blob: 42b25a91b8be5c4bb142226ae9cd796b73d3f9d9 [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Chris Lattnerabf05b22003-08-03 21:55:55 +000016#include "X86GenInstrInfo.inc"
Evan Chengaa3c1412006-05-30 21:45:53 +000017#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson718cb662007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng0488db92007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000028
Brian Gaeked0fde302003-11-11 22:41:34 +000029using namespace llvm;
30
Owen Anderson43dbe052008-01-07 01:35:02 +000031namespace {
32 cl::opt<bool>
33 NoFusing("disable-spill-fusing",
34 cl::desc("Disable fusing of spill code into instructions"));
35 cl::opt<bool>
36 PrintFailedFusing("print-failed-fuse-candidates",
37 cl::desc("Print instructions that the allocator wants to"
38 " fuse, but the X86 backend currently can't"),
39 cl::Hidden);
40}
41
Evan Chengaa3c1412006-05-30 21:45:53 +000042X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattner64105522008-01-01 01:03:04 +000043 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng25ab6902006-09-08 06:48:29 +000044 TM(tm), RI(tm, *this) {
Owen Anderson43dbe052008-01-07 01:35:02 +000045 SmallVector<unsigned,16> AmbEntries;
46 static const unsigned OpTbl2Addr[][2] = {
47 { X86::ADC32ri, X86::ADC32mi },
48 { X86::ADC32ri8, X86::ADC32mi8 },
49 { X86::ADC32rr, X86::ADC32mr },
50 { X86::ADC64ri32, X86::ADC64mi32 },
51 { X86::ADC64ri8, X86::ADC64mi8 },
52 { X86::ADC64rr, X86::ADC64mr },
53 { X86::ADD16ri, X86::ADD16mi },
54 { X86::ADD16ri8, X86::ADD16mi8 },
55 { X86::ADD16rr, X86::ADD16mr },
56 { X86::ADD32ri, X86::ADD32mi },
57 { X86::ADD32ri8, X86::ADD32mi8 },
58 { X86::ADD32rr, X86::ADD32mr },
59 { X86::ADD64ri32, X86::ADD64mi32 },
60 { X86::ADD64ri8, X86::ADD64mi8 },
61 { X86::ADD64rr, X86::ADD64mr },
62 { X86::ADD8ri, X86::ADD8mi },
63 { X86::ADD8rr, X86::ADD8mr },
64 { X86::AND16ri, X86::AND16mi },
65 { X86::AND16ri8, X86::AND16mi8 },
66 { X86::AND16rr, X86::AND16mr },
67 { X86::AND32ri, X86::AND32mi },
68 { X86::AND32ri8, X86::AND32mi8 },
69 { X86::AND32rr, X86::AND32mr },
70 { X86::AND64ri32, X86::AND64mi32 },
71 { X86::AND64ri8, X86::AND64mi8 },
72 { X86::AND64rr, X86::AND64mr },
73 { X86::AND8ri, X86::AND8mi },
74 { X86::AND8rr, X86::AND8mr },
75 { X86::DEC16r, X86::DEC16m },
76 { X86::DEC32r, X86::DEC32m },
77 { X86::DEC64_16r, X86::DEC64_16m },
78 { X86::DEC64_32r, X86::DEC64_32m },
79 { X86::DEC64r, X86::DEC64m },
80 { X86::DEC8r, X86::DEC8m },
81 { X86::INC16r, X86::INC16m },
82 { X86::INC32r, X86::INC32m },
83 { X86::INC64_16r, X86::INC64_16m },
84 { X86::INC64_32r, X86::INC64_32m },
85 { X86::INC64r, X86::INC64m },
86 { X86::INC8r, X86::INC8m },
87 { X86::NEG16r, X86::NEG16m },
88 { X86::NEG32r, X86::NEG32m },
89 { X86::NEG64r, X86::NEG64m },
90 { X86::NEG8r, X86::NEG8m },
91 { X86::NOT16r, X86::NOT16m },
92 { X86::NOT32r, X86::NOT32m },
93 { X86::NOT64r, X86::NOT64m },
94 { X86::NOT8r, X86::NOT8m },
95 { X86::OR16ri, X86::OR16mi },
96 { X86::OR16ri8, X86::OR16mi8 },
97 { X86::OR16rr, X86::OR16mr },
98 { X86::OR32ri, X86::OR32mi },
99 { X86::OR32ri8, X86::OR32mi8 },
100 { X86::OR32rr, X86::OR32mr },
101 { X86::OR64ri32, X86::OR64mi32 },
102 { X86::OR64ri8, X86::OR64mi8 },
103 { X86::OR64rr, X86::OR64mr },
104 { X86::OR8ri, X86::OR8mi },
105 { X86::OR8rr, X86::OR8mr },
106 { X86::ROL16r1, X86::ROL16m1 },
107 { X86::ROL16rCL, X86::ROL16mCL },
108 { X86::ROL16ri, X86::ROL16mi },
109 { X86::ROL32r1, X86::ROL32m1 },
110 { X86::ROL32rCL, X86::ROL32mCL },
111 { X86::ROL32ri, X86::ROL32mi },
112 { X86::ROL64r1, X86::ROL64m1 },
113 { X86::ROL64rCL, X86::ROL64mCL },
114 { X86::ROL64ri, X86::ROL64mi },
115 { X86::ROL8r1, X86::ROL8m1 },
116 { X86::ROL8rCL, X86::ROL8mCL },
117 { X86::ROL8ri, X86::ROL8mi },
118 { X86::ROR16r1, X86::ROR16m1 },
119 { X86::ROR16rCL, X86::ROR16mCL },
120 { X86::ROR16ri, X86::ROR16mi },
121 { X86::ROR32r1, X86::ROR32m1 },
122 { X86::ROR32rCL, X86::ROR32mCL },
123 { X86::ROR32ri, X86::ROR32mi },
124 { X86::ROR64r1, X86::ROR64m1 },
125 { X86::ROR64rCL, X86::ROR64mCL },
126 { X86::ROR64ri, X86::ROR64mi },
127 { X86::ROR8r1, X86::ROR8m1 },
128 { X86::ROR8rCL, X86::ROR8mCL },
129 { X86::ROR8ri, X86::ROR8mi },
130 { X86::SAR16r1, X86::SAR16m1 },
131 { X86::SAR16rCL, X86::SAR16mCL },
132 { X86::SAR16ri, X86::SAR16mi },
133 { X86::SAR32r1, X86::SAR32m1 },
134 { X86::SAR32rCL, X86::SAR32mCL },
135 { X86::SAR32ri, X86::SAR32mi },
136 { X86::SAR64r1, X86::SAR64m1 },
137 { X86::SAR64rCL, X86::SAR64mCL },
138 { X86::SAR64ri, X86::SAR64mi },
139 { X86::SAR8r1, X86::SAR8m1 },
140 { X86::SAR8rCL, X86::SAR8mCL },
141 { X86::SAR8ri, X86::SAR8mi },
142 { X86::SBB32ri, X86::SBB32mi },
143 { X86::SBB32ri8, X86::SBB32mi8 },
144 { X86::SBB32rr, X86::SBB32mr },
145 { X86::SBB64ri32, X86::SBB64mi32 },
146 { X86::SBB64ri8, X86::SBB64mi8 },
147 { X86::SBB64rr, X86::SBB64mr },
148 { X86::SHL16r1, X86::SHL16m1 },
149 { X86::SHL16rCL, X86::SHL16mCL },
150 { X86::SHL16ri, X86::SHL16mi },
151 { X86::SHL32r1, X86::SHL32m1 },
152 { X86::SHL32rCL, X86::SHL32mCL },
153 { X86::SHL32ri, X86::SHL32mi },
154 { X86::SHL64r1, X86::SHL64m1 },
155 { X86::SHL64rCL, X86::SHL64mCL },
156 { X86::SHL64ri, X86::SHL64mi },
157 { X86::SHL8r1, X86::SHL8m1 },
158 { X86::SHL8rCL, X86::SHL8mCL },
159 { X86::SHL8ri, X86::SHL8mi },
160 { X86::SHLD16rrCL, X86::SHLD16mrCL },
161 { X86::SHLD16rri8, X86::SHLD16mri8 },
162 { X86::SHLD32rrCL, X86::SHLD32mrCL },
163 { X86::SHLD32rri8, X86::SHLD32mri8 },
164 { X86::SHLD64rrCL, X86::SHLD64mrCL },
165 { X86::SHLD64rri8, X86::SHLD64mri8 },
166 { X86::SHR16r1, X86::SHR16m1 },
167 { X86::SHR16rCL, X86::SHR16mCL },
168 { X86::SHR16ri, X86::SHR16mi },
169 { X86::SHR32r1, X86::SHR32m1 },
170 { X86::SHR32rCL, X86::SHR32mCL },
171 { X86::SHR32ri, X86::SHR32mi },
172 { X86::SHR64r1, X86::SHR64m1 },
173 { X86::SHR64rCL, X86::SHR64mCL },
174 { X86::SHR64ri, X86::SHR64mi },
175 { X86::SHR8r1, X86::SHR8m1 },
176 { X86::SHR8rCL, X86::SHR8mCL },
177 { X86::SHR8ri, X86::SHR8mi },
178 { X86::SHRD16rrCL, X86::SHRD16mrCL },
179 { X86::SHRD16rri8, X86::SHRD16mri8 },
180 { X86::SHRD32rrCL, X86::SHRD32mrCL },
181 { X86::SHRD32rri8, X86::SHRD32mri8 },
182 { X86::SHRD64rrCL, X86::SHRD64mrCL },
183 { X86::SHRD64rri8, X86::SHRD64mri8 },
184 { X86::SUB16ri, X86::SUB16mi },
185 { X86::SUB16ri8, X86::SUB16mi8 },
186 { X86::SUB16rr, X86::SUB16mr },
187 { X86::SUB32ri, X86::SUB32mi },
188 { X86::SUB32ri8, X86::SUB32mi8 },
189 { X86::SUB32rr, X86::SUB32mr },
190 { X86::SUB64ri32, X86::SUB64mi32 },
191 { X86::SUB64ri8, X86::SUB64mi8 },
192 { X86::SUB64rr, X86::SUB64mr },
193 { X86::SUB8ri, X86::SUB8mi },
194 { X86::SUB8rr, X86::SUB8mr },
195 { X86::XOR16ri, X86::XOR16mi },
196 { X86::XOR16ri8, X86::XOR16mi8 },
197 { X86::XOR16rr, X86::XOR16mr },
198 { X86::XOR32ri, X86::XOR32mi },
199 { X86::XOR32ri8, X86::XOR32mi8 },
200 { X86::XOR32rr, X86::XOR32mr },
201 { X86::XOR64ri32, X86::XOR64mi32 },
202 { X86::XOR64ri8, X86::XOR64mi8 },
203 { X86::XOR64rr, X86::XOR64mr },
204 { X86::XOR8ri, X86::XOR8mi },
205 { X86::XOR8rr, X86::XOR8mr }
206 };
207
208 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
209 unsigned RegOp = OpTbl2Addr[i][0];
210 unsigned MemOp = OpTbl2Addr[i][1];
211 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
212 assert(false && "Duplicated entries?");
213 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
214 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
215 std::make_pair(RegOp, AuxInfo))))
216 AmbEntries.push_back(MemOp);
217 }
218
219 // If the third value is 1, then it's folding either a load or a store.
