blob: b35e1e6a5272d0b9e73750e249d3f078c250a262 [file] [log] [blame]
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001//===-- X86isellowering.cpp - X86 DAG Lowering Implementation -------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000035#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000039#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040using namespace llvm;
41
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43 : TargetLowering(TM) {
44 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000045 X86ScalarSSEf64 = Subtarget->hasSSE2();
46 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000048
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049
50 RegInfo = TM.getRegisterInfo();
51
52 // Set up the TargetLowering object.
53
54 // X86 is weird, it always uses i8 for shift amounts and setcc results.
55 setShiftAmountType(MVT::i8);
56 setSetCCResultType(MVT::i8);
57 setSetCCResultContents(ZeroOrOneSetCCResult);
58 setSchedulingPreference(SchedulingForRegPressure);
59 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
60 setStackPointerRegisterToSaveRestore(X86StackPtr);
61
62 if (Subtarget->isTargetDarwin()) {
63 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
64 setUseUnderscoreSetJmp(false);
65 setUseUnderscoreLongJmp(false);
66 } else if (Subtarget->isTargetMingw()) {
67 // MS runtime is weird: it exports _setjmp, but longjmp!
68 setUseUnderscoreSetJmp(true);
69 setUseUnderscoreLongJmp(false);
70 } else {
71 setUseUnderscoreSetJmp(true);
72 setUseUnderscoreLongJmp(true);
73 }
74
75 // Set up the register classes.
76 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
77 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
78 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
79 if (Subtarget->is64Bit())
80 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
81
82 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
83
84 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
85 // operation.
86 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
87 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
89
90 if (Subtarget->is64Bit()) {
91 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
92 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
93 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000094 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000095 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
96 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
97 else
98 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
99 }
100
101 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
102 // this operation.
103 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
104 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
105 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000106 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000108 // f32 and f64 cases are Legal, f80 case is not
109 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
110 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000111 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
112 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
113 }
114
Dale Johannesen958b08b2007-09-19 23:55:34 +0000115 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
116 // are Legal, f80 is custom lowered.
117 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
118 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119
120 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
121 // this operation.
122 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
123 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
124
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000125 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000127 // f32 and f64 cases are Legal, f80 case is not
128 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000129 } else {
130 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
131 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
132 }
133
134 // Handle FP_TO_UINT by promoting the destination to a larger signed
135 // conversion.
136 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
137 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
138 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
139
140 if (Subtarget->is64Bit()) {
141 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
142 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
143 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000144 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 // Expand FP_TO_UINT into a select.
146 // FIXME: We would like to use a Custom expander here eventually to do
147 // the optimal thing for SSE vs. the default expansion in the legalizer.
148 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
149 else
150 // With SSE3 we can use fisttpll to convert to a signed i64.
151 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
152 }
153
154 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000155 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
157 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
158 }
159
Dan Gohman5a199552007-10-08 18:33:35 +0000160 // Scalar integer multiply, multiply-high, divide, and remainder are
161 // lowered to use operations that produce two results, to match the
162 // available instructions. This exposes the two-result form to trivial
163 // CSE, which is able to combine x/y and x%y into a single instruction,
164 // for example. The single-result multiply instructions are introduced
165 // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
166 // is not needed.
167 setOperationAction(ISD::MUL , MVT::i8 , Expand);
168 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
169 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
170 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
171 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
172 setOperationAction(ISD::SREM , MVT::i8 , Expand);
173 setOperationAction(ISD::UREM , MVT::i8 , Expand);
174 setOperationAction(ISD::MUL , MVT::i16 , Expand);
175 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
176 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
177 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
178 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
179 setOperationAction(ISD::SREM , MVT::i16 , Expand);
180 setOperationAction(ISD::UREM , MVT::i16 , Expand);
181 setOperationAction(ISD::MUL , MVT::i32 , Expand);
182 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
183 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
184 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
185 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
186 setOperationAction(ISD::SREM , MVT::i32 , Expand);
187 setOperationAction(ISD::UREM , MVT::i32 , Expand);
188 setOperationAction(ISD::MUL , MVT::i64 , Expand);
189 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
190 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
191 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
192 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
193 setOperationAction(ISD::SREM , MVT::i64 , Expand);
194 setOperationAction(ISD::UREM , MVT::i64 , Expand);
Dan Gohman242a5ba2007-09-25 18:23:27 +0000195
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
197 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
198 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
199 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
200 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
201 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
206 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
207 setOperationAction(ISD::FREM , MVT::f64 , Expand);
208
209 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
210 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
211 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
212 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
213 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
214 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
215 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
216 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
217 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
218 if (Subtarget->is64Bit()) {
219 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
220 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
221 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
222 }
223
224 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
225 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
226
227 // These should be promoted to a larger select which is supported.
228 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
229 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
230 // X86 wants to expand cmov itself.
231 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
232 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
233 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
234 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000235 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
237 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
238 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
239 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
240 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000241 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 if (Subtarget->is64Bit()) {
243 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
244 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
245 }
246 // X86 ret instruction may pop stack.
247 setOperationAction(ISD::RET , MVT::Other, Custom);
248 if (!Subtarget->is64Bit())
249 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
250
251 // Darwin ABI issue.
252 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
253 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
254 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
255 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
256 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
257 if (Subtarget->is64Bit()) {
258 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
259 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
260 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
261 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
262 }
263 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
264 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
265 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
266 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
267 // X86 wants to expand memset / memcpy itself.
268 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
269 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
270
Dan Gohman21442852007-09-25 15:10:49 +0000271 // Use the default ISD::LOCATION expansion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 // FIXME - use subtarget debug flags
274 if (!Subtarget->isTargetDarwin() &&
275 !Subtarget->isTargetELF() &&
276 !Subtarget->isTargetCygMing())
277 setOperationAction(ISD::LABEL, MVT::Other, Expand);
278
279 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
280 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
281 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
282 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
283 if (Subtarget->is64Bit()) {
284 // FIXME: Verify
285 setExceptionPointerRegister(X86::RAX);
286 setExceptionSelectorRegister(X86::RDX);
287 } else {
288 setExceptionPointerRegister(X86::EAX);
289 setExceptionSelectorRegister(X86::EDX);
290 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000291 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292
Duncan Sands7407a9f2007-09-11 14:10:23 +0000293 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000294
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
296 setOperationAction(ISD::VASTART , MVT::Other, Custom);
297 setOperationAction(ISD::VAARG , MVT::Other, Expand);
298 setOperationAction(ISD::VAEND , MVT::Other, Expand);
299 if (Subtarget->is64Bit())
300 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
301 else
302 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
303
304 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
305 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
306 if (Subtarget->is64Bit())
307 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
308 if (Subtarget->isTargetCygMing())
309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
310 else
311 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
312
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000313 if (X86ScalarSSEf64) {
314 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315 // Set up the FP register classes.
316 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
317 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
318
319 // Use ANDPD to simulate FABS.
320 setOperationAction(ISD::FABS , MVT::f64, Custom);
321 setOperationAction(ISD::FABS , MVT::f32, Custom);
322
323 // Use XORP to simulate FNEG.
324 setOperationAction(ISD::FNEG , MVT::f64, Custom);
325 setOperationAction(ISD::FNEG , MVT::f32, Custom);
326
327 // Use ANDPD and ORPD to simulate FCOPYSIGN.
328 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330
331 // We don't support sin/cos/fmod
332 setOperationAction(ISD::FSIN , MVT::f64, Expand);
333 setOperationAction(ISD::FCOS , MVT::f64, Expand);
334 setOperationAction(ISD::FREM , MVT::f64, Expand);
335 setOperationAction(ISD::FSIN , MVT::f32, Expand);
336 setOperationAction(ISD::FCOS , MVT::f32, Expand);
337 setOperationAction(ISD::FREM , MVT::f32, Expand);
338
339 // Expand FP immediates into loads from the stack, except for the special
340 // cases we handle.
341 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
342 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000343 addLegalFPImmediate(APFloat(+0.0)); // xorpd
344 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000345
346 // Conversions to long double (in X87) go through memory.
347 setConvertAction(MVT::f32, MVT::f80, Expand);
348 setConvertAction(MVT::f64, MVT::f80, Expand);
349
350 // Conversions from long double (in X87) go through memory.
351 setConvertAction(MVT::f80, MVT::f32, Expand);
352 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000353 } else if (X86ScalarSSEf32) {
354 // Use SSE for f32, x87 for f64.
355 // Set up the FP register classes.
356 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
357 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
358
359 // Use ANDPS to simulate FABS.
360 setOperationAction(ISD::FABS , MVT::f32, Custom);
361
362 // Use XORP to simulate FNEG.
363 setOperationAction(ISD::FNEG , MVT::f32, Custom);
364
365 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
366
367 // Use ANDPS and ORPS to simulate FCOPYSIGN.
368 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
369 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
370
371 // We don't support sin/cos/fmod
372 setOperationAction(ISD::FSIN , MVT::f32, Expand);
373 setOperationAction(ISD::FCOS , MVT::f32, Expand);
374 setOperationAction(ISD::FREM , MVT::f32, Expand);
375
376 // Expand FP immediates into loads from the stack, except for the special
377 // cases we handle.
378 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
379 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
380 addLegalFPImmediate(APFloat(+0.0f)); // xorps
381 addLegalFPImmediate(APFloat(+0.0)); // FLD0
382 addLegalFPImmediate(APFloat(+1.0)); // FLD1
383 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
384 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
385
386 // SSE->x87 conversions go through memory.
387 setConvertAction(MVT::f32, MVT::f64, Expand);
388 setConvertAction(MVT::f32, MVT::f80, Expand);
389
390 // x87->SSE truncations need to go through memory.
391 setConvertAction(MVT::f80, MVT::f32, Expand);
392 setConvertAction(MVT::f64, MVT::f32, Expand);
393 // And x87->x87 truncations also.
394 setConvertAction(MVT::f80, MVT::f64, Expand);
395
396 if (!UnsafeFPMath) {
397 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
398 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
399 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000401 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 // Set up the FP register classes.
403 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
404 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
405
406 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
407 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
408 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
409 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000410
411 // Floating truncations need to go through memory.
412 setConvertAction(MVT::f80, MVT::f32, Expand);
413 setConvertAction(MVT::f64, MVT::f32, Expand);
414 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415
416 if (!UnsafeFPMath) {
417 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
418 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
419 }
420
421 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
422 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000423 addLegalFPImmediate(APFloat(+0.0)); // FLD0
424 addLegalFPImmediate(APFloat(+1.0)); // FLD1
425 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
426 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000427 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
428 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
429 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
430 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000431 }
432
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000433 // Long double always uses X87.
434 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000435 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
436 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
437 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen7f1076b2007-09-26 21:10:55 +0000438 if (!UnsafeFPMath) {
439 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
440 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
441 }
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000442
Dan Gohman2f7b1982007-10-11 23:21:31 +0000443 // Always use a library call for pow.
444 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
445 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
446 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
447
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448 // First set operation action for all vector types to expand. Then we
449 // will selectively turn on ones that can be effectively codegen'd.
450 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
451 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
452 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
453 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
454 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
455 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
456 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
457 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
458 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
459 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
460 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
461 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
462 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
463 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
464 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
465 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
466 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
467 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
468 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
469 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
470 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
471 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
472 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
473 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
474 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
Dan Gohman5a199552007-10-08 18:33:35 +0000475 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
476 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
477 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
478 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000479 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
Dan Gohman1d2dc2c2007-10-12 14:09:42 +0000480 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
481 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
482 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000483 }
484
485 if (Subtarget->hasMMX()) {
486 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
487 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
488 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
489 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
490
491 // FIXME: add MMX packed arithmetics
492
493 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
494 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
495 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
496 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
497
498 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
499 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
500 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
501
502 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
503 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
504
505 setOperationAction(ISD::AND, MVT::v8i8, Promote);
506 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
507 setOperationAction(ISD::AND, MVT::v4i16, Promote);
508 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
509 setOperationAction(ISD::AND, MVT::v2i32, Promote);
510 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
511 setOperationAction(ISD::AND, MVT::v1i64, Legal);
512
513 setOperationAction(ISD::OR, MVT::v8i8, Promote);
514 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
515 setOperationAction(ISD::OR, MVT::v4i16, Promote);
516 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
517 setOperationAction(ISD::OR, MVT::v2i32, Promote);
518 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
519 setOperationAction(ISD::OR, MVT::v1i64, Legal);
520
521 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
522 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
523 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
524 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
525 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
526 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
527 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
528
529 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
530 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
531 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
532 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
533 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
534 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
535 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
536
537 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
538 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
539 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
540 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
541
542 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
543 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
544 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
545 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
546
547 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
548 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
549 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
550 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
551 }
552
553 if (Subtarget->hasSSE1()) {
554 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
555
556 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
557 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
558 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
559 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
560 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
561 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000562 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
563 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
564 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
565 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
566 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
567 }
568
569 if (Subtarget->hasSSE2()) {
570 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
571 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
572 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
573 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
574 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
575
576 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
577 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
578 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
579 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
580 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
581 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
582 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
583 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
584 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
585 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
586 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
587 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
588 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
589 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
590 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000591
592 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
593 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
594 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
595 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
596 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
597 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
598
599 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
600 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
601 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
602 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
603 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
604 }
605 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
606 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
607 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
608 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
609 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
610 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
611
612 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
613 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
614 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
615 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
616 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
617 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
618 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
619 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
620 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
621 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
622 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
623 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
624 }
625
626 // Custom lower v2i64 and v2f64 selects.
627 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
628 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
629 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
630 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
631 }
632
633 // We want to custom lower some of our intrinsics.
634 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
635
636 // We have target-specific dag combine patterns for the following nodes:
637 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
638 setTargetDAGCombine(ISD::SELECT);
639
640 computeRegisterProperties();
641
642 // FIXME: These should be based on subtarget info. Plus, the values should
643 // be smaller when we are in optimizing for size mode.
644 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
645 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
646 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
647 allowUnalignedMemoryAccesses = true; // x86 supports it!
648}
649
650
651//===----------------------------------------------------------------------===//
652// Return Value Calling Convention Implementation
653//===----------------------------------------------------------------------===//
654
655#include "X86GenCallingConv.inc"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000656
657/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
658/// exists skip possible ISD:TokenFactor.
659static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
660 if (Chain.getOpcode()==X86ISD::TAILCALL) {
661 return Chain;
662 } else if (Chain.getOpcode()==ISD::TokenFactor) {
663 if (Chain.getNumOperands() &&
664 Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
665 return Chain.getOperand(0);
666 }
667 return Chain;
668}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000669
670/// LowerRET - Lower an ISD::RET node.
671SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
672 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
673
674 SmallVector<CCValAssign, 16> RVLocs;
675 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
676 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
677 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
678 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000679
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000680 // If this is the first return lowered for this function, add the regs to the
681 // liveout set for the function.
682 if (DAG.getMachineFunction().liveout_empty()) {
683 for (unsigned i = 0; i != RVLocs.size(); ++i)
684 if (RVLocs[i].isRegLoc())
685 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
686 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000687 SDOperand Chain = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000689 // Handle tail call return.
690 Chain = GetPossiblePreceedingTailCall(Chain);
691 if (Chain.getOpcode() == X86ISD::TAILCALL) {
692 SDOperand TailCall = Chain;
693 SDOperand TargetAddress = TailCall.getOperand(1);
694 SDOperand StackAdjustment = TailCall.getOperand(2);
695 assert ( ((TargetAddress.getOpcode() == ISD::Register &&
696 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
697 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
698 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
699 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
700 "Expecting an global address, external symbol, or register");
701 assert( StackAdjustment.getOpcode() == ISD::Constant &&
702 "Expecting a const value");
703
704 SmallVector<SDOperand,8> Operands;
705 Operands.push_back(Chain.getOperand(0));
706 Operands.push_back(TargetAddress);
707 Operands.push_back(StackAdjustment);
708 // Copy registers used by the call. Last operand is a flag so it is not
709 // copied.
710 for(unsigned i=3; i < TailCall.getNumOperands()-1;i++) {
711 Operands.push_back(Chain.getOperand(i));
712 }
713 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0], Operands.size());
714 }
715
716 // Regular return.
717 SDOperand Flag;
718
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 // Copy the result values into the output registers.
720 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
721 RVLocs[0].getLocReg() != X86::ST0) {
722 for (unsigned i = 0; i != RVLocs.size(); ++i) {
723 CCValAssign &VA = RVLocs[i];
724 assert(VA.isRegLoc() && "Can only return in registers!");
725 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
726 Flag);
727 Flag = Chain.getValue(1);
728 }
729 } else {
730 // We need to handle a destination of ST0 specially, because it isn't really
731 // a register.
732 SDOperand Value = Op.getOperand(1);
733
734 // If this is an FP return with ScalarSSE, we need to move the value from
735 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000736 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
737 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738 SDOperand MemLoc;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000739
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 // If this is a load into a scalarsse value, don't store the loaded value
741 // back to the stack, only to reload it: just replace the scalar-sse load.
742 if (ISD::isNON_EXTLoad(Value.Val) &&
743 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
744 Chain = Value.getOperand(0);
745 MemLoc = Value.getOperand(1);
746 } else {
747 // Spill the value to memory and reload it into top of stack.
748 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
749 MachineFunction &MF = DAG.getMachineFunction();
750 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
751 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
752 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
753 }
754 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
755 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
756 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
757 Chain = Value.getValue(1);
758 }
759
760 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
761 SDOperand Ops[] = { Chain, Value };
762 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
763 Flag = Chain.getValue(1);
764 }
765
766 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
767 if (Flag.Val)
768 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
769 else
770 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
771}
772
773
774/// LowerCallResult - Lower the result values of an ISD::CALL into the
775/// appropriate copies out of appropriate physical registers. This assumes that
776/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
777/// being lowered. The returns a SDNode with the same number of values as the
778/// ISD::CALL.
779SDNode *X86TargetLowering::
780LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
781 unsigned CallingConv, SelectionDAG &DAG) {
782
783 // Assign locations to each value returned by this call.
784 SmallVector<CCValAssign, 16> RVLocs;
785 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
786 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
787 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
788
789
790 SmallVector<SDOperand, 8> ResultVals;
791
792 // Copy all of the result registers out of their specified physreg.
793 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
794 for (unsigned i = 0; i != RVLocs.size(); ++i) {
795 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
796 RVLocs[i].getValVT(), InFlag).getValue(1);
797 InFlag = Chain.getValue(2);
798 ResultVals.push_back(Chain.getValue(0));
799 }
800 } else {
801 // Copies from the FP stack are special, as ST0 isn't a valid register
802 // before the fp stackifier runs.
803
804 // Copy ST0 into an RFP register with FP_GET_RESULT.
805 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
806 SDOperand GROps[] = { Chain, InFlag };
807 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
808 Chain = RetVal.getValue(1);
809 InFlag = RetVal.getValue(2);
810
811 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
812 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000813 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
814 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000815 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
816 // shouldn't be necessary except that RFP cannot be live across
817 // multiple blocks. When stackifier is fixed, they can be uncoupled.
818 MachineFunction &MF = DAG.getMachineFunction();
819 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
820 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
821 SDOperand Ops[] = {
822 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
823 };
824 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
825 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
826 Chain = RetVal.getValue(1);
827 }
828 ResultVals.push_back(RetVal);
829 }
830
831 // Merge everything together with a MERGE_VALUES node.
832 ResultVals.push_back(Chain);
833 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
834 &ResultVals[0], ResultVals.size()).Val;
835}
836
837
838//===----------------------------------------------------------------------===//
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000839// C & StdCall & Fast Calling Convention implementation
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000840//===----------------------------------------------------------------------===//
841// StdCall calling convention seems to be standard for many Windows' API
842// routines and around. It differs from C calling convention just a little:
843// callee should clean up the stack, not caller. Symbols should be also
844// decorated in some fancy way :) It doesn't support any vector arguments.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000845// For info on fast calling convention see Fast Calling Convention (tail call)
846// implementation LowerX86_32FastCCCallTo.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000847
848/// AddLiveIn - This helper function adds the specified physical register to the
849/// MachineFunction as a live in value. It also creates a corresponding virtual
850/// register for it.
851static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
852 const TargetRegisterClass *RC) {
853 assert(RC->contains(PReg) && "Not the correct regclass!");
854 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
855 MF.addLiveIn(PReg, VReg);
856 return VReg;
857}
858
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000859// align stack arguments according to platform alignment needed for tail calls
860unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
861
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000862SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
863 const CCValAssign &VA,
864 MachineFrameInfo *MFI,
865 SDOperand Root, unsigned i) {
866 // Create the nodes corresponding to a load from this parameter slot.
