blob: 4e5fae8a0414bbaf96966f937e5f97e628c0bfcd [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13// * Assumes values are constant unless proven otherwise
14// * Assumes BasicBlocks are dead unless proven otherwise
15// * Proves values to be constant, and replaces them with constants
16// * Proves conditional branches to be unconditional
17//
18// Notice that:
19// * This pass has a habit of making definitions be dead. It is a good idea
20// to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
Owen Andersonfa089ab2009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/Pass.h"
32#include "llvm/Analysis/ConstantFolding.h"
Victor Hernandez28f4d2f2009-10-27 20:05:49 +000033#include "llvm/Analysis/MemoryBuiltins.h"
Dan Gohman856193b2008-06-20 01:15:44 +000034#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000035#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/CallSite.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/Support/Debug.h"
Edwin Törökced9ff82009-07-11 13:10:19 +000038#include "llvm/Support/ErrorHandling.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include "llvm/Support/InstVisitor.h"
Daniel Dunbar005975c2009-07-25 00:23:56 +000040#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041#include "llvm/ADT/DenseMap.h"
Chris Lattnerd3123a72008-08-23 23:36:38 +000042#include "llvm/ADT/DenseSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/STLExtras.h"
47#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000048#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049using namespace llvm;
50
51STATISTIC(NumInstRemoved, "Number of instructions removed");
52STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
53
Nick Lewyckybbdfc9c2008-03-08 07:48:41 +000054STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000055STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
56STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
57STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
58
59namespace {
60/// LatticeVal class - This class represents the different lattice values that
61/// an LLVM value may occupy. It is a simple class with value semantics.
62///
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +000063class LatticeVal {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064 enum {
65 /// undefined - This LLVM Value has no known value yet.
66 undefined,
67
68 /// constant - This LLVM Value has a specific constant value.
69 constant,
70
71 /// forcedconstant - This LLVM Value was thought to be undef until
72 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
73 /// with another (different) constant, it goes to overdefined, instead of
74 /// asserting.
75 forcedconstant,
76
77 /// overdefined - This instruction is not known to be constant, and we know
78 /// it has a value.
79 overdefined
80 } LatticeValue; // The current lattice position
81
82 Constant *ConstantVal; // If Constant value, the current value
83public:
84 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
85
86 // markOverdefined - Return true if this is a new status to be in...
87 inline bool markOverdefined() {
88 if (LatticeValue != overdefined) {
89 LatticeValue = overdefined;
90 return true;
91 }
92 return false;
93 }
94
95 // markConstant - Return true if this is a new status for us.
96 inline bool markConstant(Constant *V) {
97 if (LatticeValue != constant) {
98 if (LatticeValue == undefined) {
99 LatticeValue = constant;
100 assert(V && "Marking constant with NULL");
101 ConstantVal = V;
102 } else {
103 assert(LatticeValue == forcedconstant &&
104 "Cannot move from overdefined to constant!");
105 // Stay at forcedconstant if the constant is the same.
106 if (V == ConstantVal) return false;
107
108 // Otherwise, we go to overdefined. Assumptions made based on the
109 // forced value are possibly wrong. Assuming this is another constant
110 // could expose a contradiction.
111 LatticeValue = overdefined;
112 }
113 return true;
114 } else {
115 assert(ConstantVal == V && "Marking constant with different value");
116 }
117 return false;
118 }
119
120 inline void markForcedConstant(Constant *V) {
121 assert(LatticeValue == undefined && "Can't force a defined value!");
122 LatticeValue = forcedconstant;
123 ConstantVal = V;
124 }
125
126 inline bool isUndefined() const { return LatticeValue == undefined; }
127 inline bool isConstant() const {
128 return LatticeValue == constant || LatticeValue == forcedconstant;
129 }
130 inline bool isOverdefined() const { return LatticeValue == overdefined; }
131
132 inline Constant *getConstant() const {
133 assert(isConstant() && "Cannot get the constant of a non-constant!");
134 return ConstantVal;
135 }
136};
137
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138//===----------------------------------------------------------------------===//
139//
140/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
141/// Constant Propagation.
142///
143class SCCPSolver : public InstVisitor<SCCPSolver> {
Owen Anderson5349f052009-07-06 23:00:19 +0000144 LLVMContext *Context;
Chris Lattnerd3123a72008-08-23 23:36:38 +0000145 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
Bill Wendling03488ae2008-08-14 23:05:24 +0000146 std::map<Value*, LatticeVal> ValueState; // The state each value is in.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000147
148 /// GlobalValue - If we are tracking any values for the contents of a global
149 /// variable, we keep a mapping from the constant accessor to the element of
150 /// the global, to the currently known value. If the value becomes
151 /// overdefined, it's entry is simply removed from this map.
152 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
153
Devang Pateladd320d2008-03-11 05:46:42 +0000154 /// TrackedRetVals - If we are tracking arguments into and the return
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155 /// value out of a function, it will have an entry in this map, indicating
156 /// what the known return value for the function is.
Devang Pateladd320d2008-03-11 05:46:42 +0000157 DenseMap<Function*, LatticeVal> TrackedRetVals;
158
159 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
160 /// that return multiple values.
Chris Lattnerd3123a72008-08-23 23:36:38 +0000161 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162
163 // The reason for two worklists is that overdefined is the lowest state
164 // on the lattice, and moving things to overdefined as fast as possible
165 // makes SCCP converge much faster.
166 // By having a separate worklist, we accomplish this because everything
167 // possibly overdefined will become overdefined at the soonest possible
168 // point.
Chris Lattnerd3123a72008-08-23 23:36:38 +0000169 SmallVector<Value*, 64> OverdefinedInstWorkList;
170 SmallVector<Value*, 64> InstWorkList;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000171
172
Chris Lattnerd3123a72008-08-23 23:36:38 +0000173 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000174
175 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
176 /// overdefined, despite the fact that the PHI node is overdefined.
177 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
178
179 /// KnownFeasibleEdges - Entries in this set are edges which have already had
180 /// PHI nodes retriggered.
Chris Lattnerd3123a72008-08-23 23:36:38 +0000181 typedef std::pair<BasicBlock*, BasicBlock*> Edge;
182 DenseSet<Edge> KnownFeasibleEdges;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183public:
Owen Anderson5349f052009-07-06 23:00:19 +0000184 void setContext(LLVMContext *C) { Context = C; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000185
186 /// MarkBlockExecutable - This method can be used by clients to mark all of
187 /// the blocks that are known to be intrinsically live in the processed unit.
188 void MarkBlockExecutable(BasicBlock *BB) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000189 DEBUG(errs() << "Marking Block Executable: " << BB->getName() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000190 BBExecutable.insert(BB); // Basic block is executable!
191 BBWorkList.push_back(BB); // Add the block to the work list!
192 }
193
194 /// TrackValueOfGlobalVariable - Clients can use this method to
195 /// inform the SCCPSolver that it should track loads and stores to the
196 /// specified global variable if it can. This is only legal to call if
197 /// performing Interprocedural SCCP.
198 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
199 const Type *ElTy = GV->getType()->getElementType();
200 if (ElTy->isFirstClassType()) {
201 LatticeVal &IV = TrackedGlobals[GV];
202 if (!isa<UndefValue>(GV->getInitializer()))
203 IV.markConstant(GV->getInitializer());
204 }
205 }
206
207 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
208 /// and out of the specified function (which cannot have its address taken),
209 /// this method must be called.
210 void AddTrackedFunction(Function *F) {
Rafael Espindolaa168fc92009-01-15 20:18:42 +0000211 assert(F->hasLocalLinkage() && "Can only track internal functions!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000212 // Add an entry, F -> undef.
Devang Pateladd320d2008-03-11 05:46:42 +0000213 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
214 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Chris Lattnercd73be02008-04-23 05:38:20 +0000215 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
216 LatticeVal()));
217 } else
218 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000219 }
220
221 /// Solve - Solve for constants and executable blocks.
222 ///
223 void Solve();
224
225 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
226 /// that branches on undef values cannot reach any of their successors.
227 /// However, this is not a safe assumption. After we solve dataflow, this
228 /// method should be use to handle this. If this returns true, the solver
229 /// should be rerun.
230 bool ResolvedUndefsIn(Function &F);
231
Chris Lattner317e6b62008-08-23 23:39:31 +0000232 bool isBlockExecutable(BasicBlock *BB) const {
233 return BBExecutable.count(BB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000234 }
235
236 /// getValueMapping - Once we have solved for constants, return the mapping of
237 /// LLVM values to LatticeVals.
Bill Wendling03488ae2008-08-14 23:05:24 +0000238 std::map<Value*, LatticeVal> &getValueMapping() {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239 return ValueState;
240 }
241
Devang Pateladd320d2008-03-11 05:46:42 +0000242 /// getTrackedRetVals - Get the inferred return value map.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 ///
Devang Pateladd320d2008-03-11 05:46:42 +0000244 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
245 return TrackedRetVals;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246 }
247
248 /// getTrackedGlobals - Get and return the set of inferred initializers for
249 /// global variables.
250 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
251 return TrackedGlobals;
252 }
253
254 inline void markOverdefined(Value *V) {
255 markOverdefined(ValueState[V], V);
256 }
257
258private:
259 // markConstant - Make a value be marked as "constant". If the value
260 // is not already a constant, add it to the instruction work list so that
261 // the users of the instruction are updated later.