220 static const unsigned OpTbl0[][3] = {
221 { X86::CALL32r, X86::CALL32m, 1 },
222 { X86::CALL64r, X86::CALL64m, 1 },
223 { X86::CMP16ri, X86::CMP16mi, 1 },
224 { X86::CMP16ri8, X86::CMP16mi8, 1 },
225 { X86::CMP32ri, X86::CMP32mi, 1 },
226 { X86::CMP32ri8, X86::CMP32mi8, 1 },
227 { X86::CMP64ri32, X86::CMP64mi32, 1 },
228 { X86::CMP64ri8, X86::CMP64mi8, 1 },
229 { X86::CMP8ri, X86::CMP8mi, 1 },
230 { X86::DIV16r, X86::DIV16m, 1 },
231 { X86::DIV32r, X86::DIV32m, 1 },
232 { X86::DIV64r, X86::DIV64m, 1 },
233 { X86::DIV8r, X86::DIV8m, 1 },
234 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
235 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
236 { X86::IDIV16r, X86::IDIV16m, 1 },
237 { X86::IDIV32r, X86::IDIV32m, 1 },
238 { X86::IDIV64r, X86::IDIV64m, 1 },
239 { X86::IDIV8r, X86::IDIV8m, 1 },
240 { X86::IMUL16r, X86::IMUL16m, 1 },
241 { X86::IMUL32r, X86::IMUL32m, 1 },
242 { X86::IMUL64r, X86::IMUL64m, 1 },
243 { X86::IMUL8r, X86::IMUL8m, 1 },
244 { X86::JMP32r, X86::JMP32m, 1 },
245 { X86::JMP64r, X86::JMP64m, 1 },
246 { X86::MOV16ri, X86::MOV16mi, 0 },
247 { X86::MOV16rr, X86::MOV16mr, 0 },
248 { X86::MOV16to16_, X86::MOV16_mr, 0 },
249 { X86::MOV32ri, X86::MOV32mi, 0 },
250 { X86::MOV32rr, X86::MOV32mr, 0 },
251 { X86::MOV32to32_, X86::MOV32_mr, 0 },
252 { X86::MOV64ri32, X86::MOV64mi32, 0 },
253 { X86::MOV64rr, X86::MOV64mr, 0 },
254 { X86::MOV8ri, X86::MOV8mi, 0 },
255 { X86::MOV8rr, X86::MOV8mr, 0 },
256 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
257 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
258 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
259 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
260 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
261 { X86::MOVSDrr, X86::MOVSDmr, 0 },
262 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
263 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
264 { X86::MOVSSrr, X86::MOVSSmr, 0 },
265 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
266 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
267 { X86::MUL16r, X86::MUL16m, 1 },
268 { X86::MUL32r, X86::MUL32m, 1 },
269 { X86::MUL64r, X86::MUL64m, 1 },
270 { X86::MUL8r, X86::MUL8m, 1 },
271 { X86::SETAEr, X86::SETAEm, 0 },
272 { X86::SETAr, X86::SETAm, 0 },
273 { X86::SETBEr, X86::SETBEm, 0 },
274 { X86::SETBr, X86::SETBm, 0 },
275 { X86::SETEr, X86::SETEm, 0 },
276 { X86::SETGEr, X86::SETGEm, 0 },
277 { X86::SETGr, X86::SETGm, 0 },
278 { X86::SETLEr, X86::SETLEm, 0 },
279 { X86::SETLr, X86::SETLm, 0 },
280 { X86::SETNEr, X86::SETNEm, 0 },
281 { X86::SETNPr, X86::SETNPm, 0 },
282 { X86::SETNSr, X86::SETNSm, 0 },
283 { X86::SETPr, X86::SETPm, 0 },
284 { X86::SETSr, X86::SETSm, 0 },
285 { X86::TAILJMPr, X86::TAILJMPm, 1 },
286 { X86::TEST16ri, X86::TEST16mi, 1 },
287 { X86::TEST32ri, X86::TEST32mi, 1 },
288 { X86::TEST64ri32, X86::TEST64mi32, 1 },
289 { X86::TEST8ri, X86::TEST8mi, 1 },
290 { X86::XCHG16rr, X86::XCHG16mr, 0 },
291 { X86::XCHG32rr, X86::XCHG32mr, 0 },
292 { X86::XCHG64rr, X86::XCHG64mr, 0 },
293 { X86::XCHG8rr, X86::XCHG8mr, 0 }
294 };
295
296 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
297 unsigned RegOp = OpTbl0[i][0];
298 unsigned MemOp = OpTbl0[i][1];
299 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
300 assert(false && "Duplicated entries?");
301 unsigned FoldedLoad = OpTbl0[i][2];
302 // Index 0, folded load or store.
303 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
304 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
305 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
306 std::make_pair(RegOp, AuxInfo))))
307 AmbEntries.push_back(MemOp);
308 }
309
310 static const unsigned OpTbl1[][2] = {
311 { X86::CMP16rr, X86::CMP16rm },
312 { X86::CMP32rr, X86::CMP32rm },
313 { X86::CMP64rr, X86::CMP64rm },
314 { X86::CMP8rr, X86::CMP8rm },
315 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
316 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
317 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
318 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
319 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
320 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
321 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
322 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
323 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
324 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
325 { X86::FsMOVAPDrr, X86::MOVSDrm },
326 { X86::FsMOVAPSrr, X86::MOVSSrm },
327 { X86::IMUL16rri, X86::IMUL16rmi },
328 { X86::IMUL16rri8, X86::IMUL16rmi8 },
329 { X86::IMUL32rri, X86::IMUL32rmi },
330 { X86::IMUL32rri8, X86::IMUL32rmi8 },
331 { X86::IMUL64rri32, X86::IMUL64rmi32 },
332 { X86::IMUL64rri8, X86::IMUL64rmi8 },
333 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
334 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
335 { X86::Int_COMISDrr, X86::Int_COMISDrm },
336 { X86::Int_COMISSrr, X86::Int_COMISSrm },
337 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
338 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
339 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
340 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
341 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
342 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
343 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
344 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
345 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
346 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
347 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
348 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
349 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
350 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
351 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
352 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
353 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
354 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
355 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
356 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
357 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
358 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
359 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
360 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
361 { X86::MOV16rr, X86::MOV16rm },
362 { X86::MOV16to16_, X86::MOV16_rm },
363 { X86::MOV32rr, X86::MOV32rm },
364 { X86::MOV32to32_, X86::MOV32_rm },
365 { X86::MOV64rr, X86::MOV64rm },
366 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
367 { X86::MOV64toSDrr, X86::MOV64toSDrm },
368 { X86::MOV8rr, X86::MOV8rm },
369 { X86::MOVAPDrr, X86::MOVAPDrm },
370 { X86::MOVAPSrr, X86::MOVAPSrm },
371 { X86::MOVDDUPrr, X86::MOVDDUPrm },
372 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
373 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
374 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
375 { X86::MOVSDrr, X86::MOVSDrm },
376 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
377 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
378 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
379 { X86::MOVSSrr, X86::MOVSSrm },
380 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
381 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
382 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
383 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
384 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
385 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
386 { X86::MOVUPDrr, X86::MOVUPDrm },
387 { X86::MOVUPSrr, X86::MOVUPSrm },
388 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
389 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
390 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
391 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
392 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
393 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
394 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
395 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
396 { X86::PSHUFDri, X86::PSHUFDmi },
397 { X86::PSHUFHWri, X86::PSHUFHWmi },
398 { X86::PSHUFLWri, X86::PSHUFLWmi },
399 { X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 },
400 { X86::RCPPSr, X86::RCPPSm },
401 { X86::RCPPSr_Int, X86::RCPPSm_Int },
402 { X86::RSQRTPSr, X86::RSQRTPSm },
403 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
404 { X86::RSQRTSSr, X86::RSQRTSSm },
405 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
406 { X86::SQRTPDr, X86::SQRTPDm },
407 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
408 { X86::SQRTPSr, X86::SQRTPSm },
409 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
410 { X86::SQRTSDr, X86::SQRTSDm },
