Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 1 | //===- InstCombineMulDivRem.cpp -------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, |
| 11 | // srem, urem, frem. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "InstCombine.h" |
| 16 | #include "llvm/IntrinsicInst.h" |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 17 | #include "llvm/Analysis/InstructionSimplify.h" |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 18 | #include "llvm/Support/PatternMatch.h" |
| 19 | using namespace llvm; |
| 20 | using namespace PatternMatch; |
| 21 | |
Chris Lattner | 1add46d | 2011-05-22 18:18:41 +0000 | [diff] [blame] | 22 | |
| 23 | /// simplifyValueKnownNonZero - The specific integer value is used in a context |
| 24 | /// where it is known to be non-zero. If this allows us to simplify the |
| 25 | /// computation, do so and return the new operand, otherwise return null. |
| 26 | static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) { |
| 27 | // If V has multiple uses, then we would have to do more analysis to determine |
| 28 | // if this is safe. For example, the use could be in dynamically unreached |
| 29 | // code. |
| 30 | if (!V->hasOneUse()) return 0; |
| 31 | |
Chris Lattner | 613f1a3 | 2011-05-23 00:32:19 +0000 | [diff] [blame] | 32 | bool MadeChange = false; |
| 33 | |
Chris Lattner | 1add46d | 2011-05-22 18:18:41 +0000 | [diff] [blame] | 34 | // ((1 << A) >>u B) --> (1 << (A-B)) |
| 35 | // Because V cannot be zero, we know that B is less than A. |
Chris Lattner | 6083bb9 | 2011-05-23 00:09:55 +0000 | [diff] [blame] | 36 | Value *A = 0, *B = 0, *PowerOf2 = 0; |
| 37 | if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))), |
Chris Lattner | 1add46d | 2011-05-22 18:18:41 +0000 | [diff] [blame] | 38 | m_Value(B))) && |
| 39 | // The "1" can be any value known to be a power of 2. |
Chris Lattner | 6083bb9 | 2011-05-23 00:09:55 +0000 | [diff] [blame] | 40 | isPowerOfTwo(PowerOf2, IC.getTargetData())) { |
Benjamin Kramer | a9390a4 | 2011-09-27 20:39:19 +0000 | [diff] [blame] | 41 | A = IC.Builder->CreateSub(A, B); |
Chris Lattner | 6083bb9 | 2011-05-23 00:09:55 +0000 | [diff] [blame] | 42 | return IC.Builder->CreateShl(PowerOf2, A); |
Chris Lattner | 1add46d | 2011-05-22 18:18:41 +0000 | [diff] [blame] | 43 | } |
| 44 | |
Chris Lattner | 613f1a3 | 2011-05-23 00:32:19 +0000 | [diff] [blame] | 45 | // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it |
| 46 | // inexact. Similarly for <<. |
| 47 | if (BinaryOperator *I = dyn_cast<BinaryOperator>(V)) |
| 48 | if (I->isLogicalShift() && |
| 49 | isPowerOfTwo(I->getOperand(0), IC.getTargetData())) { |
| 50 | // We know that this is an exact/nuw shift and that the input is a |
| 51 | // non-zero context as well. |
| 52 | if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) { |
| 53 | I->setOperand(0, V2); |
| 54 | MadeChange = true; |
| 55 | } |
| 56 | |
| 57 | if (I->getOpcode() == Instruction::LShr && !I->isExact()) { |
| 58 | I->setIsExact(); |
| 59 | MadeChange = true; |
| 60 | } |
| 61 | |
| 62 | if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) { |
| 63 | I->setHasNoUnsignedWrap(); |
| 64 | MadeChange = true; |
| 65 | } |
| 66 | } |
| 67 | |
Chris Lattner | 6c9b8d3 | 2011-05-22 18:26:48 +0000 | [diff] [blame] | 68 | // TODO: Lots more we could do here: |
Chris Lattner | 6c9b8d3 | 2011-05-22 18:26:48 +0000 | [diff] [blame] | 69 | // If V is a phi node, we can call this on each of its operands. |
| 70 | // "select cond, X, 0" can simplify to "X". |
| 71 | |
Chris Lattner | 613f1a3 | 2011-05-23 00:32:19 +0000 | [diff] [blame] | 72 | return MadeChange ? V : 0; |
Chris Lattner | 1add46d | 2011-05-22 18:18:41 +0000 | [diff] [blame] | 73 | } |
| 74 | |
| 75 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 76 | /// MultiplyOverflows - True if the multiply can not be expressed in an int |
| 77 | /// this size. |
| 78 | static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { |
| 79 | uint32_t W = C1->getBitWidth(); |
| 80 | APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); |
| 81 | if (sign) { |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 82 | LHSExt = LHSExt.sext(W * 2); |
| 83 | RHSExt = RHSExt.sext(W * 2); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 84 | } else { |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 85 | LHSExt = LHSExt.zext(W * 2); |
| 86 | RHSExt = RHSExt.zext(W * 2); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 87 | } |
| 88 | |
