blob: feef2ccee4cf12d5306c42ddc65e758fa3047bd5 [file] [log] [blame]
Chris Lattner233f7dc2002-08-12 21:17:25 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner8a2a3112001-12-14 16:52:21 +00009//
10// InstructionCombining - Combine instructions to form fewer, simple
Dan Gohman844731a2008-05-13 00:00:25 +000011// instructions. This pass does not modify the CFG. This pass is where
12// algebraic simplification happens.
Chris Lattner8a2a3112001-12-14 16:52:21 +000013//
14// This pass combines things like:
Chris Lattner318bf792007-03-18 22:51:34 +000015// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
Chris Lattner8a2a3112001-12-14 16:52:21 +000017// into:
Chris Lattner318bf792007-03-18 22:51:34 +000018// %Z = add i32 %X, 2
Chris Lattner8a2a3112001-12-14 16:52:21 +000019//
20// This is a simple worklist driven algorithm.
21//
Chris Lattner065a6162003-09-10 05:29:43 +000022// This pass guarantees that the following canonicalizations are performed on
Chris Lattner2cd91962003-07-23 21:41:57 +000023// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
Chris Lattnerdf17af12003-08-12 21:53:41 +000025// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
Reid Spencere4d87aa2006-12-23 06:05:41 +000027// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
Chris Lattnere92d2f42003-08-13 04:18:28 +000029// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
Chris Lattnerbac32862004-11-14 19:13:23 +000032// ... etc.
Chris Lattner2cd91962003-07-23 21:41:57 +000033//
Chris Lattner8a2a3112001-12-14 16:52:21 +000034//===----------------------------------------------------------------------===//
35
Chris Lattner0cea42a2004-03-13 23:54:27 +000036#define DEBUG_TYPE "instcombine"
Chris Lattner022103b2002-05-07 20:03:00 +000037#include "llvm/Transforms/Scalar.h"
Chris Lattnerac8f2fd2010-01-04 07:12:23 +000038#include "InstCombine.h"
Chris Lattner35b9e482004-10-12 04:52:52 +000039#include "llvm/IntrinsicInst.h"
Chris Lattner79066fa2007-01-30 23:46:24 +000040#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner9dbb4292009-11-09 23:28:39 +000041#include "llvm/Analysis/InstructionSimplify.h"
Victor Hernandezf006b182009-10-27 20:05:49 +000042#include "llvm/Analysis/MemoryBuiltins.h"
Micah Villmow3574eca2012-10-08 16:38:25 +000043#include "llvm/DataLayout.h"
Chad Rosier3d925d22011-11-29 23:57:10 +000044#include "llvm/Target/TargetLibraryInfo.h"
Chris Lattnerbc61e662003-11-02 05:57:39 +000045#include "llvm/Transforms/Utils/Local.h"
Chris Lattner804272c2010-01-05 07:54:43 +000046#include "llvm/Support/CFG.h"
Meador Inge2920a712012-11-13 04:16:17 +000047#include "llvm/Support/CommandLine.h"
Chris Lattnerea1c4542004-12-08 23:43:58 +000048#include "llvm/Support/Debug.h"
Chris Lattner28977af2004-04-05 01:30:19 +000049#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattneracd1f0f2004-07-30 07:50:03 +000050#include "llvm/Support/PatternMatch.h"
Nick Lewyckyd5061a92011-08-03 00:43:35 +000051#include "llvm/Support/ValueHandle.h"
Chris Lattner1f87a582007-02-15 19:41:52 +000052#include "llvm/ADT/SmallPtrSet.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000053#include "llvm/ADT/Statistic.h"
Duncan Sands0ad7b6e2011-09-30 13:12:16 +000054#include "llvm/ADT/StringSwitch.h"
Owen Anderson74cfb0c2010-10-07 20:04:55 +000055#include "llvm-c/Initialization.h"
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +000056#include <algorithm>
Torok Edwin3eaee312008-04-20 08:33:11 +000057#include <climits>
Chris Lattner67b1e1b2003-12-07 01:24:23 +000058using namespace llvm;
Chris Lattneracd1f0f2004-07-30 07:50:03 +000059using namespace llvm::PatternMatch;
Brian Gaeked0fde302003-11-11 22:41:34 +000060
Chris Lattner0e5f4992006-12-19 21:40:18 +000061STATISTIC(NumCombined , "Number of insts combined");
62STATISTIC(NumConstProp, "Number of constant folds");
63STATISTIC(NumDeadInst , "Number of dead inst eliminated");
Chris Lattner0e5f4992006-12-19 21:40:18 +000064STATISTIC(NumSunkInst , "Number of instructions sunk");
Duncan Sands37bf92b2010-12-22 13:36:08 +000065STATISTIC(NumExpand, "Number of expansions");
Duncan Sandsa3c44a52010-12-22 09:40:51 +000066STATISTIC(NumFactor , "Number of factorizations");
67STATISTIC(NumReassoc , "Number of reassociations");
Chris Lattnera92f6962002-10-01 22:38:41 +000068
Meador Inge2920a712012-11-13 04:16:17 +000069static cl::opt<bool> UnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
70 cl::init(false),
71 cl::desc("Enable unsafe double to float "
72 "shrinking for math lib calls"));
73
Owen Anderson74cfb0c2010-10-07 20:04:55 +000074// Initialization Routines
75void llvm::initializeInstCombine(PassRegistry &Registry) {
76 initializeInstCombinerPass(Registry);
77}
78
79void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
80 initializeInstCombine(*unwrap(R));
81}
Chris Lattnerdd841ae2002-04-18 17:39:14 +000082
Dan Gohman844731a2008-05-13 00:00:25 +000083char InstCombiner::ID = 0;
Chad Rosier00737bd2011-12-01 21:29:16 +000084INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
85 "Combine redundant instructions", false, false)
86INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
87INITIALIZE_PASS_END(InstCombiner, "instcombine",
Owen Andersonce665bd2010-10-07 22:25:06 +000088 "Combine redundant instructions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +000089
Chris Lattnere0b4b722010-01-04 07:17:19 +000090void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnere0b4b722010-01-04 07:17:19 +000091 AU.setPreservesCFG();
Chad Rosier3d925d22011-11-29 23:57:10 +000092 AU.addRequired<TargetLibraryInfo>();
Chris Lattnere0b4b722010-01-04 07:17:19 +000093}
94
95
Nuno Lopes5c525b52012-05-22 17:19:09 +000096Value *InstCombiner::EmitGEPOffset(User *GEP) {
Micah Villmow3574eca2012-10-08 16:38:25 +000097 return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
Nuno Lopes5c525b52012-05-22 17:19:09 +000098}
99
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000100/// ShouldChangeType - Return true if it is desirable to convert a computation
101/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
102/// type for example, or from a smaller to a larger illegal type.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000103bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
Duncan Sands1df98592010-02-16 11:11:14 +0000104 assert(From->isIntegerTy() && To->isIntegerTy());
Jakub Staszak58c1da82012-05-06 13:52:31 +0000105
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000106 // If we don't have TD, we don't know if the source/dest are legal.
107 if (!TD) return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000108
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000109 unsigned FromWidth = From->getPrimitiveSizeInBits();
110 unsigned ToWidth = To->getPrimitiveSizeInBits();
111 bool FromLegal = TD->isLegalInteger(FromWidth);
112 bool ToLegal = TD->isLegalInteger(ToWidth);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000113
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000114 // If this is a legal integer from type, and the result would be an illegal
115 // type, don't do the transformation.
116 if (FromLegal && !ToLegal)
117 return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000118
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000119 // Otherwise, if both are illegal, do not increase the size of the result. We
120 // do allow things like i160 -> i64, but not i64 -> i160.
121 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
122 return false;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000123
Chris Lattnerc22d4d12009-11-10 07:23:37 +0000124 return true;
125}
126
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000127// Return true, if No Signed Wrap should be maintained for I.
128// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
129// where both B and C should be ConstantInts, results in a constant that does
130// not overflow. This function only handles the Add and Sub opcodes. For
131// all other opcodes, the function conservatively returns false.
132static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
133 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
134 if (!OBO || !OBO->hasNoSignedWrap()) {
135 return false;
136 }
137
138 // We reason about Add and Sub Only.
139 Instruction::BinaryOps Opcode = I.getOpcode();
Jakub Staszak58c1da82012-05-06 13:52:31 +0000140 if (Opcode != Instruction::Add &&
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000141 Opcode != Instruction::Sub) {
142 return false;
143 }
144
145 ConstantInt *CB = dyn_cast<ConstantInt>(B);
146 ConstantInt *CC = dyn_cast<ConstantInt>(C);
147
148 if (!CB || !CC) {
149 return false;
150 }
151
152 const APInt &BVal = CB->getValue();
153 const APInt &CVal = CC->getValue();
154 bool Overflow = false;
155
156 if (Opcode == Instruction::Add) {
157 BVal.sadd_ov(CVal, Overflow);
158 } else {
159 BVal.ssub_ov(CVal, Overflow);
160 }
161
162 return !Overflow;
163}
164
Duncan Sands096aa792010-11-13 15:10:37 +0000165/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
166/// operators which are associative or commutative:
167//
168// Commutative operators:
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000169//
Chris Lattner4f98c562003-03-10 21:43:22 +0000170// 1. Order operands such that they are listed from right (least complex) to
171// left (most complex). This puts constants before unary operators before
172// binary operators.
173//
Duncan Sands096aa792010-11-13 15:10:37 +0000174// Associative operators:
Chris Lattner4f98c562003-03-10 21:43:22 +0000175//
Duncan Sands096aa792010-11-13 15:10:37 +0000176// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
177// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
178//
179// Associative and commutative operators:
180//
181// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
182// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
183// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
184// if C1 and C2 are constants.
185//
186bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Chris Lattner4f98c562003-03-10 21:43:22 +0000187 Instruction::BinaryOps Opcode = I.getOpcode();
Duncan Sands096aa792010-11-13 15:10:37 +0000188 bool Changed = false;
Chris Lattnerc8802d22003-03-11 00:12:48 +0000189
Duncan Sands096aa792010-11-13 15:10:37 +0000190 do {
191 // Order operands such that they are listed from right (least complex) to
192 // left (most complex). This puts constants before unary operators before
193 // binary operators.
194 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
195 getComplexity(I.getOperand(1)))
196 Changed = !I.swapOperands();
197
198 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
199 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
200
201 if (I.isAssociative()) {
202 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
203 if (Op0 && Op0->getOpcode() == Opcode) {
204 Value *A = Op0->getOperand(0);
205 Value *B = Op0->getOperand(1);
206 Value *C = I.getOperand(1);
207
208 // Does "B op C" simplify?
209 if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
210 // It simplifies to V. Form "A op V".
211 I.setOperand(0, A);
212 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000213 // Conservatively clear the optional flags, since they may not be
214 // preserved by the reassociation.
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000215 if (MaintainNoSignedWrap(I, B, C) &&
Bill Wendling56cb2292012-07-19 00:11:40 +0000216 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
Nick Lewycky7f0170c2011-08-14 03:41:33 +0000217 // Note: this is only valid because SimplifyBinOp doesn't look at
218 // the operands to Op0.
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000219 I.clearSubclassOptionalData();
220 I.setHasNoSignedWrap(true);
221 } else {
222 I.clearSubclassOptionalData();
223 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000224
Duncan Sands096aa792010-11-13 15:10:37 +0000225 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000226 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000227 continue;
Misha Brukmanfd939082005-04-21 23:48:37 +0000228 }
Duncan Sands096aa792010-11-13 15:10:37 +0000229 }
230
231 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
232 if (Op1 && Op1->getOpcode() == Opcode) {
233 Value *A = I.getOperand(0);
234 Value *B = Op1->getOperand(0);
235 Value *C = Op1->getOperand(1);
236
237 // Does "A op B" simplify?
238 if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
239 // It simplifies to V. Form "V op C".
240 I.setOperand(0, V);
241 I.setOperand(1, C);
Dan Gohman5195b712011-02-02 02:05:46 +0000242 // Conservatively clear the optional flags, since they may not be
243 // preserved by the reassociation.
244 I.clearSubclassOptionalData();
Duncan Sands096aa792010-11-13 15:10:37 +0000245 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000246 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000247 continue;
248 }
249 }
Chris Lattner4f98c562003-03-10 21:43:22 +0000250 }
Duncan Sands096aa792010-11-13 15:10:37 +0000251
252 if (I.isAssociative() && I.isCommutative()) {
253 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
254 if (Op0 && Op0->getOpcode() == Opcode) {
255 Value *A = Op0->getOperand(0);
256 Value *B = Op0->getOperand(1);
257 Value *C = I.getOperand(1);
258
259 // Does "C op A" simplify?
260 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
261 // It simplifies to V. Form "V op B".
262 I.setOperand(0, V);
263 I.setOperand(1, B);
Dan Gohman5195b712011-02-02 02:05:46 +0000264 // Conservatively clear the optional flags, since they may not be
265 // preserved by the reassociation.
266 I.clearSubclassOptionalData();
Duncan Sands096aa792010-11-13 15:10:37 +0000267 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000268 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000269 continue;
270 }
271 }
272
273 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
274 if (Op1 && Op1->getOpcode() == Opcode) {
275 Value *A = I.getOperand(0);
276 Value *B = Op1->getOperand(0);
277 Value *C = Op1->getOperand(1);
278
279 // Does "C op A" simplify?
280 if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
281 // It simplifies to V. Form "B op V".
282 I.setOperand(0, B);
283 I.setOperand(1, V);
Dan Gohman5195b712011-02-02 02:05:46 +0000284 // Conservatively clear the optional flags, since they may not be
285 // preserved by the reassociation.
286 I.clearSubclassOptionalData();
Duncan Sands096aa792010-11-13 15:10:37 +0000287 Changed = true;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000288 ++NumReassoc;
Duncan Sands096aa792010-11-13 15:10:37 +0000289 continue;
290 }
291 }
292
293 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
294 // if C1 and C2 are constants.
