blob: f8b5e5e53abf7a9e5bff8dfd47afa597a48593e4 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
17#include "llvm/Target/TargetInstrInfo.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000018#include "X86.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86RegisterInfo.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000020#include "llvm/ADT/DenseMap.h"
Dan Gohman1e57df32008-02-10 18:45:23 +000021#include "llvm/Target/TargetRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022
23namespace llvm {
24 class X86RegisterInfo;
25 class X86TargetMachine;
26
27namespace X86 {
28 // X86 specific condition code. These correspond to X86_*_COND in
29 // X86InstrInfo.td. They must be kept in synch.
30 enum CondCode {
31 COND_A = 0,
32 COND_AE = 1,
33 COND_B = 2,
34 COND_BE = 3,
35 COND_E = 4,
36 COND_G = 5,
37 COND_GE = 6,
38 COND_L = 7,
39 COND_LE = 8,
40 COND_NE = 9,
41 COND_NO = 10,
42 COND_NP = 11,
43 COND_NS = 12,
Dan Gohman0fc9ed62009-01-07 00:15:08 +000044 COND_O = 13,
45 COND_P = 14,
46 COND_S = 15,
Dan Gohman6a00fcb2008-10-21 03:29:32 +000047
48 // Artificial condition codes. These are used by AnalyzeBranch
49 // to indicate a block terminated with two conditional branches to
50 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
51 // which can't be represented on x86 with a single condition. These
52 // are never used in MachineInstrs.
53 COND_NE_OR_P,
54 COND_NP_OR_E,
55
Dan Gohmanf17a25c2007-07-18 16:29:46 +000056 COND_INVALID
57 };
Christopher Lambb371e032008-03-13 05:47:01 +000058
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059 // Turn condition code into conditional branch opcode.
60 unsigned GetCondBranchFromCond(CondCode CC);
61
62 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
63 /// e.g. turning COND_E to COND_NE.
64 CondCode GetOppositeBranchCondition(X86::CondCode CC);
65
66}
67
68/// X86II - This namespace holds all of the target specific flags that
69/// instruction info tracks.
70///
71namespace X86II {
72 enum {
73 //===------------------------------------------------------------------===//
Chris Lattner13d6c2d2009-06-25 17:38:33 +000074 // X86 Specific MachineOperand flags.
75
76 MO_NO_FLAG = 0,
77
78 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
79 /// relocation of:
80 /// $SYMBOL_LABEL + [. - PICBASELABEL]
81 MO_GOT_ABSOLUTE_ADDRESS = 1,
82
83
84 //===------------------------------------------------------------------===//
85 // Instruction encodings. These are the standard/most common forms for X86
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 // instructions.
87 //
88
89 // PseudoFrm - This represents an instruction that is a pseudo instruction
90 // or one that has not been implemented yet. It is illegal to code generate
91 // it, but tolerated for intermediate implementation stages.
92 Pseudo = 0,
93
94 /// Raw - This form is for instructions that don't have any operands, so
95 /// they are just a fixed opcode value, like 'leave'.
96 RawFrm = 1,
97
98 /// AddRegFrm - This form is used for instructions like 'push r32' that have
99 /// their one register operand added to their opcode.
100 AddRegFrm = 2,
101
102 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
103 /// to specify a destination, which in this case is a register.
104 ///
105 MRMDestReg = 3,
106
107 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
108 /// to specify a destination, which in this case is memory.
109 ///
110 MRMDestMem = 4,
111
112 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
113 /// to specify a source, which in this case is a register.
114 ///
115 MRMSrcReg = 5,
116
117 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
118 /// to specify a source, which in this case is memory.
119 ///
120 MRMSrcMem = 6,
121
122 /// MRM[0-7][rm] - These forms are used to represent instructions that use
123 /// a Mod/RM byte, and use the middle field to hold extended opcode
124 /// information. In the intel manual these are represented as /0, /1, ...
125 ///
126
127 // First, instructions that operate on a register r/m operand...
128 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
129 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
130
131 // Next, instructions that operate on a memory r/m operand...
132 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
133 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
134
135 // MRMInitReg - This form is used for instructions whose source and
136 // destinations are the same register.
137 MRMInitReg = 32,
138
139 FormMask = 63,
140
141 //===------------------------------------------------------------------===//
142 // Actual flags...
143
144 // OpSize - Set if this instruction requires an operand size prefix (0x66),
145 // which most often indicates that the instruction operates on 16 bit data
146 // instead of 32 bit data.
