blob: c833de51576884aaaa88f3742f3a12287e1bc2a6 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
213 assert(false && "Duplicated entries?");
214 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
215 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
216 std::make_pair(RegOp, AuxInfo))))
217 AmbEntries.push_back(MemOp);
218 }
219
220 // If the third value is 1, then it's folding either a load or a store.
221 static const unsigned OpTbl0[][3] = {
222 { X86::CALL32r, X86::CALL32m, 1 },
223 { X86::CALL64r, X86::CALL64m, 1 },
224 { X86::CMP16ri, X86::CMP16mi, 1 },
225 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000226 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000227 { X86::CMP32ri, X86::CMP32mi, 1 },
228 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000229 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000230 { X86::CMP64ri32, X86::CMP64mi32, 1 },
231 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000232 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000233 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::DIV16r, X86::DIV16m, 1 },
236 { X86::DIV32r, X86::DIV32m, 1 },
237 { X86::DIV64r, X86::DIV64m, 1 },
238 { X86::DIV8r, X86::DIV8m, 1 },
239 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
240 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
241 { X86::IDIV16r, X86::IDIV16m, 1 },
242 { X86::IDIV32r, X86::IDIV32m, 1 },
243 { X86::IDIV64r, X86::IDIV64m, 1 },
244 { X86::IDIV8r, X86::IDIV8m, 1 },
245 { X86::IMUL16r, X86::IMUL16m, 1 },
246 { X86::IMUL32r, X86::IMUL32m, 1 },
247 { X86::IMUL64r, X86::IMUL64m, 1 },
248 { X86::IMUL8r, X86::IMUL8m, 1 },
249 { X86::JMP32r, X86::JMP32m, 1 },
250 { X86::JMP64r, X86::JMP64m, 1 },
251 { X86::MOV16ri, X86::MOV16mi, 0 },
252 { X86::MOV16rr, X86::MOV16mr, 0 },
253 { X86::MOV16to16_, X86::MOV16_mr, 0 },
254 { X86::MOV32ri, X86::MOV32mi, 0 },
255 { X86::MOV32rr, X86::MOV32mr, 0 },
256 { X86::MOV32to32_, X86::MOV32_mr, 0 },
257 { X86::MOV64ri32, X86::MOV64mi32, 0 },
258 { X86::MOV64rr, X86::MOV64mr, 0 },
259 { X86::MOV8ri, X86::MOV8mi, 0 },
260 { X86::MOV8rr, X86::MOV8mr, 0 },
261 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
262 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
263 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
264 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
265 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
266 { X86::MOVSDrr, X86::MOVSDmr, 0 },
267 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
268 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
269 { X86::MOVSSrr, X86::MOVSSmr, 0 },
270 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
271 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
272 { X86::MUL16r, X86::MUL16m, 1 },
273 { X86::MUL32r, X86::MUL32m, 1 },
274 { X86::MUL64r, X86::MUL64m, 1 },
275 { X86::MUL8r, X86::MUL8m, 1 },
276 { X86::SETAEr, X86::SETAEm, 0 },
277 { X86::SETAr, X86::SETAm, 0 },
278 { X86::SETBEr, X86::SETBEm, 0 },
279 { X86::SETBr, X86::SETBm, 0 },
280 { X86::SETEr, X86::SETEm, 0 },
281 { X86::SETGEr, X86::SETGEm, 0 },
282 { X86::SETGr, X86::SETGm, 0 },
283 { X86::SETLEr, X86::SETLEm, 0 },
284 { X86::SETLr, X86::SETLm, 0 },
285 { X86::SETNEr, X86::SETNEm, 0 },
286 { X86::SETNPr, X86::SETNPm, 0 },
287 { X86::SETNSr, X86::SETNSm, 0 },
288 { X86::SETPr, X86::SETPm, 0 },
289 { X86::SETSr, X86::SETSm, 0 },
290 { X86::TAILJMPr, X86::TAILJMPm, 1 },
291 { X86::TEST16ri, X86::TEST16mi, 1 },
292 { X86::TEST32ri, X86::TEST32mi, 1 },
293 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000294 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000295 };
296
297 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
298 unsigned RegOp = OpTbl0[i][0];
299 unsigned MemOp = OpTbl0[i][1];
300 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
301 assert(false && "Duplicated entries?");
302 unsigned FoldedLoad = OpTbl0[i][2];
303 // Index 0, folded load or store.
304 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
305 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
306 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
307 std::make_pair(RegOp, AuxInfo))))
308 AmbEntries.push_back(MemOp);
309 }
310
311 static const unsigned OpTbl1[][2] = {
312 { X86::CMP16rr, X86::CMP16rm },
313 { X86::CMP32rr, X86::CMP32rm },
314 { X86::CMP64rr, X86::CMP64rm },
315 { X86::CMP8rr, X86::CMP8rm },
316 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
317 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
318 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
319 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
320 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
321 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
322 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
323 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
324 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
325 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
326 { X86::FsMOVAPDrr, X86::MOVSDrm },
327 { X86::FsMOVAPSrr, X86::MOVSSrm },
328 { X86::IMUL16rri, X86::IMUL16rmi },
329 { X86::IMUL16rri8, X86::IMUL16rmi8 },
330 { X86::IMUL32rri, X86::IMUL32rmi },
331 { X86::IMUL32rri8, X86::IMUL32rmi8 },
332 { X86::IMUL64rri32, X86::IMUL64rmi32 },
333 { X86::IMUL64rri8, X86::IMUL64rmi8 },
334 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
335 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
336 { X86::Int_COMISDrr, X86::Int_COMISDrm },
337 { X86::Int_COMISSrr, X86::Int_COMISSrm },
338 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
339 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
340 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
341 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
342 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
343 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
344 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
345 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
346 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
347 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
348 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
349 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
