blob: 872320840517041a567d69217afdd162a8947a0c [file] [log] [blame]
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a simple pass that applies a variety of small
11// optimizations for calls to specific well-known function calls (e.g. runtime
12// library functions). For example, a call to the function "exit(3)" that
13// occurs within the main() function can be transformed into a simple "return 3"
14// instruction. Any optimization that takes this form (replace call to library
15// function with simpler code that provides the same result) belongs in this
16// file.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "simplify-libcalls"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Support/IRBuilder.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000026#include "llvm/Analysis/ValueTracking.h"
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000027#include "llvm/Target/TargetData.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/Compiler.h"
Chris Lattner56b4f2b2008-05-01 06:39:12 +000032#include "llvm/Support/Debug.h"
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000033#include "llvm/Config/config.h"
34using namespace llvm;
35
36STATISTIC(NumSimplified, "Number of library calls simplified");
37
38//===----------------------------------------------------------------------===//
39// Optimizer Base Class
40//===----------------------------------------------------------------------===//
41
42/// This class is the abstract base class for the set of optimizations that
43/// corresponds to one library call.
44namespace {
45class VISIBILITY_HIDDEN LibCallOptimization {
46protected:
47 Function *Caller;
48 const TargetData *TD;
49public:
50 LibCallOptimization() { }
51 virtual ~LibCallOptimization() {}
52
53 /// CallOptimizer - This pure virtual method is implemented by base classes to
54 /// do various optimizations. If this returns null then no transformation was
55 /// performed. If it returns CI, then it transformed the call and CI is to be
56 /// deleted. If it returns something else, replace CI with the new value and
57 /// delete CI.
Eric Christopher7a61d702008-08-08 19:39:37 +000058 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
59 =0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000060
Eric Christopher7a61d702008-08-08 19:39:37 +000061 Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000062 Caller = CI->getParent()->getParent();
63 this->TD = &TD;
64 return CallOptimizer(CI->getCalledFunction(), CI, B);
65 }
66
67 /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Eric Christopher7a61d702008-08-08 19:39:37 +000068 Value *CastToCStr(Value *V, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000069
70 /// EmitStrLen - Emit a call to the strlen function to the builder, for the
71 /// specified pointer. Ptr is required to be some pointer type, and the
72 /// return value has 'intptr_t' type.
Eric Christopher7a61d702008-08-08 19:39:37 +000073 Value *EmitStrLen(Value *Ptr, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000074
75 /// EmitMemCpy - Emit a call to the memcpy function to the builder. This
76 /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
77 Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
Eric Christopher7a61d702008-08-08 19:39:37 +000078 unsigned Align, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000079
80 /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
81 /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Eric Christopher7a61d702008-08-08 19:39:37 +000082 Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B);
Nick Lewycky13a09e22008-12-21 00:19:21 +000083
84 /// EmitMemCmp - Emit a call to the memcmp function.
85 Value *EmitMemCmp(Value *Ptr1, Value *Ptr2, Value *Len, IRBuilder<> &B);
86
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000087 /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
88 /// 'floor'). This function is known to take a single of type matching 'Op'
89 /// and returns one value with the same type. If 'Op' is a long double, 'l'
90 /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Eric Christopher7a61d702008-08-08 19:39:37 +000091 Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000092
93 /// EmitPutChar - Emit a call to the putchar function. This assumes that Char
94 /// is an integer.
Eric Christopher7a61d702008-08-08 19:39:37 +000095 void EmitPutChar(Value *Char, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000096
97 /// EmitPutS - Emit a call to the puts function. This assumes that Str is
98 /// some pointer.
Eric Christopher7a61d702008-08-08 19:39:37 +000099 void EmitPutS(Value *Str, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000100
101 /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
102 /// an i32, and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000103 void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000104
105 /// EmitFPutS - Emit a call to the puts function. Str is required to be a
106 /// pointer and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000107 void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000108
109 /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
110 /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000111 void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B);
Nick Lewycky13a09e22008-12-21 00:19:21 +0000112
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000113};
114} // End anonymous namespace.
115
116/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Eric Christopher7a61d702008-08-08 19:39:37 +0000117Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000118 return B.CreateBitCast(V, PointerType::getUnqual(Type::Int8Ty), "cstr");
119}
120
121/// EmitStrLen - Emit a call to the strlen function to the builder, for the
122/// specified pointer. This always returns an integer value of size intptr_t.
Eric Christopher7a61d702008-08-08 19:39:37 +0000123Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000124 Module *M = Caller->getParent();
125 Constant *StrLen =M->getOrInsertFunction("strlen", TD->getIntPtrType(),
126 PointerType::getUnqual(Type::Int8Ty),
127 NULL);
128 return B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
129}
130
131/// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
132/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
133Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
Eric Christopher7a61d702008-08-08 19:39:37 +0000134 unsigned Align, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000135 Module *M = Caller->getParent();
Chris Lattner824b9582008-11-21 16:42:48 +0000136 Intrinsic::ID IID = Intrinsic::memcpy;
137 const Type *Tys[1];
138 Tys[0] = Len->getType();
139 Value *MemCpy = Intrinsic::getDeclaration(M, IID, Tys, 1);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000140 return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
141 ConstantInt::get(Type::Int32Ty, Align));
142}
143
144/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
145/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
146Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
Eric Christopher7a61d702008-08-08 19:39:37 +0000147 Value *Len, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000148 Module *M = Caller->getParent();
149 Value *MemChr = M->getOrInsertFunction("memchr",
150 PointerType::getUnqual(Type::Int8Ty),
151 PointerType::getUnqual(Type::Int8Ty),
152 Type::Int32Ty, TD->getIntPtrType(),
153 NULL);
154 return B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
155}
156
Nick Lewycky13a09e22008-12-21 00:19:21 +0000157/// EmitMemCmp - Emit a call to the memcmp function.
158Value *LibCallOptimization::EmitMemCmp(Value *Ptr1, Value *Ptr2,
159 Value *Len, IRBuilder<> &B) {
160 Module *M = Caller->getParent();
161 Value *MemCmp = M->getOrInsertFunction("memcmp",
162 Type::Int32Ty,
163 PointerType::getUnqual(Type::Int8Ty),
164 PointerType::getUnqual(Type::Int8Ty),
165 TD->getIntPtrType(), NULL);
166 return B.CreateCall3(MemCmp, CastToCStr(Ptr1, B), CastToCStr(Ptr2, B),
167 Len, "memcmp");
168}
169
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000170/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
171/// 'floor'). This function is known to take a single of type matching 'Op' and
172/// returns one value with the same type. If 'Op' is a long double, 'l' is
173/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
174Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
Eric Christopher7a61d702008-08-08 19:39:37 +0000175 IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000176 char NameBuffer[20];
177 if (Op->getType() != Type::DoubleTy) {
178 // If we need to add a suffix, copy into NameBuffer.
