blob: 8d6c923ab1347fb494fe61ca3ede1c763c570f77 [file] [log] [blame]
Chris Lattnerdbe0dec2007-03-31 04:06:36 +00001//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattnerdbe0dec2007-03-31 04:06:36 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/Instructions.h"
22#include "llvm/Pass.h"
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000023#include "llvm/Target/TargetAsmInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerdd77df32007-04-13 20:30:56 +000028#include "llvm/Transforms/Utils/Local.h"
29#include "llvm/ADT/DenseMap.h"
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000030#include "llvm/ADT/SmallSet.h"
Evan Chengbdcb7262007-12-05 23:58:20 +000031#include "llvm/Support/CommandLine.h"
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +000032#include "llvm/Support/Compiler.h"
Evan Chengbdcb7262007-12-05 23:58:20 +000033#include "llvm/Support/Debug.h"
Chris Lattnerdd77df32007-04-13 20:30:56 +000034#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000035using namespace llvm;
36
Evan Chengbdcb7262007-12-05 23:58:20 +000037namespace {
38 cl::opt<bool> OptExtUses("optimize-ext-uses",
Evan Chengf9785f92007-12-13 03:32:53 +000039 cl::init(true), cl::Hidden);
Evan Chengbdcb7262007-12-05 23:58:20 +000040}
41
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000042namespace {
43 class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
44 /// TLI - Keep a pointer of a TargetLowering to consult for determining
45 /// transformation profitability.
46 const TargetLowering *TLI;
47 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000048 static char ID; // Pass identification, replacement for typeid
Dan Gohmanc2bbfc12007-08-01 15:32:29 +000049 explicit CodeGenPrepare(const TargetLowering *tli = 0)
50 : FunctionPass((intptr_t)&ID), TLI(tli) {}
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000051 bool runOnFunction(Function &F);
52
53 private:
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +000054 bool EliminateMostlyEmptyBlocks(Function &F);
55 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
56 void EliminateMostlyEmptyBlock(BasicBlock *BB);
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000057 bool OptimizeBlock(BasicBlock &BB);
Chris Lattnerdd77df32007-04-13 20:30:56 +000058 bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
59 const Type *AccessTy,
60 DenseMap<Value*,Value*> &SunkAddrs);
Evan Chengbdcb7262007-12-05 23:58:20 +000061 bool OptimizeExtUses(Instruction *I);
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000062 };
63}
Devang Patel794fd752007-05-01 21:15:47 +000064
Devang Patel19974732007-05-03 01:11:54 +000065char CodeGenPrepare::ID = 0;
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000066static RegisterPass<CodeGenPrepare> X("codegenprepare",
67 "Optimize for code generation");
68
69FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
70 return new CodeGenPrepare(TLI);
71}
72
73
74bool CodeGenPrepare::runOnFunction(Function &F) {
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000075 bool EverMadeChange = false;
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +000076
77 // First pass, eliminate blocks that contain only PHI nodes and an
78 // unconditional branch.
79 EverMadeChange |= EliminateMostlyEmptyBlocks(F);
80
81 bool MadeChange = true;
Chris Lattnerdbe0dec2007-03-31 04:06:36 +000082 while (MadeChange) {
83 MadeChange = false;
84 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
85 MadeChange |= OptimizeBlock(*BB);
86 EverMadeChange |= MadeChange;
87 }
88 return EverMadeChange;
89}
90
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +000091/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
92/// and an unconditional branch. Passes before isel (e.g. LSR/loopsimplify)
93/// often split edges in ways that are non-optimal for isel. Start by
94/// eliminating these blocks so we can split them the way we want them.
95bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
96 bool MadeChange = false;
97 // Note that this intentionally skips the entry block.
98 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
99 BasicBlock *BB = I++;
100
101 // If this block doesn't end with an uncond branch, ignore it.
102 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
103 if (!BI || !BI->isUnconditional())
104 continue;
105
106 // If the instruction before the branch isn't a phi node, then other stuff
107 // is happening here.
108 BasicBlock::iterator BBI = BI;
109 if (BBI != BB->begin()) {
110 --BBI;
111 if (!isa<PHINode>(BBI)) continue;
112 }
113
114 // Do not break infinite loops.
115 BasicBlock *DestBB = BI->getSuccessor(0);
116 if (DestBB == BB)
117 continue;
118
119 if (!CanMergeBlocks(BB, DestBB))
120 continue;
121
122 EliminateMostlyEmptyBlock(BB);
123 MadeChange = true;
124 }
125 return MadeChange;
126}
127
128/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
129/// single uncond branch between them, and BB contains no other non-phi
130/// instructions.
131bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
132 const BasicBlock *DestBB) const {
133 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
134 // the successor. If there are more complex condition (e.g. preheaders),
135 // don't mess around with them.