350 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
351 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
352 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
353 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
354 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
355 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
356 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
357 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
358 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
359 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
360 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
361 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
362 { X86::MOV16rr, X86::MOV16rm },
363 { X86::MOV16to16_, X86::MOV16_rm },
364 { X86::MOV32rr, X86::MOV32rm },
365 { X86::MOV32to32_, X86::MOV32_rm },
366 { X86::MOV64rr, X86::MOV64rm },
367 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
368 { X86::MOV64toSDrr, X86::MOV64toSDrm },
369 { X86::MOV8rr, X86::MOV8rm },
370 { X86::MOVAPDrr, X86::MOVAPDrm },
371 { X86::MOVAPSrr, X86::MOVAPSrm },
372 { X86::MOVDDUPrr, X86::MOVDDUPrm },
373 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
374 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
375 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
376 { X86::MOVSDrr, X86::MOVSDrm },
377 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
378 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
379 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
380 { X86::MOVSSrr, X86::MOVSSrm },
381 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
382 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
383 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
384 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
385 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
386 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
387 { X86::MOVUPDrr, X86::MOVUPDrm },
388 { X86::MOVUPSrr, X86::MOVUPSrm },
389 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
390 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
391 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
392 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
393 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
394 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
395 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
396 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
397 { X86::PSHUFDri, X86::PSHUFDmi },
398 { X86::PSHUFHWri, X86::PSHUFHWmi },
399 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000400 { X86::RCPPSr, X86::RCPPSm },
401 { X86::RCPPSr_Int, X86::RCPPSm_Int },
402 { X86::RSQRTPSr, X86::RSQRTPSm },
403 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
404 { X86::RSQRTSSr, X86::RSQRTSSm },
405 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
406 { X86::SQRTPDr, X86::SQRTPDm },
407 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
408 { X86::SQRTPSr, X86::SQRTPSm },
409 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
410 { X86::SQRTSDr, X86::SQRTSDm },
411 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
412 { X86::SQRTSSr, X86::SQRTSSm },
413 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
414 { X86::TEST16rr, X86::TEST16rm },
415 { X86::TEST32rr, X86::TEST32rm },
416 { X86::TEST64rr, X86::TEST64rm },
417 { X86::TEST8rr, X86::TEST8rm },
418 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
419 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000420 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000421 };
422
423 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
424 unsigned RegOp = OpTbl1[i][0];
425 unsigned MemOp = OpTbl1[i][1];
426 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
427 assert(false && "Duplicated entries?");
428 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
429 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
430 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
431 std::make_pair(RegOp, AuxInfo))))
432 AmbEntries.push_back(MemOp);
433 }
434
435 static const unsigned OpTbl2[][2] = {
436 { X86::ADC32rr, X86::ADC32rm },
437 { X86::ADC64rr, X86::ADC64rm },
438 { X86::ADD16rr, X86::ADD16rm },
439 { X86::ADD32rr, X86::ADD32rm },
440 { X86::ADD64rr, X86::ADD64rm },
441 { X86::ADD8rr, X86::ADD8rm },
442 { X86::ADDPDrr, X86::ADDPDrm },
443 { X86::ADDPSrr, X86::ADDPSrm },
444 { X86::ADDSDrr, X86::ADDSDrm },
445 { X86::ADDSSrr, X86::ADDSSrm },
446 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
447 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
448 { X86::AND16rr, X86::AND16rm },
449 { X86::AND32rr, X86::AND32rm },
450 { X86::AND64rr, X86::AND64rm },
451 { X86::AND8rr, X86::AND8rm },
452 { X86::ANDNPDrr, X86::ANDNPDrm },
453 { X86::ANDNPSrr, X86::ANDNPSrm },
454 { X86::ANDPDrr, X86::ANDPDrm },
455 { X86::ANDPSrr, X86::ANDPSrm },
456 { X86::CMOVA16rr, X86::CMOVA16rm },
457 { X86::CMOVA32rr, X86::CMOVA32rm },
458 { X86::CMOVA64rr, X86::CMOVA64rm },
459 { X86::CMOVAE16rr, X86::CMOVAE16rm },
460 { X86::CMOVAE32rr, X86::CMOVAE32rm },
461 { X86::CMOVAE64rr, X86::CMOVAE64rm },
462 { X86::CMOVB16rr, X86::CMOVB16rm },
463 { X86::CMOVB32rr, X86::CMOVB32rm },
464 { X86::CMOVB64rr, X86::CMOVB64rm },
465 { X86::CMOVBE16rr, X86::CMOVBE16rm },
466 { X86::CMOVBE32rr, X86::CMOVBE32rm },
467 { X86::CMOVBE64rr, X86::CMOVBE64rm },
468 { X86::CMOVE16rr, X86::CMOVE16rm },
469 { X86::CMOVE32rr, X86::CMOVE32rm },
470 { X86::CMOVE64rr, X86::CMOVE64rm },
471 { X86::CMOVG16rr, X86::CMOVG16rm },
472 { X86::CMOVG32rr, X86::CMOVG32rm },
473 { X86::CMOVG64rr, X86::CMOVG64rm },
474 { X86::CMOVGE16rr, X86::CMOVGE16rm },
475 { X86::CMOVGE32rr, X86::CMOVGE32rm },
476 { X86::CMOVGE64rr, X86::CMOVGE64rm },
477 { X86::CMOVL16rr, X86::CMOVL16rm },
478 { X86::CMOVL32rr, X86::CMOVL32rm },
479 { X86::CMOVL64rr, X86::CMOVL64rm },
480 { X86::CMOVLE16rr, X86::CMOVLE16rm },
481 { X86::CMOVLE32rr, X86::CMOVLE32rm },
482 { X86::CMOVLE64rr, X86::CMOVLE64rm },
483 { X86::CMOVNE16rr, X86::CMOVNE16rm },
484 { X86::CMOVNE32rr, X86::CMOVNE32rm },
485 { X86::CMOVNE64rr, X86::CMOVNE64rm },
486 { X86::CMOVNP16rr, X86::CMOVNP16rm },
487 { X86::CMOVNP32rr, X86::CMOVNP32rm },