262 //
263 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
264 if (IV.markConstant(C)) {
Dan Gohmandff8d172009-08-17 15:25:05 +0000265 DEBUG(errs() << "markConstant: " << *C << ": " << *V << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000266 InstWorkList.push_back(V);
267 }
268 }
269
270 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
271 IV.markForcedConstant(C);
Dan Gohmandff8d172009-08-17 15:25:05 +0000272 DEBUG(errs() << "markForcedConstant: " << *C << ": " << *V << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 InstWorkList.push_back(V);
274 }
275
276 inline void markConstant(Value *V, Constant *C) {
277 markConstant(ValueState[V], V, C);
278 }
279
280 // markOverdefined - Make a value be marked as "overdefined". If the
281 // value is not already overdefined, add it to the overdefined instruction
282 // work list so that the users of the instruction are updated later.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283 inline void markOverdefined(LatticeVal &IV, Value *V) {
284 if (IV.markOverdefined()) {
Daniel Dunbar005975c2009-07-25 00:23:56 +0000285 DEBUG(errs() << "markOverdefined: ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000286 if (Function *F = dyn_cast<Function>(V))
Daniel Dunbar005975c2009-07-25 00:23:56 +0000287 errs() << "Function '" << F->getName() << "'\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288 else
Dan Gohmandff8d172009-08-17 15:25:05 +0000289 errs() << *V << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000290 // Only instructions go on the work list
291 OverdefinedInstWorkList.push_back(V);
292 }
293 }
294
295 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
296 if (IV.isOverdefined() || MergeWithV.isUndefined())
297 return; // Noop.
298 if (MergeWithV.isOverdefined())
299 markOverdefined(IV, V);
300 else if (IV.isUndefined())
301 markConstant(IV, V, MergeWithV.getConstant());
302 else if (IV.getConstant() != MergeWithV.getConstant())
303 markOverdefined(IV, V);
304 }
305
306 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
307 return mergeInValue(ValueState[V], V, MergeWithV);
308 }
309
310
311 // getValueState - Return the LatticeVal object that corresponds to the value.
312 // This function is necessary because not all values should start out in the
313 // underdefined state... Argument's should be overdefined, and
314 // constants should be marked as constants. If a value is not known to be an
315 // Instruction object, then use this accessor to get its value from the map.
316 //
317 inline LatticeVal &getValueState(Value *V) {
Bill Wendling03488ae2008-08-14 23:05:24 +0000318 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000319 if (I != ValueState.end()) return I->second; // Common case, in the map
320
321 if (Constant *C = dyn_cast<Constant>(V)) {
322 if (isa<UndefValue>(V)) {
323 // Nothing to do, remain undefined.
324 } else {
325 LatticeVal &LV = ValueState[C];
326 LV.markConstant(C); // Constants are constant
327 return LV;
328 }
329 }
330 // All others are underdefined by default...
331 return ValueState[V];
332 }
333
334 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
335 // work list if it is not already executable...
336 //
337 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
338 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
339 return; // This edge is already known to be executable!
340
341 if (BBExecutable.count(Dest)) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +0000342 DEBUG(errs() << "Marking Edge Executable: " << Source->getName()
343 << " -> " << Dest->getName() << "\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344
345 // The destination is already executable, but we just made an edge
346 // feasible that wasn't before. Revisit the PHI nodes in the block
347 // because they have potentially new operands.
348 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
349 visitPHINode(*cast<PHINode>(I));
350
351 } else {
352 MarkBlockExecutable(Dest);
353 }
354 }
355
356 // getFeasibleSuccessors - Return a vector of booleans to indicate which
357 // successors are reachable from a given terminator instruction.
358 //
359 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
360
361 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
362 // block to the 'To' basic block is currently feasible...
363 //
364 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
365
366 // OperandChangedState - This method is invoked on all of the users of an
367 // instruction that was just changed state somehow.... Based on this
368 // information, we need to update the specified user of this instruction.
369 //
370 void OperandChangedState(User *U) {
371 // Only instructions use other variable values!
372 Instruction &I = cast<Instruction>(*U);
373 if (BBExecutable.count(I.getParent())) // Inst is executable?
374 visit(I);
375 }
376
377private:
378 friend class InstVisitor<SCCPSolver>;
379
380 // visit implementations - Something changed in this instruction... Either an
381 // operand made a transition, or the instruction is newly executable. Change
382 // the value type of I to reflect these changes if appropriate.
383 //
384 void visitPHINode(PHINode &I);
385
386 // Terminators
387 void visitReturnInst(ReturnInst &I);
388 void visitTerminatorInst(TerminatorInst &TI);
389
390 void visitCastInst(CastInst &I);
391 void visitSelectInst(SelectInst &I);
392 void visitBinaryOperator(Instruction &I);
393 void visitCmpInst(CmpInst &I);
394 void visitExtractElementInst(ExtractElementInst &I);
395 void visitInsertElementInst(InsertElementInst &I);
396 void visitShuffleVectorInst(ShuffleVectorInst &I);
Dan Gohman856193b2008-06-20 01:15:44 +0000397 void visitExtractValueInst(ExtractValueInst &EVI);
398 void visitInsertValueInst(InsertValueInst &IVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399
400 // Instructions that cannot be folded away...
401 void visitStoreInst (Instruction &I);
402 void visitLoadInst (LoadInst &I);
403 void visitGetElementPtrInst(GetElementPtrInst &I);
Victor Hernandez93946082009-10-24 04:23:03 +0000404 void visitCallInst (CallInst &I) {
405 if (isFreeCall(&I))
406 return;
Chris Lattner6ad04a02009-09-27 21:35:11 +0000407 visitCallSite(CallSite::get(&I));
Victor Hernandez48c3c542009-09-18 22:35:49 +0000408 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409 void visitInvokeInst (InvokeInst &II) {
410 visitCallSite(CallSite::get(&II));
411 visitTerminatorInst(II);
412 }
413 void visitCallSite (CallSite CS);
414 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
415 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
Victor Hernandezb1687302009-10-23 21:09:37 +0000416 void visitAllocaInst (Instruction &I) { markOverdefined(&I); }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 void visitVANextInst (Instruction &I) { markOverdefined(&I); }
418 void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000419
420 void visitInstruction(Instruction &I) {
421 // If a new instruction is added to LLVM that we don't handle...
Chris Lattner8a6411c2009-08-23 04:37:46 +0000422 errs() << "SCCP: Don't know how to handle: " << I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 markOverdefined(&I); // Just in case
424 }
425};
426
Duncan Sands40f67972007-07-20 08:56:21 +0000427} // end anonymous namespace
428
429
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430// getFeasibleSuccessors - Return a vector of booleans to indicate which
431// successors are reachable from a given terminator instruction.
432//
433void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
434 SmallVector<bool, 16> &Succs) {
435 Succs.resize(TI.getNumSuccessors());
436 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
437 if (BI->isUnconditional()) {
438 Succs[0] = true;
439 } else {
440 LatticeVal &BCValue = getValueState(BI->getCondition());
441 if (BCValue.isOverdefined() ||
442 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
443 // Overdefined condition variables, and branches on unfoldable constant
444 // conditions, mean the branch could go either way.
445 Succs[0] = Succs[1] = true;
446 } else if (BCValue.isConstant()) {
447 // Constant condition variables mean the branch can only go a single way
Owen Anderson4f720fa2009-07-31 17:39:07 +0000448 Succs[BCValue.getConstant() == ConstantInt::getFalse(*Context)] = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000449 }
450 }
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000451 return;
452 }
453
454 if (isa<InvokeInst>(&TI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 // Invoke instructions successors are always executable.
456 Succs[0] = Succs[1] = true;
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000457 return;
458 }
459
460 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461 LatticeVal &SCValue = getValueState(SI->getCondition());
462 if (SCValue.isOverdefined() || // Overdefined condition?
463 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
464 // All destinations are executable!
465 Succs.assign(TI.getNumSuccessors(), true);
Chris Lattner81335532008-05-10 23:56:54 +0000466 } else if (SCValue.isConstant())
467 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000468 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000469 }
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000470
471 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
472 if (isa<IndirectBrInst>(&TI)) {
473 // Just mark all destinations executable!
474 Succs.assign(TI.getNumSuccessors(), true);
475 return;
476 }
477
478#ifndef NDEBUG
479 errs() << "Unknown terminator instruction: " << TI << '\n';
480#endif
481 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000482}
483
484
485// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
486// block to the 'To' basic block is currently feasible...
487//
488bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
489 assert(BBExecutable.count(To) && "Dest should always be alive!");
490
491 // Make sure the source basic block is executable!!
492 if (!BBExecutable.count(From)) return false;
493
494 // Check to make sure this edge itself is actually feasible now...
495 TerminatorInst *TI = From->getTerminator();
496 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
497 if (BI->isUnconditional())
498 return true;
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000499
500 LatticeVal &BCValue = getValueState(BI->getCondition());
501 if (BCValue.isOverdefined()) {
502 // Overdefined condition variables mean the branch could go either way.
503 return true;
504 } else if (BCValue.isConstant()) {
505 // Not branching on an evaluatable constant?