411 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
412 { X86::SQRTSSr, X86::SQRTSSm },
413 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
414 { X86::TEST16rr, X86::TEST16rm },
415 { X86::TEST32rr, X86::TEST32rm },
416 { X86::TEST64rr, X86::TEST64rm },
417 { X86::TEST8rr, X86::TEST8rm },
418 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
419 { X86::UCOMISDrr, X86::UCOMISDrm },
420 { X86::UCOMISSrr, X86::UCOMISSrm },
421 { X86::XCHG16rr, X86::XCHG16rm },
422 { X86::XCHG32rr, X86::XCHG32rm },
423 { X86::XCHG64rr, X86::XCHG64rm },
424 { X86::XCHG8rr, X86::XCHG8rm }
425 };
426
427 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
428 unsigned RegOp = OpTbl1[i][0];
429 unsigned MemOp = OpTbl1[i][1];
430 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
431 assert(false && "Duplicated entries?");
432 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
433 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
434 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
435 std::make_pair(RegOp, AuxInfo))))
436 AmbEntries.push_back(MemOp);
437 }
438
439 static const unsigned OpTbl2[][2] = {
440 { X86::ADC32rr, X86::ADC32rm },
441 { X86::ADC64rr, X86::ADC64rm },
442 { X86::ADD16rr, X86::ADD16rm },
443 { X86::ADD32rr, X86::ADD32rm },
444 { X86::ADD64rr, X86::ADD64rm },
445 { X86::ADD8rr, X86::ADD8rm },
446 { X86::ADDPDrr, X86::ADDPDrm },
447 { X86::ADDPSrr, X86::ADDPSrm },
448 { X86::ADDSDrr, X86::ADDSDrm },
449 { X86::ADDSSrr, X86::ADDSSrm },
450 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
451 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
452 { X86::AND16rr, X86::AND16rm },
453 { X86::AND32rr, X86::AND32rm },
454 { X86::AND64rr, X86::AND64rm },
455 { X86::AND8rr, X86::AND8rm },
456 { X86::ANDNPDrr, X86::ANDNPDrm },
457 { X86::ANDNPSrr, X86::ANDNPSrm },
458 { X86::ANDPDrr, X86::ANDPDrm },
459 { X86::ANDPSrr, X86::ANDPSrm },
460 { X86::CMOVA16rr, X86::CMOVA16rm },
461 { X86::CMOVA32rr, X86::CMOVA32rm },
462 { X86::CMOVA64rr, X86::CMOVA64rm },
463 { X86::CMOVAE16rr, X86::CMOVAE16rm },
464 { X86::CMOVAE32rr, X86::CMOVAE32rm },
465 { X86::CMOVAE64rr, X86::CMOVAE64rm },
466 { X86::CMOVB16rr, X86::CMOVB16rm },
467 { X86::CMOVB32rr, X86::CMOVB32rm },
468 { X86::CMOVB64rr, X86::CMOVB64rm },
469 { X86::CMOVBE16rr, X86::CMOVBE16rm },
470 { X86::CMOVBE32rr, X86::CMOVBE32rm },
471 { X86::CMOVBE64rr, X86::CMOVBE64rm },
472 { X86::CMOVE16rr, X86::CMOVE16rm },
473 { X86::CMOVE32rr, X86::CMOVE32rm },
474 { X86::CMOVE64rr, X86::CMOVE64rm },
475 { X86::CMOVG16rr, X86::CMOVG16rm },
476 { X86::CMOVG32rr, X86::CMOVG32rm },
477 { X86::CMOVG64rr, X86::CMOVG64rm },
478 { X86::CMOVGE16rr, X86::CMOVGE16rm },
479 { X86::CMOVGE32rr, X86::CMOVGE32rm },
480 { X86::CMOVGE64rr, X86::CMOVGE64rm },
481 { X86::CMOVL16rr, X86::CMOVL16rm },
482 { X86::CMOVL32rr, X86::CMOVL32rm },
483 { X86::CMOVL64rr, X86::CMOVL64rm },
484 { X86::CMOVLE16rr, X86::CMOVLE16rm },
485 { X86::CMOVLE32rr, X86::CMOVLE32rm },
486 { X86::CMOVLE64rr, X86::CMOVLE64rm },
487 { X86::CMOVNE16rr, X86::CMOVNE16rm },
488 { X86::CMOVNE32rr, X86::CMOVNE32rm },
489 { X86::CMOVNE64rr, X86::CMOVNE64rm },
490 { X86::CMOVNP16rr, X86::CMOVNP16rm },
491 { X86::CMOVNP32rr, X86::CMOVNP32rm },
492 { X86::CMOVNP64rr, X86::CMOVNP64rm },
493 { X86::CMOVNS16rr, X86::CMOVNS16rm },
494 { X86::CMOVNS32rr, X86::CMOVNS32rm },
495 { X86::CMOVNS64rr, X86::CMOVNS64rm },
496 { X86::CMOVP16rr, X86::CMOVP16rm },
497 { X86::CMOVP32rr, X86::CMOVP32rm },
498 { X86::CMOVP64rr, X86::CMOVP64rm },
499 { X86::CMOVS16rr, X86::CMOVS16rm },
500 { X86::CMOVS32rr, X86::CMOVS32rm },
501 { X86::CMOVS64rr, X86::CMOVS64rm },
502 { X86::CMPPDrri, X86::CMPPDrmi },
503 { X86::CMPPSrri, X86::CMPPSrmi },
504 { X86::CMPSDrr, X86::CMPSDrm },
505 { X86::CMPSSrr, X86::CMPSSrm },
506 { X86::DIVPDrr, X86::DIVPDrm },
507 { X86::DIVPSrr, X86::DIVPSrm },
508 { X86::DIVSDrr, X86::DIVSDrm },
509 { X86::DIVSSrr, X86::DIVSSrm },
510 { X86::HADDPDrr, X86::HADDPDrm },
511 { X86::HADDPSrr, X86::HADDPSrm },
512 { X86::HSUBPDrr, X86::HSUBPDrm },
513 { X86::HSUBPSrr, X86::HSUBPSrm },
514 { X86::IMUL16rr, X86::IMUL16rm },
515 { X86::IMUL32rr, X86::IMUL32rm },
516 { X86::IMUL64rr, X86::IMUL64rm },
517 { X86::MAXPDrr, X86::MAXPDrm },
518 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
519 { X86::MAXPSrr, X86::MAXPSrm },
520 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
521 { X86::MAXSDrr, X86::MAXSDrm },
522 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
523 { X86::MAXSSrr, X86::MAXSSrm },
524 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
525 { X86::MINPDrr, X86::MINPDrm },
526 { X86::MINPDrr_Int, X86::MINPDrm_Int },
527 { X86::MINPSrr, X86::MINPSrm },
528 { X86::MINPSrr_Int, X86::MINPSrm_Int },
529 { X86::MINSDrr, X86::MINSDrm },
530 { X86::MINSDrr_Int, X86::MINSDrm_Int },
531 { X86::MINSSrr, X86::MINSSrm },
532 { X86::MINSSrr_Int, X86::MINSSrm_Int },
533 { X86::MULPDrr, X86::MULPDrm },
534 { X86::MULPSrr, X86::MULPSrm },
535 { X86::MULSDrr, X86::MULSDrm },
536 { X86::MULSSrr, X86::MULSSrm },
537 { X86::OR16rr, X86::OR16rm },
538 { X86::OR32rr, X86::OR32rm },
539 { X86::OR64rr, X86::OR64rm },
540 { X86::OR8rr, X86::OR8rm },
541 { X86::ORPDrr, X86::ORPDrm },
542 { X86::ORPSrr, X86::ORPSrm },
543 { X86::PACKSSDWrr, X86::PACKSSDWrm },
544 { X86::PACKSSWBrr, X86::PACKSSWBrm },
545 { X86::PACKUSWBrr, X86::PACKUSWBrm },
546 { X86::PADDBrr, X86::PADDBrm },
547 { X86::PADDDrr, X86::PADDDrm },
548 { X86::PADDQrr, X86::PADDQrm },
549 { X86::PADDSBrr, X86::PADDSBrm },
550 { X86::PADDSWrr, X86::PADDSWrm },
551 { X86::PADDWrr, X86::PADDWrm },
552 { X86::PANDNrr, X86::PANDNrm },
553 { X86::PANDrr, X86::PANDrm },
554 { X86::PAVGBrr, X86::PAVGBrm },
555 { X86::PAVGWrr, X86::PAVGWrm },
556 { X86::PCMPEQBrr, X86::PCMPEQBrm },
557 { X86::PCMPEQDrr, X86::PCMPEQDrm },
558 { X86::PCMPEQWrr, X86::PCMPEQWrm },
559 { X86::PCMPGTBrr, X86::PCMPGTBrm },
560 { X86::PCMPGTDrr, X86::PCMPGTDrm },
561 { X86::PCMPGTWrr, X86::PCMPGTWrm },
562 { X86::PINSRWrri, X86::PINSRWrmi },
563 { X86::PMADDWDrr, X86::PMADDWDrm },
564 { X86::PMAXSWrr, X86::PMAXSWrm },
565 { X86::PMAXUBrr, X86::PMAXUBrm },
566 { X86::PMINSWrr, X86::PMINSWrm },
567 { X86::PMINUBrr, X86::PMINUBrm },
568 { X86::PMULHUWrr, X86::PMULHUWrm },
569 { X86::PMULHWrr, X86::PMULHWrm },
570 { X86::PMULLWrr, X86::PMULLWrm },
571 { X86::PMULUDQrr, X86::PMULUDQrm },
572 { X86::PORrr, X86::PORrm },
573 { X86::PSADBWrr, X86::PSADBWrm },
574 { X86::PSLLDrr, X86::PSLLDrm },
575 { X86::PSLLQrr, X86::PSLLQrm },
576 { X86::PSLLWrr, X86::PSLLWrm },
577 { X86::PSRADrr, X86::PSRADrm },
578 { X86::PSRAWrr, X86::PSRAWrm },
579 { X86::PSRLDrr, X86::PSRLDrm },
580 { X86::PSRLQrr, X86::PSRLQrm },
581 { X86::PSRLWrr, X86::PSRLWrm },
582 { X86::PSUBBrr, X86::PSUBBrm },
583 { X86::PSUBDrr, X86::PSUBDrm },
584 { X86::PSUBSBrr, X86::PSUBSBrm },
585 { X86::PSUBSWrr, X86::PSUBSWrm },
586 { X86::PSUBWrr, X86::PSUBWrm },
587 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
588 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
589 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
590 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
591 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
592 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
593 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
594 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
595 { X86::PXORrr, X86::PXORrm },
596 { X86::SBB32rr, X86::SBB32rm },
597 { X86::SBB64rr, X86::SBB64rm },
598 { X86::SHUFPDrri, X86::SHUFPDrmi },
599 { X86::SHUFPSrri, X86::SHUFPSrmi },
600 { X86::SUB16rr, X86::SUB16rm },
601 { X86::SUB32rr, X86::SUB32rm },
602 { X86::SUB64rr, X86::SUB64rm },
603 { X86::SUB8rr, X86::SUB8rm },
604 { X86::SUBPDrr, X86::SUBPDrm },
605 { X86::SUBPSrr, X86::SUBPSrm },
606 { X86::SUBSDrr, X86::SUBSDrm },
607 { X86::SUBSSrr, X86::SUBSSrm },
608 // FIXME: TEST*rr -> swapped operand of TEST*mr.
609 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
610 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
611 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
612 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
613 { X86::XOR16rr, X86::XOR16rm },
614 { X86::XOR32rr, X86::XOR32rm },
615 { X86::XOR64rr, X86::XOR64rm },
616 { X86::XOR8rr, X86::XOR8rm },
617 { X86::XORPDrr, X86::XORPDrm },
618 { X86::XORPSrr, X86::XORPSrm }
619 };
620
621 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
622 unsigned RegOp = OpTbl2[i][0];
623 unsigned MemOp = OpTbl2[i][1];
624 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
625 assert(false && "Duplicated entries?");
626 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
627 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
628 std::make_pair(RegOp, AuxInfo))))
629 AmbEntries.push_back(MemOp);
630 }
631
632 // Remove ambiguous entries.