179 unsigned NameLen = strlen(Name);
180 assert(NameLen < sizeof(NameBuffer)-2);
181 memcpy(NameBuffer, Name, NameLen);
182 if (Op->getType() == Type::FloatTy)
183 NameBuffer[NameLen] = 'f'; // floorf
184 else
185 NameBuffer[NameLen] = 'l'; // floorl
186 NameBuffer[NameLen+1] = 0;
187 Name = NameBuffer;
188 }
189
190 Module *M = Caller->getParent();
191 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
192 Op->getType(), NULL);
193 return B.CreateCall(Callee, Op, Name);
194}
195
196/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
197/// is an integer.
Eric Christopher7a61d702008-08-08 19:39:37 +0000198void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000199 Module *M = Caller->getParent();
200 Value *F = M->getOrInsertFunction("putchar", Type::Int32Ty,
201 Type::Int32Ty, NULL);
202 B.CreateCall(F, B.CreateIntCast(Char, Type::Int32Ty, "chari"), "putchar");
203}
204
205/// EmitPutS - Emit a call to the puts function. This assumes that Str is
206/// some pointer.
Eric Christopher7a61d702008-08-08 19:39:37 +0000207void LibCallOptimization::EmitPutS(Value *Str, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000208 Module *M = Caller->getParent();
209 Value *F = M->getOrInsertFunction("puts", Type::Int32Ty,
210 PointerType::getUnqual(Type::Int8Ty), NULL);
211 B.CreateCall(F, CastToCStr(Str, B), "puts");
212}
213
214/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
215/// an integer and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000216void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000217 Module *M = Caller->getParent();
218 Constant *F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
219 File->getType(), NULL);
220 Char = B.CreateIntCast(Char, Type::Int32Ty, "chari");
221 B.CreateCall2(F, Char, File, "fputc");
222}
223
224/// EmitFPutS - Emit a call to the puts function. Str is required to be a
225/// pointer and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000226void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000227 Module *M = Caller->getParent();
228 Constant *F = M->getOrInsertFunction("fputs", Type::Int32Ty,
229 PointerType::getUnqual(Type::Int8Ty),
230 File->getType(), NULL);
231 B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
232}
233
234/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
235/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
236void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
Eric Christopher7a61d702008-08-08 19:39:37 +0000237 IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000238 Module *M = Caller->getParent();
239 Constant *F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
240 PointerType::getUnqual(Type::Int8Ty),
241 TD->getIntPtrType(), TD->getIntPtrType(),
242 File->getType(), NULL);
243 B.CreateCall4(F, CastToCStr(Ptr, B), Size,
244 ConstantInt::get(TD->getIntPtrType(), 1), File);
245}
246
247//===----------------------------------------------------------------------===//
248// Helper Functions
249//===----------------------------------------------------------------------===//
250
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000251/// GetStringLengthH - If we can compute the length of the string pointed to by
252/// the specified pointer, return 'len+1'. If we can't, return 0.
253static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
254 // Look through noop bitcast instructions.
255 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
256 return GetStringLengthH(BCI->getOperand(0), PHIs);
257
258 // If this is a PHI node, there are two cases: either we have already seen it
259 // or we haven't.
260 if (PHINode *PN = dyn_cast<PHINode>(V)) {
261 if (!PHIs.insert(PN))
262 return ~0ULL; // already in the set.
263
264 // If it was new, see if all the input strings are the same length.
265 uint64_t LenSoFar = ~0ULL;
266 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
267 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
268 if (Len == 0) return 0; // Unknown length -> unknown.
269
270 if (Len == ~0ULL) continue;
271
272 if (Len != LenSoFar && LenSoFar != ~0ULL)
273 return 0; // Disagree -> unknown.
274 LenSoFar = Len;
275 }
276
277 // Success, all agree.
278 return LenSoFar;
279 }
280
281 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
282 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
283 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
284 if (Len1 == 0) return 0;
285 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
286 if (Len2 == 0) return 0;
287 if (Len1 == ~0ULL) return Len2;
288 if (Len2 == ~0ULL) return Len1;
289 if (Len1 != Len2) return 0;
290 return Len1;
291 }
292
293 // If the value is not a GEP instruction nor a constant expression with a
294 // GEP instruction, then return unknown.
295 User *GEP = 0;
296 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
297 GEP = GEPI;
298 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
299 if (CE->getOpcode() != Instruction::GetElementPtr)
300 return 0;
301 GEP = CE;
302 } else {
303 return 0;
304 }
305
306 // Make sure the GEP has exactly three arguments.
307 if (GEP->getNumOperands() != 3)
308 return 0;
309
310 // Check to make sure that the first operand of the GEP is an integer and
311 // has value 0 so that we are sure we're indexing into the initializer.
312 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
313 if (!Idx->isZero())
314 return 0;
315 } else
316 return 0;
317
318 // If the second index isn't a ConstantInt, then this is a variable index
319 // into the array. If this occurs, we can't say anything meaningful about
320 // the string.
321 uint64_t StartIdx = 0;
322 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
323 StartIdx = CI->getZExtValue();
324 else
325 return 0;
326
327 // The GEP instruction, constant or instruction, must reference a global
328 // variable that is a constant and is initialized. The referenced constant
329 // initializer is the array that we'll use for optimization.
330 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
331 if (!GV || !GV->isConstant() || !GV->hasInitializer())
332 return 0;
333 Constant *GlobalInit = GV->getInitializer();
334
335 // Handle the ConstantAggregateZero case, which is a degenerate case. The
336 // initializer is constant zero so the length of the string must be zero.
337 if (isa<ConstantAggregateZero>(GlobalInit))
338 return 1; // Len = 0 offset by 1.
339
340 // Must be a Constant Array
341 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
342 if (!Array || Array->getType()->getElementType() != Type::Int8Ty)
343 return false;
344
345 // Get the number of elements in the array
346 uint64_t NumElts = Array->getType()->getNumElements();
347
348 // Traverse the constant array from StartIdx (derived above) which is
349 // the place the GEP refers to in the array.
350 for (unsigned i = StartIdx; i != NumElts; ++i) {
351 Constant *Elt = Array->getOperand(i);
352 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
353 if (!CI) // This array isn't suitable, non-int initializer.
354 return 0;
355 if (CI->isZero())
356 return i-StartIdx+1; // We found end of string, success!
357 }
358
359 return 0; // The array isn't null terminated, conservatively return 'unknown'.
360}
361
362/// GetStringLength - If we can compute the length of the string pointed to by
363/// the specified pointer, return 'len+1'. If we can't, return 0.
