Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This transformation implements the well known scalar replacement of |
| 11 | // aggregates transformation. This xform breaks up alloca instructions of |
| 12 | // aggregate type (structure or array) into individual alloca instructions for |
| 13 | // each member (if possible). Then, if possible, it transforms the individual |
| 14 | // alloca instructions into nice clean scalar SSA form. |
| 15 | // |
| 16 | // This combines a simple SRoA algorithm with the Mem2Reg algorithm because |
| 17 | // often interact, especially for C++ programs. As such, iterating between |
| 18 | // SRoA, then Mem2Reg until we run out of things to promote works well. |
| 19 | // |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #define DEBUG_TYPE "scalarrepl" |
| 23 | #include "llvm/Transforms/Scalar.h" |
| 24 | #include "llvm/Constants.h" |
| 25 | #include "llvm/DerivedTypes.h" |
| 26 | #include "llvm/Function.h" |
| 27 | #include "llvm/GlobalVariable.h" |
| 28 | #include "llvm/Instructions.h" |
| 29 | #include "llvm/IntrinsicInst.h" |
| 30 | #include "llvm/Pass.h" |
| 31 | #include "llvm/Analysis/Dominators.h" |
| 32 | #include "llvm/Target/TargetData.h" |
| 33 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 34 | #include "llvm/Support/Debug.h" |
| 35 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 36 | #include "llvm/Support/MathExtras.h" |
| 37 | #include "llvm/Support/Compiler.h" |
| 38 | #include "llvm/ADT/SmallVector.h" |
| 39 | #include "llvm/ADT/Statistic.h" |
| 40 | #include "llvm/ADT/StringExtras.h" |
| 41 | using namespace llvm; |
| 42 | |
| 43 | STATISTIC(NumReplaced, "Number of allocas broken up"); |
| 44 | STATISTIC(NumPromoted, "Number of allocas promoted"); |
| 45 | STATISTIC(NumConverted, "Number of aggregates converted to scalar"); |
| 46 | STATISTIC(NumGlobals, "Number of allocas copied from constant global"); |
| 47 | |
| 48 | namespace { |
| 49 | struct VISIBILITY_HIDDEN SROA : public FunctionPass { |
| 50 | static char ID; // Pass identification, replacement for typeid |
Dan Gohman | 34c280e | 2007-08-01 15:32:29 +0000 | [diff] [blame] | 51 | explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 52 | if (T == -1) |
Chris Lattner | 6d7faec | 2007-08-02 21:33:36 +0000 | [diff] [blame] | 53 | SRThreshold = 128; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 54 | else |
| 55 | SRThreshold = T; |
| 56 | } |
| 57 | |
| 58 | bool runOnFunction(Function &F); |
| 59 | |
| 60 | bool performScalarRepl(Function &F); |
| 61 | bool performPromotion(Function &F); |
| 62 | |
| 63 | // getAnalysisUsage - This pass does not require any passes, but we know it |
| 64 | // will not alter the CFG, so say so. |
| 65 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 66 | AU.addRequired<DominatorTree>(); |
| 67 | AU.addRequired<DominanceFrontier>(); |
| 68 | AU.addRequired<TargetData>(); |
| 69 | AU.setPreservesCFG(); |
| 70 | } |
| 71 | |
| 72 | private: |
| 73 | /// AllocaInfo - When analyzing uses of an alloca instruction, this captures |
| 74 | /// information about the uses. All these fields are initialized to false |
| 75 | /// and set to true when something is learned. |
| 76 | struct AllocaInfo { |
| 77 | /// isUnsafe - This is set to true if the alloca cannot be SROA'd. |
| 78 | bool isUnsafe : 1; |
| 79 | |
| 80 | /// needsCanon - This is set to true if there is some use of the alloca |
| 81 | /// that requires canonicalization. |
| 82 | bool needsCanon : 1; |
| 83 | |
| 84 | /// isMemCpySrc - This is true if this aggregate is memcpy'd from. |
| 85 | bool isMemCpySrc : 1; |
| 86 | |
| 87 | /// isMemCpyDst - This is true if this aggregate is memcpy'd into. |
| 88 | bool isMemCpyDst : 1; |
| 89 | |
| 90 | AllocaInfo() |
| 91 | : isUnsafe(false), needsCanon(false), |
| 92 | isMemCpySrc(false), isMemCpyDst(false) {} |
| 93 | }; |
| 94 | |
| 95 | unsigned SRThreshold; |
| 96 | |
| 97 | void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; } |
| 98 | |
| 99 | int isSafeAllocaToScalarRepl(AllocationInst *AI); |
| 100 | |
| 101 | void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI, |
| 102 | AllocaInfo &Info); |
| 103 | void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI, |
| 104 | AllocaInfo &Info); |
| 105 | void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI, |
| 106 | unsigned OpNo, AllocaInfo &Info); |
| 107 | void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI, |
| 108 | AllocaInfo &Info); |
| 109 | |
| 110 | void DoScalarReplacement(AllocationInst *AI, |
| 111 | std::vector<AllocationInst*> &WorkList); |
| 112 | void CanonicalizeAllocaUsers(AllocationInst *AI); |
| 113 | AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base); |
| 114 | |
| 115 | void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI, |
| 116 | SmallVector<AllocaInst*, 32> &NewElts); |
| 117 | |
| 118 | const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial); |
| 119 | void ConvertToScalar(AllocationInst *AI, const Type *Ty); |
| 120 | void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset); |
| 121 | static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI); |
| 122 | }; |
| 123 | |
| 124 | char SROA::ID = 0; |
| 125 | RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates"); |
| 126 | } |
| 127 | |
| 128 | // Public interface to the ScalarReplAggregates pass |
| 129 | FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) { |
| 130 | return new SROA(Threshold); |
| 131 | } |
| 132 | |
| 133 | |
| 134 | bool SROA::runOnFunction(Function &F) { |
| 135 | bool Changed = performPromotion(F); |
| 136 | while (1) { |
| 137 | bool LocalChange = performScalarRepl(F); |
| 138 | if (!LocalChange) break; // No need to repromote if no scalarrepl |
| 139 | Changed = true; |
| 140 | LocalChange = performPromotion(F); |
| 141 | if (!LocalChange) break; // No need to re-scalarrepl if no promotion |
| 142 | } |
| 143 | |
| 144 | return Changed; |
| 145 | } |
| 146 | |
| 147 | |
| 148 | bool SROA::performPromotion(Function &F) { |
| 149 | std::vector<AllocaInst*> Allocas; |
| 150 | DominatorTree &DT = getAnalysis<DominatorTree>(); |
| 151 | DominanceFrontier &DF = getAnalysis<DominanceFrontier>(); |
| 152 | |
| 153 | BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function |
| 154 | |
| 155 | bool Changed = false; |
| 156 | |
| 157 | while (1) { |
| 158 | Allocas.clear(); |
| 159 | |
| 160 | // Find allocas that are safe to promote, by looking at all instructions in |
| 161 | // the entry node |
| 162 | for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) |
| 163 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca? |
| 164 | if (isAllocaPromotable(AI)) |
| 165 | Allocas.push_back(AI); |
| 166 | |
| 167 | if (Allocas.empty()) break; |
| 168 | |
| 169 | PromoteMemToReg(Allocas, DT, DF); |
| 170 | NumPromoted += Allocas.size(); |
| 171 | Changed = true; |
| 172 | } |
| 173 | |
| 174 | return Changed; |
| 175 | } |
| 176 | |
| 177 | // performScalarRepl - This algorithm is a simple worklist driven algorithm, |
| 178 | // which runs on all of the malloc/alloca instructions in the function, removing |
| 179 | // them if they are only used by getelementptr instructions. |
| 180 | // |
| 181 | bool SROA::performScalarRepl(Function &F) { |
| 182 | std::vector<AllocationInst*> WorkList; |
| 183 | |
| 184 | // Scan the entry basic block, adding any alloca's and mallocs to the worklist |
| 185 | BasicBlock &BB = F.getEntryBlock(); |
| 186 | for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) |
| 187 | if (AllocationInst *A = dyn_cast<AllocationInst>(I)) |
| 188 | WorkList.push_back(A); |
| 189 | |
| 190 | const TargetData &TD = getAnalysis<TargetData>(); |
| 191 | |
| 192 | // Process the worklist |
| 193 | bool Changed = false; |
| 194 | while (!WorkList.empty()) { |
| 195 | AllocationInst *AI = WorkList.back(); |
| 196 | WorkList.pop_back(); |
| 197 | |
