blob: 2c3c39b06b4886d692bf59fbf1e9eb12ce485665 [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000019#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc4d3b22009-11-11 02:08:33 +000020#include "llvm/Analysis/LazyValueInfo.h"
Dan Gohmandd9344f2010-05-28 16:19:17 +000021#include "llvm/Analysis/Loads.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000022#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000023#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000024#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000025#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000031#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000032#include "llvm/Support/Debug.h"
Chris Lattner56608462009-12-28 08:20:46 +000033#include "llvm/Support/ValueHandle.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000034#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000035using namespace llvm;
36
Chris Lattnerbd3401f2008-04-20 22:39:42 +000037STATISTIC(NumThreads, "Number of jumps threaded");
38STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000039STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000040
Chris Lattner177480b2008-04-20 21:13:06 +000041static cl::opt<unsigned>
42Threshold("jump-threading-threshold",
43 cl::desc("Max block size to duplicate for jump threading"),
44 cl::init(6), cl::Hidden);
45
Chris Lattnercc4d3b22009-11-11 02:08:33 +000046// Turn on use of LazyValueInfo.
47static cl::opt<bool>
Owen Andersonf35b08d2010-08-05 22:11:31 +000048EnableLVI("enable-jump-threading-lvi",
49 cl::desc("Use LVI for jump threading"),
Owen Andersonb6ad6912010-08-23 19:59:27 +000050 cl::init(false),
Owen Andersonf35b08d2010-08-05 22:11:31 +000051 cl::ReallyHidden);
Chris Lattnercc4d3b22009-11-11 02:08:33 +000052
53
54
Chris Lattner8383a7b2008-04-20 20:35:01 +000055namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000056 /// This pass performs 'jump threading', which looks at blocks that have
57 /// multiple predecessors and multiple successors. If one or more of the
58 /// predecessors of the block can be proven to always jump to one of the
59 /// successors, we forward the edge from the predecessor to the successor by
60 /// duplicating the contents of this block.
61 ///
62 /// An example of when this can occur is code like this:
63 ///
64 /// if () { ...
65 /// X = 4;
66 /// }
67 /// if (X < 3) {
68 ///
69 /// In this case, the unconditional branch at the end of the first if can be
70 /// revectored to the false side of the second if.
71 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000072 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000073 TargetData *TD;
Chris Lattnercc4d3b22009-11-11 02:08:33 +000074 LazyValueInfo *LVI;
Mike Stumpfe095f32009-05-04 18:40:41 +000075#ifdef NDEBUG
76 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
77#else
78 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
79#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000080 public:
81 static char ID; // Pass identification
Owen Anderson90c579d2010-08-06 18:33:48 +000082 JumpThreading() : FunctionPass(ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000083
84 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000085
Chris Lattnercc4d3b22009-11-11 02:08:33 +000086 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87 if (EnableLVI)
88 AU.addRequired<LazyValueInfo>();
89 }
90
91 void FindLoopHeaders(Function &F);
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000092 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000093 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
94 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000095 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
Chris Lattner2249a0b2010-01-12 02:07:17 +000096 const SmallVectorImpl<BasicBlock *> &PredBBs);
Chris Lattner5729d382009-11-07 08:05:03 +000097
98 typedef SmallVectorImpl<std::pair<ConstantInt*,
99 BasicBlock*> > PredValueInfo;
100
101 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
102 PredValueInfo &Result);
Chris Lattner1c96b412009-11-12 01:37:43 +0000103 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +0000104
105
Chris Lattner421fa9e2008-12-03 07:48:08 +0000106 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000107 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +0000108
Chris Lattner77beb472010-01-11 23:41:09 +0000109 bool ProcessBranchOnPHI(PHINode *PN);
Chris Lattner2249a0b2010-01-12 02:07:17 +0000110 bool ProcessBranchOnXOR(BinaryOperator *BO);
Chris Lattner69e067f2008-11-27 05:07:53 +0000111
112 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +0000113 };
Chris Lattner8383a7b2008-04-20 20:35:01 +0000114}
115
Dan Gohman844731a2008-05-13 00:00:25 +0000116char JumpThreading::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000117INITIALIZE_PASS(JumpThreading, "jump-threading",
118 "Jump Threading", false, false);
Dan Gohman844731a2008-05-13 00:00:25 +0000119
Chris Lattner8383a7b2008-04-20 20:35:01 +0000120// Public interface to the Jump Threading pass
121FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
122
123/// runOnFunction - Top level algorithm.
124///
125bool JumpThreading::runOnFunction(Function &F) {
David Greenefe7fe662010-01-05 01:27:19 +0000126 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000127 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000128 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000129
Mike Stumpfe095f32009-05-04 18:40:41 +0000130 FindLoopHeaders(F);
131
Benjamin Kramer66b581e2010-01-07 13:50:07 +0000132 bool Changed, EverChanged = false;
133 do {
134 Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000135 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
136 BasicBlock *BB = I;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000137 // Thread all of the branches we can over this block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000138 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000139 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000140
141 ++I;
142
143 // If the block is trivially dead, zap it. This eliminates the successor
144 // edges which simplifies the CFG.
145 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000146 BB != &BB->getParent()->getEntryBlock()) {
David Greenefe7fe662010-01-05 01:27:19 +0000147 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000148 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000149 LoopHeaders.erase(BB);
Owen Anderson00ac77e2010-08-18 18:39:01 +0000150 if (LVI) LVI->eraseBlock(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000151 DeleteDeadBlock(BB);
152 Changed = true;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000153 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
154 // Can't thread an unconditional jump, but if the block is "almost
155 // empty", we can replace uses of it with uses of the successor and make
156 // this dead.
157 if (BI->isUnconditional() &&
158 BB != &BB->getParent()->getEntryBlock()) {
159 BasicBlock::iterator BBI = BB->getFirstNonPHI();
160 // Ignore dbg intrinsics.
161 while (isa<DbgInfoIntrinsic>(BBI))
162 ++BBI;
163 // If the terminator is the only non-phi instruction, try to nuke it.
164 if (BBI->isTerminator()) {
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000165 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
166 // block, we have to make sure it isn't in the LoopHeaders set. We
Chris Lattner46875c02009-12-01 06:04:43 +0000167 // reinsert afterward if needed.
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000168 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
Chris Lattner46875c02009-12-01 06:04:43 +0000169 BasicBlock *Succ = BI->getSuccessor(0);
Chris Lattnerf3183f62009-11-10 21:40:01 +0000170
Owen Anderson00ac77e2010-08-18 18:39:01 +0000171 // FIXME: It is always conservatively correct to drop the info
172 // for a block even if it doesn't get erased. This isn't totally
173 // awesome, but it allows us to use AssertingVH to prevent nasty
174 // dangling pointer issues within LazyValueInfo.
175 if (LVI) LVI->eraseBlock(BB);
Chris Lattner46875c02009-12-01 06:04:43 +0000176 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
Chris Lattnerf3183f62009-11-10 21:40:01 +0000177 Changed = true;
Chris Lattner46875c02009-12-01 06:04:43 +0000178 // If we deleted BB and BB was the header of a loop, then the
179 // successor is now the header of the loop.
180 BB = Succ;
181 }
182
183 if (ErasedFromLoopHeaders)
Chris Lattnerf3183f62009-11-10 21:40:01 +0000184 LoopHeaders.insert(BB);
185 }
186 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000187 }
188 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000189 EverChanged |= Changed;
Benjamin Kramer66b581e2010-01-07 13:50:07 +0000190 } while (Changed);
Mike Stumpfe095f32009-05-04 18:40:41 +0000191
192 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000193 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000194}
Chris Lattner177480b2008-04-20 21:13:06 +0000195
Chris Lattner78c552e2009-10-11 07:24:57 +0000196/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
197/// thread across it.