295 if (Op0 && Op1 &&
296 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
297 isa<Constant>(Op0->getOperand(1)) &&
298 isa<Constant>(Op1->getOperand(1)) &&
299 Op0->hasOneUse() && Op1->hasOneUse()) {
300 Value *A = Op0->getOperand(0);
301 Constant *C1 = cast<Constant>(Op0->getOperand(1));
302 Value *B = Op1->getOperand(0);
303 Constant *C2 = cast<Constant>(Op1->getOperand(1));
304
305 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000306 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
Eli Friedmana311c342011-05-27 00:19:40 +0000307 InsertNewInstWith(New, I);
Eli Friedmane6f364b2011-05-18 23:58:37 +0000308 New->takeName(Op1);
Duncan Sands096aa792010-11-13 15:10:37 +0000309 I.setOperand(0, New);
310 I.setOperand(1, Folded);
Dan Gohman5195b712011-02-02 02:05:46 +0000311 // Conservatively clear the optional flags, since they may not be
312 // preserved by the reassociation.
Nick Lewycky28b84ff2011-08-14 04:51:49 +0000313 I.clearSubclassOptionalData();
Nick Lewyckydaf27ea2011-08-14 01:45:19 +0000314
Duncan Sands096aa792010-11-13 15:10:37 +0000315 Changed = true;
316 continue;
317 }
318 }
319
320 // No further simplifications.
321 return Changed;
322 } while (1);
Chris Lattnerdd841ae2002-04-18 17:39:14 +0000323}
Chris Lattner8a2a3112001-12-14 16:52:21 +0000324
Duncan Sands5057f382010-11-23 14:23:47 +0000325/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
Duncan Sandsc2b1c0b2010-11-23 15:25:34 +0000326/// "(X LOp Y) ROp (X LOp Z)".
Duncan Sands5057f382010-11-23 14:23:47 +0000327static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
328 Instruction::BinaryOps ROp) {
329 switch (LOp) {
330 default:
331 return false;
332
333 case Instruction::And:
334 // And distributes over Or and Xor.
335 switch (ROp) {
336 default:
337 return false;
338 case Instruction::Or:
339 case Instruction::Xor:
340 return true;
341 }
342
343 case Instruction::Mul:
344 // Multiplication distributes over addition and subtraction.
345 switch (ROp) {
346 default:
347 return false;
348 case Instruction::Add:
349 case Instruction::Sub:
350 return true;
351 }
352
353 case Instruction::Or:
354 // Or distributes over And.
355 switch (ROp) {
356 default:
357 return false;
358 case Instruction::And:
359 return true;
360 }
361 }
362}
363
364/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
365/// "(X ROp Z) LOp (Y ROp Z)".
366static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
367 Instruction::BinaryOps ROp) {
368 if (Instruction::isCommutative(ROp))
369 return LeftDistributesOverRight(ROp, LOp);
370 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
371 // but this requires knowing that the addition does not overflow and other
372 // such subtleties.
373 return false;
374}
375
Duncan Sands37bf92b2010-12-22 13:36:08 +0000376/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
377/// which some other binary operation distributes over either by factorizing
378/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
379/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
380/// a win). Returns the simplified value, or null if it didn't simplify.
381Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
382 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
383 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
384 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
385 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
Duncan Sands5057f382010-11-23 14:23:47 +0000386
Duncan Sands37bf92b2010-12-22 13:36:08 +0000387 // Factorization.
388 if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
389 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
390 // a common term.
391 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
392 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
393 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
Duncan Sands5057f382010-11-23 14:23:47 +0000394
Duncan Sands37bf92b2010-12-22 13:36:08 +0000395 // Does "X op' Y" always equal "Y op' X"?
396 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
Duncan Sands5057f382010-11-23 14:23:47 +0000397
Duncan Sands37bf92b2010-12-22 13:36:08 +0000398 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
399 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
400 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
401 // commutative case, "(A op' B) op (C op' A)"?
402 if (A == C || (InnerCommutative && A == D)) {
403 if (A != C)
404 std::swap(C, D);
405 // Consider forming "A op' (B op D)".
406 // If "B op D" simplifies then it can be formed with no cost.
407 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
408 // If "B op D" doesn't simplify then only go on if both of the existing
409 // operations "A op' B" and "C op' D" will be zapped as no longer used.
410 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
411 V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
412 if (V) {
413 ++NumFactor;
414 V = Builder->CreateBinOp(InnerOpcode, A, V);
415 V->takeName(&I);
416 return V;
417 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000418 }
Duncan Sands5057f382010-11-23 14:23:47 +0000419
Duncan Sands37bf92b2010-12-22 13:36:08 +0000420 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
421 if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
422 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
423 // commutative case, "(A op' B) op (B op' D)"?
424 if (B == D || (InnerCommutative && B == C)) {
425 if (B != D)
426 std::swap(C, D);
427 // Consider forming "(A op C) op' B".
428 // If "A op C" simplifies then it can be formed with no cost.
429 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
430 // If "A op C" doesn't simplify then only go on if both of the existing
431 // operations "A op' B" and "C op' D" will be zapped as no longer used.
432 if (!V && Op0->hasOneUse() && Op1->hasOneUse())
433 V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
434 if (V) {
435 ++NumFactor;
436 V = Builder->CreateBinOp(InnerOpcode, V, B);
437 V->takeName(&I);
438 return V;
439 }
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000440 }
Duncan Sands37bf92b2010-12-22 13:36:08 +0000441 }
442
443 // Expansion.
444 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
445 // The instruction has the form "(A op' B) op C". See if expanding it out
446 // to "(A op C) op' (B op C)" results in simplifications.
447 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
448 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
449
450 // Do "A op C" and "B op C" both simplify?
451 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
452 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
453 // They do! Return "L op' R".
454 ++NumExpand;
455 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
456 if ((L == A && R == B) ||
457 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
458 return Op0;
459 // Otherwise return "L op' R" if it simplifies.
460 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
461 return V;
462 // Otherwise, create a new instruction.
463 C = Builder->CreateBinOp(InnerOpcode, L, R);
464 C->takeName(&I);
465 return C;
466 }
467 }
468
469 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
470 // The instruction has the form "A op (B op' C)". See if expanding it out
471 // to "(A op B) op' (A op C)" results in simplifications.
472 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
473 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
474
475 // Do "A op B" and "A op C" both simplify?
476 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
477 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
478 // They do! Return "L op' R".
479 ++NumExpand;
480 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
481 if ((L == B && R == C) ||
482 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
483 return Op1;
484 // Otherwise return "L op' R" if it simplifies.
485 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
486 return V;
487 // Otherwise, create a new instruction.
488 A = Builder->CreateBinOp(InnerOpcode, L, R);
489 A->takeName(&I);
490 return A;
491 }
492 }
Duncan Sands5057f382010-11-23 14:23:47 +0000493
494 return 0;
495}
496
Chris Lattner8d969642003-03-10 23:06:50 +0000497// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
498// if the LHS is a constant zero (which is the 'negate' form).
Chris Lattnerb35dde12002-05-06 16:49:18 +0000499//
Chris Lattner02446fc2010-01-04 07:37:31 +0000500Value *InstCombiner::dyn_castNegVal(Value *V) const {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000501 if (BinaryOperator::isNeg(V))
Chris Lattnera1df33c2005-04-24 07:30:14 +0000502 return BinaryOperator::getNegArgument(V);
Chris Lattner8d969642003-03-10 23:06:50 +0000503
Chris Lattner0ce85802004-12-14 20:08:06 +0000504 // Constants can be considered to be negated values if they can be folded.
505 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000506 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000507
Chris Lattner7302d802012-02-06 21:56:39 +0000508 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
509 if (C->getType()->getElementType()->isIntegerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000510 return ConstantExpr::getNeg(C);
Nick Lewycky18b3da62008-05-23 04:54:45 +0000511
Chris Lattner8d969642003-03-10 23:06:50 +0000512 return 0;
Chris Lattnerb35dde12002-05-06 16:49:18 +0000513}
514
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000515// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
516// instruction if the LHS is a constant negative zero (which is the 'negate'
517// form).
518//
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000519Value *InstCombiner::dyn_castFNegVal(Value *V) const {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000520 if (BinaryOperator::isFNeg(V))
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000521 return BinaryOperator::getFNegArgument(V);
522
523 // Constants can be considered to be negated values if they can be folded.
524 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000525 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000526
Chris Lattner7302d802012-02-06 21:56:39 +0000527 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
528 if (C->getType()->getElementType()->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +0000529 return ConstantExpr::getFNeg(C);
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000530
531 return 0;
532}
533
Chris Lattner6e7ba452005-01-01 16:22:27 +0000534static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
Chris Lattner2eefe512004-04-09 19:05:30 +0000535 InstCombiner *IC) {
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000536 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
Chris Lattner2345d1d2009-08-30 20:01:10 +0000537 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000538 }
Chris Lattner6e7ba452005-01-01 16:22:27 +0000539
Chris Lattner2eefe512004-04-09 19:05:30 +0000540 // Figure out if the constant is the left or the right argument.
Chris Lattner6e7ba452005-01-01 16:22:27 +0000541 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
542 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
Chris Lattner564a7272003-08-13 19:01:45 +0000543
Chris Lattner2eefe512004-04-09 19:05:30 +0000544 if (Constant *SOC = dyn_cast<Constant>(SO)) {
545 if (ConstIsRHS)
Owen Andersonbaf3c402009-07-29 18:55:55 +0000546 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
547 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
Chris Lattner2eefe512004-04-09 19:05:30 +0000548 }
549
550 Value *Op0 = SO, *Op1 = ConstOperand;
551 if (!ConstIsRHS)
552 std::swap(Op0, Op1);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000553
Chris Lattner6e7ba452005-01-01 16:22:27 +0000554 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
Chris Lattner74381062009-08-30 07:44:24 +0000555 return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
556 SO->getName()+".op");
557 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
558 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
559 SO->getName()+".cmp");
560 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
561 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
562 SO->getName()+".cmp");
563 llvm_unreachable("Unknown binary instruction type!");
Chris Lattner6e7ba452005-01-01 16:22:27 +0000564}
565
566// FoldOpIntoSelect - Given an instruction with a select as one operand and a
567// constant as the other operand, try to fold the binary operator into the
568// select arguments. This also works for Cast instructions, which obviously do
569// not have a second operand.
Chris Lattner80f43d32010-01-04 07:53:58 +0000570Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
Chris Lattner6e7ba452005-01-01 16:22:27 +0000571 // Don't modify shared select instructions
572 if (!SI->hasOneUse()) return 0;
573 Value *TV = SI->getOperand(1);
574 Value *FV = SI->getOperand(2);
575
576 if (isa<Constant>(TV) || isa<Constant>(FV)) {
Chris Lattner956db272005-04-21 05:43:13 +0000577 // Bool selects with constant operands can be folded to logical ops.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000578 if (SI->getType()->isIntegerTy(1)) return 0;
Chris Lattner956db272005-04-21 05:43:13 +0000579
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000580 // If it's a bitcast involving vectors, make sure it has the same number of
581 // elements on both sides.
582 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000583 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
584 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000585
586 // Verify that either both or neither are vectors.
587 if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
588 // If vectors, verify that they have the same number of elements.
589 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
590 return 0;
591 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000592
Chris Lattner80f43d32010-01-04 07:53:58 +0000593 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
594 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000595
Nick Lewyckyacf4a7c2011-01-21 02:30:43 +0000596 return SelectInst::Create(SI->getCondition(),
597 SelectTrueVal, SelectFalseVal);
Chris Lattner6e7ba452005-01-01 16:22:27 +0000598 }
599 return 0;
Chris Lattner2eefe512004-04-09 19:05:30 +0000600}
601
Chris Lattner4e998b22004-09-29 05:07:12 +0000602
Chris Lattner5d1704d2009-09-27 19:57:57 +0000603/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
604/// has a PHI node as operand #0, see if we can fold the instruction into the
605/// PHI (which is only possible if all operands to the PHI are constants).
Chris Lattner213cd612009-09-27 20:46:36 +0000606///
Chris Lattner9922ccf2011-01-16 05:14:26 +0000607Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000608 PHINode *PN = cast<PHINode>(I.getOperand(0));
Chris Lattnerbac32862004-11-14 19:13:23 +0000609 unsigned NumPHIValues = PN->getNumIncomingValues();
Chris Lattner5aac8322011-01-16 04:37:29 +0000610 if (NumPHIValues == 0)
Chris Lattner213cd612009-09-27 20:46:36 +0000611 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000612
Chris Lattner084fe622011-01-21 05:08:26 +0000613 // We normally only transform phis with a single use. However, if a PHI has
614 // multiple uses and they are all the same operation, we can fold *all* of the
615 // uses into the PHI.
Chris Lattner192228e2011-01-16 05:28:59 +0000616 if (!PN->hasOneUse()) {
617 // Walk the use list for the instruction, comparing them to I.
618 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
Chris Lattnercd151d22011-01-21 05:29:50 +0000619 UI != E; ++UI) {
620 Instruction *User = cast<Instruction>(*UI);
621 if (User != &I && !I.isIdenticalTo(User))
Chris Lattner192228e2011-01-16 05:28:59 +0000622 return 0;
Chris Lattnercd151d22011-01-21 05:29:50 +0000623 }
Chris Lattner192228e2011-01-16 05:28:59 +0000624 // Otherwise, we can replace *all* users with the new PHI we form.
625 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000626
Chris Lattner5d1704d2009-09-27 19:57:57 +0000627 // Check to see if all of the operands of the PHI are simple constants
628 // (constantint/constantfp/undef). If there is one non-constant value,
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000629 // remember the BB it is in. If there is more than one or if *it* is a PHI,
630 // bail out. We don't do arbitrary constant expressions here because moving
631 // their computation can be expensive without a cost model.
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000632 BasicBlock *NonConstBB = 0;
Chris Lattner5aac8322011-01-16 04:37:29 +0000633 for (unsigned i = 0; i != NumPHIValues; ++i) {
634 Value *InVal = PN->getIncomingValue(i);
635 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
636 continue;
637
638 if (isa<PHINode>(InVal)) return 0; // Itself a phi.
639 if (NonConstBB) return 0; // More than one non-const value.
Jakub Staszak58c1da82012-05-06 13:52:31 +0000640
Chris Lattner5aac8322011-01-16 04:37:29 +0000641 NonConstBB = PN->getIncomingBlock(i);
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000642
643 // If the InVal is an invoke at the end of the pred block, then we can't
644 // insert a computation after it without breaking the edge.
645 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
646 if (II->getParent() == NonConstBB)
647 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000648
Chris Lattnercd151d22011-01-21 05:29:50 +0000649 // If the incoming non-constant value is in I's block, we will remove one
650 // instruction, but insert another equivalent one, leading to infinite
651 // instcombine.
