blob: c33e3206dca0eba6774ebdca855999aef54673bf [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnere96fda32003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000029#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer9133fe22007-02-05 23:32:05 +000032#include "llvm/Support/Compiler.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000036#include <algorithm>
Dan Gohmanc9235d22008-03-21 23:51:57 +000037#include <map>
Chris Lattnerd7456022004-01-09 06:02:20 +000038using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000039
Chris Lattner0e5f4992006-12-19 21:40:18 +000040STATISTIC(NumLinear , "Number of insts linearized");
41STATISTIC(NumChanged, "Number of insts reassociated");
42STATISTIC(NumAnnihil, "Number of expr tree annihilated");
43STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000044
Chris Lattner0e5f4992006-12-19 21:40:18 +000045namespace {
Reid Spencer9133fe22007-02-05 23:32:05 +000046 struct VISIBILITY_HIDDEN ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000047 unsigned Rank;
48 Value *Op;
49 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50 };
51 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
53 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000054}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000055
Devang Patel50cacb22008-11-21 21:00:20 +000056#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000057/// PrintOps - Print out the expression identified in the Ops list.
58///
59static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
60 Module *M = I->getParent()->getParent()->getParent();
Bill Wendling832171c2006-12-07 20:04:42 +000061 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner7de3b5d2008-08-19 04:45:19 +000062 << *Ops[0].Op->getType();
63 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
64 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
65 cerr << "," << Ops[i].Rank;
66 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000067}
Devang Patel59500c82008-11-21 20:00:59 +000068#endif
Chris Lattnere5022fe2006-03-04 09:31:13 +000069
Dan Gohman844731a2008-05-13 00:00:25 +000070namespace {
Reid Spencer9133fe22007-02-05 23:32:05 +000071 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
Chris Lattner0c0edf82002-07-25 06:17:51 +000072 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattnerfb5be092003-08-13 16:16:26 +000073 std::map<Value*, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000074 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000075 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000076 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000077 Reassociate() : FunctionPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000078
Chris Lattner7e708292002-06-25 16:13:24 +000079 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000080
81 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000082 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000083 }
84 private:
Chris Lattner7e708292002-06-25 16:13:24 +000085 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000086 unsigned getRank(Value *V);
Chris Lattner895b3922006-03-14 07:11:11 +000087 void ReassociateExpression(BinaryOperator *I);
Chris Lattnere9efecb2006-03-14 16:04:29 +000088 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
89 unsigned Idx = 0);
Chris Lattnere5022fe2006-03-04 09:31:13 +000090 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000091 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
92 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000093 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000094 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +000095
96 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +000097 };
98}
99
Dan Gohman844731a2008-05-13 00:00:25 +0000100char Reassociate::ID = 0;
101static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
102
Brian Gaeked0fde302003-11-11 22:41:34 +0000103// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000104FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000105
Chris Lattnere5022fe2006-03-04 09:31:13 +0000106void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000107 Instruction *Op = dyn_cast<Instruction>(V);
108 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
109 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000110
Reid Spencere4d87aa2006-12-23 06:05:41 +0000111 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000112 RemoveDeadBinaryOp(LHS);
113 RemoveDeadBinaryOp(RHS);
114}
115
Chris Lattner9c723192005-05-08 20:57:04 +0000116
117static bool isUnmovableInstruction(Instruction *I) {
118 if (I->getOpcode() == Instruction::PHI ||
119 I->getOpcode() == Instruction::Alloca ||
120 I->getOpcode() == Instruction::Load ||
121 I->getOpcode() == Instruction::Malloc ||
122 I->getOpcode() == Instruction::Invoke ||
123 I->getOpcode() == Instruction::Call ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000124 I->getOpcode() == Instruction::UDiv ||
125 I->getOpcode() == Instruction::SDiv ||
126 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000127 I->getOpcode() == Instruction::URem ||
128 I->getOpcode() == Instruction::SRem ||
129 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000130 return true;
131 return false;
132}
133
Chris Lattner7e708292002-06-25 16:13:24 +0000134void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000135 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000136
137 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000138 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerfb5be092003-08-13 16:16:26 +0000139 ValueRankMap[I] = ++i;
140
Chris Lattner7e708292002-06-25 16:13:24 +0000141 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000142 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000143 E = RPOT.end(); I != E; ++I) {
144 BasicBlock *BB = *I;
145 unsigned BBRank = RankMap[BB] = ++i << 16;
146
147 // Walk the basic block, adding precomputed ranks for any instructions that
148 // we cannot move. This ensures that the ranks for these instructions are
149 // all different in the block.
