blob: 23684e4dd2b3e772b21f1d63587792fdbb72fa7b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced, "Number of allocas broken up");
44STATISTIC(NumPromoted, "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals, "Number of allocas copied from constant global");
47
48namespace {
49 struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000051 explicit SROA(signed T = -1) : FunctionPass(&ID) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052 if (T == -1)
Chris Lattner6d7faec2007-08-02 21:33:36 +000053 SRThreshold = 128;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054 else
55 SRThreshold = T;
56 }
57
58 bool runOnFunction(Function &F);
59
60 bool performScalarRepl(Function &F);
61 bool performPromotion(Function &F);
62
63 // getAnalysisUsage - This pass does not require any passes, but we know it
64 // will not alter the CFG, so say so.
65 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66 AU.addRequired<DominatorTree>();
67 AU.addRequired<DominanceFrontier>();
68 AU.addRequired<TargetData>();
69 AU.setPreservesCFG();
70 }
71
72 private:
Chris Lattner3fd59362009-01-07 06:34:28 +000073 TargetData *TD;
74
Dan Gohmanf17a25c2007-07-18 16:29:46 +000075 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
76 /// information about the uses. All these fields are initialized to false
77 /// and set to true when something is learned.
78 struct AllocaInfo {
79 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
80 bool isUnsafe : 1;
81
82 /// needsCanon - This is set to true if there is some use of the alloca
83 /// that requires canonicalization.
84 bool needsCanon : 1;
85
86 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
87 bool isMemCpySrc : 1;
88
89 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
90 bool isMemCpyDst : 1;
91
92 AllocaInfo()
93 : isUnsafe(false), needsCanon(false),
94 isMemCpySrc(false), isMemCpyDst(false) {}
95 };
96
97 unsigned SRThreshold;
98
99 void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
100
101 int isSafeAllocaToScalarRepl(AllocationInst *AI);
102
103 void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
104 AllocaInfo &Info);
105 void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
106 AllocaInfo &Info);
107 void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
108 unsigned OpNo, AllocaInfo &Info);
109 void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
110 AllocaInfo &Info);
111
112 void DoScalarReplacement(AllocationInst *AI,
113 std::vector<AllocationInst*> &WorkList);
114 void CanonicalizeAllocaUsers(AllocationInst *AI);
115 AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
116
117 void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
118 SmallVector<AllocaInst*, 32> &NewElts);
119
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000120 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
121 AllocationInst *AI,
122 SmallVector<AllocaInst*, 32> &NewElts);
123
124
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000125 const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
126 void ConvertToScalar(AllocationInst *AI, const Type *Ty);
127 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
Chris Lattner41d58652008-02-29 07:03:13 +0000128 Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
129 unsigned Offset);
130 Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
131 unsigned Offset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000132 static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
133 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134}
135
Dan Gohman089efff2008-05-13 00:00:25 +0000136char SROA::ID = 0;
137static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
138
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000139// Public interface to the ScalarReplAggregates pass
140FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
141 return new SROA(Threshold);
142}
143
144
145bool SROA::runOnFunction(Function &F) {
Chris Lattner3fd59362009-01-07 06:34:28 +0000146 TD = &getAnalysis<TargetData>();
147
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 bool Changed = performPromotion(F);
149 while (1) {
150 bool LocalChange = performScalarRepl(F);
151 if (!LocalChange) break; // No need to repromote if no scalarrepl
152 Changed = true;
153 LocalChange = performPromotion(F);
154 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
155 }
156
157 return Changed;
158}
159
160
161bool SROA::performPromotion(Function &F) {
162 std::vector<AllocaInst*> Allocas;
163 DominatorTree &DT = getAnalysis<DominatorTree>();
164 DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
165
166 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
167
168 bool Changed = false;
169
170 while (1) {
171 Allocas.clear();
172
173 // Find allocas that are safe to promote, by looking at all instructions in
174 // the entry node
175 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
176 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
177 if (isAllocaPromotable(AI))
178 Allocas.push_back(AI);
179
180 if (Allocas.empty()) break;
181
182 PromoteMemToReg(Allocas, DT, DF);
183 NumPromoted += Allocas.size();
184 Changed = true;
185 }
186
187 return Changed;
188}
189
Chris Lattner0e99e692008-06-22 17:46:21 +0000190/// getNumSAElements - Return the number of elements in the specific struct or
191/// array.
192static uint64_t getNumSAElements(const Type *T) {
193 if (const StructType *ST = dyn_cast<StructType>(T))
194 return ST->getNumElements();
195 return cast<ArrayType>(T)->getNumElements();
196}
197
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198// performScalarRepl - This algorithm is a simple worklist driven algorithm,
199// which runs on all of the malloc/alloca instructions in the function, removing
200// them if they are only used by getelementptr instructions.
201//
202bool SROA::performScalarRepl(Function &F) {
203 std::vector<AllocationInst*> WorkList;
204
205 // Scan the entry basic block, adding any alloca's and mallocs to the worklist
206 BasicBlock &BB = F.getEntryBlock();
207 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
208 if (AllocationInst *A = dyn_cast<AllocationInst>(I))
209 WorkList.push_back(A);
210
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 // Process the worklist
212 bool Changed = false;
213 while (!WorkList.empty()) {
214 AllocationInst *AI = WorkList.back();
215 WorkList.pop_back();
216
217 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
218 // with unused elements.
219 if (AI->use_empty()) {
220 AI->eraseFromParent();
221 continue;
222 }
223
224 // If we can turn this aggregate value (potentially with casts) into a
225 // simple scalar value that can be mem2reg'd into a register value.
226 bool IsNotTrivial = false;
227 if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
228 if (IsNotTrivial && ActualType != Type::VoidTy) {
229 ConvertToScalar(AI, ActualType);
230 Changed = true;
231 continue;
232 }
233
234 // Check to see if we can perform the core SROA transformation. We cannot
235 // transform the allocation instruction if it is an array allocation
236 // (allocations OF arrays are ok though), and an allocation of a scalar
237 // value cannot be decomposed at all.
238 if (!AI->isArrayAllocation() &&
239 (isa<StructType>(AI->getAllocatedType()) ||
240 isa<ArrayType>(AI->getAllocatedType())) &&
241 AI->getAllocatedType()->isSized() &&
Chris Lattner0e99e692008-06-22 17:46:21 +0000242 // Do not promote any struct whose size is larger than "128" bytes.
Chris Lattner3fd59362009-01-07 06:34:28 +0000243 TD->getABITypeSize(AI->getAllocatedType()) < SRThreshold &&
Chris Lattner0e99e692008-06-22 17:46:21 +0000244 // Do not promote any struct into more than "32" separate vars.
245 getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000246 // Check that all of the users of the allocation are capable of being
247 // transformed.
248 switch (isSafeAllocaToScalarRepl(AI)) {
249 default: assert(0 && "Unexpected value!");
250 case 0: // Not safe to scalar replace.