633 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Chris Lattner72614082002-10-25 22:55:53 +0000634}
635
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000636bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
637 unsigned& sourceReg,
638 unsigned& destReg) const {
639 MachineOpCode oc = MI.getOpcode();
Evan Cheng25ab6902006-09-08 06:48:29 +0000640 if (oc == X86::MOV8rr || oc == X86::MOV16rr ||
641 oc == X86::MOV32rr || oc == X86::MOV64rr ||
Evan Cheng403be7e2006-05-08 08:01:26 +0000642 oc == X86::MOV16to16_ || oc == X86::MOV32to32_ ||
Dale Johannesene377d4d2007-07-04 21:07:47 +0000643 oc == X86::MOV_Fp3232 || oc == X86::MOVSSrr || oc == X86::MOVSDrr ||
644 oc == X86::MOV_Fp3264 || oc == X86::MOV_Fp6432 || oc == X86::MOV_Fp6464 ||
Evan Chengfe5cb192006-02-16 22:45:17 +0000645 oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr ||
Evan Cheng82521dd2006-03-21 07:09:35 +0000646 oc == X86::MOVAPSrr || oc == X86::MOVAPDrr ||
Evan Cheng11e15b32006-04-03 20:53:28 +0000647 oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr ||
Bill Wendling2f88dcd2007-03-08 22:09:11 +0000648 oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr ||
Bill Wendling6dd29e02007-04-24 21:17:46 +0000649 oc == X86::MMX_MOVD64rr || oc == X86::MMX_MOVQ64rr) {
Evan Cheng1e3417292007-04-25 07:12:14 +0000650 assert(MI.getNumOperands() >= 2 &&
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000651 MI.getOperand(0).isRegister() &&
652 MI.getOperand(1).isRegister() &&
653 "invalid register-register move instruction");
Alkis Evlogimenosbe766c72004-02-13 21:01:20 +0000654 sourceReg = MI.getOperand(1).getReg();
655 destReg = MI.getOperand(0).getReg();
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000656 return true;
657 }
658 return false;
659}
Alkis Evlogimenos36f506e2004-07-31 09:38:47 +0000660
Chris Lattner40839602006-02-02 20:12:32 +0000661unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
662 int &FrameIndex) const {
663 switch (MI->getOpcode()) {
664 default: break;
665 case X86::MOV8rm:
666 case X86::MOV16rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000667 case X86::MOV16_rm:
Chris Lattner40839602006-02-02 20:12:32 +0000668 case X86::MOV32rm:
Evan Chengf4df6802006-05-11 07:33:49 +0000669 case X86::MOV32_rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000670 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000671 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000672 case X86::MOVSSrm:
673 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000674 case X86::MOVAPSrm:
675 case X86::MOVAPDrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000676 case X86::MMX_MOVD64rm:
677 case X86::MMX_MOVQ64rm:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000678 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
679 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000680 MI->getOperand(2).getImm() == 1 &&
Chris Lattner40839602006-02-02 20:12:32 +0000681 MI->getOperand(3).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000682 MI->getOperand(4).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000683 FrameIndex = MI->getOperand(1).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000684 return MI->getOperand(0).getReg();
685 }
686 break;
687 }
688 return 0;
689}
690
691unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
692 int &FrameIndex) const {
693 switch (MI->getOpcode()) {
694 default: break;
695 case X86::MOV8mr:
696 case X86::MOV16mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000697 case X86::MOV16_mr:
Chris Lattner40839602006-02-02 20:12:32 +0000698 case X86::MOV32mr:
Evan Chengf4df6802006-05-11 07:33:49 +0000699 case X86::MOV32_mr:
Evan Cheng25ab6902006-09-08 06:48:29 +0000700 case X86::MOV64mr:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000701 case X86::ST_FpP64m:
Chris Lattner40839602006-02-02 20:12:32 +0000702 case X86::MOVSSmr:
703 case X86::MOVSDmr:
Chris Lattner993c8972006-04-18 16:44:51 +0000704 case X86::MOVAPSmr:
705 case X86::MOVAPDmr:
Bill Wendling823efee2007-04-03 06:00:37 +0000706 case X86::MMX_MOVD64mr:
707 case X86::MMX_MOVQ64mr:
Bill Wendling71bfd112007-04-03 23:48:32 +0000708 case X86::MMX_MOVNTQmr:
Chris Lattner8aa797a2007-12-30 23:10:15 +0000709 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
710 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000711 MI->getOperand(1).getImm() == 1 &&
Chris Lattner1c07e722006-02-02 20:38:12 +0000712 MI->getOperand(2).getReg() == 0 &&
Chris Lattner9a1ceae2007-12-30 20:49:49 +0000713 MI->getOperand(3).getImm() == 0) {
Chris Lattner8aa797a2007-12-30 23:10:15 +0000714 FrameIndex = MI->getOperand(0).getIndex();
Chris Lattner40839602006-02-02 20:12:32 +0000715 return MI->getOperand(4).getReg();
716 }
717 break;
718 }
719 return 0;
720}
721
722
Bill Wendling041b3f82007-12-08 23:58:46 +0000723bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000724 switch (MI->getOpcode()) {
725 default: break;
726 case X86::MOV8rm:
727 case X86::MOV16rm:
728 case X86::MOV16_rm:
729 case X86::MOV32rm:
730 case X86::MOV32_rm:
731 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000732 case X86::LD_Fp64m:
Dan Gohmanc101e952007-06-14 20:50:44 +0000733 case X86::MOVSSrm:
734 case X86::MOVSDrm:
735 case X86::MOVAPSrm:
736 case X86::MOVAPDrm:
737 case X86::MMX_MOVD64rm:
738 case X86::MMX_MOVQ64rm:
Dan Gohman82a87a02007-06-19 01:48:05 +0000739 // Loads from constant pools are trivially rematerializable.
Chris Lattner3b5a2212008-01-05 05:28:30 +0000740 if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
741 MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
742 MI->getOperand(1).getReg() == 0 &&
743 MI->getOperand(2).getImm() == 1 &&
744 MI->getOperand(3).getReg() == 0)
745 return true;
Chris Lattnerf29495a2008-01-05 06:10:42 +0000746
747 // If this is a load from a fixed argument slot, we know the value is
748 // invariant across the whole function, because we don't redefine argument
749 // values.
750#if 0
751 // FIXME: This is disabled due to a remat bug. rdar://5671644
752 MachineFunction *MF = MI->getParent()->getParent();
753 if (MI->getOperand(1).isFI() &&
754 MF->getFrameInfo()->isFixedObjectIndex(MI->getOperand(1).getIndex()))
755 return true;
756#endif
757
Chris Lattner3b5a2212008-01-05 05:28:30 +0000758 return false;
Dan Gohmanc101e952007-06-14 20:50:44 +0000759 }
Dan Gohmand45eddd2007-06-26 00:48:07 +0000760 // All other instructions marked M_REMATERIALIZABLE are always trivially
761 // rematerializable.
762 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000763}
764
Bill Wendling627c00b2007-12-17 23:07:56 +0000765/// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this
766/// method is called to determine if the specific instance of this instruction
767/// has side effects. This is useful in cases of instructions, like loads, which
768/// generally always have side effects. A load from a constant pool doesn't have
769/// side effects, though. So we need to differentiate it from the general case.
770bool X86InstrInfo::isReallySideEffectFree(MachineInstr *MI) const {
771 switch (MI->getOpcode()) {
772 default: break;
Bill Wendling6259d512007-12-30 03:18:58 +0000773 case X86::MOV32rm:
774 if (MI->getOperand(1).isRegister()) {
775 unsigned Reg = MI->getOperand(1).getReg();
Bill Wendlingdf303bd2008-01-05 09:18:04 +0000776 const X86Subtarget &ST = TM.getSubtarget<X86Subtarget>();
Bill Wendling6259d512007-12-30 03:18:58 +0000777
Bill Wendlingf9958302008-01-05 23:30:51 +0000778 // Loads from stubs of global addresses are side effect free.
Bill Wendling3100afa2008-01-02 21:10:40 +0000779 if (Reg != 0 && MRegisterInfo::isVirtualRegister(Reg) &&
Chris Lattner3b5a2212008-01-05 05:28:30 +0000780 MI->getOperand(2).isImm() && MI->getOperand(3).isReg() &&
Bill Wendlingdf303bd2008-01-05 09:18:04 +0000781 MI->getOperand(4).isGlobal() &&
782 ST.GVRequiresExtraLoad(MI->getOperand(4).getGlobal(), TM, false) &&
783 MI->getOperand(2).getImm() == 1 &&
Bill Wendling6259d512007-12-30 03:18:58 +0000784 MI->getOperand(3).getReg() == 0)
785 return true;
786 }
Chris Lattnera83b34b2008-01-05 05:26:26 +0000787 // FALLTHROUGH
788 case X86::MOV8rm:
789 case X86::MOV16rm:
790 case X86::MOV16_rm:
791 case X86::MOV32_rm:
792 case X86::MOV64rm:
793 case X86::LD_Fp64m:
794 case X86::MOVSSrm:
795 case X86::MOVSDrm:
796 case X86::MOVAPSrm:
797 case X86::MOVAPDrm:
798 case X86::MMX_MOVD64rm:
799 case X86::MMX_MOVQ64rm:
Chris Lattner3b5a2212008-01-05 05:28:30 +0000800 // Loads from constant pools are trivially rematerializable.
801 if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
802 MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
803 MI->getOperand(1).getReg() == 0 &&
804 MI->getOperand(2).getImm() == 1 &&
805 MI->getOperand(3).getReg() == 0)
806 return true;
Chris Lattnerf29495a2008-01-05 06:10:42 +0000807
808 // If this is a load from a fixed argument slot, we know the value is
809 // invariant across the whole function, because we don't redefine argument
810 // values.
811 MachineFunction *MF = MI->getParent()->getParent();
812 if (MI->getOperand(1).isFI() &&
813 MF->getFrameInfo()->isFixedObjectIndex(MI->getOperand(1).getIndex()))
814 return true;
815
Chris Lattner3b5a2212008-01-05 05:28:30 +0000816 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000817 }
818
Chris Lattnera83b34b2008-01-05 05:26:26 +0000819 // All other instances of these instructions are presumed to have side
820 // effects.
821 return false;
Bill Wendling627c00b2007-12-17 23:07:56 +0000822}
823
Evan Cheng3f411c72007-10-05 08:04:01 +0000824/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
825/// is not marked dead.
826static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +0000827 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
828 MachineOperand &MO = MI->getOperand(i);
829 if (MO.isRegister() && MO.isDef() &&
830 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
831 return true;
832 }
833 }
834 return false;
835}
836
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000837/// convertToThreeAddress - This method must be implemented by targets that
838/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
839/// may be able to convert a two-address instruction into a true
840/// three-address instruction on demand. This allows the X86 target (for
841/// example) to convert ADD and SHL instructions into LEA instructions if they
842/// would require register copies due to two-addressness.
843///
844/// This method returns a null pointer if the transformation cannot be
845/// performed, otherwise it returns the new instruction.
846///
Evan Cheng258ff672006-12-01 21:52:41 +0000847MachineInstr *
848X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
849 MachineBasicBlock::iterator &MBBI,
850 LiveVariables &LV) const {
851 MachineInstr *MI = MBBI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000852 // All instructions input are two-addr instructions. Get the known operands.
853 unsigned Dest = MI->getOperand(0).getReg();
854 unsigned Src = MI->getOperand(1).getReg();
855
Evan Cheng6ce7dc22006-11-15 20:58:11 +0000856 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +0000857 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000858 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Cheng258ff672006-12-01 21:52:41 +0000859 bool DisableLEA16 = true;
860
Evan Cheng559dc462007-10-05 20:34:26 +0000861 unsigned MIOpc = MI->getOpcode();
862 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +0000863 case X86::SHUFPSrri: {
864 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000865 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
866
Evan Chengaa3c1412006-05-30 21:45:53 +0000867 unsigned A = MI->getOperand(0).getReg();
868 unsigned B = MI->getOperand(1).getReg();
869 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000870 unsigned M = MI->getOperand(3).getImm();
871 if (B != C) return 0;
Evan Chengc0f64ff2006-11-27 23:37:22 +0000872 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000873 break;
874 }
Chris Lattner995f5502007-03-28 18:12:31 +0000875 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000876 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +0000877 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
878 // the flags produced by a shift yet, so this is safe.
879 unsigned Dest = MI->getOperand(0).getReg();
880 unsigned Src = MI->getOperand(1).getReg();
881 unsigned ShAmt = MI->getOperand(2).getImm();
882 if (ShAmt == 0 || ShAmt >= 4) return 0;
883
884 NewMI = BuildMI(get(X86::LEA64r), Dest)
885 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
886 break;
887 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000888 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000889 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000890 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
891 // the flags produced by a shift yet, so this is safe.
