2941
Chandler Carruth713aa942012-09-14 09:22:59 +00002942/// \brief Try to find a partition of the aggregate type passed in for a given
2943/// offset and size.
2944///
2945/// This recurses through the aggregate type and tries to compute a subtype
2946/// based on the offset and size. When the offset and size span a sub-section
Chandler Carruth6b547a22012-09-14 11:08:31 +00002947/// of an array, it will even compute a new array type for that sub-section,
2948/// and the same for structs.
2949///
2950/// Note that this routine is very strict and tries to find a partition of the
2951/// type which produces the *exact* right offset and size. It is not forgiving
2952/// when the size or offset cause either end of type-based partition to be off.
2953/// Also, this is a best-effort routine. It is reasonable to give up and not
2954/// return a type if necessary.
Chandler Carruth713aa942012-09-14 09:22:59 +00002955static Type *getTypePartition(const TargetData &TD, Type *Ty,
2956 uint64_t Offset, uint64_t Size) {
2957 if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size)
2958 return Ty;
2959
2960 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
2961 // We can't partition pointers...
2962 if (SeqTy->isPointerTy())
2963 return 0;
2964
2965 Type *ElementTy = SeqTy->getElementType();
2966 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
2967 uint64_t NumSkippedElements = Offset / ElementSize;
2968 if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy))
2969 if (NumSkippedElements >= ArrTy->getNumElements())
2970 return 0;
2971 if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy))
2972 if (NumSkippedElements >= VecTy->getNumElements())
2973 return 0;
2974 Offset -= NumSkippedElements * ElementSize;
2975
2976 // First check if we need to recurse.
2977 if (Offset > 0 || Size < ElementSize) {
2978 // Bail if the partition ends in a different array element.
2979 if ((Offset + Size) > ElementSize)
2980 return 0;
2981 // Recurse through the element type trying to peel off offset bytes.
2982 return getTypePartition(TD, ElementTy, Offset, Size);
2983 }
2984 assert(Offset == 0);
2985
2986 if (Size == ElementSize)
2987 return ElementTy;
2988 assert(Size > ElementSize);
2989 uint64_t NumElements = Size / ElementSize;
2990 if (NumElements * ElementSize != Size)
2991 return 0;
2992 return ArrayType::get(ElementTy, NumElements);
2993 }
2994
2995 StructType *STy = dyn_cast<StructType>(Ty);
2996 if (!STy)
2997 return 0;
2998
2999 const StructLayout *SL = TD.getStructLayout(STy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003000 if (Offset >= SL->getSizeInBytes())
Chandler Carruth713aa942012-09-14 09:22:59 +00003001 return 0;
3002 uint64_t EndOffset = Offset + Size;
3003 if (EndOffset > SL->getSizeInBytes())
3004 return 0;
3005
3006 unsigned Index = SL->getElementContainingOffset(Offset);
Chandler Carruth713aa942012-09-14 09:22:59 +00003007 Offset -= SL->getElementOffset(Index);
3008
3009 Type *ElementTy = STy->getElementType(Index);
3010 uint64_t ElementSize = TD.getTypeAllocSize(ElementTy);
3011 if (Offset >= ElementSize)
3012 return 0; // The offset points into alignment padding.
3013
3014 // See if any partition must be contained by the element.
3015 if (Offset > 0 || Size < ElementSize) {
3016 if ((Offset + Size) > ElementSize)
3017 return 0;
Chandler Carruth713aa942012-09-14 09:22:59 +00003018 return getTypePartition(TD, ElementTy, Offset, Size);
3019 }
3020 assert(Offset == 0);
3021
3022 if (Size == ElementSize)
3023 return ElementTy;
3024
3025 StructType::element_iterator EI = STy->element_begin() + Index,
3026 EE = STy->element_end();
3027 if (EndOffset < SL->getSizeInBytes()) {
3028 unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3029 if (Index == EndIndex)
3030 return 0; // Within a single element and its padding.
Chandler Carruth6b547a22012-09-14 11:08:31 +00003031
3032 // Don't try to form "natural" types if the elements don't line up with the
3033 // expected size.