| 198 | // Handle dead allocas trivially. These can be formed by SROA'ing arrays |
| 199 | // with unused elements. |
| 200 | if (AI->use_empty()) { |
| 201 | AI->eraseFromParent(); |
| 202 | continue; |
| 203 | } |
| 204 | |
| 205 | // If we can turn this aggregate value (potentially with casts) into a |
| 206 | // simple scalar value that can be mem2reg'd into a register value. |
| 207 | bool IsNotTrivial = false; |
| 208 | if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial)) |
| 209 | if (IsNotTrivial && ActualType != Type::VoidTy) { |
| 210 | ConvertToScalar(AI, ActualType); |
| 211 | Changed = true; |
| 212 | continue; |
| 213 | } |
| 214 | |
| 215 | // Check to see if we can perform the core SROA transformation. We cannot |
| 216 | // transform the allocation instruction if it is an array allocation |
| 217 | // (allocations OF arrays are ok though), and an allocation of a scalar |
| 218 | // value cannot be decomposed at all. |
| 219 | if (!AI->isArrayAllocation() && |
| 220 | (isa<StructType>(AI->getAllocatedType()) || |
| 221 | isa<ArrayType>(AI->getAllocatedType())) && |
| 222 | AI->getAllocatedType()->isSized() && |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 223 | TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 224 | // Check that all of the users of the allocation are capable of being |
| 225 | // transformed. |
| 226 | switch (isSafeAllocaToScalarRepl(AI)) { |
| 227 | default: assert(0 && "Unexpected value!"); |
| 228 | case 0: // Not safe to scalar replace. |
| 229 | break; |
| 230 | case 1: // Safe, but requires cleanup/canonicalizations first |
| 231 | CanonicalizeAllocaUsers(AI); |
| 232 | // FALL THROUGH. |
| 233 | case 3: // Safe to scalar replace. |
| 234 | DoScalarReplacement(AI, WorkList); |
| 235 | Changed = true; |
| 236 | continue; |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | // Check to see if this allocation is only modified by a memcpy/memmove from |
| 241 | // a constant global. If this is the case, we can change all users to use |
| 242 | // the constant global instead. This is commonly produced by the CFE by |
| 243 | // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' |
| 244 | // is only subsequently read. |
| 245 | if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) { |
| 246 | DOUT << "Found alloca equal to global: " << *AI; |
| 247 | DOUT << " memcpy = " << *TheCopy; |
| 248 | Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2)); |
| 249 | AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType())); |
| 250 | TheCopy->eraseFromParent(); // Don't mutate the global. |
| 251 | AI->eraseFromParent(); |
| 252 | ++NumGlobals; |
| 253 | Changed = true; |
| 254 | continue; |
| 255 | } |
| 256 | |
| 257 | // Otherwise, couldn't process this. |
| 258 | } |
| 259 | |
| 260 | return Changed; |
| 261 | } |
| 262 | |
| 263 | /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl |
| 264 | /// predicate, do SROA now. |
| 265 | void SROA::DoScalarReplacement(AllocationInst *AI, |
| 266 | std::vector<AllocationInst*> &WorkList) { |
| 267 | DOUT << "Found inst to SROA: " << *AI; |
| 268 | SmallVector<AllocaInst*, 32> ElementAllocas; |
| 269 | if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) { |
| 270 | ElementAllocas.reserve(ST->getNumContainedTypes()); |
| 271 | for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) { |
| 272 | AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, |
| 273 | AI->getAlignment(), |
| 274 | AI->getName() + "." + utostr(i), AI); |
| 275 | ElementAllocas.push_back(NA); |
| 276 | WorkList.push_back(NA); // Add to worklist for recursive processing |
| 277 | } |
| 278 | } else { |
| 279 | const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType()); |
| 280 | ElementAllocas.reserve(AT->getNumElements()); |
| 281 | const Type *ElTy = AT->getElementType(); |
| 282 | for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) { |
| 283 | AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(), |
| 284 | AI->getName() + "." + utostr(i), AI); |
| 285 | ElementAllocas.push_back(NA); |
| 286 | WorkList.push_back(NA); // Add to worklist for recursive processing |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | // Now that we have created the alloca instructions that we want to use, |
| 291 | // expand the getelementptr instructions to use them. |
| 292 | // |
| 293 | while (!AI->use_empty()) { |
| 294 | Instruction *User = cast<Instruction>(AI->use_back()); |
| 295 | if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) { |
| 296 | RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas); |
| 297 | BCInst->eraseFromParent(); |
| 298 | continue; |
| 299 | } |
| 300 | |
| 301 | GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User); |
| 302 | // We now know that the GEP is of the form: GEP <ptr>, 0, <cst> |
| 303 | unsigned Idx = |
| 304 | (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue(); |
| 305 | |
| 306 | assert(Idx < ElementAllocas.size() && "Index out of range?"); |
| 307 | AllocaInst *AllocaToUse = ElementAllocas[Idx]; |
| 308 | |
| 309 | Value *RepValue; |
| 310 | if (GEPI->getNumOperands() == 3) { |
| 311 | // Do not insert a new getelementptr instruction with zero indices, only |
| 312 | // to have it optimized out later. |
| 313 | RepValue = AllocaToUse; |
| 314 | } else { |
| 315 | // We are indexing deeply into the structure, so we still need a |
| 316 | // getelement ptr instruction to finish the indexing. This may be |
| 317 | // expanded itself once the worklist is rerun. |
| 318 | // |
| 319 | SmallVector<Value*, 8> NewArgs; |
| 320 | NewArgs.push_back(Constant::getNullValue(Type::Int32Ty)); |
| 321 | NewArgs.append(GEPI->op_begin()+3, GEPI->op_end()); |
David Greene | 393be88 | 2007-09-04 15:46:09 +0000 | [diff] [blame] | 322 | RepValue = new GetElementPtrInst(AllocaToUse, NewArgs.begin(), |
| 323 | NewArgs.end(), "", GEPI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 324 | RepValue->takeName(GEPI); |
| 325 | } |
| 326 | |
| 327 | // If this GEP is to the start of the aggregate, check for memcpys. |
| 328 | if (Idx == 0) { |
| 329 | bool IsStartOfAggregateGEP = true; |
| 330 | for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) { |
| 331 | if (!isa<ConstantInt>(GEPI->getOperand(i))) { |
| 332 | IsStartOfAggregateGEP = false; |
| 333 | break; |
| 334 | } |
| 335 | if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) { |
| 336 | IsStartOfAggregateGEP = false; |
| 337 | break; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | if (IsStartOfAggregateGEP) |
| 342 | RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas); |
| 343 | } |
| 344 | |
| 345 | |
| 346 | // Move all of the users over to the new GEP. |
| 347 | GEPI->replaceAllUsesWith(RepValue); |
| 348 | // Delete the old GEP |
| 349 | GEPI->eraseFromParent(); |
| 350 | } |
| 351 | |
| 352 | // Finally, delete the Alloca instruction |
| 353 | AI->eraseFromParent(); |
| 354 | NumReplaced++; |
| 355 | } |
| 356 | |
| 357 | |
| 358 | /// isSafeElementUse - Check to see if this use is an allowed use for a |
| 359 | /// getelementptr instruction of an array aggregate allocation. isFirstElt |
| 360 | /// indicates whether Ptr is known to the start of the aggregate. |
| 361 | /// |
| 362 | void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI, |
| 363 | AllocaInfo &Info) { |
| 364 | for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end(); |
| 365 | I != E; ++I) { |
| 366 | Instruction *User = cast<Instruction>(*I); |
| 367 | switch (User->getOpcode()) { |
| 368 | case Instruction::Load: break; |
| 369 | case Instruction::Store: |
| 370 | // Store is ok if storing INTO the pointer, not storing the pointer |
| 371 | if (User->getOperand(0) == Ptr) return MarkUnsafe(Info); |
| 372 | break; |
| 373 | case Instruction::GetElementPtr: { |
| 374 | GetElementPtrInst *GEP = cast<GetElementPtrInst>(User); |
| 375 | bool AreAllZeroIndices = isFirstElt; |
| 376 | if (GEP->getNumOperands() > 1) { |