150 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
151 if (isUnmovableInstruction(I))
152 ValueRankMap[I] = ++BBRank;
153 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000154}
155
156unsigned Reassociate::getRank(Value *V) {
Chris Lattnerfb5be092003-08-13 16:16:26 +0000157 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
158
Chris Lattner08b43922005-05-07 04:08:02 +0000159 Instruction *I = dyn_cast<Instruction>(V);
160 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattner4fd56002002-05-08 22:19:27 +0000161
Chris Lattner08b43922005-05-07 04:08:02 +0000162 unsigned &CachedRank = ValueRankMap[I];
163 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000164
Chris Lattner08b43922005-05-07 04:08:02 +0000165 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
166 // we can reassociate expressions for code motion! Since we do not recurse
167 // for PHI nodes, we cannot have infinite recursion here, because there
168 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000169 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
170 for (unsigned i = 0, e = I->getNumOperands();
171 i != e && Rank != MaxRank; ++i)
172 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000173
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000174 // If this is a not or neg instruction, do not count it for rank. This
175 // assures us that X and ~X will have the same rank.
Chris Lattner42a75512007-01-15 02:27:26 +0000176 if (!I->getType()->isInteger() ||
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000177 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
178 ++Rank;
179
Bill Wendling832171c2006-12-07 20:04:42 +0000180 //DOUT << "Calculated Rank[" << V->getName() << "] = "
181 // << Rank << "\n";
Jeff Cohen00b168892005-07-27 06:12:32 +0000182
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000183 return CachedRank = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000184}
185
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000186/// isReassociableOp - Return true if V is an instruction of the specified
187/// opcode and if it only has one use.
188static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000189 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000190 cast<Instruction>(V)->getOpcode() == Opcode)
191 return cast<BinaryOperator>(V);
192 return 0;
193}
Chris Lattner4fd56002002-05-08 22:19:27 +0000194
Chris Lattnerf33151a2005-05-08 21:28:52 +0000195/// LowerNegateToMultiply - Replace 0-X with X*-1.
196///
197static Instruction *LowerNegateToMultiply(Instruction *Neg) {
Reid Spencer24d6da52007-01-21 00:29:26 +0000198 Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000199
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000200 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000201 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000202 Neg->replaceAllUsesWith(Res);
203 Neg->eraseFromParent();
204 return Res;
205}
206
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000207// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
208// Note that if D is also part of the expression tree that we recurse to
209// linearize it as well. Besides that case, this does not recurse into A,B, or
210// C.
211void Reassociate::LinearizeExpr(BinaryOperator *I) {
212 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
213 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000214 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000215 isReassociableOp(RHS, I->getOpcode()) &&
216 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000217
Bill Wendling832171c2006-12-07 20:04:42 +0000218 DOUT << "Linear" << *LHS << *RHS << *I;
Chris Lattner4fd56002002-05-08 22:19:27 +0000219
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000220 // Move the RHS instruction to live immediately before I, avoiding breaking
221 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000222 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000223
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000224 // Move operands around to do the linearization.
225 I->setOperand(1, RHS->getOperand(0));
226 RHS->setOperand(0, LHS);
227 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000228
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000229 ++NumLinear;
230 MadeChange = true;
Bill Wendling832171c2006-12-07 20:04:42 +0000231 DOUT << "Linearized: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000232
233 // If D is part of this expression tree, tail recurse.