3034 // FIXME: We could potentially recurse down through the last element in the
3035 // sub-struct to find a natural end point.
3036 if (SL->getElementOffset(EndIndex) != EndOffset)
3037 return 0;
3038
Chandler Carruth713aa942012-09-14 09:22:59 +00003039 assert(Index < EndIndex);
Chandler Carruth713aa942012-09-14 09:22:59 +00003040 EE = STy->element_begin() + EndIndex;
3041 }
3042
3043 // Try to build up a sub-structure.
3044 SmallVector<Type *, 4> ElementTys;
3045 do {
3046 ElementTys.push_back(*EI++);
3047 } while (EI != EE);
3048 StructType *SubTy = StructType::get(STy->getContext(), ElementTys,
3049 STy->isPacked());
3050 const StructLayout *SubSL = TD.getStructLayout(SubTy);
Chandler Carruth6b547a22012-09-14 11:08:31 +00003051 if (Size != SubSL->getSizeInBytes())
3052 return 0; // The sub-struct doesn't have quite the size needed.
Chandler Carruth713aa942012-09-14 09:22:59 +00003053
Chandler Carruth6b547a22012-09-14 11:08:31 +00003054 return SubTy;
Chandler Carruth713aa942012-09-14 09:22:59 +00003055}
3056
3057/// \brief Rewrite an alloca partition's users.
3058///
3059/// This routine drives both of the rewriting goals of the SROA pass. It tries
3060/// to rewrite uses of an alloca partition to be conducive for SSA value
3061/// promotion. If the partition needs a new, more refined alloca, this will
3062/// build that new alloca, preserving as much type information as possible, and
3063/// rewrite the uses of the old alloca to point at the new one and have the
3064/// appropriate new offsets. It also evaluates how successful the rewrite was
3065/// at enabling promotion and if it was successful queues the alloca to be
3066/// promoted.
3067bool SROA::rewriteAllocaPartition(AllocaInst &AI,
3068 AllocaPartitioning &P,
3069 AllocaPartitioning::iterator PI) {
3070 uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset;
Chandler Carruthfdb15852012-10-02 18:57:13 +00003071 bool IsLive = false;
3072 for (AllocaPartitioning::use_iterator UI = P.use_begin(PI),
3073 UE = P.use_end(PI);
3074 UI != UE && !IsLive; ++UI)
3075 if (UI->U)
3076 IsLive = true;
3077 if (!IsLive)
Chandler Carruth713aa942012-09-14 09:22:59 +00003078 return false; // No live uses left of this partition.
3079
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003080 DEBUG(dbgs() << "Speculating PHIs and selects in partition "
3081 << "[" << PI->BeginOffset << "," << PI->EndOffset << ")\n");
3082
3083 PHIOrSelectSpeculator Speculator(*TD, P, *this);
3084 DEBUG(dbgs() << " speculating ");
3085 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carrutha346f462012-10-02 17:49:47 +00003086 Speculator.visitUsers(PI);
Chandler Carruth1e1b16c2012-10-01 10:54:05 +00003087
Chandler Carruth713aa942012-09-14 09:22:59 +00003088 // Try to compute a friendly type for this partition of the alloca. This
3089 // won't always succeed, in which case we fall back to a legal integer type
3090 // or an i8 array of an appropriate size.
3091 Type *AllocaTy = 0;
3092 if (Type *PartitionTy = P.getCommonType(PI))
3093 if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize)
3094 AllocaTy = PartitionTy;
3095 if (!AllocaTy)
3096 if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(),
3097 PI->BeginOffset, AllocaSize))
3098 AllocaTy = PartitionTy;
3099 if ((!AllocaTy ||
3100 (AllocaTy->isArrayTy() &&
3101 AllocaTy->getArrayElementType()->isIntegerTy())) &&
3102 TD->isLegalInteger(AllocaSize * 8))
3103 AllocaTy = Type::getIntNTy(*C, AllocaSize * 8);
3104 if (!AllocaTy)
3105 AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize);
Chandler Carruthb3dd9a12012-09-14 10:26:34 +00003106 assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize);
Chandler Carruth713aa942012-09-14 09:22:59 +00003107
3108 // Check for the case where we're going to rewrite to a new alloca of the
3109 // exact same type as the original, and with the same access offsets. In that
3110 // case, re-use the existing alloca, but still run through the rewriter to
3111 // performe phi and select speculation.