| 377 | if (!isa<ConstantInt>(GEP->getOperand(1)) || |
| 378 | !cast<ConstantInt>(GEP->getOperand(1))->isZero()) |
| 379 | // Using pointer arithmetic to navigate the array. |
| 380 | return MarkUnsafe(Info); |
| 381 | |
| 382 | if (AreAllZeroIndices) { |
| 383 | for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) { |
| 384 | if (!isa<ConstantInt>(GEP->getOperand(i)) || |
| 385 | !cast<ConstantInt>(GEP->getOperand(i))->isZero()) { |
| 386 | AreAllZeroIndices = false; |
| 387 | break; |
| 388 | } |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | isSafeElementUse(GEP, AreAllZeroIndices, AI, Info); |
| 393 | if (Info.isUnsafe) return; |
| 394 | break; |
| 395 | } |
| 396 | case Instruction::BitCast: |
| 397 | if (isFirstElt) { |
| 398 | isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info); |
| 399 | if (Info.isUnsafe) return; |
| 400 | break; |
| 401 | } |
| 402 | DOUT << " Transformation preventing inst: " << *User; |
| 403 | return MarkUnsafe(Info); |
| 404 | case Instruction::Call: |
| 405 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) { |
| 406 | if (isFirstElt) { |
| 407 | isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info); |
| 408 | if (Info.isUnsafe) return; |
| 409 | break; |
| 410 | } |
| 411 | } |
| 412 | DOUT << " Transformation preventing inst: " << *User; |
| 413 | return MarkUnsafe(Info); |
| 414 | default: |
| 415 | DOUT << " Transformation preventing inst: " << *User; |
| 416 | return MarkUnsafe(Info); |
| 417 | } |
| 418 | } |
| 419 | return; // All users look ok :) |
| 420 | } |
| 421 | |
| 422 | /// AllUsersAreLoads - Return true if all users of this value are loads. |
| 423 | static bool AllUsersAreLoads(Value *Ptr) { |
| 424 | for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end(); |
| 425 | I != E; ++I) |
| 426 | if (cast<Instruction>(*I)->getOpcode() != Instruction::Load) |
| 427 | return false; |
| 428 | return true; |
| 429 | } |
| 430 | |
| 431 | /// isSafeUseOfAllocation - Check to see if this user is an allowed use for an |
| 432 | /// aggregate allocation. |
| 433 | /// |
| 434 | void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI, |
| 435 | AllocaInfo &Info) { |
| 436 | if (BitCastInst *C = dyn_cast<BitCastInst>(User)) |
| 437 | return isSafeUseOfBitCastedAllocation(C, AI, Info); |
| 438 | |
| 439 | GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User); |
| 440 | if (GEPI == 0) |
| 441 | return MarkUnsafe(Info); |
| 442 | |
| 443 | gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI); |
| 444 | |
| 445 | // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>". |
| 446 | if (I == E || |
| 447 | I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) { |
| 448 | return MarkUnsafe(Info); |
| 449 | } |
| 450 | |
| 451 | ++I; |
| 452 | if (I == E) return MarkUnsafe(Info); // ran out of GEP indices?? |
| 453 | |
| 454 | bool IsAllZeroIndices = true; |
| 455 | |
| 456 | // If this is a use of an array allocation, do a bit more checking for sanity. |
| 457 | if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) { |
| 458 | uint64_t NumElements = AT->getNumElements(); |
| 459 | |
| 460 | if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) { |
| 461 | IsAllZeroIndices &= Idx->isZero(); |
| 462 | |
| 463 | // Check to make sure that index falls within the array. If not, |
| 464 | // something funny is going on, so we won't do the optimization. |
| 465 | // |
| 466 | if (Idx->getZExtValue() >= NumElements) |
| 467 | return MarkUnsafe(Info); |
| 468 | |
| 469 | // We cannot scalar repl this level of the array unless any array |
| 470 | // sub-indices are in-range constants. In particular, consider: |
| 471 | // A[0][i]. We cannot know that the user isn't doing invalid things like |
| 472 | // allowing i to index an out-of-range subscript that accesses A[1]. |
| 473 | // |
| 474 | // Scalar replacing *just* the outer index of the array is probably not |
| 475 | // going to be a win anyway, so just give up. |
| 476 | for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) { |
| 477 | uint64_t NumElements; |
| 478 | if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I)) |
| 479 | NumElements = SubArrayTy->getNumElements(); |
| 480 | else |
| 481 | NumElements = cast<VectorType>(*I)->getNumElements(); |
| 482 | |
| 483 | ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand()); |
| 484 | if (!IdxVal) return MarkUnsafe(Info); |
| 485 | if (IdxVal->getZExtValue() >= NumElements) |
| 486 | return MarkUnsafe(Info); |
| 487 | IsAllZeroIndices &= IdxVal->isZero(); |
| 488 | } |
| 489 | |
| 490 | } else { |
| 491 | IsAllZeroIndices = 0; |
| 492 | |
| 493 | // If this is an array index and the index is not constant, we cannot |
| 494 | // promote... that is unless the array has exactly one or two elements in |
| 495 | // it, in which case we CAN promote it, but we have to canonicalize this |
| 496 | // out if this is the only problem. |
| 497 | if ((NumElements == 1 || NumElements == 2) && |
| 498 | AllUsersAreLoads(GEPI)) { |
| 499 | Info.needsCanon = true; |
| 500 | return; // Canonicalization required! |
| 501 | } |
| 502 | return MarkUnsafe(Info); |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | // If there are any non-simple uses of this getelementptr, make sure to reject |
| 507 | // them. |
| 508 | return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info); |
| 509 | } |
| 510 | |
| 511 | /// isSafeMemIntrinsicOnAllocation - Return true if the specified memory |
| 512 | /// intrinsic can be promoted by SROA. At this point, we know that the operand |
| 513 | /// of the memintrinsic is a pointer to the beginning of the allocation. |
| 514 | void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI, |
| 515 | unsigned OpNo, AllocaInfo &Info) { |
| 516 | // If not constant length, give up. |
| 517 | ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength()); |
| 518 | if (!Length) return MarkUnsafe(Info); |
| 519 | |
| 520 | // If not the whole aggregate, give up. |
| 521 | const TargetData &TD = getAnalysis<TargetData>(); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 522 | if (Length->getZExtValue() != |
| 523 | TD.getABITypeSize(AI->getType()->getElementType())) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 524 | return MarkUnsafe(Info); |
| 525 | |
| 526 | // We only know about memcpy/memset/memmove. |
| 527 | if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI)) |
| 528 | return MarkUnsafe(Info); |
| 529 | |
| 530 | // Otherwise, we can transform it. Determine whether this is a memcpy/set |
| 531 | // into or out of the aggregate. |
| 532 | if (OpNo == 1) |
| 533 | Info.isMemCpyDst = true; |
| 534 | else { |
| 535 | assert(OpNo == 2); |
| 536 | Info.isMemCpySrc = true; |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | /// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast |
| 541 | /// are |
| 542 | void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI, |
| 543 | AllocaInfo &Info) { |
| 544 | for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end(); |
| 545 | UI != E; ++UI) { |
| 546 | if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) { |
| 547 | isSafeUseOfBitCastedAllocation(BCU, AI, Info); |
| 548 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) { |
| 549 | isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info); |
| 550 | } else { |
| 551 | return MarkUnsafe(Info); |
| 552 | } |
| 553 | if (Info.isUnsafe) return; |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | /// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes |
| 558 | /// to its first element. Transform users of the cast to use the new values |
| 559 | /// instead. |
| 560 | void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI, |
| 561 | SmallVector<AllocaInst*, 32> &NewElts) { |
| 562 | Constant *Zero = Constant::getNullValue(Type::Int32Ty); |
| 563 | const TargetData &TD = getAnalysis<TargetData>(); |
| 564 | |
