blob: 0352c6e74e34edb951ec830e6eb14e8be97031bc [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000019#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc4d3b22009-11-11 02:08:33 +000020#include "llvm/Analysis/LazyValueInfo.h"
Dan Gohmandd9344f2010-05-28 16:19:17 +000021#include "llvm/Analysis/Loads.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000022#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000023#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000024#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000025#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000031#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000032#include "llvm/Support/Debug.h"
Chris Lattner56608462009-12-28 08:20:46 +000033#include "llvm/Support/ValueHandle.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000034#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000035using namespace llvm;
36
Chris Lattnerbd3401f2008-04-20 22:39:42 +000037STATISTIC(NumThreads, "Number of jumps threaded");
38STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000039STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000040
Chris Lattner177480b2008-04-20 21:13:06 +000041static cl::opt<unsigned>
42Threshold("jump-threading-threshold",
43 cl::desc("Max block size to duplicate for jump threading"),
44 cl::init(6), cl::Hidden);
45
Chris Lattnercc4d3b22009-11-11 02:08:33 +000046// Turn on use of LazyValueInfo.
47static cl::opt<bool>
48EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
49
50
51
Chris Lattner8383a7b2008-04-20 20:35:01 +000052namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000053 /// This pass performs 'jump threading', which looks at blocks that have
54 /// multiple predecessors and multiple successors. If one or more of the
55 /// predecessors of the block can be proven to always jump to one of the
56 /// successors, we forward the edge from the predecessor to the successor by
57 /// duplicating the contents of this block.
58 ///
59 /// An example of when this can occur is code like this:
60 ///
61 /// if () { ...
62 /// X = 4;
63 /// }
64 /// if (X < 3) {
65 ///
66 /// In this case, the unconditional branch at the end of the first if can be
67 /// revectored to the false side of the second if.
68 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000069 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000070 TargetData *TD;
Chris Lattnercc4d3b22009-11-11 02:08:33 +000071 LazyValueInfo *LVI;
Mike Stumpfe095f32009-05-04 18:40:41 +000072#ifdef NDEBUG
73 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
74#else
75 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
76#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000077 public:
78 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +000079 JumpThreading() : FunctionPass(&ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000080
81 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000082
Chris Lattnercc4d3b22009-11-11 02:08:33 +000083 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
84 if (EnableLVI)
85 AU.addRequired<LazyValueInfo>();
86 }
87
88 void FindLoopHeaders(Function &F);
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000089 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000090 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
91 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000092 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
Chris Lattner2249a0b2010-01-12 02:07:17 +000093 const SmallVectorImpl<BasicBlock *> &PredBBs);
Chris Lattner5729d382009-11-07 08:05:03 +000094
95 typedef SmallVectorImpl<std::pair<ConstantInt*,
96 BasicBlock*> > PredValueInfo;
97
98 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
99 PredValueInfo &Result);
Chris Lattner1c96b412009-11-12 01:37:43 +0000100 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +0000101
102
Chris Lattner421fa9e2008-12-03 07:48:08 +0000103 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000104 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +0000105
Chris Lattner77beb472010-01-11 23:41:09 +0000106 bool ProcessBranchOnPHI(PHINode *PN);
Chris Lattner2249a0b2010-01-12 02:07:17 +0000107 bool ProcessBranchOnXOR(BinaryOperator *BO);
Chris Lattner69e067f2008-11-27 05:07:53 +0000108
109 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +0000110 };
Chris Lattner8383a7b2008-04-20 20:35:01 +0000111}
112
Dan Gohman844731a2008-05-13 00:00:25 +0000113char JumpThreading::ID = 0;
114static RegisterPass<JumpThreading>
115X("jump-threading", "Jump Threading");
116
Chris Lattner8383a7b2008-04-20 20:35:01 +0000117// Public interface to the Jump Threading pass
118FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
119
120/// runOnFunction - Top level algorithm.
121///
122bool JumpThreading::runOnFunction(Function &F) {
David Greenefe7fe662010-01-05 01:27:19 +0000123 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000124 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000125 LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000126
Mike Stumpfe095f32009-05-04 18:40:41 +0000127 FindLoopHeaders(F);
128
Benjamin Kramer66b581e2010-01-07 13:50:07 +0000129 bool Changed, EverChanged = false;
130 do {
131 Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000132 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
133 BasicBlock *BB = I;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000134 // Thread all of the branches we can over this block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000135 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000136 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000137
138 ++I;
139
140 // If the block is trivially dead, zap it. This eliminates the successor
141 // edges which simplifies the CFG.
142 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000143 BB != &BB->getParent()->getEntryBlock()) {
David Greenefe7fe662010-01-05 01:27:19 +0000144 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000145 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000146 LoopHeaders.erase(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000147 DeleteDeadBlock(BB);
148 Changed = true;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000149 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
150 // Can't thread an unconditional jump, but if the block is "almost
151 // empty", we can replace uses of it with uses of the successor and make
152 // this dead.
153 if (BI->isUnconditional() &&
154 BB != &BB->getParent()->getEntryBlock()) {
155 BasicBlock::iterator BBI = BB->getFirstNonPHI();
156 // Ignore dbg intrinsics.
157 while (isa<DbgInfoIntrinsic>(BBI))
158 ++BBI;
159 // If the terminator is the only non-phi instruction, try to nuke it.
160 if (BBI->isTerminator()) {
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000161 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
162 // block, we have to make sure it isn't in the LoopHeaders set. We
Chris Lattner46875c02009-12-01 06:04:43 +0000163 // reinsert afterward if needed.
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000164 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
Chris Lattner46875c02009-12-01 06:04:43 +0000165 BasicBlock *Succ = BI->getSuccessor(0);
Chris Lattnerf3183f62009-11-10 21:40:01 +0000166
Chris Lattner46875c02009-12-01 06:04:43 +0000167 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
Chris Lattnerf3183f62009-11-10 21:40:01 +0000168 Changed = true;
Chris Lattner46875c02009-12-01 06:04:43 +0000169 // If we deleted BB and BB was the header of a loop, then the
170 // successor is now the header of the loop.
171 BB = Succ;
172 }
173
174 if (ErasedFromLoopHeaders)
Chris Lattnerf3183f62009-11-10 21:40:01 +0000175 LoopHeaders.insert(BB);
176 }
177 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000178 }
179 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000180 EverChanged |= Changed;
Benjamin Kramer66b581e2010-01-07 13:50:07 +0000181 } while (Changed);
Mike Stumpfe095f32009-05-04 18:40:41 +0000182
183 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000184 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000185}
Chris Lattner177480b2008-04-20 21:13:06 +0000186
Chris Lattner78c552e2009-10-11 07:24:57 +0000187/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
188/// thread across it.
189static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
190 /// Ignore PHI nodes, these will be flattened when duplication happens.
191 BasicBlock::const_iterator I = BB->getFirstNonPHI();
192
Chris Lattnerb14b88a2009-11-11 00:21:58 +0000193 // FIXME: THREADING will delete values that are just used to compute the
194 // branch, so they shouldn't count against the duplication cost.
195
196
Chris Lattner78c552e2009-10-11 07:24:57 +0000197 // Sum up the cost of each instruction until we get to the terminator. Don't
198 // include the terminator because the copy won't include it.