867 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
868 VA.getLocMemOffset());
869 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
870
871 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
872
873 if (Flags & ISD::ParamFlags::ByVal)
874 return FIN;
875 else
876 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
877}
878
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
880 bool isStdCall) {
881 unsigned NumArgs = Op.Val->getNumValues() - 1;
882 MachineFunction &MF = DAG.getMachineFunction();
883 MachineFrameInfo *MFI = MF.getFrameInfo();
884 SDOperand Root = Op.getOperand(0);
885 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000886 unsigned CC = MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000887 // Assign locations to all of the incoming arguments.
888 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000889 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000891 // Check for possible tail call calling convention.
892 if (CC == CallingConv::Fast && PerformTailCallOpt)
893 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
894 else
895 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
896
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000897 SmallVector<SDOperand, 8> ArgValues;
898 unsigned LastVal = ~0U;
899 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
900 CCValAssign &VA = ArgLocs[i];
901 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
902 // places.
903 assert(VA.getValNo() != LastVal &&
904 "Don't support value assigned to multiple locs yet");
905 LastVal = VA.getValNo();
906
907 if (VA.isRegLoc()) {
908 MVT::ValueType RegVT = VA.getLocVT();
909 TargetRegisterClass *RC;
910 if (RegVT == MVT::i32)
911 RC = X86::GR32RegisterClass;
912 else {
913 assert(MVT::isVector(RegVT));
914 RC = X86::VR128RegisterClass;
915 }
916
917 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
918 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
919
920 // If this is an 8 or 16-bit value, it is really passed promoted to 32
921 // bits. Insert an assert[sz]ext to capture this, then truncate to the
922 // right size.
923 if (VA.getLocInfo() == CCValAssign::SExt)
924 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
925 DAG.getValueType(VA.getValVT()));
926 else if (VA.getLocInfo() == CCValAssign::ZExt)
927 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
928 DAG.getValueType(VA.getValVT()));
929
930 if (VA.getLocInfo() != CCValAssign::Full)
931 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
932
933 ArgValues.push_back(ArgValue);
934 } else {
935 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000936 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000937 }
938 }
939
940 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000941 // align stack specially for tail calls
942 if (CC==CallingConv::Fast)
943 StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944
945 ArgValues.push_back(Root);
946
947 // If the function takes variable number of arguments, make a frame index for
948 // the start of the first vararg value... for expansion of llvm.va_start.
949 if (isVarArg)
950 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
951
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000952 // Tail call calling convention (CallingConv::Fast) does not support varargs.
953 assert( !(isVarArg && CC == CallingConv::Fast) &&
954 "CallingConv::Fast does not support varargs.");
955
956 if (isStdCall && !isVarArg &&
957 (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000958 BytesToPopOnReturn = StackSize; // Callee pops everything..
959 BytesCallerReserves = 0;
960 } else {
961 BytesToPopOnReturn = 0; // Callee pops nothing.
962
963 // If this is an sret function, the return should pop the hidden pointer.
964 if (NumArgs &&
965 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
966 ISD::ParamFlags::StructReturn))
967 BytesToPopOnReturn = 4;
968
969 BytesCallerReserves = StackSize;
970 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000971
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000972 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000973
Anton Korobeynikove844e472007-08-15 17:12:32 +0000974 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
975 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000976
977 // Return the new list of results.
978 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
979 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
980}
981
982SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
983 unsigned CC) {
984 SDOperand Chain = Op.getOperand(0);
985 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000986 SDOperand Callee = Op.getOperand(4);
987 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000988
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000989 // Analyze operands of the call, assigning locations to each operand.
990 SmallVector<CCValAssign, 16> ArgLocs;
991 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000992 if(CC==CallingConv::Fast && PerformTailCallOpt)
993 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
994 else
995 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000996
997 // Get a count of how many bytes are to be pushed on the stack.
998 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000999 if (CC==CallingConv::Fast)
1000 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001
1002 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1003
1004 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1005 SmallVector<SDOperand, 8> MemOpChains;
1006
1007 SDOperand StackPtr;
1008
1009 // Walk the register/memloc assignments, inserting copies/loads.
1010 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1011 CCValAssign &VA = ArgLocs[i];
1012 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1013
1014 // Promote the value if needed.
1015 switch (VA.getLocInfo()) {
1016 default: assert(0 && "Unknown loc info!");
1017 case CCValAssign::Full: break;
1018 case CCValAssign::SExt:
1019 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1020 break;
1021 case CCValAssign::ZExt:
1022 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1023 break;
1024 case CCValAssign::AExt:
1025 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1026 break;
1027 }
1028
1029 if (VA.isRegLoc()) {
1030 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1031 } else {
1032 assert(VA.isMemLoc());
1033 if (StackPtr.Val == 0)
1034 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001035
1036 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1037 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 }
1039 }
1040
1041 // If the first argument is an sret pointer, remember it.
1042 bool isSRet = NumOps &&
1043 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1044 ISD::ParamFlags::StructReturn);
1045
1046 if (!MemOpChains.empty())
1047 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1048 &MemOpChains[0], MemOpChains.size());
1049
1050 // Build a sequence of copy-to-reg nodes chained together with token chain
1051 // and flag operands which copy the outgoing args into registers.
1052 SDOperand InFlag;
1053 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1054 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1055 InFlag);
1056 InFlag = Chain.getValue(1);
1057 }
1058
1059 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1060 // GOT pointer.
1061 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1062 Subtarget->isPICStyleGOT()) {
1063 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1064 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1065 InFlag);
1066 InFlag = Chain.getValue(1);
1067 }
1068
1069 // If the callee is a GlobalAddress node (quite common, every direct call is)
1070 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1071 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1072 // We should use extra load for direct calls to dllimported functions in
1073 // non-JIT mode.
1074 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1075 getTargetMachine(), true))
1076 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1077 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1078 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1079
1080 // Returns a chain & a flag for retval copy to use.
1081 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1082 SmallVector<SDOperand, 8> Ops;
1083 Ops.push_back(Chain);
1084 Ops.push_back(Callee);
1085
1086 // Add argument registers to the end of the list so that they are known live
1087 // into the call.
1088 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1089 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1090 RegsToPass[i].second.getValueType()));
1091
1092 // Add an implicit use GOT pointer in EBX.
1093 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1094 Subtarget->isPICStyleGOT())
1095 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1096
1097 if (InFlag.Val)
1098 Ops.push_back(InFlag);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001099
1100 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001101 InFlag = Chain.getValue(1);
1102
1103 // Create the CALLSEQ_END node.
1104 unsigned NumBytesForCalleeToPush = 0;
1105
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001106 if (CC == CallingConv::X86_StdCall ||
1107 (CC == CallingConv::Fast && PerformTailCallOpt)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001108 if (isVarArg)
1109 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1110 else
1111 NumBytesForCalleeToPush = NumBytes;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001112 assert(!(isVarArg && CC==CallingConv::Fast) &&
1113 "CallingConv::Fast does not support varargs.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001114 } else {
1115 // If this is is a call to a struct-return function, the callee
1116 // pops the hidden struct pointer, so we have to push it back.
1117 // This is common for Darwin/X86, Linux & Mingw32 targets.
1118 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1119 }
1120
1121 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1122 Ops.clear();
1123 Ops.push_back(Chain);
1124 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1125 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1126 Ops.push_back(InFlag);
1127 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1128 InFlag = Chain.getValue(1);
1129
1130 // Handle result values, copying them out of physregs into vregs that we
1131 // return.
1132 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1133}
1134
1135
1136//===----------------------------------------------------------------------===//
1137// FastCall Calling Convention implementation
1138//===----------------------------------------------------------------------===//
1139//
1140// The X86 'fastcall' calling convention passes up to two integer arguments in
1141// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1142// and requires that the callee pop its arguments off the stack (allowing proper
1143// tail calls), and has the same return value conventions as C calling convs.
1144//
1145// This calling convention always arranges for the callee pop value to be 8n+4
1146// bytes, which is needed for tail recursion elimination and stack alignment
1147// reasons.
1148SDOperand
1149X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1150 MachineFunction &MF = DAG.getMachineFunction();
1151 MachineFrameInfo *MFI = MF.getFrameInfo();
1152 SDOperand Root = Op.getOperand(0);
1153 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1154
1155 // Assign locations to all of the incoming arguments.
1156 SmallVector<CCValAssign, 16> ArgLocs;
1157 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1158 getTargetMachine(), ArgLocs);
1159 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1160
1161 SmallVector<SDOperand, 8> ArgValues;
1162 unsigned LastVal = ~0U;
1163 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1164 CCValAssign &VA = ArgLocs[i];
1165 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1166 // places.
1167 assert(VA.getValNo() != LastVal &&
1168 "Don't support value assigned to multiple locs yet");
1169 LastVal = VA.getValNo();
1170
1171 if (VA.isRegLoc()) {
1172 MVT::ValueType RegVT = VA.getLocVT();
1173 TargetRegisterClass *RC;
1174 if (RegVT == MVT::i32)
1175 RC = X86::GR32RegisterClass;
1176 else {
1177 assert(MVT::isVector(RegVT));
1178 RC = X86::VR128RegisterClass;
1179 }
1180
1181 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1182 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1183
1184 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1185 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1186 // right size.
1187 if (VA.getLocInfo() == CCValAssign::SExt)
1188 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1189 DAG.getValueType(VA.getValVT()));
1190 else if (VA.getLocInfo() == CCValAssign::ZExt)
1191 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1192 DAG.getValueType(VA.getValVT()));
1193
1194 if (VA.getLocInfo() != CCValAssign::Full)
1195 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1196
1197 ArgValues.push_back(ArgValue);
1198 } else {
1199 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001200 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001201 }
1202 }
1203
1204 ArgValues.push_back(Root);
1205
1206 unsigned StackSize = CCInfo.getNextStackOffset();
1207
1208 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1209 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001210 // arguments and the arguments after the retaddr has been pushed are
1211 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001212 if ((StackSize & 7) == 0)
1213 StackSize += 4;
1214 }
1215
1216 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1217 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001218 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1219 BytesCallerReserves = 0;
1220
Anton Korobeynikove844e472007-08-15 17:12:32 +00001221 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1222 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001223
1224 // Return the new list of results.
1225 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1226 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1227}
1228
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001229SDOperand
1230X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1231 const SDOperand &StackPtr,
1232 const CCValAssign &VA,
1233 SDOperand Chain,
1234 SDOperand Arg) {
1235 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1236 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1237 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1238 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1239 if (Flags & ISD::ParamFlags::ByVal) {
1240 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1241 ISD::ParamFlags::ByValAlignOffs);
1242
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001243 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1244 ISD::ParamFlags::ByValSizeOffs;
1245
1246 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1247 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1248
1249 return DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, PtrOff, Arg, SizeNode,
1250 AlignNode);
1251 } else {
1252 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1253 }
1254}
1255
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001256SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1257 unsigned CC) {
1258 SDOperand Chain = Op.getOperand(0);
1259 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1260 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1261 SDOperand Callee = Op.getOperand(4);
1262
1263 // Analyze operands of the call, assigning locations to each operand.
1264 SmallVector<CCValAssign, 16> ArgLocs;
1265 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1266 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1267
1268 // Get a count of how many bytes are to be pushed on the stack.
1269 unsigned NumBytes = CCInfo.getNextStackOffset();
1270
1271 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1272 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001273 // arguments and the arguments after the retaddr has been pushed are
1274 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001275 if ((NumBytes & 7) == 0)
1276 NumBytes += 4;
1277 }
1278
1279 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1280
1281 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1282 SmallVector<SDOperand, 8> MemOpChains;
1283
1284 SDOperand StackPtr;
1285
1286 // Walk the register/memloc assignments, inserting copies/loads.
1287 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1288 CCValAssign &VA = ArgLocs[i];
1289 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1290
1291 // Promote the value if needed.
1292 switch (VA.getLocInfo()) {
1293 default: assert(0 && "Unknown loc info!");
1294 case CCValAssign::Full: break;
1295 case CCValAssign::SExt:
1296 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1297 break;
1298 case CCValAssign::ZExt:
1299 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1300 break;
1301 case CCValAssign::AExt:
1302 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1303 break;
1304 }
1305
1306 if (VA.isRegLoc()) {
1307 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1308 } else {
1309 assert(VA.isMemLoc());
1310 if (StackPtr.Val == 0)
1311 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001312
1313 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1314 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001315 }
1316 }
1317
1318 if (!MemOpChains.empty())
1319 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1320 &MemOpChains[0], MemOpChains.size());
1321
1322 // Build a sequence of copy-to-reg nodes chained together with token chain
1323 // and flag operands which copy the outgoing args into registers.
1324 SDOperand InFlag;
1325 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1326 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1327 InFlag);
1328 InFlag = Chain.getValue(1);
1329 }
1330
1331 // If the callee is a GlobalAddress node (quite common, every direct call is)
1332 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1333 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1334 // We should use extra load for direct calls to dllimported functions in
1335 // non-JIT mode.
1336 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1337 getTargetMachine(), true))
1338 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1339 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1340 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1341
1342 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1343 // GOT pointer.
1344 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1345 Subtarget->isPICStyleGOT()) {
1346 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1347 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1348 InFlag);
1349 InFlag = Chain.getValue(1);
1350 }
1351
1352 // Returns a chain & a flag for retval copy to use.
1353 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1354 SmallVector<SDOperand, 8> Ops;
1355 Ops.push_back(Chain);
1356 Ops.push_back(Callee);
1357
1358 // Add argument registers to the end of the list so that they are known live
1359 // into the call.
1360 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1361 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1362 RegsToPass[i].second.getValueType()));
1363
1364 // Add an implicit use GOT pointer in EBX.
1365 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1366 Subtarget->isPICStyleGOT())
1367 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1368
1369 if (InFlag.Val)
1370 Ops.push_back(InFlag);
1371
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001372 assert(isTailCall==false && "no tail call here");
1373 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374 NodeTys, &Ops[0], Ops.size());
1375 InFlag = Chain.getValue(1);
1376
1377 // Returns a flag for retval copy to use.
1378 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1379 Ops.clear();
1380 Ops.push_back(Chain);
1381 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1382 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1383 Ops.push_back(InFlag);
1384 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1385 InFlag = Chain.getValue(1);
1386
1387 // Handle result values, copying them out of physregs into vregs that we
1388 // return.
1389 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1390}
1391
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001392//===----------------------------------------------------------------------===//
1393// Fast Calling Convention (tail call) implementation
1394//===----------------------------------------------------------------------===//
1395
1396// Like std call, callee cleans arguments, convention except that ECX is
1397// reserved for storing the tail called function address. Only 2 registers are
1398// free for argument passing (inreg). Tail call optimization is performed
1399// provided:
1400// * tailcallopt is enabled
1401// * caller/callee are fastcc
1402// * elf/pic is disabled OR
1403// * elf/pic enabled + callee is in module + callee has
1404// visibility protected or hidden
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001405// To keep the stack aligned according to platform abi the function
1406// GetAlignedArgumentStackSize ensures that argument delta is always multiples
1407// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001408// If a tail called function callee has more arguments than the caller the
1409// caller needs to make sure that there is room to move the RETADDR to. This is
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001410// achieved by reserving an area the size of the argument delta right after the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001411// original REtADDR, but before the saved framepointer or the spilled registers
1412// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1413// stack layout:
1414// arg1
1415// arg2
1416// RETADDR
1417// [ new RETADDR
1418// move area ]
1419// (possible EBP)
1420// ESI
1421// EDI
1422// local1 ..
1423
1424/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1425/// for a 16 byte align requirement.
1426unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1427 SelectionDAG& DAG) {
1428 if (PerformTailCallOpt) {
1429 MachineFunction &MF = DAG.getMachineFunction();
1430 const TargetMachine &TM = MF.getTarget();
1431 const TargetFrameInfo &TFI = *TM.getFrameInfo();
1432 unsigned StackAlignment = TFI.getStackAlignment();
1433 uint64_t AlignMask = StackAlignment - 1;
1434 int64_t Offset = StackSize;
1435 unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1436 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1437 // Number smaller than 12 so just add the difference.
1438 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1439 } else {
1440 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1441 Offset = ((~AlignMask) & Offset) + StackAlignment +
1442 (StackAlignment-SlotSize);
1443 }
1444 StackSize = Offset;
1445 }
1446 return StackSize;
1447}
1448
1449/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1450// following the call is a return. A function is eligible if caller/callee
1451// calling conventions match, currently only fastcc supports tail calls, and the
1452// function CALL is immediatly followed by a RET.
1453bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1454 SDOperand Ret,
1455 SelectionDAG& DAG) const {
1456 bool IsEligible = false;
1457
1458 // Check whether CALL node immediatly preceeds the RET node and whether the
1459 // return uses the result of the node or is a void return.
1460 if ((Ret.getNumOperands() == 1 &&
1461 (Ret.getOperand(0)== SDOperand(Call.Val,1) ||
1462 Ret.getOperand(0)== SDOperand(Call.Val,0))) ||
1463 (Ret.getOperand(0)== SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1464 Ret.getOperand(1)== SDOperand(Call.Val,0))) {
1465 MachineFunction &MF = DAG.getMachineFunction();
1466 unsigned CallerCC = MF.getFunction()->getCallingConv();
1467 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1468 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1469 SDOperand Callee = Call.getOperand(4);
1470 // On elf/pic %ebx needs to be livein.
1471 if(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1472 Subtarget->isPICStyleGOT()) {
1473 // Can only do local tail calls with PIC.
1474 GlobalValue * GV = 0;
1475 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1476 if(G != 0 &&
1477 (GV = G->getGlobal()) &&
1478 (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1479 IsEligible=true;
1480 } else {
1481 IsEligible=true;
1482 }
1483 }
1484 }
1485 return IsEligible;
1486}
1487
1488SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1489 SelectionDAG &DAG,
1490 unsigned CC) {
1491 SDOperand Chain = Op.getOperand(0);
1492 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1493 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1494 SDOperand Callee = Op.getOperand(4);
1495 bool is64Bit = Subtarget->is64Bit();
1496
1497 assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1498
1499 // Analyze operands of the call, assigning locations to each operand.
1500 SmallVector<CCValAssign, 16> ArgLocs;
1501 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1502 if (is64Bit)
1503 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1504 else
1505 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1506
1507
1508 // Lower arguments at fp - stackoffset + fpdiff.
1509 MachineFunction &MF = DAG.getMachineFunction();
1510
1511 unsigned NumBytesToBePushed =
1512 GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1513
1514 unsigned NumBytesCallerPushed =
1515 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1516 int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1517
1518 // Set the delta of movement of the returnaddr stackslot.
1519 // But only set if delta is greater than previous delta.
1520 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1521 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1522
1523 // Adjust the ret address stack slot.
1524 if (FPDiff) {
1525 MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
1526 SDOperand RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1527 RetAddrFrIdx =
1528 DAG.getLoad(VT, DAG.getEntryNode(),RetAddrFrIdx, NULL, 0);
1529 // Emit a store of the saved ret value to the new location.
1530 int SlotSize = is64Bit ? 8 : 4;
1531 int NewReturnAddrFI =
1532 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1533 SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1534 Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1535 }
1536
1537 Chain = DAG.
1538 getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1539
1540 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1541 SmallVector<SDOperand, 8> MemOpChains;
1542 SmallVector<SDOperand, 8> MemOpChains2;
1543 SDOperand FramePtr, StackPtr;
1544 SDOperand PtrOff;
1545 SDOperand FIN;
1546 int FI = 0;
1547
1548 // Walk the register/memloc assignments, inserting copies/loads. Lower
1549 // arguments first to the stack slot where they would normally - in case of a
1550 // normal function call - be.
1551 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1552 CCValAssign &VA = ArgLocs[i];
1553 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1554
1555 // Promote the value if needed.
1556 switch (VA.getLocInfo()) {
1557 default: assert(0 && "Unknown loc info!");
1558 case CCValAssign::Full: break;
1559 case CCValAssign::SExt:
1560 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1561 break;
1562 case CCValAssign::ZExt:
1563 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1564 break;
1565 case CCValAssign::AExt:
1566 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1567 break;
1568 }
1569
1570 if (VA.isRegLoc()) {
1571 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1572 } else {
1573 assert(VA.isMemLoc());
1574 if (StackPtr.Val == 0)
1575 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1576
1577 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1578 Arg));
1579 }
1580 }
1581
1582 if (!MemOpChains.empty())
1583 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1584 &MemOpChains[0], MemOpChains.size());
1585
1586 // Build a sequence of copy-to-reg nodes chained together with token chain
1587 // and flag operands which copy the outgoing args into registers.
1588 SDOperand InFlag;
1589 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1590 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1591 InFlag);
1592 InFlag = Chain.getValue(1);
1593 }
1594 InFlag = SDOperand();
1595 // Copy from stack slots to stack slot of a tail called function. This needs
1596 // to be done because if we would lower the arguments directly to their real
1597 // stack slot we might end up overwriting each other.