| 565 | Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end(); |
| 566 | while (UI != UE) { |
| 567 | if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) { |
| 568 | RewriteBitCastUserOfAlloca(BCU, AI, NewElts); |
| 569 | ++UI; |
| 570 | BCU->eraseFromParent(); |
| 571 | continue; |
| 572 | } |
| 573 | |
| 574 | // Otherwise, must be memcpy/memmove/memset of the entire aggregate. Split |
| 575 | // into one per element. |
| 576 | MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI); |
| 577 | |
| 578 | // If it's not a mem intrinsic, it must be some other user of a gep of the |
| 579 | // first pointer. Just leave these alone. |
| 580 | if (!MI) { |
| 581 | ++UI; |
| 582 | continue; |
| 583 | } |
| 584 | |
| 585 | // If this is a memcpy/memmove, construct the other pointer as the |
| 586 | // appropriate type. |
| 587 | Value *OtherPtr = 0; |
| 588 | if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) { |
| 589 | if (BCInst == MCI->getRawDest()) |
| 590 | OtherPtr = MCI->getRawSource(); |
| 591 | else { |
| 592 | assert(BCInst == MCI->getRawSource()); |
| 593 | OtherPtr = MCI->getRawDest(); |
| 594 | } |
| 595 | } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { |
| 596 | if (BCInst == MMI->getRawDest()) |
| 597 | OtherPtr = MMI->getRawSource(); |
| 598 | else { |
| 599 | assert(BCInst == MMI->getRawSource()); |
| 600 | OtherPtr = MMI->getRawDest(); |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | // If there is an other pointer, we want to convert it to the same pointer |
| 605 | // type as AI has, so we can GEP through it. |
| 606 | if (OtherPtr) { |
| 607 | // It is likely that OtherPtr is a bitcast, if so, remove it. |
| 608 | if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) |
| 609 | OtherPtr = BC->getOperand(0); |
| 610 | if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr)) |
| 611 | if (BCE->getOpcode() == Instruction::BitCast) |
| 612 | OtherPtr = BCE->getOperand(0); |
| 613 | |
| 614 | // If the pointer is not the right type, insert a bitcast to the right |
| 615 | // type. |
| 616 | if (OtherPtr->getType() != AI->getType()) |
| 617 | OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(), |
| 618 | MI); |
| 619 | } |
| 620 | |
| 621 | // Process each element of the aggregate. |
| 622 | Value *TheFn = MI->getOperand(0); |
| 623 | const Type *BytePtrTy = MI->getRawDest()->getType(); |
| 624 | bool SROADest = MI->getRawDest() == BCInst; |
| 625 | |
| 626 | for (unsigned i = 0, e = NewElts.size(); i != e; ++i) { |
| 627 | // If this is a memcpy/memmove, emit a GEP of the other element address. |
| 628 | Value *OtherElt = 0; |
| 629 | if (OtherPtr) { |
David Greene | 393be88 | 2007-09-04 15:46:09 +0000 | [diff] [blame] | 630 | Value *Idx[2]; |
| 631 | Idx[0] = Zero; |
| 632 | Idx[1] = ConstantInt::get(Type::Int32Ty, i); |
| 633 | OtherElt = new GetElementPtrInst(OtherPtr, Idx, Idx + 2, |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 634 | OtherPtr->getNameStr()+"."+utostr(i), |
| 635 | MI); |
| 636 | } |
| 637 | |
| 638 | Value *EltPtr = NewElts[i]; |
| 639 | const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType(); |
| 640 | |
| 641 | // If we got down to a scalar, insert a load or store as appropriate. |
| 642 | if (EltTy->isFirstClassType()) { |
| 643 | if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) { |
| 644 | Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp", |
| 645 | MI); |
| 646 | new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI); |
| 647 | continue; |
| 648 | } else { |
| 649 | assert(isa<MemSetInst>(MI)); |
| 650 | |
| 651 | // If the stored element is zero (common case), just store a null |
| 652 | // constant. |
| 653 | Constant *StoreVal; |
| 654 | if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) { |
| 655 | if (CI->isZero()) { |
| 656 | StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0> |
| 657 | } else { |
| 658 | // If EltTy is a vector type, get the element type. |
| 659 | const Type *ValTy = EltTy; |
| 660 | if (const VectorType *VTy = dyn_cast<VectorType>(ValTy)) |
| 661 | ValTy = VTy->getElementType(); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 662 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 663 | // Construct an integer with the right value. |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 664 | unsigned EltSize = TD.getTypeSizeInBits(ValTy); |
| 665 | APInt OneVal(EltSize, CI->getZExtValue()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 666 | APInt TotalVal(OneVal); |
| 667 | // Set each byte. |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 668 | for (unsigned i = 0; 8*i < EltSize; ++i) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 669 | TotalVal = TotalVal.shl(8); |
| 670 | TotalVal |= OneVal; |
| 671 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 672 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 673 | // Convert the integer value to the appropriate type. |
| 674 | StoreVal = ConstantInt::get(TotalVal); |
| 675 | if (isa<PointerType>(ValTy)) |
| 676 | StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy); |
| 677 | else if (ValTy->isFloatingPoint()) |
| 678 | StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy); |
| 679 | assert(StoreVal->getType() == ValTy && "Type mismatch!"); |
| 680 | |
| 681 | // If the requested value was a vector constant, create it. |
| 682 | if (EltTy != ValTy) { |
| 683 | unsigned NumElts = cast<VectorType>(ValTy)->getNumElements(); |
| 684 | SmallVector<Constant*, 16> Elts(NumElts, StoreVal); |
| 685 | StoreVal = ConstantVector::get(&Elts[0], NumElts); |
| 686 | } |
| 687 | } |
| 688 | new StoreInst(StoreVal, EltPtr, MI); |
| 689 | continue; |
| 690 | } |
| 691 | // Otherwise, if we're storing a byte variable, use a memset call for |
| 692 | // this element. |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | // Cast the element pointer to BytePtrTy. |
| 697 | if (EltPtr->getType() != BytePtrTy) |
| 698 | EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI); |
| 699 | |
| 700 | // Cast the other pointer (if we have one) to BytePtrTy. |
| 701 | if (OtherElt && OtherElt->getType() != BytePtrTy) |
| 702 | OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(), |
| 703 | MI); |
| 704 | |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 705 | unsigned EltSize = TD.getABITypeSize(EltTy); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 706 | |
| 707 | // Finally, insert the meminst for this element. |
| 708 | if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) { |
| 709 | Value *Ops[] = { |
| 710 | SROADest ? EltPtr : OtherElt, // Dest ptr |
| 711 | SROADest ? OtherElt : EltPtr, // Src ptr |
| 712 | ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size |
| 713 | Zero // Align |
| 714 | }; |
David Greene | b1c4a7b | 2007-08-01 03:43:44 +0000 | [diff] [blame] | 715 | new CallInst(TheFn, Ops, Ops + 4, "", MI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 716 | } else { |
| 717 | assert(isa<MemSetInst>(MI)); |
| 718 | Value *Ops[] = { |
| 719 | EltPtr, MI->getOperand(2), // Dest, Value, |
| 720 | ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size |
| 721 | Zero // Align |
| 722 | }; |
David Greene | b1c4a7b | 2007-08-01 03:43:44 +0000 | [diff] [blame] | 723 | new CallInst(TheFn, Ops, Ops + 4, "", MI); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 724 | } |
| 725 | } |
| 726 | |
| 727 | // Finally, MI is now dead, as we've modified its actions to occur on all of |
| 728 | // the elements of the aggregate. |
| 729 | ++UI; |
| 730 | MI->eraseFromParent(); |
| 731 | } |
| 732 | } |
| 733 | |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 734 | /// HasPadding - Return true if the specified type has any structure or |
| 735 | /// alignment padding, false otherwise. |
| 736 | static bool HasPadding(const Type *Ty, const TargetData &TD) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 737 | if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| 738 | const StructLayout *SL = TD.getStructLayout(STy); |