198static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
199 /// Ignore PHI nodes, these will be flattened when duplication happens.
200 BasicBlock::const_iterator I = BB->getFirstNonPHI();
201
Chris Lattnerb14b88a2009-11-11 00:21:58 +0000202 // FIXME: THREADING will delete values that are just used to compute the
203 // branch, so they shouldn't count against the duplication cost.
204
205
Chris Lattner78c552e2009-10-11 07:24:57 +0000206 // Sum up the cost of each instruction until we get to the terminator. Don't
207 // include the terminator because the copy won't include it.
208 unsigned Size = 0;
209 for (; !isa<TerminatorInst>(I); ++I) {
210 // Debugger intrinsics don't incur code size.
211 if (isa<DbgInfoIntrinsic>(I)) continue;
212
213 // If this is a pointer->pointer bitcast, it is free.
Duncan Sands1df98592010-02-16 11:11:14 +0000214 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
Chris Lattner78c552e2009-10-11 07:24:57 +0000215 continue;
216
217 // All other instructions count for at least one unit.
218 ++Size;
219
220 // Calls are more expensive. If they are non-intrinsic calls, we model them
221 // as having cost of 4. If they are a non-vector intrinsic, we model them
222 // as having cost of 2 total, and if they are a vector intrinsic, we model
223 // them as having cost 1.
224 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
225 if (!isa<IntrinsicInst>(CI))
226 Size += 3;
Duncan Sands1df98592010-02-16 11:11:14 +0000227 else if (!CI->getType()->isVectorTy())
Chris Lattner78c552e2009-10-11 07:24:57 +0000228 Size += 1;
229 }
230 }
231
232 // Threading through a switch statement is particularly profitable. If this
233 // block ends in a switch, decrease its cost to make it more likely to happen.
234 if (isa<SwitchInst>(I))
235 Size = Size > 6 ? Size-6 : 0;
236
237 return Size;
238}
239
Mike Stumpfe095f32009-05-04 18:40:41 +0000240/// FindLoopHeaders - We do not want jump threading to turn proper loop
241/// structures into irreducible loops. Doing this breaks up the loop nesting
242/// hierarchy and pessimizes later transformations. To prevent this from
243/// happening, we first have to find the loop headers. Here we approximate this
244/// by finding targets of backedges in the CFG.
245///
246/// Note that there definitely are cases when we want to allow threading of
247/// edges across a loop header. For example, threading a jump from outside the
248/// loop (the preheader) to an exit block of the loop is definitely profitable.
249/// It is also almost always profitable to thread backedges from within the loop
250/// to exit blocks, and is often profitable to thread backedges to other blocks
251/// within the loop (forming a nested loop). This simple analysis is not rich
252/// enough to track all of these properties and keep it up-to-date as the CFG
253/// mutates, so we don't allow any of these transformations.
254///
255void JumpThreading::FindLoopHeaders(Function &F) {
256 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
257 FindFunctionBackedges(F, Edges);
258
259 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
260 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
261}
262
Chris Lattner5729d382009-11-07 08:05:03 +0000263/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
264/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000265/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000266/// result vector. If a value is known to be undef, it is returned as null.
267///
Chris Lattner5729d382009-11-07 08:05:03 +0000268/// This returns true if there were any known values.
269///
Chris Lattner5729d382009-11-07 08:05:03 +0000270bool JumpThreading::
271ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
Chris Lattner5729d382009-11-07 08:05:03 +0000272 // If V is a constantint, then it is known in all predecessors.
273 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
274 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000275
276 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
277 Result.push_back(std::make_pair(CI, *PI));
Chris Lattner5729d382009-11-07 08:05:03 +0000278 return true;
279 }
280
281 // If V is a non-instruction value, or an instruction in a different block,
282 // then it can't be derived from a PHI.
283 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000284 if (I == 0 || I->getParent() != BB) {
285
286 // Okay, if this is a live-in value, see if it has a known value at the end
287 // of any of our predecessors.
288 //
289 // FIXME: This should be an edge property, not a block end property.
290 /// TODO: Per PR2563, we could infer value range information about a
291 /// predecessor based on its terminator.
292 //
293 if (LVI) {
Chris Lattnerf496e792009-11-12 04:57:13 +0000294 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
295 // "I" is a non-local compare-with-a-constant instruction. This would be
296 // able to handle value inequalities better, for example if the compare is
297 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
298 // Perhaps getConstantOnEdge should be smart enough to do this?
299
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000300 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +0000301 BasicBlock *P = *PI;
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000302 // If the value is known by LazyValueInfo to be a constant in a
303 // predecessor, use that information to try to thread this block.
Gabor Greifee1f44f2010-07-12 14:10:24 +0000304 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000305 if (PredCst == 0 ||
306 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
307 continue;
308
Gabor Greifee1f44f2010-07-12 14:10:24 +0000309 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000310 }
311
312 return !Result.empty();
313 }
314
Chris Lattner5729d382009-11-07 08:05:03 +0000315 return false;
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000316 }
Chris Lattner5729d382009-11-07 08:05:03 +0000317
318 /// If I is a PHI node, then we know the incoming values for any constants.
319 if (PHINode *PN = dyn_cast<PHINode>(I)) {
320 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
321 Value *InVal = PN->getIncomingValue(i);
322 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
323 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
324 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
325 }
326 }
327 return !Result.empty();
328 }
329
330 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
331
332 // Handle some boolean conditions.
333 if (I->getType()->getPrimitiveSizeInBits() == 1) {
334 // X | true -> true
335 // X & false -> false
336 if (I->getOpcode() == Instruction::Or ||
337 I->getOpcode() == Instruction::And) {
338 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
339 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
340
341 if (LHSVals.empty() && RHSVals.empty())
342 return false;
343
344 ConstantInt *InterestingVal;
345 if (I->getOpcode() == Instruction::Or)
346 InterestingVal = ConstantInt::getTrue(I->getContext());
347 else
348 InterestingVal = ConstantInt::getFalse(I->getContext());
349
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000350 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
351
Chris Lattner1e452652010-02-11 04:40:44 +0000352 // Scan for the sentinel. If we find an undef, force it to the
353 // interesting value: x|undef -> true and x&undef -> false.
Chris Lattner5729d382009-11-07 08:05:03 +0000354 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
Chris Lattner1e452652010-02-11 04:40:44 +0000355 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
Chris Lattner5729d382009-11-07 08:05:03 +0000356 Result.push_back(LHSVals[i]);
Chris Lattner1e452652010-02-11 04:40:44 +0000357 Result.back().first = InterestingVal;
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000358 LHSKnownBBs.insert(LHSVals[i].second);
Chris Lattner1e452652010-02-11 04:40:44 +0000359 }
Chris Lattner5729d382009-11-07 08:05:03 +0000360 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
Chris Lattner1e452652010-02-11 04:40:44 +0000361 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
Chris Lattner0a961442010-07-12 00:47:34 +0000362 // If we already inferred a value for this block on the LHS, don't
363 // re-add it.
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000364 if (!LHSKnownBBs.count(RHSVals[i].second)) {
Chris Lattner0a961442010-07-12 00:47:34 +0000365 Result.push_back(RHSVals[i]);
366 Result.back().first = InterestingVal;
367 }
Chris Lattner1e452652010-02-11 04:40:44 +0000368 }
Chris Lattner5729d382009-11-07 08:05:03 +0000369 return !Result.empty();
370 }
371
Chris Lattner055d0462009-11-10 22:39:16 +0000372 // Handle the NOT form of XOR.
373 if (I->getOpcode() == Instruction::Xor &&
374 isa<ConstantInt>(I->getOperand(1)) &&
375 cast<ConstantInt>(I->getOperand(1))->isOne()) {
376 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
377 if (Result.empty())
378 return false;
379
380 // Invert the known values.