506 if (!isa<ConstantInt>(BCValue.getConstant())) return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000507
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000508 // Constant condition variables mean the branch can only go a single way
509 return BI->getSuccessor(BCValue.getConstant() ==
510 ConstantInt::getFalse(*Context)) == To;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000511 }
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000512 return false;
513 }
514
515 // Invoke instructions successors are always executable.
516 if (isa<InvokeInst>(TI))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000517 return true;
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000518
519 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000520 LatticeVal &SCValue = getValueState(SI->getCondition());
521 if (SCValue.isOverdefined()) { // Overdefined condition?
522 // All destinations are executable!
523 return true;
524 } else if (SCValue.isConstant()) {
525 Constant *CPV = SCValue.getConstant();
526 if (!isa<ConstantInt>(CPV))
527 return true; // not a foldable constant?
528
529 // Make sure to skip the "default value" which isn't a value
530 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
531 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
532 return SI->getSuccessor(i) == To;
533
534 // Constant value not equal to any of the branches... must execute
535 // default branch then...
536 return SI->getDefaultDest() == To;
537 }
538 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000539 }
Chris Lattnerff1a8e52009-10-29 01:21:20 +0000540
541 // Just mark all destinations executable!
542 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
543 if (isa<IndirectBrInst>(&TI))
544 return true;
545
546#ifndef NDEBUG
547 errs() << "Unknown terminator instruction: " << *TI << '\n';
548#endif
549 llvm_unreachable(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000550}
551
552// visit Implementations - Something changed in this instruction... Either an
553// operand made a transition, or the instruction is newly executable. Change
554// the value type of I to reflect these changes if appropriate. This method
555// makes sure to do the following actions:
556//
557// 1. If a phi node merges two constants in, and has conflicting value coming
558// from different branches, or if the PHI node merges in an overdefined
559// value, then the PHI node becomes overdefined.
560// 2. If a phi node merges only constants in, and they all agree on value, the
561// PHI node becomes a constant value equal to that.
562// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
563// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
564// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
565// 6. If a conditional branch has a value that is constant, make the selected
566// destination executable
567// 7. If a conditional branch has a value that is overdefined, make all
568// successors executable.
569//
570void SCCPSolver::visitPHINode(PHINode &PN) {
571 LatticeVal &PNIV = getValueState(&PN);
572 if (PNIV.isOverdefined()) {
573 // There may be instructions using this PHI node that are not overdefined
574 // themselves. If so, make sure that they know that the PHI node operand
575 // changed.
576 std::multimap<PHINode*, Instruction*>::iterator I, E;
577 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
578 if (I != E) {
579 SmallVector<Instruction*, 16> Users;
580 for (; I != E; ++I) Users.push_back(I->second);
581 while (!Users.empty()) {
582 visit(Users.back());
583 Users.pop_back();
584 }
585 }
586 return; // Quick exit
587 }
588
589 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
590 // and slow us down a lot. Just mark them overdefined.
591 if (PN.getNumIncomingValues() > 64) {
592 markOverdefined(PNIV, &PN);
593 return;
594 }
595
596 // Look at all of the executable operands of the PHI node. If any of them
597 // are overdefined, the PHI becomes overdefined as well. If they are all
598 // constant, and they agree with each other, the PHI becomes the identical
599 // constant. If they are constant and don't agree, the PHI is overdefined.
600 // If there are no executable operands, the PHI remains undefined.
601 //
602 Constant *OperandVal = 0;
603 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
604 LatticeVal &IV = getValueState(PN.getIncomingValue(i));
605 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
606
607 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
608 if (IV.isOverdefined()) { // PHI node becomes overdefined!
Chris Lattnerd3123a72008-08-23 23:36:38 +0000609 markOverdefined(&PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000610 return;
611 }
612
613 if (OperandVal == 0) { // Grab the first value...
614 OperandVal = IV.getConstant();
615 } else { // Another value is being merged in!
616 // There is already a reachable operand. If we conflict with it,
617 // then the PHI node becomes overdefined. If we agree with it, we
618 // can continue on.
619
620 // Check to see if there are two different constants merging...
621 if (IV.getConstant() != OperandVal) {
622 // Yes there is. This means the PHI node is not constant.
623 // You must be overdefined poor PHI.
624 //
Chris Lattnerd3123a72008-08-23 23:36:38 +0000625 markOverdefined(&PN); // The PHI node now becomes overdefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000626 return; // I'm done analyzing you
627 }
628 }
629 }
630 }
631
632 // If we exited the loop, this means that the PHI node only has constant
633 // arguments that agree with each other(and OperandVal is the constant) or
634 // OperandVal is null because there are no defined incoming arguments. If
635 // this is the case, the PHI remains undefined.
636 //
637 if (OperandVal)
Chris Lattnerd3123a72008-08-23 23:36:38 +0000638 markConstant(&PN, OperandVal); // Acquire operand value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639}
640
641void SCCPSolver::visitReturnInst(ReturnInst &I) {
642 if (I.getNumOperands() == 0) return; // Ret void
643
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000644 Function *F = I.getParent()->getParent();
Devang Pateladd320d2008-03-11 05:46:42 +0000645 // If we are tracking the return value of this function, merge it in.
Rafael Espindolaa168fc92009-01-15 20:18:42 +0000646 if (!F->hasLocalLinkage())
Devang Pateladd320d2008-03-11 05:46:42 +0000647 return;
648
Chris Lattnercd73be02008-04-23 05:38:20 +0000649 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650 DenseMap<Function*, LatticeVal>::iterator TFRVI =
Devang Pateladd320d2008-03-11 05:46:42 +0000651 TrackedRetVals.find(F);
652 if (TFRVI != TrackedRetVals.end() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653 !TFRVI->second.isOverdefined()) {
654 LatticeVal &IV = getValueState(I.getOperand(0));
655 mergeInValue(TFRVI->second, F, IV);
Devang Pateladd320d2008-03-11 05:46:42 +0000656 return;
657 }
658 }
659
Chris Lattnercd73be02008-04-23 05:38:20 +0000660 // Handle functions that return multiple values.
661 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
662 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Chris Lattnerd3123a72008-08-23 23:36:38 +0000663 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
Chris Lattnercd73be02008-04-23 05:38:20 +0000664 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
665 if (It == TrackedMultipleRetVals.end()) break;
666 mergeInValue(It->second, F, getValueState(I.getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000667 }
Dan Gohman856193b2008-06-20 01:15:44 +0000668 } else if (!TrackedMultipleRetVals.empty() &&
669 I.getNumOperands() == 1 &&
670 isa<StructType>(I.getOperand(0)->getType())) {
671 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
672 i != e; ++i) {
Chris Lattnerd3123a72008-08-23 23:36:38 +0000673 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
Dan Gohman856193b2008-06-20 01:15:44 +0000674 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
675 if (It == TrackedMultipleRetVals.end()) break;
Owen Anderson175b6542009-07-22 00:24:57 +0000676 if (Value *Val = FindInsertedValue(I.getOperand(0), i, I.getContext()))
Nick Lewycky6ad29e02009-06-06 23:13:08 +0000677 mergeInValue(It->second, F, getValueState(Val));
Dan Gohman856193b2008-06-20 01:15:44 +0000678 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000679 }
680}
681
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
683 SmallVector<bool, 16> SuccFeasible;
684 getFeasibleSuccessors(TI, SuccFeasible);
685
686 BasicBlock *BB = TI.getParent();
687
688 // Mark all feasible successors executable...
689 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
690 if (SuccFeasible[i])
691 markEdgeExecutable(BB, TI.getSuccessor(i));
692}
693
694void SCCPSolver::visitCastInst(CastInst &I) {
695 Value *V = I.getOperand(0);
696 LatticeVal &VState = getValueState(V);
697 if (VState.isOverdefined()) // Inherit overdefinedness of operand
698 markOverdefined(&I);
699 else if (VState.isConstant()) // Propagate constant value
Owen Anderson02b48c32009-07-29 18:55:55 +0000700 markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701 VState.getConstant(), I.getType()));
702}
703
Dan Gohman856193b2008-06-20 01:15:44 +0000704void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000705 Value *Aggr = EVI.getAggregateOperand();
Dan Gohman856193b2008-06-20 01:15:44 +0000706
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000707 // If the operand to the extractvalue is an undef, the result is undef.
Dan Gohman856193b2008-06-20 01:15:44 +0000708 if (isa<UndefValue>(Aggr))
709 return;
710
711 // Currently only handle single-index extractvalues.
712 if (EVI.getNumIndices() != 1) {
713 markOverdefined(&EVI);
714 return;
715 }
716
717 Function *F = 0;
718 if (CallInst *CI = dyn_cast<CallInst>(Aggr))
719 F = CI->getCalledFunction();
720 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
721 F = II->getCalledFunction();
722
723 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
724 // result back!
725 if (F == 0 || TrackedMultipleRetVals.empty()) {
726 markOverdefined(&EVI);
727 return;
728 }
729
Chris Lattnerd3123a72008-08-23 23:36:38 +0000730 // See if we are tracking the result of the callee. If not tracking this
731 // function (for example, it is a declaration) just move to overdefined.
732 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
Dan Gohman856193b2008-06-20 01:15:44 +0000733 markOverdefined(&EVI);
734 return;
735 }
736
737 // Otherwise, the value will be merged in here as a result of CallSite
738 // handling.