199 unsigned Size = 0;
200 for (; !isa<TerminatorInst>(I); ++I) {
201 // Debugger intrinsics don't incur code size.
202 if (isa<DbgInfoIntrinsic>(I)) continue;
203
204 // If this is a pointer->pointer bitcast, it is free.
Duncan Sands1df98592010-02-16 11:11:14 +0000205 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
Chris Lattner78c552e2009-10-11 07:24:57 +0000206 continue;
207
208 // All other instructions count for at least one unit.
209 ++Size;
210
211 // Calls are more expensive. If they are non-intrinsic calls, we model them
212 // as having cost of 4. If they are a non-vector intrinsic, we model them
213 // as having cost of 2 total, and if they are a vector intrinsic, we model
214 // them as having cost 1.
215 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
216 if (!isa<IntrinsicInst>(CI))
217 Size += 3;
Duncan Sands1df98592010-02-16 11:11:14 +0000218 else if (!CI->getType()->isVectorTy())
Chris Lattner78c552e2009-10-11 07:24:57 +0000219 Size += 1;
220 }
221 }
222
223 // Threading through a switch statement is particularly profitable. If this
224 // block ends in a switch, decrease its cost to make it more likely to happen.
225 if (isa<SwitchInst>(I))
226 Size = Size > 6 ? Size-6 : 0;
227
228 return Size;
229}
230
Mike Stumpfe095f32009-05-04 18:40:41 +0000231/// FindLoopHeaders - We do not want jump threading to turn proper loop
232/// structures into irreducible loops. Doing this breaks up the loop nesting
233/// hierarchy and pessimizes later transformations. To prevent this from
234/// happening, we first have to find the loop headers. Here we approximate this
235/// by finding targets of backedges in the CFG.
236///
237/// Note that there definitely are cases when we want to allow threading of
238/// edges across a loop header. For example, threading a jump from outside the
239/// loop (the preheader) to an exit block of the loop is definitely profitable.
240/// It is also almost always profitable to thread backedges from within the loop
241/// to exit blocks, and is often profitable to thread backedges to other blocks
242/// within the loop (forming a nested loop). This simple analysis is not rich
243/// enough to track all of these properties and keep it up-to-date as the CFG
244/// mutates, so we don't allow any of these transformations.
245///
246void JumpThreading::FindLoopHeaders(Function &F) {
247 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
248 FindFunctionBackedges(F, Edges);
249
250 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
251 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
252}
253
Chris Lattner5729d382009-11-07 08:05:03 +0000254/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
255/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000256/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000257/// result vector. If a value is known to be undef, it is returned as null.
258///
Chris Lattner5729d382009-11-07 08:05:03 +0000259/// This returns true if there were any known values.
260///
Chris Lattner5729d382009-11-07 08:05:03 +0000261bool JumpThreading::
262ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
Chris Lattner5729d382009-11-07 08:05:03 +0000263 // If V is a constantint, then it is known in all predecessors.
264 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
265 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000266
267 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
268 Result.push_back(std::make_pair(CI, *PI));
Chris Lattner5729d382009-11-07 08:05:03 +0000269 return true;
270 }
271
272 // If V is a non-instruction value, or an instruction in a different block,
273 // then it can't be derived from a PHI.
274 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000275 if (I == 0 || I->getParent() != BB) {
276
277 // Okay, if this is a live-in value, see if it has a known value at the end
278 // of any of our predecessors.
279 //
280 // FIXME: This should be an edge property, not a block end property.
281 /// TODO: Per PR2563, we could infer value range information about a
282 /// predecessor based on its terminator.
283 //
284 if (LVI) {
Chris Lattnerf496e792009-11-12 04:57:13 +0000285 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
286 // "I" is a non-local compare-with-a-constant instruction. This would be
287 // able to handle value inequalities better, for example if the compare is
288 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
289 // Perhaps getConstantOnEdge should be smart enough to do this?
290
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000291 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
292 // If the value is known by LazyValueInfo to be a constant in a
293 // predecessor, use that information to try to thread this block.
Chris Lattner38392bb2009-11-12 01:29:10 +0000294 Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000295 if (PredCst == 0 ||
296 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
297 continue;
298
299 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
300 }
301
302 return !Result.empty();
303 }
304
Chris Lattner5729d382009-11-07 08:05:03 +0000305 return false;
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000306 }
Chris Lattner5729d382009-11-07 08:05:03 +0000307
308 /// If I is a PHI node, then we know the incoming values for any constants.
309 if (PHINode *PN = dyn_cast<PHINode>(I)) {
310 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
311 Value *InVal = PN->getIncomingValue(i);
312 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
313 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
314 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
315 }
316 }
317 return !Result.empty();
318 }
319
320 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
321
322 // Handle some boolean conditions.
323 if (I->getType()->getPrimitiveSizeInBits() == 1) {
324 // X | true -> true
325 // X & false -> false
326 if (I->getOpcode() == Instruction::Or ||
327 I->getOpcode() == Instruction::And) {
328 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
329 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
330
331 if (LHSVals.empty() && RHSVals.empty())
332 return false;
333
334 ConstantInt *InterestingVal;
335 if (I->getOpcode() == Instruction::Or)
336 InterestingVal = ConstantInt::getTrue(I->getContext());
337 else
338 InterestingVal = ConstantInt::getFalse(I->getContext());
339
Chris Lattner1e452652010-02-11 04:40:44 +0000340 // Scan for the sentinel. If we find an undef, force it to the
341 // interesting value: x|undef -> true and x&undef -> false.
Chris Lattner5729d382009-11-07 08:05:03 +0000342 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
Chris Lattner1e452652010-02-11 04:40:44 +0000343 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
Chris Lattner5729d382009-11-07 08:05:03 +0000344 Result.push_back(LHSVals[i]);
Chris Lattner1e452652010-02-11 04:40:44 +0000345 Result.back().first = InterestingVal;
346 }
Chris Lattner5729d382009-11-07 08:05:03 +0000347 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
Chris Lattner1e452652010-02-11 04:40:44 +0000348 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
Chris Lattner5729d382009-11-07 08:05:03 +0000349 Result.push_back(RHSVals[i]);
Chris Lattner1e452652010-02-11 04:40:44 +0000350 Result.back().first = InterestingVal;
351 }
Chris Lattner5729d382009-11-07 08:05:03 +0000352 return !Result.empty();
353 }
354
Chris Lattner055d0462009-11-10 22:39:16 +0000355 // Handle the NOT form of XOR.
356 if (I->getOpcode() == Instruction::Xor &&
357 isa<ConstantInt>(I->getOperand(1)) &&
358 cast<ConstantInt>(I->getOperand(1))->isOne()) {
359 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
360 if (Result.empty())
361 return false;
362
363 // Invert the known values.
364 for (unsigned i = 0, e = Result.size(); i != e; ++i)
Chris Lattner1fb56302009-11-15 19:57:43 +0000365 if (Result[i].first)
366 Result[i].first =
367 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
Chris Lattner055d0462009-11-10 22:39:16 +0000368 return true;
369 }
Chris Lattner5729d382009-11-07 08:05:03 +0000370 }
371
372 // Handle compare with phi operand, where the PHI is defined in this block.
373 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
374 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
375 if (PN && PN->getParent() == BB) {
376 // We can do this simplification if any comparisons fold to true or false.