381 for (unsigned i = 0, e = Result.size(); i != e; ++i)
Chris Lattner1fb56302009-11-15 19:57:43 +0000382 if (Result[i].first)
383 Result[i].first =
384 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
Chris Lattner055d0462009-11-10 22:39:16 +0000385 return true;
386 }
Chris Lattner5729d382009-11-07 08:05:03 +0000387 }
388
389 // Handle compare with phi operand, where the PHI is defined in this block.
390 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
391 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
392 if (PN && PN->getParent() == BB) {
393 // We can do this simplification if any comparisons fold to true or false.
394 // See if any do.
395 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
396 BasicBlock *PredBB = PN->getIncomingBlock(i);
397 Value *LHS = PN->getIncomingValue(i);
398 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
399
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000400 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
Chris Lattner66c04c42009-11-12 05:24:05 +0000401 if (Res == 0) {
402 if (!LVI || !isa<Constant>(RHS))
403 continue;
404
405 LazyValueInfo::Tristate
406 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
407 cast<Constant>(RHS), PredBB, BB);
408 if (ResT == LazyValueInfo::Unknown)
409 continue;
410 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
411 }
Chris Lattner5729d382009-11-07 08:05:03 +0000412
413 if (isa<UndefValue>(Res))
414 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
415 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
416 Result.push_back(std::make_pair(CI, PredBB));
417 }
418
419 return !Result.empty();
420 }
421
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000422
423 // If comparing a live-in value against a constant, see if we know the
424 // live-in value on any predecessors.
425 if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000426 Cmp->getType()->isIntegerTy() && // Not vector compare.
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000427 (!isa<Instruction>(Cmp->getOperand(0)) ||
428 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
429 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
Gabor Greifee1f44f2010-07-12 14:10:24 +0000430
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000431 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +0000432 BasicBlock *P = *PI;
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000433 // If the value is known by LazyValueInfo to be a constant in a
434 // predecessor, use that information to try to thread this block.
Chris Lattner0e0ff292009-11-12 04:37:50 +0000435 LazyValueInfo::Tristate
436 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
Gabor Greifee1f44f2010-07-12 14:10:24 +0000437 RHSCst, P, BB);
Chris Lattner0e0ff292009-11-12 04:37:50 +0000438 if (Res == LazyValueInfo::Unknown)
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000439 continue;
Chris Lattner0e0ff292009-11-12 04:37:50 +0000440
441 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
Gabor Greifee1f44f2010-07-12 14:10:24 +0000442 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000443 }
Gabor Greifee1f44f2010-07-12 14:10:24 +0000444
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000445 return !Result.empty();
446 }
Chris Lattner5729d382009-11-07 08:05:03 +0000447 }
448 return false;
449}
450
451
Chris Lattner6bf77502008-04-22 07:05:46 +0000452
Chris Lattnere33583b2009-10-11 04:18:15 +0000453/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
454/// in an undefined jump, decide which block is best to revector to.
455///
456/// Since we can pick an arbitrary destination, we pick the successor with the
457/// fewest predecessors. This should reduce the in-degree of the others.
458///
459static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
460 TerminatorInst *BBTerm = BB->getTerminator();
461 unsigned MinSucc = 0;
462 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
463 // Compute the successor with the minimum number of predecessors.
464 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
465 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
466 TestBB = BBTerm->getSuccessor(i);
467 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
468 if (NumPreds < MinNumPreds)
469 MinSucc = i;
470 }
471
472 return MinSucc;
473}
474
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000475/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000476/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000477bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner8231fd12010-01-23 18:56:07 +0000478 // If the block is trivially dead, just return and let the caller nuke it.
479 // This simplifies other transformations.
480 if (pred_begin(BB) == pred_end(BB) &&
481 BB != &BB->getParent()->getEntryBlock())
482 return false;
483
Chris Lattner69e067f2008-11-27 05:07:53 +0000484 // If this block has a single predecessor, and if that pred has a single
485 // successor, merge the blocks. This encourages recursive jump threading
486 // because now the condition in this block can be threaded through
487 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000488 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000489 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
490 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000491 // If SinglePred was a loop header, BB becomes one.
492 if (LoopHeaders.erase(SinglePred))
493 LoopHeaders.insert(BB);
494
Chris Lattner3d86d242008-11-27 19:25:19 +0000495 // Remember if SinglePred was the entry block of the function. If so, we
496 // will need to move BB back to the entry position.
497 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Owen Anderson00ac77e2010-08-18 18:39:01 +0000498 if (LVI) LVI->eraseBlock(SinglePred);
Chris Lattner69e067f2008-11-27 05:07:53 +0000499 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000500
501 if (isEntry && BB != &BB->getParent()->getEntryBlock())
502 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000503 return true;
504 }
Chris Lattner5729d382009-11-07 08:05:03 +0000505 }
506
507 // Look to see if the terminator is a branch of switch, if not we can't thread
508 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000509 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000510 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
511 // Can't thread an unconditional jump.
512 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000513 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000514 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000515 Condition = SI->getCondition();
516 else
517 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000518
519 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000520 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000521 // other blocks.
522 if (isa<ConstantInt>(Condition)) {
David Greenefe7fe662010-01-05 01:27:19 +0000523 DEBUG(dbgs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000524 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000525 ++NumFolds;
526 ConstantFoldTerminator(BB);
527 return true;
528 }
529
Chris Lattner421fa9e2008-12-03 07:48:08 +0000530 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000531 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000532 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000533 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000534
535 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000536 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000537 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000538 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000539 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000540 }
541
David Greenefe7fe662010-01-05 01:27:19 +0000542 DEBUG(dbgs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000543 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000544 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000545 BBTerm->eraseFromParent();
546 return true;
547 }
548
549 Instruction *CondInst = dyn_cast<Instruction>(Condition);
550
551 // If the condition is an instruction defined in another block, see if a
552 // predecessor has the same condition:
553 // br COND, BBX, BBY
554 // BBX:
555 // br COND, BBZ, BBW
Chris Lattner0e0ff292009-11-12 04:37:50 +0000556 if (!LVI &&
557 !Condition->hasOneUse() && // Multiple uses.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000558 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
559 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
560 if (isa<BranchInst>(BB->getTerminator())) {
Gabor Greifee1f44f2010-07-12 14:10:24 +0000561 for (; PI != E; ++PI) {
562 BasicBlock *P = *PI;
563 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
Chris Lattner421fa9e2008-12-03 07:48:08 +0000564 if (PBI->isConditional() && PBI->getCondition() == Condition &&
Gabor Greifee1f44f2010-07-12 14:10:24 +0000565 ProcessBranchOnDuplicateCond(P, BB))
Chris Lattner421fa9e2008-12-03 07:48:08 +0000566 return true;
Gabor Greifee1f44f2010-07-12 14:10:24 +0000567 }
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000568 } else {
569 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
Gabor Greifee1f44f2010-07-12 14:10:24 +0000570 for (; PI != E; ++PI) {
571 BasicBlock *P = *PI;
572 if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000573 if (PSI->getCondition() == Condition &&
Gabor Greifee1f44f2010-07-12 14:10:24 +0000574 ProcessSwitchOnDuplicateCond(P, BB))
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000575 return true;
Gabor Greifee1f44f2010-07-12 14:10:24 +0000576 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000577 }
578 }
579
Chris Lattner421fa9e2008-12-03 07:48:08 +0000580 // All the rest of our checks depend on the condition being an instruction.
Chris Lattner87e9f592009-11-12 01:41:34 +0000581 if (CondInst == 0) {
582 // FIXME: Unify this with code below.