1598 // TODO: To make this more efficient (sometimes saving a store/load) we could
1599 // analyse the arguments and emit this store/load/store sequence only for
1600 // arguments which would be overwritten otherwise.
1601 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1602 CCValAssign &VA = ArgLocs[i];
1603 if (!VA.isRegLoc()) {
1604 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1605 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1606
1607 // Get source stack slot.
1608 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1609 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1610 // Create frame index.
1611 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1612 uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1613 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1614 FIN = DAG.getFrameIndex(FI, MVT::i32);
1615 if (Flags & ISD::ParamFlags::ByVal) {
1616 // Copy relative to framepointer.
1617 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1618 ISD::ParamFlags::ByValAlignOffs);
1619
1620 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1621 ISD::ParamFlags::ByValSizeOffs;
1622
1623 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1624 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1625 // Copy relative to framepointer.
1626 MemOpChains2.push_back(DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, FIN,
1627 PtrOff, SizeNode, AlignNode));
1628 } else {
1629 SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1630 // Store relative to framepointer.
1631 MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1632 }
1633 }
1634 }
1635
1636 if (!MemOpChains2.empty())
1637 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1638 &MemOpChains2[0], MemOpChains.size());
1639
1640 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1641 // GOT pointer.
1642 // Does not work with tail call since ebx is not restored correctly by
1643 // tailcaller. TODO: at least for x86 - verify for x86-64
1644
1645 // If the callee is a GlobalAddress node (quite common, every direct call is)
1646 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1647 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1648 // We should use extra load for direct calls to dllimported functions in
1649 // non-JIT mode.
1650 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1651 getTargetMachine(), true))
1652 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1653 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1654 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1655 else {
1656 assert(Callee.getOpcode() == ISD::LOAD &&
1657 "Function destination must be loaded into virtual register");
1658 unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1659
1660 Chain = DAG.getCopyToReg(Chain,
1661 DAG.getRegister(Opc, getPointerTy()) ,
1662 Callee,InFlag);
1663 Callee = DAG.getRegister(Opc, getPointerTy());
1664 // Add register as live out.
1665 DAG.getMachineFunction().addLiveOut(Opc);
1666 }
1667
1668 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1669 SmallVector<SDOperand, 8> Ops;
1670
1671 Ops.push_back(Chain);
1672 Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1673 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1674 if (InFlag.Val)
1675 Ops.push_back(InFlag);
1676 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1677 InFlag = Chain.getValue(1);
1678
1679 // Returns a chain & a flag for retval copy to use.
1680 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1681 Ops.clear();
1682 Ops.push_back(Chain);
1683 Ops.push_back(Callee);
1684 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1685 // Add argument registers to the end of the list so that they are known live
1686 // into the call.
1687 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1688 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1689 RegsToPass[i].second.getValueType()));
1690 if (InFlag.Val)
1691 Ops.push_back(InFlag);
1692 assert(InFlag.Val &&
1693 "Flag must be set. Depend on flag being set in LowerRET");
1694 Chain = DAG.getNode(X86ISD::TAILCALL,
1695 Op.Val->getVTList(), &Ops[0], Ops.size());
1696
1697 return SDOperand(Chain.Val, Op.ResNo);
1698}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699
1700//===----------------------------------------------------------------------===//
1701// X86-64 C Calling Convention implementation
1702//===----------------------------------------------------------------------===//
1703
1704SDOperand
1705X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1706 MachineFunction &MF = DAG.getMachineFunction();
1707 MachineFrameInfo *MFI = MF.getFrameInfo();
1708 SDOperand Root = Op.getOperand(0);
1709 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001710 unsigned CC= MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001711
1712 static const unsigned GPR64ArgRegs[] = {
1713 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1714 };
1715 static const unsigned XMMArgRegs[] = {
1716 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1717 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1718 };
1719
1720
1721 // Assign locations to all of the incoming arguments.
1722 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001723 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001724 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001725 if (CC == CallingConv::Fast && PerformTailCallOpt)
1726 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1727 else
1728 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001729
1730 SmallVector<SDOperand, 8> ArgValues;
1731 unsigned LastVal = ~0U;
1732 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1733 CCValAssign &VA = ArgLocs[i];
1734 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1735 // places.
1736 assert(VA.getValNo() != LastVal &&
1737 "Don't support value assigned to multiple locs yet");
1738 LastVal = VA.getValNo();
1739
1740 if (VA.isRegLoc()) {
1741 MVT::ValueType RegVT = VA.getLocVT();
1742 TargetRegisterClass *RC;
1743 if (RegVT == MVT::i32)
1744 RC = X86::GR32RegisterClass;
1745 else if (RegVT == MVT::i64)
1746 RC = X86::GR64RegisterClass;
1747 else if (RegVT == MVT::f32)
1748 RC = X86::FR32RegisterClass;
1749 else if (RegVT == MVT::f64)
1750 RC = X86::FR64RegisterClass;
1751 else {
1752 assert(MVT::isVector(RegVT));
1753 if (MVT::getSizeInBits(RegVT) == 64) {
1754 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1755 RegVT = MVT::i64;
1756 } else
1757 RC = X86::VR128RegisterClass;
1758 }
1759
1760 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1761 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1762
1763 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1764 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1765 // right size.
1766 if (VA.getLocInfo() == CCValAssign::SExt)
1767 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1768 DAG.getValueType(VA.getValVT()));
1769 else if (VA.getLocInfo() == CCValAssign::ZExt)
1770 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1771 DAG.getValueType(VA.getValVT()));
1772
1773 if (VA.getLocInfo() != CCValAssign::Full)
1774 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1775
1776 // Handle MMX values passed in GPRs.
1777 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1778 MVT::getSizeInBits(RegVT) == 64)
1779 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1780
1781 ArgValues.push_back(ArgValue);
1782 } else {
1783 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001784 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785 }
1786 }
1787
1788 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001789 if (CC==CallingConv::Fast)
1790 StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791
1792 // If the function takes variable number of arguments, make a frame index for
1793 // the start of the first vararg value... for expansion of llvm.va_start.
1794 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001795 assert(CC!=CallingConv::Fast
1796 && "Var arg not supported with calling convention fastcc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1798 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1799
1800 // For X86-64, if there are vararg parameters that are passed via
1801 // registers, then we must store them to their spots on the stack so they
1802 // may be loaded by deferencing the result of va_next.
1803 VarArgsGPOffset = NumIntRegs * 8;
1804 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1805 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1806 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1807
1808 // Store the integer parameter registers.
1809 SmallVector<SDOperand, 8> MemOps;
1810 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1811 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1812 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1813 for (; NumIntRegs != 6; ++NumIntRegs) {
1814 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1815 X86::GR64RegisterClass);
1816 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1817 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1818 MemOps.push_back(Store);
1819 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1820 DAG.getConstant(8, getPointerTy()));
1821 }
1822
1823 // Now store the XMM (fp + vector) parameter registers.
1824 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1825 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1826 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1827 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1828 X86::VR128RegisterClass);
1829 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1830 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1831 MemOps.push_back(Store);
1832 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1833 DAG.getConstant(16, getPointerTy()));
1834 }
1835 if (!MemOps.empty())
1836 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1837 &MemOps[0], MemOps.size());
1838 }
1839
1840 ArgValues.push_back(Root);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001841 // Tail call convention (fastcc) needs callee pop.
1842 if (CC == CallingConv::Fast && PerformTailCallOpt){
1843 BytesToPopOnReturn = StackSize; // Callee pops everything.
1844 BytesCallerReserves = 0;
1845 } else {
1846 BytesToPopOnReturn = 0; // Callee pops nothing.
1847 BytesCallerReserves = StackSize;
1848 }
Anton Korobeynikove844e472007-08-15 17:12:32 +00001849 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1850 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1851
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001852 // Return the new list of results.
1853 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1854 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1855}
1856
1857SDOperand
1858X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1859 unsigned CC) {
1860 SDOperand Chain = Op.getOperand(0);
1861 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001862 SDOperand Callee = Op.getOperand(4);
1863
1864 // Analyze operands of the call, assigning locations to each operand.
1865 SmallVector<CCValAssign, 16> ArgLocs;
1866 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001867 if (CC==CallingConv::Fast)
1868 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1869 else
1870 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001871
1872 // Get a count of how many bytes are to be pushed on the stack.
1873 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001874 if (CC == CallingConv::Fast)
1875 NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1876
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1878
1879 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1880 SmallVector<SDOperand, 8> MemOpChains;
1881
1882 SDOperand StackPtr;
1883
1884 // Walk the register/memloc assignments, inserting copies/loads.
1885 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1886 CCValAssign &VA = ArgLocs[i];
1887 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1888
1889 // Promote the value if needed.
1890 switch (VA.getLocInfo()) {
1891 default: assert(0 && "Unknown loc info!");
1892 case CCValAssign::Full: break;
1893 case CCValAssign::SExt:
1894 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1895 break;
1896 case CCValAssign::ZExt:
1897 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1898 break;
1899 case CCValAssign::AExt:
1900 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1901 break;
1902 }
1903
1904 if (VA.isRegLoc()) {
1905 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1906 } else {
1907 assert(VA.isMemLoc());
1908 if (StackPtr.Val == 0)
1909 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001910
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001911 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1912 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001913 }
1914 }
1915
1916 if (!MemOpChains.empty())
1917 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1918 &MemOpChains[0], MemOpChains.size());
1919
1920 // Build a sequence of copy-to-reg nodes chained together with token chain
1921 // and flag operands which copy the outgoing args into registers.
1922 SDOperand InFlag;
1923 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1924 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1925 InFlag);
1926 InFlag = Chain.getValue(1);
1927 }
1928
1929 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001930 assert ( CallingConv::Fast != CC &&
1931 "Var args not supported with calling convention fastcc");
1932
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001933 // From AMD64 ABI document:
1934 // For calls that may call functions that use varargs or stdargs
1935 // (prototype-less calls or calls to functions containing ellipsis (...) in
1936 // the declaration) %al is used as hidden argument to specify the number
1937 // of SSE registers used. The contents of %al do not need to match exactly
1938 // the number of registers, but must be an ubound on the number of SSE
1939 // registers used and is in the range 0 - 8 inclusive.
1940
1941 // Count the number of XMM registers allocated.
1942 static const unsigned XMMArgRegs[] = {
1943 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1944 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1945 };
1946 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1947
1948 Chain = DAG.getCopyToReg(Chain, X86::AL,
1949 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1950 InFlag = Chain.getValue(1);
1951 }
1952
1953 // If the callee is a GlobalAddress node (quite common, every direct call is)
1954 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1955 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1956 // We should use extra load for direct calls to dllimported functions in
1957 // non-JIT mode.
1958 if (getTargetMachine().getCodeModel() != CodeModel::Large
1959 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1960 getTargetMachine(), true))
1961 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1962 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1963 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1964 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1965
1966 // Returns a chain & a flag for retval copy to use.
1967 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1968 SmallVector<SDOperand, 8> Ops;
1969 Ops.push_back(Chain);
1970 Ops.push_back(Callee);
1971
1972 // Add argument registers to the end of the list so that they are known live
1973 // into the call.
1974 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1975 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1976 RegsToPass[i].second.getValueType()));
1977
1978 if (InFlag.Val)
1979 Ops.push_back(InFlag);
1980
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001981 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001982 NodeTys, &Ops[0], Ops.size());
1983 InFlag = Chain.getValue(1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001984 int NumBytesForCalleeToPush = 0;
1985 if (CC==CallingConv::Fast) {
1986 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
1987
1988 } else {
1989 NumBytesForCalleeToPush = 0; // Callee pops nothing.
1990 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001991 // Returns a flag for retval copy to use.
1992 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1993 Ops.clear();
1994 Ops.push_back(Chain);
1995 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001996 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001997 Ops.push_back(InFlag);
1998 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1999 InFlag = Chain.getValue(1);
2000
2001 // Handle result values, copying them out of physregs into vregs that we
2002 // return.
2003 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2004}
2005
2006
2007//===----------------------------------------------------------------------===//
2008// Other Lowering Hooks
2009//===----------------------------------------------------------------------===//
2010
2011
2012SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00002013 MachineFunction &MF = DAG.getMachineFunction();
2014 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2015 int ReturnAddrIndex = FuncInfo->getRAIndex();
2016
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002017 if (ReturnAddrIndex == 0) {
2018 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002019 if (Subtarget->is64Bit())
2020 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2021 else
2022 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00002023
2024 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002025 }
2026
2027 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2028}
2029
2030
2031
2032/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2033/// specific condition code. It returns a false if it cannot do a direct
2034/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
2035/// needed.
2036static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2037 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2038 SelectionDAG &DAG) {
2039 X86CC = X86::COND_INVALID;
2040 if (!isFP) {
2041 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2042 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2043 // X > -1 -> X == 0, jump !sign.
2044 RHS = DAG.getConstant(0, RHS.getValueType());
2045 X86CC = X86::COND_NS;
2046 return true;
2047 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2048 // X < 0 -> X == 0, jump on sign.
2049 X86CC = X86::COND_S;
2050 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00002051 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2052 // X < 1 -> X <= 0
2053 RHS = DAG.getConstant(0, RHS.getValueType());
2054 X86CC = X86::COND_LE;
2055 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002056 }
2057 }
2058
2059 switch (SetCCOpcode) {
2060 default: break;
2061 case ISD::SETEQ: X86CC = X86::COND_E; break;
2062 case ISD::SETGT: X86CC = X86::COND_G; break;
2063 case ISD::SETGE: X86CC = X86::COND_GE; break;
2064 case ISD::SETLT: X86CC = X86::COND_L; break;
2065 case ISD::SETLE: X86CC = X86::COND_LE; break;
2066 case ISD::SETNE: X86CC = X86::COND_NE; break;
2067 case ISD::SETULT: X86CC = X86::COND_B; break;
2068 case ISD::SETUGT: X86CC = X86::COND_A; break;
2069 case ISD::SETULE: X86CC = X86::COND_BE; break;
2070 case ISD::SETUGE: X86CC = X86::COND_AE; break;
2071 }
2072 } else {
2073 // On a floating point condition, the flags are set as follows:
2074 // ZF PF CF op
2075 // 0 | 0 | 0 | X > Y
2076 // 0 | 0 | 1 | X < Y
2077 // 1 | 0 | 0 | X == Y
2078 // 1 | 1 | 1 | unordered
2079 bool Flip = false;
2080 switch (SetCCOpcode) {
2081 default: break;
2082 case ISD::SETUEQ:
2083 case ISD::SETEQ: X86CC = X86::COND_E; break;
2084 case ISD::SETOLT: Flip = true; // Fallthrough
2085 case ISD::SETOGT:
2086 case ISD::SETGT: X86CC = X86::COND_A; break;
2087 case ISD::SETOLE: Flip = true; // Fallthrough
2088 case ISD::SETOGE:
2089 case ISD::SETGE: X86CC = X86::COND_AE; break;
2090 case ISD::SETUGT: Flip = true; // Fallthrough
2091 case ISD::SETULT:
2092 case ISD::SETLT: X86CC = X86::COND_B; break;
2093 case ISD::SETUGE: Flip = true; // Fallthrough
2094 case ISD::SETULE:
2095 case ISD::SETLE: X86CC = X86::COND_BE; break;
2096 case ISD::SETONE:
2097 case ISD::SETNE: X86CC = X86::COND_NE; break;
2098 case ISD::SETUO: X86CC = X86::COND_P; break;
2099 case ISD::SETO: X86CC = X86::COND_NP; break;
2100 }
2101 if (Flip)
2102 std::swap(LHS, RHS);
2103 }
2104
2105 return X86CC != X86::COND_INVALID;
2106}
2107
2108/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2109/// code. Current x86 isa includes the following FP cmov instructions:
2110/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2111static bool hasFPCMov(unsigned X86CC) {
2112 switch (X86CC) {
2113 default:
2114 return false;
2115 case X86::COND_B:
2116 case X86::COND_BE:
2117 case X86::COND_E:
2118 case X86::COND_P:
2119 case X86::COND_A:
2120 case X86::COND_AE:
2121 case X86::COND_NE:
2122 case X86::COND_NP:
2123 return true;
2124 }
2125}
2126
2127/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
2128/// true if Op is undef or if its value falls within the specified range (L, H].
2129static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2130 if (Op.getOpcode() == ISD::UNDEF)
2131 return true;
2132
2133 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2134 return (Val >= Low && Val < Hi);
2135}
2136
2137/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
2138/// true if Op is undef or if its value equal to the specified value.
2139static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2140 if (Op.getOpcode() == ISD::UNDEF)
2141 return true;
2142 return cast<ConstantSDNode>(Op)->getValue() == Val;
2143}
2144
2145/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2146/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2147bool X86::isPSHUFDMask(SDNode *N) {
2148 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2149
Dan Gohman7dc19012007-08-02 21:17:01 +00002150 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002151 return false;
2152
2153 // Check if the value doesn't reference the second vector.
2154 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2155 SDOperand Arg = N->getOperand(i);
2156 if (Arg.getOpcode() == ISD::UNDEF) continue;
2157 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00002158 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002159 return false;
2160 }
2161
2162 return true;
2163}
2164
2165/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2166/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2167bool X86::isPSHUFHWMask(SDNode *N) {
2168 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2169
2170 if (N->getNumOperands() != 8)
2171 return false;
2172
2173 // Lower quadword copied in order.
2174 for (unsigned i = 0; i != 4; ++i) {
2175 SDOperand Arg = N->getOperand(i);
2176 if (Arg.getOpcode() == ISD::UNDEF) continue;
2177 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2178 if (cast<ConstantSDNode>(Arg)->getValue() != i)
2179 return false;
2180 }
2181
2182 // Upper quadword shuffled.
2183 for (unsigned i = 4; i != 8; ++i) {
2184 SDOperand Arg = N->getOperand(i);
2185 if (Arg.getOpcode() == ISD::UNDEF) continue;
2186 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2187 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2188 if (Val < 4 || Val > 7)
2189 return false;
2190 }
2191
2192 return true;
2193}
2194
2195/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2196/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2197bool X86::isPSHUFLWMask(SDNode *N) {
2198 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2199
2200 if (N->getNumOperands() != 8)
2201 return false;
2202
2203 // Upper quadword copied in order.
2204 for (unsigned i = 4; i != 8; ++i)
2205 if (!isUndefOrEqual(N->getOperand(i), i))
2206 return false;
2207
2208 // Lower quadword shuffled.
2209 for (unsigned i = 0; i != 4; ++i)
2210 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2211 return false;
2212
2213 return true;
2214}
2215
2216/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2217/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2218static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2219 if (NumElems != 2 && NumElems != 4) return false;
2220
2221 unsigned Half = NumElems / 2;
2222 for (unsigned i = 0; i < Half; ++i)
2223 if (!isUndefOrInRange(Elems[i], 0, NumElems))
2224 return false;
2225 for (unsigned i = Half; i < NumElems; ++i)
2226 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2227 return false;
2228
2229 return true;
2230}
2231
2232bool X86::isSHUFPMask(SDNode *N) {
2233 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2234 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2235}
2236
2237/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2238/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2239/// half elements to come from vector 1 (which would equal the dest.) and
2240/// the upper half to come from vector 2.
2241static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2242 if (NumOps != 2 && NumOps != 4) return false;
2243
2244 unsigned Half = NumOps / 2;
2245 for (unsigned i = 0; i < Half; ++i)
2246 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2247 return false;
2248 for (unsigned i = Half; i < NumOps; ++i)
2249 if (!isUndefOrInRange(Ops[i], 0, NumOps))
2250 return false;
2251 return true;
2252}
2253
2254static bool isCommutedSHUFP(SDNode *N) {
2255 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2256 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2257}
2258
2259/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2260/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2261bool X86::isMOVHLPSMask(SDNode *N) {
2262 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2263
2264 if (N->getNumOperands() != 4)
2265 return false;
2266
2267 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2268 return isUndefOrEqual(N->getOperand(0), 6) &&
2269 isUndefOrEqual(N->getOperand(1), 7) &&
2270 isUndefOrEqual(N->getOperand(2), 2) &&
2271 isUndefOrEqual(N->getOperand(3), 3);
2272}
2273
2274/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2275/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2276/// <2, 3, 2, 3>
2277bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2278 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2279
2280 if (N->getNumOperands() != 4)
2281 return false;
2282
2283 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2284 return isUndefOrEqual(N->getOperand(0), 2) &&
2285 isUndefOrEqual(N->getOperand(1), 3) &&
2286 isUndefOrEqual(N->getOperand(2), 2) &&
2287 isUndefOrEqual(N->getOperand(3), 3);
2288}
2289
2290/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2291/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2292bool X86::isMOVLPMask(SDNode *N) {
2293 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2294
2295 unsigned NumElems = N->getNumOperands();
2296 if (NumElems != 2 && NumElems != 4)
2297 return false;
2298
2299 for (unsigned i = 0; i < NumElems/2; ++i)
2300 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2301 return false;
2302
2303 for (unsigned i = NumElems/2; i < NumElems; ++i)
2304 if (!isUndefOrEqual(N->getOperand(i), i))
2305 return false;
2306
2307 return true;
2308}
2309
2310/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2311/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2312/// and MOVLHPS.