234 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
235 LinearizeExpr(I);
236}
237
238
239/// LinearizeExprTree - Given an associative binary expression tree, traverse
240/// all of the uses putting it into canonical form. This forces a left-linear
241/// form of the the expression (((a+b)+c)+d), and collects information about the
242/// rank of the non-tree operands.
243///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000244/// NOTE: These intentionally destroys the expression tree operands (turning
245/// them into undef values) to reduce #uses of the values. This means that the
246/// caller MUST use something like RewriteExprTree to put the values back in.
247///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000248void Reassociate::LinearizeExprTree(BinaryOperator *I,
249 std::vector<ValueEntry> &Ops) {
250 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
251 unsigned Opcode = I->getOpcode();
252
253 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
254 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
255 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
256
Chris Lattnerf33151a2005-05-08 21:28:52 +0000257 // If this is a multiply expression tree and it contains internal negations,
258 // transform them into multiplies by -1 so they can be reassociated.
259 if (I->getOpcode() == Instruction::Mul) {
260 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
261 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
262 LHSBO = isReassociableOp(LHS, Opcode);
263 }
264 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
265 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
266 RHSBO = isReassociableOp(RHS, Opcode);
267 }
268 }
269
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000270 if (!LHSBO) {
271 if (!RHSBO) {
272 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
273 // such, just remember these operands and their rank.
274 Ops.push_back(ValueEntry(getRank(LHS), LHS));
275 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000276
277 // Clear the leaves out.
278 I->setOperand(0, UndefValue::get(I->getType()));
279 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000280 return;
281 } else {
282 // Turn X+(Y+Z) -> (Y+Z)+X
283 std::swap(LHSBO, RHSBO);
284 std::swap(LHS, RHS);
285 bool Success = !I->swapOperands();
286 assert(Success && "swapOperands failed");
Devang Patel59500c82008-11-21 20:00:59 +0000287 Success = false;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000288 MadeChange = true;
289 }
290 } else if (RHSBO) {
291 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
292 // part of the expression tree.
293 LinearizeExpr(I);
294 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
295 RHS = I->getOperand(1);
296 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000297 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000298
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000299 // Okay, now we know that the LHS is a nested expression and that the RHS is
300 // not. Perform reassociation.
301 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000302
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000303 // Move LHS right before I to make sure that the tree expression dominates all
304 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000305 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000306
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000307 // Linearize the expression tree on the LHS.
308 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000309
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000310 // Remember the RHS operand and its rank.
311 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000312
313 // Clear the RHS leaf out.
314 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000315}
316
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000317// RewriteExprTree - Now that the operands for this expression tree are
318// linearized and optimized, emit them in-order. This function is written to be
319// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000320void Reassociate::RewriteExprTree(BinaryOperator *I,
321 std::vector<ValueEntry> &Ops,
322 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000323 if (i+2 == Ops.size()) {
324 if (I->getOperand(0) != Ops[i].Op ||
325 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000326 Value *OldLHS = I->getOperand(0);
Bill Wendling832171c2006-12-07 20:04:42 +0000327 DOUT << "RA: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000328 I->setOperand(0, Ops[i].Op);
329 I->setOperand(1, Ops[i+1].Op);
Bill Wendling832171c2006-12-07 20:04:42 +0000330 DOUT << "TO: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000331 MadeChange = true;
332 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000333
334 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
335 // delete the extra, now dead, nodes.
336 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000337 }
338 return;
339 }
340 assert(i+2 < Ops.size() && "Ops index out of range!");
341
342 if (I->getOperand(1) != Ops[i].Op) {
Bill Wendling832171c2006-12-07 20:04:42 +0000343 DOUT << "RA: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000344 I->setOperand(1, Ops[i].Op);
Bill Wendling832171c2006-12-07 20:04:42 +0000345 DOUT << "TO: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000346 MadeChange = true;
347 ++NumChanged;
348 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000349
350 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
351 assert(LHS->getOpcode() == I->getOpcode() &&
352 "Improper expression tree!");
353
354 // Compactify the tree instructions together with each other to guarantee
355 // that the expression tree is dominated by all of Ops.