147 OpSize = 1 << 6,
148
149 // AsSize - Set if this instruction requires an operand size prefix (0x67),
150 // which most often indicates that the instruction address 16 bit address
151 // instead of 32 bit address (or 32 bit address in 64 bit mode).
152 AdSize = 1 << 7,
153
154 //===------------------------------------------------------------------===//
155 // Op0Mask - There are several prefix bytes that are used to form two byte
156 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
157 // used to obtain the setting of this field. If no bits in this field is
158 // set, there is no prefix byte for obtaining a multibyte opcode.
159 //
160 Op0Shift = 8,
161 Op0Mask = 0xF << Op0Shift,
162
163 // TB - TwoByte - Set if this instruction has a two byte opcode, which
164 // starts with a 0x0F byte before the real opcode.
165 TB = 1 << Op0Shift,
166
167 // REP - The 0xF3 prefix byte indicating repetition of the following
168 // instruction.
169 REP = 2 << Op0Shift,
170
171 // D8-DF - These escape opcodes are used by the floating point unit. These
172 // values must remain sequential.
173 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
174 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
175 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
176 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
177
178 // XS, XD - These prefix codes are for single and double precision scalar
179 // floating point operations performed in the SSE registers.
180 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
181
182 // T8, TA - Prefix after the 0x0F prefix.
183 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
184
185 //===------------------------------------------------------------------===//
186 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
187 // They are used to specify GPRs and SSE registers, 64-bit operand size,
188 // etc. We only cares about REX.W and REX.R bits and only the former is
189 // statically determined.
190 //
191 REXShift = 12,
192 REX_W = 1 << REXShift,
193
194 //===------------------------------------------------------------------===//
195 // This three-bit field describes the size of an immediate operand. Zero is
196 // unused so that we can tell if we forgot to set a value.
197 ImmShift = 13,
198 ImmMask = 7 << ImmShift,
199 Imm8 = 1 << ImmShift,
200 Imm16 = 2 << ImmShift,
201 Imm32 = 3 << ImmShift,
202 Imm64 = 4 << ImmShift,
203
204 //===------------------------------------------------------------------===//
205 // FP Instruction Classification... Zero is non-fp instruction.
206
207 // FPTypeMask - Mask for all of the FP types...
208 FPTypeShift = 16,
209 FPTypeMask = 7 << FPTypeShift,
210
211 // NotFP - The default, set for instructions that do not use FP registers.
212 NotFP = 0 << FPTypeShift,
213
214 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
215 ZeroArgFP = 1 << FPTypeShift,
216
217 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
218 OneArgFP = 2 << FPTypeShift,
219
220 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
221 // result back to ST(0). For example, fcos, fsqrt, etc.
222 //
223 OneArgFPRW = 3 << FPTypeShift,
224
225 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
226 // explicit argument, storing the result to either ST(0) or the implicit
227 // argument. For example: fadd, fsub, fmul, etc...
228 TwoArgFP = 4 << FPTypeShift,
229
230 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
231 // explicit argument, but have no destination. Example: fucom, fucomi, ...
232 CompareFP = 5 << FPTypeShift,
233
234 // CondMovFP - "2 operand" floating point conditional move instructions.
235 CondMovFP = 6 << FPTypeShift,
236
237 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
238 SpecialFP = 7 << FPTypeShift,
239
Andrew Lenharth7a5a4b22008-03-01 13:37:02 +0000240 // Lock prefix
241 LOCKShift = 19,
242 LOCK = 1 << LOCKShift,
243
Anton Korobeynikov975e1472008-10-11 19:09:15 +0000244 // Segment override prefixes. Currently we just need ability to address
245 // stuff in gs and fs segments.