251 break;
252 case 1: // Safe, but requires cleanup/canonicalizations first
253 CanonicalizeAllocaUsers(AI);
254 // FALL THROUGH.
255 case 3: // Safe to scalar replace.
256 DoScalarReplacement(AI, WorkList);
257 Changed = true;
258 continue;
259 }
260 }
261
262 // Check to see if this allocation is only modified by a memcpy/memmove from
263 // a constant global. If this is the case, we can change all users to use
264 // the constant global instead. This is commonly produced by the CFE by
265 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
266 // is only subsequently read.
267 if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
268 DOUT << "Found alloca equal to global: " << *AI;
269 DOUT << " memcpy = " << *TheCopy;
270 Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
271 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
272 TheCopy->eraseFromParent(); // Don't mutate the global.
273 AI->eraseFromParent();
274 ++NumGlobals;
275 Changed = true;
276 continue;
277 }
278
279 // Otherwise, couldn't process this.
280 }
281
282 return Changed;
283}
284
285/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
286/// predicate, do SROA now.
287void SROA::DoScalarReplacement(AllocationInst *AI,
288 std::vector<AllocationInst*> &WorkList) {
289 DOUT << "Found inst to SROA: " << *AI;
290 SmallVector<AllocaInst*, 32> ElementAllocas;
291 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
292 ElementAllocas.reserve(ST->getNumContainedTypes());
293 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
294 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
295 AI->getAlignment(),
296 AI->getName() + "." + utostr(i), AI);
297 ElementAllocas.push_back(NA);
298 WorkList.push_back(NA); // Add to worklist for recursive processing
299 }
300 } else {
301 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
302 ElementAllocas.reserve(AT->getNumElements());
303 const Type *ElTy = AT->getElementType();
304 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
305 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
306 AI->getName() + "." + utostr(i), AI);
307 ElementAllocas.push_back(NA);
308 WorkList.push_back(NA); // Add to worklist for recursive processing
309 }
310 }
311
312 // Now that we have created the alloca instructions that we want to use,
313 // expand the getelementptr instructions to use them.
314 //
315 while (!AI->use_empty()) {
316 Instruction *User = cast<Instruction>(AI->use_back());
317 if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
318 RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
319 BCInst->eraseFromParent();
320 continue;
321 }
322
Chris Lattner19e61a42008-06-23 17:11:23 +0000323 // Replace:
324 // %res = load { i32, i32 }* %alloc
325 // with:
326 // %load.0 = load i32* %alloc.0
327 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
328 // %load.1 = load i32* %alloc.1
329 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
Matthijs Kooijman001006a2008-06-05 12:51:53 +0000330 // (Also works for arrays instead of structs)
331 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
332 Value *Insert = UndefValue::get(LI->getType());
333 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
334 Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
335 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
336 }
337 LI->replaceAllUsesWith(Insert);
338 LI->eraseFromParent();
339 continue;
340 }
341
Chris Lattner19e61a42008-06-23 17:11:23 +0000342 // Replace:
343 // store { i32, i32 } %val, { i32, i32 }* %alloc
344 // with:
345 // %val.0 = extractvalue { i32, i32 } %val, 0
346 // store i32 %val.0, i32* %alloc.0
347 // %val.1 = extractvalue { i32, i32 } %val, 1
348 // store i32 %val.1, i32* %alloc.1
Matthijs Kooijman001006a2008-06-05 12:51:53 +0000349 // (Also works for arrays instead of structs)
350 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
351 Value *Val = SI->getOperand(0);
352 for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
353 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
354 new StoreInst(Extract, ElementAllocas[i], SI);
355 }
356 SI->eraseFromParent();
357 continue;
358 }
359
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000360 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
361 // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
362 unsigned Idx =
363 (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
364
365 assert(Idx < ElementAllocas.size() && "Index out of range?");
366 AllocaInst *AllocaToUse = ElementAllocas[Idx];
367
368 Value *RepValue;
369 if (GEPI->getNumOperands() == 3) {
370 // Do not insert a new getelementptr instruction with zero indices, only
371 // to have it optimized out later.
372 RepValue = AllocaToUse;
373 } else {
374 // We are indexing deeply into the structure, so we still need a
375 // getelement ptr instruction to finish the indexing. This may be
376 // expanded itself once the worklist is rerun.
377 //
378 SmallVector<Value*, 8> NewArgs;
379 NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
380 NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
Gabor Greifd6da1d02008-04-06 20:25:17 +0000381 RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
382 NewArgs.end(), "", GEPI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000383 RepValue->takeName(GEPI);
384 }
385
386 // If this GEP is to the start of the aggregate, check for memcpys.
Chris Lattner85591c62009-01-07 06:25:07 +0000387 if (Idx == 0 && GEPI->hasAllZeroIndices())
388 RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000389
390 // Move all of the users over to the new GEP.
391 GEPI->replaceAllUsesWith(RepValue);
392 // Delete the old GEP
393 GEPI->eraseFromParent();
394 }
395
396 // Finally, delete the Alloca instruction
397 AI->eraseFromParent();
398 NumReplaced++;
399}
400
401
402/// isSafeElementUse - Check to see if this use is an allowed use for a
403/// getelementptr instruction of an array aggregate allocation. isFirstElt
404/// indicates whether Ptr is known to the start of the aggregate.
405///
406void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
407 AllocaInfo &Info) {
408 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
409 I != E; ++I) {
410 Instruction *User = cast<Instruction>(*I);
411 switch (User->getOpcode()) {
412 case Instruction::Load: break;
413 case Instruction::Store:
414 // Store is ok if storing INTO the pointer, not storing the pointer
415 if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
416 break;
417 case Instruction::GetElementPtr: {
418 GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
419 bool AreAllZeroIndices = isFirstElt;
420 if (GEP->getNumOperands() > 1) {
421 if (!isa<ConstantInt>(GEP->getOperand(1)) ||
422 !cast<ConstantInt>(GEP->getOperand(1))->isZero())
423 // Using pointer arithmetic to navigate the array.
424 return MarkUnsafe(Info);
425
Chris Lattner85591c62009-01-07 06:25:07 +0000426 if (AreAllZeroIndices)
427 AreAllZeroIndices = GEP->hasAllZeroIndices();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428 }
429 isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
430 if (Info.isUnsafe) return;
431 break;
432 }
433 case Instruction::BitCast:
434 if (isFirstElt) {
435 isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
436 if (Info.isUnsafe) return;
437 break;
438 }
439 DOUT << " Transformation preventing inst: " << *User;
440 return MarkUnsafe(Info);
441 case Instruction::Call:
442 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
443 if (isFirstElt) {
444 isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
445 if (Info.isUnsafe) return;
446 break;
447 }
448 }
449 DOUT << " Transformation preventing inst: " << *User;
450 return MarkUnsafe(Info);
451 default:
452 DOUT << " Transformation preventing inst: " << *User;
453 return MarkUnsafe(Info);
454 }
455 }
456 return; // All users look ok :)
457}
458
459/// AllUsersAreLoads - Return true if all users of this value are loads.