| 739 | unsigned PrevFieldBitOffset = 0; |
| 740 | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 741 | unsigned FieldBitOffset = SL->getElementOffsetInBits(i); |
| 742 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 743 | // Padding in sub-elements? |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 744 | if (HasPadding(STy->getElementType(i), TD)) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 745 | return true; |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 746 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 747 | // Check to see if there is any padding between this element and the |
| 748 | // previous one. |
| 749 | if (i) { |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 750 | unsigned PrevFieldEnd = |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 751 | PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1)); |
| 752 | if (PrevFieldEnd < FieldBitOffset) |
| 753 | return true; |
| 754 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 755 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 756 | PrevFieldBitOffset = FieldBitOffset; |
| 757 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 758 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 759 | // Check for tail padding. |
| 760 | if (unsigned EltCount = STy->getNumElements()) { |
| 761 | unsigned PrevFieldEnd = PrevFieldBitOffset + |
| 762 | TD.getTypeSizeInBits(STy->getElementType(EltCount-1)); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 763 | if (PrevFieldEnd < SL->getSizeInBits()) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 764 | return true; |
| 765 | } |
| 766 | |
| 767 | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 768 | return HasPadding(ATy->getElementType(), TD); |
| 769 | } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { |
| 770 | return HasPadding(VTy->getElementType(), TD); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 771 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 772 | return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 773 | } |
| 774 | |
| 775 | /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of |
| 776 | /// an aggregate can be broken down into elements. Return 0 if not, 3 if safe, |
| 777 | /// or 1 if safe after canonicalization has been performed. |
| 778 | /// |
| 779 | int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) { |
| 780 | // Loop over the use list of the alloca. We can only transform it if all of |
| 781 | // the users are safe to transform. |
| 782 | AllocaInfo Info; |
| 783 | |
| 784 | for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); |
| 785 | I != E; ++I) { |
| 786 | isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info); |
| 787 | if (Info.isUnsafe) { |
| 788 | DOUT << "Cannot transform: " << *AI << " due to user: " << **I; |
| 789 | return 0; |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | // Okay, we know all the users are promotable. If the aggregate is a memcpy |
| 794 | // source and destination, we have to be careful. In particular, the memcpy |
| 795 | // could be moving around elements that live in structure padding of the LLVM |
| 796 | // types, but may actually be used. In these cases, we refuse to promote the |
| 797 | // struct. |
| 798 | if (Info.isMemCpySrc && Info.isMemCpyDst && |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 799 | HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>())) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 800 | return 0; |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 801 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 802 | // If we require cleanup, return 1, otherwise return 3. |
| 803 | return Info.needsCanon ? 1 : 3; |
| 804 | } |
| 805 | |
| 806 | /// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified |
| 807 | /// allocation, but only if cleaned up, perform the cleanups required. |
| 808 | void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) { |
| 809 | // At this point, we know that the end result will be SROA'd and promoted, so |
| 810 | // we can insert ugly code if required so long as sroa+mem2reg will clean it |
| 811 | // up. |
| 812 | for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); |
| 813 | UI != E; ) { |
| 814 | GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++); |
| 815 | if (!GEPI) continue; |
| 816 | gep_type_iterator I = gep_type_begin(GEPI); |
| 817 | ++I; |
| 818 | |
| 819 | if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) { |
| 820 | uint64_t NumElements = AT->getNumElements(); |
| 821 | |
| 822 | if (!isa<ConstantInt>(I.getOperand())) { |
| 823 | if (NumElements == 1) { |
| 824 | GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty)); |
| 825 | } else { |
| 826 | assert(NumElements == 2 && "Unhandled case!"); |
| 827 | // All users of the GEP must be loads. At each use of the GEP, insert |
| 828 | // two loads of the appropriate indexed GEP and select between them. |
| 829 | Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(), |
| 830 | Constant::getNullValue(I.getOperand()->getType()), |
| 831 | "isone", GEPI); |
| 832 | // Insert the new GEP instructions, which are properly indexed. |
| 833 | SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end()); |
| 834 | Indices[1] = Constant::getNullValue(Type::Int32Ty); |
| 835 | Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), |
David Greene | 393be88 | 2007-09-04 15:46:09 +0000 | [diff] [blame] | 836 | Indices.begin(), |
| 837 | Indices.end(), |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 838 | GEPI->getName()+".0", GEPI); |
| 839 | Indices[1] = ConstantInt::get(Type::Int32Ty, 1); |
| 840 | Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), |
David Greene | 393be88 | 2007-09-04 15:46:09 +0000 | [diff] [blame] | 841 | Indices.begin(), |
| 842 | Indices.end(), |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 843 | GEPI->getName()+".1", GEPI); |
| 844 | // Replace all loads of the variable index GEP with loads from both |
| 845 | // indexes and a select. |
| 846 | while (!GEPI->use_empty()) { |
| 847 | LoadInst *LI = cast<LoadInst>(GEPI->use_back()); |
| 848 | Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI); |
| 849 | Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI); |
| 850 | Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI); |
| 851 | LI->replaceAllUsesWith(R); |
| 852 | LI->eraseFromParent(); |
| 853 | } |
| 854 | GEPI->eraseFromParent(); |
| 855 | } |
| 856 | } |
| 857 | } |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | /// MergeInType - Add the 'In' type to the accumulated type so far. If the |
| 862 | /// types are incompatible, return true, otherwise update Accum and return |
| 863 | /// false. |
| 864 | /// |
| 865 | /// There are three cases we handle here: |
| 866 | /// 1) An effectively-integer union, where the pieces are stored into as |
| 867 | /// smaller integers (common with byte swap and other idioms). |
| 868 | /// 2) A union of vector types of the same size and potentially its elements. |
| 869 | /// Here we turn element accesses into insert/extract element operations. |
| 870 | /// 3) A union of scalar types, such as int/float or int/pointer. Here we |
| 871 | /// merge together into integers, allowing the xform to work with #1 as |
| 872 | /// well. |
| 873 | static bool MergeInType(const Type *In, const Type *&Accum, |
| 874 | const TargetData &TD) { |
| 875 | // If this is our first type, just use it. |
| 876 | const VectorType *PTy; |
| 877 | if (Accum == Type::VoidTy || In == Accum) { |
| 878 | Accum = In; |
| 879 | } else if (In == Type::VoidTy) { |
| 880 | // Noop. |
| 881 | } else if (In->isInteger() && Accum->isInteger()) { // integer union. |
| 882 | // Otherwise pick whichever type is larger. |
| 883 | if (cast<IntegerType>(In)->getBitWidth() > |