3112 AllocaInst *NewAI;
3113 if (AllocaTy == AI.getAllocatedType()) {
3114 assert(PI->BeginOffset == 0 &&
3115 "Non-zero begin offset but same alloca type");
3116 assert(PI == P.begin() && "Begin offset is zero on later partition");
3117 NewAI = &AI;
3118 } else {
Chandler Carruthb67c9a52012-09-29 10:41:21 +00003119 unsigned Alignment = AI.getAlignment();
3120 if (!Alignment) {
3121 // The minimum alignment which users can rely on when the explicit
3122 // alignment is omitted or zero is that required by the ABI for this
3123 // type.
3124 Alignment = TD->getABITypeAlignment(AI.getAllocatedType());
3125 }
3126 Alignment = MinAlign(Alignment, PI->BeginOffset);
3127 // If we will get at least this much alignment from the type alone, leave
3128 // the alloca's alignment unconstrained.
3129 if (Alignment <= TD->getABITypeAlignment(AllocaTy))
3130 Alignment = 0;
3131 NewAI = new AllocaInst(AllocaTy, 0, Alignment,
Chandler Carruth713aa942012-09-14 09:22:59 +00003132 AI.getName() + ".sroa." + Twine(PI - P.begin()),
3133 &AI);
3134 ++NumNewAllocas;
3135 }
3136
3137 DEBUG(dbgs() << "Rewriting alloca partition "
3138 << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: "
3139 << *NewAI << "\n");
3140
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003141 // Track the high watermark of the post-promotion worklist. We will reset it
3142 // to this point if the alloca is not in fact scheduled for promotion.
3143 unsigned PPWOldSize = PostPromotionWorklist.size();
3144
Chandler Carruth713aa942012-09-14 09:22:59 +00003145 AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI,
3146 PI->BeginOffset, PI->EndOffset);
3147 DEBUG(dbgs() << " rewriting ");
3148 DEBUG(P.print(dbgs(), PI, ""));
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003149 bool Promotable = Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI));
3150 if (Promotable) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003151 DEBUG(dbgs() << " and queuing for promotion\n");
3152 PromotableAllocas.push_back(NewAI);
3153 } else if (NewAI != &AI) {
3154 // If we can't promote the alloca, iterate on it to check for new
3155 // refinements exposed by splitting the current alloca. Don't iterate on an
3156 // alloca which didn't actually change and didn't get promoted.
3157 Worklist.insert(NewAI);
3158 }
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003159
3160 // Drop any post-promotion work items if promotion didn't happen.
3161 if (!Promotable)
3162 while (PostPromotionWorklist.size() > PPWOldSize)
3163 PostPromotionWorklist.pop_back();
3164
Chandler Carruth713aa942012-09-14 09:22:59 +00003165 return true;
3166}
3167
3168/// \brief Walks the partitioning of an alloca rewriting uses of each partition.
3169bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) {
3170 bool Changed = false;
3171 for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE;
3172 ++PI)
3173 Changed |= rewriteAllocaPartition(AI, P, PI);
3174
3175 return Changed;
3176}
3177
3178/// \brief Analyze an alloca for SROA.
3179///
3180/// This analyzes the alloca to ensure we can reason about it, builds
3181/// a partitioning of the alloca, and then hands it off to be split and
3182/// rewritten as needed.
3183bool SROA::runOnAlloca(AllocaInst &AI) {
3184 DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3185 ++NumAllocasAnalyzed;
3186
3187 // Special case dead allocas, as they're trivial.
3188 if (AI.use_empty()) {
3189 AI.eraseFromParent();
3190 return true;
3191 }
3192
3193 // Skip alloca forms that this analysis can't handle.