583 if (LVI && ProcessThreadableEdges(Condition, BB))
584 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000585 return false;
Chris Lattner87e9f592009-11-12 01:41:34 +0000586 }
587
Chris Lattner421fa9e2008-12-03 07:48:08 +0000588
Nick Lewycky9683f182009-06-19 04:56:29 +0000589 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner0e0ff292009-11-12 04:37:50 +0000590 if (!LVI &&
591 (!isa<PHINode>(CondCmp->getOperand(0)) ||
592 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000593 // If we have a comparison, loop over the predecessors to see if there is
594 // a condition with a lexically identical value.
595 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
Gabor Greifee1f44f2010-07-12 14:10:24 +0000596 for (; PI != E; ++PI) {
597 BasicBlock *P = *PI;
598 if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
599 if (PBI->isConditional() && P != BB) {
Chris Lattner5729d382009-11-07 08:05:03 +0000600 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
601 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
602 CI->getOperand(1) == CondCmp->getOperand(1) &&
603 CI->getPredicate() == CondCmp->getPredicate()) {
604 // TODO: Could handle things like (x != 4) --> (x == 17)
Gabor Greifee1f44f2010-07-12 14:10:24 +0000605 if (ProcessBranchOnDuplicateCond(P, BB))
Chris Lattner5729d382009-11-07 08:05:03 +0000606 return true;
607 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000608 }
609 }
Gabor Greifee1f44f2010-07-12 14:10:24 +0000610 }
Chris Lattner5729d382009-11-07 08:05:03 +0000611 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000612 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000613
614 // Check for some cases that are worth simplifying. Right now we want to look
615 // for loads that are used by a switch or by the condition for the branch. If
616 // we see one, check to see if it's partially redundant. If so, insert a PHI
617 // which can then be used to thread the values.
618 //
Chris Lattner421fa9e2008-12-03 07:48:08 +0000619 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000620 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
621 if (isa<Constant>(CondCmp->getOperand(1)))
622 SimplifyValue = CondCmp->getOperand(0);
623
Chris Lattner4e447eb2009-11-15 19:58:31 +0000624 // TODO: There are other places where load PRE would be profitable, such as
625 // more complex comparisons.
Chris Lattner69e067f2008-11-27 05:07:53 +0000626 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
627 if (SimplifyPartiallyRedundantLoad(LI))
628 return true;
629
Chris Lattner5729d382009-11-07 08:05:03 +0000630
631 // Handle a variety of cases where we are branching on something derived from
632 // a PHI node in the current block. If we can prove that any predecessors
633 // compute a predictable value based on a PHI node, thread those predecessors.
634 //
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000635 if (ProcessThreadableEdges(CondInst, BB))
636 return true;
Chris Lattner5729d382009-11-07 08:05:03 +0000637
Chris Lattner77beb472010-01-11 23:41:09 +0000638 // If this is an otherwise-unfoldable branch on a phi node in the current
639 // block, see if we can simplify.
640 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
641 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
642 return ProcessBranchOnPHI(PN);
Chris Lattner5729d382009-11-07 08:05:03 +0000643
Chris Lattner2249a0b2010-01-12 02:07:17 +0000644
645 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
646 if (CondInst->getOpcode() == Instruction::Xor &&
647 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
648 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
649
650
Chris Lattner69e067f2008-11-27 05:07:53 +0000651 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
Chris Lattner77beb472010-01-11 23:41:09 +0000652 // "(X == 4)", thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000653
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000654 return false;
655}
656
Chris Lattner421fa9e2008-12-03 07:48:08 +0000657/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
658/// block that jump on exactly the same condition. This means that we almost
659/// always know the direction of the edge in the DESTBB:
660/// PREDBB:
661/// br COND, DESTBB, BBY
662/// DESTBB:
663/// br COND, BBZ, BBW
664///
665/// If DESTBB has multiple predecessors, we can't just constant fold the branch
666/// in DESTBB, we have to thread over it.
667bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
668 BasicBlock *BB) {
669 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
670
671 // If both successors of PredBB go to DESTBB, we don't know anything. We can
672 // fold the branch to an unconditional one, which allows other recursive
673 // simplifications.
674 bool BranchDir;
675 if (PredBI->getSuccessor(1) != BB)
676 BranchDir = true;
677 else if (PredBI->getSuccessor(0) != BB)
678 BranchDir = false;
679 else {
David Greenefe7fe662010-01-05 01:27:19 +0000680 DEBUG(dbgs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000681 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000682 ++NumFolds;
683 ConstantFoldTerminator(PredBB);
684 return true;
685 }
686
687 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
688
689 // If the dest block has one predecessor, just fix the branch condition to a
690 // constant and fold it.
691 if (BB->getSinglePredecessor()) {
David Greenefe7fe662010-01-05 01:27:19 +0000692 DEBUG(dbgs() << " In block '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000693 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000694 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000695 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000696 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000697 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
698 BranchDir));
Chris Lattner6f285d22010-04-10 18:26:57 +0000699 // Delete dead instructions before we fold the branch. Folding the branch
700 // can eliminate edges from the CFG which can end up deleting OldCond.
Chris Lattner5a06cf62009-10-11 18:39:58 +0000701 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner6f285d22010-04-10 18:26:57 +0000702 ConstantFoldTerminator(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000703 return true;
704 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000705
Chris Lattner421fa9e2008-12-03 07:48:08 +0000706
707 // Next, figure out which successor we are threading to.
708 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
709
Chris Lattner5729d382009-11-07 08:05:03 +0000710 SmallVector<BasicBlock*, 2> Preds;
711 Preds.push_back(PredBB);
712
Mike Stumpfe095f32009-05-04 18:40:41 +0000713 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000714 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000715}
716
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000717/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
718/// block that switch on exactly the same condition. This means that we almost
719/// always know the direction of the edge in the DESTBB:
720/// PREDBB:
721/// switch COND [... DESTBB, BBY ... ]
722/// DESTBB:
723/// switch COND [... BBZ, BBW ]
724///
725/// Optimizing switches like this is very important, because simplifycfg builds
726/// switches out of repeated 'if' conditions.
727bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
728 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000729 // Can't thread edge to self.
730 if (PredBB == DestBB)
731 return false;
732
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000733 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
734 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
735
736 // There are a variety of optimizations that we can potentially do on these
737 // blocks: we order them from most to least preferable.
738
739 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
740 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000741 // growth. Skip debug info first.
742 BasicBlock::iterator BBI = DestBB->begin();
743 while (isa<DbgInfoIntrinsic>(BBI))
744 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000745
746 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000747 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000748 bool MadeChange = false;
749 // Ignore the default edge for now.
750 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
751 ConstantInt *DestVal = DestSI->getCaseValue(i);
752 BasicBlock *DestSucc = DestSI->getSuccessor(i);
753
754 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
755 // PredSI has an explicit case for it. If so, forward. If it is covered
756 // by the default case, we can't update PredSI.
757 unsigned PredCase = PredSI->findCaseValue(DestVal);
758 if (PredCase == 0) continue;
759
760 // If PredSI doesn't go to DestBB on this value, then it won't reach the
761 // case on this condition.
762 if (PredSI->getSuccessor(PredCase) != DestBB &&
763 DestSI->getSuccessor(i) != DestBB)
764 continue;
Chris Lattner08bc2702009-12-06 17:17:23 +0000765
766 // Do not forward this if it already goes to this destination, this would
767 // be an infinite loop.
768 if (PredSI->getSuccessor(PredCase) == DestSucc)
769 continue;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000770
771 // Otherwise, we're safe to make the change. Make sure that the edge from
772 // DestSI to DestSucc is not critical and has no PHI nodes.
David Greenefe7fe662010-01-05 01:27:19 +0000773 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
774 DEBUG(dbgs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000775
776 // If the destination has PHI nodes, just split the edge for updating
777 // simplicity.