| 89 | APInt MulExt = LHSExt * RHSExt; |
| 90 | |
| 91 | if (!sign) |
| 92 | return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); |
| 93 | |
| 94 | APInt Min = APInt::getSignedMinValue(W).sext(W * 2); |
| 95 | APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); |
| 96 | return MulExt.slt(Min) || MulExt.sgt(Max); |
| 97 | } |
| 98 | |
| 99 | Instruction *InstCombiner::visitMul(BinaryOperator &I) { |
Duncan Sands | 096aa79 | 2010-11-13 15:10:37 +0000 | [diff] [blame] | 100 | bool Changed = SimplifyAssociativeOrCommutative(I); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 101 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 102 | |
Duncan Sands | 82fdab3 | 2010-12-21 14:00:22 +0000 | [diff] [blame] | 103 | if (Value *V = SimplifyMulInst(Op0, Op1, TD)) |
| 104 | return ReplaceInstUsesWith(I, V); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 105 | |
Duncan Sands | 37bf92b | 2010-12-22 13:36:08 +0000 | [diff] [blame] | 106 | if (Value *V = SimplifyUsingDistributiveLaws(I)) |
| 107 | return ReplaceInstUsesWith(I, V); |
| 108 | |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 109 | if (match(Op1, m_AllOnes())) // X * -1 == 0 - X |
| 110 | return BinaryOperator::CreateNeg(Op0, I.getName()); |
| 111 | |
| 112 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| 113 | |
| 114 | // ((X << C1)*C2) == (X * (C2 << C1)) |
| 115 | if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0)) |
| 116 | if (SI->getOpcode() == Instruction::Shl) |
| 117 | if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1))) |
| 118 | return BinaryOperator::CreateMul(SI->getOperand(0), |
| 119 | ConstantExpr::getShl(CI, ShOp)); |
| 120 | |
| 121 | const APInt &Val = CI->getValue(); |
| 122 | if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C |
| 123 | Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2()); |
| 124 | BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst); |
| 125 | if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap(); |
| 126 | if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap(); |
| 127 | return Shl; |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 128 | } |
| 129 | |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 130 | // Canonicalize (X+C1)*CI -> X*CI+C1*CI. |
| 131 | { Value *X; ConstantInt *C1; |
| 132 | if (Op0->hasOneUse() && |
| 133 | match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) { |
Benjamin Kramer | a9390a4 | 2011-09-27 20:39:19 +0000 | [diff] [blame] | 134 | Value *Add = Builder->CreateMul(X, CI); |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 135 | return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI)); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 136 | } |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 137 | } |
Stuart Hastings | acbf107 | 2011-05-30 20:00:33 +0000 | [diff] [blame] | 138 | |
Stuart Hastings | f100282 | 2011-06-01 16:42:47 +0000 | [diff] [blame] | 139 | // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n |
| 140 | // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n |
| 141 | // The "* (2**n)" thus becomes a potential shifting opportunity. |
Stuart Hastings | acbf107 | 2011-05-30 20:00:33 +0000 | [diff] [blame] | 142 | { |
| 143 | const APInt & Val = CI->getValue(); |
| 144 | const APInt &PosVal = Val.abs(); |
| 145 | if (Val.isNegative() && PosVal.isPowerOf2()) { |
Stuart Hastings | f100282 | 2011-06-01 16:42:47 +0000 | [diff] [blame] | 146 | Value *X = 0, *Y = 0; |
| 147 | if (Op0->hasOneUse()) { |
| 148 | ConstantInt *C1; |
| 149 | Value *Sub = 0; |
| 150 | if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) |
| 151 | Sub = Builder->CreateSub(X, Y, "suba"); |
| 152 | else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) |
| 153 | Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc"); |
| 154 | if (Sub) |
| 155 | return |
| 156 | BinaryOperator::CreateMul(Sub, |
| 157 | ConstantInt::get(Y->getType(), PosVal)); |
Stuart Hastings | acbf107 | 2011-05-30 20:00:33 +0000 | [diff] [blame] | 158 | } |
| 159 | } |
| 160 | } |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 161 | } |
| 162 | |
| 163 | // Simplify mul instructions with a constant RHS. |
| 164 | if (isa<Constant>(Op1)) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 165 | // Try to fold constant mul into select arguments. |
| 166 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| 167 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 168 | return R; |
| 169 | |
| 170 | if (isa<PHINode>(Op0)) |