488 { X86::CMOVNP64rr, X86::CMOVNP64rm },
489 { X86::CMOVNS16rr, X86::CMOVNS16rm },
490 { X86::CMOVNS32rr, X86::CMOVNS32rm },
491 { X86::CMOVNS64rr, X86::CMOVNS64rm },
492 { X86::CMOVP16rr, X86::CMOVP16rm },
493 { X86::CMOVP32rr, X86::CMOVP32rm },
494 { X86::CMOVP64rr, X86::CMOVP64rm },
495 { X86::CMOVS16rr, X86::CMOVS16rm },
496 { X86::CMOVS32rr, X86::CMOVS32rm },
497 { X86::CMOVS64rr, X86::CMOVS64rm },
498 { X86::CMPPDrri, X86::CMPPDrmi },
499 { X86::CMPPSrri, X86::CMPPSrmi },
500 { X86::CMPSDrr, X86::CMPSDrm },
501 { X86::CMPSSrr, X86::CMPSSrm },
502 { X86::DIVPDrr, X86::DIVPDrm },
503 { X86::DIVPSrr, X86::DIVPSrm },
504 { X86::DIVSDrr, X86::DIVSDrm },
505 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000506 { X86::FsANDNPDrr, X86::FsANDNPDrm },
507 { X86::FsANDNPSrr, X86::FsANDNPSrm },
508 { X86::FsANDPDrr, X86::FsANDPDrm },
509 { X86::FsANDPSrr, X86::FsANDPSrm },
510 { X86::FsORPDrr, X86::FsORPDrm },
511 { X86::FsORPSrr, X86::FsORPSrm },
512 { X86::FsXORPDrr, X86::FsXORPDrm },
513 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000514 { X86::HADDPDrr, X86::HADDPDrm },
515 { X86::HADDPSrr, X86::HADDPSrm },
516 { X86::HSUBPDrr, X86::HSUBPDrm },
517 { X86::HSUBPSrr, X86::HSUBPSrm },
518 { X86::IMUL16rr, X86::IMUL16rm },
519 { X86::IMUL32rr, X86::IMUL32rm },
520 { X86::IMUL64rr, X86::IMUL64rm },
521 { X86::MAXPDrr, X86::MAXPDrm },
522 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
523 { X86::MAXPSrr, X86::MAXPSrm },
524 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
525 { X86::MAXSDrr, X86::MAXSDrm },
526 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
527 { X86::MAXSSrr, X86::MAXSSrm },
528 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
529 { X86::MINPDrr, X86::MINPDrm },
530 { X86::MINPDrr_Int, X86::MINPDrm_Int },
531 { X86::MINPSrr, X86::MINPSrm },
532 { X86::MINPSrr_Int, X86::MINPSrm_Int },
533 { X86::MINSDrr, X86::MINSDrm },
534 { X86::MINSDrr_Int, X86::MINSDrm_Int },
535 { X86::MINSSrr, X86::MINSSrm },
536 { X86::MINSSrr_Int, X86::MINSSrm_Int },
537 { X86::MULPDrr, X86::MULPDrm },
538 { X86::MULPSrr, X86::MULPSrm },
539 { X86::MULSDrr, X86::MULSDrm },
540 { X86::MULSSrr, X86::MULSSrm },
541 { X86::OR16rr, X86::OR16rm },
542 { X86::OR32rr, X86::OR32rm },
543 { X86::OR64rr, X86::OR64rm },
544 { X86::OR8rr, X86::OR8rm },
545 { X86::ORPDrr, X86::ORPDrm },
546 { X86::ORPSrr, X86::ORPSrm },
547 { X86::PACKSSDWrr, X86::PACKSSDWrm },
548 { X86::PACKSSWBrr, X86::PACKSSWBrm },
549 { X86::PACKUSWBrr, X86::PACKUSWBrm },
550 { X86::PADDBrr, X86::PADDBrm },
551 { X86::PADDDrr, X86::PADDDrm },
552 { X86::PADDQrr, X86::PADDQrm },
553 { X86::PADDSBrr, X86::PADDSBrm },
554 { X86::PADDSWrr, X86::PADDSWrm },
555 { X86::PADDWrr, X86::PADDWrm },
556 { X86::PANDNrr, X86::PANDNrm },
557 { X86::PANDrr, X86::PANDrm },
558 { X86::PAVGBrr, X86::PAVGBrm },
559 { X86::PAVGWrr, X86::PAVGWrm },
560 { X86::PCMPEQBrr, X86::PCMPEQBrm },
561 { X86::PCMPEQDrr, X86::PCMPEQDrm },
562 { X86::PCMPEQWrr, X86::PCMPEQWrm },
563 { X86::PCMPGTBrr, X86::PCMPGTBrm },
564 { X86::PCMPGTDrr, X86::PCMPGTDrm },
565 { X86::PCMPGTWrr, X86::PCMPGTWrm },
566 { X86::PINSRWrri, X86::PINSRWrmi },
567 { X86::PMADDWDrr, X86::PMADDWDrm },
568 { X86::PMAXSWrr, X86::PMAXSWrm },
569 { X86::PMAXUBrr, X86::PMAXUBrm },
570 { X86::PMINSWrr, X86::PMINSWrm },
571 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000572 { X86::PMULDQrr, X86::PMULDQrm },
573 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000574 { X86::PMULHUWrr, X86::PMULHUWrm },
575 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000576 { X86::PMULLDrr, X86::PMULLDrm },
577 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000578 { X86::PMULLWrr, X86::PMULLWrm },
579 { X86::PMULUDQrr, X86::PMULUDQrm },
580 { X86::PORrr, X86::PORrm },
581 { X86::PSADBWrr, X86::PSADBWrm },
582 { X86::PSLLDrr, X86::PSLLDrm },
583 { X86::PSLLQrr, X86::PSLLQrm },
584 { X86::PSLLWrr, X86::PSLLWrm },
585 { X86::PSRADrr, X86::PSRADrm },
586 { X86::PSRAWrr, X86::PSRAWrm },
587 { X86::PSRLDrr, X86::PSRLDrm },
588 { X86::PSRLQrr, X86::PSRLQrm },
589 { X86::PSRLWrr, X86::PSRLWrm },
590 { X86::PSUBBrr, X86::PSUBBrm },
591 { X86::PSUBDrr, X86::PSUBDrm },
592 { X86::PSUBSBrr, X86::PSUBSBrm },
593 { X86::PSUBSWrr, X86::PSUBSWrm },
594 { X86::PSUBWrr, X86::PSUBWrm },
595 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
596 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
597 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
598 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
599 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
600 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
601 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
602 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
603 { X86::PXORrr, X86::PXORrm },
604 { X86::SBB32rr, X86::SBB32rm },
605 { X86::SBB64rr, X86::SBB64rm },
606 { X86::SHUFPDrri, X86::SHUFPDrmi },
607 { X86::SHUFPSrri, X86::SHUFPSrmi },
608 { X86::SUB16rr, X86::SUB16rm },
609 { X86::SUB32rr, X86::SUB32rm },
610 { X86::SUB64rr, X86::SUB64rm },
611 { X86::SUB8rr, X86::SUB8rm },
612 { X86::SUBPDrr, X86::SUBPDrm },
613 { X86::SUBPSrr, X86::SUBPSrm },
614 { X86::SUBSDrr, X86::SUBSDrm },
615 { X86::SUBSSrr, X86::SUBSSrm },
616 // FIXME: TEST*rr -> swapped operand of TEST*mr.
617 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
618 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
619 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
620 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
621 { X86::XOR16rr, X86::XOR16rm },
622 { X86::XOR32rr, X86::XOR32rm },
623 { X86::XOR64rr, X86::XOR64rm },
624 { X86::XOR8rr, X86::XOR8rm },
625 { X86::XORPDrr, X86::XORPDrm },
626 { X86::XORPSrr, X86::XORPSrm }
627 };
628
629 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
630 unsigned RegOp = OpTbl2[i][0];
631 unsigned MemOp = OpTbl2[i][1];
632 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
633 assert(false && "Duplicated entries?");
634 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
635 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
636 std::make_pair(RegOp, AuxInfo))))
637 AmbEntries.push_back(MemOp);
638 }
639
640 // Remove ambiguous entries.