739}
740
741void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000742 Value *Aggr = IVI.getAggregateOperand();
743 Value *Val = IVI.getInsertedValueOperand();
Dan Gohman856193b2008-06-20 01:15:44 +0000744
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000745 // If the operands to the insertvalue are undef, the result is undef.
Dan Gohman78b2c392008-06-20 16:39:44 +0000746 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
Dan Gohman856193b2008-06-20 01:15:44 +0000747 return;
748
749 // Currently only handle single-index insertvalues.
750 if (IVI.getNumIndices() != 1) {
751 markOverdefined(&IVI);
752 return;
753 }
Dan Gohman78b2c392008-06-20 16:39:44 +0000754
755 // Currently only handle insertvalue instructions that are in a single-use
756 // chain that builds up a return value.
757 for (const InsertValueInst *TmpIVI = &IVI; ; ) {
758 if (!TmpIVI->hasOneUse()) {
759 markOverdefined(&IVI);
760 return;
761 }
762 const Value *V = *TmpIVI->use_begin();
763 if (isa<ReturnInst>(V))
764 break;
765 TmpIVI = dyn_cast<InsertValueInst>(V);
766 if (!TmpIVI) {
767 markOverdefined(&IVI);
768 return;
769 }
770 }
Dan Gohman856193b2008-06-20 01:15:44 +0000771
772 // See if we are tracking the result of the callee.
773 Function *F = IVI.getParent()->getParent();
Chris Lattnerd3123a72008-08-23 23:36:38 +0000774 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
Dan Gohman856193b2008-06-20 01:15:44 +0000775 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
776
777 // Merge in the inserted member value.
778 if (It != TrackedMultipleRetVals.end())
779 mergeInValue(It->second, F, getValueState(Val));
780
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000781 // Mark the aggregate result of the IVI overdefined; any tracking that we do
782 // will be done on the individual member values.
Dan Gohman856193b2008-06-20 01:15:44 +0000783 markOverdefined(&IVI);
784}
785
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000786void SCCPSolver::visitSelectInst(SelectInst &I) {
787 LatticeVal &CondValue = getValueState(I.getCondition());
788 if (CondValue.isUndefined())
789 return;
790 if (CondValue.isConstant()) {
791 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
792 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
793 : I.getFalseValue()));
794 return;
795 }
796 }
797
798 // Otherwise, the condition is overdefined or a constant we can't evaluate.
799 // See if we can produce something better than overdefined based on the T/F
800 // value.
801 LatticeVal &TVal = getValueState(I.getTrueValue());
802 LatticeVal &FVal = getValueState(I.getFalseValue());
803
804 // select ?, C, C -> C.
805 if (TVal.isConstant() && FVal.isConstant() &&
806 TVal.getConstant() == FVal.getConstant()) {
807 markConstant(&I, FVal.getConstant());
808 return;
809 }
810
811 if (TVal.isUndefined()) { // select ?, undef, X -> X.
812 mergeInValue(&I, FVal);
813 } else if (FVal.isUndefined()) { // select ?, X, undef -> X.
814 mergeInValue(&I, TVal);
815 } else {
816 markOverdefined(&I);
817 }
818}
819
820// Handle BinaryOperators and Shift Instructions...
821void SCCPSolver::visitBinaryOperator(Instruction &I) {
822 LatticeVal &IV = ValueState[&I];
823 if (IV.isOverdefined()) return;
824
825 LatticeVal &V1State = getValueState(I.getOperand(0));
826 LatticeVal &V2State = getValueState(I.getOperand(1));
827
828 if (V1State.isOverdefined() || V2State.isOverdefined()) {
829 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
830 // operand is overdefined.
831 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
832 LatticeVal *NonOverdefVal = 0;
833 if (!V1State.isOverdefined()) {
834 NonOverdefVal = &V1State;
835 } else if (!V2State.isOverdefined()) {
836 NonOverdefVal = &V2State;
837 }
838
839 if (NonOverdefVal) {
840 if (NonOverdefVal->isUndefined()) {
841 // Could annihilate value.
842 if (I.getOpcode() == Instruction::And)
Owen Andersonaac28372009-07-31 20:28:14 +0000843 markConstant(IV, &I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
Owen Andersonaac28372009-07-31 20:28:14 +0000845 markConstant(IV, &I, Constant::getAllOnesValue(PT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 else
Owen Andersonfa089ab2009-07-03 19:42:02 +0000847 markConstant(IV, &I,
Owen Andersonaac28372009-07-31 20:28:14 +0000848 Constant::getAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000849 return;
850 } else {
851 if (I.getOpcode() == Instruction::And) {
852 if (NonOverdefVal->getConstant()->isNullValue()) {
853 markConstant(IV, &I, NonOverdefVal->getConstant());
854 return; // X and 0 = 0
855 }
856 } else {
857 if (ConstantInt *CI =
858 dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
859 if (CI->isAllOnesValue()) {
860 markConstant(IV, &I, NonOverdefVal->getConstant());
861 return; // X or -1 = -1
862 }
863 }
864 }
865 }
866 }
867
868
869 // If both operands are PHI nodes, it is possible that this instruction has
870 // a constant value, despite the fact that the PHI node doesn't. Check for
871 // this condition now.
872 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
873 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
874 if (PN1->getParent() == PN2->getParent()) {
875 // Since the two PHI nodes are in the same basic block, they must have
876 // entries for the same predecessors. Walk the predecessor list, and
877 // if all of the incoming values are constants, and the result of
878 // evaluating this expression with all incoming value pairs is the
879 // same, then this expression is a constant even though the PHI node
880 // is not a constant!
881 LatticeVal Result;
882 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
883 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
884 BasicBlock *InBlock = PN1->getIncomingBlock(i);
885 LatticeVal &In2 =
886 getValueState(PN2->getIncomingValueForBlock(InBlock));
887
888 if (In1.isOverdefined() || In2.isOverdefined()) {
889 Result.markOverdefined();
890 break; // Cannot fold this operation over the PHI nodes!
891 } else if (In1.isConstant() && In2.isConstant()) {
Owen Andersonfa089ab2009-07-03 19:42:02 +0000892 Constant *V =
Owen Anderson02b48c32009-07-29 18:55:55 +0000893 ConstantExpr::get(I.getOpcode(), In1.getConstant(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894 In2.getConstant());
895 if (Result.isUndefined())
896 Result.markConstant(V);
897 else if (Result.isConstant() && Result.getConstant() != V) {
898 Result.markOverdefined();
899 break;
900 }
901 }
902 }
903
904 // If we found a constant value here, then we know the instruction is
905 // constant despite the fact that the PHI nodes are overdefined.
906 if (Result.isConstant()) {
907 markConstant(IV, &I, Result.getConstant());
908 // Remember that this instruction is virtually using the PHI node
909 // operands.
910 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
911 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
912 return;
913 } else if (Result.isUndefined()) {
914 return;
915 }
916
917 // Okay, this really is overdefined now. Since we might have
918 // speculatively thought that this was not overdefined before, and
919 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
920 // make sure to clean out any entries that we put there, for
921 // efficiency.
922 std::multimap<PHINode*, Instruction*>::iterator It, E;
923 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
924 while (It != E) {
925 if (It->second == &I) {
926 UsersOfOverdefinedPHIs.erase(It++);
927 } else
928 ++It;
929 }
930 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
931 while (It != E) {
932 if (It->second == &I) {
933 UsersOfOverdefinedPHIs.erase(It++);
934 } else
935 ++It;
936 }
937 }
938
939 markOverdefined(IV, &I);
940 } else if (V1State.isConstant() && V2State.isConstant()) {
Owen Andersonfa089ab2009-07-03 19:42:02 +0000941 markConstant(IV, &I,
Owen Anderson02b48c32009-07-29 18:55:55 +0000942 ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 V2State.getConstant()));
944 }
945}
946
947// Handle ICmpInst instruction...
948void SCCPSolver::visitCmpInst(CmpInst &I) {
949 LatticeVal &IV = ValueState[&I];
950 if (IV.isOverdefined()) return;
951
952 LatticeVal &V1State = getValueState(I.getOperand(0));
953 LatticeVal &V2State = getValueState(I.getOperand(1));
954
955 if (V1State.isOverdefined() || V2State.isOverdefined()) {
956 // If both operands are PHI nodes, it is possible that this instruction has
957 // a constant value, despite the fact that the PHI node doesn't. Check for
958 // this condition now.
959 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
960 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
961 if (PN1->getParent() == PN2->getParent()) {
962 // Since the two PHI nodes are in the same basic block, they must have
963 // entries for the same predecessors. Walk the predecessor list, and
964 // if all of the incoming values are constants, and the result of
965 // evaluating this expression with all incoming value pairs is the
966 // same, then this expression is a constant even though the PHI node
967 // is not a constant!
968 LatticeVal Result;
969 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
970 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
971 BasicBlock *InBlock = PN1->getIncomingBlock(i);
972 LatticeVal &In2 =
973 getValueState(PN2->getIncomingValueForBlock(InBlock));
974
975 if (In1.isOverdefined() || In2.isOverdefined()) {
976 Result.markOverdefined();
977 break; // Cannot fold this operation over the PHI nodes!