892 unsigned Dest = MI->getOperand(0).getReg();
893 unsigned Src = MI->getOperand(1).getReg();
894 unsigned ShAmt = MI->getOperand(2).getImm();
895 if (ShAmt == 0 || ShAmt >= 4) return 0;
896
Chris Lattnerf2177b82007-03-28 00:58:40 +0000897 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
898 X86::LEA64_32r : X86::LEA32r;
899 NewMI = BuildMI(get(Opc), Dest)
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000900 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
901 break;
902 }
903 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +0000904 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +0000905 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
906 // the flags produced by a shift yet, so this is safe.
907 unsigned Dest = MI->getOperand(0).getReg();
908 unsigned Src = MI->getOperand(1).getReg();
909 unsigned ShAmt = MI->getOperand(2).getImm();
910 if (ShAmt == 0 || ShAmt >= 4) return 0;
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000911
Christopher Lambb8133712007-08-10 21:18:25 +0000912 if (DisableLEA16) {
913 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner84bc5422007-12-31 04:13:23 +0000914 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng61d9c862007-09-06 00:14:41 +0000915 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
916 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner84bc5422007-12-31 04:13:23 +0000917 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
918 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Christopher Lambb8133712007-08-10 21:18:25 +0000919
Evan Cheng61d9c862007-09-06 00:14:41 +0000920 MachineInstr *Ins =
921 BuildMI(get(X86::INSERT_SUBREG), leaInReg).addReg(Src).addImm(2);
Christopher Lambb8133712007-08-10 21:18:25 +0000922 Ins->copyKillDeadInfo(MI);
923
924 NewMI = BuildMI(get(Opc), leaOutReg)
925 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
926
Evan Cheng61d9c862007-09-06 00:14:41 +0000927 MachineInstr *Ext =
928 BuildMI(get(X86::EXTRACT_SUBREG), Dest).addReg(leaOutReg).addImm(2);
Christopher Lambb8133712007-08-10 21:18:25 +0000929 Ext->copyKillDeadInfo(MI);
930
931 MFI->insert(MBBI, Ins); // Insert the insert_subreg
932 LV.instructionChanged(MI, NewMI); // Update live variables
933 LV.addVirtualRegisterKilled(leaInReg, NewMI);
934 MFI->insert(MBBI, NewMI); // Insert the new inst
935 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng61d9c862007-09-06 00:14:41 +0000936 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lambb8133712007-08-10 21:18:25 +0000937 return Ext;
938 } else {
939 NewMI = BuildMI(get(X86::LEA16r), Dest)
940 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
941 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +0000942 break;
Evan Chengccba76b2006-05-30 20:26:50 +0000943 }
Evan Cheng559dc462007-10-05 20:34:26 +0000944 default: {
945 // The following opcodes also sets the condition code register(s). Only
946 // convert them to equivalent lea if the condition code register def's
947 // are dead!
948 if (hasLiveCondCodeDef(MI))
949 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +0000950
Evan Chengb76143c2007-10-09 07:14:53 +0000951 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng559dc462007-10-05 20:34:26 +0000952 switch (MIOpc) {
953 default: return 0;
954 case X86::INC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000955 case X86::INC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000956 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000957 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
958 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000959 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
960 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000961 }
Evan Cheng559dc462007-10-05 20:34:26 +0000962 case X86::INC16r:
963 case X86::INC64_16r:
964 if (DisableLEA16) return 0;
965 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
966 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
967 break;
968 case X86::DEC64r:
Evan Chengb75ed322007-10-05 21:55:32 +0000969 case X86::DEC32r: {
Evan Cheng559dc462007-10-05 20:34:26 +0000970 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000971 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
972 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000973 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
974 break;
975 }
976 case X86::DEC16r:
977 case X86::DEC64_16r:
978 if (DisableLEA16) return 0;
979 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
980 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
981 break;
982 case X86::ADD64rr:
983 case X86::ADD32rr: {
984 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +0000985 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
986 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng559dc462007-10-05 20:34:26 +0000987 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
988 MI->getOperand(2).getReg());
989 break;
990 }
991 case X86::ADD16rr:
992 if (DisableLEA16) return 0;
993 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
994 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
995 MI->getOperand(2).getReg());
996 break;
997 case X86::ADD64ri32:
998 case X86::ADD64ri8:
999 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1000 if (MI->getOperand(2).isImmediate())
1001 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001002 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001003 break;
1004 case X86::ADD32ri:
1005 case X86::ADD32ri8:
1006 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001007 if (MI->getOperand(2).isImmediate()) {
1008 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1009 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001010 MI->getOperand(2).getImm());
Evan Chengb76143c2007-10-09 07:14:53 +00001011 }
Evan Cheng559dc462007-10-05 20:34:26 +00001012 break;
1013 case X86::ADD16ri:
1014 case X86::ADD16ri8:
1015 if (DisableLEA16) return 0;
1016 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1017 if (MI->getOperand(2).isImmediate())
1018 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001019 MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001020 break;
1021 case X86::SHL16ri:
1022 if (DisableLEA16) return 0;
1023 case X86::SHL32ri:
1024 case X86::SHL64ri: {
1025 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1026 "Unknown shl instruction!");
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001027 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng559dc462007-10-05 20:34:26 +00001028 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1029 X86AddressMode AM;
1030 AM.Scale = 1 << ShAmt;
1031 AM.IndexReg = Src;
1032 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chengb76143c2007-10-09 07:14:53 +00001033 : (MIOpc == X86::SHL32ri
1034 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng559dc462007-10-05 20:34:26 +00001035 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1036 }
1037 break;
1038 }
1039 }
1040 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001041 }
1042
Evan Cheng559dc462007-10-05 20:34:26 +00001043 NewMI->copyKillDeadInfo(MI);
1044 LV.instructionChanged(MI, NewMI); // Update live variables
1045 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001046 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001047}
1048
Chris Lattner41e431b2005-01-19 07:11:01 +00001049/// commuteInstruction - We have a few instructions that must be hacked on to
1050/// commute them.
1051///
1052MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
1053 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001054 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1055 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001056 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001057 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1058 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1059 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001060 unsigned Opc;
1061 unsigned Size;
1062 switch (MI->getOpcode()) {
1063 default: assert(0 && "Unreachable!");
1064 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1065 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1066 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1067 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001068 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1069 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001070 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001071 unsigned Amt = MI->getOperand(3).getImm();
Chris Lattner41e431b2005-01-19 07:11:01 +00001072 unsigned A = MI->getOperand(0).getReg();
1073 unsigned B = MI->getOperand(1).getReg();
1074 unsigned C = MI->getOperand(2).getReg();
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001075 bool BisKill = MI->getOperand(1).isKill();
1076 bool CisKill = MI->getOperand(2).isKill();
Evan Chengc0f64ff2006-11-27 23:37:22 +00001077 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001078 .addReg(B, false, false, BisKill).addImm(Size-Amt);
Chris Lattner41e431b2005-01-19 07:11:01 +00001079 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001080 case X86::CMOVB16rr:
1081 case X86::CMOVB32rr:
1082 case X86::CMOVB64rr:
1083 case X86::CMOVAE16rr:
1084 case X86::CMOVAE32rr:
1085 case X86::CMOVAE64rr:
1086 case X86::CMOVE16rr:
1087 case X86::CMOVE32rr:
1088 case X86::CMOVE64rr:
1089 case X86::CMOVNE16rr:
1090 case X86::CMOVNE32rr:
1091 case X86::CMOVNE64rr:
1092 case X86::CMOVBE16rr:
1093 case X86::CMOVBE32rr:
1094 case X86::CMOVBE64rr:
1095 case X86::CMOVA16rr:
1096 case X86::CMOVA32rr:
1097 case X86::CMOVA64rr:
1098 case X86::CMOVL16rr:
1099 case X86::CMOVL32rr:
1100 case X86::CMOVL64rr:
1101 case X86::CMOVGE16rr:
1102 case X86::CMOVGE32rr:
1103 case X86::CMOVGE64rr:
1104 case X86::CMOVLE16rr:
1105 case X86::CMOVLE32rr:
1106 case X86::CMOVLE64rr:
1107 case X86::CMOVG16rr:
1108 case X86::CMOVG32rr:
1109 case X86::CMOVG64rr:
1110 case X86::CMOVS16rr:
1111 case X86::CMOVS32rr:
1112 case X86::CMOVS64rr:
1113 case X86::CMOVNS16rr:
1114 case X86::CMOVNS32rr:
1115 case X86::CMOVNS64rr:
1116 case X86::CMOVP16rr:
1117 case X86::CMOVP32rr:
1118 case X86::CMOVP64rr:
1119 case X86::CMOVNP16rr:
1120 case X86::CMOVNP32rr:
1121 case X86::CMOVNP64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001122 unsigned Opc = 0;
1123 switch (MI->getOpcode()) {
1124 default: break;
1125 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1126 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1127 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1128 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1129 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1130 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1131 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1132 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1133 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1134 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1135 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1136 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1137 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1138 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1139 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1140 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1141 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1142 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1143 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1144 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1145 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1146 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1147 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1148 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1149 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1150 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1151 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1152 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1153 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1154 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1155 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1156 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1157 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1158 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1159 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1160 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1161 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1162 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1163 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1164 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1165 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1166 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1167 }
1168
1169 MI->setInstrDescriptor(get(Opc));
1170 // Fallthrough intended.
1171 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001172 default:
Chris Lattner264e6fe2008-01-01 01:05:34 +00001173 return TargetInstrInfoImpl::commuteInstruction(MI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001174 }
1175}
1176
Chris Lattner7fbe9722006-10-20 17:42:20 +00001177static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1178 switch (BrOpc) {
1179 default: return X86::COND_INVALID;
1180 case X86::JE: return X86::COND_E;
1181 case X86::JNE: return X86::COND_NE;
1182 case X86::JL: return X86::COND_L;
1183 case X86::JLE: return X86::COND_LE;
1184 case X86::JG: return X86::COND_G;
1185 case X86::JGE: return X86::COND_GE;
1186 case X86::JB: return X86::COND_B;
1187 case X86::JBE: return X86::COND_BE;
1188 case X86::JA: return X86::COND_A;
1189 case X86::JAE: return X86::COND_AE;
1190 case X86::JS: return X86::COND_S;
1191 case X86::JNS: return X86::COND_NS;
1192 case X86::JP: return X86::COND_P;
1193 case X86::JNP: return X86::COND_NP;
1194 case X86::JO: return X86::COND_O;
1195 case X86::JNO: return X86::COND_NO;
1196 }
1197}
1198
1199unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1200 switch (CC) {
1201 default: assert(0 && "Illegal condition code!");
Evan Chenge5f62042007-09-29 00:00:36 +00001202 case X86::COND_E: return X86::JE;
1203 case X86::COND_NE: return X86::JNE;
1204 case X86::COND_L: return X86::JL;
1205 case X86::COND_LE: return X86::JLE;
1206 case X86::COND_G: return X86::JG;
1207 case X86::COND_GE: return X86::JGE;
1208 case X86::COND_B: return X86::JB;
1209 case X86::COND_BE: return X86::JBE;
1210 case X86::COND_A: return X86::JA;
1211 case X86::COND_AE: return X86::JAE;
1212 case X86::COND_S: return X86::JS;
1213 case X86::COND_NS: return X86::JNS;
1214 case X86::COND_P: return X86::JP;
1215 case X86::COND_NP: return X86::JNP;
1216 case X86::COND_O: return X86::JO;
1217 case X86::COND_NO: return X86::JNO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001218 }
1219}
1220
Chris Lattner9cd68752006-10-21 05:52:40 +00001221/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1222/// e.g. turning COND_E to COND_NE.