364static uint64_t GetStringLength(Value *V) {
365 if (!isa<PointerType>(V->getType())) return 0;
366
367 SmallPtrSet<PHINode*, 32> PHIs;
368 uint64_t Len = GetStringLengthH(V, PHIs);
369 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
370 // an empty string as a length.
371 return Len == ~0ULL ? 1 : Len;
372}
373
374/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
375/// value is equal or not-equal to zero.
376static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
377 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
378 UI != E; ++UI) {
379 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
380 if (IC->isEquality())
381 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
382 if (C->isNullValue())
383 continue;
384 // Unknown instruction.
385 return false;
386 }
387 return true;
388}
389
390//===----------------------------------------------------------------------===//
391// Miscellaneous LibCall Optimizations
392//===----------------------------------------------------------------------===//
393
Bill Wendlingac178222008-05-05 21:37:59 +0000394namespace {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000395//===---------------------------------------===//
396// 'exit' Optimizations
397
398/// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
399struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000400 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000401 // Verify we have a reasonable prototype for exit.
402 if (Callee->arg_size() == 0 || !CI->use_empty())
403 return 0;
404
405 // Verify the caller is main, and that the result type of main matches the
406 // argument type of exit.
407 if (!Caller->isName("main") || !Caller->hasExternalLinkage() ||
408 Caller->getReturnType() != CI->getOperand(1)->getType())
409 return 0;
410
411 TerminatorInst *OldTI = CI->getParent()->getTerminator();
412
413 // Create the return after the call.
414 ReturnInst *RI = B.CreateRet(CI->getOperand(1));
415
416 // Drop all successor phi node entries.
417 for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i)
418 OldTI->getSuccessor(i)->removePredecessor(CI->getParent());
419
420 // Erase all instructions from after our return instruction until the end of
421 // the block.
422 BasicBlock::iterator FirstDead = RI; ++FirstDead;
423 CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end());
424 return CI;
425 }
426};
427
428//===----------------------------------------------------------------------===//
429// String and Memory LibCall Optimizations
430//===----------------------------------------------------------------------===//
431
432//===---------------------------------------===//
433// 'strcat' Optimizations
434
435struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000436 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000437 // Verify the "strcat" function prototype.
438 const FunctionType *FT = Callee->getFunctionType();
439 if (FT->getNumParams() != 2 ||
440 FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
441 FT->getParamType(0) != FT->getReturnType() ||
442 FT->getParamType(1) != FT->getReturnType())
443 return 0;
444
445 // Extract some information from the instruction
446 Value *Dst = CI->getOperand(1);
447 Value *Src = CI->getOperand(2);
448
449 // See if we can get the length of the input string.
450 uint64_t Len = GetStringLength(Src);
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000451 if (Len == 0) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000452 --Len; // Unbias length.
453
454 // Handle the simple, do-nothing case: strcat(x, "") -> x
455 if (Len == 0)
456 return Dst;
457
458 // We need to find the end of the destination string. That's where the
459 // memory is to be moved to. We just generate a call to strlen.
460 Value *DstLen = EmitStrLen(Dst, B);
461
462 // Now that we have the destination's length, we must index into the
463 // destination's pointer to get the actual memcpy destination (end of
464 // the string .. we're concatenating).
465 Dst = B.CreateGEP(Dst, DstLen, "endptr");
466
467 // We have enough information to now generate the memcpy call to do the
468 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
469 EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len+1), 1, B);
470 return Dst;
471 }
472};
473
474//===---------------------------------------===//
475// 'strchr' Optimizations
476
477struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000478 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000479 // Verify the "strchr" function prototype.
480 const FunctionType *FT = Callee->getFunctionType();
481 if (FT->getNumParams() != 2 ||
482 FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
483 FT->getParamType(0) != FT->getReturnType())
484 return 0;
485
486 Value *SrcStr = CI->getOperand(1);
487
488 // If the second operand is non-constant, see if we can compute the length
489 // of the input string and turn this into memchr.
490 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
491 if (CharC == 0) {
492 uint64_t Len = GetStringLength(SrcStr);
493 if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32.
494 return 0;
495
496 return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
497 ConstantInt::get(TD->getIntPtrType(), Len), B);
498 }
499
500 // Otherwise, the character is a constant, see if the first argument is
501 // a string literal. If so, we can constant fold.
502 std::string Str;
503 if (!GetConstantStringInfo(SrcStr, Str))
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000504 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000505
506 // strchr can find the nul character.
507 Str += '\0';
508 char CharValue = CharC->getSExtValue();
509
510 // Compute the offset.
511 uint64_t i = 0;
512 while (1) {
513 if (i == Str.size()) // Didn't find the char. strchr returns null.
514 return Constant::getNullValue(CI->getType());
515 // Did we find our match?
516 if (Str[i] == CharValue)
517 break;
518 ++i;
519 }
520
521 // strchr(s+n,c) -> gep(s+n+i,c)
522 Value *Idx = ConstantInt::get(Type::Int64Ty, i);
523 return B.CreateGEP(SrcStr, Idx, "strchr");
524 }
525};
526
527//===---------------------------------------===//
528// 'strcmp' Optimizations
529
530struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000531 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000532 // Verify the "strcmp" function prototype.
533 const FunctionType *FT = Callee->getFunctionType();
534 if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty ||
535 FT->getParamType(0) != FT->getParamType(1) ||
536 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
537 return 0;
538
539 Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
540 if (Str1P == Str2P) // strcmp(x,x) -> 0
541 return ConstantInt::get(CI->getType(), 0);
542
543 std::string Str1, Str2;
544 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
545 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
546
547 if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
548 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
549
550 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
551 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
552
553 // strcmp(x, y) -> cnst (if both x and y are constant strings)
554 if (HasStr1 && HasStr2)
555 return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str()));
Nick Lewycky13a09e22008-12-21 00:19:21 +0000556
557 // strcmp(P, "x") -> memcmp(P, "x", 2)
558 uint64_t Len1 = GetStringLength(Str1P);
559 uint64_t Len2 = GetStringLength(Str2P);
560 if (Len1 || Len2) {
561 // Choose the smallest Len excluding 0 which means 'unknown'.
562 if (!Len1 || (Len2 && Len2 < Len1))
563 Len1 = Len2;
564 return EmitMemCmp(Str1P, Str2P,
565 ConstantInt::get(TD->getIntPtrType(), Len1), B);
566 }
567
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000568 return 0;
569 }
570};
571
572//===---------------------------------------===//
573// 'strncmp' Optimizations
574
575struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000576 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000577 // Verify the "strncmp" function prototype.
578 const FunctionType *FT = Callee->getFunctionType();
579 if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty ||
580 FT->getParamType(0) != FT->getParamType(1) ||
581 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
582 !isa<IntegerType>(FT->getParamType(2)))
583 return 0;
584
585 Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
586 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
587 return ConstantInt::get(CI->getType(), 0);
588
589 // Get the length argument if it is constant.