| 171 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 172 | return NV; |
| 173 | } |
| 174 | |
| 175 | if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y |
| 176 | if (Value *Op1v = dyn_castNegVal(Op1)) |
| 177 | return BinaryOperator::CreateMul(Op0v, Op1v); |
| 178 | |
| 179 | // (X / Y) * Y = X - (X % Y) |
| 180 | // (X / Y) * -Y = (X % Y) - X |
| 181 | { |
| 182 | Value *Op1C = Op1; |
| 183 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); |
| 184 | if (!BO || |
| 185 | (BO->getOpcode() != Instruction::UDiv && |
| 186 | BO->getOpcode() != Instruction::SDiv)) { |
| 187 | Op1C = Op0; |
| 188 | BO = dyn_cast<BinaryOperator>(Op1); |
| 189 | } |
| 190 | Value *Neg = dyn_castNegVal(Op1C); |
| 191 | if (BO && BO->hasOneUse() && |
| 192 | (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) && |
| 193 | (BO->getOpcode() == Instruction::UDiv || |
| 194 | BO->getOpcode() == Instruction::SDiv)) { |
| 195 | Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); |
| 196 | |
Chris Lattner | 35bda89 | 2011-02-06 21:44:57 +0000 | [diff] [blame] | 197 | // If the division is exact, X % Y is zero, so we end up with X or -X. |
| 198 | if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO)) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 199 | if (SDiv->isExact()) { |
| 200 | if (Op1BO == Op1C) |
| 201 | return ReplaceInstUsesWith(I, Op0BO); |
| 202 | return BinaryOperator::CreateNeg(Op0BO); |
| 203 | } |
| 204 | |
| 205 | Value *Rem; |
| 206 | if (BO->getOpcode() == Instruction::UDiv) |
| 207 | Rem = Builder->CreateURem(Op0BO, Op1BO); |
| 208 | else |
| 209 | Rem = Builder->CreateSRem(Op0BO, Op1BO); |
| 210 | Rem->takeName(BO); |
| 211 | |
| 212 | if (Op1BO == Op1C) |
| 213 | return BinaryOperator::CreateSub(Op0BO, Rem); |
| 214 | return BinaryOperator::CreateSub(Rem, Op0BO); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | /// i1 mul -> i1 and. |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 219 | if (I.getType()->isIntegerTy(1)) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 220 | return BinaryOperator::CreateAnd(Op0, Op1); |
| 221 | |
| 222 | // X*(1 << Y) --> X << Y |
| 223 | // (1 << Y)*X --> X << Y |
| 224 | { |
| 225 | Value *Y; |
| 226 | if (match(Op0, m_Shl(m_One(), m_Value(Y)))) |
| 227 | return BinaryOperator::CreateShl(Op1, Y); |
| 228 | if (match(Op1, m_Shl(m_One(), m_Value(Y)))) |
| 229 | return BinaryOperator::CreateShl(Op0, Y); |
| 230 | } |
| 231 | |
| 232 | // If one of the operands of the multiply is a cast from a boolean value, then |
| 233 | // we know the bool is either zero or one, so this is a 'masking' multiply. |
| 234 | // X * Y (where Y is 0 or 1) -> X & (0-Y) |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 235 | if (!I.getType()->isVectorTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 236 | // -2 is "-1 << 1" so it is all bits set except the low one. |
| 237 | APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); |
| 238 | |
| 239 | Value *BoolCast = 0, *OtherOp = 0; |
| 240 | if (MaskedValueIsZero(Op0, Negative2)) |
| 241 | BoolCast = Op0, OtherOp = Op1; |
| 242 | else if (MaskedValueIsZero(Op1, Negative2)) |
| 243 | BoolCast = Op1, OtherOp = Op0; |
| 244 | |
| 245 | if (BoolCast) { |
| 246 | Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), |
Benjamin Kramer | a9390a4 | 2011-09-27 20:39:19 +0000 | [diff] [blame] | 247 | BoolCast); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 248 | return BinaryOperator::CreateAnd(V, OtherOp); |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | return Changed ? &I : 0; |
| 253 | } |
| 254 | |
| 255 | Instruction *InstCombiner::visitFMul(BinaryOperator &I) { |
Duncan Sands | 096aa79 | 2010-11-13 15:10:37 +0000 | [diff] [blame] | 256 | bool Changed = SimplifyAssociativeOrCommutative(I); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 257 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 258 | |
| 259 | // Simplify mul instructions with a constant RHS... |
| 260 | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { |
| 261 | if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) { |
| 262 | // "In IEEE floating point, x*1 is not equivalent to x for nans. However, |
| 263 | // ANSI says we can drop signals, so we can do this anyway." (from GCC) |
| 264 | if (Op1F->isExactlyValue(1.0)) |
Dan Gohman | a9445e1 | 2010-03-02 01:11:08 +0000 | [diff] [blame] | 265 | return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0' |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 266 | } else if (Op1C->getType()->isVectorTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 267 | if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) { |