136 BasicBlock::const_iterator BBI = BB->begin();
137 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
138 for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
139 UI != E; ++UI) {
140 const Instruction *User = cast<Instruction>(*UI);
141 if (User->getParent() != DestBB || !isa<PHINode>(User))
142 return false;
Devang Patel75abc1e2007-04-25 00:37:04 +0000143 // If User is inside DestBB block and it is a PHINode then check
144 // incoming value. If incoming value is not from BB then this is
145 // a complex condition (e.g. preheaders) we want to avoid here.
146 if (User->getParent() == DestBB) {
147 if (const PHINode *UPN = dyn_cast<PHINode>(User))
148 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
149 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
150 if (Insn && Insn->getParent() == BB &&
151 Insn->getParent() != UPN->getIncomingBlock(I))
152 return false;
153 }
154 }
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +0000155 }
156 }
157
158 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
159 // and DestBB may have conflicting incoming values for the block. If so, we
160 // can't merge the block.
161 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
162 if (!DestBBPN) return true; // no conflict.
163
164 // Collect the preds of BB.
Chris Lattnerf67f73a2007-11-06 22:07:40 +0000165 SmallPtrSet<const BasicBlock*, 16> BBPreds;
Chris Lattnerd9c3a0d2007-04-02 01:35:34 +0000166 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
167 // It is faster to get preds from a PHI than with pred_iterator.
168 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
169 BBPreds.insert(BBPN->getIncomingBlock(i));
170 } else {
171 BBPreds.insert(pred_begin(BB), pred_end(BB));
172 }
173
174 // Walk the preds of DestBB.
175 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
176 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
177 if (BBPreds.count(Pred)) { // Common predecessor?
178 BBI = DestBB->begin();
179 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
180 const Value *V1 = PN->getIncomingValueForBlock(Pred);
181 const Value *V2 = PN->getIncomingValueForBlock(BB);
182
183 // If V2 is a phi node in BB, look up what the mapped value will be.
184 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
185 if (V2PN->getParent() == BB)
186 V2 = V2PN->getIncomingValueForBlock(Pred);
187
188 // If there is a conflict, bail out.
189 if (V1 != V2) return false;
190 }
191 }
192 }
193
194 return true;
195}
196
197
198/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
199/// an unconditional branch in it.
200void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
201 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
202 BasicBlock *DestBB = BI->getSuccessor(0);
203
204 DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
205
206 // If the destination block has a single pred, then this is a trivial edge,
207 // just collapse it.
208 if (DestBB->getSinglePredecessor()) {
209 // If DestBB has single-entry PHI nodes, fold them.
210 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
211 PN->replaceAllUsesWith(PN->getIncomingValue(0));
212 PN->eraseFromParent();
213 }
214
215 // Splice all the PHI nodes from BB over to DestBB.
216 DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
217 BB->begin(), BI);
218
219 // Anything that branched to BB now branches to DestBB.
220 BB->replaceAllUsesWith(DestBB);
221
222 // Nuke BB.
223 BB->eraseFromParent();
224
225 DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
226 return;
227 }
228
229 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
230 // to handle the new incoming edges it is about to have.
231 PHINode *PN;
232 for (BasicBlock::iterator BBI = DestBB->begin();
233 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
234 // Remove the incoming value for BB, and remember it.
235 Value *InVal = PN->removeIncomingValue(BB, false);
236
237 // Two options: either the InVal is a phi node defined in BB or it is some
238 // value that dominates BB.
239 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
240 if (InValPhi && InValPhi->getParent() == BB) {
241 // Add all of the input values of the input PHI as inputs of this phi.
242 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
243 PN->addIncoming(InValPhi->getIncomingValue(i),
244 InValPhi->getIncomingBlock(i));
245 } else {
246 // Otherwise, add one instance of the dominating value for each edge that
247 // we will be adding.
248 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
249 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
250 PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
251 } else {
252 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
253 PN->addIncoming(InVal, *PI);
254 }
255 }
256 }
257
258 // The PHIs are now updated, change everything that refers to BB to use
259 // DestBB and remove BB.
260 BB->replaceAllUsesWith(DestBB);
261 BB->eraseFromParent();
262
263 DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
264}
265
266
Chris Lattnerebe80752007-12-24 19:32:55 +0000267/// SplitEdgeNicely - Split the critical edge from TI to its specified
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000268/// successor if it will improve codegen. We only do this if the successor has
269/// phi nodes (otherwise critical edges are ok). If there is already another
270/// predecessor of the succ that is empty (and thus has no phi nodes), use it
271/// instead of introducing a new block.