978 } else if (In1.isConstant() && In2.isConstant()) {
Owen Anderson02b48c32009-07-29 18:55:55 +0000979 Constant *V = ConstantExpr::getCompare(I.getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000980 In1.getConstant(),
981 In2.getConstant());
982 if (Result.isUndefined())
983 Result.markConstant(V);
984 else if (Result.isConstant() && Result.getConstant() != V) {
985 Result.markOverdefined();
986 break;
987 }
988 }
989 }
990
991 // If we found a constant value here, then we know the instruction is
992 // constant despite the fact that the PHI nodes are overdefined.
993 if (Result.isConstant()) {
994 markConstant(IV, &I, Result.getConstant());
995 // Remember that this instruction is virtually using the PHI node
996 // operands.
997 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
998 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
999 return;
1000 } else if (Result.isUndefined()) {
1001 return;
1002 }
1003
1004 // Okay, this really is overdefined now. Since we might have
1005 // speculatively thought that this was not overdefined before, and
1006 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1007 // make sure to clean out any entries that we put there, for
1008 // efficiency.
1009 std::multimap<PHINode*, Instruction*>::iterator It, E;
1010 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
1011 while (It != E) {
1012 if (It->second == &I) {
1013 UsersOfOverdefinedPHIs.erase(It++);
1014 } else
1015 ++It;
1016 }
1017 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
1018 while (It != E) {
1019 if (It->second == &I) {
1020 UsersOfOverdefinedPHIs.erase(It++);
1021 } else
1022 ++It;
1023 }
1024 }
1025
1026 markOverdefined(IV, &I);
1027 } else if (V1State.isConstant() && V2State.isConstant()) {
Owen Anderson02b48c32009-07-29 18:55:55 +00001028 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 V1State.getConstant(),
1030 V2State.getConstant()));
1031 }
1032}
1033
1034void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1035 // FIXME : SCCP does not handle vectors properly.
1036 markOverdefined(&I);
1037 return;
1038
1039#if 0
1040 LatticeVal &ValState = getValueState(I.getOperand(0));
1041 LatticeVal &IdxState = getValueState(I.getOperand(1));
1042
1043 if (ValState.isOverdefined() || IdxState.isOverdefined())
1044 markOverdefined(&I);
1045 else if(ValState.isConstant() && IdxState.isConstant())
1046 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1047 IdxState.getConstant()));
1048#endif
1049}
1050
1051void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1052 // FIXME : SCCP does not handle vectors properly.
1053 markOverdefined(&I);
1054 return;
1055#if 0
1056 LatticeVal &ValState = getValueState(I.getOperand(0));
1057 LatticeVal &EltState = getValueState(I.getOperand(1));
1058 LatticeVal &IdxState = getValueState(I.getOperand(2));
1059
1060 if (ValState.isOverdefined() || EltState.isOverdefined() ||
1061 IdxState.isOverdefined())
1062 markOverdefined(&I);
1063 else if(ValState.isConstant() && EltState.isConstant() &&
1064 IdxState.isConstant())
1065 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1066 EltState.getConstant(),
1067 IdxState.getConstant()));
1068 else if (ValState.isUndefined() && EltState.isConstant() &&
1069 IdxState.isConstant())
1070 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1071 EltState.getConstant(),
1072 IdxState.getConstant()));
1073#endif
1074}
1075
1076void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1077 // FIXME : SCCP does not handle vectors properly.
1078 markOverdefined(&I);
1079 return;
1080#if 0
1081 LatticeVal &V1State = getValueState(I.getOperand(0));
1082 LatticeVal &V2State = getValueState(I.getOperand(1));
1083 LatticeVal &MaskState = getValueState(I.getOperand(2));
1084
1085 if (MaskState.isUndefined() ||
1086 (V1State.isUndefined() && V2State.isUndefined()))
1087 return; // Undefined output if mask or both inputs undefined.
1088
1089 if (V1State.isOverdefined() || V2State.isOverdefined() ||
1090 MaskState.isOverdefined()) {
1091 markOverdefined(&I);
1092 } else {
1093 // A mix of constant/undef inputs.
1094 Constant *V1 = V1State.isConstant() ?
1095 V1State.getConstant() : UndefValue::get(I.getType());
1096 Constant *V2 = V2State.isConstant() ?
1097 V2State.getConstant() : UndefValue::get(I.getType());
1098 Constant *Mask = MaskState.isConstant() ?
1099 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1100 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1101 }
1102#endif
1103}
1104
1105// Handle getelementptr instructions... if all operands are constants then we
1106// can turn this into a getelementptr ConstantExpr.
1107//
1108void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1109 LatticeVal &IV = ValueState[&I];
1110 if (IV.isOverdefined()) return;
1111
1112 SmallVector<Constant*, 8> Operands;
1113 Operands.reserve(I.getNumOperands());
1114
1115 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1116 LatticeVal &State = getValueState(I.getOperand(i));
1117 if (State.isUndefined())
1118 return; // Operands are not resolved yet...
1119 else if (State.isOverdefined()) {
1120 markOverdefined(IV, &I);
1121 return;
1122 }
1123 assert(State.isConstant() && "Unknown state!");
1124 Operands.push_back(State.getConstant());
1125 }
1126
1127 Constant *Ptr = Operands[0];
1128 Operands.erase(Operands.begin()); // Erase the pointer from idx list...
1129
Owen Anderson02b48c32009-07-29 18:55:55 +00001130 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001131 Operands.size()));
1132}
1133
1134void SCCPSolver::visitStoreInst(Instruction &SI) {
1135 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1136 return;
1137 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1138 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1139 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1140
1141 // Get the value we are storing into the global.
1142 LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1143
1144 mergeInValue(I->second, GV, PtrVal);
1145 if (I->second.isOverdefined())
1146 TrackedGlobals.erase(I); // No need to keep tracking this!
1147}
1148
1149
1150// Handle load instructions. If the operand is a constant pointer to a constant
1151// global, we can replace the load with the loaded constant value!
1152void SCCPSolver::visitLoadInst(LoadInst &I) {
1153 LatticeVal &IV = ValueState[&I];
1154 if (IV.isOverdefined()) return;
1155
1156 LatticeVal &PtrVal = getValueState(I.getOperand(0));
1157 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1158 if (PtrVal.isConstant() && !I.isVolatile()) {
1159 Value *Ptr = PtrVal.getConstant();
Christopher Lamb2c175392007-12-29 07:56:53 +00001160 // TODO: Consider a target hook for valid address spaces for this xform.
Chris Lattner6807a242009-08-30 20:06:40 +00001161 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001162 // load null -> null
Owen Andersonaac28372009-07-31 20:28:14 +00001163 markConstant(IV, &I, Constant::getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001164 return;
1165 }
1166
1167 // Transform load (constant global) into the value loaded.
1168 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1169 if (GV->isConstant()) {
Duncan Sands54e70f62009-03-21 21:27:31 +00001170 if (GV->hasDefinitiveInitializer()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171 markConstant(IV, &I, GV->getInitializer());
1172 return;
1173 }
1174 } else if (!TrackedGlobals.empty()) {
1175 // If we are tracking this global, merge in the known value for it.
1176 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1177 TrackedGlobals.find(GV);
1178 if (It != TrackedGlobals.end()) {
1179 mergeInValue(IV, &I, It->second);
1180 return;
1181 }
1182 }
1183 }
1184
1185 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1186 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1187 if (CE->getOpcode() == Instruction::GetElementPtr)
1188 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
Duncan Sands54e70f62009-03-21 21:27:31 +00001189 if (GV->isConstant() && GV->hasDefinitiveInitializer())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001190 if (Constant *V =
Dan Gohmanf49f7b02009-10-05 16:36:26 +00001191 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001192 markConstant(IV, &I, V);
1193 return;
1194 }
1195 }
1196
1197 // Otherwise we cannot say for certain what value this load will produce.
1198 // Bail out.
1199 markOverdefined(IV, &I);
1200}
1201
1202void SCCPSolver::visitCallSite(CallSite CS) {
1203 Function *F = CS.getCalledFunction();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001204 Instruction *I = CS.getInstruction();
Chris Lattnercd73be02008-04-23 05:38:20 +00001205
1206 // The common case is that we aren't tracking the callee, either because we
1207 // are not doing interprocedural analysis or the callee is indirect, or is
1208 // external. Handle these cases first.
Rafael Espindolaa168fc92009-01-15 20:18:42 +00001209 if (F == 0 || !F->hasLocalLinkage()) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001210CallOverdefined:
1211 // Void return and not tracking callee, just bail.
Chris Lattner82cdc062009-10-05 05:54:46 +00001212 if (I->getType()->isVoidTy()) return;
Chris Lattnercd73be02008-04-23 05:38:20 +00001213
1214 // Otherwise, if we have a single return value case, and if the function is
1215 // a declaration, maybe we can constant fold it.
1216 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1217 canConstantFoldCallTo(F)) {
1218
1219 SmallVector<Constant*, 8> Operands;
1220 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1221 AI != E; ++AI) {
1222 LatticeVal &State = getValueState(*AI);
1223 if (State.isUndefined())
1224 return; // Operands are not resolved yet.