641 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642}
643
644bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
645 unsigned& sourceReg,
646 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000647 switch (MI.getOpcode()) {
648 default:
649 return false;
650 case X86::MOV8rr:
651 case X86::MOV16rr:
652 case X86::MOV32rr:
653 case X86::MOV64rr:
654 case X86::MOV16to16_:
655 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000656 case X86::MOVSSrr:
657 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000658
659 // FP Stack register class copies
660 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
661 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
662 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
663
Chris Lattnerff195282008-03-11 19:28:17 +0000664 case X86::FsMOVAPSrr:
665 case X86::FsMOVAPDrr:
666 case X86::MOVAPSrr:
667 case X86::MOVAPDrr:
668 case X86::MOVSS2PSrr:
669 case X86::MOVSD2PDrr:
670 case X86::MOVPS2SSrr:
671 case X86::MOVPD2SDrr:
672 case X86::MMX_MOVD64rr:
673 case X86::MMX_MOVQ64rr:
674 assert(MI.getNumOperands() >= 2 &&
675 MI.getOperand(0).isRegister() &&
676 MI.getOperand(1).isRegister() &&
677 "invalid register-register move instruction");
678 sourceReg = MI.getOperand(1).getReg();
679 destReg = MI.getOperand(0).getReg();
680 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682}
683
684unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
685 int &FrameIndex) const {
686 switch (MI->getOpcode()) {
687 default: break;
688 case X86::MOV8rm:
689 case X86::MOV16rm:
690 case X86::MOV16_rm:
691 case X86::MOV32rm:
692 case X86::MOV32_rm:
693 case X86::MOV64rm:
694 case X86::LD_Fp64m:
695 case X86::MOVSSrm:
696 case X86::MOVSDrm:
697 case X86::MOVAPSrm:
698 case X86::MOVAPDrm:
699 case X86::MMX_MOVD64rm:
700 case X86::MMX_MOVQ64rm:
Chris Lattner6017d482007-12-30 23:10:15 +0000701 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
702 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000703 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000705 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000706 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 return MI->getOperand(0).getReg();
708 }
709 break;
710 }
711 return 0;
712}
713
714unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
715 int &FrameIndex) const {
716 switch (MI->getOpcode()) {
717 default: break;
718 case X86::MOV8mr:
719 case X86::MOV16mr:
720 case X86::MOV16_mr:
721 case X86::MOV32mr:
722 case X86::MOV32_mr:
723 case X86::MOV64mr:
724 case X86::ST_FpP64m:
725 case X86::MOVSSmr:
726 case X86::MOVSDmr:
727 case X86::MOVAPSmr:
728 case X86::MOVAPDmr:
729 case X86::MMX_MOVD64mr:
730 case X86::MMX_MOVQ64mr:
731 case X86::MMX_MOVNTQmr:
Chris Lattner6017d482007-12-30 23:10:15 +0000732 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
733 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000734 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000736 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000737 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738 return MI->getOperand(4).getReg();
739 }
740 break;
741 }
742 return 0;
743}
744
745
Evan Chengb819a512008-03-27 01:45:11 +0000746/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
747/// X86::MOVPC32r.
748static bool regIsPICBase(unsigned BaseReg, MachineRegisterInfo &MRI) {
749 bool isPICBase = false;
750 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
751 E = MRI.def_end(); I != E; ++I) {
752 MachineInstr *DefMI = I.getOperand().getParent();
753 if (DefMI->getOpcode() != X86::MOVPC32r)
754 return false;
755 assert(!isPICBase && "More than one PIC base?");
756 isPICBase = true;
757 }
758 return isPICBase;
759}
Evan Chenge9caab52008-03-31 07:54:19 +0000760
761/// isGVStub - Return true if the GV requires an extra load to get the
762/// real address.
763static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
764 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
765}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000766
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000767bool
768X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000769 switch (MI->getOpcode()) {
770 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000771 case X86::MOV8rm:
772 case X86::MOV16rm:
773 case X86::MOV16_rm:
774 case X86::MOV32rm:
775 case X86::MOV32_rm:
776 case X86::MOV64rm:
777 case X86::LD_Fp64m:
778 case X86::MOVSSrm:
779 case X86::MOVSDrm:
780 case X86::MOVAPSrm:
781 case X86::MOVAPDrm:
782 case X86::MMX_MOVD64rm:
783 case X86::MMX_MOVQ64rm: {
784 // Loads from constant pools are trivially rematerializable.
785 if (MI->getOperand(1).isReg() &&
786 MI->getOperand(2).isImm() &&
787 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Chenge9caab52008-03-31 07:54:19 +0000788 (MI->getOperand(4).isCPI() ||
789 (MI->getOperand(4).isGlobal() &&
790 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000791 unsigned BaseReg = MI->getOperand(1).getReg();
792 if (BaseReg == 0)
793 return true;
794 // Allow re-materialization of PIC load.
Evan Chengc87df652008-04-01 23:26:12 +0000795 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
796 return false;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000797 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
798 bool isPICBase = false;
799 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
800 E = MRI.def_end(); I != E; ++I) {
801 MachineInstr *DefMI = I.getOperand().getParent();
802 if (DefMI->getOpcode() != X86::MOVPC32r)
803 return false;
804 assert(!isPICBase && "More than one PIC base?");
805 isPICBase = true;
806 }
807 return isPICBase;
808 }
809 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000810 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000811
812 case X86::LEA32r:
813 case X86::LEA64r: {
814 if (MI->getOperand(1).isReg() &&
815 MI->getOperand(2).isImm() &&
816 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
817 !MI->getOperand(4).isReg()) {
818 // lea fi#, lea GV, etc. are all rematerializable.
819 unsigned BaseReg = MI->getOperand(1).getReg();
820 if (BaseReg == 0)
821 return true;
822 // Allow re-materialization of lea PICBase + x.
Evan Chengb819a512008-03-27 01:45:11 +0000823 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
824 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000825 }
826 return false;
827 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000828 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000829
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830 // All other instructions marked M_REMATERIALIZABLE are always trivially
831 // rematerializable.
832 return true;
833}
834
Evan Chengc564ded2008-06-24 07:10:51 +0000835/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
836/// would clobber the EFLAGS condition register. Note the result may be
837/// conservative. If it cannot definitely determine the safety after visiting
838/// two instructions it assumes it's not safe.
839static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
840 MachineBasicBlock::iterator I) {
841 // For compile time consideration, if we are not able to determine the
842 // safety after visiting 2 instructions, we will assume it's not safe.
843 for (unsigned i = 0; i < 2; ++i) {
844 if (I == MBB.end())
845 // Reached end of block, it's safe.
846 return true;
847 bool SeenDef = false;
848 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
849 MachineOperand &MO = I->getOperand(j);
850 if (!MO.isRegister())
851 continue;
852 if (MO.getReg() == X86::EFLAGS) {
853 if (MO.isUse())
854 return false;
855 SeenDef = true;
856 }
857 }
858
859 if (SeenDef)
860 // This instruction defines EFLAGS, no need to look any further.
861 return true;
862 ++I;
863 }
864
865 // Conservative answer.
866 return false;
867}
868
Evan Cheng7d73efc2008-03-31 20:40:39 +0000869void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
870 MachineBasicBlock::iterator I,
871 unsigned DestReg,
872 const MachineInstr *Orig) const {
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000873 unsigned SubIdx = Orig->getOperand(0).isReg()
874 ? Orig->getOperand(0).getSubReg() : 0;
875 bool ChangeSubIdx = SubIdx != 0;
876 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
877 DestReg = RI.getSubReg(DestReg, SubIdx);
878 SubIdx = 0;
879 }
880
Evan Cheng7d73efc2008-03-31 20:40:39 +0000881 // MOV32r0 etc. are implemented with xor which clobbers condition code.
882 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000883 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000884 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000885 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000886 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000887 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000888 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000889 case X86::MOV64r0: {
890 if (!isSafeToClobberEFLAGS(MBB, I)) {
891 unsigned Opc = 0;
892 switch (Orig->getOpcode()) {
893 default: break;
894 case X86::MOV8r0: Opc = X86::MOV8ri; break;
895 case X86::MOV16r0: Opc = X86::MOV16ri; break;
896 case X86::MOV32r0: Opc = X86::MOV32ri; break;
897 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
898 }
899 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
900 Emitted = true;
901 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000902 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000903 }
904 }
905
906 if (!Emitted) {
Evan Cheng7d73efc2008-03-31 20:40:39 +0000907 MachineInstr *MI = Orig->clone();
908 MI->getOperand(0).setReg(DestReg);
909 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000910 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000911
912 if (ChangeSubIdx) {
913 MachineInstr *NewMI = prior(I);
914 NewMI->getOperand(0).setSubReg(SubIdx);
915 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000916}
917
Chris Lattnerea3a1812008-01-10 23:08:24 +0000918/// isInvariantLoad - Return true if the specified instruction (which is marked
919/// mayLoad) is loading from a location whose value is invariant across the
920/// function. For example, loading a value from the constant pool or from
921/// from the argument area of a function if it does not change. This should
922/// only return true of *all* loads the instruction does are invariant (if it
923/// does multiple loads).
924bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000925 // This code cares about loads from three cases: constant pool entries,
926 // invariant argument slots, and global stubs. In order to handle these cases
927 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000928 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000929 // none of these three cases is ever used as anything other than a load base
930 // and X86 doesn't have any instructions that load from multiple places.
931
932 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
933 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000934 // Loads from constant pools are trivially invariant.
Chris Lattner0875b572008-01-12 00:35:08 +0000935 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000936 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000937
938 if (MO.isGlobal())
939 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000940
941 // If this is a load from an invariant stack slot, the load is a constant.
942 if (MO.isFI()) {
943 const MachineFrameInfo &MFI =
944 *MI->getParent()->getParent()->getFrameInfo();
945 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000946 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
947 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000948 }
Chris Lattner0875b572008-01-12 00:35:08 +0000949
Chris Lattnerea3a1812008-01-10 23:08:24 +0000950 // All other instances of these instructions are presumed to have other
951 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000952 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000953}
954
Evan Chengfa1a4952007-10-05 08:04:01 +0000955/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
956/// is not marked dead.
957static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000958 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
959 MachineOperand &MO = MI->getOperand(i);
960 if (MO.isRegister() && MO.isDef() &&
961 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
962 return true;
963 }
964 }
965 return false;
966}
967
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000968/// convertToThreeAddress - This method must be implemented by targets that
969/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
970/// may be able to convert a two-address instruction into a true
971/// three-address instruction on demand. This allows the X86 target (for
972/// example) to convert ADD and SHL instructions into LEA instructions if they
973/// would require register copies due to two-addressness.
974///
975/// This method returns a null pointer if the transformation cannot be
976/// performed, otherwise it returns the new instruction.
977///
978MachineInstr *
979X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
980 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000981 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 MachineInstr *MI = MBBI;
983 // All instructions input are two-addr instructions. Get the known operands.
984 unsigned Dest = MI->getOperand(0).getReg();
985 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +0000986 bool isDead = MI->getOperand(0).isDead();
987 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988
989 MachineInstr *NewMI = NULL;
990 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
991 // we have better subtarget support, enable the 16-bit LEA generation here.
992 bool DisableLEA16 = true;
993
Evan Cheng6b96ed32007-10-05 20:34:26 +0000994 unsigned MIOpc = MI->getOpcode();
995 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000996 case X86::SHUFPSrri: {
997 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
998 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
999
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001000 unsigned B = MI->getOperand(1).getReg();
1001 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001002 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001003 unsigned A = MI->getOperand(0).getReg();
1004 unsigned M = MI->getOperand(3).getImm();
1005 NewMI = BuildMI(get(X86::PSHUFDri)).addReg(A, true, false, false, isDead)
1006 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007 break;
1008 }
1009 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001010 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1012 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 unsigned ShAmt = MI->getOperand(2).getImm();
1014 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001015
1016 NewMI = BuildMI(get(X86::LEA64r)).addReg(Dest, true, false, false, isDead)
1017 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 break;
1019 }
1020 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001021 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001022 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1023 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001024 unsigned ShAmt = MI->getOperand(2).getImm();
1025 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001026
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1028 X86::LEA64_32r : X86::LEA32r;
Evan Chenge52c1912008-07-03 09:09:37 +00001029 NewMI = BuildMI(get(Opc)).addReg(Dest, true, false, false, isDead)
1030 .addReg(0).addImm(1 << ShAmt)
1031 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032 break;
1033 }
1034 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001035 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001036 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1037 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001038 unsigned ShAmt = MI->getOperand(2).getImm();
1039 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001040
Christopher Lamb380c6272007-08-10 21:18:25 +00001041 if (DisableLEA16) {
1042 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001043 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001044 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1045 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001046 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1047 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001048
Christopher Lamb8d226a22008-03-11 10:27:36 +00001049 // Build and insert into an implicit UNDEF value. This is OK because
1050 // well be shifting and then extracting the lower 16-bits.
Evan Chenge52c1912008-07-03 09:09:37 +00001051 MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
1052 MachineInstr *InsMI = BuildMI(get(X86::INSERT_SUBREG),leaInReg)
1053 .addReg(leaInReg).addReg(Src, false, false, isKill)
1054 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001055
Evan Chenge52c1912008-07-03 09:09:37 +00001056 NewMI = BuildMI(get(Opc), leaOutReg).addReg(0).addImm(1 << ShAmt)
1057 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001058
Evan Chenge52c1912008-07-03 09:09:37 +00001059 MachineInstr *ExtMI = BuildMI(get(X86::EXTRACT_SUBREG))
1060 .addReg(Dest, true, false, false, isDead)
1061 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Christopher Lamb380c6272007-08-10 21:18:25 +00001062
Christopher Lamb76d72da2008-03-16 03:12:01 +00001063 MFI->insert(MBBI, Undef);
Evan Chenge52c1912008-07-03 09:09:37 +00001064 MFI->insert(MBBI, InsMI); // Insert the insert_subreg
1065 MFI->insert(MBBI, NewMI); // Insert the lea inst
1066 MFI->insert(MBBI, ExtMI); // Insert the extract_subreg
Owen Andersonc6959722008-07-02 23:41:07 +00001067 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001068 // Update live variables
1069 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1070 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1071 if (isKill)
1072 LV->replaceKillInstruction(Src, MI, InsMI);
1073 if (isDead)
1074 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001075 }
Evan Chenge52c1912008-07-03 09:09:37 +00001076 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001077 } else {
Evan Chenge52c1912008-07-03 09:09:37 +00001078 NewMI = BuildMI(get(X86::LEA16r)).addReg(Dest, true, false, false, isDead)
1079 .addReg(0).addImm(1 << ShAmt)
1080 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001081 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001082 break;
1083 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001084 default: {
1085 // The following opcodes also sets the condition code register(s). Only
1086 // convert them to equivalent lea if the condition code register def's
1087 // are dead!