272static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
273 BasicBlock *TIBB = TI->getParent();
274 BasicBlock *Dest = TI->getSuccessor(SuccNum);
275 assert(isa<PHINode>(Dest->begin()) &&
276 "This should only be called if Dest has a PHI!");
277
Chris Lattnerebe80752007-12-24 19:32:55 +0000278 // As a hack, never split backedges of loops. Even though the copy for any
279 // PHIs inserted on the backedge would be dead for exits from the loop, we
280 // assume that the cost of *splitting* the backedge would be too high.
Chris Lattnerff26ab22007-12-25 19:06:45 +0000281 if (Dest == TIBB)
Chris Lattnerebe80752007-12-24 19:32:55 +0000282 return;
283
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000284 /// TIPHIValues - This array is lazily computed to determine the values of
285 /// PHIs in Dest that TI would provide.
Chris Lattnerebe80752007-12-24 19:32:55 +0000286 SmallVector<Value*, 32> TIPHIValues;
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000287
288 // Check to see if Dest has any blocks that can be used as a split edge for
289 // this terminator.
290 for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
291 BasicBlock *Pred = *PI;
292 // To be usable, the pred has to end with an uncond branch to the dest.
293 BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
294 if (!PredBr || !PredBr->isUnconditional() ||
295 // Must be empty other than the branch.
Dale Johannesen6603a1b2007-05-08 01:01:04 +0000296 &Pred->front() != PredBr ||
297 // Cannot be the entry block; its label does not get emitted.
298 Pred == &(Dest->getParent()->getEntryBlock()))
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000299 continue;
300
301 // Finally, since we know that Dest has phi nodes in it, we have to make
302 // sure that jumping to Pred will have the same affect as going to Dest in
303 // terms of PHI values.
304 PHINode *PN;
305 unsigned PHINo = 0;
306 bool FoundMatch = true;
307 for (BasicBlock::iterator I = Dest->begin();
308 (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
309 if (PHINo == TIPHIValues.size())
310 TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
311
312 // If the PHI entry doesn't work, we can't use this pred.
313 if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
314 FoundMatch = false;
315 break;
316 }
317 }
318
319 // If we found a workable predecessor, change TI to branch to Succ.
320 if (FoundMatch) {
321 Dest->removePredecessor(TIBB);
322 TI->setSuccessor(SuccNum, Pred);
323 return;
324 }
325 }
326
327 SplitCriticalEdge(TI, SuccNum, P, true);
328}
329
Chris Lattnerdd77df32007-04-13 20:30:56 +0000330/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
331/// copy (e.g. it's casting from one pointer type to another, int->uint, or
332/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
Dale Johannesence0b2372007-06-12 16:50:17 +0000333/// registers that must be created and coalesced.
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000334///
335/// Return true if any changes are made.
Chris Lattnerdd77df32007-04-13 20:30:56 +0000336static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
337 // If this is a noop copy,
338 MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
339 MVT::ValueType DstVT = TLI.getValueType(CI->getType());
340
341 // This is an fp<->int conversion?
342 if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
343 return false;
344
345 // If this is an extension, it will be a zero or sign extension, which
346 // isn't a noop.
347 if (SrcVT < DstVT) return false;
348
349 // If these values will be promoted, find out what they will be promoted
350 // to. This helps us consider truncates on PPC as noop copies when they
351 // are.
352 if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
353 SrcVT = TLI.getTypeToTransformTo(SrcVT);
354 if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
355 DstVT = TLI.getTypeToTransformTo(DstVT);
356
357 // If, after promotion, these are the same types, this is a noop copy.
358 if (SrcVT != DstVT)
359 return false;
360
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000361 BasicBlock *DefBB = CI->getParent();
362
363 /// InsertedCasts - Only insert a cast in each block once.
Dale Johannesence0b2372007-06-12 16:50:17 +0000364 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000365
366 bool MadeChange = false;
367 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
368 UI != E; ) {
369 Use &TheUse = UI.getUse();
370 Instruction *User = cast<Instruction>(*UI);
371
372 // Figure out which BB this cast is used in. For PHI's this is the
373 // appropriate predecessor block.
374 BasicBlock *UserBB = User->getParent();
375 if (PHINode *PN = dyn_cast<PHINode>(User)) {
376 unsigned OpVal = UI.getOperandNo()/2;
377 UserBB = PN->getIncomingBlock(OpVal);
378 }
379
380 // Preincrement use iterator so we don't invalidate it.
381 ++UI;
382
383 // If this user is in the same block as the cast, don't change the cast.
384 if (UserBB == DefBB) continue;
385
386 // If we have already inserted a cast into this block, use it.