652 if (NonConstBB == I.getParent())
653 return 0;
Chris Lattner5aac8322011-01-16 04:37:29 +0000654 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000655
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000656 // If there is exactly one non-constant value, we can insert a copy of the
657 // operation in that block. However, if this is a critical edge, we would be
658 // inserting the computation one some other paths (e.g. inside a loop). Only
659 // do this if the pred block is unconditionally branching into the phi block.
Chris Lattner9922ccf2011-01-16 05:14:26 +0000660 if (NonConstBB != 0) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000661 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
662 if (!BI || !BI->isUnconditional()) return 0;
663 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000664
665 // Okay, we can do the transformation: create the new PHI node.
Eli Friedmane6f364b2011-05-18 23:58:37 +0000666 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
Chris Lattner857eb572009-10-21 23:41:58 +0000667 InsertNewInstBefore(NewPN, *PN);
668 NewPN->takeName(PN);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000669
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000670 // If we are going to have to insert a new computation, do so right before the
671 // predecessors terminator.
672 if (NonConstBB)
673 Builder->SetInsertPoint(NonConstBB->getTerminator());
Jakub Staszak58c1da82012-05-06 13:52:31 +0000674
Chris Lattner4e998b22004-09-29 05:07:12 +0000675 // Next, add all of the operands to the PHI.
Chris Lattner5d1704d2009-09-27 19:57:57 +0000676 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
677 // We only currently try to fold the condition of a select when it is a phi,
678 // not the true/false values.
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000679 Value *TrueV = SI->getTrueValue();
680 Value *FalseV = SI->getFalseValue();
Chris Lattner3ddfb212009-09-28 06:49:44 +0000681 BasicBlock *PhiTransBB = PN->getParent();
Chris Lattner5d1704d2009-09-27 19:57:57 +0000682 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000683 BasicBlock *ThisBB = PN->getIncomingBlock(i);
Chris Lattner3ddfb212009-09-28 06:49:44 +0000684 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
685 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000686 Value *InV = 0;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000687 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000688 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000689 else
690 InV = Builder->CreateSelect(PN->getIncomingValue(i),
691 TrueVInPred, FalseVInPred, "phitmp");
Chris Lattnerc6df8f42009-09-27 20:18:49 +0000692 NewPN->addIncoming(InV, ThisBB);
Chris Lattner5d1704d2009-09-27 19:57:57 +0000693 }
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000694 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
695 Constant *C = cast<Constant>(I.getOperand(1));
696 for (unsigned i = 0; i != NumPHIValues; ++i) {
697 Value *InV = 0;
698 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
699 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
700 else if (isa<ICmpInst>(CI))
701 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
702 C, "phitmp");
703 else
704 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
705 C, "phitmp");
706 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
707 }
Chris Lattner5d1704d2009-09-27 19:57:57 +0000708 } else if (I.getNumOperands() == 2) {
Chris Lattner4e998b22004-09-29 05:07:12 +0000709 Constant *C = cast<Constant>(I.getOperand(1));
Chris Lattnerbac32862004-11-14 19:13:23 +0000710 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnera9ff5eb2007-08-05 08:47:58 +0000711 Value *InV = 0;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000712 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
713 InV = ConstantExpr::get(I.getOpcode(), InC, C);
714 else
715 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
716 PN->getIncomingValue(i), C, "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000717 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000718 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000719 } else {
Reid Spencer3da59db2006-11-27 01:05:10 +0000720 CastInst *CI = cast<CastInst>(&I);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000721 Type *RetTy = CI->getType();
Chris Lattnerbac32862004-11-14 19:13:23 +0000722 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000723 Value *InV;
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000724 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
Owen Andersonbaf3c402009-07-29 18:55:55 +0000725 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
Jakub Staszak58c1da82012-05-06 13:52:31 +0000726 else
Chris Lattner7dfe8fd2011-01-16 05:08:00 +0000727 InV = Builder->CreateCast(CI->getOpcode(),
728 PN->getIncomingValue(i), I.getType(), "phitmp");
Chris Lattner2a86f3b2006-09-09 22:02:56 +0000729 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
Chris Lattner4e998b22004-09-29 05:07:12 +0000730 }
731 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000732
Chris Lattner192228e2011-01-16 05:28:59 +0000733 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
734 UI != E; ) {
735 Instruction *User = cast<Instruction>(*UI++);
736 if (User == &I) continue;
737 ReplaceInstUsesWith(*User, NewPN);
738 EraseInstFromFunction(*User);
739 }
Chris Lattner4e998b22004-09-29 05:07:12 +0000740 return ReplaceInstUsesWith(I, NewPN);
741}
742
Chris Lattner46cd5a12009-01-09 05:44:56 +0000743/// FindElementAtOffset - Given a type and a constant offset, determine whether
744/// or not there is a sequence of GEP indices into the type that will land us at
Chris Lattner3914f722009-01-24 01:00:13 +0000745/// the specified offset. If so, fill them into NewIndices and return the
746/// resultant element type, otherwise return null.
Chandler Carruthece6c6b2012-11-01 08:07:29 +0000747Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
Chris Lattner80f43d32010-01-04 07:53:58 +0000748 SmallVectorImpl<Value*> &NewIndices) {
Dan Gohmance9fe9f2009-07-21 23:21:54 +0000749 if (!TD) return 0;
Chris Lattner3914f722009-01-24 01:00:13 +0000750 if (!Ty->isSized()) return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000751
Chris Lattner46cd5a12009-01-09 05:44:56 +0000752 // Start with the index over the outer type. Note that the type size
753 // might be zero (even if the offset isn't zero) if the indexed type
754 // is something like [0 x {int, int}]
Chandler Carruthece6c6b2012-11-01 08:07:29 +0000755 Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
Chris Lattner46cd5a12009-01-09 05:44:56 +0000756 int64_t FirstIdx = 0;
Duncan Sands777d2302009-05-09 07:06:46 +0000757 if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +0000758 FirstIdx = Offset/TySize;
Chris Lattner31a69cb2009-01-11 20:41:36 +0000759 Offset -= FirstIdx*TySize;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000760
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000761 // Handle hosts where % returns negative instead of values [0..TySize).
Chris Lattner46cd5a12009-01-09 05:44:56 +0000762 if (Offset < 0) {
763 --FirstIdx;
764 Offset += TySize;
765 assert(Offset >= 0);
766 }
767 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
768 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000769
Owen Andersoneed707b2009-07-24 23:12:02 +0000770 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
Jakub Staszak58c1da82012-05-06 13:52:31 +0000771
Chris Lattner46cd5a12009-01-09 05:44:56 +0000772 // Index into the types. If we fail, set OrigBase to null.
773 while (Offset) {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000774 // Indexing into tail padding between struct/array elements.
775 if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
Chris Lattner3914f722009-01-24 01:00:13 +0000776 return 0;
Jakub Staszak58c1da82012-05-06 13:52:31 +0000777
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000778 if (StructType *STy = dyn_cast<StructType>(Ty)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +0000779 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000780 assert(Offset < (int64_t)SL->getSizeInBytes() &&
781 "Offset must stay within the indexed type");
Jakub Staszak58c1da82012-05-06 13:52:31 +0000782
Chris Lattner46cd5a12009-01-09 05:44:56 +0000783 unsigned Elt = SL->getElementContainingOffset(Offset);
Chris Lattner4de84762010-01-04 07:02:48 +0000784 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
785 Elt));
Jakub Staszak58c1da82012-05-06 13:52:31 +0000786
Chris Lattner46cd5a12009-01-09 05:44:56 +0000787 Offset -= SL->getElementOffset(Elt);
788 Ty = STy->getElementType(Elt);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000789 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
Duncan Sands777d2302009-05-09 07:06:46 +0000790 uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000791 assert(EltSize && "Cannot index into a zero-sized array");
Owen Andersoneed707b2009-07-24 23:12:02 +0000792 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000793 Offset %= EltSize;
Chris Lattner1c412d92009-01-11 20:23:52 +0000794 Ty = AT->getElementType();
Chris Lattner46cd5a12009-01-09 05:44:56 +0000795 } else {
Chris Lattnerdbc3bc22009-01-11 20:15:20 +0000796 // Otherwise, we can't index into the middle of this atomic type, bail.
Chris Lattner3914f722009-01-24 01:00:13 +0000797 return 0;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000798 }
799 }
Jakub Staszak58c1da82012-05-06 13:52:31 +0000800
Chris Lattner3914f722009-01-24 01:00:13 +0000801 return Ty;
Chris Lattner46cd5a12009-01-09 05:44:56 +0000802}
803
Rafael Espindola592ad6a2011-07-31 04:43:41 +0000804static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
805 // If this GEP has only 0 indices, it is the same pointer as
806 // Src. If Src is not a trivial GEP too, don't combine
807 // the indices.
808 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
809 !Src.hasOneUse())
810 return false;
811 return true;
812}
Chris Lattner473945d2002-05-06 18:06:38 +0000813
Duncan Sandsbbc70162012-10-23 08:28:26 +0000814/// Descale - Return a value X such that Val = X * Scale, or null if none. If
815/// the multiplication is known not to overflow then NoSignedWrap is set.
816Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
817 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
818 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
819 Scale.getBitWidth() && "Scale not compatible with value!");
820
821 // If Val is zero or Scale is one then Val = Val * Scale.
822 if (match(Val, m_Zero()) || Scale == 1) {
823 NoSignedWrap = true;
824 return Val;
825 }
826
827 // If Scale is zero then it does not divide Val.
828 if (Scale.isMinValue())
829 return 0;
830
831 // Look through chains of multiplications, searching for a constant that is
832 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
833 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
834 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
835 // down from Val:
836 //
837 // Val = M1 * X || Analysis starts here and works down
838 // M1 = M2 * Y || Doesn't descend into terms with more
839 // M2 = Z * 4 \/ than one use
840 //
841 // Then to modify a term at the bottom:
842 //
843 // Val = M1 * X
844 // M1 = Z * Y || Replaced M2 with Z
845 //
846 // Then to work back up correcting nsw flags.
847
848 // Op - the term we are currently analyzing. Starts at Val then drills down.
849 // Replaced with its descaled value before exiting from the drill down loop.
850 Value *Op = Val;
851
852 // Parent - initially null, but after drilling down notes where Op came from.
853 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
854 // 0'th operand of Val.
855 std::pair<Instruction*, unsigned> Parent;
856
857 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
858 // levels that doesn't overflow.
859 bool RequireNoSignedWrap = false;
860
861 // logScale - log base 2 of the scale. Negative if not a power of 2.
862 int32_t logScale = Scale.exactLogBase2();
863
864 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
865
866 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
867 // If Op is a constant divisible by Scale then descale to the quotient.
868 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
869 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
870 if (!Remainder.isMinValue())
871 // Not divisible by Scale.
872 return 0;
873 // Replace with the quotient in the parent.
874 Op = ConstantInt::get(CI->getType(), Quotient);
875 NoSignedWrap = true;
876 break;
877 }
878
879 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
880
881 if (BO->getOpcode() == Instruction::Mul) {
882 // Multiplication.
883 NoSignedWrap = BO->hasNoSignedWrap();
884 if (RequireNoSignedWrap && !NoSignedWrap)
885 return 0;
886
887 // There are three cases for multiplication: multiplication by exactly
888 // the scale, multiplication by a constant different to the scale, and
889 // multiplication by something else.
890 Value *LHS = BO->getOperand(0);
891 Value *RHS = BO->getOperand(1);
892
893 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
894 // Multiplication by a constant.
895 if (CI->getValue() == Scale) {
896 // Multiplication by exactly the scale, replace the multiplication
897 // by its left-hand side in the parent.
898 Op = LHS;
899 break;
900 }
901
902 // Otherwise drill down into the constant.
903 if (!Op->hasOneUse())
904 return 0;
905
906 Parent = std::make_pair(BO, 1);
907 continue;
908 }
909
910 // Multiplication by something else. Drill down into the left-hand side
911 // since that's where the reassociate pass puts the good stuff.
912 if (!Op->hasOneUse())
913 return 0;
914
915 Parent = std::make_pair(BO, 0);
916 continue;
917 }
918
919 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
920 isa<ConstantInt>(BO->getOperand(1))) {
921 // Multiplication by a power of 2.
922 NoSignedWrap = BO->hasNoSignedWrap();
923 if (RequireNoSignedWrap && !NoSignedWrap)
924 return 0;
925
926 Value *LHS = BO->getOperand(0);
927 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
928 getLimitedValue(Scale.getBitWidth());
929 // Op = LHS << Amt.
930
931 if (Amt == logScale) {
932 // Multiplication by exactly the scale, replace the multiplication
933 // by its left-hand side in the parent.
934 Op = LHS;
935 break;
936 }
937 if (Amt < logScale || !Op->hasOneUse())
938 return 0;
939
940 // Multiplication by more than the scale. Reduce the multiplying amount
941 // by the scale in the parent.
942 Parent = std::make_pair(BO, 1);
943 Op = ConstantInt::get(BO->getType(), Amt - logScale);
944 break;
945 }
946 }
947
948 if (!Op->hasOneUse())
949 return 0;
950
951 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
952 if (Cast->getOpcode() == Instruction::SExt) {
953 // Op is sign-extended from a smaller type, descale in the smaller type.
954 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
955 APInt SmallScale = Scale.trunc(SmallSize);
956 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
957 // descale Op as (sext Y) * Scale. In order to have
958 // sext (Y * SmallScale) = (sext Y) * Scale
959 // some conditions need to hold however: SmallScale must sign-extend to
960 // Scale and the multiplication Y * SmallScale should not overflow.
961 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
962 // SmallScale does not sign-extend to Scale.
963 return 0;
964 assert(SmallScale.exactLogBase2() == logScale);
965 // Require that Y * SmallScale must not overflow.
966 RequireNoSignedWrap = true;
967
968 // Drill down through the cast.
969 Parent = std::make_pair(Cast, 0);
970 Scale = SmallScale;
971 continue;
972 }
973
Duncan Sandsf1ec4e42012-10-23 09:07:02 +0000974 if (Cast->getOpcode() == Instruction::Trunc) {
Duncan Sandsbbc70162012-10-23 08:28:26 +0000975 // Op is truncated from a larger type, descale in the larger type.
976 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
977 // trunc (Y * sext Scale) = (trunc Y) * Scale
978 // always holds. However (trunc Y) * Scale may overflow even if
979 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
980 // from this point up in the expression (see later).