| 884 | cast<IntegerType>(Accum)->getBitWidth()) |
| 885 | Accum = In; |
| 886 | } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) { |
| 887 | // Pointer unions just stay as one of the pointers. |
| 888 | } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) { |
| 889 | if ((PTy = dyn_cast<VectorType>(Accum)) && |
| 890 | PTy->getElementType() == In) { |
| 891 | // Accum is a vector, and we are accessing an element: ok. |
| 892 | } else if ((PTy = dyn_cast<VectorType>(In)) && |
| 893 | PTy->getElementType() == Accum) { |
| 894 | // In is a vector, and accum is an element: ok, remember In. |
| 895 | Accum = In; |
| 896 | } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) && |
| 897 | PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) { |
| 898 | // Two vectors of the same size: keep Accum. |
| 899 | } else { |
| 900 | // Cannot insert an short into a <4 x int> or handle |
| 901 | // <2 x int> -> <4 x int> |
| 902 | return true; |
| 903 | } |
| 904 | } else { |
| 905 | // Pointer/FP/Integer unions merge together as integers. |
| 906 | switch (Accum->getTypeID()) { |
| 907 | case Type::PointerTyID: Accum = TD.getIntPtrType(); break; |
| 908 | case Type::FloatTyID: Accum = Type::Int32Ty; break; |
| 909 | case Type::DoubleTyID: Accum = Type::Int64Ty; break; |
Dale Johannesen | 4c839d0 | 2007-09-28 00:21:38 +0000 | [diff] [blame] | 910 | case Type::X86_FP80TyID: return true; |
| 911 | case Type::FP128TyID: return true; |
| 912 | case Type::PPC_FP128TyID: return true; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 913 | default: |
| 914 | assert(Accum->isInteger() && "Unknown FP type!"); |
| 915 | break; |
| 916 | } |
| 917 | |
| 918 | switch (In->getTypeID()) { |
| 919 | case Type::PointerTyID: In = TD.getIntPtrType(); break; |
| 920 | case Type::FloatTyID: In = Type::Int32Ty; break; |
| 921 | case Type::DoubleTyID: In = Type::Int64Ty; break; |
Dale Johannesen | 4c839d0 | 2007-09-28 00:21:38 +0000 | [diff] [blame] | 922 | case Type::X86_FP80TyID: return true; |
| 923 | case Type::FP128TyID: return true; |
| 924 | case Type::PPC_FP128TyID: return true; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 925 | default: |
| 926 | assert(In->isInteger() && "Unknown FP type!"); |
| 927 | break; |
| 928 | } |
| 929 | return MergeInType(In, Accum, TD); |
| 930 | } |
| 931 | return false; |
| 932 | } |
| 933 | |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 934 | /// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 935 | /// as big as the specified type. If there is no suitable type, this returns |
| 936 | /// null. |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 937 | const Type *getUIntAtLeastAsBigAs(unsigned NumBits) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 938 | if (NumBits > 64) return 0; |
| 939 | if (NumBits > 32) return Type::Int64Ty; |
| 940 | if (NumBits > 16) return Type::Int32Ty; |
| 941 | if (NumBits > 8) return Type::Int16Ty; |
| 942 | return Type::Int8Ty; |
| 943 | } |
| 944 | |
| 945 | /// CanConvertToScalar - V is a pointer. If we can convert the pointee to a |
| 946 | /// single scalar integer type, return that type. Further, if the use is not |
| 947 | /// a completely trivial use that mem2reg could promote, set IsNotTrivial. If |
| 948 | /// there are no uses of this pointer, return Type::VoidTy to differentiate from |
| 949 | /// failure. |
| 950 | /// |
| 951 | const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) { |
| 952 | const Type *UsedType = Type::VoidTy; // No uses, no forced type. |
| 953 | const TargetData &TD = getAnalysis<TargetData>(); |
| 954 | const PointerType *PTy = cast<PointerType>(V->getType()); |
| 955 | |
| 956 | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { |
| 957 | Instruction *User = cast<Instruction>(*UI); |
| 958 | |
| 959 | if (LoadInst *LI = dyn_cast<LoadInst>(User)) { |
| 960 | if (MergeInType(LI->getType(), UsedType, TD)) |
| 961 | return 0; |
| 962 | |
| 963 | } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { |
| 964 | // Storing the pointer, not into the value? |
| 965 | if (SI->getOperand(0) == V) return 0; |
| 966 | |
| 967 | // NOTE: We could handle storing of FP imms into integers here! |
| 968 | |
| 969 | if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD)) |
| 970 | return 0; |
| 971 | } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { |
| 972 | IsNotTrivial = true; |
| 973 | const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial); |
| 974 | if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0; |
| 975 | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { |
| 976 | // Check to see if this is stepping over an element: GEP Ptr, int C |
| 977 | if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) { |
| 978 | unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue(); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 979 | unsigned ElSize = TD.getABITypeSize(PTy->getElementType()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 980 | unsigned BitOffset = Idx*ElSize*8; |
| 981 | if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0; |
| 982 | |
| 983 | IsNotTrivial = true; |
| 984 | const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial); |
| 985 | if (SubElt == 0) return 0; |
| 986 | if (SubElt != Type::VoidTy && SubElt->isInteger()) { |
| 987 | const Type *NewTy = |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 988 | getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 989 | if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0; |
| 990 | continue; |
| 991 | } |
| 992 | } else if (GEP->getNumOperands() == 3 && |
| 993 | isa<ConstantInt>(GEP->getOperand(1)) && |
| 994 | isa<ConstantInt>(GEP->getOperand(2)) && |
| 995 | cast<ConstantInt>(GEP->getOperand(1))->isZero()) { |
| 996 | // We are stepping into an element, e.g. a structure or an array: |
| 997 | // GEP Ptr, int 0, uint C |
| 998 | const Type *AggTy = PTy->getElementType(); |
| 999 | unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); |
| 1000 | |
| 1001 | if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) { |
| 1002 | if (Idx >= ATy->getNumElements()) return 0; // Out of range. |
| 1003 | } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) { |
| 1004 | // Getting an element of the vector. |
| 1005 | if (Idx >= VectorTy->getNumElements()) return 0; // Out of range. |
| 1006 | |
| 1007 | // Merge in the vector type. |
| 1008 | if (MergeInType(VectorTy, UsedType, TD)) return 0; |
| 1009 | |
| 1010 | const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial); |
| 1011 | if (SubTy == 0) return 0; |
| 1012 | |
| 1013 | if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD)) |
| 1014 | return 0; |
| 1015 | |
| 1016 | // We'll need to change this to an insert/extract element operation. |
| 1017 | IsNotTrivial = true; |
| 1018 | continue; // Everything looks ok |
| 1019 | |
| 1020 | } else if (isa<StructType>(AggTy)) { |
| 1021 | // Structs are always ok. |
| 1022 | } else { |
| 1023 | return 0; |
| 1024 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1025 | const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy)); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1026 | if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0; |
| 1027 | const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial); |
| 1028 | if (SubTy == 0) return 0; |
| 1029 | if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD)) |
| 1030 | return 0; |
| 1031 | continue; // Everything looks ok |
| 1032 | } |
| 1033 | return 0; |
| 1034 | } else { |
| 1035 | // Cannot handle this! |
| 1036 | return 0; |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | return UsedType; |
| 1041 | } |
| 1042 | |
| 1043 | /// ConvertToScalar - The specified alloca passes the CanConvertToScalar |
| 1044 | /// predicate and is non-trivial. Convert it to something that can be trivially |
| 1045 | /// promoted into a register by mem2reg. |