| 268 | // As above, vector X*splat(1.0) -> X in all defined cases. |
| 269 | if (Constant *Splat = Op1V->getSplatValue()) { |
| 270 | if (ConstantFP *F = dyn_cast<ConstantFP>(Splat)) |
| 271 | if (F->isExactlyValue(1.0)) |
| 272 | return ReplaceInstUsesWith(I, Op0); |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | // Try to fold constant mul into select arguments. |
| 278 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| 279 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 280 | return R; |
| 281 | |
| 282 | if (isa<PHINode>(Op0)) |
| 283 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 284 | return NV; |
| 285 | } |
| 286 | |
| 287 | if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y |
| 288 | if (Value *Op1v = dyn_castFNegVal(Op1)) |
| 289 | return BinaryOperator::CreateFMul(Op0v, Op1v); |
| 290 | |
| 291 | return Changed ? &I : 0; |
| 292 | } |
| 293 | |
| 294 | /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select |
| 295 | /// instruction. |
| 296 | bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { |
| 297 | SelectInst *SI = cast<SelectInst>(I.getOperand(1)); |
| 298 | |
| 299 | // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y |
| 300 | int NonNullOperand = -1; |
| 301 | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) |
| 302 | if (ST->isNullValue()) |
| 303 | NonNullOperand = 2; |
| 304 | // div/rem X, (Cond ? Y : 0) -> div/rem X, Y |
| 305 | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) |
| 306 | if (ST->isNullValue()) |
| 307 | NonNullOperand = 1; |
| 308 | |
| 309 | if (NonNullOperand == -1) |
| 310 | return false; |
| 311 | |
| 312 | Value *SelectCond = SI->getOperand(0); |
| 313 | |
| 314 | // Change the div/rem to use 'Y' instead of the select. |
| 315 | I.setOperand(1, SI->getOperand(NonNullOperand)); |
| 316 | |
| 317 | // Okay, we know we replace the operand of the div/rem with 'Y' with no |
| 318 | // problem. However, the select, or the condition of the select may have |
| 319 | // multiple uses. Based on our knowledge that the operand must be non-zero, |
| 320 | // propagate the known value for the select into other uses of it, and |
| 321 | // propagate a known value of the condition into its other users. |
| 322 | |
| 323 | // If the select and condition only have a single use, don't bother with this, |
| 324 | // early exit. |
| 325 | if (SI->use_empty() && SelectCond->hasOneUse()) |
| 326 | return true; |
| 327 | |
| 328 | // Scan the current block backward, looking for other uses of SI. |
| 329 | BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); |
| 330 | |
| 331 | while (BBI != BBFront) { |
| 332 | --BBI; |
| 333 | // If we found a call to a function, we can't assume it will return, so |
| 334 | // information from below it cannot be propagated above it. |
| 335 | if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) |
| 336 | break; |
| 337 | |
| 338 | // Replace uses of the select or its condition with the known values. |
| 339 | for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); |
| 340 | I != E; ++I) { |
| 341 | if (*I == SI) { |
| 342 | *I = SI->getOperand(NonNullOperand); |
| 343 | Worklist.Add(BBI); |
| 344 | } else if (*I == SelectCond) { |
| 345 | *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) : |
| 346 | ConstantInt::getFalse(BBI->getContext()); |
| 347 | Worklist.Add(BBI); |
| 348 | } |
| 349 | } |
| 350 | |
| 351 | // If we past the instruction, quit looking for it. |
| 352 | if (&*BBI == SI) |
| 353 | SI = 0; |
| 354 | if (&*BBI == SelectCond) |
| 355 | SelectCond = 0; |
| 356 | |
| 357 | // If we ran out of things to eliminate, break out of the loop. |
| 358 | if (SelectCond == 0 && SI == 0) |
| 359 | break; |
| 360 | |
| 361 | } |
| 362 | return true; |
| 363 | } |
| 364 | |
| 365 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 366 | /// This function implements the transforms common to both integer division |
| 367 | /// instructions (udiv and sdiv). It is called by the visitors to those integer |
| 368 | /// division instructions. |
| 369 | /// @brief Common integer divide transforms |
| 370 | Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { |
| 371 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 372 | |
Chris Lattner | 1add46d | 2011-05-22 18:18:41 +0000 | [diff] [blame] | 373 | // The RHS is known non-zero. |