2313bool X86::isMOVHPMask(SDNode *N) {
2314 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2315
2316 unsigned NumElems = N->getNumOperands();
2317 if (NumElems != 2 && NumElems != 4)
2318 return false;
2319
2320 for (unsigned i = 0; i < NumElems/2; ++i)
2321 if (!isUndefOrEqual(N->getOperand(i), i))
2322 return false;
2323
2324 for (unsigned i = 0; i < NumElems/2; ++i) {
2325 SDOperand Arg = N->getOperand(i + NumElems/2);
2326 if (!isUndefOrEqual(Arg, i + NumElems))
2327 return false;
2328 }
2329
2330 return true;
2331}
2332
2333/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2334/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2335bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2336 bool V2IsSplat = false) {
2337 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2338 return false;
2339
2340 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2341 SDOperand BitI = Elts[i];
2342 SDOperand BitI1 = Elts[i+1];
2343 if (!isUndefOrEqual(BitI, j))
2344 return false;
2345 if (V2IsSplat) {
2346 if (isUndefOrEqual(BitI1, NumElts))
2347 return false;
2348 } else {
2349 if (!isUndefOrEqual(BitI1, j + NumElts))
2350 return false;
2351 }
2352 }
2353
2354 return true;
2355}
2356
2357bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2358 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2359 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2360}
2361
2362/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2363/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2364bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2365 bool V2IsSplat = false) {
2366 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2367 return false;
2368
2369 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2370 SDOperand BitI = Elts[i];
2371 SDOperand BitI1 = Elts[i+1];
2372 if (!isUndefOrEqual(BitI, j + NumElts/2))
2373 return false;
2374 if (V2IsSplat) {
2375 if (isUndefOrEqual(BitI1, NumElts))
2376 return false;
2377 } else {
2378 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2379 return false;
2380 }
2381 }
2382
2383 return true;
2384}
2385
2386bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2387 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2388 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2389}
2390
2391/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2392/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2393/// <0, 0, 1, 1>
2394bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2395 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2396
2397 unsigned NumElems = N->getNumOperands();
2398 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2399 return false;
2400
2401 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2402 SDOperand BitI = N->getOperand(i);
2403 SDOperand BitI1 = N->getOperand(i+1);
2404
2405 if (!isUndefOrEqual(BitI, j))
2406 return false;
2407 if (!isUndefOrEqual(BitI1, j))
2408 return false;
2409 }
2410
2411 return true;
2412}
2413
2414/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2415/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2416/// <2, 2, 3, 3>
2417bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2418 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2419
2420 unsigned NumElems = N->getNumOperands();
2421 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2422 return false;
2423
2424 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2425 SDOperand BitI = N->getOperand(i);
2426 SDOperand BitI1 = N->getOperand(i + 1);
2427
2428 if (!isUndefOrEqual(BitI, j))
2429 return false;
2430 if (!isUndefOrEqual(BitI1, j))
2431 return false;
2432 }
2433
2434 return true;
2435}
2436
2437/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2438/// specifies a shuffle of elements that is suitable for input to MOVSS,
2439/// MOVSD, and MOVD, i.e. setting the lowest element.
2440static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2441 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2442 return false;
2443
2444 if (!isUndefOrEqual(Elts[0], NumElts))
2445 return false;
2446
2447 for (unsigned i = 1; i < NumElts; ++i) {
2448 if (!isUndefOrEqual(Elts[i], i))
2449 return false;
2450 }
2451
2452 return true;
2453}
2454
2455bool X86::isMOVLMask(SDNode *N) {
2456 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2457 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2458}
2459
2460/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2461/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2462/// element of vector 2 and the other elements to come from vector 1 in order.
2463static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2464 bool V2IsSplat = false,
2465 bool V2IsUndef = false) {
2466 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2467 return false;
2468
2469 if (!isUndefOrEqual(Ops[0], 0))
2470 return false;
2471
2472 for (unsigned i = 1; i < NumOps; ++i) {
2473 SDOperand Arg = Ops[i];
2474 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2475 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2476 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2477 return false;
2478 }
2479
2480 return true;
2481}
2482
2483static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2484 bool V2IsUndef = false) {
2485 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2486 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2487 V2IsSplat, V2IsUndef);
2488}
2489
2490/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2491/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2492bool X86::isMOVSHDUPMask(SDNode *N) {
2493 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2494
2495 if (N->getNumOperands() != 4)
2496 return false;
2497
2498 // Expect 1, 1, 3, 3
2499 for (unsigned i = 0; i < 2; ++i) {
2500 SDOperand Arg = N->getOperand(i);
2501 if (Arg.getOpcode() == ISD::UNDEF) continue;
2502 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2503 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2504 if (Val != 1) return false;
2505 }
2506
2507 bool HasHi = false;
2508 for (unsigned i = 2; i < 4; ++i) {
2509 SDOperand Arg = N->getOperand(i);
2510 if (Arg.getOpcode() == ISD::UNDEF) continue;
2511 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2512 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2513 if (Val != 3) return false;
2514 HasHi = true;
2515 }
2516
2517 // Don't use movshdup if it can be done with a shufps.
2518 return HasHi;
2519}
2520
2521/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2522/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2523bool X86::isMOVSLDUPMask(SDNode *N) {
2524 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2525
2526 if (N->getNumOperands() != 4)
2527 return false;
2528
2529 // Expect 0, 0, 2, 2
2530 for (unsigned i = 0; i < 2; ++i) {
2531 SDOperand Arg = N->getOperand(i);
2532 if (Arg.getOpcode() == ISD::UNDEF) continue;
2533 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2534 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2535 if (Val != 0) return false;
2536 }
2537
2538 bool HasHi = false;
2539 for (unsigned i = 2; i < 4; ++i) {
2540 SDOperand Arg = N->getOperand(i);
2541 if (Arg.getOpcode() == ISD::UNDEF) continue;
2542 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2543 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2544 if (Val != 2) return false;
2545 HasHi = true;
2546 }
2547
2548 // Don't use movshdup if it can be done with a shufps.
2549 return HasHi;
2550}
2551
2552/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2553/// specifies a identity operation on the LHS or RHS.
2554static bool isIdentityMask(SDNode *N, bool RHS = false) {
2555 unsigned NumElems = N->getNumOperands();
2556 for (unsigned i = 0; i < NumElems; ++i)
2557 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2558 return false;
2559 return true;
2560}
2561
2562/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2563/// a splat of a single element.
2564static bool isSplatMask(SDNode *N) {
2565 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2566
2567 // This is a splat operation if each element of the permute is the same, and
2568 // if the value doesn't reference the second vector.
2569 unsigned NumElems = N->getNumOperands();
2570 SDOperand ElementBase;
2571 unsigned i = 0;
2572 for (; i != NumElems; ++i) {
2573 SDOperand Elt = N->getOperand(i);
2574 if (isa<ConstantSDNode>(Elt)) {
2575 ElementBase = Elt;
2576 break;
2577 }
2578 }
2579
2580 if (!ElementBase.Val)
2581 return false;
2582
2583 for (; i != NumElems; ++i) {
2584 SDOperand Arg = N->getOperand(i);
2585 if (Arg.getOpcode() == ISD::UNDEF) continue;
2586 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2587 if (Arg != ElementBase) return false;
2588 }
2589
2590 // Make sure it is a splat of the first vector operand.
2591 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2592}
2593
2594/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2595/// a splat of a single element and it's a 2 or 4 element mask.
2596bool X86::isSplatMask(SDNode *N) {
2597 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2598
2599 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2600 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2601 return false;
2602 return ::isSplatMask(N);
2603}
2604
2605/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2606/// specifies a splat of zero element.
2607bool X86::isSplatLoMask(SDNode *N) {
2608 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2609
2610 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2611 if (!isUndefOrEqual(N->getOperand(i), 0))
2612 return false;
2613 return true;
2614}
2615
2616/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2617/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2618/// instructions.
2619unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2620 unsigned NumOperands = N->getNumOperands();
2621 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2622 unsigned Mask = 0;
2623 for (unsigned i = 0; i < NumOperands; ++i) {
2624 unsigned Val = 0;
2625 SDOperand Arg = N->getOperand(NumOperands-i-1);
2626 if (Arg.getOpcode() != ISD::UNDEF)
2627 Val = cast<ConstantSDNode>(Arg)->getValue();
2628 if (Val >= NumOperands) Val -= NumOperands;
2629 Mask |= Val;
2630 if (i != NumOperands - 1)
2631 Mask <<= Shift;
2632 }
2633
2634 return Mask;
2635}
2636
2637/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2638/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2639/// instructions.
2640unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2641 unsigned Mask = 0;
2642 // 8 nodes, but we only care about the last 4.
2643 for (unsigned i = 7; i >= 4; --i) {
2644 unsigned Val = 0;
2645 SDOperand Arg = N->getOperand(i);
2646 if (Arg.getOpcode() != ISD::UNDEF)
2647 Val = cast<ConstantSDNode>(Arg)->getValue();
2648 Mask |= (Val - 4);
2649 if (i != 4)
2650 Mask <<= 2;
2651 }
2652
2653 return Mask;
2654}
2655
2656/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2657/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2658/// instructions.
2659unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2660 unsigned Mask = 0;
2661 // 8 nodes, but we only care about the first 4.
2662 for (int i = 3; i >= 0; --i) {
2663 unsigned Val = 0;
2664 SDOperand Arg = N->getOperand(i);
2665 if (Arg.getOpcode() != ISD::UNDEF)
2666 Val = cast<ConstantSDNode>(Arg)->getValue();
2667 Mask |= Val;
2668 if (i != 0)
2669 Mask <<= 2;
2670 }
2671
2672 return Mask;
2673}
2674
2675/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2676/// specifies a 8 element shuffle that can be broken into a pair of
2677/// PSHUFHW and PSHUFLW.
2678static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2679 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2680
2681 if (N->getNumOperands() != 8)
2682 return false;
2683
2684 // Lower quadword shuffled.
2685 for (unsigned i = 0; i != 4; ++i) {
2686 SDOperand Arg = N->getOperand(i);
2687 if (Arg.getOpcode() == ISD::UNDEF) continue;
2688 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2689 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2690 if (Val > 4)
2691 return false;
2692 }
2693
2694 // Upper quadword shuffled.
2695 for (unsigned i = 4; i != 8; ++i) {
2696 SDOperand Arg = N->getOperand(i);
2697 if (Arg.getOpcode() == ISD::UNDEF) continue;
2698 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2699 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2700 if (Val < 4 || Val > 7)
2701 return false;
2702 }
2703
2704 return true;
2705}
2706
2707/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2708/// values in ther permute mask.
2709static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2710 SDOperand &V2, SDOperand &Mask,
2711 SelectionDAG &DAG) {
2712 MVT::ValueType VT = Op.getValueType();
2713 MVT::ValueType MaskVT = Mask.getValueType();
2714 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2715 unsigned NumElems = Mask.getNumOperands();
2716 SmallVector<SDOperand, 8> MaskVec;
2717
2718 for (unsigned i = 0; i != NumElems; ++i) {
2719 SDOperand Arg = Mask.getOperand(i);
2720 if (Arg.getOpcode() == ISD::UNDEF) {
2721 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2722 continue;
2723 }
2724 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2725 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2726 if (Val < NumElems)
2727 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2728 else
2729 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2730 }
2731
2732 std::swap(V1, V2);
2733 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2734 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2735}
2736
2737/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2738/// match movhlps. The lower half elements should come from upper half of
2739/// V1 (and in order), and the upper half elements should come from the upper
2740/// half of V2 (and in order).
2741static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2742 unsigned NumElems = Mask->getNumOperands();
2743 if (NumElems != 4)
2744 return false;
2745 for (unsigned i = 0, e = 2; i != e; ++i)
2746 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2747 return false;
2748 for (unsigned i = 2; i != 4; ++i)
2749 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2750 return false;
2751 return true;
2752}
2753
2754/// isScalarLoadToVector - Returns true if the node is a scalar load that
2755/// is promoted to a vector.
2756static inline bool isScalarLoadToVector(SDNode *N) {
2757 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2758 N = N->getOperand(0).Val;
2759 return ISD::isNON_EXTLoad(N);
2760 }
2761 return false;
2762}
2763
2764/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2765/// match movlp{s|d}. The lower half elements should come from lower half of
2766/// V1 (and in order), and the upper half elements should come from the upper
2767/// half of V2 (and in order). And since V1 will become the source of the
2768/// MOVLP, it must be either a vector load or a scalar load to vector.
2769static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2770 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2771 return false;
2772 // Is V2 is a vector load, don't do this transformation. We will try to use
2773 // load folding shufps op.
2774 if (ISD::isNON_EXTLoad(V2))
2775 return false;
2776
2777 unsigned NumElems = Mask->getNumOperands();
2778 if (NumElems != 2 && NumElems != 4)
2779 return false;
2780 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2781 if (!isUndefOrEqual(Mask->getOperand(i), i))
2782 return false;
2783 for (unsigned i = NumElems/2; i != NumElems; ++i)
2784 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2785 return false;
2786 return true;
2787}
2788
2789/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2790/// all the same.
2791static bool isSplatVector(SDNode *N) {
2792 if (N->getOpcode() != ISD::BUILD_VECTOR)
2793 return false;
2794
2795 SDOperand SplatValue = N->getOperand(0);
2796 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2797 if (N->getOperand(i) != SplatValue)
2798 return false;
2799 return true;
2800}
2801
2802/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2803/// to an undef.
2804static bool isUndefShuffle(SDNode *N) {
2805 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2806 return false;
2807
2808 SDOperand V1 = N->getOperand(0);
2809 SDOperand V2 = N->getOperand(1);
2810 SDOperand Mask = N->getOperand(2);
2811 unsigned NumElems = Mask.getNumOperands();
2812 for (unsigned i = 0; i != NumElems; ++i) {
2813 SDOperand Arg = Mask.getOperand(i);
2814 if (Arg.getOpcode() != ISD::UNDEF) {
2815 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2816 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2817 return false;
2818 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2819 return false;
2820 }
2821 }
2822 return true;
2823}
2824
2825/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2826/// constant +0.0.
2827static inline bool isZeroNode(SDOperand Elt) {
2828 return ((isa<ConstantSDNode>(Elt) &&
2829 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2830 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002831 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002832}
2833
2834/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2835/// to an zero vector.
2836static bool isZeroShuffle(SDNode *N) {
2837 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2838 return false;
2839
2840 SDOperand V1 = N->getOperand(0);
2841 SDOperand V2 = N->getOperand(1);
2842 SDOperand Mask = N->getOperand(2);
2843 unsigned NumElems = Mask.getNumOperands();
2844 for (unsigned i = 0; i != NumElems; ++i) {
2845 SDOperand Arg = Mask.getOperand(i);
2846 if (Arg.getOpcode() != ISD::UNDEF) {
2847 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2848 if (Idx < NumElems) {
2849 unsigned Opc = V1.Val->getOpcode();
2850 if (Opc == ISD::UNDEF)
2851 continue;
2852 if (Opc != ISD::BUILD_VECTOR ||
2853 !isZeroNode(V1.Val->getOperand(Idx)))
2854 return false;
2855 } else if (Idx >= NumElems) {
2856 unsigned Opc = V2.Val->getOpcode();
2857 if (Opc == ISD::UNDEF)
2858 continue;
2859 if (Opc != ISD::BUILD_VECTOR ||
2860 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2861 return false;
2862 }
2863 }
2864 }
2865 return true;
2866}
2867
2868/// getZeroVector - Returns a vector of specified type with all zero elements.
2869///
2870static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2871 assert(MVT::isVector(VT) && "Expected a vector type");
2872 unsigned NumElems = MVT::getVectorNumElements(VT);
2873 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2874 bool isFP = MVT::isFloatingPoint(EVT);
2875 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2876 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2877 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2878}
2879
2880/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2881/// that point to V2 points to its first element.
2882static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2883 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2884
2885 bool Changed = false;
2886 SmallVector<SDOperand, 8> MaskVec;
2887 unsigned NumElems = Mask.getNumOperands();
2888 for (unsigned i = 0; i != NumElems; ++i) {
2889 SDOperand Arg = Mask.getOperand(i);
2890 if (Arg.getOpcode() != ISD::UNDEF) {
2891 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2892 if (Val > NumElems) {
2893 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2894 Changed = true;
2895 }
2896 }
2897 MaskVec.push_back(Arg);
2898 }
2899
2900 if (Changed)
2901 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2902 &MaskVec[0], MaskVec.size());
2903 return Mask;
2904}
2905
2906/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2907/// operation of specified width.
2908static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2909 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2910 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2911
2912 SmallVector<SDOperand, 8> MaskVec;
2913 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2914 for (unsigned i = 1; i != NumElems; ++i)
2915 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2916 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2917}
2918
2919/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2920/// of specified width.
2921static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2922 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2923 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2924 SmallVector<SDOperand, 8> MaskVec;
2925 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2926 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2927 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2928 }
2929 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2930}
2931
2932/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2933/// of specified width.
2934static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2935 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2936 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2937 unsigned Half = NumElems/2;
2938 SmallVector<SDOperand, 8> MaskVec;
2939 for (unsigned i = 0; i != Half; ++i) {
2940 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2941 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2942 }
2943 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2944}
2945
2946/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2947///
2948static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2949 SDOperand V1 = Op.getOperand(0);
2950 SDOperand Mask = Op.getOperand(2);
2951 MVT::ValueType VT = Op.getValueType();
2952 unsigned NumElems = Mask.getNumOperands();
2953 Mask = getUnpacklMask(NumElems, DAG);
2954 while (NumElems != 4) {
2955 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2956 NumElems >>= 1;
2957 }
2958 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2959
2960 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2961 Mask = getZeroVector(MaskVT, DAG);
2962 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2963 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2964 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2965}
2966
2967/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2968/// vector of zero or undef vector.
2969static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2970 unsigned NumElems, unsigned Idx,
2971 bool isZero, SelectionDAG &DAG) {
2972 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2973 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2974 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2975 SDOperand Zero = DAG.getConstant(0, EVT);
2976 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2977 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2978 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2979 &MaskVec[0], MaskVec.size());
2980 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2981}
2982
2983/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2984///
2985static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2986 unsigned NumNonZero, unsigned NumZero,
2987 SelectionDAG &DAG, TargetLowering &TLI) {
2988 if (NumNonZero > 8)
2989 return SDOperand();
2990
2991 SDOperand V(0, 0);
2992 bool First = true;
2993 for (unsigned i = 0; i < 16; ++i) {
2994 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2995 if (ThisIsNonZero && First) {
2996 if (NumZero)
2997 V = getZeroVector(MVT::v8i16, DAG);
2998 else
2999 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3000 First = false;
3001 }
3002
3003 if ((i & 1) != 0) {
3004 SDOperand ThisElt(0, 0), LastElt(0, 0);
3005 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3006 if (LastIsNonZero) {
3007 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3008 }
3009 if (ThisIsNonZero) {
3010 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3011 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3012 ThisElt, DAG.getConstant(8, MVT::i8));
3013 if (LastIsNonZero)
3014 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3015 } else
3016 ThisElt = LastElt;
3017
3018 if (ThisElt.Val)
3019 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3020 DAG.getConstant(i/2, TLI.getPointerTy()));
3021 }
3022 }
3023
3024 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3025}
3026
3027/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3028///
3029static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3030 unsigned NumNonZero, unsigned NumZero,
3031 SelectionDAG &DAG, TargetLowering &TLI) {
3032 if (NumNonZero > 4)
3033 return SDOperand();
3034
3035 SDOperand V(0, 0);
3036 bool First = true;
3037 for (unsigned i = 0; i < 8; ++i) {
3038 bool isNonZero = (NonZeros & (1 << i)) != 0;
3039 if (isNonZero) {
3040 if (First) {
3041 if (NumZero)
3042 V = getZeroVector(MVT::v8i16, DAG);
3043 else
3044 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3045 First = false;
3046 }
3047 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3048 DAG.getConstant(i, TLI.getPointerTy()));
3049 }
3050 }
3051
3052 return V;
3053}
3054
3055SDOperand
3056X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3057 // All zero's are handled with pxor.
3058 if (ISD::isBuildVectorAllZeros(Op.Val))
3059 return Op;
3060
3061 // All one's are handled with pcmpeqd.