377 // See if any do.
378 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
379 BasicBlock *PredBB = PN->getIncomingBlock(i);
380 Value *LHS = PN->getIncomingValue(i);
381 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
382
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000383 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
Chris Lattner66c04c42009-11-12 05:24:05 +0000384 if (Res == 0) {
385 if (!LVI || !isa<Constant>(RHS))
386 continue;
387
388 LazyValueInfo::Tristate
389 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
390 cast<Constant>(RHS), PredBB, BB);
391 if (ResT == LazyValueInfo::Unknown)
392 continue;
393 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
394 }
Chris Lattner5729d382009-11-07 08:05:03 +0000395
396 if (isa<UndefValue>(Res))
397 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
398 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
399 Result.push_back(std::make_pair(CI, PredBB));
400 }
401
402 return !Result.empty();
403 }
404
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000405
406 // If comparing a live-in value against a constant, see if we know the
407 // live-in value on any predecessors.
408 if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000409 Cmp->getType()->isIntegerTy() && // Not vector compare.
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000410 (!isa<Instruction>(Cmp->getOperand(0)) ||
411 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
412 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
413
414 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
415 // If the value is known by LazyValueInfo to be a constant in a
416 // predecessor, use that information to try to thread this block.
Chris Lattner0e0ff292009-11-12 04:37:50 +0000417 LazyValueInfo::Tristate
418 Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
419 RHSCst, *PI, BB);
420 if (Res == LazyValueInfo::Unknown)
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000421 continue;
Chris Lattner0e0ff292009-11-12 04:37:50 +0000422
423 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
424 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000425 }
426
427 return !Result.empty();
428 }
Chris Lattner5729d382009-11-07 08:05:03 +0000429 }
430 return false;
431}
432
433
Chris Lattner6bf77502008-04-22 07:05:46 +0000434
Chris Lattnere33583b2009-10-11 04:18:15 +0000435/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
436/// in an undefined jump, decide which block is best to revector to.
437///
438/// Since we can pick an arbitrary destination, we pick the successor with the
439/// fewest predecessors. This should reduce the in-degree of the others.
440///
441static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
442 TerminatorInst *BBTerm = BB->getTerminator();
443 unsigned MinSucc = 0;
444 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
445 // Compute the successor with the minimum number of predecessors.
446 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
447 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
448 TestBB = BBTerm->getSuccessor(i);
449 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
450 if (NumPreds < MinNumPreds)
451 MinSucc = i;
452 }
453
454 return MinSucc;
455}
456
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000457/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000458/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000459bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner8231fd12010-01-23 18:56:07 +0000460 // If the block is trivially dead, just return and let the caller nuke it.
461 // This simplifies other transformations.
462 if (pred_begin(BB) == pred_end(BB) &&
463 BB != &BB->getParent()->getEntryBlock())
464 return false;
465
Chris Lattner69e067f2008-11-27 05:07:53 +0000466 // If this block has a single predecessor, and if that pred has a single
467 // successor, merge the blocks. This encourages recursive jump threading
468 // because now the condition in this block can be threaded through
469 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000470 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000471 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
472 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000473 // If SinglePred was a loop header, BB becomes one.
474 if (LoopHeaders.erase(SinglePred))
475 LoopHeaders.insert(BB);
476
Chris Lattner3d86d242008-11-27 19:25:19 +0000477 // Remember if SinglePred was the entry block of the function. If so, we
478 // will need to move BB back to the entry position.
479 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattner69e067f2008-11-27 05:07:53 +0000480 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000481
482 if (isEntry && BB != &BB->getParent()->getEntryBlock())
483 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000484 return true;
485 }
Chris Lattner5729d382009-11-07 08:05:03 +0000486 }
487
488 // Look to see if the terminator is a branch of switch, if not we can't thread
489 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000490 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000491 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
492 // Can't thread an unconditional jump.
493 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000494 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000495 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000496 Condition = SI->getCondition();
497 else
498 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000499
500 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000501 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000502 // other blocks.
503 if (isa<ConstantInt>(Condition)) {
David Greenefe7fe662010-01-05 01:27:19 +0000504 DEBUG(dbgs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000505 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000506 ++NumFolds;
507 ConstantFoldTerminator(BB);
508 return true;
509 }
510
Chris Lattner421fa9e2008-12-03 07:48:08 +0000511 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000512 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000513 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000514 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000515
516 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000517 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000518 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000519 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000520 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000521 }
522
David Greenefe7fe662010-01-05 01:27:19 +0000523 DEBUG(dbgs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000524 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000525 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000526 BBTerm->eraseFromParent();
527 return true;
528 }
529
530 Instruction *CondInst = dyn_cast<Instruction>(Condition);
531
532 // If the condition is an instruction defined in another block, see if a
533 // predecessor has the same condition:
534 // br COND, BBX, BBY
535 // BBX:
536 // br COND, BBZ, BBW
Chris Lattner0e0ff292009-11-12 04:37:50 +0000537 if (!LVI &&
538 !Condition->hasOneUse() && // Multiple uses.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000539 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
540 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
541 if (isa<BranchInst>(BB->getTerminator())) {
542 for (; PI != E; ++PI)
543 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
544 if (PBI->isConditional() && PBI->getCondition() == Condition &&
545 ProcessBranchOnDuplicateCond(*PI, BB))
546 return true;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000547 } else {
548 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
549 for (; PI != E; ++PI)
550 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
551 if (PSI->getCondition() == Condition &&
552 ProcessSwitchOnDuplicateCond(*PI, BB))
553 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000554 }
555 }
556
Chris Lattner421fa9e2008-12-03 07:48:08 +0000557 // All the rest of our checks depend on the condition being an instruction.
Chris Lattner87e9f592009-11-12 01:41:34 +0000558 if (CondInst == 0) {
559 // FIXME: Unify this with code below.
560 if (LVI && ProcessThreadableEdges(Condition, BB))
561 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000562 return false;
Chris Lattner87e9f592009-11-12 01:41:34 +0000563 }
564
Chris Lattner421fa9e2008-12-03 07:48:08 +0000565
Nick Lewycky9683f182009-06-19 04:56:29 +0000566 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner0e0ff292009-11-12 04:37:50 +0000567 if (!LVI &&
568 (!isa<PHINode>(CondCmp->getOperand(0)) ||
569 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000570 // If we have a comparison, loop over the predecessors to see if there is
571 // a condition with a lexically identical value.
572 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
573 for (; PI != E; ++PI)
574 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
575 if (PBI->isConditional() && *PI != BB) {
576 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
577 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
578 CI->getOperand(1) == CondCmp->getOperand(1) &&
579 CI->getPredicate() == CondCmp->getPredicate()) {
580 // TODO: Could handle things like (x != 4) --> (x == 17)
581 if (ProcessBranchOnDuplicateCond(*PI, BB))
582 return true;
583 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000584 }
585 }
Chris Lattner5729d382009-11-07 08:05:03 +0000586 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000587 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000588
589 // Check for some cases that are worth simplifying. Right now we want to look
590 // for loads that are used by a switch or by the condition for the branch. If
591 // we see one, check to see if it's partially redundant. If so, insert a PHI
592 // which can then be used to thread the values.