1223X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1224 switch (CC) {
1225 default: assert(0 && "Illegal condition code!");
1226 case X86::COND_E: return X86::COND_NE;
1227 case X86::COND_NE: return X86::COND_E;
1228 case X86::COND_L: return X86::COND_GE;
1229 case X86::COND_LE: return X86::COND_G;
1230 case X86::COND_G: return X86::COND_LE;
1231 case X86::COND_GE: return X86::COND_L;
1232 case X86::COND_B: return X86::COND_AE;
1233 case X86::COND_BE: return X86::COND_A;
1234 case X86::COND_A: return X86::COND_BE;
1235 case X86::COND_AE: return X86::COND_B;
1236 case X86::COND_S: return X86::COND_NS;
1237 case X86::COND_NS: return X86::COND_S;
1238 case X86::COND_P: return X86::COND_NP;
1239 case X86::COND_NP: return X86::COND_P;
1240 case X86::COND_O: return X86::COND_NO;
1241 case X86::COND_NO: return X86::COND_O;
1242 }
1243}
1244
Dale Johannesen318093b2007-06-14 22:03:45 +00001245bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Evan Cheng14c46552007-07-06 23:22:03 +00001246 const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
1247 if (TID->Flags & M_TERMINATOR_FLAG) {
1248 // Conditional branch is a special case.
1249 if ((TID->Flags & M_BRANCH_FLAG) != 0 && (TID->Flags & M_BARRIER_FLAG) == 0)
1250 return true;
1251 if ((TID->Flags & M_PREDICABLE) == 0)
1252 return true;
Dale Johannesen318093b2007-06-14 22:03:45 +00001253 return !isPredicated(MI);
Evan Cheng14c46552007-07-06 23:22:03 +00001254 }
Dale Johannesen318093b2007-06-14 22:03:45 +00001255 return false;
1256}
Chris Lattner9cd68752006-10-21 05:52:40 +00001257
Evan Cheng85dce6c2007-07-26 17:32:14 +00001258// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1259static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1260 const X86InstrInfo &TII) {
1261 if (MI->getOpcode() == X86::FP_REG_KILL)
1262 return false;
1263 return TII.isUnpredicatedTerminator(MI);
1264}
1265
Chris Lattner7fbe9722006-10-20 17:42:20 +00001266bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1267 MachineBasicBlock *&TBB,
1268 MachineBasicBlock *&FBB,
1269 std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001270 // If the block has no terminators, it just falls into the block after it.
1271 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng85dce6c2007-07-26 17:32:14 +00001272 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001273 return false;
1274
1275 // Get the last instruction in the block.
1276 MachineInstr *LastInst = I;
1277
1278 // If there is only one terminator instruction, process it.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001279 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001280 if (!isBranch(LastInst->getOpcode()))
1281 return true;
1282
1283 // If the block ends with a branch there are 3 possibilities:
1284 // it's an unconditional, conditional, or indirect branch.
1285
1286 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001287 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001288 return false;
1289 }
1290 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1291 if (BranchCode == X86::COND_INVALID)
1292 return true; // Can't handle indirect branch.
1293
1294 // Otherwise, block ends with fall-through condbranch.
Chris Lattner8aa797a2007-12-30 23:10:15 +00001295 TBB = LastInst->getOperand(0).getMBB();
Chris Lattner7fbe9722006-10-20 17:42:20 +00001296 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1297 return false;
1298 }
1299
1300 // Get the instruction before it if it's a terminator.
1301 MachineInstr *SecondLastInst = I;
1302
1303 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng85dce6c2007-07-26 17:32:14 +00001304 if (SecondLastInst && I != MBB.begin() &&
1305 isBrAnalysisUnpredicatedTerminator(--I, *this))
Chris Lattner7fbe9722006-10-20 17:42:20 +00001306 return true;
1307
Chris Lattner6ce64432006-10-30 22:27:23 +00001308 // If the block ends with X86::JMP and a conditional branch, handle it.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001309 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1310 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001311 TBB = SecondLastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001312 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner8aa797a2007-12-30 23:10:15 +00001313 FBB = LastInst->getOperand(0).getMBB();
Chris Lattner6ce64432006-10-30 22:27:23 +00001314 return false;
1315 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001316
Dale Johannesen13e8b512007-06-13 17:59:52 +00001317 // If the block ends with two X86::JMPs, handle it. The second one is not
1318 // executed, so remove it.
1319 if (SecondLastInst->getOpcode() == X86::JMP &&
1320 LastInst->getOpcode() == X86::JMP) {
Chris Lattner8aa797a2007-12-30 23:10:15 +00001321 TBB = SecondLastInst->getOperand(0).getMBB();
Dale Johannesen13e8b512007-06-13 17:59:52 +00001322 I = LastInst;
1323 I->eraseFromParent();
1324 return false;
1325 }
1326
Chris Lattner7fbe9722006-10-20 17:42:20 +00001327 // Otherwise, can't handle this.
1328 return true;
1329}
1330
Evan Cheng6ae36262007-05-18 00:18:17 +00001331unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001332 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng6ae36262007-05-18 00:18:17 +00001333 if (I == MBB.begin()) return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001334 --I;
1335 if (I->getOpcode() != X86::JMP &&
1336 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001337 return 0;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001338
1339 // Remove the branch.
1340 I->eraseFromParent();
1341
1342 I = MBB.end();
1343
Evan Cheng6ae36262007-05-18 00:18:17 +00001344 if (I == MBB.begin()) return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001345 --I;
1346 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
Evan Cheng6ae36262007-05-18 00:18:17 +00001347 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001348
1349 // Remove the branch.
1350 I->eraseFromParent();
Evan Cheng6ae36262007-05-18 00:18:17 +00001351 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001352}
1353
Owen Andersonf6372aa2008-01-01 21:11:32 +00001354static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1355 MachineOperand &MO) {
1356 if (MO.isRegister())
1357 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1358 false, false, MO.getSubReg());
1359 else if (MO.isImmediate())
1360 MIB = MIB.addImm(MO.getImm());
1361 else if (MO.isFrameIndex())
1362 MIB = MIB.addFrameIndex(MO.getIndex());
1363 else if (MO.isGlobalAddress())
1364 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1365 else if (MO.isConstantPoolIndex())
1366 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1367 else if (MO.isJumpTableIndex())
1368 MIB = MIB.addJumpTableIndex(MO.getIndex());
1369 else if (MO.isExternalSymbol())
1370 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1371 else
1372 assert(0 && "Unknown operand for X86InstrAddOperand!");
1373
1374 return MIB;
1375}
1376
Evan Cheng6ae36262007-05-18 00:18:17 +00001377unsigned
1378X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1379 MachineBasicBlock *FBB,
1380 const std::vector<MachineOperand> &Cond) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001381 // Shouldn't be a fall through.
1382 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001383 assert((Cond.size() == 1 || Cond.size() == 0) &&
1384 "X86 branch conditions have one component!");
1385
1386 if (FBB == 0) { // One way branch.
1387 if (Cond.empty()) {
1388 // Unconditional branch?
Evan Chengc0f64ff2006-11-27 23:37:22 +00001389 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001390 } else {
1391 // Conditional branch.
1392 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001393 BuildMI(&MBB, get(Opc)).addMBB(TBB);
Chris Lattner34a84ac2006-10-21 05:34:23 +00001394 }
Evan Cheng6ae36262007-05-18 00:18:17 +00001395 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001396 }
1397
Chris Lattner879d09c2006-10-21 05:42:09 +00001398 // Two-way Conditional branch.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001399 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
Evan Chengc0f64ff2006-11-27 23:37:22 +00001400 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1401 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001402 return 2;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001403}
1404
Owen Andersond10fd972007-12-31 06:32:00 +00001405void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
1406 MachineBasicBlock::iterator MI,
1407 unsigned DestReg, unsigned SrcReg,
1408 const TargetRegisterClass *DestRC,
1409 const TargetRegisterClass *SrcRC) const {
1410 if (DestRC != SrcRC) {
1411 // Moving EFLAGS to / from another register requires a push and a pop.
1412 if (SrcRC == &X86::CCRRegClass) {
1413 assert(SrcReg == X86::EFLAGS);
1414 if (DestRC == &X86::GR64RegClass) {
1415 BuildMI(MBB, MI, get(X86::PUSHFQ));
1416 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1417 return;
1418 } else if (DestRC == &X86::GR32RegClass) {
1419 BuildMI(MBB, MI, get(X86::PUSHFD));
1420 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1421 return;
1422 }
1423 } else if (DestRC == &X86::CCRRegClass) {
1424 assert(DestReg == X86::EFLAGS);
1425 if (SrcRC == &X86::GR64RegClass) {
1426 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1427 BuildMI(MBB, MI, get(X86::POPFQ));
1428 return;
1429 } else if (SrcRC == &X86::GR32RegClass) {
1430 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1431 BuildMI(MBB, MI, get(X86::POPFD));
1432 return;
1433 }
1434 }
1435 cerr << "Not yet supported!";
1436 abort();
1437 }
1438
1439 unsigned Opc;
1440 if (DestRC == &X86::GR64RegClass) {
1441 Opc = X86::MOV64rr;
1442 } else if (DestRC == &X86::GR32RegClass) {
1443 Opc = X86::MOV32rr;
1444 } else if (DestRC == &X86::GR16RegClass) {
1445 Opc = X86::MOV16rr;
1446 } else if (DestRC == &X86::GR8RegClass) {
1447 Opc = X86::MOV8rr;
1448 } else if (DestRC == &X86::GR32_RegClass) {
1449 Opc = X86::MOV32_rr;
1450 } else if (DestRC == &X86::GR16_RegClass) {
1451 Opc = X86::MOV16_rr;
1452 } else if (DestRC == &X86::RFP32RegClass) {
1453 Opc = X86::MOV_Fp3232;
1454 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1455 Opc = X86::MOV_Fp6464;
1456 } else if (DestRC == &X86::RFP80RegClass) {
1457 Opc = X86::MOV_Fp8080;
1458 } else if (DestRC == &X86::FR32RegClass) {
1459 Opc = X86::FsMOVAPSrr;
1460 } else if (DestRC == &X86::FR64RegClass) {
1461 Opc = X86::FsMOVAPDrr;
1462 } else if (DestRC == &X86::VR128RegClass) {
1463 Opc = X86::MOVAPSrr;
1464 } else if (DestRC == &X86::VR64RegClass) {
1465 Opc = X86::MMX_MOVQ64rr;
1466 } else {
1467 assert(0 && "Unknown regclass");
1468 abort();
1469 }
1470 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1471}
1472
Owen Andersonf6372aa2008-01-01 21:11:32 +00001473static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1474 unsigned StackAlign) {
1475 unsigned Opc = 0;
1476 if (RC == &X86::GR64RegClass) {
1477 Opc = X86::MOV64mr;
1478 } else if (RC == &X86::GR32RegClass) {
1479 Opc = X86::MOV32mr;
1480 } else if (RC == &X86::GR16RegClass) {
1481 Opc = X86::MOV16mr;
1482 } else if (RC == &X86::GR8RegClass) {
1483 Opc = X86::MOV8mr;
1484 } else if (RC == &X86::GR32_RegClass) {
1485 Opc = X86::MOV32_mr;
1486 } else if (RC == &X86::GR16_RegClass) {
1487 Opc = X86::MOV16_mr;
1488 } else if (RC == &X86::RFP80RegClass) {
1489 Opc = X86::ST_FpP80m; // pops
1490 } else if (RC == &X86::RFP64RegClass) {
1491 Opc = X86::ST_Fp64m;
1492 } else if (RC == &X86::RFP32RegClass) {
1493 Opc = X86::ST_Fp32m;
1494 } else if (RC == &X86::FR32RegClass) {
1495 Opc = X86::MOVSSmr;
1496 } else if (RC == &X86::FR64RegClass) {
1497 Opc = X86::MOVSDmr;
1498 } else if (RC == &X86::VR128RegClass) {
1499 // FIXME: Use movaps once we are capable of selectively
1500 // aligning functions that spill SSE registers on 16-byte boundaries.