3062 if (ISD::isBuildVectorAllOnes(Op.Val))
3063 return Op;
3064
3065 MVT::ValueType VT = Op.getValueType();
3066 MVT::ValueType EVT = MVT::getVectorElementType(VT);
3067 unsigned EVTBits = MVT::getSizeInBits(EVT);
3068
3069 unsigned NumElems = Op.getNumOperands();
3070 unsigned NumZero = 0;
3071 unsigned NumNonZero = 0;
3072 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00003073 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003074 std::set<SDOperand> Values;
3075 for (unsigned i = 0; i < NumElems; ++i) {
3076 SDOperand Elt = Op.getOperand(i);
3077 if (Elt.getOpcode() != ISD::UNDEF) {
3078 Values.insert(Elt);
3079 if (isZeroNode(Elt))
3080 NumZero++;
3081 else {
3082 NonZeros |= (1 << i);
3083 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00003084 if (Elt.getOpcode() == ISD::Constant ||
3085 Elt.getOpcode() == ISD::ConstantFP)
3086 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003087 }
3088 }
3089 }
3090
3091 if (NumNonZero == 0) {
3092 if (NumZero == 0)
3093 // All undef vector. Return an UNDEF.
3094 return DAG.getNode(ISD::UNDEF, VT);
3095 else
3096 // A mix of zero and undef. Return a zero vector.
3097 return getZeroVector(VT, DAG);
3098 }
3099
3100 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3101 if (Values.size() == 1)
3102 return SDOperand();
3103
3104 // Special case for single non-zero element.
3105 if (NumNonZero == 1) {
3106 unsigned Idx = CountTrailingZeros_32(NonZeros);
3107 SDOperand Item = Op.getOperand(Idx);
3108 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3109 if (Idx == 0)
3110 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3111 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3112 NumZero > 0, DAG);
3113
3114 if (EVTBits == 32) {
3115 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3116 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3117 DAG);
3118 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3119 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3120 SmallVector<SDOperand, 8> MaskVec;
3121 for (unsigned i = 0; i < NumElems; i++)
3122 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3123 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3124 &MaskVec[0], MaskVec.size());
3125 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3126 DAG.getNode(ISD::UNDEF, VT), Mask);
3127 }
3128 }
3129
Dan Gohman21463242007-07-24 22:55:08 +00003130 // A vector full of immediates; various special cases are already
3131 // handled, so this is best done with a single constant-pool load.
3132 if (NumNonZero == NumNonZeroImms)
3133 return SDOperand();
3134
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003135 // Let legalizer expand 2-wide build_vectors.
3136 if (EVTBits == 64)
3137 return SDOperand();
3138
3139 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3140 if (EVTBits == 8 && NumElems == 16) {
3141 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3142 *this);
3143 if (V.Val) return V;
3144 }
3145
3146 if (EVTBits == 16 && NumElems == 8) {
3147 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3148 *this);
3149 if (V.Val) return V;
3150 }
3151
3152 // If element VT is == 32 bits, turn it into a number of shuffles.
3153 SmallVector<SDOperand, 8> V;
3154 V.resize(NumElems);
3155 if (NumElems == 4 && NumZero > 0) {
3156 for (unsigned i = 0; i < 4; ++i) {
3157 bool isZero = !(NonZeros & (1 << i));
3158 if (isZero)
3159 V[i] = getZeroVector(VT, DAG);
3160 else
3161 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3162 }
3163
3164 for (unsigned i = 0; i < 2; ++i) {
3165 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3166 default: break;
3167 case 0:
3168 V[i] = V[i*2]; // Must be a zero vector.
3169 break;
3170 case 1:
3171 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3172 getMOVLMask(NumElems, DAG));
3173 break;
3174 case 2:
3175 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3176 getMOVLMask(NumElems, DAG));
3177 break;
3178 case 3:
3179 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3180 getUnpacklMask(NumElems, DAG));
3181 break;
3182 }
3183 }
3184
3185 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3186 // clears the upper bits.
3187 // FIXME: we can do the same for v4f32 case when we know both parts of
3188 // the lower half come from scalar_to_vector (loadf32). We should do
3189 // that in post legalizer dag combiner with target specific hooks.
3190 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3191 return V[0];
3192 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3193 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3194 SmallVector<SDOperand, 8> MaskVec;
3195 bool Reverse = (NonZeros & 0x3) == 2;
3196 for (unsigned i = 0; i < 2; ++i)
3197 if (Reverse)
3198 MaskVec.push_back(DAG.getConstant(1-i, EVT));
3199 else
3200 MaskVec.push_back(DAG.getConstant(i, EVT));
3201 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3202 for (unsigned i = 0; i < 2; ++i)
3203 if (Reverse)
3204 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3205 else
3206 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3207 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3208 &MaskVec[0], MaskVec.size());
3209 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3210 }
3211
3212 if (Values.size() > 2) {
3213 // Expand into a number of unpckl*.
3214 // e.g. for v4f32
3215 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3216 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3217 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3218 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3219 for (unsigned i = 0; i < NumElems; ++i)
3220 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3221 NumElems >>= 1;
3222 while (NumElems != 0) {
3223 for (unsigned i = 0; i < NumElems; ++i)
3224 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3225 UnpckMask);
3226 NumElems >>= 1;
3227 }
3228 return V[0];
3229 }
3230
3231 return SDOperand();
3232}
3233
3234SDOperand
3235X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3236 SDOperand V1 = Op.getOperand(0);
3237 SDOperand V2 = Op.getOperand(1);
3238 SDOperand PermMask = Op.getOperand(2);
3239 MVT::ValueType VT = Op.getValueType();
3240 unsigned NumElems = PermMask.getNumOperands();
3241 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3242 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3243 bool V1IsSplat = false;
3244 bool V2IsSplat = false;
3245
3246 if (isUndefShuffle(Op.Val))
3247 return DAG.getNode(ISD::UNDEF, VT);
3248
3249 if (isZeroShuffle(Op.Val))
3250 return getZeroVector(VT, DAG);
3251
3252 if (isIdentityMask(PermMask.Val))
3253 return V1;
3254 else if (isIdentityMask(PermMask.Val, true))
3255 return V2;
3256
3257 if (isSplatMask(PermMask.Val)) {
3258 if (NumElems <= 4) return Op;
3259 // Promote it to a v4i32 splat.
3260 return PromoteSplat(Op, DAG);
3261 }
3262
3263 if (X86::isMOVLMask(PermMask.Val))
3264 return (V1IsUndef) ? V2 : Op;
3265
3266 if (X86::isMOVSHDUPMask(PermMask.Val) ||
3267 X86::isMOVSLDUPMask(PermMask.Val) ||
3268 X86::isMOVHLPSMask(PermMask.Val) ||
3269 X86::isMOVHPMask(PermMask.Val) ||
3270 X86::isMOVLPMask(PermMask.Val))
3271 return Op;
3272
3273 if (ShouldXformToMOVHLPS(PermMask.Val) ||
3274 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3275 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3276
3277 bool Commuted = false;
3278 V1IsSplat = isSplatVector(V1.Val);
3279 V2IsSplat = isSplatVector(V2.Val);
3280 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3281 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3282 std::swap(V1IsSplat, V2IsSplat);
3283 std::swap(V1IsUndef, V2IsUndef);
3284 Commuted = true;
3285 }
3286
3287 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3288 if (V2IsUndef) return V1;
3289 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3290 if (V2IsSplat) {
3291 // V2 is a splat, so the mask may be malformed. That is, it may point
3292 // to any V2 element. The instruction selectior won't like this. Get
3293 // a corrected mask and commute to form a proper MOVS{S|D}.
3294 SDOperand NewMask = getMOVLMask(NumElems, DAG);
3295 if (NewMask.Val != PermMask.Val)
3296 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3297 }
3298 return Op;
3299 }
3300
3301 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3302 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3303 X86::isUNPCKLMask(PermMask.Val) ||
3304 X86::isUNPCKHMask(PermMask.Val))
3305 return Op;
3306
3307 if (V2IsSplat) {
3308 // Normalize mask so all entries that point to V2 points to its first
3309 // element then try to match unpck{h|l} again. If match, return a
3310 // new vector_shuffle with the corrected mask.
3311 SDOperand NewMask = NormalizeMask(PermMask, DAG);
3312 if (NewMask.Val != PermMask.Val) {
3313 if (X86::isUNPCKLMask(PermMask.Val, true)) {
3314 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3315 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3316 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3317 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3318 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3319 }
3320 }
3321 }
3322
3323 // Normalize the node to match x86 shuffle ops if needed
3324 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3325 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3326
3327 if (Commuted) {
3328 // Commute is back and try unpck* again.
3329 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3330 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3331 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3332 X86::isUNPCKLMask(PermMask.Val) ||
3333 X86::isUNPCKHMask(PermMask.Val))
3334 return Op;
3335 }
3336
3337 // If VT is integer, try PSHUF* first, then SHUFP*.
3338 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00003339 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3340 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3341 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3342 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003343 X86::isPSHUFHWMask(PermMask.Val) ||
3344 X86::isPSHUFLWMask(PermMask.Val)) {
3345 if (V2.getOpcode() != ISD::UNDEF)
3346 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3347 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3348 return Op;
3349 }
3350
3351 if (X86::isSHUFPMask(PermMask.Val) &&
3352 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
3353 return Op;
3354
3355 // Handle v8i16 shuffle high / low shuffle node pair.
3356 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3357 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3358 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3359 SmallVector<SDOperand, 8> MaskVec;
3360 for (unsigned i = 0; i != 4; ++i)
3361 MaskVec.push_back(PermMask.getOperand(i));
3362 for (unsigned i = 4; i != 8; ++i)
3363 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3364 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3365 &MaskVec[0], MaskVec.size());
3366 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3367 MaskVec.clear();
3368 for (unsigned i = 0; i != 4; ++i)
3369 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3370 for (unsigned i = 4; i != 8; ++i)
3371 MaskVec.push_back(PermMask.getOperand(i));
3372 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3373 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3374 }
3375 } else {
3376 // Floating point cases in the other order.
3377 if (X86::isSHUFPMask(PermMask.Val))
3378 return Op;
3379 if (X86::isPSHUFDMask(PermMask.Val) ||
3380 X86::isPSHUFHWMask(PermMask.Val) ||
3381 X86::isPSHUFLWMask(PermMask.Val)) {
3382 if (V2.getOpcode() != ISD::UNDEF)
3383 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3384 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3385 return Op;
3386 }
3387 }
3388
3389 if (NumElems == 4 &&
3390 // Don't do this for MMX.
3391 MVT::getSizeInBits(VT) != 64) {
3392 MVT::ValueType MaskVT = PermMask.getValueType();
3393 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3394 SmallVector<std::pair<int, int>, 8> Locs;
3395 Locs.reserve(NumElems);
3396 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3397 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3398 unsigned NumHi = 0;
3399 unsigned NumLo = 0;
3400 // If no more than two elements come from either vector. This can be
3401 // implemented with two shuffles. First shuffle gather the elements.
3402 // The second shuffle, which takes the first shuffle as both of its
3403 // vector operands, put the elements into the right order.
3404 for (unsigned i = 0; i != NumElems; ++i) {
3405 SDOperand Elt = PermMask.getOperand(i);
3406 if (Elt.getOpcode() == ISD::UNDEF) {
3407 Locs[i] = std::make_pair(-1, -1);
3408 } else {
3409 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3410 if (Val < NumElems) {
3411 Locs[i] = std::make_pair(0, NumLo);
3412 Mask1[NumLo] = Elt;
3413 NumLo++;
3414 } else {
3415 Locs[i] = std::make_pair(1, NumHi);
3416 if (2+NumHi < NumElems)
3417 Mask1[2+NumHi] = Elt;
3418 NumHi++;
3419 }
3420 }
3421 }
3422 if (NumLo <= 2 && NumHi <= 2) {
3423 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3424 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3425 &Mask1[0], Mask1.size()));
3426 for (unsigned i = 0; i != NumElems; ++i) {
3427 if (Locs[i].first == -1)
3428 continue;
3429 else {
3430 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3431 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3432 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3433 }
3434 }
3435
3436 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3437 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3438 &Mask2[0], Mask2.size()));
3439 }
3440
3441 // Break it into (shuffle shuffle_hi, shuffle_lo).
3442 Locs.clear();
3443 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3444 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3445 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3446 unsigned MaskIdx = 0;
3447 unsigned LoIdx = 0;
3448 unsigned HiIdx = NumElems/2;
3449 for (unsigned i = 0; i != NumElems; ++i) {
3450 if (i == NumElems/2) {
3451 MaskPtr = &HiMask;
3452 MaskIdx = 1;
3453 LoIdx = 0;
3454 HiIdx = NumElems/2;
3455 }
3456 SDOperand Elt = PermMask.getOperand(i);
3457 if (Elt.getOpcode() == ISD::UNDEF) {
3458 Locs[i] = std::make_pair(-1, -1);
3459 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3460 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3461 (*MaskPtr)[LoIdx] = Elt;
3462 LoIdx++;
3463 } else {
3464 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3465 (*MaskPtr)[HiIdx] = Elt;
3466 HiIdx++;
3467 }
3468 }
3469
3470 SDOperand LoShuffle =
3471 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3472 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3473 &LoMask[0], LoMask.size()));
3474 SDOperand HiShuffle =
3475 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3476 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3477 &HiMask[0], HiMask.size()));
3478 SmallVector<SDOperand, 8> MaskOps;
3479 for (unsigned i = 0; i != NumElems; ++i) {
3480 if (Locs[i].first == -1) {
3481 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3482 } else {
3483 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3484 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3485 }
3486 }
3487 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3488 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3489 &MaskOps[0], MaskOps.size()));
3490 }
3491
3492 return SDOperand();
3493}
3494
3495SDOperand
3496X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3497 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3498 return SDOperand();
3499
3500 MVT::ValueType VT = Op.getValueType();
3501 // TODO: handle v16i8.
3502 if (MVT::getSizeInBits(VT) == 16) {
3503 // Transform it so it match pextrw which produces a 32-bit result.
3504 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3505 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3506 Op.getOperand(0), Op.getOperand(1));
3507 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3508 DAG.getValueType(VT));
3509 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3510 } else if (MVT::getSizeInBits(VT) == 32) {
3511 SDOperand Vec = Op.getOperand(0);
3512 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3513 if (Idx == 0)
3514 return Op;
3515 // SHUFPS the element to the lowest double word, then movss.
3516 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3517 SmallVector<SDOperand, 8> IdxVec;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003518 IdxVec.
3519 push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3520 IdxVec.
3521 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3522 IdxVec.
3523 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3524 IdxVec.
3525 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003526 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3527 &IdxVec[0], IdxVec.size());
3528 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3529 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3530 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3531 DAG.getConstant(0, getPointerTy()));
3532 } else if (MVT::getSizeInBits(VT) == 64) {
3533 SDOperand Vec = Op.getOperand(0);
3534 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3535 if (Idx == 0)
3536 return Op;
3537
3538 // UNPCKHPD the element to the lowest double word, then movsd.
3539 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3540 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3541 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3542 SmallVector<SDOperand, 8> IdxVec;
3543 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003544 IdxVec.
3545 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003546 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3547 &IdxVec[0], IdxVec.size());
3548 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3549 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3550 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3551 DAG.getConstant(0, getPointerTy()));
3552 }
3553
3554 return SDOperand();
3555}
3556
3557SDOperand
3558X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3559 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3560 // as its second argument.
3561 MVT::ValueType VT = Op.getValueType();
3562 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3563 SDOperand N0 = Op.getOperand(0);
3564 SDOperand N1 = Op.getOperand(1);
3565 SDOperand N2 = Op.getOperand(2);
3566 if (MVT::getSizeInBits(BaseVT) == 16) {
3567 if (N1.getValueType() != MVT::i32)
3568 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3569 if (N2.getValueType() != MVT::i32)
3570 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3571 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3572 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3573 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3574 if (Idx == 0) {
3575 // Use a movss.
3576 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3577 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3578 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3579 SmallVector<SDOperand, 8> MaskVec;
3580 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3581 for (unsigned i = 1; i <= 3; ++i)
3582 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3583 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3584 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3585 &MaskVec[0], MaskVec.size()));
3586 } else {
3587 // Use two pinsrw instructions to insert a 32 bit value.
3588 Idx <<= 1;
3589 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003590 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3591 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3592 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3593 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003594 }
3595 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3596 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3597 DAG.getConstant(Idx, getPointerTy()));
3598 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3599 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3600 DAG.getConstant(Idx+1, getPointerTy()));
3601 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3602 }
3603 }
3604
3605 return SDOperand();
3606}
3607
3608SDOperand
3609X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3610 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3611 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3612}
3613
3614// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3615// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3616// one of the above mentioned nodes. It has to be wrapped because otherwise
3617// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3618// be used to form addressing mode. These wrapped nodes will be selected
3619// into MOV32ri.
3620SDOperand
3621X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3622 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3623 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3624 getPointerTy(),
3625 CP->getAlignment());
3626 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3627 // With PIC, the address is actually $g + Offset.
3628 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3629 !Subtarget->isPICStyleRIPRel()) {
3630 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3631 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3632 Result);
3633 }
3634
3635 return Result;
3636}
3637
3638SDOperand
3639X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3640 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3641 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3642 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3643 // With PIC, the address is actually $g + Offset.
3644 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3645 !Subtarget->isPICStyleRIPRel()) {
3646 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3647 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3648 Result);
3649 }
3650
3651 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3652 // load the value at address GV, not the value of GV itself. This means that
3653 // the GlobalAddress must be in the base or index register of the address, not
3654 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3655 // The same applies for external symbols during PIC codegen
3656 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3657 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3658
3659 return Result;
3660}
3661
3662// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3663static SDOperand
3664LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3665 const MVT::ValueType PtrVT) {
3666 SDOperand InFlag;
3667 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3668 DAG.getNode(X86ISD::GlobalBaseReg,
3669 PtrVT), InFlag);
3670 InFlag = Chain.getValue(1);
3671
3672 // emit leal symbol@TLSGD(,%ebx,1), %eax
3673 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3674 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3675 GA->getValueType(0),
3676 GA->getOffset());
3677 SDOperand Ops[] = { Chain, TGA, InFlag };
3678 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3679 InFlag = Result.getValue(2);
3680 Chain = Result.getValue(1);
3681
3682 // call ___tls_get_addr. This function receives its argument in
3683 // the register EAX.
3684 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3685 InFlag = Chain.getValue(1);
3686
3687 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3688 SDOperand Ops1[] = { Chain,
3689 DAG.getTargetExternalSymbol("___tls_get_addr",
3690 PtrVT),
3691 DAG.getRegister(X86::EAX, PtrVT),
3692 DAG.getRegister(X86::EBX, PtrVT),
3693 InFlag };
3694 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3695 InFlag = Chain.getValue(1);
3696
3697 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3698}
3699
3700// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3701// "local exec" model.
3702static SDOperand
3703LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3704 const MVT::ValueType PtrVT) {
3705 // Get the Thread Pointer
3706 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3707 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3708 // exec)
3709 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3710 GA->getValueType(0),
3711 GA->getOffset());
3712 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3713
3714 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3715 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3716
3717 // The address of the thread local variable is the add of the thread
3718 // pointer with the offset of the variable.
3719 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3720}
3721
3722SDOperand
3723X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3724 // TODO: implement the "local dynamic" model
3725 // TODO: implement the "initial exec"model for pic executables
3726 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3727 "TLS not implemented for non-ELF and 64-bit targets");
3728 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3729 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3730 // otherwise use the "Local Exec"TLS Model
3731 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3732 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3733 else
3734 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3735}
3736
3737SDOperand
3738X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3739 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3740 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3741 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3742 // With PIC, the address is actually $g + Offset.
3743 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3744 !Subtarget->isPICStyleRIPRel()) {
3745 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3746 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3747 Result);
3748 }
3749
3750 return Result;
3751}
3752
3753SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3754 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3755 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3756 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3757 // With PIC, the address is actually $g + Offset.