778 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
779 SplitCriticalEdge(DestSI, i, this);
780 DestSucc = DestSI->getSuccessor(i);
781 }
782 FoldSingleEntryPHINodes(DestSucc);
783 PredSI->setSuccessor(PredCase, DestSucc);
784 MadeChange = true;
785 }
786
787 if (MadeChange)
788 return true;
789 }
790
791 return false;
792}
793
794
Chris Lattner69e067f2008-11-27 05:07:53 +0000795/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
796/// load instruction, eliminate it by replacing it with a PHI node. This is an
797/// important optimization that encourages jump threading, and needs to be run
798/// interlaced with other jump threading tasks.
799bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
800 // Don't hack volatile loads.
801 if (LI->isVolatile()) return false;
802
803 // If the load is defined in a block with exactly one predecessor, it can't be
804 // partially redundant.
805 BasicBlock *LoadBB = LI->getParent();
806 if (LoadBB->getSinglePredecessor())
807 return false;
808
809 Value *LoadedPtr = LI->getOperand(0);
810
811 // If the loaded operand is defined in the LoadBB, it can't be available.
Chris Lattner4e447eb2009-11-15 19:58:31 +0000812 // TODO: Could do simple PHI translation, that would be fun :)
Chris Lattner69e067f2008-11-27 05:07:53 +0000813 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
814 if (PtrOp->getParent() == LoadBB)
815 return false;
816
817 // Scan a few instructions up from the load, to see if it is obviously live at
818 // the entry to its block.
819 BasicBlock::iterator BBIt = LI;
820
Chris Lattner4e447eb2009-11-15 19:58:31 +0000821 if (Value *AvailableVal =
822 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000823 // If the value if the load is locally available within the block, just use
824 // it. This frequently occurs for reg2mem'd allocas.
825 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000826
827 // If the returned value is the load itself, replace with an undef. This can
828 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000829 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000830 LI->replaceAllUsesWith(AvailableVal);
831 LI->eraseFromParent();
832 return true;
833 }
834
835 // Otherwise, if we scanned the whole block and got to the top of the block,
836 // we know the block is locally transparent to the load. If not, something
837 // might clobber its value.
838 if (BBIt != LoadBB->begin())
839 return false;
840
841
842 SmallPtrSet<BasicBlock*, 8> PredsScanned;
843 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
844 AvailablePredsTy AvailablePreds;
845 BasicBlock *OneUnavailablePred = 0;
846
847 // If we got here, the loaded value is transparent through to the start of the
848 // block. Check to see if it is available in any of the predecessor blocks.
849 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
850 PI != PE; ++PI) {
851 BasicBlock *PredBB = *PI;
852
853 // If we already scanned this predecessor, skip it.
854 if (!PredsScanned.insert(PredBB))
855 continue;
856
857 // Scan the predecessor to see if the value is available in the pred.
858 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000859 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000860 if (!PredAvailable) {
861 OneUnavailablePred = PredBB;
862 continue;
863 }
864
865 // If so, this load is partially redundant. Remember this info so that we
866 // can create a PHI node.
867 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
868 }
869
870 // If the loaded value isn't available in any predecessor, it isn't partially
871 // redundant.
872 if (AvailablePreds.empty()) return false;
873
874 // Okay, the loaded value is available in at least one (and maybe all!)
875 // predecessors. If the value is unavailable in more than one unique
876 // predecessor, we want to insert a merge block for those common predecessors.
877 // This ensures that we only have to insert one reload, thus not increasing
878 // code size.
879 BasicBlock *UnavailablePred = 0;
880
881 // If there is exactly one predecessor where the value is unavailable, the
882 // already computed 'OneUnavailablePred' block is it. If it ends in an
883 // unconditional branch, we know that it isn't a critical edge.
884 if (PredsScanned.size() == AvailablePreds.size()+1 &&
885 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
886 UnavailablePred = OneUnavailablePred;
887 } else if (PredsScanned.size() != AvailablePreds.size()) {
888 // Otherwise, we had multiple unavailable predecessors or we had a critical
889 // edge from the one.
890 SmallVector<BasicBlock*, 8> PredsToSplit;
891 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
892
893 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
894 AvailablePredSet.insert(AvailablePreds[i].first);
895
896 // Add all the unavailable predecessors to the PredsToSplit list.
897 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
Chris Lattnere58867e2010-06-14 19:45:43 +0000898 PI != PE; ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +0000899 BasicBlock *P = *PI;
Chris Lattnere58867e2010-06-14 19:45:43 +0000900 // If the predecessor is an indirect goto, we can't split the edge.
Gabor Greifee1f44f2010-07-12 14:10:24 +0000901 if (isa<IndirectBrInst>(P->getTerminator()))
Chris Lattnere58867e2010-06-14 19:45:43 +0000902 return false;
903
Gabor Greifee1f44f2010-07-12 14:10:24 +0000904 if (!AvailablePredSet.count(P))
905 PredsToSplit.push_back(P);
Chris Lattnere58867e2010-06-14 19:45:43 +0000906 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000907
908 // Split them out to their own block.
909 UnavailablePred =
910 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
Chris Lattner4e447eb2009-11-15 19:58:31 +0000911 "thread-pre-split", this);
Chris Lattner69e067f2008-11-27 05:07:53 +0000912 }
913
914 // If the value isn't available in all predecessors, then there will be
915 // exactly one where it isn't available. Insert a load on that edge and add
916 // it to the AvailablePreds list.
917 if (UnavailablePred) {
918 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
919 "Can't handle critical edge here!");
Chris Lattner4e447eb2009-11-15 19:58:31 +0000920 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
921 LI->getAlignment(),
Chris Lattner69e067f2008-11-27 05:07:53 +0000922 UnavailablePred->getTerminator());
923 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
924 }
925
926 // Now we know that each predecessor of this block has a value in
927 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000928 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000929
930 // Create a PHI node at the start of the block for the PRE'd load value.
931 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
932 PN->takeName(LI);
933
934 // Insert new entries into the PHI for each predecessor. A single block may
935 // have multiple entries here.
936 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
937 ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +0000938 BasicBlock *P = *PI;
Chris Lattner69e067f2008-11-27 05:07:53 +0000939 AvailablePredsTy::iterator I =
940 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
Gabor Greifee1f44f2010-07-12 14:10:24 +0000941 std::make_pair(P, (Value*)0));
Chris Lattner69e067f2008-11-27 05:07:53 +0000942
Gabor Greifee1f44f2010-07-12 14:10:24 +0000943 assert(I != AvailablePreds.end() && I->first == P &&
Chris Lattner69e067f2008-11-27 05:07:53 +0000944 "Didn't find entry for predecessor!");
945
946 PN->addIncoming(I->second, I->first);
947 }
948
949 //cerr << "PRE: " << *LI << *PN << "\n";
950
951 LI->replaceAllUsesWith(PN);
952 LI->eraseFromParent();
953
954 return true;
955}
956
Chris Lattner5729d382009-11-07 08:05:03 +0000957/// FindMostPopularDest - The specified list contains multiple possible
958/// threadable destinations. Pick the one that occurs the most frequently in
959/// the list.
960static BasicBlock *
961FindMostPopularDest(BasicBlock *BB,
962 const SmallVectorImpl<std::pair<BasicBlock*,
963 BasicBlock*> > &PredToDestList) {
964 assert(!PredToDestList.empty());
965
966 // Determine popularity. If there are multiple possible destinations, we
967 // explicitly choose to ignore 'undef' destinations. We prefer to thread
968 // blocks with known and real destinations to threading undef. We'll handle
969 // them later if interesting.
970 DenseMap<BasicBlock*, unsigned> DestPopularity;
971 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
972 if (PredToDestList[i].second)
973 DestPopularity[PredToDestList[i].second]++;
974
975 // Find the most popular dest.
976 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
977 BasicBlock *MostPopularDest = DPI->first;
978 unsigned Popularity = DPI->second;
979 SmallVector<BasicBlock*, 4> SamePopularity;
980
981 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
982 // If the popularity of this entry isn't higher than the popularity we've
983 // seen so far, ignore it.