593 //
Chris Lattner421fa9e2008-12-03 07:48:08 +0000594 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000595 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
596 if (isa<Constant>(CondCmp->getOperand(1)))
597 SimplifyValue = CondCmp->getOperand(0);
598
Chris Lattner4e447eb2009-11-15 19:58:31 +0000599 // TODO: There are other places where load PRE would be profitable, such as
600 // more complex comparisons.
Chris Lattner69e067f2008-11-27 05:07:53 +0000601 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
602 if (SimplifyPartiallyRedundantLoad(LI))
603 return true;
604
Chris Lattner5729d382009-11-07 08:05:03 +0000605
606 // Handle a variety of cases where we are branching on something derived from
607 // a PHI node in the current block. If we can prove that any predecessors
608 // compute a predictable value based on a PHI node, thread those predecessors.
609 //
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000610 if (ProcessThreadableEdges(CondInst, BB))
611 return true;
Chris Lattner5729d382009-11-07 08:05:03 +0000612
Chris Lattner77beb472010-01-11 23:41:09 +0000613 // If this is an otherwise-unfoldable branch on a phi node in the current
614 // block, see if we can simplify.
615 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
616 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
617 return ProcessBranchOnPHI(PN);
Chris Lattner5729d382009-11-07 08:05:03 +0000618
Chris Lattner2249a0b2010-01-12 02:07:17 +0000619
620 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
621 if (CondInst->getOpcode() == Instruction::Xor &&
622 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
623 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
624
625
Chris Lattner69e067f2008-11-27 05:07:53 +0000626 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
Chris Lattner77beb472010-01-11 23:41:09 +0000627 // "(X == 4)", thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000628
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000629 return false;
630}
631
Chris Lattner421fa9e2008-12-03 07:48:08 +0000632/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
633/// block that jump on exactly the same condition. This means that we almost
634/// always know the direction of the edge in the DESTBB:
635/// PREDBB:
636/// br COND, DESTBB, BBY
637/// DESTBB:
638/// br COND, BBZ, BBW
639///
640/// If DESTBB has multiple predecessors, we can't just constant fold the branch
641/// in DESTBB, we have to thread over it.
642bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
643 BasicBlock *BB) {
644 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
645
646 // If both successors of PredBB go to DESTBB, we don't know anything. We can
647 // fold the branch to an unconditional one, which allows other recursive
648 // simplifications.
649 bool BranchDir;
650 if (PredBI->getSuccessor(1) != BB)
651 BranchDir = true;
652 else if (PredBI->getSuccessor(0) != BB)
653 BranchDir = false;
654 else {
David Greenefe7fe662010-01-05 01:27:19 +0000655 DEBUG(dbgs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000656 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000657 ++NumFolds;
658 ConstantFoldTerminator(PredBB);
659 return true;
660 }
661
662 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
663
664 // If the dest block has one predecessor, just fix the branch condition to a
665 // constant and fold it.
666 if (BB->getSinglePredecessor()) {
David Greenefe7fe662010-01-05 01:27:19 +0000667 DEBUG(dbgs() << " In block '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000668 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000669 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000670 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000671 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000672 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
673 BranchDir));
Chris Lattner6f285d22010-04-10 18:26:57 +0000674 // Delete dead instructions before we fold the branch. Folding the branch
675 // can eliminate edges from the CFG which can end up deleting OldCond.
Chris Lattner5a06cf62009-10-11 18:39:58 +0000676 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner6f285d22010-04-10 18:26:57 +0000677 ConstantFoldTerminator(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000678 return true;
679 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000680
Chris Lattner421fa9e2008-12-03 07:48:08 +0000681
682 // Next, figure out which successor we are threading to.
683 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
684
Chris Lattner5729d382009-11-07 08:05:03 +0000685 SmallVector<BasicBlock*, 2> Preds;
686 Preds.push_back(PredBB);
687
Mike Stumpfe095f32009-05-04 18:40:41 +0000688 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000689 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000690}
691
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000692/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
693/// block that switch on exactly the same condition. This means that we almost
694/// always know the direction of the edge in the DESTBB:
695/// PREDBB:
696/// switch COND [... DESTBB, BBY ... ]
697/// DESTBB:
698/// switch COND [... BBZ, BBW ]
699///
700/// Optimizing switches like this is very important, because simplifycfg builds
701/// switches out of repeated 'if' conditions.
702bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
703 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000704 // Can't thread edge to self.
705 if (PredBB == DestBB)
706 return false;
707
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000708 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
709 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
710
711 // There are a variety of optimizations that we can potentially do on these
712 // blocks: we order them from most to least preferable.
713
714 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
715 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000716 // growth. Skip debug info first.
717 BasicBlock::iterator BBI = DestBB->begin();
718 while (isa<DbgInfoIntrinsic>(BBI))
719 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000720
721 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000722 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000723 bool MadeChange = false;
724 // Ignore the default edge for now.
725 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
726 ConstantInt *DestVal = DestSI->getCaseValue(i);
727 BasicBlock *DestSucc = DestSI->getSuccessor(i);
728
729 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
730 // PredSI has an explicit case for it. If so, forward. If it is covered
731 // by the default case, we can't update PredSI.
732 unsigned PredCase = PredSI->findCaseValue(DestVal);
733 if (PredCase == 0) continue;
734
735 // If PredSI doesn't go to DestBB on this value, then it won't reach the
736 // case on this condition.
737 if (PredSI->getSuccessor(PredCase) != DestBB &&
738 DestSI->getSuccessor(i) != DestBB)
739 continue;
Chris Lattner08bc2702009-12-06 17:17:23 +0000740
741 // Do not forward this if it already goes to this destination, this would
742 // be an infinite loop.
743 if (PredSI->getSuccessor(PredCase) == DestSucc)
744 continue;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000745
746 // Otherwise, we're safe to make the change. Make sure that the edge from
747 // DestSI to DestSucc is not critical and has no PHI nodes.
David Greenefe7fe662010-01-05 01:27:19 +0000748 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
749 DEBUG(dbgs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000750
751 // If the destination has PHI nodes, just split the edge for updating
752 // simplicity.
753 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
754 SplitCriticalEdge(DestSI, i, this);
755 DestSucc = DestSI->getSuccessor(i);
756 }
757 FoldSingleEntryPHINodes(DestSucc);
758 PredSI->setSuccessor(PredCase, DestSucc);
759 MadeChange = true;
760 }
761
762 if (MadeChange)
763 return true;
764 }
765
766 return false;
767}
768
769
Chris Lattner69e067f2008-11-27 05:07:53 +0000770/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
771/// load instruction, eliminate it by replacing it with a PHI node. This is an
772/// important optimization that encourages jump threading, and needs to be run
773/// interlaced with other jump threading tasks.
774bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
775 // Don't hack volatile loads.
776 if (LI->isVolatile()) return false;
777
778 // If the load is defined in a block with exactly one predecessor, it can't be
779 // partially redundant.
780 BasicBlock *LoadBB = LI->getParent();
781 if (LoadBB->getSinglePredecessor())
782 return false;
783
784 Value *LoadedPtr = LI->getOperand(0);
785
786 // If the loaded operand is defined in the LoadBB, it can't be available.