3758 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3759 !Subtarget->isPICStyleRIPRel()) {
3760 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3761 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3762 Result);
3763 }
3764
3765 return Result;
3766}
3767
3768SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3769 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3770 "Not an i64 shift!");
3771 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3772 SDOperand ShOpLo = Op.getOperand(0);
3773 SDOperand ShOpHi = Op.getOperand(1);
3774 SDOperand ShAmt = Op.getOperand(2);
3775 SDOperand Tmp1 = isSRA ?
3776 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3777 DAG.getConstant(0, MVT::i32);
3778
3779 SDOperand Tmp2, Tmp3;
3780 if (Op.getOpcode() == ISD::SHL_PARTS) {
3781 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3782 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3783 } else {
3784 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3785 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3786 }
3787
3788 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3789 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3790 DAG.getConstant(32, MVT::i8));
Evan Cheng621216e2007-09-29 00:00:36 +00003791 SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3792 AndNode, DAG.getConstant(0, MVT::i8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003793
3794 SDOperand Hi, Lo;
3795 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00003796 unsigned Opc = X86ISD::CMOV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003797 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3798 SmallVector<SDOperand, 4> Ops;
3799 if (Op.getOpcode() == ISD::SHL_PARTS) {
3800 Ops.push_back(Tmp2);
3801 Ops.push_back(Tmp3);
3802 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003803 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003804 Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003805
3806 Ops.clear();
3807 Ops.push_back(Tmp3);
3808 Ops.push_back(Tmp1);
3809 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003810 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003811 Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003812 } else {
3813 Ops.push_back(Tmp2);
3814 Ops.push_back(Tmp3);
3815 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003816 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003817 Lo = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003818
3819 Ops.clear();
3820 Ops.push_back(Tmp3);
3821 Ops.push_back(Tmp1);
3822 Ops.push_back(CC);
Evan Cheng950aac02007-09-25 01:57:46 +00003823 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00003824 Hi = DAG.getNode(Opc, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825 }
3826
3827 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3828 Ops.clear();
3829 Ops.push_back(Lo);
3830 Ops.push_back(Hi);
3831 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3832}
3833
3834SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3835 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3836 Op.getOperand(0).getValueType() >= MVT::i16 &&
3837 "Unknown SINT_TO_FP to lower!");
3838
3839 SDOperand Result;
3840 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3841 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3842 MachineFunction &MF = DAG.getMachineFunction();
3843 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3844 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3845 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3846 StackSlot, NULL, 0);
3847
Dale Johannesen2fc20782007-09-14 22:26:36 +00003848 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003849 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3850 return Result;
3851 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003852 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003853 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3854 Subtarget->is64Bit())
3855 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003856
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003857 // Build the FILD
3858 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003859 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3860 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003861 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003862 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3863 else
3864 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3865 SmallVector<SDOperand, 8> Ops;
3866 Ops.push_back(Chain);
3867 Ops.push_back(StackSlot);
3868 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003869 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003870 Tys, &Ops[0], Ops.size());
3871
Dale Johannesen2fc20782007-09-14 22:26:36 +00003872 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003873 Chain = Result.getValue(1);
3874 SDOperand InFlag = Result.getValue(2);
3875
3876 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3877 // shouldn't be necessary except that RFP cannot be live across
3878 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3879 MachineFunction &MF = DAG.getMachineFunction();
3880 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3881 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3882 Tys = DAG.getVTList(MVT::Other);
3883 SmallVector<SDOperand, 8> Ops;
3884 Ops.push_back(Chain);
3885 Ops.push_back(Result);
3886 Ops.push_back(StackSlot);
3887 Ops.push_back(DAG.getValueType(Op.getValueType()));
3888 Ops.push_back(InFlag);
3889 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3890 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3891 }
3892
3893 return Result;
3894}
3895
3896SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3897 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3898 "Unknown FP_TO_SINT to lower!");
3899 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3900 // stack slot.
Dale Johannesen2fc20782007-09-14 22:26:36 +00003901 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003902 MachineFunction &MF = DAG.getMachineFunction();
3903 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3904 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3905 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3906
Dale Johannesen2fc20782007-09-14 22:26:36 +00003907 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003908 if (Op.getValueType() == MVT::i32 &&
3909 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3910 return Result;
3911 if (Op.getValueType() == MVT::i32 &&
3912 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003913 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003914 if (Subtarget->is64Bit() &&
3915 Op.getValueType() == MVT::i64 &&
3916 Op.getOperand(0).getValueType() != MVT::f80)
3917 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003918
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003919 unsigned Opc;
3920 switch (Op.getValueType()) {
3921 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3922 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3923 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3924 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3925 }
3926
3927 SDOperand Chain = DAG.getEntryNode();
3928 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003929 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3930 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003931 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3932 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3933 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3934 SDOperand Ops[] = {
3935 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3936 };
3937 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3938 Chain = Value.getValue(1);
3939 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3940 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3941 }
3942
3943 // Build the FP_TO_INT*_IN_MEM
3944 SDOperand Ops[] = { Chain, Value, StackSlot };
3945 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3946
3947 // Load the result.
3948 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3949}
3950
3951SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3952 MVT::ValueType VT = Op.getValueType();
3953 MVT::ValueType EltVT = VT;
3954 if (MVT::isVector(VT))
3955 EltVT = MVT::getVectorElementType(VT);
3956 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3957 std::vector<Constant*> CV;
3958 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003959 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003960 CV.push_back(C);
3961 CV.push_back(C);
3962 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003963 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003964 CV.push_back(C);
3965 CV.push_back(C);
3966 CV.push_back(C);
3967 CV.push_back(C);
3968 }
Dan Gohman11821702007-07-27 17:16:43 +00003969 Constant *C = ConstantVector::get(CV);
3970 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3971 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3972 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003973 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3974}
3975
3976SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3977 MVT::ValueType VT = Op.getValueType();
3978 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00003979 unsigned EltNum = 1;
3980 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003981 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00003982 EltNum = MVT::getVectorNumElements(VT);
3983 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003984 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3985 std::vector<Constant*> CV;
3986 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003987 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003988 CV.push_back(C);
3989 CV.push_back(C);
3990 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003991 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003992 CV.push_back(C);
3993 CV.push_back(C);
3994 CV.push_back(C);
3995 CV.push_back(C);
3996 }
Dan Gohman11821702007-07-27 17:16:43 +00003997 Constant *C = ConstantVector::get(CV);
3998 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3999 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4000 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00004001 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00004002 return DAG.getNode(ISD::BIT_CONVERT, VT,
4003 DAG.getNode(ISD::XOR, MVT::v2i64,
4004 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4005 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4006 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00004007 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4008 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004009}
4010
4011SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4012 SDOperand Op0 = Op.getOperand(0);
4013 SDOperand Op1 = Op.getOperand(1);
4014 MVT::ValueType VT = Op.getValueType();
4015 MVT::ValueType SrcVT = Op1.getValueType();
4016 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
4017
4018 // If second operand is smaller, extend it first.
4019 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4020 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4021 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00004022 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004023 }
4024
4025 // First get the sign bit of second operand.
4026 std::vector<Constant*> CV;
4027 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004028 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4029 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004030 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004031 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4032 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4033 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4034 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004035 }
Dan Gohman11821702007-07-27 17:16:43 +00004036 Constant *C = ConstantVector::get(CV);
4037 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4038 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4039 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004040 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4041
4042 // Shift sign bit right or left if the two operands have different types.
4043 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4044 // Op0 is MVT::f32, Op1 is MVT::f64.
4045 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4046 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4047 DAG.getConstant(32, MVT::i32));
4048 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4049 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4050 DAG.getConstant(0, getPointerTy()));
4051 }
4052
4053 // Clear first operand sign bit.
4054 CV.clear();
4055 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004056 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4057 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004058 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004059 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4060 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4061 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4062 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004063 }
Dan Gohman11821702007-07-27 17:16:43 +00004064 C = ConstantVector::get(CV);
4065 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4066 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4067 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004068 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4069
4070 // Or the value with the sign bit.
4071 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4072}
4073
Evan Cheng621216e2007-09-29 00:00:36 +00004074SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Evan Cheng950aac02007-09-25 01:57:46 +00004075 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
Evan Cheng6afec3d2007-09-26 00:45:55 +00004076 SDOperand Cond;
Evan Cheng950aac02007-09-25 01:57:46 +00004077 SDOperand Op0 = Op.getOperand(0);
4078 SDOperand Op1 = Op.getOperand(1);
4079 SDOperand CC = Op.getOperand(2);
4080 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4081 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4082 unsigned X86CC;
4083
Evan Cheng950aac02007-09-25 01:57:46 +00004084 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Evan Cheng6afec3d2007-09-26 00:45:55 +00004085 Op0, Op1, DAG)) {
Evan Cheng621216e2007-09-29 00:00:36 +00004086 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4087 return DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004088 DAG.getConstant(X86CC, MVT::i8), Cond);
Evan Cheng6afec3d2007-09-26 00:45:55 +00004089 }
Evan Cheng950aac02007-09-25 01:57:46 +00004090
4091 assert(isFP && "Illegal integer SetCC!");
4092
Evan Cheng621216e2007-09-29 00:00:36 +00004093 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
Evan Cheng950aac02007-09-25 01:57:46 +00004094 switch (SetCCOpcode) {
4095 default: assert(false && "Illegal floating point SetCC!");
4096 case ISD::SETOEQ: { // !PF & ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004097 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004098 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004099 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004100 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4101 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4102 }
4103 case ISD::SETUNE: { // PF | !ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004104 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004105 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004106 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004107 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4108 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4109 }
4110 }
4111}
4112
4113
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004114SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4115 bool addTest = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004116 SDOperand Cond = Op.getOperand(0);
4117 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004118
4119 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004120 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004121
Evan Cheng50d37ab2007-10-08 22:16:29 +00004122 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4123 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004124 if (Cond.getOpcode() == X86ISD::SETCC) {
4125 CC = Cond.getOperand(0);
4126
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004127 SDOperand Cmp = Cond.getOperand(1);
4128 unsigned Opc = Cmp.getOpcode();
Evan Cheng50d37ab2007-10-08 22:16:29 +00004129 MVT::ValueType VT = Op.getValueType();
4130 bool IllegalFPCMov = false;
4131 if (VT == MVT::f32 && !X86ScalarSSEf32)
4132 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4133 else if (VT == MVT::f64 && !X86ScalarSSEf64)
4134 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Evan Cheng621216e2007-09-29 00:00:36 +00004135 if ((Opc == X86ISD::CMP ||
4136 Opc == X86ISD::COMI ||
4137 Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004138 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004139 addTest = false;
4140 }
4141 }
4142
4143 if (addTest) {
4144 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng50d37ab2007-10-08 22:16:29 +00004145 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004146 }
4147
4148 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4149 MVT::Flag);
4150 SmallVector<SDOperand, 4> Ops;
4151 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4152 // condition is true.
4153 Ops.push_back(Op.getOperand(2));
4154 Ops.push_back(Op.getOperand(1));
4155 Ops.push_back(CC);
4156 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004157 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
Evan Cheng950aac02007-09-25 01:57:46 +00004158}
4159
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004160SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4161 bool addTest = true;
4162 SDOperand Chain = Op.getOperand(0);
4163 SDOperand Cond = Op.getOperand(1);
4164 SDOperand Dest = Op.getOperand(2);
4165 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004166
4167 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004168 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004169
Evan Cheng50d37ab2007-10-08 22:16:29 +00004170 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4171 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004172 if (Cond.getOpcode() == X86ISD::SETCC) {
4173 CC = Cond.getOperand(0);
4174
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004175 SDOperand Cmp = Cond.getOperand(1);
4176 unsigned Opc = Cmp.getOpcode();
Evan Cheng621216e2007-09-29 00:00:36 +00004177 if (Opc == X86ISD::CMP ||
4178 Opc == X86ISD::COMI ||
4179 Opc == X86ISD::UCOMI) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004180 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004181 addTest = false;
4182 }
4183 }
4184
4185 if (addTest) {
4186 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00004187 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004188 }
Evan Cheng621216e2007-09-29 00:00:36 +00004189 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Evan Cheng950aac02007-09-25 01:57:46 +00004190 Chain, Op.getOperand(2), CC, Cond);
4191}
4192
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004193SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004194 unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4195 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004196
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004197 if (Subtarget->is64Bit())
4198 if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4199 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4200 else
4201 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004202 else
4203 switch (CallingConv) {
4204 default:
4205 assert(0 && "Unsupported calling convention");
4206 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004207 if (isTailCall && PerformTailCallOpt)
4208 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4209 else
4210 return LowerCCCCallTo(Op,DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004211 case CallingConv::C:
4212 case CallingConv::X86_StdCall:
4213 return LowerCCCCallTo(Op, DAG, CallingConv);
4214 case CallingConv::X86_FastCall:
4215 return LowerFastCCCallTo(Op, DAG, CallingConv);
4216 }
4217}
4218
4219
4220// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4221// Calls to _alloca is needed to probe the stack when allocating more than 4k
4222// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4223// that the guard pages used by the OS virtual memory manager are allocated in
4224// correct sequence.
4225SDOperand
4226X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4227 SelectionDAG &DAG) {
4228 assert(Subtarget->isTargetCygMing() &&
4229 "This should be used only on Cygwin/Mingw targets");
4230
4231 // Get the inputs.
4232 SDOperand Chain = Op.getOperand(0);
4233 SDOperand Size = Op.getOperand(1);
4234 // FIXME: Ensure alignment here
4235
4236 SDOperand Flag;
4237
4238 MVT::ValueType IntPtr = getPointerTy();
4239 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4240
4241 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4242 Flag = Chain.getValue(1);
4243
4244 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4245 SDOperand Ops[] = { Chain,
4246 DAG.getTargetExternalSymbol("_alloca", IntPtr),
4247 DAG.getRegister(X86::EAX, IntPtr),
4248 Flag };
4249 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4250 Flag = Chain.getValue(1);
4251
4252 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4253
4254 std::vector<MVT::ValueType> Tys;
4255 Tys.push_back(SPTy);
4256 Tys.push_back(MVT::Other);
4257 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4258 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4259}
4260
4261SDOperand
4262X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4263 MachineFunction &MF = DAG.getMachineFunction();
4264 const Function* Fn = MF.getFunction();
4265 if (Fn->hasExternalLinkage() &&
4266 Subtarget->isTargetCygMing() &&
4267 Fn->getName() == "main")
4268 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4269
4270 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4271 if (Subtarget->is64Bit())
4272 return LowerX86_64CCCArguments(Op, DAG);
4273 else
4274 switch(CC) {
4275 default:
4276 assert(0 && "Unsupported calling convention");
4277 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004278 return LowerCCCArguments(Op,DAG, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004279 // Falls through
4280 case CallingConv::C:
4281 return LowerCCCArguments(Op, DAG);
4282 case CallingConv::X86_StdCall:
4283 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4284 return LowerCCCArguments(Op, DAG, true);
4285 case CallingConv::X86_FastCall:
4286 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4287 return LowerFastCCArguments(Op, DAG);
4288 }
4289}
4290
4291SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4292 SDOperand InFlag(0, 0);
4293 SDOperand Chain = Op.getOperand(0);
4294 unsigned Align =
4295 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4296 if (Align == 0) Align = 1;
4297
4298 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004299 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004300 // The libc version is likely to be faster for these cases. It can use the
4301 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004302 if ((Align & 3) != 0 ||
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004303 (I && I->getValue() > Subtarget->getMinRepStrSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004304 MVT::ValueType IntPtr = getPointerTy();
4305 const Type *IntPtrTy = getTargetData()->getIntPtrType();
4306 TargetLowering::ArgListTy Args;
4307 TargetLowering::ArgListEntry Entry;
4308 Entry.Node = Op.getOperand(1);
4309 Entry.Ty = IntPtrTy;
4310 Args.push_back(Entry);
4311 // Extend the unsigned i8 argument to be an int value for the call.
4312 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4313 Entry.Ty = IntPtrTy;
4314 Args.push_back(Entry);
4315 Entry.Node = Op.getOperand(3);
4316 Args.push_back(Entry);
4317 std::pair<SDOperand,SDOperand> CallResult =
4318 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4319 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4320 return CallResult.second;
4321 }
4322
4323 MVT::ValueType AVT;
4324 SDOperand Count;
4325 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4326 unsigned BytesLeft = 0;
4327 bool TwoRepStos = false;
4328 if (ValC) {
4329 unsigned ValReg;
4330 uint64_t Val = ValC->getValue() & 255;
4331
4332 // If the value is a constant, then we can potentially use larger sets.
4333 switch (Align & 3) {
4334 case 2: // WORD aligned
4335 AVT = MVT::i16;
4336 ValReg = X86::AX;
4337 Val = (Val << 8) | Val;
4338 break;
4339 case 0: // DWORD aligned
4340 AVT = MVT::i32;
4341 ValReg = X86::EAX;
4342 Val = (Val << 8) | Val;
4343 Val = (Val << 16) | Val;
4344 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
4345 AVT = MVT::i64;
4346 ValReg = X86::RAX;
4347 Val = (Val << 32) | Val;
4348 }
4349 break;
4350 default: // Byte aligned
4351 AVT = MVT::i8;
4352 ValReg = X86::AL;
4353 Count = Op.getOperand(3);
4354 break;
4355 }
4356
4357 if (AVT > MVT::i8) {
4358 if (I) {
4359 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4360 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4361 BytesLeft = I->getValue() % UBytes;
4362 } else {
4363 assert(AVT >= MVT::i32 &&
4364 "Do not use rep;stos if not at least DWORD aligned");
4365 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4366 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4367 TwoRepStos = true;
4368 }
4369 }
4370
4371 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4372 InFlag);
4373 InFlag = Chain.getValue(1);
4374 } else {
4375 AVT = MVT::i8;
4376 Count = Op.getOperand(3);
4377 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4378 InFlag = Chain.getValue(1);
4379 }
4380
4381 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4382 Count, InFlag);
4383 InFlag = Chain.getValue(1);
4384 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4385 Op.getOperand(1), InFlag);
4386 InFlag = Chain.getValue(1);
4387
4388 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4389 SmallVector<SDOperand, 8> Ops;
4390 Ops.push_back(Chain);
4391 Ops.push_back(DAG.getValueType(AVT));
4392 Ops.push_back(InFlag);
4393 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4394
4395 if (TwoRepStos) {
4396 InFlag = Chain.getValue(1);
4397 Count = Op.getOperand(3);
4398 MVT::ValueType CVT = Count.getValueType();
4399 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4400 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4401 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4402 Left, InFlag);
4403 InFlag = Chain.getValue(1);
4404 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4405 Ops.clear();
4406 Ops.push_back(Chain);
4407 Ops.push_back(DAG.getValueType(MVT::i8));
4408 Ops.push_back(InFlag);
4409 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4410 } else if (BytesLeft) {
4411 // Issue stores for the last 1 - 7 bytes.
4412 SDOperand Value;
4413 unsigned Val = ValC->getValue() & 255;
4414 unsigned Offset = I->getValue() - BytesLeft;
4415 SDOperand DstAddr = Op.getOperand(1);
4416 MVT::ValueType AddrVT = DstAddr.getValueType();
4417 if (BytesLeft >= 4) {
4418 Val = (Val << 8) | Val;
4419 Val = (Val << 16) | Val;
4420 Value = DAG.getConstant(Val, MVT::i32);
4421 Chain = DAG.getStore(Chain, Value,
4422 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4423 DAG.getConstant(Offset, AddrVT)),
4424 NULL, 0);
4425 BytesLeft -= 4;
4426 Offset += 4;
4427 }
4428 if (BytesLeft >= 2) {
4429 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4430 Chain = DAG.getStore(Chain, Value,
4431 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4432 DAG.getConstant(Offset, AddrVT)),
4433 NULL, 0);
4434 BytesLeft -= 2;
4435 Offset += 2;
4436 }
4437 if (BytesLeft == 1) {
4438 Value = DAG.getConstant(Val, MVT::i8);
4439 Chain = DAG.getStore(Chain, Value,
4440 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4441 DAG.getConstant(Offset, AddrVT)),
4442 NULL, 0);
4443 }
4444 }
4445
4446 return Chain;
4447}
4448
4449SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004450 SDOperand ChainOp = Op.getOperand(0);
4451 SDOperand DestOp = Op.getOperand(1);
4452 SDOperand SourceOp = Op.getOperand(2);
4453 SDOperand CountOp = Op.getOperand(3);
4454 SDOperand AlignOp = Op.getOperand(4);
4455 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004456 if (Align == 0) Align = 1;
4457
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004458 // The libc version is likely to be faster for the following cases. It can
4459 // use the address value and run time information about the CPU.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004460 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004461
4462 // If not DWORD aligned, call memcpy.
4463 if ((Align & 3) != 0)
4464 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4465
4466 // If size is unknown, call memcpy.
4467 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4468 if (!I)
4469 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4470
4471 // If size is more than the threshold, call memcpy.