1088 if (hasLiveCondCodeDef(MI))
1089 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001090
Evan Chenga28a9562007-10-09 07:14:53 +00001091 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001092 switch (MIOpc) {
1093 default: return 0;
1094 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001095 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001096 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001097 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1098 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001099 NewMI = addRegOffset(BuildMI(get(Opc))
1100 .addReg(Dest, true, false, false, isDead),
1101 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001102 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001104 case X86::INC16r:
1105 case X86::INC64_16r:
1106 if (DisableLEA16) return 0;
1107 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001108 NewMI = addRegOffset(BuildMI(get(X86::LEA16r))
1109 .addReg(Dest, true, false, false, isDead),
1110 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001111 break;
1112 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001113 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001114 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001115 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1116 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001117 NewMI = addRegOffset(BuildMI(get(Opc))
1118 .addReg(Dest, true, false, false, isDead),
1119 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001120 break;
1121 }
1122 case X86::DEC16r:
1123 case X86::DEC64_16r:
1124 if (DisableLEA16) return 0;
1125 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001126 NewMI = addRegOffset(BuildMI(get(X86::LEA16r))
1127 .addReg(Dest, true, false, false, isDead),
1128 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001129 break;
1130 case X86::ADD64rr:
1131 case X86::ADD32rr: {
1132 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001133 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1134 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001135 unsigned Src2 = MI->getOperand(2).getReg();
1136 bool isKill2 = MI->getOperand(2).isKill();
1137 NewMI = addRegReg(BuildMI(get(Opc))
1138 .addReg(Dest, true, false, false, isDead),
1139 Src, isKill, Src2, isKill2);
1140 if (LV && isKill2)
1141 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001142 break;
1143 }
Evan Chenge52c1912008-07-03 09:09:37 +00001144 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001145 if (DisableLEA16) return 0;
1146 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001147 unsigned Src2 = MI->getOperand(2).getReg();
1148 bool isKill2 = MI->getOperand(2).isKill();
1149 NewMI = addRegReg(BuildMI(get(X86::LEA16r))
1150 .addReg(Dest, true, false, false, isDead),
1151 Src, isKill, Src2, isKill2);
1152 if (LV && isKill2)
1153 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001154 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001155 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001156 case X86::ADD64ri32:
1157 case X86::ADD64ri8:
1158 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1159 if (MI->getOperand(2).isImmediate())
Evan Chenge52c1912008-07-03 09:09:37 +00001160 NewMI = addRegOffset(BuildMI(get(X86::LEA64r))
1161 .addReg(Dest, true, false, false, isDead),
1162 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001163 break;
1164 case X86::ADD32ri:
1165 case X86::ADD32ri8:
1166 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001167 if (MI->getOperand(2).isImmediate()) {
1168 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Evan Chenge52c1912008-07-03 09:09:37 +00001169 NewMI = addRegOffset(BuildMI(get(Opc))
1170 .addReg(Dest, true, false, false, isDead),
1171 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001172 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001173 break;
1174 case X86::ADD16ri:
1175 case X86::ADD16ri8:
1176 if (DisableLEA16) return 0;
1177 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1178 if (MI->getOperand(2).isImmediate())
Evan Chenge52c1912008-07-03 09:09:37 +00001179 NewMI = addRegOffset(BuildMI(get(X86::LEA16r))
1180 .addReg(Dest, true, false, false, isDead),
1181 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001182 break;
1183 case X86::SHL16ri:
1184 if (DisableLEA16) return 0;
1185 case X86::SHL32ri:
1186 case X86::SHL64ri: {
1187 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1188 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001189 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001190 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1191 X86AddressMode AM;
1192 AM.Scale = 1 << ShAmt;
1193 AM.IndexReg = Src;
1194 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001195 : (MIOpc == X86::SHL32ri
1196 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Chenge52c1912008-07-03 09:09:37 +00001197 NewMI = addFullAddress(BuildMI(get(Opc))
1198 .addReg(Dest, true, false, false, isDead), AM);
1199 if (isKill)
1200 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001201 }
1202 break;
1203 }
1204 }
1205 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001206 }
1207
Evan Chengc3cb24d2008-02-07 08:29:53 +00001208 if (!NewMI) return 0;
1209
Evan Chenge52c1912008-07-03 09:09:37 +00001210 if (LV) { // Update live variables
1211 if (isKill)
1212 LV->replaceKillInstruction(Src, MI, NewMI);
1213 if (isDead)
1214 LV->replaceKillInstruction(Dest, MI, NewMI);
1215 }
1216
Evan Cheng6b96ed32007-10-05 20:34:26 +00001217 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001218 return NewMI;
1219}
1220
1221/// commuteInstruction - We have a few instructions that must be hacked on to
1222/// commute them.
1223///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001224MachineInstr *
1225X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001226 switch (MI->getOpcode()) {
1227 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1228 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1229 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001230 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1231 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1232 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001233 unsigned Opc;
1234 unsigned Size;
1235 switch (MI->getOpcode()) {
1236 default: assert(0 && "Unreachable!");
1237 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1238 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1239 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1240 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001241 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1242 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001243 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001244 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001245 unsigned A = MI->getOperand(0).getReg();
1246 unsigned B = MI->getOperand(1).getReg();
1247 unsigned C = MI->getOperand(2).getReg();
Evan Chengeb76f832008-07-03 00:04:51 +00001248 bool AisDead = MI->getOperand(0).isDead();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 bool BisKill = MI->getOperand(1).isKill();
1250 bool CisKill = MI->getOperand(2).isKill();
Evan Chengb554e532008-02-13 02:46:49 +00001251 // If machine instrs are no longer in two-address forms, update
1252 // destination register as well.
1253 if (A == B) {
1254 // Must be two address instruction!
1255 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1256 "Expecting a two-address instruction!");
1257 A = C;
1258 CisKill = false;
1259 }
Evan Chengeb76f832008-07-03 00:04:51 +00001260 return BuildMI(get(Opc)).addReg(A, true, false, false, AisDead)
1261 .addReg(C, false, false, CisKill)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262 .addReg(B, false, false, BisKill).addImm(Size-Amt);
1263 }
Evan Cheng926658c2007-10-05 23:13:21 +00001264 case X86::CMOVB16rr:
1265 case X86::CMOVB32rr:
1266 case X86::CMOVB64rr:
1267 case X86::CMOVAE16rr:
1268 case X86::CMOVAE32rr:
1269 case X86::CMOVAE64rr:
1270 case X86::CMOVE16rr:
1271 case X86::CMOVE32rr:
1272 case X86::CMOVE64rr:
1273 case X86::CMOVNE16rr:
1274 case X86::CMOVNE32rr:
1275 case X86::CMOVNE64rr:
1276 case X86::CMOVBE16rr:
1277 case X86::CMOVBE32rr:
1278 case X86::CMOVBE64rr:
1279 case X86::CMOVA16rr:
1280 case X86::CMOVA32rr:
1281 case X86::CMOVA64rr:
1282 case X86::CMOVL16rr:
1283 case X86::CMOVL32rr:
1284 case X86::CMOVL64rr:
1285 case X86::CMOVGE16rr:
1286 case X86::CMOVGE32rr:
1287 case X86::CMOVGE64rr:
1288 case X86::CMOVLE16rr:
1289 case X86::CMOVLE32rr:
1290 case X86::CMOVLE64rr:
1291 case X86::CMOVG16rr:
1292 case X86::CMOVG32rr:
1293 case X86::CMOVG64rr:
1294 case X86::CMOVS16rr:
1295 case X86::CMOVS32rr:
1296 case X86::CMOVS64rr:
1297 case X86::CMOVNS16rr:
1298 case X86::CMOVNS32rr:
1299 case X86::CMOVNS64rr:
1300 case X86::CMOVP16rr:
1301 case X86::CMOVP32rr:
1302 case X86::CMOVP64rr:
1303 case X86::CMOVNP16rr:
1304 case X86::CMOVNP32rr:
1305 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001306 unsigned Opc = 0;
1307 switch (MI->getOpcode()) {
1308 default: break;
1309 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1310 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1311 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1312 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1313 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1314 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1315 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1316 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1317 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1318 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1319 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1320 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1321 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1322 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1323 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1324 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1325 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1326 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1327 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1328 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1329 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1330 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1331 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1332 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1333 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1334 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1335 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1336 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1337 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1338 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1339 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1340 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1341 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1342 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1343 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1344 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1345 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1346 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1347 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1348 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1349 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1350 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1351 }
1352
Chris Lattner86bb02f2008-01-11 18:10:50 +00001353 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001354 // Fallthrough intended.