Chris Lattner4e447eb2009-11-15 19:58:31 +0000787 // TODO: Could do simple PHI translation, that would be fun :)
Chris Lattner69e067f2008-11-27 05:07:53 +0000788 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
789 if (PtrOp->getParent() == LoadBB)
790 return false;
791
792 // Scan a few instructions up from the load, to see if it is obviously live at
793 // the entry to its block.
794 BasicBlock::iterator BBIt = LI;
795
Chris Lattner4e447eb2009-11-15 19:58:31 +0000796 if (Value *AvailableVal =
797 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000798 // If the value if the load is locally available within the block, just use
799 // it. This frequently occurs for reg2mem'd allocas.
800 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000801
802 // If the returned value is the load itself, replace with an undef. This can
803 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000804 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000805 LI->replaceAllUsesWith(AvailableVal);
806 LI->eraseFromParent();
807 return true;
808 }
809
810 // Otherwise, if we scanned the whole block and got to the top of the block,
811 // we know the block is locally transparent to the load. If not, something
812 // might clobber its value.
813 if (BBIt != LoadBB->begin())
814 return false;
815
816
817 SmallPtrSet<BasicBlock*, 8> PredsScanned;
818 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
819 AvailablePredsTy AvailablePreds;
820 BasicBlock *OneUnavailablePred = 0;
821
822 // If we got here, the loaded value is transparent through to the start of the
823 // block. Check to see if it is available in any of the predecessor blocks.
824 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
825 PI != PE; ++PI) {
826 BasicBlock *PredBB = *PI;
827
828 // If we already scanned this predecessor, skip it.
829 if (!PredsScanned.insert(PredBB))
830 continue;
831
832 // Scan the predecessor to see if the value is available in the pred.
833 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000834 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000835 if (!PredAvailable) {
836 OneUnavailablePred = PredBB;
837 continue;
838 }
839
840 // If so, this load is partially redundant. Remember this info so that we
841 // can create a PHI node.
842 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
843 }
844
845 // If the loaded value isn't available in any predecessor, it isn't partially
846 // redundant.
847 if (AvailablePreds.empty()) return false;
848
849 // Okay, the loaded value is available in at least one (and maybe all!)
850 // predecessors. If the value is unavailable in more than one unique
851 // predecessor, we want to insert a merge block for those common predecessors.
852 // This ensures that we only have to insert one reload, thus not increasing
853 // code size.
854 BasicBlock *UnavailablePred = 0;
855
856 // If there is exactly one predecessor where the value is unavailable, the
857 // already computed 'OneUnavailablePred' block is it. If it ends in an
858 // unconditional branch, we know that it isn't a critical edge.
859 if (PredsScanned.size() == AvailablePreds.size()+1 &&
860 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
861 UnavailablePred = OneUnavailablePred;
862 } else if (PredsScanned.size() != AvailablePreds.size()) {
863 // Otherwise, we had multiple unavailable predecessors or we had a critical
864 // edge from the one.
865 SmallVector<BasicBlock*, 8> PredsToSplit;
866 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
867
868 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
869 AvailablePredSet.insert(AvailablePreds[i].first);
870
871 // Add all the unavailable predecessors to the PredsToSplit list.
872 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
873 PI != PE; ++PI)
874 if (!AvailablePredSet.count(*PI))
875 PredsToSplit.push_back(*PI);
876
877 // Split them out to their own block.
878 UnavailablePred =
879 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
Chris Lattner4e447eb2009-11-15 19:58:31 +0000880 "thread-pre-split", this);
Chris Lattner69e067f2008-11-27 05:07:53 +0000881 }
882
883 // If the value isn't available in all predecessors, then there will be
884 // exactly one where it isn't available. Insert a load on that edge and add
885 // it to the AvailablePreds list.
886 if (UnavailablePred) {
887 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
888 "Can't handle critical edge here!");
Chris Lattner4e447eb2009-11-15 19:58:31 +0000889 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
890 LI->getAlignment(),
Chris Lattner69e067f2008-11-27 05:07:53 +0000891 UnavailablePred->getTerminator());
892 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
893 }
894
895 // Now we know that each predecessor of this block has a value in
896 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000897 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000898
899 // Create a PHI node at the start of the block for the PRE'd load value.
900 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
901 PN->takeName(LI);
902
903 // Insert new entries into the PHI for each predecessor. A single block may
904 // have multiple entries here.
905 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
906 ++PI) {
907 AvailablePredsTy::iterator I =
908 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
909 std::make_pair(*PI, (Value*)0));
910
911 assert(I != AvailablePreds.end() && I->first == *PI &&
912 "Didn't find entry for predecessor!");
913
914 PN->addIncoming(I->second, I->first);
915 }
916
917 //cerr << "PRE: " << *LI << *PN << "\n";
918
919 LI->replaceAllUsesWith(PN);
920 LI->eraseFromParent();
921
922 return true;
923}
924
Chris Lattner5729d382009-11-07 08:05:03 +0000925/// FindMostPopularDest - The specified list contains multiple possible
926/// threadable destinations. Pick the one that occurs the most frequently in
927/// the list.
928static BasicBlock *
929FindMostPopularDest(BasicBlock *BB,
930 const SmallVectorImpl<std::pair<BasicBlock*,
931 BasicBlock*> > &PredToDestList) {
932 assert(!PredToDestList.empty());
933
934 // Determine popularity. If there are multiple possible destinations, we
935 // explicitly choose to ignore 'undef' destinations. We prefer to thread
936 // blocks with known and real destinations to threading undef. We'll handle
937 // them later if interesting.
938 DenseMap<BasicBlock*, unsigned> DestPopularity;
939 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
940 if (PredToDestList[i].second)
941 DestPopularity[PredToDestList[i].second]++;
942
943 // Find the most popular dest.
944 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
945 BasicBlock *MostPopularDest = DPI->first;
946 unsigned Popularity = DPI->second;
947 SmallVector<BasicBlock*, 4> SamePopularity;
948
949 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
950 // If the popularity of this entry isn't higher than the popularity we've
951 // seen so far, ignore it.
952 if (DPI->second < Popularity)
953 ; // ignore.
954 else if (DPI->second == Popularity) {
955 // If it is the same as what we've seen so far, keep track of it.
956 SamePopularity.push_back(DPI->first);
957 } else {
958 // If it is more popular, remember it.
959 SamePopularity.clear();
960 MostPopularDest = DPI->first;
961 Popularity = DPI->second;
962 }
963 }
964
965 // Okay, now we know the most popular destination. If there is more than
966 // destination, we need to determine one. This is arbitrary, but we need
967 // to make a deterministic decision. Pick the first one that appears in the
968 // successor list.
969 if (!SamePopularity.empty()) {
970 SamePopularity.push_back(MostPopularDest);
971 TerminatorInst *TI = BB->getTerminator();
972 for (unsigned i = 0; ; ++i) {
973 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
974
975 if (std::find(SamePopularity.begin(), SamePopularity.end(),
976 TI->getSuccessor(i)) == SamePopularity.end())
977 continue;
978
979 MostPopularDest = TI->getSuccessor(i);
980 break;
981 }
982 }
983
984 // Okay, we have finally picked the most popular destination.
985 return MostPopularDest;
986}
987
Chris Lattner1c96b412009-11-12 01:37:43 +0000988bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
Chris Lattner5729d382009-11-07 08:05:03 +0000989 // If threading this would thread across a loop header, don't even try to
990 // thread the edge.