| 374 | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { |
| 375 | I.setOperand(1, V); |
| 376 | return &I; |
| 377 | } |
| 378 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 379 | // Handle cases involving: [su]div X, (select Cond, Y, Z) |
| 380 | // This does not apply for fdiv. |
| 381 | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| 382 | return &I; |
| 383 | |
| 384 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 385 | // (X / C1) / C2 -> X / (C1*C2) |
| 386 | if (Instruction *LHS = dyn_cast<Instruction>(Op0)) |
| 387 | if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) |
| 388 | if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { |
| 389 | if (MultiplyOverflows(RHS, LHSRHS, |
| 390 | I.getOpcode()==Instruction::SDiv)) |
| 391 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 392 | return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), |
| 393 | ConstantExpr::getMul(RHS, LHSRHS)); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 394 | } |
| 395 | |
| 396 | if (!RHS->isZero()) { // avoid X udiv 0 |
| 397 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| 398 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 399 | return R; |
| 400 | if (isa<PHINode>(Op0)) |
| 401 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 402 | return NV; |
| 403 | } |
| 404 | } |
| 405 | |
Benjamin Kramer | 23b02cd | 2011-04-30 18:16:00 +0000 | [diff] [blame] | 406 | // See if we can fold away this div instruction. |
| 407 | if (SimplifyDemandedInstructionBits(I)) |
| 408 | return &I; |
| 409 | |
Duncan Sands | 593faa5 | 2011-01-28 16:51:11 +0000 | [diff] [blame] | 410 | // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y |
| 411 | Value *X = 0, *Z = 0; |
| 412 | if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1 |
| 413 | bool isSigned = I.getOpcode() == Instruction::SDiv; |
| 414 | if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || |
| 415 | (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1))))) |
| 416 | return BinaryOperator::Create(I.getOpcode(), X, Op1); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 417 | } |
| 418 | |
| 419 | return 0; |
| 420 | } |
| 421 | |
Benjamin Kramer | 7d6eb5a | 2011-04-30 18:16:07 +0000 | [diff] [blame] | 422 | /// dyn_castZExtVal - Checks if V is a zext or constant that can |
| 423 | /// be truncated to Ty without losing bits. |
Chris Lattner | db125cf | 2011-07-18 04:54:35 +0000 | [diff] [blame] | 424 | static Value *dyn_castZExtVal(Value *V, Type *Ty) { |
Benjamin Kramer | 7d6eb5a | 2011-04-30 18:16:07 +0000 | [diff] [blame] | 425 | if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) { |
| 426 | if (Z->getSrcTy() == Ty) |
| 427 | return Z->getOperand(0); |
| 428 | } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) { |
| 429 | if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth()) |
| 430 | return ConstantExpr::getTrunc(C, Ty); |
| 431 | } |
| 432 | return 0; |
| 433 | } |
| 434 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 435 | Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { |
| 436 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 437 | |
Duncan Sands | 593faa5 | 2011-01-28 16:51:11 +0000 | [diff] [blame] | 438 | if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) |
| 439 | return ReplaceInstUsesWith(I, V); |
| 440 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 441 | // Handle the integer div common cases |
| 442 | if (Instruction *Common = commonIDivTransforms(I)) |
| 443 | return Common; |
Pete Cooper | a29fc80 | 2011-11-07 23:04:49 +0000 | [diff] [blame] | 444 | |
| 445 | { |
Owen Anderson | 5b39620 | 2010-01-17 06:49:03 +0000 | [diff] [blame] | 446 | // X udiv 2^C -> X >> C |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 447 | // Check to see if this is an unsigned division with an exact power of 2, |
| 448 | // if so, convert to a right shift. |
Pete Cooper | a29fc80 | 2011-11-07 23:04:49 +0000 | [diff] [blame] | 449 | const APInt *C; |
| 450 | if (match(Op1, m_Power2(C))) { |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 451 | BinaryOperator *LShr = |
Pete Cooper | a29fc80 | 2011-11-07 23:04:49 +0000 | [diff] [blame] | 452 | BinaryOperator::CreateLShr(Op0, |
| 453 | ConstantInt::get(Op0->getType(), |
| 454 | C->logBase2())); |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 455 | if (I.isExact()) LShr->setIsExact(); |
| 456 | return LShr; |
| 457 | } |
Pete Cooper | a29fc80 | 2011-11-07 23:04:49 +0000 | [diff] [blame] | 458 | } |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 459 | |