356 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000357 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000358}
359
360
Chris Lattner4fd56002002-05-08 22:19:27 +0000361
Chris Lattnera36e6c82002-05-16 04:37:07 +0000362// NegateValue - Insert instructions before the instruction pointed to by BI,
363// that computes the negative version of the value specified. The negative
364// version of the value is returned, and BI is left pointing at the instruction
365// that should be processed next by the reassociation pass.
366//
Chris Lattner08b43922005-05-07 04:08:02 +0000367static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattnera36e6c82002-05-16 04:37:07 +0000368 // We are trying to expose opportunity for reassociation. One of the things
369 // that we want to do to achieve this is to push a negation as deep into an
370 // expression chain as possible, to expose the add instructions. In practice,
371 // this means that we turn this:
372 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
373 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
374 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman5560c9d2003-08-18 14:43:39 +0000375 // we introduce tons of unnecessary negation instructions...
Chris Lattnera36e6c82002-05-16 04:37:07 +0000376 //
377 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000378 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000379 // Push the negates through the add.
380 I->setOperand(0, NegateValue(I->getOperand(0), BI));
381 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000382
Chris Lattner2cd85da2005-09-02 06:38:04 +0000383 // We must move the add instruction here, because the neg instructions do
384 // not dominate the old add instruction in general. By moving it, we are
385 // assured that the neg instructions we just inserted dominate the
386 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000387 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000388 I->moveBefore(BI);
389 I->setName(I->getName()+".neg");
390 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000391 }
392
393 // Insert a 'neg' instruction that subtracts the value from zero to get the
394 // negation.
395 //
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000396 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000397}
398
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000399/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
400/// X-Y into (X + -Y).
401static bool ShouldBreakUpSubtract(Instruction *Sub) {
402 // If this is a negation, we can't split it up!
403 if (BinaryOperator::isNeg(Sub))
404 return false;
405
406 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000407 // subtract or if this is only used by one.
408 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
409 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000410 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000411 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000412 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000413 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000414 if (Sub->hasOneUse() &&
415 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
416 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000417 return true;
418
419 return false;
420}
421
Chris Lattner08b43922005-05-07 04:08:02 +0000422/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
423/// only used by an add, transform this into (X+(0-Y)) to promote better
424/// reassociation.
425static Instruction *BreakUpSubtract(Instruction *Sub) {
Chris Lattner08b43922005-05-07 04:08:02 +0000426 // Convert a subtract into an add and a neg instruction... so that sub
427 // instructions can be commuted with other add instructions...
428 //
429 // Calculate the negative value of Operand 1 of the sub instruction...
430 // and set it as the RHS of the add instruction we just made...
431 //
Chris Lattner08b43922005-05-07 04:08:02 +0000432 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
433 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000434 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000435 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000436
437 // Everyone now refers to the add instruction.
438 Sub->replaceAllUsesWith(New);
439 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000440
Bill Wendling832171c2006-12-07 20:04:42 +0000441 DOUT << "Negated: " << *New;
Chris Lattner08b43922005-05-07 04:08:02 +0000442 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000443}
444
Chris Lattner0975ed52005-05-07 04:24:13 +0000445/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
446/// by one, change this into a multiply by a constant to assist with further
447/// reassociation.
448static Instruction *ConvertShiftToMul(Instruction *Shl) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000449 // If an operand of this shift is a reassociable multiply, or if the shift
450 // is used by a reassociable multiply or add, turn into a multiply.