590 uint64_t Length;
591 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
592 Length = LengthArg->getZExtValue();
593 else
594 return 0;
595
596 if (Length == 0) // strncmp(x,y,0) -> 0
597 return ConstantInt::get(CI->getType(), 0);
598
599 std::string Str1, Str2;
600 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
601 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
602
603 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x
604 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
605
606 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
607 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
608
609 // strncmp(x, y) -> cnst (if both x and y are constant strings)
610 if (HasStr1 && HasStr2)
611 return ConstantInt::get(CI->getType(),
612 strncmp(Str1.c_str(), Str2.c_str(), Length));
613 return 0;
614 }
615};
616
617
618//===---------------------------------------===//
619// 'strcpy' Optimizations
620
621struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000622 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000623 // Verify the "strcpy" function prototype.
624 const FunctionType *FT = Callee->getFunctionType();
625 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
626 FT->getParamType(0) != FT->getParamType(1) ||
627 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
628 return 0;
629
630 Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
631 if (Dst == Src) // strcpy(x,x) -> x
632 return Src;
633
634 // See if we can get the length of the input string.
635 uint64_t Len = GetStringLength(Src);
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000636 if (Len == 0) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000637
638 // We have enough information to now generate the memcpy call to do the
639 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
640 EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len), 1, B);
641 return Dst;
642 }
643};
644
645
646
647//===---------------------------------------===//
648// 'strlen' Optimizations
649
650struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000651 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000652 const FunctionType *FT = Callee->getFunctionType();
653 if (FT->getNumParams() != 1 ||
654 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
655 !isa<IntegerType>(FT->getReturnType()))
656 return 0;
657
658 Value *Src = CI->getOperand(1);
659
660 // Constant folding: strlen("xyz") -> 3
661 if (uint64_t Len = GetStringLength(Src))
662 return ConstantInt::get(CI->getType(), Len-1);
663
664 // Handle strlen(p) != 0.
665 if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;
666
667 // strlen(x) != 0 --> *x != 0
668 // strlen(x) == 0 --> *x == 0
669 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
670 }
671};
672
673//===---------------------------------------===//
674// 'memcmp' Optimizations
675
676struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000677 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000678 const FunctionType *FT = Callee->getFunctionType();
679 if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
680 !isa<PointerType>(FT->getParamType(1)) ||
681 FT->getReturnType() != Type::Int32Ty)
682 return 0;
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000683
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000684 Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000685
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000686 if (LHS == RHS) // memcmp(s,s,x) -> 0
687 return Constant::getNullValue(CI->getType());
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000688
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000689 // Make sure we have a constant length.
690 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000691 if (!LenC) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000692 uint64_t Len = LenC->getZExtValue();
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000693
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000694 if (Len == 0) // memcmp(s1,s2,0) -> 0
695 return Constant::getNullValue(CI->getType());
696
697 if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
698 Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
699 Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
700 return B.CreateZExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
701 }
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000702
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000703 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0
704 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0
705 if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000706 const Type *PTy = PointerType::getUnqual(Len == 2 ?
707 Type::Int16Ty : Type::Int32Ty);
708 LHS = B.CreateBitCast(LHS, PTy, "tmp");
709 RHS = B.CreateBitCast(RHS, PTy, "tmp");
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000710 LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
711 LoadInst *RHSV = B.CreateLoad(RHS, "rhsv");
712 LHSV->setAlignment(1); RHSV->setAlignment(1); // Unaligned loads.
713 return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType());
714 }
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000715
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000716 return 0;
717 }
718};
719
720//===---------------------------------------===//
721// 'memcpy' Optimizations
722
723struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000724 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000725 const FunctionType *FT = Callee->getFunctionType();
726 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
727 !isa<PointerType>(FT->getParamType(0)) ||
728 !isa<PointerType>(FT->getParamType(1)) ||
729 FT->getParamType(2) != TD->getIntPtrType())
730 return 0;
731
732 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
733 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
734 return CI->getOperand(1);
735 }
736};
737
Eli Friedmand83ae7d2008-11-30 08:32:11 +0000738//===---------------------------------------===//
739// 'memmove' Optimizations
740
741struct VISIBILITY_HIDDEN MemMoveOpt : public LibCallOptimization {
742 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
743 const FunctionType *FT = Callee->getFunctionType();
744 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
745 !isa<PointerType>(FT->getParamType(0)) ||
746 !isa<PointerType>(FT->getParamType(1)) ||
747 FT->getParamType(2) != TD->getIntPtrType())
748 return 0;
749
750 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
751 Module *M = Caller->getParent();
752 Intrinsic::ID IID = Intrinsic::memmove;
753 const Type *Tys[1];
754 Tys[0] = TD->getIntPtrType();
755 Value *MemMove = Intrinsic::getDeclaration(M, IID, Tys, 1);
756 Value *Dst = CastToCStr(CI->getOperand(1), B);
757 Value *Src = CastToCStr(CI->getOperand(2), B);
758 Value *Size = CI->getOperand(3);
759 Value *Align = ConstantInt::get(Type::Int32Ty, 1);
760 B.CreateCall4(MemMove, Dst, Src, Size, Align);
761 return CI->getOperand(1);
762 }
763};
764
765//===---------------------------------------===//
766// 'memset' Optimizations
767
768struct VISIBILITY_HIDDEN MemSetOpt : public LibCallOptimization {
769 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
770 const FunctionType *FT = Callee->getFunctionType();
771 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
772 !isa<PointerType>(FT->getParamType(0)) ||
773 FT->getParamType(1) != TD->getIntPtrType() ||
774 FT->getParamType(2) != TD->getIntPtrType())
775 return 0;
776
777 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
778 Module *M = Caller->getParent();
779 Intrinsic::ID IID = Intrinsic::memset;
780 const Type *Tys[1];
781 Tys[0] = TD->getIntPtrType();
782 Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1);
783 Value *Dst = CastToCStr(CI->getOperand(1), B);
784 Value *Val = B.CreateTrunc(CI->getOperand(2), Type::Int8Ty);
785 Value *Size = CI->getOperand(3);
786 Value *Align = ConstantInt::get(Type::Int32Ty, 1);
787 B.CreateCall4(MemSet, Dst, Val, Size, Align);
788 return CI->getOperand(1);
789 }
790};
791
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000792//===----------------------------------------------------------------------===//
793// Math Library Optimizations
794//===----------------------------------------------------------------------===//
795
796//===---------------------------------------===//
797// 'pow*' Optimizations
798
799struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000800 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000801 const FunctionType *FT = Callee->getFunctionType();
802 // Just make sure this has 2 arguments of the same FP type, which match the
803 // result type.