991 if (LoopHeaders.count(BB))
992 return false;
993
Chris Lattner5729d382009-11-07 08:05:03 +0000994 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
Chris Lattner1c96b412009-11-12 01:37:43 +0000995 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
Chris Lattner5729d382009-11-07 08:05:03 +0000996 return false;
997 assert(!PredValues.empty() &&
998 "ComputeValueKnownInPredecessors returned true with no values");
999
David Greenefe7fe662010-01-05 01:27:19 +00001000 DEBUG(dbgs() << "IN BB: " << *BB;
Chris Lattner5729d382009-11-07 08:05:03 +00001001 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
David Greenefe7fe662010-01-05 01:27:19 +00001002 dbgs() << " BB '" << BB->getName() << "': FOUND condition = ";
Chris Lattner5729d382009-11-07 08:05:03 +00001003 if (PredValues[i].first)
David Greenefe7fe662010-01-05 01:27:19 +00001004 dbgs() << *PredValues[i].first;
Chris Lattner5729d382009-11-07 08:05:03 +00001005 else
David Greenefe7fe662010-01-05 01:27:19 +00001006 dbgs() << "UNDEF";
1007 dbgs() << " for pred '" << PredValues[i].second->getName()
Chris Lattner5729d382009-11-07 08:05:03 +00001008 << "'.\n";
1009 });
1010
1011 // Decide what we want to thread through. Convert our list of known values to
1012 // a list of known destinations for each pred. This also discards duplicate
1013 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +00001014 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +00001015 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1016 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1017
1018 BasicBlock *OnlyDest = 0;
1019 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1020
1021 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1022 BasicBlock *Pred = PredValues[i].second;
1023 if (!SeenPreds.insert(Pred))
1024 continue; // Duplicate predecessor entry.
1025
1026 // If the predecessor ends with an indirect goto, we can't change its
1027 // destination.
1028 if (isa<IndirectBrInst>(Pred->getTerminator()))
1029 continue;
1030
1031 ConstantInt *Val = PredValues[i].first;
1032
1033 BasicBlock *DestBB;
1034 if (Val == 0) // Undef.
1035 DestBB = 0;
1036 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1037 DestBB = BI->getSuccessor(Val->isZero());
1038 else {
1039 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1040 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1041 }
1042
1043 // If we have exactly one destination, remember it for efficiency below.
1044 if (i == 0)
1045 OnlyDest = DestBB;
1046 else if (OnlyDest != DestBB)
1047 OnlyDest = MultipleDestSentinel;
1048
1049 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1050 }
1051
1052 // If all edges were unthreadable, we fail.
1053 if (PredToDestList.empty())
1054 return false;
1055
1056 // Determine which is the most common successor. If we have many inputs and
1057 // this block is a switch, we want to start by threading the batch that goes
1058 // to the most popular destination first. If we only know about one
1059 // threadable destination (the common case) we can avoid this.
1060 BasicBlock *MostPopularDest = OnlyDest;
1061
1062 if (MostPopularDest == MultipleDestSentinel)
1063 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1064
1065 // Now that we know what the most popular destination is, factor all
1066 // predecessors that will jump to it into a single predecessor.
1067 SmallVector<BasicBlock*, 16> PredsToFactor;
1068 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1069 if (PredToDestList[i].second == MostPopularDest) {
1070 BasicBlock *Pred = PredToDestList[i].first;
1071
1072 // This predecessor may be a switch or something else that has multiple
1073 // edges to the block. Factor each of these edges by listing them
1074 // according to # occurrences in PredsToFactor.
1075 TerminatorInst *PredTI = Pred->getTerminator();
1076 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1077 if (PredTI->getSuccessor(i) == BB)
1078 PredsToFactor.push_back(Pred);
1079 }
1080
1081 // If the threadable edges are branching on an undefined value, we get to pick
1082 // the destination that these predecessors should get to.
1083 if (MostPopularDest == 0)
1084 MostPopularDest = BB->getTerminator()->
1085 getSuccessor(GetBestDestForJumpOnUndef(BB));
1086
1087 // Ok, try to thread it!
1088 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1089}
Chris Lattner69e067f2008-11-27 05:07:53 +00001090
Chris Lattner77beb472010-01-11 23:41:09 +00001091/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1092/// a PHI node in the current block. See if there are any simplifications we
1093/// can do based on inputs to the phi node.
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001094///
Chris Lattner77beb472010-01-11 23:41:09 +00001095bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001096 BasicBlock *BB = PN->getParent();
1097
Chris Lattner2249a0b2010-01-12 02:07:17 +00001098 // TODO: We could make use of this to do it once for blocks with common PHI
1099 // values.
1100 SmallVector<BasicBlock*, 1> PredBBs;
1101 PredBBs.resize(1);
1102
Chris Lattner5729d382009-11-07 08:05:03 +00001103 // If any of the predecessor blocks end in an unconditional branch, we can
Chris Lattner77beb472010-01-11 23:41:09 +00001104 // *duplicate* the conditional branch into that block in order to further
1105 // encourage jump threading and to eliminate cases where we have branch on a
1106 // phi of an icmp (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001107 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1108 BasicBlock *PredBB = PN->getIncomingBlock(i);
1109 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
Chris Lattner2249a0b2010-01-12 02:07:17 +00001110 if (PredBr->isUnconditional()) {
1111 PredBBs[0] = PredBB;
1112 // Try to duplicate BB into PredBB.
1113 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1114 return true;
1115 }
Chris Lattner78c552e2009-10-11 07:24:57 +00001116 }
1117
Chris Lattner6b65f472009-10-11 04:40:21 +00001118 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001119}
1120
Chris Lattner2249a0b2010-01-12 02:07:17 +00001121/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1122/// a xor instruction in the current block. See if there are any
1123/// simplifications we can do based on inputs to the xor.
1124///
1125bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1126 BasicBlock *BB = BO->getParent();
1127
1128 // If either the LHS or RHS of the xor is a constant, don't do this
1129 // optimization.
1130 if (isa<ConstantInt>(BO->getOperand(0)) ||
1131 isa<ConstantInt>(BO->getOperand(1)))
1132 return false;
1133
Chris Lattner2dd76572010-01-23 19:16:25 +00001134 // If the first instruction in BB isn't a phi, we won't be able to infer
1135 // anything special about any particular predecessor.
1136 if (!isa<PHINode>(BB->front()))
1137 return false;
1138
Chris Lattner2249a0b2010-01-12 02:07:17 +00001139 // If we have a xor as the branch input to this block, and we know that the
1140 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1141 // the condition into the predecessor and fix that value to true, saving some
1142 // logical ops on that path and encouraging other paths to simplify.
1143 //
1144 // This copies something like this:
1145 //
1146 // BB:
1147 // %X = phi i1 [1], [%X']
1148 // %Y = icmp eq i32 %A, %B
1149 // %Z = xor i1 %X, %Y
1150 // br i1 %Z, ...
1151 //
1152 // Into:
1153 // BB':
1154 // %Y = icmp ne i32 %A, %B
1155 // br i1 %Z, ...