451 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
452 (Shl->hasOneUse() &&
453 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
454 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
455 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
456 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
457
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000458 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
Chris Lattner6934a042007-02-11 01:23:03 +0000459 "", Shl);
460 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000461 Shl->replaceAllUsesWith(Mul);
462 Shl->eraseFromParent();
463 return Mul;
464 }
465 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000466}
467
Chris Lattner109d34d2005-05-08 18:59:37 +0000468// Scan backwards and forwards among values with the same rank as element i to
469// see if X exists. If X does not exist, return i.
470static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
471 Value *X) {
472 unsigned XRank = Ops[i].Rank;
473 unsigned e = Ops.size();
474 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
475 if (Ops[j].Op == X)
476 return j;
477 // Scan backwards
478 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
479 if (Ops[j].Op == X)
480 return j;
481 return i;
482}
483
Chris Lattnere5022fe2006-03-04 09:31:13 +0000484/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
485/// and returning the result. Insert the tree before I.
486static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
487 if (Ops.size() == 1) return Ops.back();
488
489 Value *V1 = Ops.back();
490 Ops.pop_back();
491 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000492 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000493}
494
495/// RemoveFactorFromExpression - If V is an expression tree that is a
496/// multiplication sequence, and if this sequence contains a multiply by Factor,
497/// remove Factor from the tree and return the new tree.
498Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
499 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
500 if (!BO) return 0;
501
502 std::vector<ValueEntry> Factors;
503 LinearizeExprTree(BO, Factors);
504
505 bool FoundFactor = false;
506 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
507 if (Factors[i].Op == Factor) {
508 FoundFactor = true;
509 Factors.erase(Factors.begin()+i);
510 break;
511 }
Chris Lattnere9efecb2006-03-14 16:04:29 +0000512 if (!FoundFactor) {
513 // Make sure to restore the operands to the expression tree.
514 RewriteExprTree(BO, Factors);
515 return 0;
516 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000517
518 if (Factors.size() == 1) return Factors[0].Op;
519
Chris Lattnere9efecb2006-03-14 16:04:29 +0000520 RewriteExprTree(BO, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000521 return BO;
522}
523
Chris Lattnere9efecb2006-03-14 16:04:29 +0000524/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
525/// add its operands as factors, otherwise add V to the list of factors.
526static void FindSingleUseMultiplyFactors(Value *V,
527 std::vector<Value*> &Factors) {
528 BinaryOperator *BO;
529 if ((!V->hasOneUse() && !V->use_empty()) ||
530 !(BO = dyn_cast<BinaryOperator>(V)) ||
531 BO->getOpcode() != Instruction::Mul) {
532 Factors.push_back(V);
533 return;
534 }
535
536 // Otherwise, add the LHS and RHS to the list of factors.
537 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
538 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
539}
540
541
Chris Lattnere5022fe2006-03-04 09:31:13 +0000542
543Value *Reassociate::OptimizeExpression(BinaryOperator *I,
544 std::vector<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000545 // Now that we have the linearized expression tree, try to optimize it.
546 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000547 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000548 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000549
Chris Lattnere5022fe2006-03-04 09:31:13 +0000550 unsigned Opcode = I->getOpcode();
551
Chris Lattner46900102005-05-08 00:19:31 +0000552 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
553 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
554 Ops.pop_back();
555 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000556 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000557 }
558
559 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000560 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000561 switch (Opcode) {
562 default: break;
563 case Instruction::And:
Reid Spencercae57542007-03-02 00:28:52 +0000564 if (CstVal->isZero()) { // ... & 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000565 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000566 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000567 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
568 Ops.pop_back();
569 }
570 break;
571 case Instruction::Mul:
Reid Spencercae57542007-03-02 00:28:52 +0000572 if (CstVal->isZero()) { // ... * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000573 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000574 return CstVal;
Reid Spencercae57542007-03-02 00:28:52 +0000575 } else if (cast<ConstantInt>(CstVal)->isOne()) {
Chris Lattner46900102005-05-08 00:19:31 +0000576 Ops.pop_back(); // ... * 1 -> ...