981 if (RequireNoSignedWrap)
982 return 0;
983
984 // Drill down through the cast.
985 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
986 Parent = std::make_pair(Cast, 0);
987 Scale = Scale.sext(LargeSize);
988 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
989 logScale = -1;
990 assert(Scale.exactLogBase2() == logScale);
991 continue;
992 }
993 }
994
995 // Unsupported expression, bail out.
996 return 0;
997 }
998
999 // We know that we can successfully descale, so from here on we can safely
1000 // modify the IR. Op holds the descaled version of the deepest term in the
1001 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1002 // not to overflow.
1003
1004 if (!Parent.first)
1005 // The expression only had one term.
1006 return Op;
1007
1008 // Rewrite the parent using the descaled version of its operand.
1009 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1010 assert(Op != Parent.first->getOperand(Parent.second) &&
1011 "Descaling was a no-op?");
1012 Parent.first->setOperand(Parent.second, Op);
1013 Worklist.Add(Parent.first);
1014
1015 // Now work back up the expression correcting nsw flags. The logic is based
1016 // on the following observation: if X * Y is known not to overflow as a signed
1017 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1018 // then X * Z will not overflow as a signed multiplication either. As we work
1019 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1020 // current level has strictly smaller absolute value than the original.
1021 Instruction *Ancestor = Parent.first;
1022 do {
1023 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1024 // If the multiplication wasn't nsw then we can't say anything about the
1025 // value of the descaled multiplication, and we have to clear nsw flags
1026 // from this point on up.
1027 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1028 NoSignedWrap &= OpNoSignedWrap;
1029 if (NoSignedWrap != OpNoSignedWrap) {
1030 BO->setHasNoSignedWrap(NoSignedWrap);
1031 Worklist.Add(Ancestor);
1032 }
1033 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1034 // The fact that the descaled input to the trunc has smaller absolute
1035 // value than the original input doesn't tell us anything useful about
1036 // the absolute values of the truncations.
1037 NoSignedWrap = false;
1038 }
1039 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1040 "Failed to keep proper track of nsw flags while drilling down?");
1041
1042 if (Ancestor == Val)
1043 // Got to the top, all done!
1044 return Val;
1045
1046 // Move up one level in the expression.
1047 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1048 Ancestor = Ancestor->use_back();
1049 } while (1);
1050}
1051
Chris Lattner7e708292002-06-25 16:13:24 +00001052Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001053 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1054
Jay Foadb9b54eb2011-07-19 15:07:52 +00001055 if (Value *V = SimplifyGEPInst(Ops, TD))
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001056 return ReplaceInstUsesWith(GEP, V);
1057
Chris Lattner620ce142004-05-07 22:09:22 +00001058 Value *PtrOp = GEP.getOperand(0);
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001059
Duncan Sandsa63395a2010-11-22 16:32:50 +00001060 // Eliminate unneeded casts for indices, and replace indices which displace
1061 // by multiples of a zero size type with zero.
Chris Lattnerccf4b342009-08-30 04:49:01 +00001062 if (TD) {
1063 bool MadeChange = false;
Duncan Sandsc5b969a2012-11-03 11:44:17 +00001064 Type *IntPtrTy = TD->getIntPtrType(GEP.getPointerOperandType());
Duncan Sandsa63395a2010-11-22 16:32:50 +00001065
Chris Lattnerccf4b342009-08-30 04:49:01 +00001066 gep_type_iterator GTI = gep_type_begin(GEP);
1067 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
1068 I != E; ++I, ++GTI) {
Duncan Sandsa63395a2010-11-22 16:32:50 +00001069 // Skip indices into struct types.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001070 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
Duncan Sandsa63395a2010-11-22 16:32:50 +00001071 if (!SeqTy) continue;
1072
1073 // If the element type has zero size then any index over it is equivalent
1074 // to an index of zero, so replace it with zero if it is not zero already.
1075 if (SeqTy->getElementType()->isSized() &&
1076 TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
1077 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1078 *I = Constant::getNullValue(IntPtrTy);
1079 MadeChange = true;
1080 }
1081
Nadav Rotem16087692011-12-05 06:29:09 +00001082 Type *IndexTy = (*I)->getType();
Duncan Sandsc5b969a2012-11-03 11:44:17 +00001083 if (IndexTy != IntPtrTy) {
Duncan Sandsa63395a2010-11-22 16:32:50 +00001084 // If we are using a wider index than needed for this platform, shrink
1085 // it to what we need. If narrower, sign-extend it to what we need.
1086 // This explicit cast can make subsequent optimizations more obvious.
1087 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1088 MadeChange = true;
1089 }
Chris Lattner28977af2004-04-05 01:30:19 +00001090 }
Chris Lattnerccf4b342009-08-30 04:49:01 +00001091 if (MadeChange) return &GEP;
Chris Lattnerdb9654e2007-03-25 20:43:09 +00001092 }
Chris Lattner28977af2004-04-05 01:30:19 +00001093
Chris Lattner90ac28c2002-08-02 19:29:35 +00001094 // Combine Indices - If the source pointer to this getelementptr instruction
1095 // is a getelementptr instruction, combine the indices of the two
1096 // getelementptr instructions into a single instruction.
1097 //
Dan Gohmand6aa02d2009-07-28 01:40:03 +00001098 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
Rafael Espindola592ad6a2011-07-31 04:43:41 +00001099 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
Rafael Espindolab5a12dd2011-07-11 03:43:47 +00001100 return 0;
1101
Duncan Sandsbbc70162012-10-23 08:28:26 +00001102 // Note that if our source is a gep chain itself then we wait for that
Chris Lattner620ce142004-05-07 22:09:22 +00001103 // chain to be resolved before we perform this transformation. This
1104 // avoids us creating a TON of code in some cases.
Rafael Espindola592ad6a2011-07-31 04:43:41 +00001105 if (GEPOperator *SrcGEP =
1106 dyn_cast<GEPOperator>(Src->getOperand(0)))
1107 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001108 return 0; // Wait until our source is folded to completion.
Chris Lattner620ce142004-05-07 22:09:22 +00001109
Chris Lattner72588fc2007-02-15 22:48:32 +00001110 SmallVector<Value*, 8> Indices;
Chris Lattner620ce142004-05-07 22:09:22 +00001111
1112 // Find out whether the last index in the source GEP is a sequential idx.
1113 bool EndsWithSequential = false;
Chris Lattnerab984842009-08-30 05:30:55 +00001114 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1115 I != E; ++I)
Duncan Sands1df98592010-02-16 11:11:14 +00001116 EndsWithSequential = !(*I)->isStructTy();
Misha Brukmanfd939082005-04-21 23:48:37 +00001117
Chris Lattner90ac28c2002-08-02 19:29:35 +00001118 // Can we combine the two pointer arithmetics offsets?
Chris Lattner620ce142004-05-07 22:09:22 +00001119 if (EndsWithSequential) {
Chris Lattnerdecd0812003-03-05 22:33:14 +00001120 // Replace: gep (gep %P, long B), long A, ...
1121 // With: T = long A+B; gep %P, T, ...
1122 //
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001123 Value *Sum;
1124 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1125 Value *GO1 = GEP.getOperand(1);
Owen Andersona7235ea2009-07-31 20:28:14 +00001126 if (SO1 == Constant::getNullValue(SO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +00001127 Sum = GO1;
Owen Andersona7235ea2009-07-31 20:28:14 +00001128 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
Chris Lattner28977af2004-04-05 01:30:19 +00001129 Sum = SO1;
1130 } else {
Chris Lattnerab984842009-08-30 05:30:55 +00001131 // If they aren't the same type, then the input hasn't been processed
1132 // by the loop above yet (which canonicalizes sequential index types to
1133 // intptr_t). Just avoid transforming this until the input has been
1134 // normalized.
1135 if (SO1->getType() != GO1->getType())
1136 return 0;
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001137 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
Chris Lattner28977af2004-04-05 01:30:19 +00001138 }
Chris Lattner620ce142004-05-07 22:09:22 +00001139
Chris Lattnerab984842009-08-30 05:30:55 +00001140 // Update the GEP in place if possible.
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001141 if (Src->getNumOperands() == 2) {
1142 GEP.setOperand(0, Src->getOperand(0));
Chris Lattner620ce142004-05-07 22:09:22 +00001143 GEP.setOperand(1, Sum);
1144 return &GEP;
Chris Lattner620ce142004-05-07 22:09:22 +00001145 }
Chris Lattnerab984842009-08-30 05:30:55 +00001146 Indices.append(Src->op_begin()+1, Src->op_end()-1);
Chris Lattnerccf4b342009-08-30 04:49:01 +00001147 Indices.push_back(Sum);
Chris Lattnerab984842009-08-30 05:30:55 +00001148 Indices.append(GEP.op_begin()+2, GEP.op_end());
Misha Brukmanfd939082005-04-21 23:48:37 +00001149 } else if (isa<Constant>(*GEP.idx_begin()) &&
Chris Lattner28977af2004-04-05 01:30:19 +00001150 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001151 Src->getNumOperands() != 1) {
Chris Lattner90ac28c2002-08-02 19:29:35 +00001152 // Otherwise we can do the fold if the first index of the GEP is a zero
Chris Lattnerab984842009-08-30 05:30:55 +00001153 Indices.append(Src->op_begin()+1, Src->op_end());
1154 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
Chris Lattner90ac28c2002-08-02 19:29:35 +00001155 }
1156
Dan Gohmanf8dbee72009-09-07 23:54:19 +00001157 if (!Indices.empty())
Chris Lattner948cdeb2010-01-05 07:42:10 +00001158 return (GEP.isInBounds() && Src->isInBounds()) ?
Jay Foada9203102011-07-25 09:48:08 +00001159 GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
1160 GEP.getName()) :
1161 GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
Chris Lattner6e24d832009-08-30 05:00:50 +00001162 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001163
Chris Lattnerf9b91bb2009-08-30 05:08:50 +00001164 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Chris Lattner948cdeb2010-01-05 07:42:10 +00001165 Value *StrippedPtr = PtrOp->stripPointerCasts();
Nadav Rotemc71108b2012-03-26 20:39:18 +00001166 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1167
Nadav Rotem02f0a492012-03-26 21:00:53 +00001168 // We do not handle pointer-vector geps here.
1169 if (!StrippedPtrTy)
1170 return 0;
1171
Nadav Rotem0286ca82011-04-05 14:29:52 +00001172 if (StrippedPtr != PtrOp &&
1173 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
Chris Lattner963f4ba2009-08-30 20:36:46 +00001174
Chris Lattnerc514c1f2009-11-27 00:29:05 +00001175 bool HasZeroPointerIndex = false;
1176 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1177 HasZeroPointerIndex = C->isZero();
Nadav Rotem0286ca82011-04-05 14:29:52 +00001178
Chris Lattner963f4ba2009-08-30 20:36:46 +00001179 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1180 // into : GEP [10 x i8]* X, i32 0, ...
1181 //
1182 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1183 // into : GEP i8* X, ...
Nadav Rotem0286ca82011-04-05 14:29:52 +00001184 //
Chris Lattner963f4ba2009-08-30 20:36:46 +00001185 // This occurs when the program declares an array extern like "int X[];"
Chris Lattner6e24d832009-08-30 05:00:50 +00001186 if (HasZeroPointerIndex) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001187 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1188 if (ArrayType *CATy =
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001189 dyn_cast<ArrayType>(CPTy->getElementType())) {
1190 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
Chris Lattner948cdeb2010-01-05 07:42:10 +00001191 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001192 // -> GEP i8* X, ...
Chris Lattner948cdeb2010-01-05 07:42:10 +00001193 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1194 GetElementPtrInst *Res =
Jay Foada9203102011-07-25 09:48:08 +00001195 GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
Chris Lattner948cdeb2010-01-05 07:42:10 +00001196 Res->setIsInBounds(GEP.isInBounds());
1197 return Res;
Chris Lattner963f4ba2009-08-30 20:36:46 +00001198 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001199
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001200 if (ArrayType *XATy =
Chris Lattner948cdeb2010-01-05 07:42:10 +00001201 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001202 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
Chris Lattnereed48272005-09-13 00:40:14 +00001203 if (CATy->getElementType() == XATy->getElementType()) {
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001204 // -> GEP [10 x i8]* X, i32 0, ...
Chris Lattnereed48272005-09-13 00:40:14 +00001205 // At this point, we know that the cast source type is a pointer
1206 // to an array of the same type as the destination pointer
1207 // array. Because the array type is never stepped over (there
1208 // is a leading zero) we can fold the cast into this GEP.
Chris Lattner948cdeb2010-01-05 07:42:10 +00001209 GEP.setOperand(0, StrippedPtr);
Chris Lattnereed48272005-09-13 00:40:14 +00001210 return &GEP;
1211 }
Duncan Sands5b7cfb02009-03-02 09:18:21 +00001212 }
1213 }
Chris Lattnereed48272005-09-13 00:40:14 +00001214 } else if (GEP.getNumOperands() == 2) {
1215 // Transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001216 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1217 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001218 Type *SrcElTy = StrippedPtrTy->getElementType();
1219 Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
Duncan Sands1df98592010-02-16 11:11:14 +00001220 if (TD && SrcElTy->isArrayTy() &&
Duncan Sands777d2302009-05-09 07:06:46 +00001221 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
1222 TD->getTypeAllocSize(ResElTy)) {
David Greeneb8f74792007-09-04 15:46:09 +00001223 Value *Idx[2];
Chris Lattner4de84762010-01-04 07:02:48 +00001224 Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
David Greeneb8f74792007-09-04 15:46:09 +00001225 Idx[1] = GEP.getOperand(1);
Chris Lattner948cdeb2010-01-05 07:42:10 +00001226 Value *NewGEP = GEP.isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001227 Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
1228 Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
Reid Spencer3da59db2006-11-27 01:05:10 +00001229 // V and GEP are both pointer types --> BitCast
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001230 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001231 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001232
Chris Lattner7835cdd2005-09-13 18:36:04 +00001233 // Transform things like:
Duncan Sandsbbc70162012-10-23 08:28:26 +00001234 // %V = mul i64 %N, 4
1235 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1236 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1237 if (TD && ResElTy->isSized() && SrcElTy->isSized()) {
1238 // Check that changing the type amounts to dividing the index by a scale
1239 // factor.