246 SegOvrShift = 20,
247 SegOvrMask = 3 << SegOvrShift,
248 FS = 1 << SegOvrShift,
249 GS = 2 << SegOvrShift,
250
251 // Bits 22 -> 23 are unused
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252 OpcodeShift = 24,
253 OpcodeMask = 0xFF << OpcodeShift
254 };
255}
256
Rafael Espindolabca99f72009-04-08 21:14:34 +0000257const int X86AddrNumOperands = 5;
Rafael Espindola3ef73652009-03-28 18:55:31 +0000258
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000259inline static bool isScale(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000260 return MO.isImm() &&
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000261 (MO.getImm() == 1 || MO.getImm() == 2 ||
262 MO.getImm() == 4 || MO.getImm() == 8);
263}
264
Rafael Espindolabca99f72009-04-08 21:14:34 +0000265inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000266 if (MI->getOperand(Op).isFI()) return true;
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000267 return Op+4 <= MI->getNumOperands() &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000268 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
269 MI->getOperand(Op+2).isReg() &&
270 (MI->getOperand(Op+3).isImm() ||
271 MI->getOperand(Op+3).isGlobal() ||
272 MI->getOperand(Op+3).isCPI() ||
273 MI->getOperand(Op+3).isJTI());
Anton Korobeynikov2e7832f2008-06-28 11:07:54 +0000274}
275
Rafael Espindolabca99f72009-04-08 21:14:34 +0000276inline static bool isMem(const MachineInstr *MI, unsigned Op) {
277 if (MI->getOperand(Op).isFI()) return true;
278 return Op+5 <= MI->getNumOperands() &&
279 MI->getOperand(Op+4).isReg() &&
280 isLeaMem(MI, Op);
281}
282
Chris Lattnerd2fd6db2008-01-01 01:03:04 +0000283class X86InstrInfo : public TargetInstrInfoImpl {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000284 X86TargetMachine &TM;
285 const X86RegisterInfo RI;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000286
287 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
288 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
289 ///
290 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
291 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
292 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
293 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
294
295 /// MemOp2RegOpTable - Load / store unfolding opcode map.
296 ///
297 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
298
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000299public:
Dan Gohman40bd38e2008-03-25 22:06:05 +0000300 explicit X86InstrInfo(X86TargetMachine &tm);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000301
302 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
303 /// such, whenever a client has an instance of instruction info, it should
304 /// always be able to get register info as well (through this method).
305 ///
Dan Gohmanb41dfba2008-05-14 01:58:56 +0000306 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307
Evan Chengf97496a2009-01-20 19:12:24 +0000308 /// Return true if the instruction is a register to register move and return
309 /// the source and dest operands and their sub-register indices by reference.
310 virtual bool isMoveInstr(const MachineInstr &MI,
311 unsigned &SrcReg, unsigned &DstReg,
312 unsigned &SrcSubIdx, unsigned &DstSubIdx) const;
313
Dan Gohman90feee22008-11-18 19:49:32 +0000314 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
315 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000316
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000317 bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000318 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
319 unsigned DestReg, const MachineInstr *Orig) const;
320
Dan Gohman90feee22008-11-18 19:49:32 +0000321 bool isInvariantLoad(const MachineInstr *MI) const;
Bill Wendling57e31d62007-12-17 23:07:56 +0000322
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000323 /// convertToThreeAddress - This method must be implemented by targets that
324 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
325 /// may be able to convert a two-address instruction into a true
326 /// three-address instruction on demand. This allows the X86 target (for
327 /// example) to convert ADD and SHL instructions into LEA instructions if they
328 /// would require register copies due to two-addressness.
329 ///
330 /// This method returns a null pointer if the transformation cannot be
331 /// performed, otherwise it returns the new instruction.
332 ///
333 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
334 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000335 LiveVariables *LV) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336
337 /// commuteInstruction - We have a few instructions that must be hacked on to
338 /// commute them.
339 ///
Evan Cheng5de1aaf2008-06-16 07:33:11 +0000340 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000341
342 // Branch analysis.
343 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
344 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
345 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +0000346 SmallVectorImpl<MachineOperand> &Cond,
347 bool AllowModify) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000348 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
349 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
350 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +0000351 const SmallVectorImpl<MachineOperand> &Cond) const;
Owen Anderson9fa72d92008-08-26 18:03:31 +0000352 virtual bool copyRegToReg(MachineBasicBlock &MBB,
Owen Anderson8f2c8932007-12-31 06:32:00 +0000353 MachineBasicBlock::iterator MI,
354 unsigned DestReg, unsigned SrcReg,
355 const TargetRegisterClass *DestRC,
356 const TargetRegisterClass *SrcRC) const;
Owen Anderson81875432008-01-01 21:11:32 +0000357 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
358 MachineBasicBlock::iterator MI,
359 unsigned SrcReg, bool isKill, int FrameIndex,
360 const TargetRegisterClass *RC) const;
361
362 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
363 SmallVectorImpl<MachineOperand> &Addr,
364 const TargetRegisterClass *RC,
365 SmallVectorImpl<MachineInstr*> &NewMIs) const;
366
367 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
368 MachineBasicBlock::iterator MI,
369 unsigned DestReg, int FrameIndex,
370 const TargetRegisterClass *RC) const;
371
372 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
373 SmallVectorImpl<MachineOperand> &Addr,
374 const TargetRegisterClass *RC,
375 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Anderson6690c7f2008-01-04 23:57:37 +0000376
377 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
378 MachineBasicBlock::iterator MI,
379 const std::vector<CalleeSavedInfo> &CSI) const;
380
381 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
382 MachineBasicBlock::iterator MI,
383 const std::vector<CalleeSavedInfo> &CSI) const;
384
Owen Anderson9a184ef2008-01-07 01:35:02 +0000385 /// foldMemoryOperand - If this target supports it, fold a load or store of
386 /// the specified stack slot into the specified machine instruction for the
387 /// specified operand(s). If this is possible, the target should perform the
388 /// folding and return true, otherwise it should return false. If it folds
389 /// the instruction, it is likely that the MachineInstruction the iterator
390 /// references has been changed.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000391 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
392 MachineInstr* MI,
393 const SmallVectorImpl<unsigned> &Ops,
394 int FrameIndex) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000395
396 /// foldMemoryOperand - Same as the previous version except it allows folding
397 /// of any load and store from / to any address, not just from a specific
398 /// stack slot.