577 }
578 break;
579 case Instruction::Or:
580 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000581 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000582 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000583 }
584 // FALLTHROUGH!
585 case Instruction::Add:
586 case Instruction::Xor:
Reid Spencercae57542007-03-02 00:28:52 +0000587 if (CstVal->isZero()) // ... [|^+] 0 -> ...
Chris Lattner46900102005-05-08 00:19:31 +0000588 Ops.pop_back();
589 break;
590 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000591 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000592
593 // Handle destructive annihilation do to identities between elements in the
594 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000595 switch (Opcode) {
596 default: break;
597 case Instruction::And:
598 case Instruction::Or:
599 case Instruction::Xor:
600 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
601 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
602 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
603 // First, check for X and ~X in the operand list.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000604 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000605 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
606 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
607 unsigned FoundX = FindInOperandList(Ops, i, X);
608 if (FoundX != i) {
609 if (Opcode == Instruction::And) { // ...&X&~X = 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000610 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000611 return Constant::getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000612 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000613 ++NumAnnihil;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000614 return ConstantInt::getAllOnesValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000615 }
616 }
617 }
618
619 // Next, check for duplicate pairs of values, which we assume are next to
620 // each other, due to our sorting criteria.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000621 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000622 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
623 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
624 // Drop duplicate values.
625 Ops.erase(Ops.begin()+i);
626 --i; --e;
627 IterateOptimization = true;
628 ++NumAnnihil;
629 } else {
630 assert(Opcode == Instruction::Xor);
Chris Lattnerac83b032005-08-24 17:55:32 +0000631 if (e == 2) {
Chris Lattnerac83b032005-08-24 17:55:32 +0000632 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000633 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattnerac83b032005-08-24 17:55:32 +0000634 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000635 // ... X^X -> ...
636 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Chris Lattnerac83b032005-08-24 17:55:32 +0000637 i -= 1; e -= 2;
Chris Lattner109d34d2005-05-08 18:59:37 +0000638 IterateOptimization = true;
639 ++NumAnnihil;
640 }
641 }
642 }
643 break;
644
645 case Instruction::Add:
646 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattnere5022fe2006-03-04 09:31:13 +0000647 // can simplify the expression. X+-X == 0.
Chris Lattner109d34d2005-05-08 18:59:37 +0000648 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner368a3aa2005-09-02 05:23:22 +0000649 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000650 // Check for X and -X in the operand list.
651 if (BinaryOperator::isNeg(Ops[i].Op)) {
652 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
653 unsigned FoundX = FindInOperandList(Ops, i, X);
654 if (FoundX != i) {
655 // Remove X and -X from the operand list.
656 if (Ops.size() == 2) {
Chris Lattner109d34d2005-05-08 18:59:37 +0000657 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000658 return Constant::getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000659 } else {
660 Ops.erase(Ops.begin()+i);
Chris Lattner368a3aa2005-09-02 05:23:22 +0000661 if (i < FoundX)
662 --FoundX;
663 else
664 --i; // Need to back up an extra one.
Chris Lattner109d34d2005-05-08 18:59:37 +0000665 Ops.erase(Ops.begin()+FoundX);
666 IterateOptimization = true;
667 ++NumAnnihil;
Chris Lattner368a3aa2005-09-02 05:23:22 +0000668 --i; // Revisit element.
669 e -= 2; // Removed two elements.
Chris Lattner109d34d2005-05-08 18:59:37 +0000670 }
671 }
672 }
673 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000674
675
676 // Scan the operand list, checking to see if there are any common factors
677 // between operands. Consider something like A*A+A*B*C+D. We would like to
678 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
679 // To efficiently find this, we count the number of times a factor occurs
680 // for any ADD operands that are MULs.
681 std::map<Value*, unsigned> FactorOccurrences;
682 unsigned MaxOcc = 0;
683 Value *MaxOccVal = 0;
Reid Spencer24d6da52007-01-21 00:29:26 +0000684 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
685 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
686 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
687 // Compute all of the factors of this added value.