1156
1157 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1158 bool isLHS = true;
1159 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1160 assert(XorOpValues.empty());
1161 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1162 return false;
1163 isLHS = false;
1164 }
1165
1166 assert(!XorOpValues.empty() &&
1167 "ComputeValueKnownInPredecessors returned true with no values");
1168
1169 // Scan the information to see which is most popular: true or false. The
1170 // predecessors can be of the set true, false, or undef.
1171 unsigned NumTrue = 0, NumFalse = 0;
1172 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1173 if (!XorOpValues[i].first) continue; // Ignore undefs for the count.
1174 if (XorOpValues[i].first->isZero())
1175 ++NumFalse;
1176 else
1177 ++NumTrue;
1178 }
1179
1180 // Determine which value to split on, true, false, or undef if neither.
1181 ConstantInt *SplitVal = 0;
1182 if (NumTrue > NumFalse)
1183 SplitVal = ConstantInt::getTrue(BB->getContext());
1184 else if (NumTrue != 0 || NumFalse != 0)
1185 SplitVal = ConstantInt::getFalse(BB->getContext());
1186
1187 // Collect all of the blocks that this can be folded into so that we can
1188 // factor this once and clone it once.
1189 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1190 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1191 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1192
1193 BlocksToFoldInto.push_back(XorOpValues[i].second);
1194 }
1195
Chris Lattner2dd76572010-01-23 19:16:25 +00001196 // If we inferred a value for all of the predecessors, then duplication won't
1197 // help us. However, we can just replace the LHS or RHS with the constant.
1198 if (BlocksToFoldInto.size() ==
1199 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1200 if (SplitVal == 0) {
1201 // If all preds provide undef, just nuke the xor, because it is undef too.
1202 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1203 BO->eraseFromParent();
1204 } else if (SplitVal->isZero()) {
1205 // If all preds provide 0, replace the xor with the other input.
1206 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1207 BO->eraseFromParent();
1208 } else {
1209 // If all preds provide 1, set the computed value to 1.
1210 BO->setOperand(!isLHS, SplitVal);
1211 }
1212
1213 return true;
1214 }
1215
Chris Lattner2249a0b2010-01-12 02:07:17 +00001216 // Try to duplicate BB into PredBB.
Chris Lattner797c4402010-01-12 02:07:50 +00001217 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
Chris Lattner2249a0b2010-01-12 02:07:17 +00001218}
1219
1220
Chris Lattner78c552e2009-10-11 07:24:57 +00001221/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1222/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1223/// NewPred using the entries from OldPred (suitably mapped).
1224static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1225 BasicBlock *OldPred,
1226 BasicBlock *NewPred,
1227 DenseMap<Instruction*, Value*> &ValueMap) {
1228 for (BasicBlock::iterator PNI = PHIBB->begin();
1229 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1230 // Ok, we have a PHI node. Figure out what the incoming value was for the
1231 // DestBlock.
1232 Value *IV = PN->getIncomingValueForBlock(OldPred);
1233
1234 // Remap the value if necessary.
1235 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1236 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1237 if (I != ValueMap.end())
1238 IV = I->second;
1239 }
1240
1241 PN->addIncoming(IV, NewPred);
1242 }
1243}
Chris Lattner6bf77502008-04-22 07:05:46 +00001244
Chris Lattner5729d382009-11-07 08:05:03 +00001245/// ThreadEdge - We have decided that it is safe and profitable to factor the
1246/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1247/// across BB. Transform the IR to reflect this change.
1248bool JumpThreading::ThreadEdge(BasicBlock *BB,
1249 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001250 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001251 // If threading to the same block as we come from, we would infinite loop.
1252 if (SuccBB == BB) {
David Greenefe7fe662010-01-05 01:27:19 +00001253 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001254 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001255 return false;
1256 }
1257
1258 // If threading this would thread across a loop header, don't thread the edge.
1259 // See the comments above FindLoopHeaders for justifications and caveats.
1260 if (LoopHeaders.count(BB)) {
David Greenefe7fe662010-01-05 01:27:19 +00001261 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001262 << "' to dest BB '" << SuccBB->getName()
1263 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001264 return false;
1265 }
1266
Chris Lattner78c552e2009-10-11 07:24:57 +00001267 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1268 if (JumpThreadCost > Threshold) {
David Greenefe7fe662010-01-05 01:27:19 +00001269 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001270 << "' - Cost is too high: " << JumpThreadCost << "\n");
1271 return false;
1272 }
1273
Chris Lattner5729d382009-11-07 08:05:03 +00001274 // And finally, do it! Start by factoring the predecessors is needed.
1275 BasicBlock *PredBB;
1276 if (PredBBs.size() == 1)
1277 PredBB = PredBBs[0];
1278 else {
David Greenefe7fe662010-01-05 01:27:19 +00001279 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
Chris Lattner5729d382009-11-07 08:05:03 +00001280 << " common predecessors.\n");
1281 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1282 ".thr_comm", this);
1283 }
1284
Mike Stumpfe095f32009-05-04 18:40:41 +00001285 // And finally, do it!
David Greenefe7fe662010-01-05 01:27:19 +00001286 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001287 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001288 << ", across block:\n "
1289 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001290
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001291 // We are going to have to map operands from the original BB block to the new
1292 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1293 // account for entry from PredBB.
1294 DenseMap<Instruction*, Value*> ValueMapping;
1295
Owen Anderson1d0be152009-08-13 21:58:54 +00001296 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1297 BB->getName()+".thread",
1298 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001299 NewBB->moveAfter(PredBB);
1300
1301 BasicBlock::iterator BI = BB->begin();
1302 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1303 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1304
1305 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1306 // mapping and using it to remap operands in the cloned instructions.
1307 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001308 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001309 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001310 NewBB->getInstList().push_back(New);
1311 ValueMapping[BI] = New;
1312
1313 // Remap operands to patch up intra-block references.
1314 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001315 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1316 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1317 if (I != ValueMapping.end())
1318 New->setOperand(i, I->second);
1319 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001320 }
1321
1322 // We didn't copy the terminator from BB over to NewBB, because there is now
1323 // an unconditional jump to SuccBB. Insert the unconditional jump.
1324 BranchInst::Create(SuccBB, NewBB);
1325
1326 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1327 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001328 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001329
Chris Lattner433a0db2009-10-10 09:05:58 +00001330 // If there were values defined in BB that are used outside the block, then we
1331 // now have to update all uses of the value to use either the original value,
1332 // the cloned value, or some PHI derived value. This can require arbitrary
1333 // PHI insertion, of which we are prepared to do, clean these up now.
1334 SSAUpdater SSAUpdate;
1335 SmallVector<Use*, 16> UsesToRename;
1336 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1337 // Scan all uses of this instruction to see if it is used outside of its
1338 // block, and if so, record them in UsesToRename.
1339 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1340 ++UI) {
1341 Instruction *User = cast<Instruction>(*UI);
1342 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1343 if (UserPN->getIncomingBlock(UI) == BB)
1344 continue;
1345 } else if (User->getParent() == BB)
1346 continue;
1347
1348 UsesToRename.push_back(&UI.getUse());
1349 }
1350
1351 // If there are no uses outside the block, we're done with this instruction.
1352 if (UsesToRename.empty())
1353 continue;
1354
David Greenefe7fe662010-01-05 01:27:19 +00001355 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
Chris Lattner433a0db2009-10-10 09:05:58 +00001356
1357 // We found a use of I outside of BB. Rename all uses of I that are outside
1358 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1359 // with the two values we know.