1240 uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
1241 uint64_t SrcSize = TD->getTypeAllocSize(SrcElTy);
1242 if (ResSize && SrcSize % ResSize == 0) {
1243 Value *Idx = GEP.getOperand(1);
1244 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1245 uint64_t Scale = SrcSize / ResSize;
1246
1247 // Earlier transforms ensure that the index has type IntPtrType, which
1248 // considerably simplifies the logic by eliminating implicit casts.
Chandler Carruthece6c6b2012-11-01 08:07:29 +00001249 assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001250 "Index not cast to pointer width?");
1251
1252 bool NSW;
1253 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1254 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1255 // If the multiplication NewIdx * Scale may overflow then the new
1256 // GEP may not be "inbounds".
1257 Value *NewGEP = GEP.isInBounds() && NSW ?
1258 Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
1259 Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
1260 // The NewGEP must be pointer typed, so must the old one -> BitCast
1261 return new BitCastInst(NewGEP, GEP.getType());
1262 }
1263 }
1264 }
1265
1266 // Similarly, transform things like:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001267 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Chris Lattner7835cdd2005-09-13 18:36:04 +00001268 // (where tmp = 8*tmp2) into:
Wojciech Matyjewiczed223252007-12-12 15:21:32 +00001269 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Duncan Sandsbbc70162012-10-23 08:28:26 +00001270 if (TD && ResElTy->isSized() && SrcElTy->isSized() &&
1271 SrcElTy->isArrayTy()) {
1272 // Check that changing to the array element type amounts to dividing the
1273 // index by a scale factor.
1274 uint64_t ResSize = TD->getTypeAllocSize(ResElTy);
Chris Lattner7835cdd2005-09-13 18:36:04 +00001275 uint64_t ArrayEltSize =
Duncan Sandsbbc70162012-10-23 08:28:26 +00001276 TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
1277 if (ResSize && ArrayEltSize % ResSize == 0) {
1278 Value *Idx = GEP.getOperand(1);
1279 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1280 uint64_t Scale = ArrayEltSize / ResSize;
Jakub Staszak58c1da82012-05-06 13:52:31 +00001281
Duncan Sandsbbc70162012-10-23 08:28:26 +00001282 // Earlier transforms ensure that the index has type IntPtrType, which
1283 // considerably simplifies the logic by eliminating implicit casts.
Chandler Carruthece6c6b2012-11-01 08:07:29 +00001284 assert(Idx->getType() == TD->getIntPtrType(GEP.getContext()) &&
Duncan Sandsbbc70162012-10-23 08:28:26 +00001285 "Index not cast to pointer width?");
1286
1287 bool NSW;
1288 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1289 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1290 // If the multiplication NewIdx * Scale may overflow then the new
1291 // GEP may not be "inbounds".
1292 Value *Off[2];
1293 Off[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1294 Off[1] = NewIdx;
1295 Value *NewGEP = GEP.isInBounds() && NSW ?
1296 Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
1297 Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
1298 // The NewGEP must be pointer typed, so must the old one -> BitCast
1299 return new BitCastInst(NewGEP, GEP.getType());
Chris Lattner7835cdd2005-09-13 18:36:04 +00001300 }
1301 }
Chris Lattner7835cdd2005-09-13 18:36:04 +00001302 }
Chris Lattnerc6bd1952004-02-22 05:25:17 +00001303 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00001304 }
Nadav Rotem0286ca82011-04-05 14:29:52 +00001305
Chris Lattner46cd5a12009-01-09 05:44:56 +00001306 /// See if we can simplify:
Chris Lattner873ff012009-08-30 05:55:36 +00001307 /// X = bitcast A* to B*
Chris Lattner46cd5a12009-01-09 05:44:56 +00001308 /// Y = gep X, <...constant indices...>
1309 /// into a gep of the original struct. This is important for SROA and alias
1310 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
Chris Lattner58407792009-01-09 04:53:57 +00001311 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Dan Gohmance9fe9f2009-07-21 23:21:54 +00001312 if (TD &&
Nadav Rotem0286ca82011-04-05 14:29:52 +00001313 !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
1314 StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1315
Nuno Lopesb47f3ea2012-06-20 17:30:51 +00001316 // Determine how much the GEP moves the pointer.
1317 SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
1318 int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);
Nadav Rotem0286ca82011-04-05 14:29:52 +00001319
Chris Lattner46cd5a12009-01-09 05:44:56 +00001320 // If this GEP instruction doesn't move the pointer, just replace the GEP
1321 // with a bitcast of the real input to the dest type.
1322 if (Offset == 0) {
1323 // If the bitcast is of an allocation, and the allocation will be
1324 // converted to match the type of the cast, don't touch this.
Victor Hernandez7b929da2009-10-23 21:09:37 +00001325 if (isa<AllocaInst>(BCI->getOperand(0)) ||
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001326 isAllocationFn(BCI->getOperand(0), TLI)) {
Chris Lattner46cd5a12009-01-09 05:44:56 +00001327 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1328 if (Instruction *I = visitBitCast(*BCI)) {
1329 if (I != BCI) {
1330 I->takeName(BCI);
1331 BCI->getParent()->getInstList().insert(BCI, I);
1332 ReplaceInstUsesWith(*BCI, I);
1333 }
1334 return &GEP;
Chris Lattner58407792009-01-09 04:53:57 +00001335 }
Chris Lattner58407792009-01-09 04:53:57 +00001336 }
Chris Lattner46cd5a12009-01-09 05:44:56 +00001337 return new BitCastInst(BCI->getOperand(0), GEP.getType());
Chris Lattner58407792009-01-09 04:53:57 +00001338 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001339
Chris Lattner46cd5a12009-01-09 05:44:56 +00001340 // Otherwise, if the offset is non-zero, we need to find out if there is a
1341 // field at Offset in 'A's type. If so, we can pull the cast through the
1342 // GEP.
1343 SmallVector<Value*, 8> NewIndices;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001344 Type *InTy =
Chris Lattner46cd5a12009-01-09 05:44:56 +00001345 cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
Chandler Carruthece6c6b2012-11-01 08:07:29 +00001346 if (FindElementAtOffset(InTy, Offset, NewIndices)) {
Chris Lattner948cdeb2010-01-05 07:42:10 +00001347 Value *NGEP = GEP.isInBounds() ?
Jay Foad0a2a60a2011-07-22 08:16:57 +00001348 Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1349 Builder->CreateGEP(BCI->getOperand(0), NewIndices);
Jakub Staszak58c1da82012-05-06 13:52:31 +00001350
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001351 if (NGEP->getType() == GEP.getType())
1352 return ReplaceInstUsesWith(GEP, NGEP);
Chris Lattner46cd5a12009-01-09 05:44:56 +00001353 NGEP->takeName(&GEP);
1354 return new BitCastInst(NGEP, GEP.getType());
1355 }
Chris Lattner58407792009-01-09 04:53:57 +00001356 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001357 }
1358
Chris Lattner8a2a3112001-12-14 16:52:21 +00001359 return 0;
1360}
1361
Duncan Sands1d9b9732010-05-27 19:09:06 +00001362
1363
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001364static bool
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001365isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1366 const TargetLibraryInfo *TLI) {
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001367 SmallVector<Instruction*, 4> Worklist;
1368 Worklist.push_back(AI);
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001369
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001370 do {
1371 Instruction *PI = Worklist.pop_back_val();
1372 for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1373 ++UI) {
1374 Instruction *I = cast<Instruction>(*UI);
1375 switch (I->getOpcode()) {
1376 default:
1377 // Give up the moment we see something we can't handle.
Nuno Lopes99694582012-07-06 23:09:25 +00001378 return false;
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001379
1380 case Instruction::BitCast:
1381 case Instruction::GetElementPtr:
1382 Users.push_back(I);
1383 Worklist.push_back(I);
1384 continue;
1385
1386 case Instruction::ICmp: {
1387 ICmpInst *ICI = cast<ICmpInst>(I);
1388 // We can fold eq/ne comparisons with null to false/true, respectively.
1389 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1390 return false;
1391 Users.push_back(I);
1392 continue;
1393 }
1394
1395 case Instruction::Call:
1396 // Ignore no-op and store intrinsics.
1397 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1398 switch (II->getIntrinsicID()) {
1399 default:
1400 return false;
1401
1402 case Intrinsic::memmove:
1403 case Intrinsic::memcpy:
1404 case Intrinsic::memset: {
1405 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1406 if (MI->isVolatile() || MI->getRawDest() != PI)
1407 return false;
1408 }
1409 // fall through
1410 case Intrinsic::dbg_declare:
1411 case Intrinsic::dbg_value:
1412 case Intrinsic::invariant_start:
1413 case Intrinsic::invariant_end:
1414 case Intrinsic::lifetime_start:
1415 case Intrinsic::lifetime_end:
1416 case Intrinsic::objectsize:
1417 Users.push_back(I);
1418 continue;
1419 }
1420 }
1421
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001422 if (isFreeCall(I, TLI)) {
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001423 Users.push_back(I);
1424 continue;
1425 }
1426 return false;
1427
1428 case Instruction::Store: {
1429 StoreInst *SI = cast<StoreInst>(I);
1430 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1431 return false;
1432 Users.push_back(I);
1433 continue;
1434 }
1435 }
1436 llvm_unreachable("missing a return?");
Nuno Lopes99694582012-07-06 23:09:25 +00001437 }
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001438 } while (!Worklist.empty());
Duncan Sands1d9b9732010-05-27 19:09:06 +00001439 return true;
1440}
1441
Nuno Lopes78f8ef42012-07-09 18:38:20 +00001442Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
Duncan Sands1d9b9732010-05-27 19:09:06 +00001443 // If we have a malloc call which is only used in any amount of comparisons
1444 // to null and free calls, delete the calls and replace the comparisons with
1445 // true or false as appropriate.
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001446 SmallVector<WeakVH, 64> Users;
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00001447 if (isAllocSiteRemovable(&MI, Users, TLI)) {
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001448 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1449 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1450 if (!I) continue;
Duncan Sands1d9b9732010-05-27 19:09:06 +00001451
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001452 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001453 ReplaceInstUsesWith(*C,
1454 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1455 C->isFalseWhenEqual()));
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001456 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
Nick Lewyckyd8030c72011-08-02 22:08:01 +00001457 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
Nuno Lopes99694582012-07-06 23:09:25 +00001458 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1459 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1460 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1461 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1462 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1463 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001464 }
Nick Lewyckyd5061a92011-08-03 00:43:35 +00001465 EraseInstFromFunction(*I);
Duncan Sands1d9b9732010-05-27 19:09:06 +00001466 }
Nuno Lopes2b3e9582012-06-21 21:25:05 +00001467
1468 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
Nuno Lopesc363c742012-06-28 22:31:24 +00001469 // Replace invoke with a NOP intrinsic to maintain the original CFG
Nuno Lopes3769fe12012-06-25 17:11:47 +00001470 Module *M = II->getParent()->getParent()->getParent();
Nuno Lopesc363c742012-06-28 22:31:24 +00001471 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1472 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1473 ArrayRef<Value *>(), "", II->getParent());
Nuno Lopes2b3e9582012-06-21 21:25:05 +00001474 }
Duncan Sands1d9b9732010-05-27 19:09:06 +00001475 return EraseInstFromFunction(MI);
1476 }
1477 return 0;
1478}
1479
1480
1481
Gabor Greif91697372010-06-24 12:21:15 +00001482Instruction *InstCombiner::visitFree(CallInst &FI) {
1483 Value *Op = FI.getArgOperand(0);
Victor Hernandez66284e02009-10-24 04:23:03 +00001484
1485 // free undef -> unreachable.
1486 if (isa<UndefValue>(Op)) {
1487 // Insert a new store to null because we cannot modify the CFG here.
Eli Friedmane6f364b2011-05-18 23:58:37 +00001488 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1489 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
Victor Hernandez66284e02009-10-24 04:23:03 +00001490 return EraseInstFromFunction(FI);
1491 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001492
Victor Hernandez66284e02009-10-24 04:23:03 +00001493 // If we have 'free null' delete the instruction. This can happen in stl code
1494 // when lots of inlining happens.
1495 if (isa<ConstantPointerNull>(Op))
1496 return EraseInstFromFunction(FI);
1497
Victor Hernandez66284e02009-10-24 04:23:03 +00001498 return 0;
1499}
Chris Lattner67b1e1b2003-12-07 01:24:23 +00001500
Chris Lattner3284d1f2007-04-15 00:07:55 +00001501
Chris Lattner2f503e62005-01-31 05:36:43 +00001502
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001503Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1504 // Change br (not X), label True, label False to: br X, label False, True
Reid Spencer4b828e62005-06-18 17:37:34 +00001505 Value *X = 0;
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001506 BasicBlock *TrueDest;
1507 BasicBlock *FalseDest;
Dan Gohman4ae51262009-08-12 16:23:25 +00001508 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001509 !isa<Constant>(X)) {
1510 // Swap Destinations and condition...
1511 BI.setCondition(X);
Chandler Carruth602650c2011-10-17 01:11:57 +00001512 BI.swapSuccessors();
Chris Lattneracd1f0f2004-07-30 07:50:03 +00001513 return &BI;
1514 }
1515
Reid Spencere4d87aa2006-12-23 06:05:41 +00001516 // Cannonicalize fcmp_one -> fcmp_oeq
1517 FCmpInst::Predicate FPred; Value *Y;
Jakub Staszak58c1da82012-05-06 13:52:31 +00001518 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001519 TrueDest, FalseDest)) &&
1520 BI.getCondition()->hasOneUse())
1521 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1522 FPred == FCmpInst::FCMP_OGE) {
1523 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1524 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
Jakub Staszak58c1da82012-05-06 13:52:31 +00001525
Chris Lattner7a1e9242009-08-30 06:13:40 +00001526 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001527 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001528 Worklist.Add(Cond);
Reid Spencere4d87aa2006-12-23 06:05:41 +00001529 return &BI;
1530 }
1531
1532 // Cannonicalize icmp_ne -> icmp_eq
1533 ICmpInst::Predicate IPred;
1534 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
Chris Lattner7a1e9242009-08-30 06:13:40 +00001535 TrueDest, FalseDest)) &&
1536 BI.getCondition()->hasOneUse())
1537 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
1538 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1539 IPred == ICmpInst::ICMP_SGE) {
1540 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1541 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1542 // Swap Destinations and condition.