3194 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3195 TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
3196 return false;
3197
Chandler Carruthc370acd2012-09-18 12:57:43 +00003198 bool Changed = false;
3199
3200 // First, split any FCA loads and stores touching this alloca to promote
3201 // better splitting and promotion opportunities.
3202 AggLoadStoreRewriter AggRewriter(*TD);
3203 Changed |= AggRewriter.rewrite(AI);
3204
Chandler Carruth713aa942012-09-14 09:22:59 +00003205 // Build the partition set using a recursive instruction-visiting builder.
3206 AllocaPartitioning P(*TD, AI);
3207 DEBUG(P.print(dbgs()));
3208 if (P.isEscaped())
Chandler Carruthc370acd2012-09-18 12:57:43 +00003209 return Changed;
Chandler Carruth713aa942012-09-14 09:22:59 +00003210
3211 // No partitions to split. Leave the dead alloca for a later pass to clean up.
3212 if (P.begin() == P.end())
Chandler Carruthc370acd2012-09-18 12:57:43 +00003213 return Changed;
Chandler Carruth713aa942012-09-14 09:22:59 +00003214
3215 // Delete all the dead users of this alloca before splitting and rewriting it.
Chandler Carruth713aa942012-09-14 09:22:59 +00003216 for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(),
3217 DE = P.dead_user_end();
3218 DI != DE; ++DI) {
3219 Changed = true;
3220 (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3221 DeadInsts.push_back(*DI);
3222 }
3223 for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(),
3224 DE = P.dead_op_end();
3225 DO != DE; ++DO) {
3226 Value *OldV = **DO;
3227 // Clobber the use with an undef value.
3228 **DO = UndefValue::get(OldV->getType());
3229 if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3230 if (isInstructionTriviallyDead(OldI)) {
3231 Changed = true;
3232 DeadInsts.push_back(OldI);
3233 }
3234 }
3235
3236 return splitAlloca(AI, P) || Changed;
3237}
3238
Chandler Carruth8615cd22012-09-14 10:26:38 +00003239/// \brief Delete the dead instructions accumulated in this run.
3240///
3241/// Recursively deletes the dead instructions we've accumulated. This is done
3242/// at the very end to maximize locality of the recursive delete and to
3243/// minimize the problems of invalidated instruction pointers as such pointers
3244/// are used heavily in the intermediate stages of the algorithm.
3245///
3246/// We also record the alloca instructions deleted here so that they aren't
3247/// subsequently handed to mem2reg to promote.
3248void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
Chandler Carruth713aa942012-09-14 09:22:59 +00003249 DeadSplitInsts.clear();
3250 while (!DeadInsts.empty()) {
3251 Instruction *I = DeadInsts.pop_back_val();
3252 DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3253
3254 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3255 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3256 // Zero out the operand and see if it becomes trivially dead.
3257 *OI = 0;
3258 if (isInstructionTriviallyDead(U))
3259 DeadInsts.push_back(U);
3260 }
3261
3262 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3263 DeletedAllocas.insert(AI);
3264
3265 ++NumDeleted;
3266 I->eraseFromParent();
3267 }
3268}
3269
Chandler Carruth1c8db502012-09-15 11:43:14 +00003270/// \brief Promote the allocas, using the best available technique.
3271///
3272/// This attempts to promote whatever allocas have been identified as viable in
3273/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3274/// If there is a domtree available, we attempt to promote using the full power
3275/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3276/// based on the SSAUpdater utilities. This function returns whether any
3277/// promotion occured.
3278bool SROA::promoteAllocas(Function &F) {
3279 if (PromotableAllocas.empty())
3280 return false;
3281
3282 NumPromoted += PromotableAllocas.size();
3283
3284 if (DT && !ForceSSAUpdater) {
3285 DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3286 PromoteMemToReg(PromotableAllocas, *DT);
3287 PromotableAllocas.clear();
3288 return true;
3289 }
3290
3291 DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3292 SSAUpdater SSA;
3293 DIBuilder DIB(*F.getParent());
3294 SmallVector<Instruction*, 64> Insts;
3295
3296 for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3297 AllocaInst *AI = PromotableAllocas[Idx];
3298 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
3299 UI != UE;) {
3300 Instruction *I = cast<Instruction>(*UI++);
3301 // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3302 // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3303 // leading to them) here. Eventually it should use them to optimize the
3304 // scalar values produced.