804 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
805 FT->getParamType(0) != FT->getParamType(1) ||
806 !FT->getParamType(0)->isFloatingPoint())
807 return 0;
808
809 Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
810 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
811 if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
812 return Op1C;
813 if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
814 return EmitUnaryFloatFnCall(Op2, "exp2", B);
815 }
816
817 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
818 if (Op2C == 0) return 0;
819
820 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
821 return ConstantFP::get(CI->getType(), 1.0);
822
823 if (Op2C->isExactlyValue(0.5)) {
824 // FIXME: This is not safe for -0.0 and -inf. This can only be done when
825 // 'unsafe' math optimizations are allowed.
826 // x pow(x, 0.5) sqrt(x)
827 // ---------------------------------------------
828 // -0.0 +0.0 -0.0
829 // -inf +inf NaN
830#if 0
831 // pow(x, 0.5) -> sqrt(x)
832 return B.CreateCall(get_sqrt(), Op1, "sqrt");
833#endif
834 }
835
836 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
837 return Op1;
838 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
839 return B.CreateMul(Op1, Op1, "pow2");
840 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
841 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
842 return 0;
843 }
844};
845
846//===---------------------------------------===//
Chris Lattnere818f772008-05-02 18:43:35 +0000847// 'exp2' Optimizations
848
849struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000850 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnere818f772008-05-02 18:43:35 +0000851 const FunctionType *FT = Callee->getFunctionType();
852 // Just make sure this has 1 argument of FP type, which matches the
853 // result type.
854 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
855 !FT->getParamType(0)->isFloatingPoint())
856 return 0;
857
858 Value *Op = CI->getOperand(1);
859 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
860 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
861 Value *LdExpArg = 0;
862 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
863 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
864 LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
865 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
866 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
867 LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
868 }
869
870 if (LdExpArg) {
871 const char *Name;
872 if (Op->getType() == Type::FloatTy)
873 Name = "ldexpf";
874 else if (Op->getType() == Type::DoubleTy)
875 Name = "ldexp";
876 else
877 Name = "ldexpl";
878
879 Constant *One = ConstantFP::get(APFloat(1.0f));
880 if (Op->getType() != Type::FloatTy)
881 One = ConstantExpr::getFPExtend(One, Op->getType());
882
883 Module *M = Caller->getParent();
884 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
885 Op->getType(), Type::Int32Ty,NULL);
886 return B.CreateCall2(Callee, One, LdExpArg);
887 }
888 return 0;
889 }
890};
891
892
893//===---------------------------------------===//
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000894// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
895
896struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000897 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000898 const FunctionType *FT = Callee->getFunctionType();
899 if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy ||
900 FT->getParamType(0) != Type::DoubleTy)
901 return 0;
902
903 // If this is something like 'floor((double)floatval)', convert to floorf.
904 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
905 if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy)
906 return 0;
907
908 // floor((double)floatval) -> (double)floorf(floatval)
909 Value *V = Cast->getOperand(0);
910 V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B);
911 return B.CreateFPExt(V, Type::DoubleTy);
912 }
913};
914
915//===----------------------------------------------------------------------===//
916// Integer Optimizations
917//===----------------------------------------------------------------------===//
918
919//===---------------------------------------===//
920// 'ffs*' Optimizations
921
922struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000923 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000924 const FunctionType *FT = Callee->getFunctionType();
925 // Just make sure this has 2 arguments of the same FP type, which match the
926 // result type.
927 if (FT->getNumParams() != 1 || FT->getReturnType() != Type::Int32Ty ||
928 !isa<IntegerType>(FT->getParamType(0)))
929 return 0;
930
931 Value *Op = CI->getOperand(1);
932
933 // Constant fold.
934 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
935 if (CI->getValue() == 0) // ffs(0) -> 0.
936 return Constant::getNullValue(CI->getType());
937 return ConstantInt::get(Type::Int32Ty, // ffs(c) -> cttz(c)+1
938 CI->getValue().countTrailingZeros()+1);
939 }
940
941 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
942 const Type *ArgType = Op->getType();
943 Value *F = Intrinsic::getDeclaration(Callee->getParent(),
944 Intrinsic::cttz, &ArgType, 1);
945 Value *V = B.CreateCall(F, Op, "cttz");
946 V = B.CreateAdd(V, ConstantInt::get(Type::Int32Ty, 1), "tmp");
947 V = B.CreateIntCast(V, Type::Int32Ty, false, "tmp");
948
949 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
950 return B.CreateSelect(Cond, V, ConstantInt::get(Type::Int32Ty, 0));
951 }
952};
953
954//===---------------------------------------===//
955// 'isdigit' Optimizations
956
957struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000958 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000959 const FunctionType *FT = Callee->getFunctionType();
960 // We require integer(i32)
961 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
962 FT->getParamType(0) != Type::Int32Ty)
963 return 0;
964
965 // isdigit(c) -> (c-'0') <u 10
966 Value *Op = CI->getOperand(1);
967 Op = B.CreateSub(Op, ConstantInt::get(Type::Int32Ty, '0'), "isdigittmp");
968 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 10), "isdigit");
969 return B.CreateZExt(Op, CI->getType());
970 }
971};
972
973//===---------------------------------------===//
974// 'isascii' Optimizations
975
976struct VISIBILITY_HIDDEN IsAsciiOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000977 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000978 const FunctionType *FT = Callee->getFunctionType();
979 // We require integer(i32)
980 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
981 FT->getParamType(0) != Type::Int32Ty)
982 return 0;
983
984 // isascii(c) -> c <u 128
985 Value *Op = CI->getOperand(1);
986 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 128), "isascii");
987 return B.CreateZExt(Op, CI->getType());
988 }
989};
Chris Lattner313f0e62008-06-09 08:26:51 +0000990
991//===---------------------------------------===//
992// 'abs', 'labs', 'llabs' Optimizations
993
994struct VISIBILITY_HIDDEN AbsOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000995 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattner313f0e62008-06-09 08:26:51 +0000996 const FunctionType *FT = Callee->getFunctionType();
997 // We require integer(integer) where the types agree.