460static bool AllUsersAreLoads(Value *Ptr) {
461 for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
462 I != E; ++I)
463 if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
464 return false;
465 return true;
466}
467
468/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
469/// aggregate allocation.
470///
471void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
472 AllocaInfo &Info) {
473 if (BitCastInst *C = dyn_cast<BitCastInst>(User))
474 return isSafeUseOfBitCastedAllocation(C, AI, Info);
475
Matthijs Kooijman001006a2008-06-05 12:51:53 +0000476 if (isa<LoadInst>(User))
477 return; // Loads (returning a first class aggregrate) are always rewritable
478
479 if (isa<StoreInst>(User) && User->getOperand(0) != AI)
480 return; // Store is ok if storing INTO the pointer, not storing the pointer
481
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000482 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
483 if (GEPI == 0)
484 return MarkUnsafe(Info);
485
486 gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
487
488 // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
489 if (I == E ||
490 I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
491 return MarkUnsafe(Info);
492 }
493
494 ++I;
495 if (I == E) return MarkUnsafe(Info); // ran out of GEP indices??
496
497 bool IsAllZeroIndices = true;
498
Chris Lattnerd324da02008-08-23 05:21:06 +0000499 // If the first index is a non-constant index into an array, see if we can
500 // handle it as a special case.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000501 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
Chris Lattnerd324da02008-08-23 05:21:06 +0000502 if (!isa<ConstantInt>(I.getOperand())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000503 IsAllZeroIndices = 0;
Chris Lattnerd324da02008-08-23 05:21:06 +0000504 uint64_t NumElements = AT->getNumElements();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000505
506 // If this is an array index and the index is not constant, we cannot
507 // promote... that is unless the array has exactly one or two elements in
508 // it, in which case we CAN promote it, but we have to canonicalize this
509 // out if this is the only problem.
510 if ((NumElements == 1 || NumElements == 2) &&
511 AllUsersAreLoads(GEPI)) {
512 Info.needsCanon = true;
513 return; // Canonicalization required!
514 }
515 return MarkUnsafe(Info);
516 }
517 }
Matthijs Kooijman87ea5632008-10-06 16:23:31 +0000518
Chris Lattnerd324da02008-08-23 05:21:06 +0000519 // Walk through the GEP type indices, checking the types that this indexes
520 // into.
521 for (; I != E; ++I) {
522 // Ignore struct elements, no extra checking needed for these.
523 if (isa<StructType>(*I))
524 continue;
525
Chris Lattnerd324da02008-08-23 05:21:06 +0000526 ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
527 if (!IdxVal) return MarkUnsafe(Info);
Matthijs Kooijman87ea5632008-10-06 16:23:31 +0000528
529 // Are all indices still zero?
Chris Lattnerd324da02008-08-23 05:21:06 +0000530 IsAllZeroIndices &= IdxVal->isZero();
Matthijs Kooijman87ea5632008-10-06 16:23:31 +0000531
532 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
533 // This GEP indexes an array. Verify that this is an in-range constant
534 // integer. Specifically, consider A[0][i]. We cannot know that the user
535 // isn't doing invalid things like allowing i to index an out-of-range
536 // subscript that accesses A[1]. Because of this, we have to reject SROA
Dale Johannesen1f9b1862008-11-04 20:54:03 +0000537 // of any accesses into structs where any of the components are variables.
Matthijs Kooijman87ea5632008-10-06 16:23:31 +0000538 if (IdxVal->getZExtValue() >= AT->getNumElements())
539 return MarkUnsafe(Info);
Dale Johannesen1f9b1862008-11-04 20:54:03 +0000540 } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
541 if (IdxVal->getZExtValue() >= VT->getNumElements())
542 return MarkUnsafe(Info);
Matthijs Kooijman87ea5632008-10-06 16:23:31 +0000543 }
Chris Lattnerd324da02008-08-23 05:21:06 +0000544 }
545
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000546 // If there are any non-simple uses of this getelementptr, make sure to reject
547 // them.
548 return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
549}
550
551/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
552/// intrinsic can be promoted by SROA. At this point, we know that the operand
553/// of the memintrinsic is a pointer to the beginning of the allocation.
554void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
555 unsigned OpNo, AllocaInfo &Info) {
556 // If not constant length, give up.
557 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
558 if (!Length) return MarkUnsafe(Info);
559
560 // If not the whole aggregate, give up.
Duncan Sandsae5fd622007-11-04 14:43:57 +0000561 if (Length->getZExtValue() !=
Chris Lattner3fd59362009-01-07 06:34:28 +0000562 TD->getABITypeSize(AI->getType()->getElementType()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000563 return MarkUnsafe(Info);
564
565 // We only know about memcpy/memset/memmove.
566 if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
567 return MarkUnsafe(Info);
568
569 // Otherwise, we can transform it. Determine whether this is a memcpy/set
570 // into or out of the aggregate.
571 if (OpNo == 1)
572 Info.isMemCpyDst = true;
573 else {
574 assert(OpNo == 2);
575 Info.isMemCpySrc = true;
576 }
577}
578
579/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
580/// are
581void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
582 AllocaInfo &Info) {
583 for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
584 UI != E; ++UI) {
585 if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
586 isSafeUseOfBitCastedAllocation(BCU, AI, Info);
587 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
588 isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
589 } else {
590 return MarkUnsafe(Info);
591 }
592 if (Info.isUnsafe) return;
593 }
594}
595
596/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
597/// to its first element. Transform users of the cast to use the new values
598/// instead.
599void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
600 SmallVector<AllocaInst*, 32> &NewElts) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000601 Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
602 while (UI != UE) {
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000603 Instruction *User = cast<Instruction>(*UI++);
604 if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000605 RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000606 BCU->eraseFromParent();
607 continue;
608 }
609
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000610 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
611 // This must be memcpy/memmove/memset of the entire aggregate.
612 // Split into one per element.
613 RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
614 MI->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000615 continue;
616 }
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000617
618 // If it's not a mem intrinsic, it must be some other user of a gep of the
619 // first pointer. Just leave these alone.
620 continue;
621 }
622}
623
624/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
625/// Rewrite it to copy or set the elements of the scalarized memory.
626void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
627 AllocationInst *AI,
628 SmallVector<AllocaInst*, 32> &NewElts) {
629
630 // If this is a memcpy/memmove, construct the other pointer as the
631 // appropriate type.
632 Value *OtherPtr = 0;
633 if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
634 if (BCInst == MCI->getRawDest())
635 OtherPtr = MCI->getRawSource();
636 else {
637 assert(BCInst == MCI->getRawSource());
638 OtherPtr = MCI->getRawDest();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639 }
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000640 } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
641 if (BCInst == MMI->getRawDest())
642 OtherPtr = MMI->getRawSource();
643 else {
644 assert(BCInst == MMI->getRawSource());
645 OtherPtr = MMI->getRawDest();
646 }
647 }
648
649 // If there is an other pointer, we want to convert it to the same pointer
650 // type as AI has, so we can GEP through it safely.