Chandler Carruth602650c2011-10-17 01:11:57 +00001543 BI.swapSuccessors();
Chris Lattner7a1e9242009-08-30 06:13:40 +00001544 Worklist.Add(Cond);
Chris Lattner40f5d702003-06-04 05:10:11 +00001545 return &BI;
1546 }
Misha Brukmanfd939082005-04-21 23:48:37 +00001547
Chris Lattnerc4d10eb2003-06-04 04:46:00 +00001548 return 0;
1549}
Chris Lattner0864acf2002-11-04 16:18:53 +00001550
Chris Lattner46238a62004-07-03 00:26:11 +00001551Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1552 Value *Cond = SI.getCondition();
1553 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1554 if (I->getOpcode() == Instruction::Add)
1555 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1556 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001557 // Skip the first item since that's the default case.
Stepan Dyatkovskiy3d3abe02012-03-11 06:09:17 +00001558 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00001559 i != e; ++i) {
1560 ConstantInt* CaseVal = i.getCaseValue();
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001561 Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1562 AddRHS);
1563 assert(isa<ConstantInt>(NewCaseVal) &&
1564 "Result of expression should be constant");
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00001565 i.setValue(cast<ConstantInt>(NewCaseVal));
Eli Friedmanbb5a7442011-09-29 20:21:17 +00001566 }
1567 SI.setCondition(I->getOperand(0));
Chris Lattner7a1e9242009-08-30 06:13:40 +00001568 Worklist.Add(I);
Chris Lattner46238a62004-07-03 00:26:11 +00001569 return &SI;
1570 }
1571 }
1572 return 0;
1573}
1574
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001575Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001576 Value *Agg = EV.getAggregateOperand();
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001577
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001578 if (!EV.hasIndices())
1579 return ReplaceInstUsesWith(EV, Agg);
1580
1581 if (Constant *C = dyn_cast<Constant>(Agg)) {
Chris Lattnerd59ae902012-01-26 02:32:04 +00001582 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1583 if (EV.getNumIndices() == 0)
1584 return ReplaceInstUsesWith(EV, C2);
1585 // Extract the remaining indices out of the constant indexed by the
1586 // first index
1587 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001588 }
1589 return 0; // Can't handle other constants
Chris Lattnerd59ae902012-01-26 02:32:04 +00001590 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001591
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001592 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1593 // We're extracting from an insertvalue instruction, compare the indices
1594 const unsigned *exti, *exte, *insi, *inse;
1595 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1596 exte = EV.idx_end(), inse = IV->idx_end();
1597 exti != exte && insi != inse;
1598 ++exti, ++insi) {
1599 if (*insi != *exti)
1600 // The insert and extract both reference distinctly different elements.
1601 // This means the extract is not influenced by the insert, and we can
1602 // replace the aggregate operand of the extract with the aggregate
1603 // operand of the insert. i.e., replace
1604 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1605 // %E = extractvalue { i32, { i32 } } %I, 0
1606 // with
1607 // %E = extractvalue { i32, { i32 } } %A, 0
1608 return ExtractValueInst::Create(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001609 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001610 }
1611 if (exti == exte && insi == inse)
1612 // Both iterators are at the end: Index lists are identical. Replace
1613 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1614 // %C = extractvalue { i32, { i32 } } %B, 1, 0
1615 // with "i32 42"
1616 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1617 if (exti == exte) {
1618 // The extract list is a prefix of the insert list. i.e. replace
1619 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1620 // %E = extractvalue { i32, { i32 } } %I, 1
1621 // with
1622 // %X = extractvalue { i32, { i32 } } %A, 1
1623 // %E = insertvalue { i32 } %X, i32 42, 0
1624 // by switching the order of the insert and extract (though the
1625 // insertvalue should be left in, since it may have other uses).
Chris Lattnerf925cbd2009-08-30 18:50:58 +00001626 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001627 EV.getIndices());
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001628 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001629 makeArrayRef(insi, inse));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001630 }
1631 if (insi == inse)
1632 // The insert list is a prefix of the extract list
1633 // We can simply remove the common indices from the extract and make it
1634 // operate on the inserted value instead of the insertvalue result.
1635 // i.e., replace
1636 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1637 // %E = extractvalue { i32, { i32 } } %I, 1, 0
1638 // with
1639 // %E extractvalue { i32 } { i32 42 }, 0
Jakub Staszak58c1da82012-05-06 13:52:31 +00001640 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001641 makeArrayRef(exti, exte));
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001642 }
Chris Lattner7e606e22009-11-09 07:07:56 +00001643 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1644 // We're extracting from an intrinsic, see if we're the only user, which
1645 // allows us to simplify multiple result intrinsics to simpler things that
Gabor Greif91697372010-06-24 12:21:15 +00001646 // just get one value.
Chris Lattner7e606e22009-11-09 07:07:56 +00001647 if (II->hasOneUse()) {
1648 // Check if we're grabbing the overflow bit or the result of a 'with
1649 // overflow' intrinsic. If it's the latter we can remove the intrinsic
1650 // and replace it with a traditional binary instruction.
1651 switch (II->getIntrinsicID()) {
1652 case Intrinsic::uadd_with_overflow:
1653 case Intrinsic::sadd_with_overflow:
1654 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001655 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001656 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001657 EraseInstFromFunction(*II);
1658 return BinaryOperator::CreateAdd(LHS, RHS);
1659 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00001660
Chris Lattner74b64612010-12-19 19:43:52 +00001661 // If the normal result of the add is dead, and the RHS is a constant,
1662 // we can transform this into a range comparison.
1663 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
Chris Lattnerf2a97ed2010-12-19 23:24:04 +00001664 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1665 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1666 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1667 ConstantExpr::getNot(CI));
Chris Lattner7e606e22009-11-09 07:07:56 +00001668 break;
1669 case Intrinsic::usub_with_overflow:
1670 case Intrinsic::ssub_with_overflow:
1671 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001672 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001673 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001674 EraseInstFromFunction(*II);
1675 return BinaryOperator::CreateSub(LHS, RHS);
1676 }
1677 break;
1678 case Intrinsic::umul_with_overflow:
1679 case Intrinsic::smul_with_overflow:
1680 if (*EV.idx_begin() == 0) { // Normal result.
Gabor Greif91697372010-06-24 12:21:15 +00001681 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
Eli Friedman3e22cb92011-05-18 00:32:01 +00001682 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
Chris Lattner7e606e22009-11-09 07:07:56 +00001683 EraseInstFromFunction(*II);
1684 return BinaryOperator::CreateMul(LHS, RHS);
1685 }
1686 break;
1687 default:
1688 break;
1689 }
1690 }
1691 }
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001692 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1693 // If the (non-volatile) load only has one use, we can rewrite this to a
1694 // load from a GEP. This reduces the size of the load.
1695 // FIXME: If a load is used only by extractvalue instructions then this
1696 // could be done regardless of having multiple uses.
Eli Friedmancc4a0432011-08-15 22:09:40 +00001697 if (L->isSimple() && L->hasOneUse()) {
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001698 // extractvalue has integer indices, getelementptr has Value*s. Convert.
1699 SmallVector<Value*, 4> Indices;
1700 // Prefix an i32 0 since we need the first element.
1701 Indices.push_back(Builder->getInt32(0));
1702 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1703 I != E; ++I)
1704 Indices.push_back(Builder->getInt32(*I));
1705
1706 // We need to insert these at the location of the old load, not at that of
1707 // the extractvalue.
1708 Builder->SetInsertPoint(L->getParent(), L);
Jay Foad0a2a60a2011-07-22 08:16:57 +00001709 Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001710 // Returning the load directly will cause the main loop to insert it in
1711 // the wrong spot, so use ReplaceInstUsesWith().
1712 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1713 }
1714 // We could simplify extracts from other values. Note that nested extracts may
1715 // already be simplified implicitly by the above: extract (extract (insert) )
Matthijs Kooijman780ae5e2008-07-16 12:55:45 +00001716 // will be translated into extract ( insert ( extract ) ) first and then just
Frits van Bommel34ceb4d2010-11-29 21:56:20 +00001717 // the value inserted, if appropriate. Similarly for extracts from single-use
1718 // loads: extract (extract (load)) will be translated to extract (load (gep))
1719 // and if again single-use then via load (gep (gep)) to load (gep).
1720 // However, double extracts from e.g. function arguments or return values
1721 // aren't handled yet.
Matthijs Kooijmana9012ec2008-06-11 14:05:05 +00001722 return 0;
1723}
1724
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001725enum Personality_Type {
1726 Unknown_Personality,
1727 GNU_Ada_Personality,
Bill Wendling76f267d2011-10-17 21:20:24 +00001728 GNU_CXX_Personality,
1729 GNU_ObjC_Personality
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001730};
1731
1732/// RecognizePersonality - See if the given exception handling personality
1733/// function is one that we understand. If so, return a description of it;
1734/// otherwise return Unknown_Personality.
1735static Personality_Type RecognizePersonality(Value *Pers) {
1736 Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1737 if (!F)
1738 return Unknown_Personality;
1739 return StringSwitch<Personality_Type>(F->getName())
1740 .Case("__gnat_eh_personality", GNU_Ada_Personality)
Bill Wendling76f267d2011-10-17 21:20:24 +00001741 .Case("__gxx_personality_v0", GNU_CXX_Personality)
1742 .Case("__objc_personality_v0", GNU_ObjC_Personality)
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001743 .Default(Unknown_Personality);
1744}
1745
1746/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1747static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1748 switch (Personality) {
1749 case Unknown_Personality:
1750 return false;
1751 case GNU_Ada_Personality:
1752 // While __gnat_all_others_value will match any Ada exception, it doesn't
1753 // match foreign exceptions (or didn't, before gcc-4.7).
1754 return false;
1755 case GNU_CXX_Personality:
Bill Wendling76f267d2011-10-17 21:20:24 +00001756 case GNU_ObjC_Personality:
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001757 return TypeInfo->isNullValue();
1758 }
1759 llvm_unreachable("Unknown personality!");
1760}
1761
1762static bool shorter_filter(const Value *LHS, const Value *RHS) {
1763 return
1764 cast<ArrayType>(LHS->getType())->getNumElements()
1765 <
1766 cast<ArrayType>(RHS->getType())->getNumElements();
1767}
1768
1769Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1770 // The logic here should be correct for any real-world personality function.
1771 // However if that turns out not to be true, the offending logic can always
1772 // be conditioned on the personality function, like the catch-all logic is.
1773 Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1774
1775 // Simplify the list of clauses, eg by removing repeated catch clauses
1776 // (these are often created by inlining).
1777 bool MakeNewInstruction = false; // If true, recreate using the following:
1778 SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1779 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
1780
1781 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1782 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1783 bool isLastClause = i + 1 == e;
1784 if (LI.isCatch(i)) {
1785 // A catch clause.
1786 Value *CatchClause = LI.getClause(i);
1787 Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1788
1789 // If we already saw this clause, there is no point in having a second
1790 // copy of it.
1791 if (AlreadyCaught.insert(TypeInfo)) {
1792 // This catch clause was not already seen.
1793 NewClauses.push_back(CatchClause);
1794 } else {
1795 // Repeated catch clause - drop the redundant copy.
1796 MakeNewInstruction = true;
1797 }
1798
1799 // If this is a catch-all then there is no point in keeping any following
1800 // clauses or marking the landingpad as having a cleanup.
1801 if (isCatchAll(Personality, TypeInfo)) {
1802 if (!isLastClause)
1803 MakeNewInstruction = true;
1804 CleanupFlag = false;
1805 break;
1806 }
1807 } else {
1808 // A filter clause. If any of the filter elements were already caught
1809 // then they can be dropped from the filter. It is tempting to try to
1810 // exploit the filter further by saying that any typeinfo that does not
1811 // occur in the filter can't be caught later (and thus can be dropped).
1812 // However this would be wrong, since typeinfos can match without being
1813 // equal (for example if one represents a C++ class, and the other some
1814 // class derived from it).
1815 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1816 Value *FilterClause = LI.getClause(i);
1817 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1818 unsigned NumTypeInfos = FilterType->getNumElements();
1819
1820 // An empty filter catches everything, so there is no point in keeping any
1821 // following clauses or marking the landingpad as having a cleanup. By
1822 // dealing with this case here the following code is made a bit simpler.
1823 if (!NumTypeInfos) {
1824 NewClauses.push_back(FilterClause);
1825 if (!isLastClause)
1826 MakeNewInstruction = true;
1827 CleanupFlag = false;
1828 break;
1829 }
1830
1831 bool MakeNewFilter = false; // If true, make a new filter.
1832 SmallVector<Constant *, 16> NewFilterElts; // New elements.
1833 if (isa<ConstantAggregateZero>(FilterClause)) {
1834 // Not an empty filter - it contains at least one null typeinfo.
1835 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1836 Constant *TypeInfo =
1837 Constant::getNullValue(FilterType->getElementType());
1838 // If this typeinfo is a catch-all then the filter can never match.
1839 if (isCatchAll(Personality, TypeInfo)) {
1840 // Throw the filter away.
1841 MakeNewInstruction = true;
1842 continue;
1843 }
1844
1845 // There is no point in having multiple copies of this typeinfo, so
1846 // discard all but the first copy if there is more than one.
1847 NewFilterElts.push_back(TypeInfo);
1848 if (NumTypeInfos > 1)
1849 MakeNewFilter = true;
1850 } else {
1851 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1852 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1853 NewFilterElts.reserve(NumTypeInfos);
1854
1855 // Remove any filter elements that were already caught or that already
1856 // occurred in the filter. While there, see if any of the elements are
1857 // catch-alls. If so, the filter can be discarded.
1858 bool SawCatchAll = false;
1859 for (unsigned j = 0; j != NumTypeInfos; ++j) {
1860 Value *Elt = Filter->getOperand(j);
1861 Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1862 if (isCatchAll(Personality, TypeInfo)) {
1863 // This element is a catch-all. Bail out, noting this fact.
1864 SawCatchAll = true;
1865 break;
1866 }
1867 if (AlreadyCaught.count(TypeInfo))
1868 // Already caught by an earlier clause, so having it in the filter
1869 // is pointless.
1870 continue;
1871 // There is no point in having multiple copies of the same typeinfo in
1872 // a filter, so only add it if we didn't already.
1873 if (SeenInFilter.insert(TypeInfo))
1874 NewFilterElts.push_back(cast<Constant>(Elt));
1875 }
1876 // A filter containing a catch-all cannot match anything by definition.