| 1046 | void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) { |
| 1047 | DOUT << "CONVERT TO SCALAR: " << *AI << " TYPE = " |
| 1048 | << *ActualTy << "\n"; |
| 1049 | ++NumConverted; |
| 1050 | |
| 1051 | BasicBlock *EntryBlock = AI->getParent(); |
| 1052 | assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() && |
| 1053 | "Not in the entry block!"); |
| 1054 | EntryBlock->getInstList().remove(AI); // Take the alloca out of the program. |
| 1055 | |
| 1056 | // Create and insert the alloca. |
| 1057 | AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(), |
| 1058 | EntryBlock->begin()); |
| 1059 | ConvertUsesToScalar(AI, NewAI, 0); |
| 1060 | delete AI; |
| 1061 | } |
| 1062 | |
| 1063 | |
| 1064 | /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca |
| 1065 | /// directly. This happens when we are converting an "integer union" to a |
| 1066 | /// single integer scalar, or when we are converting a "vector union" to a |
| 1067 | /// vector with insert/extractelement instructions. |
| 1068 | /// |
| 1069 | /// Offset is an offset from the original alloca, in bits that need to be |
| 1070 | /// shifted to the right. By the end of this, there should be no uses of Ptr. |
| 1071 | void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) { |
| 1072 | const TargetData &TD = getAnalysis<TargetData>(); |
| 1073 | while (!Ptr->use_empty()) { |
| 1074 | Instruction *User = cast<Instruction>(Ptr->use_back()); |
| 1075 | |
| 1076 | if (LoadInst *LI = dyn_cast<LoadInst>(User)) { |
| 1077 | // The load is a bit extract from NewAI shifted right by Offset bits. |
| 1078 | Value *NV = new LoadInst(NewAI, LI->getName(), LI); |
| 1079 | if (NV->getType() == LI->getType()) { |
| 1080 | // We win, no conversion needed. |
| 1081 | } else if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) { |
| 1082 | // If the result alloca is a vector type, this is either an element |
| 1083 | // access or a bitcast to another vector type. |
| 1084 | if (isa<VectorType>(LI->getType())) { |
| 1085 | NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI); |
| 1086 | } else { |
| 1087 | // Must be an element access. |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1088 | unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1089 | NV = new ExtractElementInst( |
| 1090 | NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI); |
| 1091 | } |
| 1092 | } else if (isa<PointerType>(NV->getType())) { |
| 1093 | assert(isa<PointerType>(LI->getType())); |
| 1094 | // Must be ptr->ptr cast. Anything else would result in NV being |
| 1095 | // an integer. |
| 1096 | NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI); |
| 1097 | } else { |
| 1098 | const IntegerType *NTy = cast<IntegerType>(NV->getType()); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1099 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1100 | // If this is a big-endian system and the load is narrower than the |
| 1101 | // full alloca type, we need to do a shift to get the right bits. |
| 1102 | int ShAmt = 0; |
| 1103 | if (TD.isBigEndian()) { |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1104 | // On big-endian machines, the lowest bit is stored at the bit offset |
| 1105 | // from the pointer given by getTypeStoreSizeInBits. This matters for |
| 1106 | // integers with a bitwidth that is not a multiple of 8. |
| 1107 | ShAmt = TD.getTypeStoreSizeInBits(NTy) - |
| 1108 | TD.getTypeStoreSizeInBits(LI->getType()) - Offset; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1109 | } else { |
| 1110 | ShAmt = Offset; |
| 1111 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1112 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1113 | // Note: we support negative bitwidths (with shl) which are not defined. |
| 1114 | // We do this to support (f.e.) loads off the end of a structure where |
| 1115 | // only some bits are used. |
| 1116 | if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth()) |
| 1117 | NV = BinaryOperator::createLShr(NV, |
| 1118 | ConstantInt::get(NV->getType(),ShAmt), |
| 1119 | LI->getName(), LI); |
| 1120 | else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth()) |
| 1121 | NV = BinaryOperator::createShl(NV, |
| 1122 | ConstantInt::get(NV->getType(),-ShAmt), |
| 1123 | LI->getName(), LI); |
| 1124 | |
| 1125 | // Finally, unconditionally truncate the integer to the right width. |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1126 | unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1127 | if (LIBitWidth < NTy->getBitWidth()) |
| 1128 | NV = new TruncInst(NV, IntegerType::get(LIBitWidth), |
| 1129 | LI->getName(), LI); |
| 1130 | |
| 1131 | // If the result is an integer, this is a trunc or bitcast. |
| 1132 | if (isa<IntegerType>(LI->getType())) { |
| 1133 | assert(NV->getType() == LI->getType() && "Truncate wasn't enough?"); |
| 1134 | } else if (LI->getType()->isFloatingPoint()) { |
| 1135 | // Just do a bitcast, we know the sizes match up. |
| 1136 | NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI); |
| 1137 | } else { |
| 1138 | // Otherwise must be a pointer. |
| 1139 | NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI); |
| 1140 | } |
| 1141 | } |
| 1142 | LI->replaceAllUsesWith(NV); |
| 1143 | LI->eraseFromParent(); |
| 1144 | } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) { |
| 1145 | assert(SI->getOperand(0) != Ptr && "Consistency error!"); |
| 1146 | |
| 1147 | // Convert the stored type to the actual type, shift it left to insert |
| 1148 | // then 'or' into place. |
| 1149 | Value *SV = SI->getOperand(0); |
| 1150 | const Type *AllocaType = NewAI->getType()->getElementType(); |
| 1151 | if (SV->getType() == AllocaType) { |
| 1152 | // All is well. |
| 1153 | } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) { |
| 1154 | Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI); |
| 1155 | |
| 1156 | // If the result alloca is a vector type, this is either an element |
| 1157 | // access or a bitcast to another vector type. |
| 1158 | if (isa<VectorType>(SV->getType())) { |
| 1159 | SV = new BitCastInst(SV, AllocaType, SV->getName(), SI); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1160 | } else { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1161 | // Must be an element insertion. |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1162 | unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1163 | SV = new InsertElementInst(Old, SV, |
| 1164 | ConstantInt::get(Type::Int32Ty, Elt), |
| 1165 | "tmp", SI); |
| 1166 | } |
| 1167 | } else if (isa<PointerType>(AllocaType)) { |
| 1168 | // If the alloca type is a pointer, then all the elements must be |
| 1169 | // pointers. |
| 1170 | if (SV->getType() != AllocaType) |
| 1171 | SV = new BitCastInst(SV, AllocaType, SV->getName(), SI); |
| 1172 | } else { |
| 1173 | Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI); |
| 1174 | |
| 1175 | // If SV is a float, convert it to the appropriate integer type. |
| 1176 | // If it is a pointer, do the same, and also handle ptr->ptr casts |
| 1177 | // here. |
| 1178 | unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType()); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1179 | unsigned DestWidth = TD.getTypeSizeInBits(AllocaType); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1180 | if (SV->getType()->isFloatingPoint()) |
| 1181 | SV = new BitCastInst(SV, IntegerType::get(SrcWidth), |
| 1182 | SV->getName(), SI); |
| 1183 | else if (isa<PointerType>(SV->getType())) |
| 1184 | SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI); |
| 1185 | |
| 1186 | // Always zero extend the value if needed. |
| 1187 | if (SV->getType() != AllocaType) |
| 1188 | SV = new ZExtInst(SV, AllocaType, SV->getName(), SI); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1189 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1190 | // If this is a big-endian system and the store is narrower than the |