688 std::vector<Value*> Factors;
689 FindSingleUseMultiplyFactors(BOp, Factors);
690 assert(Factors.size() > 1 && "Bad linearize!");
691
692 // Add one to FactorOccurrences for each unique factor in this op.
693 if (Factors.size() == 2) {
694 unsigned Occ = ++FactorOccurrences[Factors[0]];
695 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
696 if (Factors[0] != Factors[1]) { // Don't double count A*A.
697 Occ = ++FactorOccurrences[Factors[1]];
698 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
699 }
700 } else {
701 std::set<Value*> Duplicates;
702 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
703 if (Duplicates.insert(Factors[i]).second) {
704 unsigned Occ = ++FactorOccurrences[Factors[i]];
705 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000706 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000707 }
708 }
Reid Spencer24d6da52007-01-21 00:29:26 +0000709 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000710 }
711 }
712
713 // If any factor occurred more than one time, we can pull it out.
714 if (MaxOcc > 1) {
Bill Wendling832171c2006-12-07 20:04:42 +0000715 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
Chris Lattnere5022fe2006-03-04 09:31:13 +0000716
717 // Create a new instruction that uses the MaxOccVal twice. If we don't do
718 // this, we could otherwise run into situations where removing a factor
719 // from an expression will drop a use of maxocc, and this can cause
720 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000721 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000722 std::vector<Value*> NewMulOps;
723 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
724 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
725 NewMulOps.push_back(V);
726 Ops.erase(Ops.begin()+i);
727 --i; --e;
728 }
729 }
730
731 // No need for extra uses anymore.
732 delete DummyInst;
733
Chris Lattnere9efecb2006-03-14 16:04:29 +0000734 unsigned NumAddedValues = NewMulOps.size();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000735 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000736 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000737
Chris Lattnere9efecb2006-03-14 16:04:29 +0000738 // Now that we have inserted V and its sole use, optimize it. This allows
739 // us to handle cases that require multiple factoring steps, such as this:
740 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
741 if (NumAddedValues > 1)
742 ReassociateExpression(cast<BinaryOperator>(V));
743
Chris Lattnere5022fe2006-03-04 09:31:13 +0000744 ++NumFactor;
745
Dan Gohman30359592008-01-29 13:02:09 +0000746 if (Ops.empty())
Chris Lattnere9efecb2006-03-14 16:04:29 +0000747 return V2;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000748
749 // Add the new value to the list of things being added.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000750 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
Chris Lattnere5022fe2006-03-04 09:31:13 +0000751
752 // Rewrite the tree so that there is now a use of V.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000753 RewriteExprTree(I, Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000754 return OptimizeExpression(I, Ops);
755 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000756 break;
757 //case Instruction::Mul:
758 }
759
Jeff Cohen00b168892005-07-27 06:12:32 +0000760 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000761 return OptimizeExpression(I, Ops);
762 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000763}
764
Chris Lattnera36e6c82002-05-16 04:37:07 +0000765
Chris Lattner08b43922005-05-07 04:08:02 +0000766/// ReassociateBB - Inspect all of the instructions in this basic block,
767/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000768void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000769 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
770 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000771 if (BI->getOpcode() == Instruction::Shl &&
772 isa<ConstantInt>(BI->getOperand(1)))
773 if (Instruction *NI = ConvertShiftToMul(BI)) {
774 MadeChange = true;
775 BI = NI;
776 }
777
Chris Lattner6f156852005-05-08 21:33:47 +0000778 // Reject cases where it is pointless to do this.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000779 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
Reid Spencer9d6565a2007-02-15 02:26:10 +0000780 isa<VectorType>(BI->getType()))
Chris Lattner6f156852005-05-08 21:33:47 +0000781 continue; // Floating point ops are not associative.