984 if (DPI->second < Popularity)
985 ; // ignore.
986 else if (DPI->second == Popularity) {
987 // If it is the same as what we've seen so far, keep track of it.
988 SamePopularity.push_back(DPI->first);
989 } else {
990 // If it is more popular, remember it.
991 SamePopularity.clear();
992 MostPopularDest = DPI->first;
993 Popularity = DPI->second;
994 }
995 }
996
997 // Okay, now we know the most popular destination. If there is more than
998 // destination, we need to determine one. This is arbitrary, but we need
999 // to make a deterministic decision. Pick the first one that appears in the
1000 // successor list.
1001 if (!SamePopularity.empty()) {
1002 SamePopularity.push_back(MostPopularDest);
1003 TerminatorInst *TI = BB->getTerminator();
1004 for (unsigned i = 0; ; ++i) {
1005 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1006
1007 if (std::find(SamePopularity.begin(), SamePopularity.end(),
1008 TI->getSuccessor(i)) == SamePopularity.end())
1009 continue;
1010
1011 MostPopularDest = TI->getSuccessor(i);
1012 break;
1013 }
1014 }
1015
1016 // Okay, we have finally picked the most popular destination.
1017 return MostPopularDest;
1018}
1019
Chris Lattner1c96b412009-11-12 01:37:43 +00001020bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
Chris Lattner5729d382009-11-07 08:05:03 +00001021 // If threading this would thread across a loop header, don't even try to
1022 // thread the edge.
1023 if (LoopHeaders.count(BB))
1024 return false;
1025
Chris Lattner5729d382009-11-07 08:05:03 +00001026 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
Chris Lattner1c96b412009-11-12 01:37:43 +00001027 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
Chris Lattner5729d382009-11-07 08:05:03 +00001028 return false;
1029 assert(!PredValues.empty() &&
1030 "ComputeValueKnownInPredecessors returned true with no values");
1031
David Greenefe7fe662010-01-05 01:27:19 +00001032 DEBUG(dbgs() << "IN BB: " << *BB;
Chris Lattner5729d382009-11-07 08:05:03 +00001033 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
David Greenefe7fe662010-01-05 01:27:19 +00001034 dbgs() << " BB '" << BB->getName() << "': FOUND condition = ";
Chris Lattner5729d382009-11-07 08:05:03 +00001035 if (PredValues[i].first)
David Greenefe7fe662010-01-05 01:27:19 +00001036 dbgs() << *PredValues[i].first;
Chris Lattner5729d382009-11-07 08:05:03 +00001037 else
David Greenefe7fe662010-01-05 01:27:19 +00001038 dbgs() << "UNDEF";
1039 dbgs() << " for pred '" << PredValues[i].second->getName()
Chris Lattner5729d382009-11-07 08:05:03 +00001040 << "'.\n";
1041 });
1042
1043 // Decide what we want to thread through. Convert our list of known values to
1044 // a list of known destinations for each pred. This also discards duplicate
1045 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +00001046 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +00001047 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1048 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1049
1050 BasicBlock *OnlyDest = 0;
1051 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1052
1053 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1054 BasicBlock *Pred = PredValues[i].second;
1055 if (!SeenPreds.insert(Pred))
1056 continue; // Duplicate predecessor entry.
1057
1058 // If the predecessor ends with an indirect goto, we can't change its
1059 // destination.
1060 if (isa<IndirectBrInst>(Pred->getTerminator()))
1061 continue;
1062
1063 ConstantInt *Val = PredValues[i].first;
1064
1065 BasicBlock *DestBB;
1066 if (Val == 0) // Undef.
1067 DestBB = 0;
1068 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1069 DestBB = BI->getSuccessor(Val->isZero());
1070 else {
1071 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1072 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1073 }
1074
1075 // If we have exactly one destination, remember it for efficiency below.
1076 if (i == 0)
1077 OnlyDest = DestBB;
1078 else if (OnlyDest != DestBB)
1079 OnlyDest = MultipleDestSentinel;
1080
1081 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1082 }
1083
1084 // If all edges were unthreadable, we fail.
1085 if (PredToDestList.empty())
1086 return false;
1087
1088 // Determine which is the most common successor. If we have many inputs and
1089 // this block is a switch, we want to start by threading the batch that goes
1090 // to the most popular destination first. If we only know about one
1091 // threadable destination (the common case) we can avoid this.
1092 BasicBlock *MostPopularDest = OnlyDest;
1093
1094 if (MostPopularDest == MultipleDestSentinel)
1095 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1096
1097 // Now that we know what the most popular destination is, factor all
1098 // predecessors that will jump to it into a single predecessor.
1099 SmallVector<BasicBlock*, 16> PredsToFactor;
1100 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1101 if (PredToDestList[i].second == MostPopularDest) {
1102 BasicBlock *Pred = PredToDestList[i].first;
1103
1104 // This predecessor may be a switch or something else that has multiple
1105 // edges to the block. Factor each of these edges by listing them
1106 // according to # occurrences in PredsToFactor.
1107 TerminatorInst *PredTI = Pred->getTerminator();
1108 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1109 if (PredTI->getSuccessor(i) == BB)
1110 PredsToFactor.push_back(Pred);
1111 }
1112
1113 // If the threadable edges are branching on an undefined value, we get to pick
1114 // the destination that these predecessors should get to.
1115 if (MostPopularDest == 0)
1116 MostPopularDest = BB->getTerminator()->
1117 getSuccessor(GetBestDestForJumpOnUndef(BB));
1118
1119 // Ok, try to thread it!
1120 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1121}
Chris Lattner69e067f2008-11-27 05:07:53 +00001122
Chris Lattner77beb472010-01-11 23:41:09 +00001123/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1124/// a PHI node in the current block. See if there are any simplifications we
1125/// can do based on inputs to the phi node.
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001126///
Chris Lattner77beb472010-01-11 23:41:09 +00001127bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001128 BasicBlock *BB = PN->getParent();
1129
Chris Lattner2249a0b2010-01-12 02:07:17 +00001130 // TODO: We could make use of this to do it once for blocks with common PHI
1131 // values.
1132 SmallVector<BasicBlock*, 1> PredBBs;
1133 PredBBs.resize(1);
1134
Chris Lattner5729d382009-11-07 08:05:03 +00001135 // If any of the predecessor blocks end in an unconditional branch, we can
Chris Lattner77beb472010-01-11 23:41:09 +00001136 // *duplicate* the conditional branch into that block in order to further
1137 // encourage jump threading and to eliminate cases where we have branch on a
1138 // phi of an icmp (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001139 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1140 BasicBlock *PredBB = PN->getIncomingBlock(i);
1141 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
Chris Lattner2249a0b2010-01-12 02:07:17 +00001142 if (PredBr->isUnconditional()) {
1143 PredBBs[0] = PredBB;
1144 // Try to duplicate BB into PredBB.
1145 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1146 return true;
1147 }
Chris Lattner78c552e2009-10-11 07:24:57 +00001148 }
1149
Chris Lattner6b65f472009-10-11 04:40:21 +00001150 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001151}
1152
Chris Lattner2249a0b2010-01-12 02:07:17 +00001153/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1154/// a xor instruction in the current block. See if there are any
1155/// simplifications we can do based on inputs to the xor.
1156///
1157bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1158 BasicBlock *BB = BO->getParent();
1159
1160 // If either the LHS or RHS of the xor is a constant, don't do this
1161 // optimization.
1162 if (isa<ConstantInt>(BO->getOperand(0)) ||
1163 isa<ConstantInt>(BO->getOperand(1)))
1164 return false;
1165
Chris Lattner2dd76572010-01-23 19:16:25 +00001166 // If the first instruction in BB isn't a phi, we won't be able to infer
1167 // anything special about any particular predecessor.