3305 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
3306 assert(onlyUsedByLifetimeMarkers(I) &&
3307 "Found a bitcast used outside of a lifetime marker.");
3308 while (!I->use_empty())
3309 cast<Instruction>(*I->use_begin())->eraseFromParent();
3310 I->eraseFromParent();
3311 continue;
3312 }
3313 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
3314 assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3315 II->getIntrinsicID() == Intrinsic::lifetime_end);
3316 II->eraseFromParent();
3317 continue;
3318 }
3319
3320 Insts.push_back(I);
3321 }
3322 AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3323 Insts.clear();
3324 }
3325
3326 PromotableAllocas.clear();
3327 return true;
3328}
3329
Chandler Carruth713aa942012-09-14 09:22:59 +00003330namespace {
3331 /// \brief A predicate to test whether an alloca belongs to a set.
3332 class IsAllocaInSet {
3333 typedef SmallPtrSet<AllocaInst *, 4> SetType;
3334 const SetType &Set;
3335
3336 public:
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003337 typedef AllocaInst *argument_type;
3338
Chandler Carruth713aa942012-09-14 09:22:59 +00003339 IsAllocaInSet(const SetType &Set) : Set(Set) {}
Chandler Carruth75eac5f2012-10-03 00:03:00 +00003340 bool operator()(AllocaInst *AI) const { return Set.count(AI); }
Chandler Carruth713aa942012-09-14 09:22:59 +00003341 };
3342}
3343
3344bool SROA::runOnFunction(Function &F) {
3345 DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3346 C = &F.getContext();
3347 TD = getAnalysisIfAvailable<TargetData>();
3348 if (!TD) {
3349 DEBUG(dbgs() << " Skipping SROA -- no target data!\n");
3350 return false;
3351 }
Chandler Carruth1c8db502012-09-15 11:43:14 +00003352 DT = getAnalysisIfAvailable<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003353
3354 BasicBlock &EntryBB = F.getEntryBlock();
3355 for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3356 I != E; ++I)
3357 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3358 Worklist.insert(AI);
3359
3360 bool Changed = false;
Chandler Carruth8615cd22012-09-14 10:26:38 +00003361 // A set of deleted alloca instruction pointers which should be removed from
3362 // the list of promotable allocas.
3363 SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3364
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003365 do {
3366 while (!Worklist.empty()) {
3367 Changed |= runOnAlloca(*Worklist.pop_back_val());
3368 deleteDeadInstructions(DeletedAllocas);
Chandler Carruth5c5b3cf2012-10-02 22:46:45 +00003369
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003370 // Remove the deleted allocas from various lists so that we don't try to
3371 // continue processing them.
3372 if (!DeletedAllocas.empty()) {
3373 Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3374 PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3375 PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3376 PromotableAllocas.end(),
3377 IsAllocaInSet(DeletedAllocas)),
3378 PromotableAllocas.end());
3379 DeletedAllocas.clear();
3380 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003381 }
Chandler Carruth713aa942012-09-14 09:22:59 +00003382
Chandler Carruthb2d98c22012-10-04 12:33:50 +00003383 Changed |= promoteAllocas(F);
3384
3385 Worklist = PostPromotionWorklist;
3386 PostPromotionWorklist.clear();
3387 } while (!Worklist.empty());
Chandler Carruth713aa942012-09-14 09:22:59 +00003388
3389 return Changed;
3390}
3391
3392void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
Chandler Carruth1c8db502012-09-15 11:43:14 +00003393 if (RequiresDomTree)
3394 AU.addRequired<DominatorTree>();
Chandler Carruth713aa942012-09-14 09:22:59 +00003395 AU.setPreservesCFG();
3396}