1360 SSAUpdate.Initialize(I);
1361 SSAUpdate.AddAvailableValue(BB, I);
1362 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1363
1364 while (!UsesToRename.empty())
1365 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
David Greenefe7fe662010-01-05 01:27:19 +00001366 DEBUG(dbgs() << "\n");
Chris Lattner433a0db2009-10-10 09:05:58 +00001367 }
1368
1369
Chris Lattneref0c6742008-12-01 04:48:07 +00001370 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001371 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1372 // us to simplify any PHI nodes in BB.
1373 TerminatorInst *PredTerm = PredBB->getTerminator();
1374 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1375 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001376 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001377 PredTerm->setSuccessor(i, NewBB);
1378 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001379
1380 // At this point, the IR is fully up to date and consistent. Do a quick scan
1381 // over the new instructions and zap any that are constants or dead. This
1382 // frequently happens because of phi translation.
Chris Lattner972a46c2010-01-12 20:41:47 +00001383 SimplifyInstructionsInBlock(NewBB, TD);
Mike Stumpfe095f32009-05-04 18:40:41 +00001384
1385 // Threaded an edge!
1386 ++NumThreads;
1387 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001388}
Chris Lattner78c552e2009-10-11 07:24:57 +00001389
1390/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1391/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1392/// If we can duplicate the contents of BB up into PredBB do so now, this
1393/// improves the odds that the branch will be on an analyzable instruction like
1394/// a compare.
1395bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
Chris Lattner2249a0b2010-01-12 02:07:17 +00001396 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1397 assert(!PredBBs.empty() && "Can't handle an empty set");
1398
Chris Lattner78c552e2009-10-11 07:24:57 +00001399 // If BB is a loop header, then duplicating this block outside the loop would
1400 // cause us to transform this into an irreducible loop, don't do this.
1401 // See the comments above FindLoopHeaders for justifications and caveats.
1402 if (LoopHeaders.count(BB)) {
David Greenefe7fe662010-01-05 01:27:19 +00001403 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
Chris Lattner2249a0b2010-01-12 02:07:17 +00001404 << "' into predecessor block '" << PredBBs[0]->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001405 << "' - it might create an irreducible loop!\n");
1406 return false;
1407 }
1408
1409 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1410 if (DuplicationCost > Threshold) {
David Greenefe7fe662010-01-05 01:27:19 +00001411 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001412 << "' - Cost is too high: " << DuplicationCost << "\n");
1413 return false;
1414 }
1415
Chris Lattner2249a0b2010-01-12 02:07:17 +00001416 // And finally, do it! Start by factoring the predecessors is needed.
1417 BasicBlock *PredBB;
1418 if (PredBBs.size() == 1)
1419 PredBB = PredBBs[0];
1420 else {
1421 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1422 << " common predecessors.\n");
1423 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1424 ".thr_comm", this);
1425 }
1426
Chris Lattner78c552e2009-10-11 07:24:57 +00001427 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1428 // of PredBB.
David Greenefe7fe662010-01-05 01:27:19 +00001429 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
Chris Lattner78c552e2009-10-11 07:24:57 +00001430 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1431 << DuplicationCost << " block is:" << *BB << "\n");
1432
Chris Lattner2249a0b2010-01-12 02:07:17 +00001433 // Unless PredBB ends with an unconditional branch, split the edge so that we
1434 // can just clone the bits from BB into the end of the new PredBB.
Chris Lattnerd6688392010-01-23 19:21:31 +00001435 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
Chris Lattner2249a0b2010-01-12 02:07:17 +00001436
Chris Lattnerd6688392010-01-23 19:21:31 +00001437 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
Chris Lattner2249a0b2010-01-12 02:07:17 +00001438 PredBB = SplitEdge(PredBB, BB, this);
1439 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1440 }
1441
Chris Lattner78c552e2009-10-11 07:24:57 +00001442 // We are going to have to map operands from the original BB block into the
1443 // PredBB block. Evaluate PHI nodes in BB.
1444 DenseMap<Instruction*, Value*> ValueMapping;
1445
1446 BasicBlock::iterator BI = BB->begin();
1447 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1448 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1449
Chris Lattner78c552e2009-10-11 07:24:57 +00001450 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1451 // mapping and using it to remap operands in the cloned instructions.
1452 for (; BI != BB->end(); ++BI) {
1453 Instruction *New = BI->clone();
Chris Lattner78c552e2009-10-11 07:24:57 +00001454
1455 // Remap operands to patch up intra-block references.
1456 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1457 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1458 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1459 if (I != ValueMapping.end())
1460 New->setOperand(i, I->second);
1461 }
Chris Lattner972a46c2010-01-12 20:41:47 +00001462
1463 // If this instruction can be simplified after the operands are updated,
1464 // just use the simplified value instead. This frequently happens due to
1465 // phi translation.
1466 if (Value *IV = SimplifyInstruction(New, TD)) {
1467 delete New;
1468 ValueMapping[BI] = IV;
1469 } else {
1470 // Otherwise, insert the new instruction into the block.
1471 New->setName(BI->getName());
1472 PredBB->getInstList().insert(OldPredBranch, New);
1473 ValueMapping[BI] = New;
1474 }
Chris Lattner78c552e2009-10-11 07:24:57 +00001475 }
1476
1477 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1478 // add entries to the PHI nodes for branch from PredBB now.
1479 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1480 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1481 ValueMapping);
1482 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1483 ValueMapping);
1484
1485 // If there were values defined in BB that are used outside the block, then we
1486 // now have to update all uses of the value to use either the original value,
1487 // the cloned value, or some PHI derived value. This can require arbitrary
1488 // PHI insertion, of which we are prepared to do, clean these up now.
1489 SSAUpdater SSAUpdate;
1490 SmallVector<Use*, 16> UsesToRename;
1491 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1492 // Scan all uses of this instruction to see if it is used outside of its
1493 // block, and if so, record them in UsesToRename.
1494 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1495 ++UI) {
1496 Instruction *User = cast<Instruction>(*UI);
1497 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1498 if (UserPN->getIncomingBlock(UI) == BB)
1499 continue;
1500 } else if (User->getParent() == BB)
1501 continue;
1502
1503 UsesToRename.push_back(&UI.getUse());
1504 }
1505
1506 // If there are no uses outside the block, we're done with this instruction.
1507 if (UsesToRename.empty())
1508 continue;
1509
David Greenefe7fe662010-01-05 01:27:19 +00001510 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
Chris Lattner78c552e2009-10-11 07:24:57 +00001511
1512 // We found a use of I outside of BB. Rename all uses of I that are outside
1513 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1514 // with the two values we know.
1515 SSAUpdate.Initialize(I);
1516 SSAUpdate.AddAvailableValue(BB, I);
1517 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1518
1519 while (!UsesToRename.empty())
1520 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
David Greenefe7fe662010-01-05 01:27:19 +00001521 DEBUG(dbgs() << "\n");
Chris Lattner78c552e2009-10-11 07:24:57 +00001522 }
1523
1524 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1525 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001526 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001527
1528 // Remove the unconditional branch at the end of the PredBB block.
1529 OldPredBranch->eraseFromParent();
1530
1531 ++NumDupes;
1532 return true;
1533}
1534
1535