1168 if (!isa<PHINode>(BB->front()))
1169 return false;
1170
Chris Lattner2249a0b2010-01-12 02:07:17 +00001171 // If we have a xor as the branch input to this block, and we know that the
1172 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1173 // the condition into the predecessor and fix that value to true, saving some
1174 // logical ops on that path and encouraging other paths to simplify.
1175 //
1176 // This copies something like this:
1177 //
1178 // BB:
1179 // %X = phi i1 [1], [%X']
1180 // %Y = icmp eq i32 %A, %B
1181 // %Z = xor i1 %X, %Y
1182 // br i1 %Z, ...
1183 //
1184 // Into:
1185 // BB':
1186 // %Y = icmp ne i32 %A, %B
1187 // br i1 %Z, ...
1188
1189 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1190 bool isLHS = true;
1191 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1192 assert(XorOpValues.empty());
1193 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1194 return false;
1195 isLHS = false;
1196 }
1197
1198 assert(!XorOpValues.empty() &&
1199 "ComputeValueKnownInPredecessors returned true with no values");
1200
1201 // Scan the information to see which is most popular: true or false. The
1202 // predecessors can be of the set true, false, or undef.
1203 unsigned NumTrue = 0, NumFalse = 0;
1204 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1205 if (!XorOpValues[i].first) continue; // Ignore undefs for the count.
1206 if (XorOpValues[i].first->isZero())
1207 ++NumFalse;
1208 else
1209 ++NumTrue;
1210 }
1211
1212 // Determine which value to split on, true, false, or undef if neither.
1213 ConstantInt *SplitVal = 0;
1214 if (NumTrue > NumFalse)
1215 SplitVal = ConstantInt::getTrue(BB->getContext());
1216 else if (NumTrue != 0 || NumFalse != 0)
1217 SplitVal = ConstantInt::getFalse(BB->getContext());
1218
1219 // Collect all of the blocks that this can be folded into so that we can
1220 // factor this once and clone it once.
1221 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1222 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1223 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1224
1225 BlocksToFoldInto.push_back(XorOpValues[i].second);
1226 }
1227
Chris Lattner2dd76572010-01-23 19:16:25 +00001228 // If we inferred a value for all of the predecessors, then duplication won't
1229 // help us. However, we can just replace the LHS or RHS with the constant.
1230 if (BlocksToFoldInto.size() ==
1231 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1232 if (SplitVal == 0) {
1233 // If all preds provide undef, just nuke the xor, because it is undef too.
1234 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1235 BO->eraseFromParent();
1236 } else if (SplitVal->isZero()) {
1237 // If all preds provide 0, replace the xor with the other input.
1238 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1239 BO->eraseFromParent();
1240 } else {
1241 // If all preds provide 1, set the computed value to 1.
1242 BO->setOperand(!isLHS, SplitVal);
1243 }
1244
1245 return true;
1246 }
1247
Chris Lattner2249a0b2010-01-12 02:07:17 +00001248 // Try to duplicate BB into PredBB.
Chris Lattner797c4402010-01-12 02:07:50 +00001249 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
Chris Lattner2249a0b2010-01-12 02:07:17 +00001250}
1251
1252
Chris Lattner78c552e2009-10-11 07:24:57 +00001253/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1254/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1255/// NewPred using the entries from OldPred (suitably mapped).
1256static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1257 BasicBlock *OldPred,
1258 BasicBlock *NewPred,
1259 DenseMap<Instruction*, Value*> &ValueMap) {
1260 for (BasicBlock::iterator PNI = PHIBB->begin();
1261 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1262 // Ok, we have a PHI node. Figure out what the incoming value was for the
1263 // DestBlock.
1264 Value *IV = PN->getIncomingValueForBlock(OldPred);
1265
1266 // Remap the value if necessary.
1267 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1268 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1269 if (I != ValueMap.end())
1270 IV = I->second;
1271 }
1272
1273 PN->addIncoming(IV, NewPred);
1274 }
1275}
Chris Lattner6bf77502008-04-22 07:05:46 +00001276
Chris Lattner5729d382009-11-07 08:05:03 +00001277/// ThreadEdge - We have decided that it is safe and profitable to factor the
1278/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1279/// across BB. Transform the IR to reflect this change.
1280bool JumpThreading::ThreadEdge(BasicBlock *BB,
1281 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001282 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001283 // If threading to the same block as we come from, we would infinite loop.
1284 if (SuccBB == BB) {
David Greenefe7fe662010-01-05 01:27:19 +00001285 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001286 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001287 return false;
1288 }
1289
1290 // If threading this would thread across a loop header, don't thread the edge.
1291 // See the comments above FindLoopHeaders for justifications and caveats.
1292 if (LoopHeaders.count(BB)) {
David Greenefe7fe662010-01-05 01:27:19 +00001293 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001294 << "' to dest BB '" << SuccBB->getName()
1295 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001296 return false;
1297 }
1298
Chris Lattner78c552e2009-10-11 07:24:57 +00001299 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1300 if (JumpThreadCost > Threshold) {
David Greenefe7fe662010-01-05 01:27:19 +00001301 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001302 << "' - Cost is too high: " << JumpThreadCost << "\n");
1303 return false;
1304 }
1305
Chris Lattner5729d382009-11-07 08:05:03 +00001306 // And finally, do it! Start by factoring the predecessors is needed.
1307 BasicBlock *PredBB;
1308 if (PredBBs.size() == 1)
1309 PredBB = PredBBs[0];
1310 else {
David Greenefe7fe662010-01-05 01:27:19 +00001311 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
Chris Lattner5729d382009-11-07 08:05:03 +00001312 << " common predecessors.\n");
1313 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1314 ".thr_comm", this);
1315 }
1316
Mike Stumpfe095f32009-05-04 18:40:41 +00001317 // And finally, do it!
David Greenefe7fe662010-01-05 01:27:19 +00001318 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001319 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001320 << ", across block:\n "
1321 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001322
Owen Andersoncfa7fb62010-07-26 18:48:03 +00001323 if (LVI)
1324 LVI->threadEdge(PredBB, BB, SuccBB);
1325
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001326 // We are going to have to map operands from the original BB block to the new
1327 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1328 // account for entry from PredBB.
1329 DenseMap<Instruction*, Value*> ValueMapping;
1330
Owen Anderson1d0be152009-08-13 21:58:54 +00001331 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1332 BB->getName()+".thread",
1333 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001334 NewBB->moveAfter(PredBB);
1335
1336 BasicBlock::iterator BI = BB->begin();
1337 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1338 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1339
1340 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1341 // mapping and using it to remap operands in the cloned instructions.
1342 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001343 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001344 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001345 NewBB->getInstList().push_back(New);
1346 ValueMapping[BI] = New;
1347
1348 // Remap operands to patch up intra-block references.
1349 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001350 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1351 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1352 if (I != ValueMapping.end())
1353 New->setOperand(i, I->second);
1354 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001355 }
1356
1357 // We didn't copy the terminator from BB over to NewBB, because there is now
1358 // an unconditional jump to SuccBB. Insert the unconditional jump.
1359 BranchInst::Create(SuccBB, NewBB);
1360
1361 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1362 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001363 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001364
Chris Lattner433a0db2009-10-10 09:05:58 +00001365 // If there were values defined in BB that are used outside the block, then we
1366 // now have to update all uses of the value to use either the original value,
1367 // the cloned value, or some PHI derived value. This can require arbitrary
1368 // PHI insertion, of which we are prepared to do, clean these up now.
1369 SSAUpdater SSAUpdate;
1370 SmallVector<Use*, 16> UsesToRename;
1371 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1372 // Scan all uses of this instruction to see if it is used outside of its
1373 // block, and if so, record them in UsesToRename.