1501 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1502 } else if (RC == &X86::VR64RegClass) {
1503 Opc = X86::MMX_MOVQ64mr;
1504 } else {
1505 assert(0 && "Unknown regclass");
1506 abort();
1507 }
1508
1509 return Opc;
1510}
1511
1512void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1513 MachineBasicBlock::iterator MI,
1514 unsigned SrcReg, bool isKill, int FrameIdx,
1515 const TargetRegisterClass *RC) const {
1516 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1517 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1518 .addReg(SrcReg, false, false, isKill);
1519}
1520
1521void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1522 bool isKill,
1523 SmallVectorImpl<MachineOperand> &Addr,
1524 const TargetRegisterClass *RC,
1525 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1526 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1527 MachineInstrBuilder MIB = BuildMI(get(Opc));
1528 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1529 MIB = X86InstrAddOperand(MIB, Addr[i]);
1530 MIB.addReg(SrcReg, false, false, isKill);
1531 NewMIs.push_back(MIB);
1532}
1533
1534static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1535 unsigned StackAlign) {
1536 unsigned Opc = 0;
1537 if (RC == &X86::GR64RegClass) {
1538 Opc = X86::MOV64rm;
1539 } else if (RC == &X86::GR32RegClass) {
1540 Opc = X86::MOV32rm;
1541 } else if (RC == &X86::GR16RegClass) {
1542 Opc = X86::MOV16rm;
1543 } else if (RC == &X86::GR8RegClass) {
1544 Opc = X86::MOV8rm;
1545 } else if (RC == &X86::GR32_RegClass) {
1546 Opc = X86::MOV32_rm;
1547 } else if (RC == &X86::GR16_RegClass) {
1548 Opc = X86::MOV16_rm;
1549 } else if (RC == &X86::RFP80RegClass) {
1550 Opc = X86::LD_Fp80m;
1551 } else if (RC == &X86::RFP64RegClass) {
1552 Opc = X86::LD_Fp64m;
1553 } else if (RC == &X86::RFP32RegClass) {
1554 Opc = X86::LD_Fp32m;
1555 } else if (RC == &X86::FR32RegClass) {
1556 Opc = X86::MOVSSrm;
1557 } else if (RC == &X86::FR64RegClass) {
1558 Opc = X86::MOVSDrm;
1559 } else if (RC == &X86::VR128RegClass) {
1560 // FIXME: Use movaps once we are capable of selectively
1561 // aligning functions that spill SSE registers on 16-byte boundaries.
1562 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1563 } else if (RC == &X86::VR64RegClass) {
1564 Opc = X86::MMX_MOVQ64rm;
1565 } else {
1566 assert(0 && "Unknown regclass");
1567 abort();
1568 }
1569
1570 return Opc;
1571}
1572
1573void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1574 MachineBasicBlock::iterator MI,
1575 unsigned DestReg, int FrameIdx,
1576 const TargetRegisterClass *RC) const{
1577 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1578 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1579}
1580
1581void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1582 SmallVectorImpl<MachineOperand> &Addr,
1583 const TargetRegisterClass *RC,
1584 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1585 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1586 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1587 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1588 MIB = X86InstrAddOperand(MIB, Addr[i]);
1589 NewMIs.push_back(MIB);
1590}
1591
Owen Andersond94b6a12008-01-04 23:57:37 +00001592bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1593 MachineBasicBlock::iterator MI,
1594 const std::vector<CalleeSavedInfo> &CSI) const {
1595 if (CSI.empty())
1596 return false;
1597
1598 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1599 unsigned SlotSize = is64Bit ? 8 : 4;
1600
1601 MachineFunction &MF = *MBB.getParent();
1602 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1603 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1604
1605 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1606 for (unsigned i = CSI.size(); i != 0; --i) {
1607 unsigned Reg = CSI[i-1].getReg();
1608 // Add the callee-saved register as live-in. It's killed at the spill.
1609 MBB.addLiveIn(Reg);
1610 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1611 }
1612 return true;
1613}
1614
1615bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1616 MachineBasicBlock::iterator MI,
1617 const std::vector<CalleeSavedInfo> &CSI) const {
1618 if (CSI.empty())
1619 return false;
1620
1621 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1622
1623 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1624 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1625 unsigned Reg = CSI[i].getReg();
1626 BuildMI(MBB, MI, get(Opc), Reg);
1627 }
1628 return true;
1629}
1630
Owen Anderson43dbe052008-01-07 01:35:02 +00001631static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1632 SmallVector<MachineOperand,4> &MOs,
1633 MachineInstr *MI, const TargetInstrInfo &TII) {
1634 // Create the base instruction with the memory operand as the first part.
1635 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1636 MachineInstrBuilder MIB(NewMI);
1637 unsigned NumAddrOps = MOs.size();
1638 for (unsigned i = 0; i != NumAddrOps; ++i)
1639 MIB = X86InstrAddOperand(MIB, MOs[i]);
1640 if (NumAddrOps < 4) // FrameIndex only
1641 MIB.addImm(1).addReg(0).addImm(0);
1642
1643 // Loop over the rest of the ri operands, converting them over.
1644 unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2;
1645 for (unsigned i = 0; i != NumOps; ++i) {
1646 MachineOperand &MO = MI->getOperand(i+2);
1647 MIB = X86InstrAddOperand(MIB, MO);
1648 }
1649 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1650 MachineOperand &MO = MI->getOperand(i);
1651 MIB = X86InstrAddOperand(MIB, MO);
1652 }
1653 return MIB;
1654}
1655
1656static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1657 SmallVector<MachineOperand,4> &MOs,
1658 MachineInstr *MI, const TargetInstrInfo &TII) {
1659 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1660 MachineInstrBuilder MIB(NewMI);
1661
1662 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1663 MachineOperand &MO = MI->getOperand(i);
1664 if (i == OpNo) {
1665 assert(MO.isRegister() && "Expected to fold into reg operand!");
1666 unsigned NumAddrOps = MOs.size();
1667 for (unsigned i = 0; i != NumAddrOps; ++i)
1668 MIB = X86InstrAddOperand(MIB, MOs[i]);
1669 if (NumAddrOps < 4) // FrameIndex only
1670 MIB.addImm(1).addReg(0).addImm(0);
1671 } else {
1672 MIB = X86InstrAddOperand(MIB, MO);
1673 }
1674 }
1675 return MIB;
1676}
1677
1678static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1679 SmallVector<MachineOperand,4> &MOs,
1680 MachineInstr *MI) {
1681 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1682
1683 unsigned NumAddrOps = MOs.size();
1684 for (unsigned i = 0; i != NumAddrOps; ++i)
1685 MIB = X86InstrAddOperand(MIB, MOs[i]);
1686 if (NumAddrOps < 4) // FrameIndex only
1687 MIB.addImm(1).addReg(0).addImm(0);
1688 return MIB.addImm(0);
1689}
1690
1691MachineInstr*
1692X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
1693 SmallVector<MachineOperand,4> &MOs) const {
1694 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1695 bool isTwoAddrFold = false;
1696 unsigned NumOps = getNumOperands(MI->getOpcode());
1697 bool isTwoAddr = NumOps > 1 &&
1698 MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1;
1699
1700 MachineInstr *NewMI = NULL;
1701 // Folding a memory location into the two-address part of a two-address
1702 // instruction is different than folding it other places. It requires
1703 // replacing the *two* registers with the memory location.
1704 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1705 MI->getOperand(0).isRegister() &&
1706 MI->getOperand(1).isRegister() &&
1707 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1708 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1709 isTwoAddrFold = true;
1710 } else if (i == 0) { // If operand 0
1711 if (MI->getOpcode() == X86::MOV16r0)
1712 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1713 else if (MI->getOpcode() == X86::MOV32r0)
1714 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1715 else if (MI->getOpcode() == X86::MOV64r0)
1716 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1717 else if (MI->getOpcode() == X86::MOV8r0)
1718 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1719 if (NewMI) {
1720 NewMI->copyKillDeadInfo(MI);
1721 return NewMI;
1722 }
1723
1724 OpcodeTablePtr = &RegOp2MemOpTable0;
1725 } else if (i == 1) {
1726 OpcodeTablePtr = &RegOp2MemOpTable1;
1727 } else if (i == 2) {
1728 OpcodeTablePtr = &RegOp2MemOpTable2;
1729 }
1730
1731 // If table selected...
1732 if (OpcodeTablePtr) {
1733 // Find the Opcode to fuse
1734 DenseMap<unsigned*, unsigned>::iterator I =
1735 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1736 if (I != OpcodeTablePtr->end()) {
1737 if (isTwoAddrFold)
1738 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1739 else
1740 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1741 NewMI->copyKillDeadInfo(MI);
1742 return NewMI;
1743 }
1744 }
1745
1746 // No fusion
1747 if (PrintFailedFusing)
1748 cerr << "We failed to fuse ("
1749 << ((i == 1) ? "r" : "s") << "): " << *MI;
1750 return NULL;
1751}
1752
1753
1754MachineInstr* X86InstrInfo::foldMemoryOperand(MachineInstr *MI,
1755 SmallVectorImpl<unsigned> &Ops,
1756 int FrameIndex) const {
1757 // Check switch flag
1758 if (NoFusing) return NULL;
1759
1760 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1761 unsigned NewOpc = 0;
1762 switch (MI->getOpcode()) {
1763 default: return NULL;
1764 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1765 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1766 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1767 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1768 }
1769 // Change to CMPXXri r, 0 first.