4472 unsigned Size = I->getValue();
4473 if (Size > Subtarget->getMinRepStrSizeThreshold())
4474 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4475
4476 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4477}
4478
4479SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4480 SDOperand Dest,
4481 SDOperand Source,
4482 SDOperand Count,
4483 SelectionDAG &DAG) {
4484 MVT::ValueType IntPtr = getPointerTy();
4485 TargetLowering::ArgListTy Args;
4486 TargetLowering::ArgListEntry Entry;
4487 Entry.Ty = getTargetData()->getIntPtrType();
4488 Entry.Node = Dest; Args.push_back(Entry);
4489 Entry.Node = Source; Args.push_back(Entry);
4490 Entry.Node = Count; Args.push_back(Entry);
4491 std::pair<SDOperand,SDOperand> CallResult =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004492 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4493 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004494 return CallResult.second;
4495}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004496
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004497SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4498 SDOperand Dest,
4499 SDOperand Source,
4500 unsigned Size,
4501 unsigned Align,
4502 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004503 MVT::ValueType AVT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004504 unsigned BytesLeft = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004505 switch (Align & 3) {
4506 case 2: // WORD aligned
4507 AVT = MVT::i16;
4508 break;
4509 case 0: // DWORD aligned
4510 AVT = MVT::i32;
4511 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4512 AVT = MVT::i64;
4513 break;
4514 default: // Byte aligned
4515 AVT = MVT::i8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004516 break;
4517 }
4518
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004519 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4520 SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4521 BytesLeft = Size % UBytes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004522
4523 SDOperand InFlag(0, 0);
4524 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4525 Count, InFlag);
4526 InFlag = Chain.getValue(1);
4527 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004528 Dest, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004529 InFlag = Chain.getValue(1);
4530 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004531 Source, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004532 InFlag = Chain.getValue(1);
4533
4534 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4535 SmallVector<SDOperand, 8> Ops;
4536 Ops.push_back(Chain);
4537 Ops.push_back(DAG.getValueType(AVT));
4538 Ops.push_back(InFlag);
4539 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4540
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004541 if (BytesLeft) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004542 // Issue loads and stores for the last 1 - 7 bytes.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004543 unsigned Offset = Size - BytesLeft;
4544 SDOperand DstAddr = Dest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004545 MVT::ValueType DstVT = DstAddr.getValueType();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004546 SDOperand SrcAddr = Source;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004547 MVT::ValueType SrcVT = SrcAddr.getValueType();
4548 SDOperand Value;
4549 if (BytesLeft >= 4) {
4550 Value = DAG.getLoad(MVT::i32, Chain,
4551 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4552 DAG.getConstant(Offset, SrcVT)),
4553 NULL, 0);
4554 Chain = Value.getValue(1);
4555 Chain = DAG.getStore(Chain, Value,
4556 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4557 DAG.getConstant(Offset, DstVT)),
4558 NULL, 0);
4559 BytesLeft -= 4;
4560 Offset += 4;
4561 }
4562 if (BytesLeft >= 2) {
4563 Value = DAG.getLoad(MVT::i16, Chain,
4564 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4565 DAG.getConstant(Offset, SrcVT)),
4566 NULL, 0);
4567 Chain = Value.getValue(1);
4568 Chain = DAG.getStore(Chain, Value,
4569 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4570 DAG.getConstant(Offset, DstVT)),
4571 NULL, 0);
4572 BytesLeft -= 2;
4573 Offset += 2;
4574 }
4575
4576 if (BytesLeft == 1) {
4577 Value = DAG.getLoad(MVT::i8, Chain,
4578 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4579 DAG.getConstant(Offset, SrcVT)),
4580 NULL, 0);
4581 Chain = Value.getValue(1);
4582 Chain = DAG.getStore(Chain, Value,
4583 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4584 DAG.getConstant(Offset, DstVT)),
4585 NULL, 0);
4586 }
4587 }
4588
4589 return Chain;
4590}
4591
4592SDOperand
4593X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4594 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4595 SDOperand TheOp = Op.getOperand(0);
4596 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4597 if (Subtarget->is64Bit()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004598 SDOperand Copy1 =
4599 DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004600 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4601 MVT::i64, Copy1.getValue(2));
4602 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4603 DAG.getConstant(32, MVT::i8));
4604 SDOperand Ops[] = {
4605 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4606 };
4607
4608 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4609 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4610 }
4611
4612 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4613 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4614 MVT::i32, Copy1.getValue(2));
4615 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4616 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4617 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4618}
4619
4620SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4621 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4622
4623 if (!Subtarget->is64Bit()) {
4624 // vastart just stores the address of the VarArgsFrameIndex slot into the
4625 // memory location argument.
4626 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4627 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4628 SV->getOffset());
4629 }
4630
4631 // __va_list_tag:
4632 // gp_offset (0 - 6 * 8)
4633 // fp_offset (48 - 48 + 8 * 16)
4634 // overflow_arg_area (point to parameters coming in memory).
4635 // reg_save_area
4636 SmallVector<SDOperand, 8> MemOps;
4637 SDOperand FIN = Op.getOperand(1);
4638 // Store gp_offset
4639 SDOperand Store = DAG.getStore(Op.getOperand(0),
4640 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4641 FIN, SV->getValue(), SV->getOffset());
4642 MemOps.push_back(Store);
4643
4644 // Store fp_offset
4645 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4646 DAG.getConstant(4, getPointerTy()));
4647 Store = DAG.getStore(Op.getOperand(0),
4648 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4649 FIN, SV->getValue(), SV->getOffset());
4650 MemOps.push_back(Store);
4651
4652 // Store ptr to overflow_arg_area
4653 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4654 DAG.getConstant(4, getPointerTy()));
4655 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4656 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4657 SV->getOffset());
4658 MemOps.push_back(Store);
4659
4660 // Store ptr to reg_save_area.
4661 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4662 DAG.getConstant(8, getPointerTy()));
4663 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4664 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4665 SV->getOffset());
4666 MemOps.push_back(Store);
4667 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4668}
4669
4670SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4671 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4672 SDOperand Chain = Op.getOperand(0);
4673 SDOperand DstPtr = Op.getOperand(1);
4674 SDOperand SrcPtr = Op.getOperand(2);
4675 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4676 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4677
4678 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4679 SrcSV->getValue(), SrcSV->getOffset());
4680 Chain = SrcPtr.getValue(1);
4681 for (unsigned i = 0; i < 3; ++i) {
4682 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4683 SrcSV->getValue(), SrcSV->getOffset());
4684 Chain = Val.getValue(1);
4685 Chain = DAG.getStore(Chain, Val, DstPtr,
4686 DstSV->getValue(), DstSV->getOffset());
4687 if (i == 2)
4688 break;
4689 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4690 DAG.getConstant(8, getPointerTy()));
4691 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4692 DAG.getConstant(8, getPointerTy()));
4693 }
4694 return Chain;
4695}
4696
4697SDOperand
4698X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4699 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4700 switch (IntNo) {
4701 default: return SDOperand(); // Don't custom lower most intrinsics.
4702 // Comparison intrinsics.
4703 case Intrinsic::x86_sse_comieq_ss:
4704 case Intrinsic::x86_sse_comilt_ss:
4705 case Intrinsic::x86_sse_comile_ss:
4706 case Intrinsic::x86_sse_comigt_ss:
4707 case Intrinsic::x86_sse_comige_ss:
4708 case Intrinsic::x86_sse_comineq_ss:
4709 case Intrinsic::x86_sse_ucomieq_ss:
4710 case Intrinsic::x86_sse_ucomilt_ss:
4711 case Intrinsic::x86_sse_ucomile_ss:
4712 case Intrinsic::x86_sse_ucomigt_ss:
4713 case Intrinsic::x86_sse_ucomige_ss:
4714 case Intrinsic::x86_sse_ucomineq_ss:
4715 case Intrinsic::x86_sse2_comieq_sd:
4716 case Intrinsic::x86_sse2_comilt_sd:
4717 case Intrinsic::x86_sse2_comile_sd:
4718 case Intrinsic::x86_sse2_comigt_sd:
4719 case Intrinsic::x86_sse2_comige_sd:
4720 case Intrinsic::x86_sse2_comineq_sd:
4721 case Intrinsic::x86_sse2_ucomieq_sd:
4722 case Intrinsic::x86_sse2_ucomilt_sd:
4723 case Intrinsic::x86_sse2_ucomile_sd:
4724 case Intrinsic::x86_sse2_ucomigt_sd:
4725 case Intrinsic::x86_sse2_ucomige_sd:
4726 case Intrinsic::x86_sse2_ucomineq_sd: {
4727 unsigned Opc = 0;
4728 ISD::CondCode CC = ISD::SETCC_INVALID;
4729 switch (IntNo) {
4730 default: break;
4731 case Intrinsic::x86_sse_comieq_ss:
4732 case Intrinsic::x86_sse2_comieq_sd:
4733 Opc = X86ISD::COMI;
4734 CC = ISD::SETEQ;
4735 break;
4736 case Intrinsic::x86_sse_comilt_ss:
4737 case Intrinsic::x86_sse2_comilt_sd:
4738 Opc = X86ISD::COMI;
4739 CC = ISD::SETLT;
4740 break;
4741 case Intrinsic::x86_sse_comile_ss:
4742 case Intrinsic::x86_sse2_comile_sd:
4743 Opc = X86ISD::COMI;
4744 CC = ISD::SETLE;
4745 break;
4746 case Intrinsic::x86_sse_comigt_ss:
4747 case Intrinsic::x86_sse2_comigt_sd:
4748 Opc = X86ISD::COMI;
4749 CC = ISD::SETGT;
4750 break;
4751 case Intrinsic::x86_sse_comige_ss:
4752 case Intrinsic::x86_sse2_comige_sd:
4753 Opc = X86ISD::COMI;
4754 CC = ISD::SETGE;
4755 break;
4756 case Intrinsic::x86_sse_comineq_ss:
4757 case Intrinsic::x86_sse2_comineq_sd:
4758 Opc = X86ISD::COMI;
4759 CC = ISD::SETNE;
4760 break;
4761 case Intrinsic::x86_sse_ucomieq_ss:
4762 case Intrinsic::x86_sse2_ucomieq_sd:
4763 Opc = X86ISD::UCOMI;
4764 CC = ISD::SETEQ;
4765 break;
4766 case Intrinsic::x86_sse_ucomilt_ss:
4767 case Intrinsic::x86_sse2_ucomilt_sd:
4768 Opc = X86ISD::UCOMI;
4769 CC = ISD::SETLT;
4770 break;
4771 case Intrinsic::x86_sse_ucomile_ss:
4772 case Intrinsic::x86_sse2_ucomile_sd:
4773 Opc = X86ISD::UCOMI;
4774 CC = ISD::SETLE;
4775 break;
4776 case Intrinsic::x86_sse_ucomigt_ss:
4777 case Intrinsic::x86_sse2_ucomigt_sd:
4778 Opc = X86ISD::UCOMI;
4779 CC = ISD::SETGT;
4780 break;
4781 case Intrinsic::x86_sse_ucomige_ss:
4782 case Intrinsic::x86_sse2_ucomige_sd:
4783 Opc = X86ISD::UCOMI;
4784 CC = ISD::SETGE;
4785 break;
4786 case Intrinsic::x86_sse_ucomineq_ss:
4787 case Intrinsic::x86_sse2_ucomineq_sd:
4788 Opc = X86ISD::UCOMI;
4789 CC = ISD::SETNE;
4790 break;
4791 }
4792
4793 unsigned X86CC;
4794 SDOperand LHS = Op.getOperand(1);
4795 SDOperand RHS = Op.getOperand(2);
4796 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4797
Evan Cheng621216e2007-09-29 00:00:36 +00004798 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4799 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4800 DAG.getConstant(X86CC, MVT::i8), Cond);
4801 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004802 }
4803 }
4804}
4805
4806SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4807 // Depths > 0 not supported yet!
4808 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4809 return SDOperand();
4810
4811 // Just load the return address
4812 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4813 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4814}
4815
4816SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4817 // Depths > 0 not supported yet!
4818 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4819 return SDOperand();
4820
4821 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4822 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4823 DAG.getConstant(4, getPointerTy()));
4824}
4825
4826SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4827 SelectionDAG &DAG) {
4828 // Is not yet supported on x86-64
4829 if (Subtarget->is64Bit())
4830 return SDOperand();
4831
4832 return DAG.getConstant(8, getPointerTy());
4833}
4834
4835SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4836{
4837 assert(!Subtarget->is64Bit() &&
4838 "Lowering of eh_return builtin is not supported yet on x86-64");
4839
4840 MachineFunction &MF = DAG.getMachineFunction();
4841 SDOperand Chain = Op.getOperand(0);
4842 SDOperand Offset = Op.getOperand(1);
4843 SDOperand Handler = Op.getOperand(2);
4844
4845 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4846 getPointerTy());
4847
4848 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4849 DAG.getConstant(-4UL, getPointerTy()));
4850 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4851 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4852 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4853 MF.addLiveOut(X86::ECX);
4854
4855 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4856 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4857}
4858
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004859SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4860 SelectionDAG &DAG) {
4861 SDOperand Root = Op.getOperand(0);
4862 SDOperand Trmp = Op.getOperand(1); // trampoline
4863 SDOperand FPtr = Op.getOperand(2); // nested function
4864 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4865
4866 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4867
4868 if (Subtarget->is64Bit()) {
4869 return SDOperand(); // not yet supported
4870 } else {
4871 Function *Func = (Function *)
4872 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4873 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004874 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004875
4876 switch (CC) {
4877 default:
4878 assert(0 && "Unsupported calling convention");
4879 case CallingConv::C:
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004880 case CallingConv::X86_StdCall: {
4881 // Pass 'nest' parameter in ECX.
4882 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004883 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004884
4885 // Check that ECX wasn't needed by an 'inreg' parameter.
4886 const FunctionType *FTy = Func->getFunctionType();
4887 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4888
4889 if (Attrs && !Func->isVarArg()) {
4890 unsigned InRegCount = 0;
4891 unsigned Idx = 1;
4892
4893 for (FunctionType::param_iterator I = FTy->param_begin(),
4894 E = FTy->param_end(); I != E; ++I, ++Idx)
4895 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4896 // FIXME: should only count parameters that are lowered to integers.
4897 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4898
4899 if (InRegCount > 2) {
4900 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4901 abort();
4902 }
4903 }
4904 break;
4905 }
4906 case CallingConv::X86_FastCall:
4907 // Pass 'nest' parameter in EAX.
4908 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004909 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004910 break;
4911 }
4912
Duncan Sands466eadd2007-08-29 19:01:20 +00004913 const X86InstrInfo *TII =
4914 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4915
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004916 SDOperand OutChains[4];
4917 SDOperand Addr, Disp;
4918
4919 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4920 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4921
Duncan Sands466eadd2007-08-29 19:01:20 +00004922 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4923 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4924 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004925 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4926
4927 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4928 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4929 TrmpSV->getOffset() + 1, false, 1);
4930
Duncan Sands466eadd2007-08-29 19:01:20 +00004931 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004932 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4933 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4934 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4935
4936 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4937 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4938 TrmpSV->getOffset() + 6, false, 1);
4939
Duncan Sands7407a9f2007-09-11 14:10:23 +00004940 SDOperand Ops[] =
4941 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4942 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004943 }
4944}
4945
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004946/// LowerOperation - Provide custom lowering hooks for some operations.
4947///
4948SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4949 switch (Op.getOpcode()) {
4950 default: assert(0 && "Should not custom lower this!");
4951 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4952 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4953 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4954 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4955 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4956 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4957 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4958 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4959 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4960 case ISD::SHL_PARTS:
4961 case ISD::SRA_PARTS:
4962 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4963 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
4964 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
4965 case ISD::FABS: return LowerFABS(Op, DAG);
4966 case ISD::FNEG: return LowerFNEG(Op, DAG);
4967 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
Evan Cheng621216e2007-09-29 00:00:36 +00004968 case ISD::SETCC: return LowerSETCC(Op, DAG);
4969 case ISD::SELECT: return LowerSELECT(Op, DAG);
4970 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004971 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
4972 case ISD::CALL: return LowerCALL(Op, DAG);
4973 case ISD::RET: return LowerRET(Op, DAG);
4974 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
4975 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
4976 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
4977 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
4978 case ISD::VASTART: return LowerVASTART(Op, DAG);
4979 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
4980 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4981 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4982 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
4983 case ISD::FRAME_TO_ARGS_OFFSET:
4984 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
4985 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4986 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004987 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004988 }
4989 return SDOperand();
4990}
4991
4992const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4993 switch (Opcode) {
4994 default: return NULL;
4995 case X86ISD::SHLD: return "X86ISD::SHLD";
4996 case X86ISD::SHRD: return "X86ISD::SHRD";
4997 case X86ISD::FAND: return "X86ISD::FAND";
4998 case X86ISD::FOR: return "X86ISD::FOR";
4999 case X86ISD::FXOR: return "X86ISD::FXOR";
5000 case X86ISD::FSRL: return "X86ISD::FSRL";
5001 case X86ISD::FILD: return "X86ISD::FILD";
5002 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
5003 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5004 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5005 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5006 case X86ISD::FLD: return "X86ISD::FLD";
5007 case X86ISD::FST: return "X86ISD::FST";
5008 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
5009 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
5010 case X86ISD::CALL: return "X86ISD::CALL";
5011 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
5012 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
5013 case X86ISD::CMP: return "X86ISD::CMP";
5014 case X86ISD::COMI: return "X86ISD::COMI";
5015 case X86ISD::UCOMI: return "X86ISD::UCOMI";
5016 case X86ISD::SETCC: return "X86ISD::SETCC";
5017 case X86ISD::CMOV: return "X86ISD::CMOV";
5018 case X86ISD::BRCOND: return "X86ISD::BRCOND";
5019 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
5020 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
5021 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005022 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
5023 case X86ISD::Wrapper: return "X86ISD::Wrapper";
5024 case X86ISD::S2VEC: return "X86ISD::S2VEC";
5025 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
5026 case X86ISD::PINSRW: return "X86ISD::PINSRW";
5027 case X86ISD::FMAX: return "X86ISD::FMAX";
5028 case X86ISD::FMIN: return "X86ISD::FMIN";
5029 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
5030 case X86ISD::FRCP: return "X86ISD::FRCP";
5031 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
5032 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
5033 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005034 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005035 }
5036}
5037
5038// isLegalAddressingMode - Return true if the addressing mode represented
5039// by AM is legal for this target, for a load/store of the specified type.
5040bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5041 const Type *Ty) const {
5042 // X86 supports extremely general addressing modes.
5043
5044 // X86 allows a sign-extended 32-bit immediate field as a displacement.
5045 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5046 return false;
5047
5048 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005049 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005050 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5051 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005052
5053 // X86-64 only supports addr of globals in small code model.
5054 if (Subtarget->is64Bit()) {
5055 if (getTargetMachine().getCodeModel() != CodeModel::Small)
5056 return false;
5057 // If lower 4G is not available, then we must use rip-relative addressing.
5058 if (AM.BaseOffs || AM.Scale > 1)
5059 return false;
5060 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005061 }
5062
5063 switch (AM.Scale) {
5064 case 0:
5065 case 1:
5066 case 2:
5067 case 4:
5068 case 8:
5069 // These scales always work.
5070 break;
5071 case 3:
5072 case 5:
5073 case 9:
5074 // These scales are formed with basereg+scalereg. Only accept if there is
5075 // no basereg yet.
5076 if (AM.HasBaseReg)
5077 return false;
5078 break;
5079 default: // Other stuff never works.
5080 return false;
5081 }
5082
5083 return true;
5084}
5085
5086
5087/// isShuffleMaskLegal - Targets can use this to indicate that they only
5088/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5089/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5090/// are assumed to be legal.
5091bool
5092X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5093 // Only do shuffles on 128-bit vector types for now.
5094 if (MVT::getSizeInBits(VT) == 64) return false;
5095 return (Mask.Val->getNumOperands() <= 4 ||
5096 isIdentityMask(Mask.Val) ||
5097 isIdentityMask(Mask.Val, true) ||
5098 isSplatMask(Mask.Val) ||
5099 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5100 X86::isUNPCKLMask(Mask.Val) ||
5101 X86::isUNPCKHMask(Mask.Val) ||
5102 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5103 X86::isUNPCKH_v_undef_Mask(Mask.Val));
5104}
5105
5106bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5107 MVT::ValueType EVT,
5108 SelectionDAG &DAG) const {
5109 unsigned NumElts = BVOps.size();
5110 // Only do shuffles on 128-bit vector types for now.
5111 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5112 if (NumElts == 2) return true;
5113 if (NumElts == 4) {
5114 return (isMOVLMask(&BVOps[0], 4) ||
5115 isCommutedMOVL(&BVOps[0], 4, true) ||
5116 isSHUFPMask(&BVOps[0], 4) ||
5117 isCommutedSHUFP(&BVOps[0], 4));
5118 }
5119 return false;
5120}
5121
5122//===----------------------------------------------------------------------===//
5123// X86 Scheduler Hooks
5124//===----------------------------------------------------------------------===//
5125
5126MachineBasicBlock *
5127X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5128 MachineBasicBlock *BB) {
5129 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5130 switch (MI->getOpcode()) {
5131 default: assert(false && "Unexpected instr type to insert");
5132 case X86::CMOV_FR32:
5133 case X86::CMOV_FR64:
5134 case X86::CMOV_V4F32:
5135 case X86::CMOV_V2F64:
Evan Cheng621216e2007-09-29 00:00:36 +00005136 case X86::CMOV_V2I64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005137 // To "insert" a SELECT_CC instruction, we actually have to insert the
5138 // diamond control-flow pattern. The incoming instruction knows the
5139 // destination vreg to set, the condition code register to branch on, the
5140 // true/false values to select between, and a branch opcode to use.