782
Chris Lattner08b43922005-05-07 04:08:02 +0000783 // If this is a subtract instruction which is not already in negate form,
784 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000785 if (BI->getOpcode() == Instruction::Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000786 if (ShouldBreakUpSubtract(BI)) {
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000787 BI = BreakUpSubtract(BI);
788 MadeChange = true;
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000789 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000790 // Otherwise, this is a negation. See if the operand is a multiply tree
791 // and if this is not an inner node of a multiply tree.
792 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
793 (!BI->hasOneUse() ||
794 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
795 BI = LowerNegateToMultiply(BI);
796 MadeChange = true;
797 }
Chris Lattner08b43922005-05-07 04:08:02 +0000798 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000799 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000800
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000801 // If this instruction is a commutative binary operator, process it.
802 if (!BI->isAssociative()) continue;
803 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000804
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000805 // If this is an interior node of a reassociable tree, ignore it until we
806 // get to the root of the tree, to avoid N^2 analysis.
807 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
808 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000809
Chris Lattner7b4ad942005-09-02 07:07:58 +0000810 // If this is an add tree that is used by a sub instruction, ignore it
811 // until we process the subtract.
812 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
813 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
814 continue;
815
Chris Lattner895b3922006-03-14 07:11:11 +0000816 ReassociateExpression(I);
817 }
818}
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000819
Chris Lattner895b3922006-03-14 07:11:11 +0000820void Reassociate::ReassociateExpression(BinaryOperator *I) {
821
822 // First, walk the expression tree, linearizing the tree, collecting
823 std::vector<ValueEntry> Ops;
824 LinearizeExprTree(I, Ops);
825
Bill Wendling832171c2006-12-07 20:04:42 +0000826 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000827
828 // Now that we have linearized the tree to a list and have gathered all of
829 // the operands and their ranks, sort the operands by their rank. Use a
830 // stable_sort so that values with equal ranks will have their relative
831 // positions maintained (and so the compiler is deterministic). Note that
832 // this sorts so that the highest ranking values end up at the beginning of
833 // the vector.
834 std::stable_sort(Ops.begin(), Ops.end());
835
836 // OptimizeExpression - Now that we have the expression tree in a convenient
837 // sorted form, optimize it globally if possible.
838 if (Value *V = OptimizeExpression(I, Ops)) {
839 // This expression tree simplified to something that isn't a tree,
840 // eliminate it.
Bill Wendling832171c2006-12-07 20:04:42 +0000841 DOUT << "Reassoc to scalar: " << *V << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000842 I->replaceAllUsesWith(V);
843 RemoveDeadBinaryOp(I);
844 return;
845 }
846
847 // We want to sink immediates as deeply as possible except in the case where
848 // this is a multiply tree used only by an add, and the immediate is a -1.
849 // In this case we reassociate to put the negation on the outside so that we
850 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
851 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
852 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
853 isa<ConstantInt>(Ops.back().Op) &&
854 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
855 Ops.insert(Ops.begin(), Ops.back());
856 Ops.pop_back();
857 }
858
Bill Wendling832171c2006-12-07 20:04:42 +0000859 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000860
861 if (Ops.size() == 1) {
862 // This expression tree simplified to something that isn't a tree,
863 // eliminate it.
864 I->replaceAllUsesWith(Ops[0].Op);
865 RemoveDeadBinaryOp(I);
866 } else {
867 // Now that we ordered and optimized the expressions, splat them back into
868 // the expression tree, removing any unneeded nodes.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000869 RewriteExprTree(I, Ops);
Chris Lattner4fd56002002-05-08 22:19:27 +0000870 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000871}
872
873
Chris Lattner7e708292002-06-25 16:13:24 +0000874bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +0000875 // Recalculate the rank map for F
876 BuildRankMap(F);
877
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000878 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +0000879 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000880 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +0000881
882 // We are done with the rank map...
883 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +0000884 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000885 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000886}
Brian Gaeked0fde302003-11-11 22:41:34 +0000887