1355 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001356 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001357 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358 }
1359}
1360
1361static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1362 switch (BrOpc) {
1363 default: return X86::COND_INVALID;
1364 case X86::JE: return X86::COND_E;
1365 case X86::JNE: return X86::COND_NE;
1366 case X86::JL: return X86::COND_L;
1367 case X86::JLE: return X86::COND_LE;
1368 case X86::JG: return X86::COND_G;
1369 case X86::JGE: return X86::COND_GE;
1370 case X86::JB: return X86::COND_B;
1371 case X86::JBE: return X86::COND_BE;
1372 case X86::JA: return X86::COND_A;
1373 case X86::JAE: return X86::COND_AE;
1374 case X86::JS: return X86::COND_S;
1375 case X86::JNS: return X86::COND_NS;
1376 case X86::JP: return X86::COND_P;
1377 case X86::JNP: return X86::COND_NP;
1378 case X86::JO: return X86::COND_O;
1379 case X86::JNO: return X86::COND_NO;
1380 }
1381}
1382
1383unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1384 switch (CC) {
1385 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001386 case X86::COND_E: return X86::JE;
1387 case X86::COND_NE: return X86::JNE;
1388 case X86::COND_L: return X86::JL;
1389 case X86::COND_LE: return X86::JLE;
1390 case X86::COND_G: return X86::JG;
1391 case X86::COND_GE: return X86::JGE;
1392 case X86::COND_B: return X86::JB;
1393 case X86::COND_BE: return X86::JBE;
1394 case X86::COND_A: return X86::JA;
1395 case X86::COND_AE: return X86::JAE;
1396 case X86::COND_S: return X86::JS;
1397 case X86::COND_NS: return X86::JNS;
1398 case X86::COND_P: return X86::JP;
1399 case X86::COND_NP: return X86::JNP;
1400 case X86::COND_O: return X86::JO;
1401 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001402 }
1403}
1404
1405/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1406/// e.g. turning COND_E to COND_NE.
1407X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1408 switch (CC) {
1409 default: assert(0 && "Illegal condition code!");
1410 case X86::COND_E: return X86::COND_NE;
1411 case X86::COND_NE: return X86::COND_E;
1412 case X86::COND_L: return X86::COND_GE;
1413 case X86::COND_LE: return X86::COND_G;
1414 case X86::COND_G: return X86::COND_LE;
1415 case X86::COND_GE: return X86::COND_L;
1416 case X86::COND_B: return X86::COND_AE;
1417 case X86::COND_BE: return X86::COND_A;
1418 case X86::COND_A: return X86::COND_BE;
1419 case X86::COND_AE: return X86::COND_B;
1420 case X86::COND_S: return X86::COND_NS;
1421 case X86::COND_NS: return X86::COND_S;
1422 case X86::COND_P: return X86::COND_NP;
1423 case X86::COND_NP: return X86::COND_P;
1424 case X86::COND_O: return X86::COND_NO;
1425 case X86::COND_NO: return X86::COND_O;
1426 }
1427}
1428
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001429bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001430 const TargetInstrDesc &TID = MI->getDesc();
1431 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001432
1433 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001434 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001435 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001436 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001437 return true;
1438 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001439}
1440
Evan Cheng12515792007-07-26 17:32:14 +00001441// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1442static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1443 const X86InstrInfo &TII) {
1444 if (MI->getOpcode() == X86::FP_REG_KILL)
1445 return false;
1446 return TII.isUnpredicatedTerminator(MI);
1447}
1448
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001449bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1450 MachineBasicBlock *&TBB,
1451 MachineBasicBlock *&FBB,
1452 std::vector<MachineOperand> &Cond) const {
1453 // If the block has no terminators, it just falls into the block after it.
1454 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001455 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001456 return false;
1457
1458 // Get the last instruction in the block.
1459 MachineInstr *LastInst = I;
1460
1461 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001462 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001463 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001464 return true;
1465
1466 // If the block ends with a branch there are 3 possibilities:
1467 // it's an unconditional, conditional, or indirect branch.
1468
1469 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001470 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001471 return false;
1472 }
1473 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1474 if (BranchCode == X86::COND_INVALID)
1475 return true; // Can't handle indirect branch.
1476
1477 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001478 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001479 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1480 return false;
1481 }
1482
1483 // Get the instruction before it if it's a terminator.
1484 MachineInstr *SecondLastInst = I;
1485
1486 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001487 if (SecondLastInst && I != MBB.begin() &&
1488 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001489 return true;
1490
1491 // If the block ends with X86::JMP and a conditional branch, handle it.
1492 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1493 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001494 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001495 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001496 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001497 return false;
1498 }
1499
1500 // If the block ends with two X86::JMPs, handle it. The second one is not
1501 // executed, so remove it.
1502 if (SecondLastInst->getOpcode() == X86::JMP &&
1503 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001504 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001505 I = LastInst;
1506 I->eraseFromParent();
1507 return false;
1508 }
1509
1510 // Otherwise, can't handle this.
1511 return true;
1512}
1513
1514unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1515 MachineBasicBlock::iterator I = MBB.end();
1516 if (I == MBB.begin()) return 0;
1517 --I;
1518 if (I->getOpcode() != X86::JMP &&
1519 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1520 return 0;
1521
1522 // Remove the branch.
1523 I->eraseFromParent();
1524
1525 I = MBB.end();
1526
1527 if (I == MBB.begin()) return 1;
1528 --I;
1529 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1530 return 1;
1531
1532 // Remove the branch.
1533 I->eraseFromParent();
1534 return 2;
1535}
1536
Owen Anderson81875432008-01-01 21:11:32 +00001537static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1538 MachineOperand &MO) {
1539 if (MO.isRegister())
1540 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001541 MO.isKill(), MO.isDead(), MO.getSubReg());
Owen Anderson81875432008-01-01 21:11:32 +00001542 else if (MO.isImmediate())
1543 MIB = MIB.addImm(MO.getImm());
1544 else if (MO.isFrameIndex())
1545 MIB = MIB.addFrameIndex(MO.getIndex());
1546 else if (MO.isGlobalAddress())
1547 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1548 else if (MO.isConstantPoolIndex())
1549 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1550 else if (MO.isJumpTableIndex())
1551 MIB = MIB.addJumpTableIndex(MO.getIndex());
1552 else if (MO.isExternalSymbol())
1553 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1554 else
1555 assert(0 && "Unknown operand for X86InstrAddOperand!");
1556
1557 return MIB;
1558}
1559
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001560unsigned
1561X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1562 MachineBasicBlock *FBB,
1563 const std::vector<MachineOperand> &Cond) const {
1564 // Shouldn't be a fall through.