Pete Cooper | a29fc80 | 2011-11-07 23:04:49 +0000 | [diff] [blame] | 460 | if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 461 | // X udiv C, where C >= signbit |
| 462 | if (C->getValue().isNegative()) { |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 463 | Value *IC = Builder->CreateICmpULT(Op0, C); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 464 | return SelectInst::Create(IC, Constant::getNullValue(I.getType()), |
| 465 | ConstantInt::get(I.getType(), 1)); |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 470 | { const APInt *CI; Value *N; |
| 471 | if (match(Op1, m_Shl(m_Power2(CI), m_Value(N)))) { |
| 472 | if (*CI != 1) |
Benjamin Kramer | a9390a4 | 2011-09-27 20:39:19 +0000 | [diff] [blame] | 473 | N = Builder->CreateAdd(N, ConstantInt::get(I.getType(),CI->logBase2())); |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 474 | if (I.isExact()) |
| 475 | return BinaryOperator::CreateExactLShr(Op0, N); |
| 476 | return BinaryOperator::CreateLShr(Op0, N); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 477 | } |
| 478 | } |
| 479 | |
| 480 | // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) |
| 481 | // where C1&C2 are powers of two. |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 482 | { Value *Cond; const APInt *C1, *C2; |
| 483 | if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { |
| 484 | // Construct the "on true" case of the select |
| 485 | Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t", |
| 486 | I.isExact()); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 487 | |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 488 | // Construct the "on false" case of the select |
| 489 | Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f", |
| 490 | I.isExact()); |
| 491 | |
| 492 | // construct the select instruction and return it. |
| 493 | return SelectInst::Create(Cond, TSI, FSI); |
| 494 | } |
| 495 | } |
Benjamin Kramer | 7d6eb5a | 2011-04-30 18:16:07 +0000 | [diff] [blame] | 496 | |
| 497 | // (zext A) udiv (zext B) --> zext (A udiv B) |
| 498 | if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) |
| 499 | if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) |
| 500 | return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", |
| 501 | I.isExact()), |
| 502 | I.getType()); |
| 503 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 504 | return 0; |
| 505 | } |
| 506 | |
| 507 | Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { |
| 508 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 509 | |
Duncan Sands | 593faa5 | 2011-01-28 16:51:11 +0000 | [diff] [blame] | 510 | if (Value *V = SimplifySDivInst(Op0, Op1, TD)) |
| 511 | return ReplaceInstUsesWith(I, V); |
| 512 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 513 | // Handle the integer div common cases |
| 514 | if (Instruction *Common = commonIDivTransforms(I)) |
| 515 | return Common; |
| 516 | |
| 517 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| 518 | // sdiv X, -1 == -X |
| 519 | if (RHS->isAllOnesValue()) |
| 520 | return BinaryOperator::CreateNeg(Op0); |
| 521 | |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 522 | // sdiv X, C --> ashr exact X, log2(C) |
| 523 | if (I.isExact() && RHS->getValue().isNonNegative() && |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 524 | RHS->getValue().isPowerOf2()) { |
| 525 | Value *ShAmt = llvm::ConstantInt::get(RHS->getType(), |
| 526 | RHS->getValue().exactLogBase2()); |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 527 | return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 528 | } |
| 529 | |
| 530 | // -X/C --> X/-C provided the negation doesn't overflow. |
| 531 | if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 532 | if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap()) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 533 | return BinaryOperator::CreateSDiv(Sub->getOperand(1), |
| 534 | ConstantExpr::getNeg(RHS)); |
| 535 | } |
| 536 | |
| 537 | // If the sign bits of both operands are zero (i.e. we can prove they are |
| 538 | // unsigned inputs), turn this into a udiv. |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 539 | if (I.getType()->isIntegerTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 540 | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); |
| 541 | if (MaskedValueIsZero(Op0, Mask)) { |
| 542 | if (MaskedValueIsZero(Op1, Mask)) { |