998 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
999 FT->getParamType(0) != FT->getReturnType())
1000 return 0;
1001
1002 // abs(x) -> x >s -1 ? x : -x
1003 Value *Op = CI->getOperand(1);
1004 Value *Pos = B.CreateICmpSGT(Op,ConstantInt::getAllOnesValue(Op->getType()),
1005 "ispos");
1006 Value *Neg = B.CreateNeg(Op, "neg");
1007 return B.CreateSelect(Pos, Op, Neg);
1008 }
1009};
1010
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001011
1012//===---------------------------------------===//
1013// 'toascii' Optimizations
1014
1015struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001016 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001017 const FunctionType *FT = Callee->getFunctionType();
1018 // We require i32(i32)
1019 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1020 FT->getParamType(0) != Type::Int32Ty)
1021 return 0;
1022
1023 // isascii(c) -> c & 0x7f
1024 return B.CreateAnd(CI->getOperand(1), ConstantInt::get(CI->getType(),0x7F));
1025 }
1026};
1027
1028//===----------------------------------------------------------------------===//
1029// Formatting and IO Optimizations
1030//===----------------------------------------------------------------------===//
1031
1032//===---------------------------------------===//
1033// 'printf' Optimizations
1034
1035struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001036 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001037 // Require one fixed pointer argument and an integer/void result.
1038 const FunctionType *FT = Callee->getFunctionType();
1039 if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) ||
1040 !(isa<IntegerType>(FT->getReturnType()) ||
1041 FT->getReturnType() == Type::VoidTy))
1042 return 0;
1043
1044 // Check for a fixed format string.
1045 std::string FormatStr;
1046 if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001047 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001048
1049 // Empty format string -> noop.
1050 if (FormatStr.empty()) // Tolerate printf's declared void.
1051 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0);
1052
1053 // printf("x") -> putchar('x'), even for '%'.
1054 if (FormatStr.size() == 1) {
1055 EmitPutChar(ConstantInt::get(Type::Int32Ty, FormatStr[0]), B);
1056 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
1057 }
1058
1059 // printf("foo\n") --> puts("foo")
1060 if (FormatStr[FormatStr.size()-1] == '\n' &&
1061 FormatStr.find('%') == std::string::npos) { // no format characters.
1062 // Create a string literal with no \n on it. We expect the constant merge
1063 // pass to be run after this pass, to merge duplicate strings.
1064 FormatStr.erase(FormatStr.end()-1);
1065 Constant *C = ConstantArray::get(FormatStr, true);
1066 C = new GlobalVariable(C->getType(), true,GlobalVariable::InternalLinkage,
1067 C, "str", Callee->getParent());
1068 EmitPutS(C, B);
1069 return CI->use_empty() ? (Value*)CI :
1070 ConstantInt::get(CI->getType(), FormatStr.size()+1);
1071 }
1072
1073 // Optimize specific format strings.
1074 // printf("%c", chr) --> putchar(*(i8*)dst)
1075 if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
1076 isa<IntegerType>(CI->getOperand(2)->getType())) {
1077 EmitPutChar(CI->getOperand(2), B);
1078 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
1079 }
1080
1081 // printf("%s\n", str) --> puts(str)
1082 if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
1083 isa<PointerType>(CI->getOperand(2)->getType()) &&
1084 CI->use_empty()) {
1085 EmitPutS(CI->getOperand(2), B);
1086 return CI;
1087 }
1088 return 0;
1089 }
1090};
1091
1092//===---------------------------------------===//
1093// 'sprintf' Optimizations
1094
1095struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001096 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001097 // Require two fixed pointer arguments and an integer result.
1098 const FunctionType *FT = Callee->getFunctionType();
1099 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1100 !isa<PointerType>(FT->getParamType(1)) ||
1101 !isa<IntegerType>(FT->getReturnType()))
1102 return 0;
1103
1104 // Check for a fixed format string.
1105 std::string FormatStr;
1106 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001107 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001108
1109 // If we just have a format string (nothing else crazy) transform it.
1110 if (CI->getNumOperands() == 3) {
1111 // Make sure there's no % in the constant array. We could try to handle
1112 // %% -> % in the future if we cared.
1113 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1114 if (FormatStr[i] == '%')
1115 return 0; // we found a format specifier, bail out.
1116
1117 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1118 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
1119 ConstantInt::get(TD->getIntPtrType(), FormatStr.size()+1),1,B);
1120 return ConstantInt::get(CI->getType(), FormatStr.size());
1121 }
1122
1123 // The remaining optimizations require the format string to be "%s" or "%c"
1124 // and have an extra operand.
1125 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
1126 return 0;
1127
1128 // Decode the second character of the format string.
1129 if (FormatStr[1] == 'c') {
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001130 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001131 if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
1132 Value *V = B.CreateTrunc(CI->getOperand(3), Type::Int8Ty, "char");
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001133 Value *Ptr = CastToCStr(CI->getOperand(1), B);
1134 B.CreateStore(V, Ptr);
1135 Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::Int32Ty, 1), "nul");
1136 B.CreateStore(Constant::getNullValue(Type::Int8Ty), Ptr);
1137
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001138 return ConstantInt::get(CI->getType(), 1);
1139 }
1140
1141 if (FormatStr[1] == 's') {
1142 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1143 if (!isa<PointerType>(CI->getOperand(3)->getType())) return 0;
1144
1145 Value *Len = EmitStrLen(CI->getOperand(3), B);
1146 Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1),
1147 "leninc");
1148 EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
1149
1150 // The sprintf result is the unincremented number of bytes in the string.
1151 return B.CreateIntCast(Len, CI->getType(), false);
1152 }
1153 return 0;
1154 }
1155};
1156
1157//===---------------------------------------===//
1158// 'fwrite' Optimizations
1159
1160struct VISIBILITY_HIDDEN FWriteOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001161 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001162 // Require a pointer, an integer, an integer, a pointer, returning integer.
1163 const FunctionType *FT = Callee->getFunctionType();
1164 if (FT->getNumParams() != 4 || !isa<PointerType>(FT->getParamType(0)) ||
1165 !isa<IntegerType>(FT->getParamType(1)) ||
1166 !isa<IntegerType>(FT->getParamType(2)) ||
1167 !isa<PointerType>(FT->getParamType(3)) ||
1168 !isa<IntegerType>(FT->getReturnType()))
1169 return 0;
1170
1171 // Get the element size and count.
1172 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2));
1173 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3));
1174 if (!SizeC || !CountC) return 0;
1175 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
1176
1177 // If this is writing zero records, remove the call (it's a noop).
1178 if (Bytes == 0)
1179 return ConstantInt::get(CI->getType(), 0);
1180
1181 // If this is writing one byte, turn it into fputc.
1182 if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1183 Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
1184 EmitFPutC(Char, CI->getOperand(4), B);
1185 return ConstantInt::get(CI->getType(), 1);
1186 }
1187
1188 return 0;
1189 }
1190};
1191
1192//===---------------------------------------===//
1193// 'fputs' Optimizations
1194
1195struct VISIBILITY_HIDDEN FPutsOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001196 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001197 // Require two pointers. Also, we can't optimize if return value is used.