Dan Gohmanedc83d62008-12-03 18:43:12 +0000399 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
400 MachineInstr* MI,
401 const SmallVectorImpl<unsigned> &Ops,
402 MachineInstr* LoadMI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000403
404 /// canFoldMemoryOperand - Returns true if the specified load / store is
405 /// folding is possible.
Dan Gohman46b948e2008-10-16 01:49:15 +0000406 virtual bool canFoldMemoryOperand(const MachineInstr*,
407 const SmallVectorImpl<unsigned> &) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000408
409 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
410 /// a store or a load and a store into two or more instruction. If this is
411 /// possible, returns true as well as the new instructions by reference.
412 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
413 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
414 SmallVectorImpl<MachineInstr*> &NewMIs) const;
415
416 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
417 SmallVectorImpl<SDNode*> &NewNodes) const;
418
419 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
420 /// instruction after load / store are unfolded from an instruction of the
421 /// specified opcode. It returns zero if the specified unfolding is not
422 /// possible.
423 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
424 bool UnfoldLoad, bool UnfoldStore) const;
425
Dan Gohman46b948e2008-10-16 01:49:15 +0000426 virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const;
Owen Andersond131b5b2008-08-14 22:49:33 +0000427 virtual
428 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429
Evan Chengf5a8a362009-02-06 17:17:30 +0000430 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
431 /// instruction that defines the specified register class.
432 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
Evan Cheng0e4a5a92008-10-27 07:14:50 +0000433
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000434 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sands466eadd2007-08-29 19:01:20 +0000435 // specified machine instruction.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000436 //
Chris Lattner5b930372008-01-07 07:27:27 +0000437 unsigned char getBaseOpcodeFor(const TargetInstrDesc *TID) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000438 return TID->TSFlags >> X86II::OpcodeShift;
439 }
Chris Lattner99aa3372008-01-07 02:48:55 +0000440 unsigned char getBaseOpcodeFor(unsigned Opcode) const {
Duncan Sands466eadd2007-08-29 19:01:20 +0000441 return getBaseOpcodeFor(&get(Opcode));
442 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000443
444 static bool isX86_64NonExtLowByteReg(unsigned reg) {
445 return (reg == X86::SPL || reg == X86::BPL ||
446 reg == X86::SIL || reg == X86::DIL);
447 }
448
449 static unsigned sizeOfImm(const TargetInstrDesc *Desc);
Nicolas Geoffraycb162a02008-04-16 20:10:13 +0000450 static bool isX86_64ExtendedReg(const MachineOperand &MO);
451 static unsigned determineREX(const MachineInstr &MI);
452
453 /// GetInstSize - Returns the size of the specified MachineInstr.
454 ///
455 virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const;
Owen Anderson9a184ef2008-01-07 01:35:02 +0000456
Dan Gohman882ab732008-09-30 00:58:23 +0000457 /// getGlobalBaseReg - Return a virtual register initialized with the
458 /// the global base register value. Output instructions required to
459 /// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +0000460 ///
Dan Gohman882ab732008-09-30 00:58:23 +0000461 unsigned getGlobalBaseReg(MachineFunction *MF) const;
Dan Gohmanb60482f2008-09-23 18:22:58 +0000462
Owen Anderson9a184ef2008-01-07 01:35:02 +0000463private:
Dan Gohmanedc83d62008-12-03 18:43:12 +0000464 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
465 MachineInstr* MI,
466 unsigned OpNum,
Dan Gohmanc24a3f82009-01-05 17:59:02 +0000467 const SmallVectorImpl<MachineOperand> &MOs) const;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468};
469
470} // End llvm namespace
471
472#endif