1770 MI->setInstrDescriptor(get(NewOpc));
1771 MI->getOperand(1).ChangeToImmediate(0);
1772 } else if (Ops.size() != 1)
1773 return NULL;
1774
1775 SmallVector<MachineOperand,4> MOs;
1776 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1777 return foldMemoryOperand(MI, Ops[0], MOs);
1778}
1779
1780MachineInstr* X86InstrInfo::foldMemoryOperand(MachineInstr *MI,
1781 SmallVectorImpl<unsigned> &Ops,
1782 MachineInstr *LoadMI) const {
1783 // Check switch flag
1784 if (NoFusing) return NULL;
1785
1786 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1787 unsigned NewOpc = 0;
1788 switch (MI->getOpcode()) {
1789 default: return NULL;
1790 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1791 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1792 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1793 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1794 }
1795 // Change to CMPXXri r, 0 first.
1796 MI->setInstrDescriptor(get(NewOpc));
1797 MI->getOperand(1).ChangeToImmediate(0);
1798 } else if (Ops.size() != 1)
1799 return NULL;
1800
1801 SmallVector<MachineOperand,4> MOs;
1802 unsigned NumOps = getNumOperands(LoadMI->getOpcode());
1803 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1804 MOs.push_back(LoadMI->getOperand(i));
1805 return foldMemoryOperand(MI, Ops[0], MOs);
1806}
1807
1808
1809bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
1810 SmallVectorImpl<unsigned> &Ops) const {
1811 // Check switch flag
1812 if (NoFusing) return 0;
1813
1814 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1815 switch (MI->getOpcode()) {
1816 default: return false;
1817 case X86::TEST8rr:
1818 case X86::TEST16rr:
1819 case X86::TEST32rr:
1820 case X86::TEST64rr:
1821 return true;
1822 }
1823 }
1824
1825 if (Ops.size() != 1)
1826 return false;
1827
1828 unsigned OpNum = Ops[0];
1829 unsigned Opc = MI->getOpcode();
1830 unsigned NumOps = getNumOperands(Opc);
1831 bool isTwoAddr = NumOps > 1 &&
1832 getOperandConstraint(Opc, 1, TOI::TIED_TO) != -1;
1833
1834 // Folding a memory location into the two-address part of a two-address
1835 // instruction is different than folding it other places. It requires
1836 // replacing the *two* registers with the memory location.
1837 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1838 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1839 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1840 } else if (OpNum == 0) { // If operand 0
1841 switch (Opc) {
1842 case X86::MOV16r0:
1843 case X86::MOV32r0:
1844 case X86::MOV64r0:
1845 case X86::MOV8r0:
1846 return true;
1847 default: break;
1848 }
1849 OpcodeTablePtr = &RegOp2MemOpTable0;
1850 } else if (OpNum == 1) {
1851 OpcodeTablePtr = &RegOp2MemOpTable1;
1852 } else if (OpNum == 2) {
1853 OpcodeTablePtr = &RegOp2MemOpTable2;
1854 }
1855
1856 if (OpcodeTablePtr) {
1857 // Find the Opcode to fuse
1858 DenseMap<unsigned*, unsigned>::iterator I =
1859 OpcodeTablePtr->find((unsigned*)Opc);
1860 if (I != OpcodeTablePtr->end())
1861 return true;
1862 }
1863 return false;
1864}
1865
1866bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1867 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
1868 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1869 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1870 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1871 if (I == MemOp2RegOpTable.end())
1872 return false;
1873 unsigned Opc = I->second.first;
1874 unsigned Index = I->second.second & 0xf;
1875 bool FoldedLoad = I->second.second & (1 << 4);
1876 bool FoldedStore = I->second.second & (1 << 5);
1877 if (UnfoldLoad && !FoldedLoad)
1878 return false;
1879 UnfoldLoad &= FoldedLoad;
1880 if (UnfoldStore && !FoldedStore)
1881 return false;
1882 UnfoldStore &= FoldedStore;
1883
1884 const TargetInstrDescriptor &TID = get(Opc);
1885 const TargetOperandInfo &TOI = TID.OpInfo[Index];
1886 const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1887 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
1888 SmallVector<MachineOperand,4> AddrOps;
1889 SmallVector<MachineOperand,2> BeforeOps;
1890 SmallVector<MachineOperand,2> AfterOps;
1891 SmallVector<MachineOperand,4> ImpOps;
1892 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1893 MachineOperand &Op = MI->getOperand(i);
1894 if (i >= Index && i < Index+4)
1895 AddrOps.push_back(Op);
1896 else if (Op.isRegister() && Op.isImplicit())
1897 ImpOps.push_back(Op);
1898 else if (i < Index)
1899 BeforeOps.push_back(Op);
1900 else if (i > Index)
1901 AfterOps.push_back(Op);
1902 }
1903
1904 // Emit the load instruction.
1905 if (UnfoldLoad) {
1906 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
1907 if (UnfoldStore) {
1908 // Address operands cannot be marked isKill.
1909 for (unsigned i = 1; i != 5; ++i) {
1910 MachineOperand &MO = NewMIs[0]->getOperand(i);
1911 if (MO.isRegister())
1912 MO.setIsKill(false);
1913 }
1914 }
1915 }
1916
1917 // Emit the data processing instruction.
1918 MachineInstr *DataMI = new MachineInstr(TID, true);
1919 MachineInstrBuilder MIB(DataMI);
1920
1921 if (FoldedStore)
1922 MIB.addReg(Reg, true);
1923 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
1924 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
1925 if (FoldedLoad)
1926 MIB.addReg(Reg);
1927 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
1928 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
1929 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
1930 MachineOperand &MO = ImpOps[i];
1931 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
1932 }
1933 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
1934 unsigned NewOpc = 0;
1935 switch (DataMI->getOpcode()) {
1936 default: break;
1937 case X86::CMP64ri32:
1938 case X86::CMP32ri:
1939 case X86::CMP16ri:
1940 case X86::CMP8ri: {
1941 MachineOperand &MO0 = DataMI->getOperand(0);
1942 MachineOperand &MO1 = DataMI->getOperand(1);
1943 if (MO1.getImm() == 0) {
1944 switch (DataMI->getOpcode()) {
1945 default: break;
1946 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
1947 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
1948 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
1949 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
1950 }
1951 DataMI->setInstrDescriptor(get(NewOpc));
1952 MO1.ChangeToRegister(MO0.getReg(), false);
1953 }
1954 }
1955 }
1956 NewMIs.push_back(DataMI);
1957
1958 // Emit the store instruction.
1959 if (UnfoldStore) {
1960 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
1961 const TargetRegisterClass *DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1962 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
1963 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
1964 }
1965
1966 return true;
1967}
1968
1969bool
1970X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1971 SmallVectorImpl<SDNode*> &NewNodes) const {
1972 if (!N->isTargetOpcode())
1973 return false;
1974
1975 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1976 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
1977 if (I == MemOp2RegOpTable.end())
1978 return false;
1979 unsigned Opc = I->second.first;
1980 unsigned Index = I->second.second & 0xf;
1981 bool FoldedLoad = I->second.second & (1 << 4);
1982 bool FoldedStore = I->second.second & (1 << 5);
1983 const TargetInstrDescriptor &TID = get(Opc);
1984 const TargetOperandInfo &TOI = TID.OpInfo[Index];
1985 const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1986 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
1987 std::vector<SDOperand> AddrOps;
1988 std::vector<SDOperand> BeforeOps;
1989 std::vector<SDOperand> AfterOps;
1990 unsigned NumOps = N->getNumOperands();
1991 for (unsigned i = 0; i != NumOps-1; ++i) {
1992 SDOperand Op = N->getOperand(i);
1993 if (i >= Index && i < Index+4)
1994 AddrOps.push_back(Op);
1995 else if (i < Index)
1996 BeforeOps.push_back(Op);
1997 else if (i > Index)
1998 AfterOps.push_back(Op);
1999 }
2000 SDOperand Chain = N->getOperand(NumOps-1);
2001 AddrOps.push_back(Chain);
2002
2003 // Emit the load instruction.
2004 SDNode *Load = 0;
2005 if (FoldedLoad) {
2006 MVT::ValueType VT = *RC->vt_begin();
2007 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2008 MVT::Other, &AddrOps[0], AddrOps.size());
2009 NewNodes.push_back(Load);
2010 }
2011
2012 // Emit the data processing instruction.
2013 std::vector<MVT::ValueType> VTs;
2014 const TargetRegisterClass *DstRC = 0;
2015 if (TID.numDefs > 0) {
2016 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
2017 DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
2018 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2019 VTs.push_back(*DstRC->vt_begin());
2020 }
2021 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2022 MVT::ValueType VT = N->getValueType(i);
2023 if (VT != MVT::Other && i >= TID.numDefs)
2024 VTs.push_back(VT);
2025 }
2026 if (Load)
2027 BeforeOps.push_back(SDOperand(Load, 0));
2028 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2029 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2030 NewNodes.push_back(NewNode);
2031
2032 // Emit the store instruction.
2033 if (FoldedStore) {
2034 AddrOps.pop_back();
2035 AddrOps.push_back(SDOperand(NewNode, 0));
2036 AddrOps.push_back(Chain);
2037 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2038 MVT::Other, &AddrOps[0], AddrOps.size());
2039 NewNodes.push_back(Store);
2040 }
2041
2042 return true;
2043}
2044
2045unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2046 bool UnfoldLoad, bool UnfoldStore) const {
2047 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2048 MemOp2RegOpTable.find((unsigned*)Opc);
2049 if (I == MemOp2RegOpTable.end())
2050 return 0;
2051 bool FoldedLoad = I->second.second & (1 << 4);
2052 bool FoldedStore = I->second.second & (1 << 5);
2053 if (UnfoldLoad && !FoldedLoad)
2054 return 0;
2055 if (UnfoldStore && !FoldedStore)
2056 return 0;
2057 return I->second.first;
2058}
2059
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002060bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2061 if (MBB.empty()) return false;
2062
2063 switch (MBB.back().getOpcode()) {
Arnold Schwaighoferc85e1712007-10-11 19:40:01 +00002064 case X86::TCRETURNri:
2065 case X86::TCRETURNdi:
Evan Cheng126f17a2007-05-21 18:44:17 +00002066 case X86::RET: // Return.
2067 case X86::RETI:
2068 case X86::TAILJMPd:
2069 case X86::TAILJMPr:
2070 case X86::TAILJMPm:
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002071 case X86::JMP: // Uncond branch.
2072 case X86::JMP32r: // Indirect branch.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002073 case X86::JMP64r: // Indirect branch (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002074 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmana0a7c1d2007-09-17 15:19:08 +00002075 case X86::JMP64m: // Indirect branch through mem (64-bit).
Chris Lattnerc24ff8e2006-10-28 17:29:57 +00002076 return true;
2077 default: return false;
2078 }
2079}
2080
Chris Lattner7fbe9722006-10-20 17:42:20 +00002081bool X86InstrInfo::
2082ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002083 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2084 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2085 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002086}
2087
Evan Cheng25ab6902006-09-08 06:48:29 +00002088const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2089 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2090 if (Subtarget->is64Bit())
2091 return &X86::GR64RegClass;
2092 else
2093 return &X86::GR32RegClass;
2094}