651 if (OtherPtr) {
652 // It is likely that OtherPtr is a bitcast, if so, remove it.
653 if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
654 OtherPtr = BC->getOperand(0);
655 // All zero GEPs are effectively bitcasts.
656 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
657 if (GEP->hasAllZeroIndices())
658 OtherPtr = GEP->getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000659
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000660 if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
661 if (BCE->getOpcode() == Instruction::BitCast)
662 OtherPtr = BCE->getOperand(0);
663
664 // If the pointer is not the right type, insert a bitcast to the right
665 // type.
666 if (OtherPtr->getType() != AI->getType())
667 OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
668 MI);
669 }
670
671 // Process each element of the aggregate.
672 Value *TheFn = MI->getOperand(0);
673 const Type *BytePtrTy = MI->getRawDest()->getType();
674 bool SROADest = MI->getRawDest() == BCInst;
675
676 Constant *Zero = Constant::getNullValue(Type::Int32Ty);
677
678 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
679 // If this is a memcpy/memmove, emit a GEP of the other element address.
680 Value *OtherElt = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 if (OtherPtr) {
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000682 Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
683 OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
Chris Lattner0e99e692008-06-22 17:46:21 +0000684 OtherPtr->getNameStr()+"."+utostr(i),
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000685 MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000686 }
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000687
688 Value *EltPtr = NewElts[i];
689 const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
690
691 // If we got down to a scalar, insert a load or store as appropriate.
692 if (EltTy->isSingleValueType()) {
693 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
694 Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
695 MI);
696 new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
697 continue;
698 }
699 assert(isa<MemSetInst>(MI));
700
701 // If the stored element is zero (common case), just store a null
702 // constant.
703 Constant *StoreVal;
704 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
705 if (CI->isZero()) {
706 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
707 } else {
708 // If EltTy is a vector type, get the element type.
709 const Type *ValTy = EltTy;
710 if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
711 ValTy = VTy->getElementType();
712
713 // Construct an integer with the right value.
714 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
715 APInt OneVal(EltSize, CI->getZExtValue());
716 APInt TotalVal(OneVal);
717 // Set each byte.
718 for (unsigned i = 0; 8*i < EltSize; ++i) {
719 TotalVal = TotalVal.shl(8);
720 TotalVal |= OneVal;
721 }
722
723 // Convert the integer value to the appropriate type.
724 StoreVal = ConstantInt::get(TotalVal);
725 if (isa<PointerType>(ValTy))
726 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
727 else if (ValTy->isFloatingPoint())
728 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
729 assert(StoreVal->getType() == ValTy && "Type mismatch!");
730
731 // If the requested value was a vector constant, create it.
732 if (EltTy != ValTy) {
733 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
734 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
735 StoreVal = ConstantVector::get(&Elts[0], NumElts);
736 }
737 }
738 new StoreInst(StoreVal, EltPtr, MI);
739 continue;
740 }
741 // Otherwise, if we're storing a byte variable, use a memset call for
742 // this element.
743 }
744
745 // Cast the element pointer to BytePtrTy.
746 if (EltPtr->getType() != BytePtrTy)
747 EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
748
749 // Cast the other pointer (if we have one) to BytePtrTy.
750 if (OtherElt && OtherElt->getType() != BytePtrTy)
751 OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
752 MI);
753
754 unsigned EltSize = TD->getABITypeSize(EltTy);
755
756 // Finally, insert the meminst for this element.
757 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
758 Value *Ops[] = {
759 SROADest ? EltPtr : OtherElt, // Dest ptr
760 SROADest ? OtherElt : EltPtr, // Src ptr
761 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
762 Zero // Align
763 };
764 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
765 } else {
766 assert(isa<MemSetInst>(MI));
767 Value *Ops[] = {
768 EltPtr, MI->getOperand(2), // Dest, Value,
769 ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
770 Zero // Align
771 };
772 CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
773 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774 }
775}
Chris Lattner51f9e0b2009-01-07 07:18:45 +0000776
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000777
Duncan Sandsae5fd622007-11-04 14:43:57 +0000778/// HasPadding - Return true if the specified type has any structure or
779/// alignment padding, false otherwise.
Duncan Sands4afc5752008-06-04 08:21:45 +0000780static bool HasPadding(const Type *Ty, const TargetData &TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
782 const StructLayout *SL = TD.getStructLayout(STy);
783 unsigned PrevFieldBitOffset = 0;
784 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Duncan Sandsae5fd622007-11-04 14:43:57 +0000785 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
786
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 // Padding in sub-elements?
Duncan Sands4afc5752008-06-04 08:21:45 +0000788 if (HasPadding(STy->getElementType(i), TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000789 return true;
Duncan Sandsae5fd622007-11-04 14:43:57 +0000790
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000791 // Check to see if there is any padding between this element and the
792 // previous one.
793 if (i) {
Duncan Sandsae5fd622007-11-04 14:43:57 +0000794 unsigned PrevFieldEnd =
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000795 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
796 if (PrevFieldEnd < FieldBitOffset)
797 return true;
798 }
Duncan Sandsae5fd622007-11-04 14:43:57 +0000799
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000800 PrevFieldBitOffset = FieldBitOffset;
801 }
Duncan Sandsae5fd622007-11-04 14:43:57 +0000802
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000803 // Check for tail padding.
804 if (unsigned EltCount = STy->getNumElements()) {
805 unsigned PrevFieldEnd = PrevFieldBitOffset +
806 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
Duncan Sandsae5fd622007-11-04 14:43:57 +0000807 if (PrevFieldEnd < SL->getSizeInBits())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000808 return true;
809 }
810
811 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Duncan Sands4afc5752008-06-04 08:21:45 +0000812 return HasPadding(ATy->getElementType(), TD);
Duncan Sandsae5fd622007-11-04 14:43:57 +0000813 } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
Duncan Sands4afc5752008-06-04 08:21:45 +0000814 return HasPadding(VTy->getElementType(), TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000815 }
Duncan Sands4afc5752008-06-04 08:21:45 +0000816 return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000817}
818
819/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
820/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
821/// or 1 if safe after canonicalization has been performed.
822///
823int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
824 // Loop over the use list of the alloca. We can only transform it if all of
825 // the users are safe to transform.
826 AllocaInfo Info;
827
828 for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
829 I != E; ++I) {
830 isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
831 if (Info.isUnsafe) {
832 DOUT << "Cannot transform: " << *AI << " due to user: " << **I;
833 return 0;
834 }
835 }
836
837 // Okay, we know all the users are promotable. If the aggregate is a memcpy
838 // source and destination, we have to be careful. In particular, the memcpy
839 // could be moving around elements that live in structure padding of the LLVM
840 // types, but may actually be used. In these cases, we refuse to promote the
841 // struct.