1198 const FunctionType *FT = Callee->getFunctionType();
1199 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1200 !isa<PointerType>(FT->getParamType(1)) ||
1201 !CI->use_empty())
1202 return 0;
1203
1204 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1205 uint64_t Len = GetStringLength(CI->getOperand(1));
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001206 if (!Len) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001207 EmitFWrite(CI->getOperand(1), ConstantInt::get(TD->getIntPtrType(), Len-1),
1208 CI->getOperand(2), B);
1209 return CI; // Known to have no uses (see above).
1210 }
1211};
1212
1213//===---------------------------------------===//
1214// 'fprintf' Optimizations
1215
1216struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001217 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001218 // Require two fixed paramters as pointers and integer result.
1219 const FunctionType *FT = Callee->getFunctionType();
1220 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1221 !isa<PointerType>(FT->getParamType(1)) ||
1222 !isa<IntegerType>(FT->getReturnType()))
1223 return 0;
1224
1225 // All the optimizations depend on the format string.
1226 std::string FormatStr;
1227 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001228 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001229
1230 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1231 if (CI->getNumOperands() == 3) {
1232 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1233 if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001234 return 0; // We found a format specifier.
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001235
1236 EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(),
1237 FormatStr.size()),
1238 CI->getOperand(1), B);
1239 return ConstantInt::get(CI->getType(), FormatStr.size());
1240 }
1241
1242 // The remaining optimizations require the format string to be "%s" or "%c"
1243 // and have an extra operand.
1244 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
1245 return 0;
1246
1247 // Decode the second character of the format string.
1248 if (FormatStr[1] == 'c') {
1249 // fprintf(F, "%c", chr) --> *(i8*)dst = chr
1250 if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
1251 EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
1252 return ConstantInt::get(CI->getType(), 1);
1253 }
1254
1255 if (FormatStr[1] == 's') {
1256 // fprintf(F, "%s", str) -> fputs(str, F)
1257 if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty())
1258 return 0;
1259 EmitFPutS(CI->getOperand(3), CI->getOperand(1), B);
1260 return CI;
1261 }
1262 return 0;
1263 }
1264};
1265
Bill Wendlingac178222008-05-05 21:37:59 +00001266} // end anonymous namespace.
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001267
1268//===----------------------------------------------------------------------===//
1269// SimplifyLibCalls Pass Implementation
1270//===----------------------------------------------------------------------===//
1271
1272namespace {
1273 /// This pass optimizes well known library functions from libc and libm.
1274 ///
1275 class VISIBILITY_HIDDEN SimplifyLibCalls : public FunctionPass {
1276 StringMap<LibCallOptimization*> Optimizations;
1277 // Miscellaneous LibCall Optimizations
1278 ExitOpt Exit;
1279 // String and Memory LibCall Optimizations
1280 StrCatOpt StrCat; StrChrOpt StrChr; StrCmpOpt StrCmp; StrNCmpOpt StrNCmp;
1281 StrCpyOpt StrCpy; StrLenOpt StrLen; MemCmpOpt MemCmp; MemCpyOpt MemCpy;
Eli Friedmand83ae7d2008-11-30 08:32:11 +00001282 MemMoveOpt MemMove; MemSetOpt MemSet;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001283 // Math Library Optimizations
Chris Lattnere818f772008-05-02 18:43:35 +00001284 PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001285 // Integer Optimizations
Chris Lattner313f0e62008-06-09 08:26:51 +00001286 FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
1287 ToAsciiOpt ToAscii;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001288 // Formatting and IO Optimizations
1289 SPrintFOpt SPrintF; PrintFOpt PrintF;
1290 FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
1291 public:
1292 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +00001293 SimplifyLibCalls() : FunctionPass(&ID) {}
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001294
1295 void InitOptimizations();
1296 bool runOnFunction(Function &F);
1297
1298 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1299 AU.addRequired<TargetData>();
1300 }
1301 };
1302 char SimplifyLibCalls::ID = 0;
1303} // end anonymous namespace.
1304
1305static RegisterPass<SimplifyLibCalls>
1306X("simplify-libcalls", "Simplify well-known library calls");
1307
1308// Public interface to the Simplify LibCalls pass.
1309FunctionPass *llvm::createSimplifyLibCallsPass() {
1310 return new SimplifyLibCalls();
1311}
1312
1313/// Optimizations - Populate the Optimizations map with all the optimizations
1314/// we know.
1315void SimplifyLibCalls::InitOptimizations() {
1316 // Miscellaneous LibCall Optimizations
1317 Optimizations["exit"] = &Exit;
1318
1319 // String and Memory LibCall Optimizations
1320 Optimizations["strcat"] = &StrCat;
1321 Optimizations["strchr"] = &StrChr;
1322 Optimizations["strcmp"] = &StrCmp;
1323 Optimizations["strncmp"] = &StrNCmp;
1324 Optimizations["strcpy"] = &StrCpy;
1325 Optimizations["strlen"] = &StrLen;
1326 Optimizations["memcmp"] = &MemCmp;
1327 Optimizations["memcpy"] = &MemCpy;
Eli Friedmand83ae7d2008-11-30 08:32:11 +00001328 Optimizations["memmove"] = &MemMove;
1329 Optimizations["memset"] = &MemSet;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001330
1331 // Math Library Optimizations
1332 Optimizations["powf"] = &Pow;
1333 Optimizations["pow"] = &Pow;
1334 Optimizations["powl"] = &Pow;
Dale Johannesen53bfbbc2008-09-04 18:30:46 +00001335 Optimizations["llvm.pow.f32"] = &Pow;
1336 Optimizations["llvm.pow.f64"] = &Pow;
1337 Optimizations["llvm.pow.f80"] = &Pow;
1338 Optimizations["llvm.pow.f128"] = &Pow;
1339 Optimizations["llvm.pow.ppcf128"] = &Pow;
Chris Lattnere818f772008-05-02 18:43:35 +00001340 Optimizations["exp2l"] = &Exp2;
1341 Optimizations["exp2"] = &Exp2;
1342 Optimizations["exp2f"] = &Exp2;
Dale Johannesen53bfbbc2008-09-04 18:30:46 +00001343 Optimizations["llvm.exp2.ppcf128"] = &Exp2;
1344 Optimizations["llvm.exp2.f128"] = &Exp2;
1345 Optimizations["llvm.exp2.f80"] = &Exp2;
1346 Optimizations["llvm.exp2.f64"] = &Exp2;
1347 Optimizations["llvm.exp2.f32"] = &Exp2;
Chris Lattnere818f772008-05-02 18:43:35 +00001348
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001349#ifdef HAVE_FLOORF
1350 Optimizations["floor"] = &UnaryDoubleFP;
1351#endif
1352#ifdef HAVE_CEILF
1353 Optimizations["ceil"] = &UnaryDoubleFP;
1354#endif
1355#ifdef HAVE_ROUNDF
1356 Optimizations["round"] = &UnaryDoubleFP;
1357#endif
1358#ifdef HAVE_RINTF
1359 Optimizations["rint"] = &UnaryDoubleFP;
1360#endif
1361#ifdef HAVE_NEARBYINTF
1362 Optimizations["nearbyint"] = &UnaryDoubleFP;
1363#endif
1364
1365 // Integer Optimizations
1366 Optimizations["ffs"] = &FFS;
1367 Optimizations["ffsl"] = &FFS;
1368 Optimizations["ffsll"] = &FFS;
Chris Lattner313f0e62008-06-09 08:26:51 +00001369 Optimizations["abs"] = &Abs;
1370 Optimizations["labs"] = &Abs;
1371 Optimizations["llabs"] = &Abs;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001372 Optimizations["isdigit"] = &IsDigit;
1373 Optimizations["isascii"] = &IsAscii;
1374 Optimizations["toascii"] = &ToAscii;
1375
1376 // Formatting and IO Optimizations
1377 Optimizations["sprintf"] = &SPrintF;
1378 Optimizations["printf"] = &PrintF;
1379 Optimizations["fwrite"] = &FWrite;
1380 Optimizations["fputs"] = &FPuts;
1381 Optimizations["fprintf"] = &FPrintF;
1382}
1383
1384
1385/// runOnFunction - Top level algorithm.