387 CastInst *&InsertedCast = InsertedCasts[UserBB];
388
389 if (!InsertedCast) {
390 BasicBlock::iterator InsertPt = UserBB->begin();
391 while (isa<PHINode>(InsertPt)) ++InsertPt;
392
393 InsertedCast =
394 CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
395 InsertPt);
396 MadeChange = true;
397 }
398
Dale Johannesence0b2372007-06-12 16:50:17 +0000399 // Replace a use of the cast with a use of the new cast.
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000400 TheUse = InsertedCast;
401 }
402
403 // If we removed all uses, nuke the cast.
404 if (CI->use_empty())
405 CI->eraseFromParent();
406
407 return MadeChange;
408}
409
Dale Johannesence0b2372007-06-12 16:50:17 +0000410/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
411/// the number of virtual registers that must be created and coalesced. This is
Chris Lattner684b22d2007-08-02 16:53:43 +0000412/// a clear win except on targets with multiple condition code registers
413/// (PowerPC), where it might lose; some adjustment may be wanted there.
Dale Johannesence0b2372007-06-12 16:50:17 +0000414///
415/// Return true if any changes are made.
416static bool OptimizeCmpExpression(CmpInst *CI){
417
418 BasicBlock *DefBB = CI->getParent();
419
420 /// InsertedCmp - Only insert a cmp in each block once.
421 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
422
423 bool MadeChange = false;
424 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
425 UI != E; ) {
426 Use &TheUse = UI.getUse();
427 Instruction *User = cast<Instruction>(*UI);
428
429 // Preincrement use iterator so we don't invalidate it.
430 ++UI;
431
432 // Don't bother for PHI nodes.
433 if (isa<PHINode>(User))
434 continue;
435
436 // Figure out which BB this cmp is used in.
437 BasicBlock *UserBB = User->getParent();
438
439 // If this user is in the same block as the cmp, don't change the cmp.
440 if (UserBB == DefBB) continue;
441
442 // If we have already inserted a cmp into this block, use it.
443 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
444
445 if (!InsertedCmp) {
446 BasicBlock::iterator InsertPt = UserBB->begin();
447 while (isa<PHINode>(InsertPt)) ++InsertPt;
448
449 InsertedCmp =
450 CmpInst::create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0),
451 CI->getOperand(1), "", InsertPt);
452 MadeChange = true;
453 }
454
455 // Replace a use of the cmp with a use of the new cmp.
456 TheUse = InsertedCmp;
457 }
458
459 // If we removed all uses, nuke the cmp.
460 if (CI->use_empty())
461 CI->eraseFromParent();
462
463 return MadeChange;
464}
465
Chris Lattnerdd77df32007-04-13 20:30:56 +0000466/// EraseDeadInstructions - Erase any dead instructions
467static void EraseDeadInstructions(Value *V) {
468 Instruction *I = dyn_cast<Instruction>(V);
469 if (!I || !I->use_empty()) return;
470
471 SmallPtrSet<Instruction*, 16> Insts;
472 Insts.insert(I);
473
474 while (!Insts.empty()) {
475 I = *Insts.begin();
476 Insts.erase(I);
477 if (isInstructionTriviallyDead(I)) {
478 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
479 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
480 Insts.insert(U);
481 I->eraseFromParent();
482 }
483 }
484}
Chris Lattnerdbe0dec2007-03-31 04:06:36 +0000485
486
Chris Lattnerdd77df32007-04-13 20:30:56 +0000487/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
488/// holds actual Value*'s for register values.
489struct ExtAddrMode : public TargetLowering::AddrMode {
490 Value *BaseReg;
491 Value *ScaledReg;
492 ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
493 void dump() const;
494};
495
496static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
497 bool NeedPlus = false;
498 OS << "[";
499 if (AM.BaseGV)
500 OS << (NeedPlus ? " + " : "")
501 << "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
502
503 if (AM.BaseOffs)
504 OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
505
506 if (AM.BaseReg)
507 OS << (NeedPlus ? " + " : "")
508 << "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
509 if (AM.Scale)
510 OS << (NeedPlus ? " + " : "")
511 << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
512
513 return OS << "]";
514}
515
516void ExtAddrMode::dump() const {
517 cerr << *this << "\n";
518}
519
520static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
521 const Type *AccessTy, ExtAddrMode &AddrMode,
522 SmallVector<Instruction*, 16> &AddrModeInsts,
523 const TargetLowering &TLI, unsigned Depth);
524
525/// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
526/// Addr into the specified addressing mode. If Addr can't be added to AddrMode
527/// this returns false. This assumes that Addr is either a pointer type or
528/// intptr_t for the target.
529static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
530 ExtAddrMode &AddrMode,
531 SmallVector<Instruction*, 16> &AddrModeInsts,
532 const TargetLowering &TLI,
533 unsigned Depth) {
534
535 // If this is a global variable, fold it into the addressing mode if possible.