842 if (Info.isMemCpySrc && Info.isMemCpyDst &&
Chris Lattner3fd59362009-01-07 06:34:28 +0000843 HasPadding(AI->getType()->getElementType(), *TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000844 return 0;
Duncan Sandsae5fd622007-11-04 14:43:57 +0000845
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000846 // If we require cleanup, return 1, otherwise return 3.
847 return Info.needsCanon ? 1 : 3;
848}
849
850/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
851/// allocation, but only if cleaned up, perform the cleanups required.
852void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
853 // At this point, we know that the end result will be SROA'd and promoted, so
854 // we can insert ugly code if required so long as sroa+mem2reg will clean it
855 // up.
856 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
857 UI != E; ) {
858 GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
859 if (!GEPI) continue;
860 gep_type_iterator I = gep_type_begin(GEPI);
861 ++I;
862
863 if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
864 uint64_t NumElements = AT->getNumElements();
865
866 if (!isa<ConstantInt>(I.getOperand())) {
867 if (NumElements == 1) {
868 GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
869 } else {
870 assert(NumElements == 2 && "Unhandled case!");
871 // All users of the GEP must be loads. At each use of the GEP, insert
872 // two loads of the appropriate indexed GEP and select between them.
873 Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
874 Constant::getNullValue(I.getOperand()->getType()),
875 "isone", GEPI);
876 // Insert the new GEP instructions, which are properly indexed.
877 SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
878 Indices[1] = Constant::getNullValue(Type::Int32Ty);
Gabor Greifd6da1d02008-04-06 20:25:17 +0000879 Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
880 Indices.begin(),
881 Indices.end(),
882 GEPI->getName()+".0", GEPI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000883 Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
Gabor Greifd6da1d02008-04-06 20:25:17 +0000884 Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
885 Indices.begin(),
886 Indices.end(),
887 GEPI->getName()+".1", GEPI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000888 // Replace all loads of the variable index GEP with loads from both
889 // indexes and a select.
890 while (!GEPI->use_empty()) {
891 LoadInst *LI = cast<LoadInst>(GEPI->use_back());
892 Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
893 Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
Gabor Greifd6da1d02008-04-06 20:25:17 +0000894 Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000895 LI->replaceAllUsesWith(R);
896 LI->eraseFromParent();
897 }
898 GEPI->eraseFromParent();
899 }
900 }
901 }
902 }
903}
904
905/// MergeInType - Add the 'In' type to the accumulated type so far. If the
906/// types are incompatible, return true, otherwise update Accum and return
907/// false.
908///
909/// There are three cases we handle here:
910/// 1) An effectively-integer union, where the pieces are stored into as
911/// smaller integers (common with byte swap and other idioms).
912/// 2) A union of vector types of the same size and potentially its elements.
913/// Here we turn element accesses into insert/extract element operations.
914/// 3) A union of scalar types, such as int/float or int/pointer. Here we
915/// merge together into integers, allowing the xform to work with #1 as
916/// well.
917static bool MergeInType(const Type *In, const Type *&Accum,
918 const TargetData &TD) {
919 // If this is our first type, just use it.
920 const VectorType *PTy;
921 if (Accum == Type::VoidTy || In == Accum) {
922 Accum = In;
923 } else if (In == Type::VoidTy) {
924 // Noop.
925 } else if (In->isInteger() && Accum->isInteger()) { // integer union.
926 // Otherwise pick whichever type is larger.
927 if (cast<IntegerType>(In)->getBitWidth() >
928 cast<IntegerType>(Accum)->getBitWidth())
929 Accum = In;
930 } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
931 // Pointer unions just stay as one of the pointers.
932 } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
933 if ((PTy = dyn_cast<VectorType>(Accum)) &&
934 PTy->getElementType() == In) {
935 // Accum is a vector, and we are accessing an element: ok.
936 } else if ((PTy = dyn_cast<VectorType>(In)) &&
937 PTy->getElementType() == Accum) {
938 // In is a vector, and accum is an element: ok, remember In.
939 Accum = In;
940 } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
941 PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
942 // Two vectors of the same size: keep Accum.
943 } else {
944 // Cannot insert an short into a <4 x int> or handle
945 // <2 x int> -> <4 x int>
946 return true;
947 }
948 } else {
949 // Pointer/FP/Integer unions merge together as integers.
950 switch (Accum->getTypeID()) {
951 case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
952 case Type::FloatTyID: Accum = Type::Int32Ty; break;
953 case Type::DoubleTyID: Accum = Type::Int64Ty; break;
Dale Johannesen4c839d02007-09-28 00:21:38 +0000954 case Type::X86_FP80TyID: return true;
955 case Type::FP128TyID: return true;
956 case Type::PPC_FP128TyID: return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000957 default:
958 assert(Accum->isInteger() && "Unknown FP type!");
959 break;
960 }
961
962 switch (In->getTypeID()) {
963 case Type::PointerTyID: In = TD.getIntPtrType(); break;
964 case Type::FloatTyID: In = Type::Int32Ty; break;
965 case Type::DoubleTyID: In = Type::Int64Ty; break;
Dale Johannesen4c839d02007-09-28 00:21:38 +0000966 case Type::X86_FP80TyID: return true;
967 case Type::FP128TyID: return true;
968 case Type::PPC_FP128TyID: return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000969 default:
970 assert(In->isInteger() && "Unknown FP type!");
971 break;
972 }
973 return MergeInType(In, Accum, TD);
974 }
975 return false;
976}
977
Chris Lattner3fd59362009-01-07 06:34:28 +0000978/// getIntAtLeastAsBigAs - Return an integer type that is at least as big as the
979/// specified type. If there is no suitable type, this returns null.
980const Type *getIntAtLeastAsBigAs(unsigned NumBits) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000981 if (NumBits > 64) return 0;
982 if (NumBits > 32) return Type::Int64Ty;
983 if (NumBits > 16) return Type::Int32Ty;
984 if (NumBits > 8) return Type::Int16Ty;
985 return Type::Int8Ty;
986}
987
988/// CanConvertToScalar - V is a pointer. If we can convert the pointee to a
989/// single scalar integer type, return that type. Further, if the use is not
990/// a completely trivial use that mem2reg could promote, set IsNotTrivial. If
991/// there are no uses of this pointer, return Type::VoidTy to differentiate from
992/// failure.
993///
994const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
995 const Type *UsedType = Type::VoidTy; // No uses, no forced type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000996 const PointerType *PTy = cast<PointerType>(V->getType());
997
998 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
999 Instruction *User = cast<Instruction>(*UI);
1000
1001 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Matthijs Kooijman001006a2008-06-05 12:51:53 +00001002 // FIXME: Loads of a first class aggregrate value could be converted to a
1003 // series of loads and insertvalues
1004 if (!LI->getType()->isSingleValueType())
1005 return 0;
1006
Chris Lattner3fd59362009-01-07 06:34:28 +00001007 if (MergeInType(LI->getType(), UsedType, *TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 return 0;
Chris Lattner7cc97712009-01-07 06:39:58 +00001009 continue;
1010 }
1011
1012 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 // Storing the pointer, not into the value?