1386///
1387bool SimplifyLibCalls::runOnFunction(Function &F) {
1388 if (Optimizations.empty())
1389 InitOptimizations();
1390
1391 const TargetData &TD = getAnalysis<TargetData>();
1392
Eric Christopher7a61d702008-08-08 19:39:37 +00001393 IRBuilder<> Builder;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001394
1395 bool Changed = false;
1396 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1397 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
1398 // Ignore non-calls.
1399 CallInst *CI = dyn_cast<CallInst>(I++);
1400 if (!CI) continue;
1401
1402 // Ignore indirect calls and calls to non-external functions.
1403 Function *Callee = CI->getCalledFunction();
1404 if (Callee == 0 || !Callee->isDeclaration() ||
1405 !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
1406 continue;
1407
1408 // Ignore unknown calls.
1409 const char *CalleeName = Callee->getNameStart();
1410 StringMap<LibCallOptimization*>::iterator OMI =
1411 Optimizations.find(CalleeName, CalleeName+Callee->getNameLen());
1412 if (OMI == Optimizations.end()) continue;
1413
1414 // Set the builder to the instruction after the call.
1415 Builder.SetInsertPoint(BB, I);
1416
1417 // Try to optimize this call.
1418 Value *Result = OMI->second->OptimizeCall(CI, TD, Builder);
1419 if (Result == 0) continue;
1420
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001421 DEBUG(DOUT << "SimplifyLibCalls simplified: " << *CI;
1422 DOUT << " into: " << *Result << "\n");
1423
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001424 // Something changed!
1425 Changed = true;
1426 ++NumSimplified;
1427
1428 // Inspect the instruction after the call (which was potentially just
1429 // added) next.
1430 I = CI; ++I;
1431
1432 if (CI != Result && !CI->use_empty()) {
1433 CI->replaceAllUsesWith(Result);
1434 if (!Result->hasName())
1435 Result->takeName(CI);
1436 }
1437 CI->eraseFromParent();
1438 }
1439 }
1440 return Changed;
1441}
1442
1443
1444// TODO:
1445// Additional cases that we need to add to this file:
1446//
1447// cbrt:
1448// * cbrt(expN(X)) -> expN(x/3)
1449// * cbrt(sqrt(x)) -> pow(x,1/6)
1450// * cbrt(sqrt(x)) -> pow(x,1/9)
1451//
1452// cos, cosf, cosl:
1453// * cos(-x) -> cos(x)
1454//
1455// exp, expf, expl:
1456// * exp(log(x)) -> x
1457//
1458// log, logf, logl:
1459// * log(exp(x)) -> x
1460// * log(x**y) -> y*log(x)
1461// * log(exp(y)) -> y*log(e)
1462// * log(exp2(y)) -> y*log(2)
1463// * log(exp10(y)) -> y*log(10)
1464// * log(sqrt(x)) -> 0.5*log(x)
1465// * log(pow(x,y)) -> y*log(x)
1466//
1467// lround, lroundf, lroundl:
1468// * lround(cnst) -> cnst'
1469//
1470// memcmp:
1471// * memcmp(x,y,l) -> cnst
1472// (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
1473//
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001474// pow, powf, powl:
1475// * pow(exp(x),y) -> exp(x*y)
1476// * pow(sqrt(x),y) -> pow(x,y*0.5)
1477// * pow(pow(x,y),z)-> pow(x,y*z)
1478//
1479// puts:
1480// * puts("") -> putchar("\n")
1481//
1482// round, roundf, roundl:
1483// * round(cnst) -> cnst'
1484//
1485// signbit:
1486// * signbit(cnst) -> cnst'
1487// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
1488//
1489// sqrt, sqrtf, sqrtl:
1490// * sqrt(expN(x)) -> expN(x*0.5)
1491// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
1492// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
1493//
1494// stpcpy:
1495// * stpcpy(str, "literal") ->
1496// llvm.memcpy(str,"literal",strlen("literal")+1,1)
1497// strrchr:
1498// * strrchr(s,c) -> reverse_offset_of_in(c,s)
1499// (if c is a constant integer and s is a constant string)
1500// * strrchr(s1,0) -> strchr(s1,0)
1501//
1502// strncat:
1503// * strncat(x,y,0) -> x
1504// * strncat(x,y,0) -> x (if strlen(y) = 0)
1505// * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
1506//
1507// strncpy:
1508// * strncpy(d,s,0) -> d
1509// * strncpy(d,s,l) -> memcpy(d,s,l,1)
1510// (if s and l are constants)
1511//
1512// strpbrk:
1513// * strpbrk(s,a) -> offset_in_for(s,a)
1514// (if s and a are both constant strings)
1515// * strpbrk(s,"") -> 0
1516// * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
1517//
1518// strspn, strcspn:
1519// * strspn(s,a) -> const_int (if both args are constant)
1520// * strspn("",a) -> 0
1521// * strspn(s,"") -> 0
1522// * strcspn(s,a) -> const_int (if both args are constant)
1523// * strcspn("",a) -> 0
1524// * strcspn(s,"") -> strlen(a)
1525//
1526// strstr:
1527// * strstr(x,x) -> x
1528// * strstr(s1,s2) -> offset_of_s2_in(s1)
1529// (if s1 and s2 are constant strings)
1530//
1531// tan, tanf, tanl:
1532// * tan(atan(x)) -> x
1533//
1534// trunc, truncf, truncl:
1535// * trunc(cnst) -> cnst'
1536//
1537//