536 if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
537 if (AddrMode.BaseGV == 0) {
538 AddrMode.BaseGV = GV;
539 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
540 return true;
541 AddrMode.BaseGV = 0;
542 }
543 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
544 AddrMode.BaseOffs += CI->getSExtValue();
545 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
546 return true;
547 AddrMode.BaseOffs -= CI->getSExtValue();
548 } else if (isa<ConstantPointerNull>(Addr)) {
549 return true;
550 }
551
552 // Look through constant exprs and instructions.
553 unsigned Opcode = ~0U;
554 User *AddrInst = 0;
555 if (Instruction *I = dyn_cast<Instruction>(Addr)) {
556 Opcode = I->getOpcode();
557 AddrInst = I;
558 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
559 Opcode = CE->getOpcode();
560 AddrInst = CE;
561 }
562
563 // Limit recursion to avoid exponential behavior.
564 if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }
565
566 // If this is really an instruction, add it to our list of related
567 // instructions.
568 if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
569 AddrModeInsts.push_back(I);
570
571 switch (Opcode) {
572 case Instruction::PtrToInt:
573 // PtrToInt is always a noop, as we know that the int type is pointer sized.
574 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
575 AddrMode, AddrModeInsts, TLI, Depth))
576 return true;
577 break;
578 case Instruction::IntToPtr:
579 // This inttoptr is a no-op if the integer type is pointer sized.
580 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
581 TLI.getPointerTy()) {
582 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
583 AddrMode, AddrModeInsts, TLI, Depth))
584 return true;
585 }
586 break;
587 case Instruction::Add: {
588 // Check to see if we can merge in the RHS then the LHS. If so, we win.
589 ExtAddrMode BackupAddrMode = AddrMode;
590 unsigned OldSize = AddrModeInsts.size();
591 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
592 AddrMode, AddrModeInsts, TLI, Depth+1) &&
593 FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
594 AddrMode, AddrModeInsts, TLI, Depth+1))
595 return true;
596
597 // Restore the old addr mode info.
598 AddrMode = BackupAddrMode;
599 AddrModeInsts.resize(OldSize);
600
601 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
602 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
603 AddrMode, AddrModeInsts, TLI, Depth+1) &&
604 FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
605 AddrMode, AddrModeInsts, TLI, Depth+1))
606 return true;
607
608 // Otherwise we definitely can't merge the ADD in.
609 AddrMode = BackupAddrMode;
610 AddrModeInsts.resize(OldSize);
611 break;
612 }
613 case Instruction::Or: {
614 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
615 if (!RHS) break;
616 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
617 break;
618 }
619 case Instruction::Mul:
620 case Instruction::Shl: {
621 // Can only handle X*C and X << C, and can only handle this when the scale
622 // field is available.
623 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
624 if (!RHS) break;
625 int64_t Scale = RHS->getSExtValue();
626 if (Opcode == Instruction::Shl)
627 Scale = 1 << Scale;
628
629 if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
630 AddrMode, AddrModeInsts, TLI, Depth))
631 return true;
632 break;
633 }
634 case Instruction::GetElementPtr: {
635 // Scan the GEP. We check it if it contains constant offsets and at most
636 // one variable offset.
637 int VariableOperand = -1;
638 unsigned VariableScale = 0;
639
640 int64_t ConstantOffset = 0;
641 const TargetData *TD = TLI.getTargetData();
642 gep_type_iterator GTI = gep_type_begin(AddrInst);
643 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
644 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
645 const StructLayout *SL = TD->getStructLayout(STy);
646 unsigned Idx =
647 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
648 ConstantOffset += SL->getElementOffset(Idx);
649 } else {
Duncan Sands514ab342007-11-01 20:53:16 +0000650 uint64_t TypeSize = TD->getABITypeSize(GTI.getIndexedType());
Chris Lattnerdd77df32007-04-13 20:30:56 +0000651 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
652 ConstantOffset += CI->getSExtValue()*TypeSize;
653 } else if (TypeSize) { // Scales of zero don't do anything.
654 // We only allow one variable index at the moment.
655 if (VariableOperand != -1) {
656 VariableOperand = -2;
657 break;
658 }
659
660 // Remember the variable index.
661 VariableOperand = i;
662 VariableScale = TypeSize;
663 }
664 }
665 }
666
667 // If the GEP had multiple variable indices, punt.
668 if (VariableOperand == -2)
669 break;
670
671 // A common case is for the GEP to only do a constant offset. In this case,
672 // just add it to the disp field and check validity.
673 if (VariableOperand == -1) {
674 AddrMode.BaseOffs += ConstantOffset;
675 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
676 // Check to see if we can fold the base pointer in too.