| 1191 | // full alloca type, we need to do a shift to get the right bits. |
| 1192 | int ShAmt = 0; |
| 1193 | if (TD.isBigEndian()) { |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1194 | // On big-endian machines, the lowest bit is stored at the bit offset |
| 1195 | // from the pointer given by getTypeStoreSizeInBits. This matters for |
| 1196 | // integers with a bitwidth that is not a multiple of 8. |
| 1197 | ShAmt = TD.getTypeStoreSizeInBits(AllocaType) - |
| 1198 | TD.getTypeStoreSizeInBits(SV->getType()) - Offset; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1199 | } else { |
| 1200 | ShAmt = Offset; |
| 1201 | } |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1202 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1203 | // Note: we support negative bitwidths (with shr) which are not defined. |
| 1204 | // We do this to support (f.e.) stores off the end of a structure where |
| 1205 | // only some bits in the structure are set. |
| 1206 | APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth)); |
| 1207 | if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) { |
| 1208 | SV = BinaryOperator::createShl(SV, |
| 1209 | ConstantInt::get(SV->getType(), ShAmt), |
| 1210 | SV->getName(), SI); |
| 1211 | Mask <<= ShAmt; |
| 1212 | } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) { |
| 1213 | SV = BinaryOperator::createLShr(SV, |
| 1214 | ConstantInt::get(SV->getType(),-ShAmt), |
| 1215 | SV->getName(), SI); |
| 1216 | Mask = Mask.lshr(ShAmt); |
| 1217 | } |
| 1218 | |
| 1219 | // Mask out the bits we are about to insert from the old value, and or |
| 1220 | // in the new bits. |
| 1221 | if (SrcWidth != DestWidth) { |
| 1222 | assert(DestWidth > SrcWidth); |
| 1223 | Old = BinaryOperator::createAnd(Old, ConstantInt::get(~Mask), |
| 1224 | Old->getName()+".mask", SI); |
| 1225 | SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI); |
| 1226 | } |
| 1227 | } |
| 1228 | new StoreInst(SV, NewAI, SI); |
| 1229 | SI->eraseFromParent(); |
| 1230 | |
| 1231 | } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) { |
| 1232 | ConvertUsesToScalar(CI, NewAI, Offset); |
| 1233 | CI->eraseFromParent(); |
| 1234 | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) { |
| 1235 | const PointerType *AggPtrTy = |
| 1236 | cast<PointerType>(GEP->getOperand(0)->getType()); |
| 1237 | const TargetData &TD = getAnalysis<TargetData>(); |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1238 | unsigned AggSizeInBits = |
| 1239 | TD.getABITypeSizeInBits(AggPtrTy->getElementType()); |
| 1240 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1241 | // Check to see if this is stepping over an element: GEP Ptr, int C |
| 1242 | unsigned NewOffset = Offset; |
| 1243 | if (GEP->getNumOperands() == 2) { |
| 1244 | unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue(); |
| 1245 | unsigned BitOffset = Idx*AggSizeInBits; |
| 1246 | |
| 1247 | NewOffset += BitOffset; |
| 1248 | } else if (GEP->getNumOperands() == 3) { |
| 1249 | // We know that operand #2 is zero. |
| 1250 | unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue(); |
| 1251 | const Type *AggTy = AggPtrTy->getElementType(); |
| 1252 | if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) { |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1253 | unsigned ElSizeBits = |
| 1254 | TD.getABITypeSizeInBits(SeqTy->getElementType()); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1255 | |
| 1256 | NewOffset += ElSizeBits*Idx; |
| 1257 | } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) { |
| 1258 | unsigned EltBitOffset = |
Duncan Sands | ae5fd62 | 2007-11-04 14:43:57 +0000 | [diff] [blame^] | 1259 | TD.getStructLayout(STy)->getElementOffsetInBits(Idx); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1260 | |
| 1261 | NewOffset += EltBitOffset; |
| 1262 | } else { |
| 1263 | assert(0 && "Unsupported operation!"); |
| 1264 | abort(); |
| 1265 | } |
| 1266 | } else { |
| 1267 | assert(0 && "Unsupported operation!"); |
| 1268 | abort(); |
| 1269 | } |
| 1270 | ConvertUsesToScalar(GEP, NewAI, NewOffset); |
| 1271 | GEP->eraseFromParent(); |
| 1272 | } else { |
| 1273 | assert(0 && "Unsupported operation!"); |
| 1274 | abort(); |
| 1275 | } |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | |
| 1280 | /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to |
| 1281 | /// some part of a constant global variable. This intentionally only accepts |
| 1282 | /// constant expressions because we don't can't rewrite arbitrary instructions. |
| 1283 | static bool PointsToConstantGlobal(Value *V) { |
| 1284 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) |
| 1285 | return GV->isConstant(); |
| 1286 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| 1287 | if (CE->getOpcode() == Instruction::BitCast || |
| 1288 | CE->getOpcode() == Instruction::GetElementPtr) |
| 1289 | return PointsToConstantGlobal(CE->getOperand(0)); |
| 1290 | return false; |
| 1291 | } |
| 1292 | |
| 1293 | /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) |
| 1294 | /// pointer to an alloca. Ignore any reads of the pointer, return false if we |
| 1295 | /// see any stores or other unknown uses. If we see pointer arithmetic, keep |
| 1296 | /// track of whether it moves the pointer (with isOffset) but otherwise traverse |
| 1297 | /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to |
| 1298 | /// the alloca, and if the source pointer is a pointer to a constant global, we |
| 1299 | /// can optimize this. |
| 1300 | static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy, |
| 1301 | bool isOffset) { |
| 1302 | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) { |
| 1303 | if (isa<LoadInst>(*UI)) { |
| 1304 | // Ignore loads, they are always ok. |
| 1305 | continue; |
| 1306 | } |
| 1307 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) { |
| 1308 | // If uses of the bitcast are ok, we are ok. |
| 1309 | if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset)) |
| 1310 | return false; |
| 1311 | continue; |
| 1312 | } |
| 1313 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) { |
| 1314 | // If the GEP has all zero indices, it doesn't offset the pointer. If it |
| 1315 | // doesn't, it does. |
| 1316 | if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy, |
| 1317 | isOffset || !GEP->hasAllZeroIndices())) |
| 1318 | return false; |
| 1319 | continue; |
| 1320 | } |
| 1321 | |
| 1322 | // If this is isn't our memcpy/memmove, reject it as something we can't |
| 1323 | // handle. |
| 1324 | if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI)) |
| 1325 | return false; |
| 1326 | |
| 1327 | // If we already have seen a copy, reject the second one. |
| 1328 | if (TheCopy) return false; |
| 1329 | |
| 1330 | // If the pointer has been offset from the start of the alloca, we can't |
| 1331 | // safely handle this. |
| 1332 | if (isOffset) return false; |
| 1333 | |
| 1334 | // If the memintrinsic isn't using the alloca as the dest, reject it. |
| 1335 | if (UI.getOperandNo() != 1) return false; |
| 1336 | |
| 1337 | MemIntrinsic *MI = cast<MemIntrinsic>(*UI); |
| 1338 | |
| 1339 | // If the source of the memcpy/move is not a constant global, reject it. |
| 1340 | if (!PointsToConstantGlobal(MI->getOperand(2))) |
| 1341 | return false; |
| 1342 | |
| 1343 | // Otherwise, the transform is safe. Remember the copy instruction. |
| 1344 | TheCopy = MI; |
| 1345 | } |
| 1346 | return true; |
| 1347 | } |
| 1348 | |
| 1349 | /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only |
| 1350 | /// modified by a copy from a constant global. If we can prove this, we can |
| 1351 | /// replace any uses of the alloca with uses of the global directly. |
| 1352 | Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) { |
| 1353 | Instruction *TheCopy = 0; |
| 1354 | if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false)) |
| 1355 | return TheCopy; |
| 1356 | return 0; |
| 1357 | } |