1877 if (SawCatchAll) {
1878 // Throw the filter away.
1879 MakeNewInstruction = true;
1880 continue;
1881 }
1882
1883 // If we dropped something from the filter, make a new one.
1884 if (NewFilterElts.size() < NumTypeInfos)
1885 MakeNewFilter = true;
1886 }
1887 if (MakeNewFilter) {
1888 FilterType = ArrayType::get(FilterType->getElementType(),
1889 NewFilterElts.size());
1890 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1891 MakeNewInstruction = true;
1892 }
1893
1894 NewClauses.push_back(FilterClause);
1895
1896 // If the new filter is empty then it will catch everything so there is
1897 // no point in keeping any following clauses or marking the landingpad
1898 // as having a cleanup. The case of the original filter being empty was
1899 // already handled above.
1900 if (MakeNewFilter && !NewFilterElts.size()) {
1901 assert(MakeNewInstruction && "New filter but not a new instruction!");
1902 CleanupFlag = false;
1903 break;
1904 }
1905 }
1906 }
1907
1908 // If several filters occur in a row then reorder them so that the shortest
1909 // filters come first (those with the smallest number of elements). This is
1910 // advantageous because shorter filters are more likely to match, speeding up
1911 // unwinding, but mostly because it increases the effectiveness of the other
1912 // filter optimizations below.
1913 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1914 unsigned j;
1915 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1916 for (j = i; j != e; ++j)
1917 if (!isa<ArrayType>(NewClauses[j]->getType()))
1918 break;
1919
1920 // Check whether the filters are already sorted by length. We need to know
1921 // if sorting them is actually going to do anything so that we only make a
1922 // new landingpad instruction if it does.
1923 for (unsigned k = i; k + 1 < j; ++k)
1924 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1925 // Not sorted, so sort the filters now. Doing an unstable sort would be
1926 // correct too but reordering filters pointlessly might confuse users.
1927 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1928 shorter_filter);
1929 MakeNewInstruction = true;
1930 break;
1931 }
1932
1933 // Look for the next batch of filters.
1934 i = j + 1;
1935 }
1936
1937 // If typeinfos matched if and only if equal, then the elements of a filter L
1938 // that occurs later than a filter F could be replaced by the intersection of
1939 // the elements of F and L. In reality two typeinfos can match without being
1940 // equal (for example if one represents a C++ class, and the other some class
1941 // derived from it) so it would be wrong to perform this transform in general.
1942 // However the transform is correct and useful if F is a subset of L. In that
1943 // case L can be replaced by F, and thus removed altogether since repeating a
1944 // filter is pointless. So here we look at all pairs of filters F and L where
1945 // L follows F in the list of clauses, and remove L if every element of F is
1946 // an element of L. This can occur when inlining C++ functions with exception
1947 // specifications.
1948 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
1949 // Examine each filter in turn.
1950 Value *Filter = NewClauses[i];
1951 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
1952 if (!FTy)
1953 // Not a filter - skip it.
1954 continue;
1955 unsigned FElts = FTy->getNumElements();
1956 // Examine each filter following this one. Doing this backwards means that
1957 // we don't have to worry about filters disappearing under us when removed.
1958 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
1959 Value *LFilter = NewClauses[j];
1960 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
1961 if (!LTy)
1962 // Not a filter - skip it.
1963 continue;
1964 // If Filter is a subset of LFilter, i.e. every element of Filter is also
1965 // an element of LFilter, then discard LFilter.
1966 SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
1967 // If Filter is empty then it is a subset of LFilter.
1968 if (!FElts) {
1969 // Discard LFilter.
1970 NewClauses.erase(J);
1971 MakeNewInstruction = true;
1972 // Move on to the next filter.
1973 continue;
1974 }
1975 unsigned LElts = LTy->getNumElements();
1976 // If Filter is longer than LFilter then it cannot be a subset of it.
1977 if (FElts > LElts)
1978 // Move on to the next filter.
1979 continue;
1980 // At this point we know that LFilter has at least one element.
1981 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001982 // Filter is a subset of LFilter iff Filter contains only zeros (as we
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001983 // already know that Filter is not longer than LFilter).
1984 if (isa<ConstantAggregateZero>(Filter)) {
1985 assert(FElts <= LElts && "Should have handled this case earlier!");
1986 // Discard LFilter.
1987 NewClauses.erase(J);
1988 MakeNewInstruction = true;
1989 }
1990 // Move on to the next filter.
1991 continue;
1992 }
1993 ConstantArray *LArray = cast<ConstantArray>(LFilter);
1994 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
1995 // Since Filter is non-empty and contains only zeros, it is a subset of
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001996 // LFilter iff LFilter contains a zero.
Duncan Sands0ad7b6e2011-09-30 13:12:16 +00001997 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
1998 for (unsigned l = 0; l != LElts; ++l)
1999 if (LArray->getOperand(l)->isNullValue()) {
2000 // LFilter contains a zero - discard it.
2001 NewClauses.erase(J);
2002 MakeNewInstruction = true;
2003 break;
2004 }
2005 // Move on to the next filter.
2006 continue;
2007 }
2008 // At this point we know that both filters are ConstantArrays. Loop over
2009 // operands to see whether every element of Filter is also an element of
2010 // LFilter. Since filters tend to be short this is probably faster than
2011 // using a method that scales nicely.
2012 ConstantArray *FArray = cast<ConstantArray>(Filter);
2013 bool AllFound = true;
2014 for (unsigned f = 0; f != FElts; ++f) {
2015 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2016 AllFound = false;
2017 for (unsigned l = 0; l != LElts; ++l) {
2018 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2019 if (LTypeInfo == FTypeInfo) {
2020 AllFound = true;
2021 break;
2022 }
2023 }
2024 if (!AllFound)
2025 break;
2026 }
2027 if (AllFound) {
2028 // Discard LFilter.
2029 NewClauses.erase(J);
2030 MakeNewInstruction = true;
2031 }
2032 // Move on to the next filter.
2033 }
2034 }
2035
2036 // If we changed any of the clauses, replace the old landingpad instruction
2037 // with a new one.
2038 if (MakeNewInstruction) {
2039 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2040 LI.getPersonalityFn(),
2041 NewClauses.size());
2042 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2043 NLI->addClause(NewClauses[i]);
2044 // A landing pad with no clauses must have the cleanup flag set. It is
2045 // theoretically possible, though highly unlikely, that we eliminated all
2046 // clauses. If so, force the cleanup flag to true.
2047 if (NewClauses.empty())
2048 CleanupFlag = true;
2049 NLI->setCleanup(CleanupFlag);
2050 return NLI;
2051 }
2052
2053 // Even if none of the clauses changed, we may nonetheless have understood
2054 // that the cleanup flag is pointless. Clear it if so.
2055 if (LI.isCleanup() != CleanupFlag) {
2056 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2057 LI.setCleanup(CleanupFlag);
2058 return &LI;
2059 }
2060
2061 return 0;
2062}
2063
Chris Lattnera844fc4c2006-04-10 22:45:52 +00002064
Robert Bocchino1d7456d2006-01-13 22:48:06 +00002065
Chris Lattnerea1c4542004-12-08 23:43:58 +00002066
2067/// TryToSinkInstruction - Try to move the specified instruction from its
2068/// current block into the beginning of DestBlock, which can only happen if it's
2069/// safe to move the instruction past all of the instructions between it and the
2070/// end of its block.
2071static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2072 assert(I->hasOneUse() && "Invariants didn't hold!");
2073
Bill Wendling9d6070f2011-08-15 21:14:31 +00002074 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
Bill Wendlingc9b2a982011-08-17 20:36:44 +00002075 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2076 isa<TerminatorInst>(I))
Chris Lattnerbfc538c2008-05-09 15:07:33 +00002077 return false;
Misha Brukmanfd939082005-04-21 23:48:37 +00002078
Chris Lattnerea1c4542004-12-08 23:43:58 +00002079 // Do not sink alloca instructions out of the entry block.
Dan Gohmanecb7a772007-03-22 16:38:57 +00002080 if (isa<AllocaInst>(I) && I->getParent() ==
2081 &DestBlock->getParent()->getEntryBlock())
Chris Lattnerea1c4542004-12-08 23:43:58 +00002082 return false;
2083
Chris Lattner96a52a62004-12-09 07:14:34 +00002084 // We can only sink load instructions if there is nothing between the load and
2085 // the end of block that could change the value.
Chris Lattner2539e332008-05-08 17:37:37 +00002086 if (I->mayReadFromMemory()) {
2087 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
Chris Lattner96a52a62004-12-09 07:14:34 +00002088 Scan != E; ++Scan)
2089 if (Scan->mayWriteToMemory())
2090 return false;
Chris Lattner96a52a62004-12-09 07:14:34 +00002091 }
Chris Lattnerea1c4542004-12-08 23:43:58 +00002092
Bill Wendling5b6f42f2011-08-16 20:45:24 +00002093 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
Chris Lattner4bc5f802005-08-08 19:11:57 +00002094 I->moveBefore(InsertPos);
Chris Lattnerea1c4542004-12-08 23:43:58 +00002095 ++NumSunkInst;
2096 return true;
2097}
2098
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002099
2100/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2101/// all reachable code to the worklist.
2102///
2103/// This has a couple of tricks to make the code faster and more powerful. In
2104/// particular, we constant fold and DCE instructions as we go, to avoid adding
2105/// them to the worklist (this significantly speeds up instcombine on code where
2106/// many instructions are dead or constant). Additionally, if we find a branch
2107/// whose condition is a known constant, we only visit the reachable successors.
2108///
Jakub Staszak58c1da82012-05-06 13:52:31 +00002109static bool AddReachableCodeToWorklist(BasicBlock *BB,
Chris Lattner1f87a582007-02-15 19:41:52 +00002110 SmallPtrSet<BasicBlock*, 64> &Visited,
Chris Lattnerdbab3862007-03-02 21:28:56 +00002111 InstCombiner &IC,
Micah Villmow3574eca2012-10-08 16:38:25 +00002112 const DataLayout *TD,
Chad Rosier00737bd2011-12-01 21:29:16 +00002113 const TargetLibraryInfo *TLI) {
Chris Lattner2ee743b2009-10-15 04:59:28 +00002114 bool MadeIRChange = false;
Chris Lattner2806dff2008-08-15 04:03:01 +00002115 SmallVector<BasicBlock*, 256> Worklist;
Chris Lattner2c7718a2007-03-23 19:17:18 +00002116 Worklist.push_back(BB);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002117
Benjamin Kramera53fe602010-10-23 17:10:24 +00002118 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002119 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2120
Dan Gohman321a8132010-01-05 16:27:25 +00002121 do {
2122 BB = Worklist.pop_back_val();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002123
Chris Lattner2c7718a2007-03-23 19:17:18 +00002124 // We have now visited this block! If we've already been here, ignore it.
2125 if (!Visited.insert(BB)) continue;
Devang Patel7fe1dec2008-11-19 18:56:50 +00002126
Chris Lattner2c7718a2007-03-23 19:17:18 +00002127 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2128 Instruction *Inst = BBI++;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002129
Chris Lattner2c7718a2007-03-23 19:17:18 +00002130 // DCE instruction if trivially dead.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002131 if (isInstructionTriviallyDead(Inst, TLI)) {
Chris Lattner2c7718a2007-03-23 19:17:18 +00002132 ++NumDeadInst;
Chris Lattnerbdff5482009-08-23 04:37:46 +00002133 DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
Chris Lattner2c7718a2007-03-23 19:17:18 +00002134 Inst->eraseFromParent();
2135 continue;
2136 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002137
Chris Lattner2c7718a2007-03-23 19:17:18 +00002138 // ConstantProp instruction if trivially constant.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002139 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
Chad Rosier00737bd2011-12-01 21:29:16 +00002140 if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002141 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
2142 << *Inst << '\n');
2143 Inst->replaceAllUsesWith(C);
2144 ++NumConstProp;
2145 Inst->eraseFromParent();
2146 continue;
2147 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002148
Chris Lattner2ee743b2009-10-15 04:59:28 +00002149 if (TD) {
2150 // See if we can constant fold its operands.
2151 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
2152 i != e; ++i) {
2153 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2154 if (CE == 0) continue;
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002155
2156 Constant*& FoldRes = FoldedConstants[CE];
2157 if (!FoldRes)
Chad Rosieraab8e282011-12-02 01:26:24 +00002158 FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
Eli Friedmana4d4aeb2011-05-24 18:52:07 +00002159 if (!FoldRes)
2160 FoldRes = CE;
2161
2162 if (FoldRes != CE) {
2163 *i = FoldRes;
Chris Lattner2ee743b2009-10-15 04:59:28 +00002164 MadeIRChange = true;
2165 }
2166 }
2167 }
Devang Patel7fe1dec2008-11-19 18:56:50 +00002168
Chris Lattner67f7d542009-10-12 03:58:40 +00002169 InstrsForInstCombineWorklist.push_back(Inst);
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002170 }
Chris Lattner2c7718a2007-03-23 19:17:18 +00002171
2172 // Recursively visit successors. If this is a branch or switch on a
2173 // constant, only visit the reachable successor.
2174 TerminatorInst *TI = BB->getTerminator();
2175 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2176 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2177 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
Nick Lewycky91436992008-03-09 08:50:23 +00002178 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Nick Lewycky280a6e62008-04-25 16:53:59 +00002179 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00002180 continue;
2181 }
2182 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2183 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2184 // See if this is an explicit destination.
Stepan Dyatkovskiy3d3abe02012-03-11 06:09:17 +00002185 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
Stepan Dyatkovskiyc10fa6c2012-03-08 07:06:20 +00002186 i != e; ++i)
2187 if (i.getCaseValue() == Cond) {
2188 BasicBlock *ReachableBB = i.getCaseSuccessor();
Nick Lewycky280a6e62008-04-25 16:53:59 +00002189 Worklist.push_back(ReachableBB);
Chris Lattner2c7718a2007-03-23 19:17:18 +00002190 continue;
2191 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002192
Chris Lattner2c7718a2007-03-23 19:17:18 +00002193 // Otherwise it is the default destination.