1014 if (SI->getOperand(0) == V) return 0;
Matthijs Kooijman001006a2008-06-05 12:51:53 +00001015
1016 // FIXME: Stores of a first class aggregrate value could be converted to a
1017 // series of extractvalues and stores
1018 if (!SI->getOperand(0)->getType()->isSingleValueType())
1019 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001020
1021 // NOTE: We could handle storing of FP imms into integers here!
1022
Chris Lattner3fd59362009-01-07 06:34:28 +00001023 if (MergeInType(SI->getOperand(0)->getType(), UsedType, *TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001024 return 0;
Chris Lattner7cc97712009-01-07 06:39:58 +00001025 continue;
1026 }
1027 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 IsNotTrivial = true;
1029 const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
Chris Lattner3fd59362009-01-07 06:34:28 +00001030 if (!SubTy || MergeInType(SubTy, UsedType, *TD)) return 0;
Chris Lattner7cc97712009-01-07 06:39:58 +00001031 continue;
1032 }
1033
1034 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 // Check to see if this is stepping over an element: GEP Ptr, int C
1036 if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
1037 unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
Chris Lattner3fd59362009-01-07 06:34:28 +00001038 unsigned ElSize = TD->getABITypeSize(PTy->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001039 unsigned BitOffset = Idx*ElSize*8;
1040 if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
1041
1042 IsNotTrivial = true;
1043 const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
1044 if (SubElt == 0) return 0;
1045 if (SubElt != Type::VoidTy && SubElt->isInteger()) {
1046 const Type *NewTy =
Chris Lattner3fd59362009-01-07 06:34:28 +00001047 getIntAtLeastAsBigAs(TD->getABITypeSizeInBits(SubElt)+BitOffset);
1048 if (NewTy == 0 || MergeInType(NewTy, UsedType, *TD)) return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001049 continue;
1050 }
Chris Lattner7cc97712009-01-07 06:39:58 +00001051 // Cannot handle this!
1052 return 0;
1053 }
1054
1055 if (GEP->getNumOperands() == 3 &&
1056 isa<ConstantInt>(GEP->getOperand(1)) &&
1057 isa<ConstantInt>(GEP->getOperand(2)) &&
1058 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001059 // We are stepping into an element, e.g. a structure or an array:
Chris Lattner85591c62009-01-07 06:25:07 +00001060 // GEP Ptr, i32 0, i32 Cst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001061 const Type *AggTy = PTy->getElementType();
1062 unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1063
1064 if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1065 if (Idx >= ATy->getNumElements()) return 0; // Out of range.
1066 } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1067 // Getting an element of the vector.
1068 if (Idx >= VectorTy->getNumElements()) return 0; // Out of range.
1069
1070 // Merge in the vector type.
Chris Lattner3fd59362009-01-07 06:34:28 +00001071 if (MergeInType(VectorTy, UsedType, *TD)) return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001072
1073 const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1074 if (SubTy == 0) return 0;
1075
Chris Lattner3fd59362009-01-07 06:34:28 +00001076 if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, *TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001077 return 0;
1078
1079 // We'll need to change this to an insert/extract element operation.
1080 IsNotTrivial = true;
1081 continue; // Everything looks ok
1082
1083 } else if (isa<StructType>(AggTy)) {
1084 // Structs are always ok.
1085 } else {
1086 return 0;
1087 }
Chris Lattner3fd59362009-01-07 06:34:28 +00001088 const Type *NTy = getIntAtLeastAsBigAs(TD->getABITypeSizeInBits(AggTy));
1089 if (NTy == 0 || MergeInType(NTy, UsedType, *TD)) return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001090 const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1091 if (SubTy == 0) return 0;
Chris Lattner3fd59362009-01-07 06:34:28 +00001092 if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, *TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001093 return 0;
1094 continue; // Everything looks ok
1095 }
1096 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001097 }
Chris Lattner7cc97712009-01-07 06:39:58 +00001098
1099 // Cannot handle this!
1100 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001101 }
1102
1103 return UsedType;
1104}
1105
1106/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1107/// predicate and is non-trivial. Convert it to something that can be trivially
1108/// promoted into a register by mem2reg.
1109void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1110 DOUT << "CONVERT TO SCALAR: " << *AI << " TYPE = "
1111 << *ActualTy << "\n";
1112 ++NumConverted;
1113
1114 BasicBlock *EntryBlock = AI->getParent();
1115 assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1116 "Not in the entry block!");
1117 EntryBlock->getInstList().remove(AI); // Take the alloca out of the program.
1118
1119 // Create and insert the alloca.
1120 AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1121 EntryBlock->begin());
1122 ConvertUsesToScalar(AI, NewAI, 0);
1123 delete AI;
1124}
1125
1126
1127/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1128/// directly. This happens when we are converting an "integer union" to a
1129/// single integer scalar, or when we are converting a "vector union" to a
1130/// vector with insert/extractelement instructions.
1131///
1132/// Offset is an offset from the original alloca, in bits that need to be
1133/// shifted to the right. By the end of this, there should be no uses of Ptr.
1134void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001135 while (!Ptr->use_empty()) {
1136 Instruction *User = cast<Instruction>(Ptr->use_back());
1137
1138 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Chris Lattner41d58652008-02-29 07:03:13 +00001139 Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001140 LI->replaceAllUsesWith(NV);
1141 LI->eraseFromParent();
Chris Lattner7cc97712009-01-07 06:39:58 +00001142 continue;
1143 }
1144
1145 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001146 assert(SI->getOperand(0) != Ptr && "Consistency error!");
1147
Chris Lattner41d58652008-02-29 07:03:13 +00001148 Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001149 new StoreInst(SV, NewAI, SI);
1150 SI->eraseFromParent();
Chris Lattner7cc97712009-01-07 06:39:58 +00001151 continue;
1152 }
1153
1154 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
Chris Lattnerb1534532008-01-30 00:39:15 +00001155 ConvertUsesToScalar(CI, NewAI, Offset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001156 CI->eraseFromParent();
Chris Lattner7cc97712009-01-07 06:39:58 +00001157 continue;
1158 }
1159
1160 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001161 const PointerType *AggPtrTy =
1162 cast<PointerType>(GEP->getOperand(0)->getType());
Duncan Sandsae5fd622007-11-04 14:43:57 +00001163 unsigned AggSizeInBits =
Chris Lattner3fd59362009-01-07 06:34:28 +00001164 TD->getABITypeSizeInBits(AggPtrTy->getElementType());
Duncan Sandsae5fd622007-11-04 14:43:57 +00001165
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001166 // Check to see if this is stepping over an element: GEP Ptr, int C
1167 unsigned NewOffset = Offset;
1168 if (GEP->getNumOperands() == 2) {
1169 unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1170 unsigned BitOffset = Idx*AggSizeInBits;
1171
1172 NewOffset += BitOffset;
Chris Lattner7cc97712009-01-07 06:39:58 +00001173 ConvertUsesToScalar(GEP, NewAI, NewOffset);
1174 GEP->eraseFromParent();
1175 continue;
1176 }
1177
1178 assert(GEP->getNumOperands() == 3 && "Unsupported operation");
1179
1180 // We know that operand #2 is zero.