| 543 | // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set |
| 544 | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| 545 | } |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 546 | |
| 547 | if (match(Op1, m_Shl(m_Power2(), m_Value()))) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 548 | // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) |
| 549 | // Safe because the only negative value (1 << Y) can take on is |
| 550 | // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have |
| 551 | // the sign bit set. |
| 552 | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| 553 | } |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | return 0; |
| 558 | } |
| 559 | |
Frits van Bommel | 31726c1 | 2011-01-29 17:50:27 +0000 | [diff] [blame] | 560 | Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { |
| 561 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 562 | |
| 563 | if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) |
| 564 | return ReplaceInstUsesWith(I, V); |
| 565 | |
Benjamin Kramer | 5467396 | 2011-03-30 15:42:35 +0000 | [diff] [blame] | 566 | if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { |
| 567 | const APFloat &Op1F = Op1C->getValueAPF(); |
| 568 | |
| 569 | // If the divisor has an exact multiplicative inverse we can turn the fdiv |
| 570 | // into a cheaper fmul. |
| 571 | APFloat Reciprocal(Op1F.getSemantics()); |
| 572 | if (Op1F.getExactInverse(&Reciprocal)) { |
| 573 | ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal); |
| 574 | return BinaryOperator::CreateFMul(Op0, RFP); |
| 575 | } |
| 576 | } |
| 577 | |
Frits van Bommel | 31726c1 | 2011-01-29 17:50:27 +0000 | [diff] [blame] | 578 | return 0; |
| 579 | } |
| 580 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 581 | /// This function implements the transforms common to both integer remainder |
| 582 | /// instructions (urem and srem). It is called by the visitors to those integer |
| 583 | /// remainder instructions. |
| 584 | /// @brief Common integer remainder transforms |
| 585 | Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { |
| 586 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 587 | |
Chris Lattner | 1add46d | 2011-05-22 18:18:41 +0000 | [diff] [blame] | 588 | // The RHS is known non-zero. |
| 589 | if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) { |
| 590 | I.setOperand(1, V); |
| 591 | return &I; |
| 592 | } |
| 593 | |
Duncan Sands | f24ed77 | 2011-05-02 16:27:02 +0000 | [diff] [blame] | 594 | // Handle cases involving: rem X, (select Cond, Y, Z) |
| 595 | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| 596 | return &I; |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 597 | |
Duncan Sands | 00676a6 | 2011-05-02 18:41:29 +0000 | [diff] [blame] | 598 | if (isa<ConstantInt>(Op1)) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 599 | if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { |
| 600 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { |
| 601 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 602 | return R; |
| 603 | } else if (isa<PHINode>(Op0I)) { |
| 604 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 605 | return NV; |
| 606 | } |
| 607 | |
| 608 | // See if we can fold away this rem instruction. |
| 609 | if (SimplifyDemandedInstructionBits(I)) |
| 610 | return &I; |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | Instruction *InstCombiner::visitURem(BinaryOperator &I) { |
| 618 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 619 | |
Duncan Sands | f24ed77 | 2011-05-02 16:27:02 +0000 | [diff] [blame] | 620 | if (Value *V = SimplifyURemInst(Op0, Op1, TD)) |
| 621 | return ReplaceInstUsesWith(I, V); |
| 622 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 623 | if (Instruction *common = commonIRemTransforms(I)) |
| 624 | return common; |
| 625 | |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 626 | // X urem C^2 -> X and C-1 |
| 627 | { const APInt *C; |
| 628 | if (match(Op1, m_Power2(C))) |
| 629 | return BinaryOperator::CreateAnd(Op0, |
| 630 | ConstantInt::get(I.getType(), *C-1)); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 631 | } |
| 632 | |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 633 | // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) |
| 634 | if (match(Op1, m_Shl(m_Power2(), m_Value()))) { |
| 635 | Constant *N1 = Constant::getAllOnesValue(I.getType()); |
Benjamin Kramer | a9390a4 | 2011-09-27 20:39:19 +0000 | [diff] [blame] | 636 | Value *Add = Builder->CreateAdd(Op1, N1); |