677 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
678 AddrMode, AddrModeInsts, TLI,
679 Depth+1))
680 return true;
681 }
682 AddrMode.BaseOffs -= ConstantOffset;
683 } else {
684 // Check that this has no base reg yet. If so, we won't have a place to
685 // put the base of the GEP (assuming it is not a null ptr).
686 bool SetBaseReg = false;
687 if (AddrMode.HasBaseReg) {
688 if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
689 break;
690 } else {
691 AddrMode.HasBaseReg = true;
692 AddrMode.BaseReg = AddrInst->getOperand(0);
693 SetBaseReg = true;
694 }
695
696 // See if the scale amount is valid for this target.
697 AddrMode.BaseOffs += ConstantOffset;
698 if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
699 VariableScale, AccessTy, AddrMode,
700 AddrModeInsts, TLI, Depth)) {
701 if (!SetBaseReg) return true;
702
703 // If this match succeeded, we know that we can form an address with the
704 // GepBase as the basereg. See if we can match *more*.
705 AddrMode.HasBaseReg = false;
706 AddrMode.BaseReg = 0;
707 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
708 AddrMode, AddrModeInsts, TLI,
709 Depth+1))
710 return true;
711 // Strange, shouldn't happen. Restore the base reg and succeed the easy
712 // way.
713 AddrMode.HasBaseReg = true;
714 AddrMode.BaseReg = AddrInst->getOperand(0);
715 return true;
716 }
717
718 AddrMode.BaseOffs -= ConstantOffset;
719 if (SetBaseReg) {
720 AddrMode.HasBaseReg = false;
721 AddrMode.BaseReg = 0;
722 }
723 }
724 break;
725 }
726 }
727
728 if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
729 assert(AddrModeInsts.back() == I && "Stack imbalance");
730 AddrModeInsts.pop_back();
731 }
732
733 // Worse case, the target should support [reg] addressing modes. :)
734 if (!AddrMode.HasBaseReg) {
735 AddrMode.HasBaseReg = true;
736 // Still check for legality in case the target supports [imm] but not [i+r].
737 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
738 AddrMode.BaseReg = Addr;
739 return true;
740 }
741 AddrMode.HasBaseReg = false;
742 }
743
744 // If the base register is already taken, see if we can do [r+r].
745 if (AddrMode.Scale == 0) {
746 AddrMode.Scale = 1;
747 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
748 AddrMode.ScaledReg = Addr;
749 return true;
750 }
751 AddrMode.Scale = 0;
752 }
753 // Couldn't match.
754 return false;
755}
756
757/// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
758/// addressing mode. Return true if this addr mode is legal for the target,
759/// false if not.
760static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
761 const Type *AccessTy, ExtAddrMode &AddrMode,
762 SmallVector<Instruction*, 16> &AddrModeInsts,
763 const TargetLowering &TLI, unsigned Depth) {
764 // If we already have a scale of this value, we can add to it, otherwise, we
765 // need an available scale field.
766 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
767 return false;
768
769 ExtAddrMode InputAddrMode = AddrMode;
770
771 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
772 // [A+B + A*7] -> [B+A*8].
773 AddrMode.Scale += Scale;
774 AddrMode.ScaledReg = ScaleReg;
775
776 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
777 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
778 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
779 // X*Scale + C*Scale to addr mode.
780 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
781 if (BinOp && BinOp->getOpcode() == Instruction::Add &&
782 isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
783
784 InputAddrMode.Scale = Scale;
785 InputAddrMode.ScaledReg = BinOp->getOperand(0);
786 InputAddrMode.BaseOffs +=
787 cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
788 if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
789 AddrModeInsts.push_back(BinOp);
790 AddrMode = InputAddrMode;
791 return true;
792 }
793 }
794
795 // Otherwise, not (x+c)*scale, just return what we have.
796 return true;
797 }
798
799 // Otherwise, back this attempt out.
800 AddrMode.Scale -= Scale;
801 if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
802
803 return false;
804}
805
806
807/// IsNonLocalValue - Return true if the specified values are defined in a
808/// different basic block than BB.
809static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
810 if (Instruction *I = dyn_cast<Instruction>(V))
811 return I->getParent() != BB;
812 return false;
813}
814
815/// OptimizeLoadStoreInst - Load and Store Instructions have often have
816/// addressing modes that can do significant amounts of computation. As such,
817/// instruction selection will try to get the load or store to do as much
818/// computation as possible for the program. The problem is that isel can only
819/// see within a single block. As such, we sink as much legal addressing mode
820/// stuff into the block as possible.
821bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
822 const Type *AccessTy,
823 DenseMap<Value*,Value*> &SunkAddrs) {
824 // Figure out what addressing mode will be built up for this operation.
825 SmallVector<Instruction*, 16> AddrModeInsts;
826 ExtAddrMode AddrMode;
827 bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
828 AddrModeInsts, *TLI, 0);
829 Success = Success; assert(Success && "Couldn't select *anything*?");
830
831 // Check to see if any of the instructions supersumed by this addr mode are
832 // non-local to I's BB.