1181 unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1182 const Type *AggTy = AggPtrTy->getElementType();
1183 if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1184 unsigned ElSizeBits =
1185 TD->getABITypeSizeInBits(SeqTy->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001186
Chris Lattner7cc97712009-01-07 06:39:58 +00001187 NewOffset += ElSizeBits*Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001188 } else {
Chris Lattner7cc97712009-01-07 06:39:58 +00001189 const StructType *STy = cast<StructType>(AggTy);
1190 unsigned EltBitOffset =
1191 TD->getStructLayout(STy)->getElementOffsetInBits(Idx);
1192
1193 NewOffset += EltBitOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001194 }
1195 ConvertUsesToScalar(GEP, NewAI, NewOffset);
1196 GEP->eraseFromParent();
Chris Lattner7cc97712009-01-07 06:39:58 +00001197 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001198 }
Chris Lattner7cc97712009-01-07 06:39:58 +00001199
1200 assert(0 && "Unsupported operation!");
1201 abort();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001202 }
1203}
1204
Chris Lattner41d58652008-02-29 07:03:13 +00001205/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
1206/// use the new alloca directly, returning the value that should replace the
1207/// load. This happens when we are converting an "integer union" to a
1208/// single integer scalar, or when we are converting a "vector union" to a
1209/// vector with insert/extractelement instructions.
1210///
1211/// Offset is an offset from the original alloca, in bits that need to be
1212/// shifted to the right. By the end of this, there should be no uses of Ptr.
1213Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1214 unsigned Offset) {
1215 // The load is a bit extract from NewAI shifted right by Offset bits.
1216 Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1217
1218 if (NV->getType() == LI->getType() && Offset == 0) {
1219 // We win, no conversion needed.
1220 return NV;
1221 }
Chris Lattner5f062542008-02-29 07:12:06 +00001222
1223 // If the result type of the 'union' is a pointer, then this must be ptr->ptr
1224 // cast. Anything else would result in NV being an integer.
1225 if (isa<PointerType>(NV->getType())) {
1226 assert(isa<PointerType>(LI->getType()));
1227 return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1228 }
Chris Lattner41d58652008-02-29 07:03:13 +00001229
Chris Lattner5f062542008-02-29 07:12:06 +00001230 if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
Chris Lattner41d58652008-02-29 07:03:13 +00001231 // If the result alloca is a vector type, this is either an element
1232 // access or a bitcast to another vector type.
Chris Lattner5f062542008-02-29 07:12:06 +00001233 if (isa<VectorType>(LI->getType()))
1234 return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1235
1236 // Otherwise it must be an element access.
Chris Lattner5f062542008-02-29 07:12:06 +00001237 unsigned Elt = 0;
1238 if (Offset) {
Chris Lattner3fd59362009-01-07 06:34:28 +00001239 unsigned EltSize = TD->getABITypeSizeInBits(VTy->getElementType());
Chris Lattner5f062542008-02-29 07:12:06 +00001240 Elt = Offset/EltSize;
1241 Offset -= EltSize*Elt;
Chris Lattner41d58652008-02-29 07:03:13 +00001242 }
Chris Lattner5f062542008-02-29 07:12:06 +00001243 NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1244 "tmp", LI);
1245
1246 // If we're done, return this element.
1247 if (NV->getType() == LI->getType() && Offset == 0)
1248 return NV;
1249 }
1250
1251 const IntegerType *NTy = cast<IntegerType>(NV->getType());
1252
1253 // If this is a big-endian system and the load is narrower than the
1254 // full alloca type, we need to do a shift to get the right bits.
1255 int ShAmt = 0;
Chris Lattner3fd59362009-01-07 06:34:28 +00001256 if (TD->isBigEndian()) {
Chris Lattner5f062542008-02-29 07:12:06 +00001257 // On big-endian machines, the lowest bit is stored at the bit offset
1258 // from the pointer given by getTypeStoreSizeInBits. This matters for
1259 // integers with a bitwidth that is not a multiple of 8.
Chris Lattner3fd59362009-01-07 06:34:28 +00001260 ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1261 TD->getTypeStoreSizeInBits(LI->getType()) - Offset;
Chris Lattner5f062542008-02-29 07:12:06 +00001262 } else {
1263 ShAmt = Offset;
1264 }
1265
1266 // Note: we support negative bitwidths (with shl) which are not defined.
1267 // We do this to support (f.e.) loads off the end of a structure where
1268 // only some bits are used.
1269 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
Gabor Greifa645dd32008-05-16 19:29:10 +00001270 NV = BinaryOperator::CreateLShr(NV,
Chris Lattner5f062542008-02-29 07:12:06 +00001271 ConstantInt::get(NV->getType(),ShAmt),
1272 LI->getName(), LI);
1273 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
Gabor Greifa645dd32008-05-16 19:29:10 +00001274 NV = BinaryOperator::CreateShl(NV,
Chris Lattner5f062542008-02-29 07:12:06 +00001275 ConstantInt::get(NV->getType(),-ShAmt),
1276 LI->getName(), LI);
1277
1278 // Finally, unconditionally truncate the integer to the right width.
Chris Lattner3fd59362009-01-07 06:34:28 +00001279 unsigned LIBitWidth = TD->getTypeSizeInBits(LI->getType());
Chris Lattner5f062542008-02-29 07:12:06 +00001280 if (LIBitWidth < NTy->getBitWidth())
1281 NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1282 LI->getName(), LI);
1283
1284 // If the result is an integer, this is a trunc or bitcast.
1285 if (isa<IntegerType>(LI->getType())) {
1286 // Should be done.
1287 } else if (LI->getType()->isFloatingPoint()) {
1288 // Just do a bitcast, we know the sizes match up.
Chris Lattner41d58652008-02-29 07:03:13 +00001289 NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1290 } else {
Chris Lattner5f062542008-02-29 07:12:06 +00001291 // Otherwise must be a pointer.
1292 NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
Chris Lattner41d58652008-02-29 07:03:13 +00001293 }
Chris Lattner5f062542008-02-29 07:12:06 +00001294 assert(NV->getType() == LI->getType() && "Didn't convert right?");
Chris Lattner41d58652008-02-29 07:03:13 +00001295 return NV;
1296}
1297
1298
1299/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1300/// pair of the new alloca directly, returning the value that should be stored
1301/// to the alloca. This happens when we are converting an "integer union" to a
1302/// single integer scalar, or when we are converting a "vector union" to a
1303/// vector with insert/extractelement instructions.