1225 else if (State.isOverdefined()) {
1226 markOverdefined(I);
1227 return;
1228 }
1229 assert(State.isConstant() && "Unknown state!");
1230 Operands.push_back(State.getConstant());
1231 }
1232
1233 // If we can constant fold this, mark the result of the call as a
1234 // constant.
Nick Lewyckye9279352009-05-28 04:08:10 +00001235 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001236 markConstant(I, C);
1237 return;
1238 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001239 }
Chris Lattnercd73be02008-04-23 05:38:20 +00001240
1241 // Otherwise, we don't know anything about this call, mark it overdefined.
1242 markOverdefined(I);
1243 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 }
1245
Chris Lattnercd73be02008-04-23 05:38:20 +00001246 // If this is a single/zero retval case, see if we're tracking the function.
Dan Gohman856193b2008-06-20 01:15:44 +00001247 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1248 if (TFRVI != TrackedRetVals.end()) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001249 // If so, propagate the return value of the callee into this call result.
1250 mergeInValue(I, TFRVI->second);
Dan Gohman856193b2008-06-20 01:15:44 +00001251 } else if (isa<StructType>(I->getType())) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001252 // Check to see if we're tracking this callee, if not, handle it in the
1253 // common path above.
Chris Lattnerd3123a72008-08-23 23:36:38 +00001254 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1255 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
Chris Lattnercd73be02008-04-23 05:38:20 +00001256 if (TMRVI == TrackedMultipleRetVals.end())
1257 goto CallOverdefined;
Edwin Töröka6174642009-10-20 15:15:09 +00001258
1259 // Need to mark as overdefined, otherwise it stays undefined which
1260 // creates extractvalue undef, <idx>
1261 markOverdefined(I);
Chris Lattnercd73be02008-04-23 05:38:20 +00001262 // If we are tracking this callee, propagate the return values of the call
Dan Gohman856193b2008-06-20 01:15:44 +00001263 // into this call site. We do this by walking all the uses. Single-index
1264 // ExtractValueInst uses can be tracked; anything more complicated is
1265 // currently handled conservatively.
Chris Lattnercd73be02008-04-23 05:38:20 +00001266 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1267 UI != E; ++UI) {
Dan Gohman856193b2008-06-20 01:15:44 +00001268 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1269 if (EVI->getNumIndices() == 1) {
1270 mergeInValue(EVI,
Dan Gohmanaa7b7802008-06-20 16:41:17 +00001271 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
Dan Gohman856193b2008-06-20 01:15:44 +00001272 continue;
1273 }
1274 }
1275 // The aggregate value is used in a way not handled here. Assume nothing.
1276 markOverdefined(*UI);
Chris Lattnercd73be02008-04-23 05:38:20 +00001277 }
Dan Gohman856193b2008-06-20 01:15:44 +00001278 } else {
1279 // Otherwise we're not tracking this callee, so handle it in the
1280 // common path above.
1281 goto CallOverdefined;
Chris Lattnercd73be02008-04-23 05:38:20 +00001282 }
1283
1284 // Finally, if this is the first call to the function hit, mark its entry
1285 // block executable.
1286 if (!BBExecutable.count(F->begin()))
1287 MarkBlockExecutable(F->begin());
1288
1289 // Propagate information from this call site into the callee.
1290 CallSite::arg_iterator CAI = CS.arg_begin();
1291 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1292 AI != E; ++AI, ++CAI) {
1293 LatticeVal &IV = ValueState[AI];
Edwin Török129b2d12009-09-24 18:33:42 +00001294 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
Edwin Törökd5435372009-09-24 09:47:18 +00001295 IV.markOverdefined();
1296 continue;
1297 }
Chris Lattnercd73be02008-04-23 05:38:20 +00001298 if (!IV.isOverdefined())
1299 mergeInValue(IV, AI, getValueState(*CAI));
1300 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001301}
1302
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001303void SCCPSolver::Solve() {
1304 // Process the work lists until they are empty!
1305 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1306 !OverdefinedInstWorkList.empty()) {
1307 // Process the instruction work list...
1308 while (!OverdefinedInstWorkList.empty()) {
1309 Value *I = OverdefinedInstWorkList.back();
1310 OverdefinedInstWorkList.pop_back();
1311
Dan Gohmandff8d172009-08-17 15:25:05 +00001312 DEBUG(errs() << "\nPopped off OI-WL: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313
1314 // "I" got into the work list because it either made the transition from
1315 // bottom to constant
1316 //
1317 // Anything on this worklist that is overdefined need not be visited
1318 // since all of its users will have already been marked as overdefined
1319 // Update all of the users of this instruction's value...
1320 //
1321 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1322 UI != E; ++UI)
1323 OperandChangedState(*UI);
1324 }
1325 // Process the instruction work list...
1326 while (!InstWorkList.empty()) {
1327 Value *I = InstWorkList.back();
1328 InstWorkList.pop_back();
1329
Dan Gohmandff8d172009-08-17 15:25:05 +00001330 DEBUG(errs() << "\nPopped off I-WL: " << *I << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001331
1332 // "I" got into the work list because it either made the transition from
1333 // bottom to constant
1334 //
1335 // Anything on this worklist that is overdefined need not be visited
1336 // since all of its users will have already been marked as overdefined.
1337 // Update all of the users of this instruction's value...
1338 //
1339 if (!getValueState(I).isOverdefined())
1340 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1341 UI != E; ++UI)
1342 OperandChangedState(*UI);
1343 }
1344
1345 // Process the basic block work list...
1346 while (!BBWorkList.empty()) {
1347 BasicBlock *BB = BBWorkList.back();
1348 BBWorkList.pop_back();
1349
Dan Gohmandff8d172009-08-17 15:25:05 +00001350 DEBUG(errs() << "\nPopped off BBWL: " << *BB << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001351
1352 // Notify all instructions in this basic block that they are newly
1353 // executable.
1354 visit(BB);
1355 }
1356 }
1357}
1358
1359/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1360/// that branches on undef values cannot reach any of their successors.
1361/// However, this is not a safe assumption. After we solve dataflow, this
1362/// method should be use to handle this. If this returns true, the solver
1363/// should be rerun.
1364///
1365/// This method handles this by finding an unresolved branch and marking it one
1366/// of the edges from the block as being feasible, even though the condition
1367/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1368/// CFG and only slightly pessimizes the analysis results (by marking one,
1369/// potentially infeasible, edge feasible). This cannot usefully modify the
1370/// constraints on the condition of the branch, as that would impact other users
1371/// of the value.
1372///
1373/// This scan also checks for values that use undefs, whose results are actually
1374/// defined. For example, 'zext i8 undef to i32' should produce all zeros
1375/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1376/// even if X isn't defined.
1377bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1378 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1379 if (!BBExecutable.count(BB))
1380 continue;
1381
1382 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1383 // Look for instructions which produce undef values.
Chris Lattner82cdc062009-10-05 05:54:46 +00001384 if (I->getType()->isVoidTy()) continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001385
1386 LatticeVal &LV = getValueState(I);
1387 if (!LV.isUndefined()) continue;
1388
1389 // Get the lattice values of the first two operands for use below.
1390 LatticeVal &Op0LV = getValueState(I->getOperand(0));
1391 LatticeVal Op1LV;
1392 if (I->getNumOperands() == 2) {
1393 // If this is a two-operand instruction, and if both operands are
1394 // undefs, the result stays undef.
1395 Op1LV = getValueState(I->getOperand(1));
1396 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1397 continue;
1398 }
1399
1400 // If this is an instructions whose result is defined even if the input is
1401 // not fully defined, propagate the information.
1402 const Type *ITy = I->getType();
1403 switch (I->getOpcode()) {
1404 default: break; // Leave the instruction as an undef.
1405 case Instruction::ZExt:
1406 // After a zero extend, we know the top part is zero. SExt doesn't have
1407 // to be handled here, because we don't know whether the top part is 1's
1408 // or 0's.
1409 assert(Op0LV.isUndefined());
Owen Andersonaac28372009-07-31 20:28:14 +00001410 markForcedConstant(LV, I, Constant::getNullValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001411 return true;
1412 case Instruction::Mul:
1413 case Instruction::And:
1414 // undef * X -> 0. X could be zero.
1415 // undef & X -> 0. X could be zero.
Owen Andersonaac28372009-07-31 20:28:14 +00001416 markForcedConstant(LV, I, Constant::getNullValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001417 return true;
1418
1419 case Instruction::Or:
1420 // undef | X -> -1. X could be -1.
1421 if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
Owen Andersonfa089ab2009-07-03 19:42:02 +00001422 markForcedConstant(LV, I,
Owen Andersonaac28372009-07-31 20:28:14 +00001423 Constant::getAllOnesValue(PTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001424 else
Owen Andersonaac28372009-07-31 20:28:14 +00001425 markForcedConstant(LV, I, Constant::getAllOnesValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001426 return true;
1427
1428 case Instruction::SDiv:
1429 case Instruction::UDiv:
1430 case Instruction::SRem:
1431 case Instruction::URem:
1432 // X / undef -> undef. No change.
1433 // X % undef -> undef. No change.
1434 if (Op1LV.isUndefined()) break;
1435
1436 // undef / X -> 0. X could be maxint.
1437 // undef % X -> 0. X could be 1.