Chris Lattner | 7a6aa1a | 2011-02-10 05:36:31 +0000 | [diff] [blame] | 637 | return BinaryOperator::CreateAnd(Op0, Add); |
| 638 | } |
| 639 | |
| 640 | // urem X, (select Cond, 2^C1, 2^C2) --> |
| 641 | // select Cond, (and X, C1-1), (and X, C2-1) |
| 642 | // when C1&C2 are powers of two. |
| 643 | { Value *Cond; const APInt *C1, *C2; |
| 644 | if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) { |
| 645 | Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t"); |
| 646 | Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f"); |
| 647 | return SelectInst::Create(Cond, TrueAnd, FalseAnd); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 648 | } |
| 649 | } |
Benjamin Kramer | 7d6eb5a | 2011-04-30 18:16:07 +0000 | [diff] [blame] | 650 | |
| 651 | // (zext A) urem (zext B) --> zext (A urem B) |
| 652 | if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0)) |
| 653 | if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy())) |
| 654 | return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1), |
| 655 | I.getType()); |
| 656 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | Instruction *InstCombiner::visitSRem(BinaryOperator &I) { |
| 661 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 662 | |
Duncan Sands | f24ed77 | 2011-05-02 16:27:02 +0000 | [diff] [blame] | 663 | if (Value *V = SimplifySRemInst(Op0, Op1, TD)) |
| 664 | return ReplaceInstUsesWith(I, V); |
| 665 | |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 666 | // Handle the integer rem common cases |
| 667 | if (Instruction *Common = commonIRemTransforms(I)) |
| 668 | return Common; |
| 669 | |
| 670 | if (Value *RHSNeg = dyn_castNegVal(Op1)) |
| 671 | if (!isa<Constant>(RHSNeg) || |
| 672 | (isa<ConstantInt>(RHSNeg) && |
| 673 | cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) { |
| 674 | // X % -Y -> X % Y |
| 675 | Worklist.AddValue(I.getOperand(1)); |
| 676 | I.setOperand(1, RHSNeg); |
| 677 | return &I; |
| 678 | } |
| 679 | |
| 680 | // If the sign bits of both operands are zero (i.e. we can prove they are |
| 681 | // unsigned inputs), turn this into a urem. |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 682 | if (I.getType()->isIntegerTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 683 | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); |
| 684 | if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { |
| 685 | // X srem Y -> X urem Y, iff X and Y don't have sign bit set |
| 686 | return BinaryOperator::CreateURem(Op0, Op1, I.getName()); |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | // If it's a constant vector, flip any negative values positive. |
| 691 | if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) { |
| 692 | unsigned VWidth = RHSV->getNumOperands(); |
| 693 | |
| 694 | bool hasNegative = false; |
| 695 | for (unsigned i = 0; !hasNegative && i != VWidth; ++i) |
| 696 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) |
Chris Lattner | c73b24d | 2011-07-15 06:08:15 +0000 | [diff] [blame] | 697 | if (RHS->isNegative()) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 698 | hasNegative = true; |
| 699 | |
| 700 | if (hasNegative) { |
| 701 | std::vector<Constant *> Elts(VWidth); |
| 702 | for (unsigned i = 0; i != VWidth; ++i) { |
| 703 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) { |
Chris Lattner | c73b24d | 2011-07-15 06:08:15 +0000 | [diff] [blame] | 704 | if (RHS->isNegative()) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 705 | Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); |
| 706 | else |
| 707 | Elts[i] = RHS; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | Constant *NewRHSV = ConstantVector::get(Elts); |
| 712 | if (NewRHSV != RHSV) { |
| 713 | Worklist.AddValue(I.getOperand(1)); |
| 714 | I.setOperand(1, NewRHSV); |
| 715 | return &I; |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | return 0; |
| 721 | } |
| 722 | |
| 723 | Instruction *InstCombiner::visitFRem(BinaryOperator &I) { |
Duncan Sands | f24ed77 | 2011-05-02 16:27:02 +0000 | [diff] [blame] | 724 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 725 | |
Duncan Sands | f24ed77 | 2011-05-02 16:27:02 +0000 | [diff] [blame] | 726 | if (Value *V = SimplifyFRemInst(Op0, Op1, TD)) |
| 727 | return ReplaceInstUsesWith(I, V); |
| 728 | |
| 729 | // Handle cases involving: rem X, (select Cond, Y, Z) |
| 730 | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| 731 | return &I; |
| 732 | |
| 733 | return 0; |
| 734 | } |