833 bool AnyNonLocal = false;
834 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
835 if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
836 AnyNonLocal = true;
837 break;
838 }
839 }
840
841 // If all the instructions matched are already in this BB, don't do anything.
842 if (!AnyNonLocal) {
843 DEBUG(cerr << "CGP: Found local addrmode: " << AddrMode << "\n");
844 return false;
845 }
846
847 // Insert this computation right after this user. Since our caller is
848 // scanning from the top of the BB to the bottom, reuse of the expr are
849 // guaranteed to happen later.
850 BasicBlock::iterator InsertPt = LdStInst;
851
852 // Now that we determined the addressing expression we want to use and know
853 // that we have to sink it into this block. Check to see if we have already
854 // done this for some other load/store instr in this block. If so, reuse the
855 // computation.
856 Value *&SunkAddr = SunkAddrs[Addr];
857 if (SunkAddr) {
858 DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
859 if (SunkAddr->getType() != Addr->getType())
860 SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
861 } else {
862 DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
863 const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
864
865 Value *Result = 0;
866 // Start with the scale value.
867 if (AddrMode.Scale) {
868 Value *V = AddrMode.ScaledReg;
869 if (V->getType() == IntPtrTy) {
870 // done.
871 } else if (isa<PointerType>(V->getType())) {
872 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
873 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
874 cast<IntegerType>(V->getType())->getBitWidth()) {
875 V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
876 } else {
877 V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
878 }
879 if (AddrMode.Scale != 1)
880 V = BinaryOperator::createMul(V, ConstantInt::get(IntPtrTy,
881 AddrMode.Scale),
882 "sunkaddr", InsertPt);
883 Result = V;
884 }
885
886 // Add in the base register.
887 if (AddrMode.BaseReg) {
888 Value *V = AddrMode.BaseReg;
889 if (V->getType() != IntPtrTy)
890 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
891 if (Result)
892 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
893 else
894 Result = V;
895 }
896
897 // Add in the BaseGV if present.
898 if (AddrMode.BaseGV) {
899 Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
900 InsertPt);
901 if (Result)
902 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
903 else
904 Result = V;
905 }
906
907 // Add in the Base Offset if present.
908 if (AddrMode.BaseOffs) {
909 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
910 if (Result)
911 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
912 else
913 Result = V;
914 }
915
916 if (Result == 0)
917 SunkAddr = Constant::getNullValue(Addr->getType());
918 else
919 SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
920 }
921
922 LdStInst->replaceUsesOfWith(Addr, SunkAddr);
923
924 if (Addr->use_empty())
925 EraseDeadInstructions(Addr);
926 return true;
927}
928
Evan Chengbdcb7262007-12-05 23:58:20 +0000929bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
930 BasicBlock *DefBB = I->getParent();
931
932 // If both result of the {s|z}xt and its source are live out, rewrite all
933 // other uses of the source with result of extension.
934 Value *Src = I->getOperand(0);
935 if (Src->hasOneUse())
936 return false;
937
Evan Cheng696e5c02007-12-13 07:50:36 +0000938 // Only do this xform if truncating is free.
Evan Chengf9785f92007-12-13 03:32:53 +0000939 if (!TLI->isTruncateFree(I->getType(), Src->getType()))
940 return false;
941
Evan Cheng772de512007-12-12 00:51:06 +0000942 // Only safe to perform the optimization if the source is also defined in
Evan Cheng765dff22007-12-12 02:53:41 +0000943 // this block.
944 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
Evan Cheng772de512007-12-12 00:51:06 +0000945 return false;
946
Evan Chengbdcb7262007-12-05 23:58:20 +0000947 bool DefIsLiveOut = false;
948 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
949 UI != E; ++UI) {
950 Instruction *User = cast<Instruction>(*UI);
951
952 // Figure out which BB this ext is used in.
953 BasicBlock *UserBB = User->getParent();
954 if (UserBB == DefBB) continue;
955 DefIsLiveOut = true;
956 break;
957 }
958 if (!DefIsLiveOut)
959 return false;
960
Evan Cheng765dff22007-12-12 02:53:41 +0000961 // Make sure non of the uses are PHI nodes.
962 for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
963 UI != E; ++UI) {
964 Instruction *User = cast<Instruction>(*UI);
Evan Chengf9785f92007-12-13 03:32:53 +0000965 BasicBlock *UserBB = User->getParent();
966 if (UserBB == DefBB) continue;
967 // Be conservative. We don't want this xform to end up introducing
968 // reloads just before load / store instructions.