Owen Andersonaac28372009-07-31 20:28:14 +00001438 markForcedConstant(LV, I, Constant::getNullValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001439 return true;
1440
1441 case Instruction::AShr:
1442 // undef >>s X -> undef. No change.
1443 if (Op0LV.isUndefined()) break;
1444
1445 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1446 if (Op0LV.isConstant())
1447 markForcedConstant(LV, I, Op0LV.getConstant());
1448 else
1449 markOverdefined(LV, I);
1450 return true;
1451 case Instruction::LShr:
1452 case Instruction::Shl:
1453 // undef >> X -> undef. No change.
1454 // undef << X -> undef. No change.
1455 if (Op0LV.isUndefined()) break;
1456
1457 // X >> undef -> 0. X could be 0.
1458 // X << undef -> 0. X could be 0.
Owen Andersonaac28372009-07-31 20:28:14 +00001459 markForcedConstant(LV, I, Constant::getNullValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001460 return true;
1461 case Instruction::Select:
1462 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1463 if (Op0LV.isUndefined()) {
1464 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1465 Op1LV = getValueState(I->getOperand(2));
1466 } else if (Op1LV.isUndefined()) {
1467 // c ? undef : undef -> undef. No change.
1468 Op1LV = getValueState(I->getOperand(2));
1469 if (Op1LV.isUndefined())
1470 break;
1471 // Otherwise, c ? undef : x -> x.
1472 } else {
1473 // Leave Op1LV as Operand(1)'s LatticeValue.
1474 }
1475
1476 if (Op1LV.isConstant())
1477 markForcedConstant(LV, I, Op1LV.getConstant());
1478 else
1479 markOverdefined(LV, I);
1480 return true;
Chris Lattner9110ac92008-05-24 03:59:33 +00001481 case Instruction::Call:
1482 // If a call has an undef result, it is because it is constant foldable
1483 // but one of the inputs was undef. Just force the result to
1484 // overdefined.
1485 markOverdefined(LV, I);
1486 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001487 }
1488 }
1489
1490 TerminatorInst *TI = BB->getTerminator();
1491 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1492 if (!BI->isConditional()) continue;
1493 if (!getValueState(BI->getCondition()).isUndefined())
1494 continue;
1495 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Dale Johannesenfb06d0c2008-05-23 01:01:31 +00001496 if (SI->getNumSuccessors()<2) // no cases
1497 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001498 if (!getValueState(SI->getCondition()).isUndefined())
1499 continue;
1500 } else {
1501 continue;
1502 }
1503
Chris Lattner6186e8c2008-01-28 00:32:30 +00001504 // If the edge to the second successor isn't thought to be feasible yet,
1505 // mark it so now. We pick the second one so that this goes to some
1506 // enumerated value in a switch instead of going to the default destination.
1507 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001508 continue;
1509
1510 // Otherwise, it isn't already thought to be feasible. Mark it as such now
1511 // and return. This will make other blocks reachable, which will allow new
1512 // values to be discovered and existing ones to be moved in the lattice.
Chris Lattner6186e8c2008-01-28 00:32:30 +00001513 markEdgeExecutable(BB, TI->getSuccessor(1));
1514
1515 // This must be a conditional branch of switch on undef. At this point,
1516 // force the old terminator to branch to the first successor. This is
1517 // required because we are now influencing the dataflow of the function with
1518 // the assumption that this edge is taken. If we leave the branch condition
1519 // as undef, then further analysis could think the undef went another way
1520 // leading to an inconsistent set of conclusions.
1521 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
Owen Anderson4f720fa2009-07-31 17:39:07 +00001522 BI->setCondition(ConstantInt::getFalse(*Context));
Chris Lattner6186e8c2008-01-28 00:32:30 +00001523 } else {
1524 SwitchInst *SI = cast<SwitchInst>(TI);
1525 SI->setCondition(SI->getCaseValue(1));
1526 }
1527
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001528 return true;
1529 }
1530
1531 return false;
1532}
1533
1534
1535namespace {
1536 //===--------------------------------------------------------------------===//
1537 //
1538 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1539 /// Sparse Conditional Constant Propagator.
1540 ///
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +00001541 struct SCCP : public FunctionPass {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001542 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +00001543 SCCP() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001544
1545 // runOnFunction - Run the Sparse Conditional Constant Propagation
1546 // algorithm, and return true if the function was modified.
1547 //
1548 bool runOnFunction(Function &F);
1549
1550 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1551 AU.setPreservesCFG();
1552 }
1553 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001554} // end anonymous namespace
1555
Dan Gohman089efff2008-05-13 00:00:25 +00001556char SCCP::ID = 0;
1557static RegisterPass<SCCP>
1558X("sccp", "Sparse Conditional Constant Propagation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001559
1560// createSCCPPass - This is the public interface to this file...
1561FunctionPass *llvm::createSCCPPass() {
1562 return new SCCP();
1563}
1564
1565
1566// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1567// and return true if the function was modified.
1568//
1569bool SCCP::runOnFunction(Function &F) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001570 DEBUG(errs() << "SCCP on function '" << F.getName() << "'\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001571 SCCPSolver Solver;
Owen Anderson175b6542009-07-22 00:24:57 +00001572 Solver.setContext(&F.getContext());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573
1574 // Mark the first block of the function as being executable.
1575 Solver.MarkBlockExecutable(F.begin());
1576
1577 // Mark all arguments to the function as being overdefined.
1578 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1579 Solver.markOverdefined(AI);
1580
1581 // Solve for constants.
1582 bool ResolvedUndefs = true;
1583 while (ResolvedUndefs) {
1584 Solver.Solve();
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001585 DEBUG(errs() << "RESOLVING UNDEFs\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001586 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1587 }
1588
1589 bool MadeChanges = false;
1590
1591 // If we decided that there are basic blocks that are dead in this function,
1592 // delete their contents now. Note that we cannot actually delete the blocks,
1593 // as we cannot modify the CFG of the function.
1594 //
Chris Lattnerd3123a72008-08-23 23:36:38 +00001595 SmallVector<Instruction*, 512> Insts;
Bill Wendling03488ae2008-08-14 23:05:24 +00001596 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001597
1598 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
Chris Lattner317e6b62008-08-23 23:39:31 +00001599 if (!Solver.isBlockExecutable(BB)) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001600 DEBUG(errs() << " BasicBlock Dead:" << *BB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001601 ++NumDeadBlocks;
1602
1603 // Delete the instructions backwards, as it has a reduced likelihood of
1604 // having to update as many def-use and use-def chains.
1605 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1606 I != E; ++I)
1607 Insts.push_back(I);
1608 while (!Insts.empty()) {
1609 Instruction *I = Insts.back();
1610 Insts.pop_back();
1611 if (!I->use_empty())
Owen Andersonb99ecca2009-07-30 23:03:37 +00001612 I->replaceAllUsesWith(UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001613 BB->getInstList().erase(I);
1614 MadeChanges = true;
1615 ++NumInstRemoved;
1616 }
1617 } else {
1618 // Iterate over all of the instructions in a function, replacing them with
1619 // constants if we have found them to be of constant values.
1620 //
1621 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1622 Instruction *Inst = BI++;
Chris Lattner82cdc062009-10-05 05:54:46 +00001623 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
Chris Lattnerb6f89362008-04-24 00:16:28 +00001624 continue;
1625
1626 LatticeVal &IV = Values[Inst];
1627 if (!IV.isConstant() && !IV.isUndefined())
1628 continue;
1629
1630 Constant *Const = IV.isConstant()
Owen Andersonb99ecca2009-07-30 23:03:37 +00001631 ? IV.getConstant() : UndefValue::get(Inst->getType());
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001632 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001633
Chris Lattnerb6f89362008-04-24 00:16:28 +00001634 // Replaces all of the uses of a variable with uses of the constant.
1635 Inst->replaceAllUsesWith(Const);
1636
1637 // Delete the instruction.
1638 Inst->eraseFromParent();
1639
1640 // Hey, we just changed something!
1641 MadeChanges = true;
1642 ++NumInstRemoved;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001643 }
1644 }
1645
1646 return MadeChanges;
1647}
1648
1649namespace {
1650 //===--------------------------------------------------------------------===//
1651 //
1652 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1653 /// Constant Propagation.
1654 ///
Chris Lattnerfa2d1ba2009-09-02 06:11:42 +00001655 struct IPSCCP : public ModulePass {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001656 static char ID;
Dan Gohman26f8c272008-09-04 17:05:41 +00001657 IPSCCP() : ModulePass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001658 bool runOnModule(Module &M);
1659 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001660} // end anonymous namespace
1661
Dan Gohman089efff2008-05-13 00:00:25 +00001662char IPSCCP::ID = 0;
1663static RegisterPass<IPSCCP>
1664Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1665
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001666// createIPSCCPPass - This is the public interface to this file...
1667ModulePass *llvm::createIPSCCPPass() {
1668 return new IPSCCP();
1669}
1670
1671
1672static bool AddressIsTaken(GlobalValue *GV) {
1673 // Delete any dead constantexpr klingons.
1674 GV->removeDeadConstantUsers();
1675
1676 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1677 UI != E; ++UI)
1678 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1679 if (SI->getOperand(0) == GV || SI->isVolatile())
1680 return true; // Storing addr of GV.