Stepan Dyatkovskiy24473122012-02-01 07:49:51 +00002194 Worklist.push_back(SI->getDefaultDest());
Chris Lattner2c7718a2007-03-23 19:17:18 +00002195 continue;
2196 }
2197 }
Jakub Staszak58c1da82012-05-06 13:52:31 +00002198
Chris Lattner2c7718a2007-03-23 19:17:18 +00002199 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2200 Worklist.push_back(TI->getSuccessor(i));
Dan Gohman321a8132010-01-05 16:27:25 +00002201 } while (!Worklist.empty());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002202
Chris Lattner67f7d542009-10-12 03:58:40 +00002203 // Once we've found all of the instructions to add to instcombine's worklist,
2204 // add them in reverse order. This way instcombine will visit from the top
2205 // of the function down. This jives well with the way that it adds all uses
2206 // of instructions to the worklist after doing a transformation, thus avoiding
2207 // some N^2 behavior in pathological cases.
2208 IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2209 InstrsForInstCombineWorklist.size());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002210
Chris Lattner2ee743b2009-10-15 04:59:28 +00002211 return MadeIRChange;
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002212}
2213
Chris Lattnerec9c3582007-03-03 02:04:50 +00002214bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002215 MadeIRChange = false;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002216
Daniel Dunbarce63ffb2009-07-25 00:23:56 +00002217 DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
Benjamin Kramera7b0cb72011-11-15 16:27:03 +00002218 << F.getName() << "\n");
Chris Lattner8a2a3112001-12-14 16:52:21 +00002219
Chris Lattnerb3d59702005-07-07 20:40:38 +00002220 {
Chris Lattnerf4f5a772006-05-10 19:00:36 +00002221 // Do a depth-first traversal of the function, populate the worklist with
2222 // the reachable instructions. Ignore blocks that are not reachable. Keep
2223 // track of which blocks we visit.
Chris Lattner1f87a582007-02-15 19:41:52 +00002224 SmallPtrSet<BasicBlock*, 64> Visited;
Chad Rosier00737bd2011-12-01 21:29:16 +00002225 MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
2226 TLI);
Jeff Cohen00b168892005-07-27 06:12:32 +00002227
Chris Lattnerb3d59702005-07-07 20:40:38 +00002228 // Do a quick scan over the function. If we find any blocks that are
2229 // unreachable, remove any instructions inside of them. This prevents
2230 // the instcombine code from having to deal with some bad special cases.
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002231 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2232 if (Visited.count(BB)) continue;
2233
Bill Wendlinga2684682011-09-04 09:43:36 +00002234 // Delete the instructions backwards, as it has a reduced likelihood of
2235 // having to update as many def-use and use-def chains.
2236 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2237 while (EndInst != BB->begin()) {
2238 // Delete the next to last instruction.
2239 BasicBlock::iterator I = EndInst;
2240 Instruction *Inst = --I;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002241 if (!Inst->use_empty())
2242 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
Bill Wendlinga2684682011-09-04 09:43:36 +00002243 if (isa<LandingPadInst>(Inst)) {
2244 EndInst = Inst;
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002245 continue;
Bill Wendlinga2684682011-09-04 09:43:36 +00002246 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002247 if (!isa<DbgInfoIntrinsic>(Inst)) {
2248 ++NumDeadInst;
2249 MadeIRChange = true;
Chris Lattnerb3d59702005-07-07 20:40:38 +00002250 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002251 Inst->eraseFromParent();
Chris Lattnerb3d59702005-07-07 20:40:38 +00002252 }
Bill Wendling6bb4e7e2011-09-01 21:29:49 +00002253 }
Chris Lattnerb3d59702005-07-07 20:40:38 +00002254 }
Chris Lattner8a2a3112001-12-14 16:52:21 +00002255
Chris Lattner873ff012009-08-30 05:55:36 +00002256 while (!Worklist.isEmpty()) {
2257 Instruction *I = Worklist.RemoveOne();
Chris Lattnerdbab3862007-03-02 21:28:56 +00002258 if (I == 0) continue; // skip null values.
Chris Lattner8a2a3112001-12-14 16:52:21 +00002259
Chris Lattner8c8c66a2006-05-11 17:11:52 +00002260 // Check to see if we can DCE the instruction.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002261 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattnerbdff5482009-08-23 04:37:46 +00002262 DEBUG(errs() << "IC: DCE: " << *I << '\n');
Chris Lattner7a1e9242009-08-30 06:13:40 +00002263 EraseInstFromFunction(*I);
2264 ++NumDeadInst;
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002265 MadeIRChange = true;
Chris Lattner4bb7c022003-10-06 17:11:01 +00002266 continue;
2267 }
Chris Lattner62b14df2002-09-02 04:59:56 +00002268
Chris Lattner8c8c66a2006-05-11 17:11:52 +00002269 // Instruction isn't dead, see if we can constant propagate it.
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002270 if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
Chad Rosier00737bd2011-12-01 21:29:16 +00002271 if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002272 DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
Chris Lattnerad5fec12005-01-28 19:32:01 +00002273
Chris Lattnere2cc1ad2009-10-15 04:13:44 +00002274 // Add operands to the worklist.
2275 ReplaceInstUsesWith(*I, C);
2276 ++NumConstProp;
2277 EraseInstFromFunction(*I);
2278 MadeIRChange = true;
2279 continue;
2280 }
Chris Lattner4bb7c022003-10-06 17:11:01 +00002281
Chris Lattnerea1c4542004-12-08 23:43:58 +00002282 // See if we can trivially sink this instruction to a successor basic block.
Dan Gohmanfc74abf2008-07-23 00:34:11 +00002283 if (I->hasOneUse()) {
Chris Lattnerea1c4542004-12-08 23:43:58 +00002284 BasicBlock *BB = I->getParent();
Chris Lattner8db2cd12009-10-14 15:21:58 +00002285 Instruction *UserInst = cast<Instruction>(I->use_back());
2286 BasicBlock *UserParent;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002287
Chris Lattner8db2cd12009-10-14 15:21:58 +00002288 // Get the block the use occurs in.
2289 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2290 UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2291 else
2292 UserParent = UserInst->getParent();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002293
Chris Lattnerea1c4542004-12-08 23:43:58 +00002294 if (UserParent != BB) {
2295 bool UserIsSuccessor = false;
2296 // See if the user is one of our successors.
2297 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2298 if (*SI == UserParent) {
2299 UserIsSuccessor = true;
2300 break;
2301 }
2302
2303 // If the user is one of our immediate successors, and if that successor
2304 // only has us as a predecessors (we'd have to split the critical edge
2305 // otherwise), we can keep going.
Chris Lattner8db2cd12009-10-14 15:21:58 +00002306 if (UserIsSuccessor && UserParent->getSinglePredecessor())
Chris Lattnerea1c4542004-12-08 23:43:58 +00002307 // Okay, the CFG is simple enough, try to sink this instruction.
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002308 MadeIRChange |= TryToSinkInstruction(I, UserParent);
Chris Lattnerea1c4542004-12-08 23:43:58 +00002309 }
2310 }
2311
Chris Lattner74381062009-08-30 07:44:24 +00002312 // Now that we have an instruction, try combining it to simplify it.
2313 Builder->SetInsertPoint(I->getParent(), I);
Eli Friedmanef819d02011-05-18 01:28:27 +00002314 Builder->SetCurrentDebugLocation(I->getDebugLoc());
Jakub Staszak58c1da82012-05-06 13:52:31 +00002315
Reid Spencera9b81012007-03-26 17:44:01 +00002316#ifndef NDEBUG
2317 std::string OrigI;
2318#endif
Chris Lattnerbdff5482009-08-23 04:37:46 +00002319 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
Jeffrey Yasskin43069632009-10-08 00:12:24 +00002320 DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2321
Chris Lattner90ac28c2002-08-02 19:29:35 +00002322 if (Instruction *Result = visit(*I)) {
Chris Lattner3dec1f22002-05-10 15:38:35 +00002323 ++NumCombined;
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002324 // Should we replace the old instruction with a new one?
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002325 if (Result != I) {
Jim Grosbache2999b42011-10-05 20:44:29 +00002326 DEBUG(errs() << "IC: Old = " << *I << '\n'
2327 << " New = " << *Result << '\n');
2328
Eli Friedmana311c342011-05-27 00:19:40 +00002329 if (!I->getDebugLoc().isUnknown())
2330 Result->setDebugLoc(I->getDebugLoc());
Chris Lattnerf523d062004-06-09 05:08:07 +00002331 // Everything uses the new instruction now.
2332 I->replaceAllUsesWith(Result);
2333
Jim Grosbach35d9da32011-10-05 20:53:43 +00002334 // Move the name to the new instruction first.
2335 Result->takeName(I);
2336
Jim Grosbache2999b42011-10-05 20:44:29 +00002337 // Push the new instruction and any users onto the worklist.
2338 Worklist.Add(Result);
2339 Worklist.AddUsersToWorkList(*Result);
2340
Chris Lattner4bb7c022003-10-06 17:11:01 +00002341 // Insert the new instruction into the basic block...
2342 BasicBlock *InstParent = I->getParent();
Chris Lattnerbac32862004-11-14 19:13:23 +00002343 BasicBlock::iterator InsertPos = I;
2344
Eli Friedman049260d2011-11-01 04:49:29 +00002345 // If we replace a PHI with something that isn't a PHI, fix up the
2346 // insertion point.
2347 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2348 InsertPos = InstParent->getFirstInsertionPt();
Chris Lattnerbac32862004-11-14 19:13:23 +00002349
2350 InstParent->getInstList().insert(InsertPos, Result);
Chris Lattner4bb7c022003-10-06 17:11:01 +00002351
Chris Lattner7a1e9242009-08-30 06:13:40 +00002352 EraseInstFromFunction(*I);
Chris Lattner7e708292002-06-25 16:13:24 +00002353 } else {
Evan Chengc7baf682007-03-27 16:44:48 +00002354#ifndef NDEBUG
Chris Lattnerbdff5482009-08-23 04:37:46 +00002355 DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2356 << " New = " << *I << '\n');
Evan Chengc7baf682007-03-27 16:44:48 +00002357#endif
Chris Lattner0cea42a2004-03-13 23:54:27 +00002358
Chris Lattner90ac28c2002-08-02 19:29:35 +00002359 // If the instruction was modified, it's possible that it is now dead.
2360 // if so, remove it.
Benjamin Kramer8e0d1c02012-08-29 15:32:21 +00002361 if (isInstructionTriviallyDead(I, TLI)) {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002362 EraseInstFromFunction(*I);
Chris Lattnerf523d062004-06-09 05:08:07 +00002363 } else {
Chris Lattner7a1e9242009-08-30 06:13:40 +00002364 Worklist.Add(I);
Chris Lattnere5ecdb52009-08-30 06:22:51 +00002365 Worklist.AddUsersToWorkList(*I);
Chris Lattner90ac28c2002-08-02 19:29:35 +00002366 }
Chris Lattnerb3bc8fa2002-05-14 15:24:07 +00002367 }
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002368 MadeIRChange = true;
Chris Lattner8a2a3112001-12-14 16:52:21 +00002369 }
2370 }
2371
Chris Lattner873ff012009-08-30 05:55:36 +00002372 Worklist.Zap();
Chris Lattnerb0b822c2009-08-31 06:57:37 +00002373 return MadeIRChange;
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002374}
2375
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002376namespace {
2377class InstCombinerLibCallSimplifier : public LibCallSimplifier {
2378 InstCombiner *IC;
2379public:
2380 InstCombinerLibCallSimplifier(const DataLayout *TD,
2381 const TargetLibraryInfo *TLI,
2382 InstCombiner *IC)
Meador Inge2920a712012-11-13 04:16:17 +00002383 : LibCallSimplifier(TD, TLI, UnsafeFPShrink) {
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002384 this->IC = IC;
2385 }
2386
2387 /// replaceAllUsesWith - override so that instruction replacement
2388 /// can be defined in terms of the instruction combiner framework.
2389 virtual void replaceAllUsesWith(Instruction *I, Value *With) const {
2390 IC->ReplaceInstUsesWith(*I, With);
2391 }
2392};
2393}
Chris Lattnerec9c3582007-03-03 02:04:50 +00002394
2395bool InstCombiner::runOnFunction(Function &F) {
Micah Villmow3574eca2012-10-08 16:38:25 +00002396 TD = getAnalysisIfAvailable<DataLayout>();
Chad Rosier00737bd2011-12-01 21:29:16 +00002397 TLI = &getAnalysis<TargetLibraryInfo>();
Jakub Staszak58c1da82012-05-06 13:52:31 +00002398
Chris Lattner74381062009-08-30 07:44:24 +00002399 /// Builder - This is an IRBuilder that automatically inserts new
2400 /// instructions into the worklist when they are created.
Jakub Staszak58c1da82012-05-06 13:52:31 +00002401 IRBuilder<true, TargetFolder, InstCombineIRInserter>
Chris Lattnerf55eeb92009-11-06 05:59:53 +00002402 TheBuilder(F.getContext(), TargetFolder(TD),
Chris Lattner74381062009-08-30 07:44:24 +00002403 InstCombineIRInserter(Worklist));
2404 Builder = &TheBuilder;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002405
Meador Ingeb69bf6b2012-11-11 03:51:43 +00002406 InstCombinerLibCallSimplifier TheSimplifier(TD, TLI, this);
Meador Inge5e890452012-10-13 16:45:24 +00002407 Simplifier = &TheSimplifier;
2408
Chris Lattnerec9c3582007-03-03 02:04:50 +00002409 bool EverMadeChange = false;
2410
Devang Patel813c9a02011-03-17 22:18:16 +00002411 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2412 // by instcombiner.
2413 EverMadeChange = LowerDbgDeclare(F);
2414
Chris Lattnerec9c3582007-03-03 02:04:50 +00002415 // Iterate while there is work to do.
2416 unsigned Iteration = 0;
Bill Wendlinga6c31122008-05-14 22:45:20 +00002417 while (DoOneIteration(F, Iteration++))
Chris Lattnerec9c3582007-03-03 02:04:50 +00002418 EverMadeChange = true;
Jakub Staszak58c1da82012-05-06 13:52:31 +00002419
Chris Lattner74381062009-08-30 07:44:24 +00002420 Builder = 0;
Chris Lattnerec9c3582007-03-03 02:04:50 +00002421 return EverMadeChange;
2422}
2423
Brian Gaeke96d4bf72004-07-27 17:43:21 +00002424FunctionPass *llvm::createInstructionCombiningPass() {
Chris Lattnerdd841ae2002-04-18 17:39:14 +00002425 return new InstCombiner();
Chris Lattnerbd0ef772002-02-26 21:46:54 +00002426}