1374 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1375 ++UI) {
1376 Instruction *User = cast<Instruction>(*UI);
1377 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1378 if (UserPN->getIncomingBlock(UI) == BB)
1379 continue;
1380 } else if (User->getParent() == BB)
1381 continue;
1382
1383 UsesToRename.push_back(&UI.getUse());
1384 }
1385
1386 // If there are no uses outside the block, we're done with this instruction.
1387 if (UsesToRename.empty())
1388 continue;
1389
David Greenefe7fe662010-01-05 01:27:19 +00001390 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
Chris Lattner433a0db2009-10-10 09:05:58 +00001391
1392 // We found a use of I outside of BB. Rename all uses of I that are outside
1393 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1394 // with the two values we know.
1395 SSAUpdate.Initialize(I);
1396 SSAUpdate.AddAvailableValue(BB, I);
1397 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1398
1399 while (!UsesToRename.empty())
1400 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
David Greenefe7fe662010-01-05 01:27:19 +00001401 DEBUG(dbgs() << "\n");
Chris Lattner433a0db2009-10-10 09:05:58 +00001402 }
1403
1404
Chris Lattneref0c6742008-12-01 04:48:07 +00001405 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001406 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1407 // us to simplify any PHI nodes in BB.
1408 TerminatorInst *PredTerm = PredBB->getTerminator();
1409 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1410 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001411 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001412 PredTerm->setSuccessor(i, NewBB);
1413 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001414
1415 // At this point, the IR is fully up to date and consistent. Do a quick scan
1416 // over the new instructions and zap any that are constants or dead. This
1417 // frequently happens because of phi translation.
Chris Lattner972a46c2010-01-12 20:41:47 +00001418 SimplifyInstructionsInBlock(NewBB, TD);
Mike Stumpfe095f32009-05-04 18:40:41 +00001419
1420 // Threaded an edge!
1421 ++NumThreads;
1422 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001423}
Chris Lattner78c552e2009-10-11 07:24:57 +00001424
1425/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1426/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1427/// If we can duplicate the contents of BB up into PredBB do so now, this
1428/// improves the odds that the branch will be on an analyzable instruction like
1429/// a compare.
1430bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
Chris Lattner2249a0b2010-01-12 02:07:17 +00001431 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1432 assert(!PredBBs.empty() && "Can't handle an empty set");
1433
Chris Lattner78c552e2009-10-11 07:24:57 +00001434 // If BB is a loop header, then duplicating this block outside the loop would
1435 // cause us to transform this into an irreducible loop, don't do this.
1436 // See the comments above FindLoopHeaders for justifications and caveats.
1437 if (LoopHeaders.count(BB)) {
David Greenefe7fe662010-01-05 01:27:19 +00001438 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
Chris Lattner2249a0b2010-01-12 02:07:17 +00001439 << "' into predecessor block '" << PredBBs[0]->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001440 << "' - it might create an irreducible loop!\n");
1441 return false;
1442 }
1443
1444 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1445 if (DuplicationCost > Threshold) {
David Greenefe7fe662010-01-05 01:27:19 +00001446 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001447 << "' - Cost is too high: " << DuplicationCost << "\n");
1448 return false;
1449 }
1450
Chris Lattner2249a0b2010-01-12 02:07:17 +00001451 // And finally, do it! Start by factoring the predecessors is needed.
1452 BasicBlock *PredBB;
1453 if (PredBBs.size() == 1)
1454 PredBB = PredBBs[0];
1455 else {
1456 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1457 << " common predecessors.\n");
1458 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1459 ".thr_comm", this);
1460 }
1461
Chris Lattner78c552e2009-10-11 07:24:57 +00001462 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1463 // of PredBB.
David Greenefe7fe662010-01-05 01:27:19 +00001464 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
Chris Lattner78c552e2009-10-11 07:24:57 +00001465 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1466 << DuplicationCost << " block is:" << *BB << "\n");
1467
Chris Lattner2249a0b2010-01-12 02:07:17 +00001468 // Unless PredBB ends with an unconditional branch, split the edge so that we
1469 // can just clone the bits from BB into the end of the new PredBB.
Chris Lattnerd6688392010-01-23 19:21:31 +00001470 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
Chris Lattner2249a0b2010-01-12 02:07:17 +00001471
Chris Lattnerd6688392010-01-23 19:21:31 +00001472 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
Chris Lattner2249a0b2010-01-12 02:07:17 +00001473 PredBB = SplitEdge(PredBB, BB, this);
1474 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1475 }
1476
Chris Lattner78c552e2009-10-11 07:24:57 +00001477 // We are going to have to map operands from the original BB block into the
1478 // PredBB block. Evaluate PHI nodes in BB.
1479 DenseMap<Instruction*, Value*> ValueMapping;
1480
1481 BasicBlock::iterator BI = BB->begin();
1482 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1483 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1484
Chris Lattner78c552e2009-10-11 07:24:57 +00001485 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1486 // mapping and using it to remap operands in the cloned instructions.
1487 for (; BI != BB->end(); ++BI) {
1488 Instruction *New = BI->clone();
Chris Lattner78c552e2009-10-11 07:24:57 +00001489
1490 // Remap operands to patch up intra-block references.
1491 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1492 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1493 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1494 if (I != ValueMapping.end())
1495 New->setOperand(i, I->second);
1496 }
Chris Lattner972a46c2010-01-12 20:41:47 +00001497
1498 // If this instruction can be simplified after the operands are updated,
1499 // just use the simplified value instead. This frequently happens due to
1500 // phi translation.
1501 if (Value *IV = SimplifyInstruction(New, TD)) {
1502 delete New;
1503 ValueMapping[BI] = IV;
1504 } else {
1505 // Otherwise, insert the new instruction into the block.
1506 New->setName(BI->getName());
1507 PredBB->getInstList().insert(OldPredBranch, New);
1508 ValueMapping[BI] = New;
1509 }
Chris Lattner78c552e2009-10-11 07:24:57 +00001510 }
1511
1512 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1513 // add entries to the PHI nodes for branch from PredBB now.
1514 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1515 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1516 ValueMapping);
1517 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1518 ValueMapping);
1519
1520 // If there were values defined in BB that are used outside the block, then we
1521 // now have to update all uses of the value to use either the original value,
1522 // the cloned value, or some PHI derived value. This can require arbitrary
1523 // PHI insertion, of which we are prepared to do, clean these up now.
1524 SSAUpdater SSAUpdate;
1525 SmallVector<Use*, 16> UsesToRename;
1526 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1527 // Scan all uses of this instruction to see if it is used outside of its
1528 // block, and if so, record them in UsesToRename.
1529 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1530 ++UI) {
1531 Instruction *User = cast<Instruction>(*UI);
1532 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1533 if (UserPN->getIncomingBlock(UI) == BB)
1534 continue;
1535 } else if (User->getParent() == BB)
1536 continue;
1537
1538 UsesToRename.push_back(&UI.getUse());
1539 }
1540
1541 // If there are no uses outside the block, we're done with this instruction.
1542 if (UsesToRename.empty())
1543 continue;
1544
David Greenefe7fe662010-01-05 01:27:19 +00001545 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
Chris Lattner78c552e2009-10-11 07:24:57 +00001546
1547 // We found a use of I outside of BB. Rename all uses of I that are outside
1548 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1549 // with the two values we know.
1550 SSAUpdate.Initialize(I);
1551 SSAUpdate.AddAvailableValue(BB, I);
1552 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1553
1554 while (!UsesToRename.empty())
1555 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
David Greenefe7fe662010-01-05 01:27:19 +00001556 DEBUG(dbgs() << "\n");
Chris Lattner78c552e2009-10-11 07:24:57 +00001557 }
1558
1559 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1560 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001561 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001562
1563 // Remove the unconditional branch at the end of the PredBB block.
1564 OldPredBranch->eraseFromParent();
1565
1566 ++NumDupes;
1567 return true;
1568}
1569
1570