1681 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1682 // Make sure we are calling the function, not passing the address.
1683 CallSite CS = CallSite::get(cast<Instruction>(*UI));
Nick Lewycky1cc2e102008-11-03 03:49:14 +00001684 if (CS.hasArgument(GV))
1685 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001686 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1687 if (LI->isVolatile())
1688 return true;
1689 } else {
1690 return true;
1691 }
1692 return false;
1693}
1694
1695bool IPSCCP::runOnModule(Module &M) {
Owen Anderson175b6542009-07-22 00:24:57 +00001696 LLVMContext *Context = &M.getContext();
Owen Andersone1f1f822009-07-16 18:04:31 +00001697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001698 SCCPSolver Solver;
Owen Andersone1f1f822009-07-16 18:04:31 +00001699 Solver.setContext(Context);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001700
1701 // Loop over all functions, marking arguments to those with their addresses
1702 // taken or that are external as overdefined.
1703 //
1704 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
Rafael Espindolaa168fc92009-01-15 20:18:42 +00001705 if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001706 if (!F->isDeclaration())
1707 Solver.MarkBlockExecutable(F->begin());
1708 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1709 AI != E; ++AI)
1710 Solver.markOverdefined(AI);
1711 } else {
1712 Solver.AddTrackedFunction(F);
1713 }
1714
1715 // Loop over global variables. We inform the solver about any internal global
1716 // variables that do not have their 'addresses taken'. If they don't have
1717 // their addresses taken, we can propagate constants through them.
1718 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1719 G != E; ++G)
Rafael Espindolaa168fc92009-01-15 20:18:42 +00001720 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001721 Solver.TrackValueOfGlobalVariable(G);
1722
1723 // Solve for constants.
1724 bool ResolvedUndefs = true;
1725 while (ResolvedUndefs) {
1726 Solver.Solve();
1727
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001728 DEBUG(errs() << "RESOLVING UNDEFS\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001729 ResolvedUndefs = false;
1730 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1731 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1732 }
1733
1734 bool MadeChanges = false;
1735
1736 // Iterate over all of the instructions in the module, replacing them with
1737 // constants if we have found them to be of constant values.
1738 //
Chris Lattnerd3123a72008-08-23 23:36:38 +00001739 SmallVector<Instruction*, 512> Insts;
1740 SmallVector<BasicBlock*, 512> BlocksToErase;
Bill Wendling03488ae2008-08-14 23:05:24 +00001741 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001742
1743 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1744 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1745 AI != E; ++AI)
1746 if (!AI->use_empty()) {
1747 LatticeVal &IV = Values[AI];
1748 if (IV.isConstant() || IV.isUndefined()) {
1749 Constant *CST = IV.isConstant() ?
Owen Andersonb99ecca2009-07-30 23:03:37 +00001750 IV.getConstant() : UndefValue::get(AI->getType());
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001751 DEBUG(errs() << "*** Arg " << *AI << " = " << *CST <<"\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001752
1753 // Replaces all of the uses of a variable with uses of the
1754 // constant.
1755 AI->replaceAllUsesWith(CST);
1756 ++IPNumArgsElimed;
1757 }
1758 }
1759
1760 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
Chris Lattner317e6b62008-08-23 23:39:31 +00001761 if (!Solver.isBlockExecutable(BB)) {
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001762 DEBUG(errs() << " BasicBlock Dead:" << *BB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001763 ++IPNumDeadBlocks;
1764
1765 // Delete the instructions backwards, as it has a reduced likelihood of
1766 // having to update as many def-use and use-def chains.
1767 TerminatorInst *TI = BB->getTerminator();
1768 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1769 Insts.push_back(I);
1770
1771 while (!Insts.empty()) {
1772 Instruction *I = Insts.back();
1773 Insts.pop_back();
1774 if (!I->use_empty())
Owen Andersonb99ecca2009-07-30 23:03:37 +00001775 I->replaceAllUsesWith(UndefValue::get(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001776 BB->getInstList().erase(I);
1777 MadeChanges = true;
1778 ++IPNumInstRemoved;
1779 }
1780
1781 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1782 BasicBlock *Succ = TI->getSuccessor(i);
Dan Gohman3f7d94b2007-10-03 19:26:29 +00001783 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784 TI->getSuccessor(i)->removePredecessor(BB);
1785 }
1786 if (!TI->use_empty())
Owen Andersonb99ecca2009-07-30 23:03:37 +00001787 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001788 BB->getInstList().erase(TI);
1789
1790 if (&*BB != &F->front())
1791 BlocksToErase.push_back(BB);
1792 else
Owen Anderson35b47072009-08-13 21:58:54 +00001793 new UnreachableInst(M.getContext(), BB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794
1795 } else {
1796 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1797 Instruction *Inst = BI++;
Chris Lattner82cdc062009-10-05 05:54:46 +00001798 if (Inst->getType()->isVoidTy())
Chris Lattner50846cf2008-04-24 00:21:50 +00001799 continue;
1800
1801 LatticeVal &IV = Values[Inst];
1802 if (!IV.isConstant() && !IV.isUndefined())
1803 continue;
1804
1805 Constant *Const = IV.isConstant()
Owen Andersonb99ecca2009-07-30 23:03:37 +00001806 ? IV.getConstant() : UndefValue::get(Inst->getType());
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001807 DEBUG(errs() << " Constant: " << *Const << " = " << *Inst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001808
Chris Lattner50846cf2008-04-24 00:21:50 +00001809 // Replaces all of the uses of a variable with uses of the
1810 // constant.
1811 Inst->replaceAllUsesWith(Const);
1812
1813 // Delete the instruction.
Chris Lattnerc27ce6d2009-01-14 21:01:16 +00001814 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
Chris Lattner50846cf2008-04-24 00:21:50 +00001815 Inst->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001816
Chris Lattner50846cf2008-04-24 00:21:50 +00001817 // Hey, we just changed something!
1818 MadeChanges = true;
1819 ++IPNumInstRemoved;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001820 }
1821 }
1822
1823 // Now that all instructions in the function are constant folded, erase dead
1824 // blocks, because we can now use ConstantFoldTerminator to get rid of
1825 // in-edges.
1826 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1827 // If there are any PHI nodes in this successor, drop entries for BB now.
1828 BasicBlock *DeadBB = BlocksToErase[i];
1829 while (!DeadBB->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001830 Instruction *I = cast<Instruction>(DeadBB->use_back());
1831 bool Folded = ConstantFoldTerminator(I->getParent());
1832 if (!Folded) {
1833 // The constant folder may not have been able to fold the terminator
1834 // if this is a branch or switch on undef. Fold it manually as a
1835 // branch to the first successor.
Devang Patele92c16d2008-11-21 01:52:59 +00001836#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001837 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1838 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1839 "Branch should be foldable!");
1840 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1841 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1842 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00001843 llvm_unreachable("Didn't fold away reference to block!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001844 }
Devang Patele92c16d2008-11-21 01:52:59 +00001845#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001846
1847 // Make this an uncond branch to the first successor.
1848 TerminatorInst *TI = I->getParent()->getTerminator();
Gabor Greifd6da1d02008-04-06 20:25:17 +00001849 BranchInst::Create(TI->getSuccessor(0), TI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001850
1851 // Remove entries in successor phi nodes to remove edges.
1852 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1853 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1854
1855 // Remove the old terminator.
1856 TI->eraseFromParent();
1857 }
1858 }
1859
1860 // Finally, delete the basic block.
1861 F->getBasicBlockList().erase(DeadBB);
1862 }
1863 BlocksToErase.clear();
1864 }
1865
1866 // If we inferred constant or undef return values for a function, we replaced
1867 // all call uses with the inferred value. This means we don't need to bother
1868 // actually returning anything from the function. Replace all return
1869 // instructions with return undef.
Devang Pateld04d42b2008-03-11 17:32:05 +00001870 // TODO: Process multiple value ret instructions also.
Devang Pateladd320d2008-03-11 05:46:42 +00001871 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001872 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1873 E = RV.end(); I != E; ++I)
1874 if (!I->second.isOverdefined() &&
Chris Lattner82cdc062009-10-05 05:54:46 +00001875 !I->first->getReturnType()->isVoidTy()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001876 Function *F = I->first;
1877 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1878 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1879 if (!isa<UndefValue>(RI->getOperand(0)))
Owen Andersonb99ecca2009-07-30 23:03:37 +00001880 RI->setOperand(0, UndefValue::get(F->getReturnType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881 }
1882
1883 // If we infered constant or undef values for globals variables, we can delete
1884 // the global and any stores that remain to it.
1885 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1886 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1887 E = TG.end(); I != E; ++I) {
1888 GlobalVariable *GV = I->first;
1889 assert(!I->second.isOverdefined() &&
1890 "Overdefined values should have been taken out of the map!");
Daniel Dunbar23e2b802009-07-26 07:49:05 +00001891 DEBUG(errs() << "Found that GV '" << GV->getName() << "' is constant!\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001892 while (!GV->use_empty()) {
1893 StoreInst *SI = cast<StoreInst>(GV->use_back());
1894 SI->eraseFromParent();
1895 }
1896 M.getGlobalList().erase(GV);
1897 ++IPNumGlobalConst;
1898 }
1899
1900 return MadeChanges;
1901}