969 if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
Evan Cheng765dff22007-12-12 02:53:41 +0000970 return false;
971 }
972
Evan Chengbdcb7262007-12-05 23:58:20 +0000973 // InsertedTruncs - Only insert one trunc in each block once.
974 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
975
976 bool MadeChange = false;
977 for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
978 UI != E; ++UI) {
979 Use &TheUse = UI.getUse();
980 Instruction *User = cast<Instruction>(*UI);
981
982 // Figure out which BB this ext is used in.
983 BasicBlock *UserBB = User->getParent();
984 if (UserBB == DefBB) continue;
985
986 // Both src and def are live in this block. Rewrite the use.
987 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
988
989 if (!InsertedTrunc) {
990 BasicBlock::iterator InsertPt = UserBB->begin();
991 while (isa<PHINode>(InsertPt)) ++InsertPt;
992
993 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
994 }
995
996 // Replace a use of the {s|z}ext source with a use of the result.
997 TheUse = InsertedTrunc;
998
999 MadeChange = true;
1000 }
1001
1002 return MadeChange;
1003}
1004
Chris Lattnerdbe0dec2007-03-31 04:06:36 +00001005// In this pass we look for GEP and cast instructions that are used
1006// across basic blocks and rewrite them to improve basic-block-at-a-time
1007// selection.
1008bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1009 bool MadeChange = false;
1010
1011 // Split all critical edges where the dest block has a PHI and where the phi
1012 // has shared immediate operands.
1013 TerminatorInst *BBTI = BB.getTerminator();
1014 if (BBTI->getNumSuccessors() > 1) {
1015 for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
1016 if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
1017 isCriticalEdge(BBTI, i, true))
1018 SplitEdgeNicely(BBTI, i, this);
1019 }
1020
1021
Chris Lattnerdd77df32007-04-13 20:30:56 +00001022 // Keep track of non-local addresses that have been sunk into this block.
1023 // This allows us to avoid inserting duplicate code for blocks with multiple
1024 // load/stores of the same address.
1025 DenseMap<Value*, Value*> SunkAddrs;
1026
Chris Lattnerdbe0dec2007-03-31 04:06:36 +00001027 for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
1028 Instruction *I = BBI++;
1029
Chris Lattnerdd77df32007-04-13 20:30:56 +00001030 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Chris Lattnerdbe0dec2007-03-31 04:06:36 +00001031 // If the source of the cast is a constant, then this should have
1032 // already been constant folded. The only reason NOT to constant fold
1033 // it is if something (e.g. LSR) was careful to place the constant
1034 // evaluation in a block other than then one that uses it (e.g. to hoist
1035 // the address of globals out of a loop). If this is the case, we don't
1036 // want to forward-subst the cast.
1037 if (isa<Constant>(CI->getOperand(0)))
1038 continue;
1039
Evan Chengbdcb7262007-12-05 23:58:20 +00001040 bool Change = false;
1041 if (TLI) {
1042 Change = OptimizeNoopCopyExpression(CI, *TLI);
1043 MadeChange |= Change;
1044 }
1045
1046 if (OptExtUses && !Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
1047 MadeChange |= OptimizeExtUses(I);
Dale Johannesence0b2372007-06-12 16:50:17 +00001048 } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
1049 MadeChange |= OptimizeCmpExpression(CI);
Chris Lattnerdd77df32007-04-13 20:30:56 +00001050 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1051 if (TLI)
1052 MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
1053 SunkAddrs);
1054 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1055 if (TLI)
1056 MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
1057 SI->getOperand(0)->getType(),
1058 SunkAddrs);
1059 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
Chris Lattnerf25646b2007-04-14 00:17:39 +00001060 if (GEPI->hasAllZeroIndices()) {
Chris Lattnerdd77df32007-04-13 20:30:56 +00001061 /// The GEP operand must be a pointer, so must its result -> BitCast
1062 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1063 GEPI->getName(), GEPI);
1064 GEPI->replaceAllUsesWith(NC);
1065 GEPI->eraseFromParent();
1066 MadeChange = true;
1067 BBI = NC;
1068 }
1069 } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
1070 // If we found an inline asm expession, and if the target knows how to
1071 // lower it to normal LLVM code, do so now.
1072 if (TLI && isa<InlineAsm>(CI->getCalledValue()))
1073 if (const TargetAsmInfo *TAI =
1074 TLI->getTargetMachine().getTargetAsmInfo()) {
1075 if (TAI->ExpandInlineAsm(CI))
1076 BBI = BB.begin();
1077 }
Chris Lattnerdbe0dec2007-03-31 04:06:36 +00001078 }
1079 }
Chris Lattnerdd77df32007-04-13 20:30:56 +00001080
Chris Lattnerdbe0dec2007-03-31 04:06:36 +00001081 return MadeChange;
1082}
1083