1304///
1305/// Offset is an offset from the original alloca, in bits that need to be
1306/// shifted to the right. By the end of this, there should be no uses of Ptr.
1307Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
1308 unsigned Offset) {
1309
1310 // Convert the stored type to the actual type, shift it left to insert
1311 // then 'or' into place.
1312 Value *SV = SI->getOperand(0);
1313 const Type *AllocaType = NewAI->getType()->getElementType();
1314 if (SV->getType() == AllocaType && Offset == 0) {
1315 // All is well.
1316 } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1317 Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1318
1319 // If the result alloca is a vector type, this is either an element
1320 // access or a bitcast to another vector type.
1321 if (isa<VectorType>(SV->getType())) {
1322 SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1323 } else {
1324 // Must be an element insertion.
Chris Lattner3fd59362009-01-07 06:34:28 +00001325 unsigned Elt = Offset/TD->getABITypeSizeInBits(PTy->getElementType());
Gabor Greifd6da1d02008-04-06 20:25:17 +00001326 SV = InsertElementInst::Create(Old, SV,
1327 ConstantInt::get(Type::Int32Ty, Elt),
1328 "tmp", SI);
Chris Lattner41d58652008-02-29 07:03:13 +00001329 }
1330 } else if (isa<PointerType>(AllocaType)) {
1331 // If the alloca type is a pointer, then all the elements must be
1332 // pointers.
1333 if (SV->getType() != AllocaType)
1334 SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1335 } else {
1336 Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1337
1338 // If SV is a float, convert it to the appropriate integer type.
1339 // If it is a pointer, do the same, and also handle ptr->ptr casts
1340 // here.
Chris Lattner3fd59362009-01-07 06:34:28 +00001341 unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1342 unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1343 unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1344 unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
Chris Lattner41d58652008-02-29 07:03:13 +00001345 if (SV->getType()->isFloatingPoint())
1346 SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1347 SV->getName(), SI);
1348 else if (isa<PointerType>(SV->getType()))
Chris Lattner3fd59362009-01-07 06:34:28 +00001349 SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), SI);
Chris Lattner41d58652008-02-29 07:03:13 +00001350
1351 // Always zero extend the value if needed.
1352 if (SV->getType() != AllocaType)
1353 SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1354
1355 // If this is a big-endian system and the store is narrower than the
1356 // full alloca type, we need to do a shift to get the right bits.
1357 int ShAmt = 0;
Chris Lattner3fd59362009-01-07 06:34:28 +00001358 if (TD->isBigEndian()) {
Chris Lattner41d58652008-02-29 07:03:13 +00001359 // On big-endian machines, the lowest bit is stored at the bit offset
1360 // from the pointer given by getTypeStoreSizeInBits. This matters for
1361 // integers with a bitwidth that is not a multiple of 8.
1362 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1363 } else {
1364 ShAmt = Offset;
1365 }
1366
1367 // Note: we support negative bitwidths (with shr) which are not defined.
1368 // We do this to support (f.e.) stores off the end of a structure where
1369 // only some bits in the structure are set.
1370 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1371 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
Gabor Greifa645dd32008-05-16 19:29:10 +00001372 SV = BinaryOperator::CreateShl(SV,
Chris Lattner41d58652008-02-29 07:03:13 +00001373 ConstantInt::get(SV->getType(), ShAmt),
1374 SV->getName(), SI);
1375 Mask <<= ShAmt;
1376 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
Gabor Greifa645dd32008-05-16 19:29:10 +00001377 SV = BinaryOperator::CreateLShr(SV,
Chris Lattner41d58652008-02-29 07:03:13 +00001378 ConstantInt::get(SV->getType(),-ShAmt),
1379 SV->getName(), SI);
1380 Mask = Mask.lshr(ShAmt);
1381 }
1382
1383 // Mask out the bits we are about to insert from the old value, and or
1384 // in the new bits.
1385 if (SrcWidth != DestWidth) {
1386 assert(DestWidth > SrcWidth);
Gabor Greifa645dd32008-05-16 19:29:10 +00001387 Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
Chris Lattner41d58652008-02-29 07:03:13 +00001388 Old->getName()+".mask", SI);
Gabor Greifa645dd32008-05-16 19:29:10 +00001389 SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
Chris Lattner41d58652008-02-29 07:03:13 +00001390 }
1391 }
1392 return SV;
1393}
1394
1395
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001396
1397/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1398/// some part of a constant global variable. This intentionally only accepts
1399/// constant expressions because we don't can't rewrite arbitrary instructions.
1400static bool PointsToConstantGlobal(Value *V) {
1401 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1402 return GV->isConstant();
1403 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1404 if (CE->getOpcode() == Instruction::BitCast ||
1405 CE->getOpcode() == Instruction::GetElementPtr)
1406 return PointsToConstantGlobal(CE->getOperand(0));
1407 return false;
1408}
1409
1410/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1411/// pointer to an alloca. Ignore any reads of the pointer, return false if we
1412/// see any stores or other unknown uses. If we see pointer arithmetic, keep
1413/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1414/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
1415/// the alloca, and if the source pointer is a pointer to a constant global, we
1416/// can optimize this.
1417static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1418 bool isOffset) {
1419 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1420 if (isa<LoadInst>(*UI)) {
1421 // Ignore loads, they are always ok.
1422 continue;
1423 }
1424 if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1425 // If uses of the bitcast are ok, we are ok.
1426 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1427 return false;
1428 continue;
1429 }
1430 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1431 // If the GEP has all zero indices, it doesn't offset the pointer. If it
1432 // doesn't, it does.
1433 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1434 isOffset || !GEP->hasAllZeroIndices()))
1435 return false;
1436 continue;
1437 }
1438
1439 // If this is isn't our memcpy/memmove, reject it as something we can't
1440 // handle.
1441 if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1442 return false;
1443
1444 // If we already have seen a copy, reject the second one.
1445 if (TheCopy) return false;
1446
1447 // If the pointer has been offset from the start of the alloca, we can't
1448 // safely handle this.
1449 if (isOffset) return false;
1450
1451 // If the memintrinsic isn't using the alloca as the dest, reject it.
1452 if (UI.getOperandNo() != 1) return false;
1453
1454 MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1455
1456 // If the source of the memcpy/move is not a constant global, reject it.
1457 if (!PointsToConstantGlobal(MI->getOperand(2)))
1458 return false;
1459
1460 // Otherwise, the transform is safe. Remember the copy instruction.
1461 TheCopy = MI;
1462 }
1463 return true;
1464}
1465
1466/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1467/// modified by a copy from a constant global. If we can prove this, we can
1468/// replace any uses of the alloca with uses of the global directly.
1469Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1470 Instruction *TheCopy = 0;
1471 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1472 return TheCopy;
1473 return 0;
1474}