5141 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5142 ilist<MachineBasicBlock>::iterator It = BB;
5143 ++It;
5144
5145 // thisMBB:
5146 // ...
5147 // TrueVal = ...
5148 // cmpTY ccX, r1, r2
5149 // bCC copy1MBB
5150 // fallthrough --> copy0MBB
5151 MachineBasicBlock *thisMBB = BB;
5152 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5153 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5154 unsigned Opc =
5155 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5156 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5157 MachineFunction *F = BB->getParent();
5158 F->getBasicBlockList().insert(It, copy0MBB);
5159 F->getBasicBlockList().insert(It, sinkMBB);
5160 // Update machine-CFG edges by first adding all successors of the current
5161 // block to the new block which will contain the Phi node for the select.
5162 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5163 e = BB->succ_end(); i != e; ++i)
5164 sinkMBB->addSuccessor(*i);
5165 // Next, remove all successors of the current block, and add the true
5166 // and fallthrough blocks as its successors.
5167 while(!BB->succ_empty())
5168 BB->removeSuccessor(BB->succ_begin());
5169 BB->addSuccessor(copy0MBB);
5170 BB->addSuccessor(sinkMBB);
5171
5172 // copy0MBB:
5173 // %FalseValue = ...
5174 // # fallthrough to sinkMBB
5175 BB = copy0MBB;
5176
5177 // Update machine-CFG edges
5178 BB->addSuccessor(sinkMBB);
5179
5180 // sinkMBB:
5181 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5182 // ...
5183 BB = sinkMBB;
5184 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5185 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5186 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5187
5188 delete MI; // The pseudo instruction is gone now.
5189 return BB;
5190 }
5191
5192 case X86::FP32_TO_INT16_IN_MEM:
5193 case X86::FP32_TO_INT32_IN_MEM:
5194 case X86::FP32_TO_INT64_IN_MEM:
5195 case X86::FP64_TO_INT16_IN_MEM:
5196 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005197 case X86::FP64_TO_INT64_IN_MEM:
5198 case X86::FP80_TO_INT16_IN_MEM:
5199 case X86::FP80_TO_INT32_IN_MEM:
5200 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005201 // Change the floating point control register to use "round towards zero"
5202 // mode when truncating to an integer value.
5203 MachineFunction *F = BB->getParent();
5204 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5205 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5206
5207 // Load the old value of the high byte of the control word...
5208 unsigned OldCW =
5209 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5210 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5211
5212 // Set the high part to be round to zero...
5213 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5214 .addImm(0xC7F);
5215
5216 // Reload the modified control word now...
5217 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5218
5219 // Restore the memory image of control word to original value
5220 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5221 .addReg(OldCW);
5222
5223 // Get the X86 opcode to use.
5224 unsigned Opc;
5225 switch (MI->getOpcode()) {
5226 default: assert(0 && "illegal opcode!");
5227 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5228 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5229 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5230 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5231 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5232 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005233 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5234 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5235 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005236 }
5237
5238 X86AddressMode AM;
5239 MachineOperand &Op = MI->getOperand(0);
5240 if (Op.isRegister()) {
5241 AM.BaseType = X86AddressMode::RegBase;
5242 AM.Base.Reg = Op.getReg();
5243 } else {
5244 AM.BaseType = X86AddressMode::FrameIndexBase;
5245 AM.Base.FrameIndex = Op.getFrameIndex();
5246 }
5247 Op = MI->getOperand(1);
5248 if (Op.isImmediate())
5249 AM.Scale = Op.getImm();
5250 Op = MI->getOperand(2);
5251 if (Op.isImmediate())
5252 AM.IndexReg = Op.getImm();
5253 Op = MI->getOperand(3);
5254 if (Op.isGlobalAddress()) {
5255 AM.GV = Op.getGlobal();
5256 } else {
5257 AM.Disp = Op.getImm();
5258 }
5259 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5260 .addReg(MI->getOperand(4).getReg());
5261
5262 // Reload the original control word now.
5263 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5264
5265 delete MI; // The pseudo instruction is gone now.
5266 return BB;
5267 }
5268 }
5269}
5270
5271//===----------------------------------------------------------------------===//
5272// X86 Optimization Hooks
5273//===----------------------------------------------------------------------===//
5274
5275void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5276 uint64_t Mask,
5277 uint64_t &KnownZero,
5278 uint64_t &KnownOne,
5279 const SelectionDAG &DAG,
5280 unsigned Depth) const {
5281 unsigned Opc = Op.getOpcode();
5282 assert((Opc >= ISD::BUILTIN_OP_END ||
5283 Opc == ISD::INTRINSIC_WO_CHAIN ||
5284 Opc == ISD::INTRINSIC_W_CHAIN ||
5285 Opc == ISD::INTRINSIC_VOID) &&
5286 "Should use MaskedValueIsZero if you don't know whether Op"
5287 " is a target node!");
5288
5289 KnownZero = KnownOne = 0; // Don't know anything.
5290 switch (Opc) {
5291 default: break;
5292 case X86ISD::SETCC:
5293 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5294 break;
5295 }
5296}
5297
5298/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5299/// element of the result of the vector shuffle.
5300static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5301 MVT::ValueType VT = N->getValueType(0);
5302 SDOperand PermMask = N->getOperand(2);
5303 unsigned NumElems = PermMask.getNumOperands();
5304 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5305 i %= NumElems;
5306 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5307 return (i == 0)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005308 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005309 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5310 SDOperand Idx = PermMask.getOperand(i);
5311 if (Idx.getOpcode() == ISD::UNDEF)
5312 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5313 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5314 }
5315 return SDOperand();
5316}
5317
5318/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5319/// node is a GlobalAddress + an offset.
5320static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5321 unsigned Opc = N->getOpcode();
5322 if (Opc == X86ISD::Wrapper) {
5323 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5324 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5325 return true;
5326 }
5327 } else if (Opc == ISD::ADD) {
5328 SDOperand N1 = N->getOperand(0);
5329 SDOperand N2 = N->getOperand(1);
5330 if (isGAPlusOffset(N1.Val, GA, Offset)) {
5331 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5332 if (V) {
5333 Offset += V->getSignExtended();
5334 return true;
5335 }
5336 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5337 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5338 if (V) {
5339 Offset += V->getSignExtended();
5340 return true;
5341 }
5342 }
5343 }
5344 return false;
5345}
5346
5347/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5348/// + Dist * Size.
5349static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5350 MachineFrameInfo *MFI) {
5351 if (N->getOperand(0).Val != Base->getOperand(0).Val)
5352 return false;
5353
5354 SDOperand Loc = N->getOperand(1);
5355 SDOperand BaseLoc = Base->getOperand(1);
5356 if (Loc.getOpcode() == ISD::FrameIndex) {
5357 if (BaseLoc.getOpcode() != ISD::FrameIndex)
5358 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00005359 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
5360 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005361 int FS = MFI->getObjectSize(FI);
5362 int BFS = MFI->getObjectSize(BFI);
5363 if (FS != BFS || FS != Size) return false;
5364 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5365 } else {
5366 GlobalValue *GV1 = NULL;
5367 GlobalValue *GV2 = NULL;
5368 int64_t Offset1 = 0;
5369 int64_t Offset2 = 0;
5370 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5371 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5372 if (isGA1 && isGA2 && GV1 == GV2)
5373 return Offset1 == (Offset2 + Dist*Size);
5374 }
5375
5376 return false;
5377}
5378
5379static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5380 const X86Subtarget *Subtarget) {
5381 GlobalValue *GV;
5382 int64_t Offset;
5383 if (isGAPlusOffset(Base, GV, Offset))
5384 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5385 else {
5386 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00005387 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005388 if (BFI < 0)
5389 // Fixed objects do not specify alignment, however the offsets are known.
5390 return ((Subtarget->getStackAlignment() % 16) == 0 &&
5391 (MFI->getObjectOffset(BFI) % 16) == 0);
5392 else
5393 return MFI->getObjectAlignment(BFI) >= 16;
5394 }
5395 return false;
5396}
5397
5398
5399/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5400/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5401/// if the load addresses are consecutive, non-overlapping, and in the right
5402/// order.
5403static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5404 const X86Subtarget *Subtarget) {
5405 MachineFunction &MF = DAG.getMachineFunction();
5406 MachineFrameInfo *MFI = MF.getFrameInfo();
5407 MVT::ValueType VT = N->getValueType(0);
5408 MVT::ValueType EVT = MVT::getVectorElementType(VT);
5409 SDOperand PermMask = N->getOperand(2);
5410 int NumElems = (int)PermMask.getNumOperands();
5411 SDNode *Base = NULL;
5412 for (int i = 0; i < NumElems; ++i) {
5413 SDOperand Idx = PermMask.getOperand(i);
5414 if (Idx.getOpcode() == ISD::UNDEF) {
5415 if (!Base) return SDOperand();
5416 } else {
5417 SDOperand Arg =
5418 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5419 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5420 return SDOperand();
5421 if (!Base)
5422 Base = Arg.Val;
5423 else if (!isConsecutiveLoad(Arg.Val, Base,
5424 i, MVT::getSizeInBits(EVT)/8,MFI))
5425 return SDOperand();
5426 }
5427 }
5428
5429 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00005430 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005431 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005432 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00005433 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005434 } else {
Dan Gohman11821702007-07-27 17:16:43 +00005435 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5436 LD->getSrcValueOffset(), LD->isVolatile(),
5437 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005438 }
5439}
5440
5441/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5442static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5443 const X86Subtarget *Subtarget) {
5444 SDOperand Cond = N->getOperand(0);
5445
5446 // If we have SSE[12] support, try to form min/max nodes.
5447 if (Subtarget->hasSSE2() &&
5448 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5449 if (Cond.getOpcode() == ISD::SETCC) {
5450 // Get the LHS/RHS of the select.
5451 SDOperand LHS = N->getOperand(1);
5452 SDOperand RHS = N->getOperand(2);
5453 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5454
5455 unsigned Opcode = 0;
5456 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5457 switch (CC) {
5458 default: break;
5459 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5460 case ISD::SETULE:
5461 case ISD::SETLE:
5462 if (!UnsafeFPMath) break;
5463 // FALL THROUGH.
5464 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5465 case ISD::SETLT:
5466 Opcode = X86ISD::FMIN;
5467 break;
5468
5469 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5470 case ISD::SETUGT:
5471 case ISD::SETGT:
5472 if (!UnsafeFPMath) break;
5473 // FALL THROUGH.
5474 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5475 case ISD::SETGE:
5476 Opcode = X86ISD::FMAX;
5477 break;
5478 }
5479 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5480 switch (CC) {
5481 default: break;
5482 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5483 case ISD::SETUGT:
5484 case ISD::SETGT:
5485 if (!UnsafeFPMath) break;
5486 // FALL THROUGH.
5487 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5488 case ISD::SETGE:
5489 Opcode = X86ISD::FMIN;
5490 break;
5491
5492 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5493 case ISD::SETULE:
5494 case ISD::SETLE:
5495 if (!UnsafeFPMath) break;
5496 // FALL THROUGH.
5497 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5498 case ISD::SETLT:
5499 Opcode = X86ISD::FMAX;
5500 break;
5501 }
5502 }
5503
5504 if (Opcode)
5505 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5506 }
5507
5508 }
5509
5510 return SDOperand();
5511}
5512
5513
5514SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5515 DAGCombinerInfo &DCI) const {
5516 SelectionDAG &DAG = DCI.DAG;
5517 switch (N->getOpcode()) {
5518 default: break;
5519 case ISD::VECTOR_SHUFFLE:
5520 return PerformShuffleCombine(N, DAG, Subtarget);
5521 case ISD::SELECT:
5522 return PerformSELECTCombine(N, DAG, Subtarget);
5523 }
5524
5525 return SDOperand();
5526}
5527
5528//===----------------------------------------------------------------------===//
5529// X86 Inline Assembly Support
5530//===----------------------------------------------------------------------===//
5531
5532/// getConstraintType - Given a constraint letter, return the type of
5533/// constraint it is for this target.
5534X86TargetLowering::ConstraintType
5535X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5536 if (Constraint.size() == 1) {
5537 switch (Constraint[0]) {
5538 case 'A':
5539 case 'r':
5540 case 'R':
5541 case 'l':
5542 case 'q':
5543 case 'Q':
5544 case 'x':
5545 case 'Y':
5546 return C_RegisterClass;
5547 default:
5548 break;
5549 }
5550 }
5551 return TargetLowering::getConstraintType(Constraint);
5552}
5553
Chris Lattnera531abc2007-08-25 00:47:38 +00005554/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5555/// vector. If it is invalid, don't add anything to Ops.
5556void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5557 char Constraint,
5558 std::vector<SDOperand>&Ops,
5559 SelectionDAG &DAG) {
5560 SDOperand Result(0, 0);
5561
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005562 switch (Constraint) {
5563 default: break;
5564 case 'I':
5565 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005566 if (C->getValue() <= 31) {
5567 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5568 break;
5569 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005570 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005571 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005572 case 'N':
5573 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005574 if (C->getValue() <= 255) {
5575 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5576 break;
5577 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005578 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005579 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005580 case 'i': {
5581 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005582 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5583 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5584 break;
5585 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005586
5587 // If we are in non-pic codegen mode, we allow the address of a global (with
5588 // an optional displacement) to be used with 'i'.
5589 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5590 int64_t Offset = 0;
5591
5592 // Match either (GA) or (GA+C)
5593 if (GA) {
5594 Offset = GA->getOffset();
5595 } else if (Op.getOpcode() == ISD::ADD) {
5596 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5597 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5598 if (C && GA) {
5599 Offset = GA->getOffset()+C->getValue();
5600 } else {
5601 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5602 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5603 if (C && GA)
5604 Offset = GA->getOffset()+C->getValue();
5605 else
5606 C = 0, GA = 0;
5607 }
5608 }
5609
5610 if (GA) {
5611 // If addressing this global requires a load (e.g. in PIC mode), we can't
5612 // match.
5613 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5614 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005615 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005616
5617 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5618 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005619 Result = Op;
5620 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005621 }
5622
5623 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005624 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005625 }
5626 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005627
5628 if (Result.Val) {
5629 Ops.push_back(Result);
5630 return;
5631 }
5632 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005633}
5634
5635std::vector<unsigned> X86TargetLowering::
5636getRegClassForInlineAsmConstraint(const std::string &Constraint,
5637 MVT::ValueType VT) const {
5638 if (Constraint.size() == 1) {
5639 // FIXME: not handling fp-stack yet!
5640 switch (Constraint[0]) { // GCC X86 Constraint Letters
5641 default: break; // Unknown constraint letter
5642 case 'A': // EAX/EDX
5643 if (VT == MVT::i32 || VT == MVT::i64)
5644 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5645 break;
5646 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5647 case 'Q': // Q_REGS
5648 if (VT == MVT::i32)
5649 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5650 else if (VT == MVT::i16)
5651 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5652 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005653 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005654 break;
5655 }
5656 }
5657
5658 return std::vector<unsigned>();
5659}
5660
5661std::pair<unsigned, const TargetRegisterClass*>
5662X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5663 MVT::ValueType VT) const {
5664 // First, see if this is a constraint that directly corresponds to an LLVM
5665 // register class.
5666 if (Constraint.size() == 1) {
5667 // GCC Constraint Letters
5668 switch (Constraint[0]) {
5669 default: break;
5670 case 'r': // GENERAL_REGS
5671 case 'R': // LEGACY_REGS
5672 case 'l': // INDEX_REGS
5673 if (VT == MVT::i64 && Subtarget->is64Bit())
5674 return std::make_pair(0U, X86::GR64RegisterClass);
5675 if (VT == MVT::i32)
5676 return std::make_pair(0U, X86::GR32RegisterClass);
5677 else if (VT == MVT::i16)
5678 return std::make_pair(0U, X86::GR16RegisterClass);
5679 else if (VT == MVT::i8)
5680 return std::make_pair(0U, X86::GR8RegisterClass);
5681 break;
5682 case 'y': // MMX_REGS if MMX allowed.
5683 if (!Subtarget->hasMMX()) break;
5684 return std::make_pair(0U, X86::VR64RegisterClass);
5685 break;
5686 case 'Y': // SSE_REGS if SSE2 allowed
5687 if (!Subtarget->hasSSE2()) break;
5688 // FALL THROUGH.
5689 case 'x': // SSE_REGS if SSE1 allowed
5690 if (!Subtarget->hasSSE1()) break;
5691
5692 switch (VT) {
5693 default: break;
5694 // Scalar SSE types.
5695 case MVT::f32:
5696 case MVT::i32:
5697 return std::make_pair(0U, X86::FR32RegisterClass);
5698 case MVT::f64:
5699 case MVT::i64:
5700 return std::make_pair(0U, X86::FR64RegisterClass);
5701 // Vector types.
5702 case MVT::v16i8:
5703 case MVT::v8i16:
5704 case MVT::v4i32:
5705 case MVT::v2i64:
5706 case MVT::v4f32:
5707 case MVT::v2f64:
5708 return std::make_pair(0U, X86::VR128RegisterClass);
5709 }
5710 break;
5711 }
5712 }
5713
5714 // Use the default implementation in TargetLowering to convert the register
5715 // constraint into a member of a register class.
5716 std::pair<unsigned, const TargetRegisterClass*> Res;
5717 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5718
5719 // Not found as a standard register?
5720 if (Res.second == 0) {
5721 // GCC calls "st(0)" just plain "st".
5722 if (StringsEqualNoCase("{st}", Constraint)) {
5723 Res.first = X86::ST0;
Chris Lattner3cfe51b2007-09-24 05:27:37 +00005724 Res.second = X86::RFP80RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005725 }
5726
5727 return Res;
5728 }
5729
5730 // Otherwise, check to see if this is a register class of the wrong value
5731 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5732 // turn into {ax},{dx}.
5733 if (Res.second->hasType(VT))
5734 return Res; // Correct type already, nothing to do.
5735
5736 // All of the single-register GCC register classes map their values onto
5737 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5738 // really want an 8-bit or 32-bit register, map to the appropriate register
5739 // class and return the appropriate register.
5740 if (Res.second != X86::GR16RegisterClass)
5741 return Res;
5742
5743 if (VT == MVT::i8) {
5744 unsigned DestReg = 0;
5745 switch (Res.first) {
5746 default: break;
5747 case X86::AX: DestReg = X86::AL; break;
5748 case X86::DX: DestReg = X86::DL; break;
5749 case X86::CX: DestReg = X86::CL; break;
5750 case X86::BX: DestReg = X86::BL; break;
5751 }
5752 if (DestReg) {
5753 Res.first = DestReg;
5754 Res.second = Res.second = X86::GR8RegisterClass;
5755 }
5756 } else if (VT == MVT::i32) {
5757 unsigned DestReg = 0;
5758 switch (Res.first) {
5759 default: break;
5760 case X86::AX: DestReg = X86::EAX; break;
5761 case X86::DX: DestReg = X86::EDX; break;
5762 case X86::CX: DestReg = X86::ECX; break;
5763 case X86::BX: DestReg = X86::EBX; break;
5764 case X86::SI: DestReg = X86::ESI; break;
5765 case X86::DI: DestReg = X86::EDI; break;
5766 case X86::BP: DestReg = X86::EBP; break;
5767 case X86::SP: DestReg = X86::ESP; break;
5768 }
5769 if (DestReg) {
5770 Res.first = DestReg;
5771 Res.second = Res.second = X86::GR32RegisterClass;
5772 }
5773 } else if (VT == MVT::i64) {
5774 unsigned DestReg = 0;
5775 switch (Res.first) {
5776 default: break;
5777 case X86::AX: DestReg = X86::RAX; break;
5778 case X86::DX: DestReg = X86::RDX; break;
5779 case X86::CX: DestReg = X86::RCX; break;
5780 case X86::BX: DestReg = X86::RBX; break;
5781 case X86::SI: DestReg = X86::RSI; break;
5782 case X86::DI: DestReg = X86::RDI; break;
5783 case X86::BP: DestReg = X86::RBP; break;
5784 case X86::SP: DestReg = X86::RSP; break;
5785 }
5786 if (DestReg) {
5787 Res.first = DestReg;
5788 Res.second = Res.second = X86::GR64RegisterClass;
5789 }
5790 }
5791
5792 return Res;
5793}