1565 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1566 assert((Cond.size() == 1 || Cond.size() == 0) &&
1567 "X86 branch conditions have one component!");
1568
1569 if (FBB == 0) { // One way branch.
1570 if (Cond.empty()) {
1571 // Unconditional branch?
1572 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1573 } else {
1574 // Conditional branch.
1575 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1576 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1577 }
1578 return 1;
1579 }
1580
1581 // Two-way Conditional branch.
1582 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1583 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1584 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1585 return 2;
1586}
1587
Owen Anderson8f2c8932007-12-31 06:32:00 +00001588void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001589 MachineBasicBlock::iterator MI,
1590 unsigned DestReg, unsigned SrcReg,
1591 const TargetRegisterClass *DestRC,
1592 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001593 if (DestRC == SrcRC) {
1594 unsigned Opc;
1595 if (DestRC == &X86::GR64RegClass) {
1596 Opc = X86::MOV64rr;
1597 } else if (DestRC == &X86::GR32RegClass) {
1598 Opc = X86::MOV32rr;
1599 } else if (DestRC == &X86::GR16RegClass) {
1600 Opc = X86::MOV16rr;
1601 } else if (DestRC == &X86::GR8RegClass) {
1602 Opc = X86::MOV8rr;
1603 } else if (DestRC == &X86::GR32_RegClass) {
1604 Opc = X86::MOV32_rr;
1605 } else if (DestRC == &X86::GR16_RegClass) {
1606 Opc = X86::MOV16_rr;
1607 } else if (DestRC == &X86::RFP32RegClass) {
1608 Opc = X86::MOV_Fp3232;
1609 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1610 Opc = X86::MOV_Fp6464;
1611 } else if (DestRC == &X86::RFP80RegClass) {
1612 Opc = X86::MOV_Fp8080;
1613 } else if (DestRC == &X86::FR32RegClass) {
1614 Opc = X86::FsMOVAPSrr;
1615 } else if (DestRC == &X86::FR64RegClass) {
1616 Opc = X86::FsMOVAPDrr;
1617 } else if (DestRC == &X86::VR128RegClass) {
1618 Opc = X86::MOVAPSrr;
1619 } else if (DestRC == &X86::VR64RegClass) {
1620 Opc = X86::MMX_MOVQ64rr;
1621 } else {
1622 assert(0 && "Unknown regclass");
1623 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001624 }
Chris Lattner59707122008-03-09 07:58:04 +00001625 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1626 return;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001627 }
Chris Lattner59707122008-03-09 07:58:04 +00001628
1629 // Moving EFLAGS to / from another register requires a push and a pop.
1630 if (SrcRC == &X86::CCRRegClass) {
1631 assert(SrcReg == X86::EFLAGS);
1632 if (DestRC == &X86::GR64RegClass) {
1633 BuildMI(MBB, MI, get(X86::PUSHFQ));
1634 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1635 return;
1636 } else if (DestRC == &X86::GR32RegClass) {
1637 BuildMI(MBB, MI, get(X86::PUSHFD));
1638 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1639 return;
1640 }
1641 } else if (DestRC == &X86::CCRRegClass) {
1642 assert(DestReg == X86::EFLAGS);
1643 if (SrcRC == &X86::GR64RegClass) {
1644 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1645 BuildMI(MBB, MI, get(X86::POPFQ));
1646 return;
1647 } else if (SrcRC == &X86::GR32RegClass) {
1648 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1649 BuildMI(MBB, MI, get(X86::POPFD));
1650 return;
1651 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001652 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001653
Chris Lattner0d128722008-03-09 09:15:31 +00001654 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001655 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001656 // Copying from ST(0)/ST(1).
1657 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1658 "Can only copy from ST(0)/ST(1) right now");
1659 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001660 unsigned Opc;
1661 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001662 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001663 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001664 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001665 else {
1666 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner60d14d82008-03-21 06:38:26 +00001667 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001668 }
1669 BuildMI(MBB, MI, get(Opc), DestReg);
1670 return;
1671 }
Chris Lattner0d128722008-03-09 09:15:31 +00001672
1673 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1674 if (DestRC == &X86::RSTRegClass) {
1675 // Copying to ST(0). FIXME: handle ST(1) also
1676 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1677 unsigned Opc;
1678 if (SrcRC == &X86::RFP32RegClass)
1679 Opc = X86::FpSET_ST0_32;
1680 else if (SrcRC == &X86::RFP64RegClass)
1681 Opc = X86::FpSET_ST0_64;
1682 else {
1683 assert(SrcRC == &X86::RFP80RegClass);
1684 Opc = X86::FpSET_ST0_80;
1685 }
1686 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1687 return;
1688 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001689
Chris Lattnercffd2472008-03-10 23:56:08 +00001690 assert(0 && "Not yet supported!");
Chris Lattner59707122008-03-09 07:58:04 +00001691 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001692}
1693
Owen Anderson81875432008-01-01 21:11:32 +00001694static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1695 unsigned StackAlign) {
1696 unsigned Opc = 0;
1697 if (RC == &X86::GR64RegClass) {
1698 Opc = X86::MOV64mr;
1699 } else if (RC == &X86::GR32RegClass) {
1700 Opc = X86::MOV32mr;
1701 } else if (RC == &X86::GR16RegClass) {
1702 Opc = X86::MOV16mr;
1703 } else if (RC == &X86::GR8RegClass) {
1704 Opc = X86::MOV8mr;
1705 } else if (RC == &X86::GR32_RegClass) {
1706 Opc = X86::MOV32_mr;
1707 } else if (RC == &X86::GR16_RegClass) {
1708 Opc = X86::MOV16_mr;
1709 } else if (RC == &X86::RFP80RegClass) {
1710 Opc = X86::ST_FpP80m; // pops
1711 } else if (RC == &X86::RFP64RegClass) {
1712 Opc = X86::ST_Fp64m;
1713 } else if (RC == &X86::RFP32RegClass) {
1714 Opc = X86::ST_Fp32m;
1715 } else if (RC == &X86::FR32RegClass) {
1716 Opc = X86::MOVSSmr;
1717 } else if (RC == &X86::FR64RegClass) {
1718 Opc = X86::MOVSDmr;
1719 } else if (RC == &X86::VR128RegClass) {
1720 // FIXME: Use movaps once we are capable of selectively
1721 // aligning functions that spill SSE registers on 16-byte boundaries.
1722 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1723 } else if (RC == &X86::VR64RegClass) {
1724 Opc = X86::MMX_MOVQ64mr;
1725 } else {
1726 assert(0 && "Unknown regclass");
1727 abort();
1728 }
1729
1730 return Opc;
1731}
1732
1733void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1734 MachineBasicBlock::iterator MI,
1735 unsigned SrcReg, bool isKill, int FrameIdx,
1736 const TargetRegisterClass *RC) const {
1737 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1738 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1739 .addReg(SrcReg, false, false, isKill);
1740}
1741
1742void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1743 bool isKill,
1744 SmallVectorImpl<MachineOperand> &Addr,
1745 const TargetRegisterClass *RC,
1746 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1747 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1748 MachineInstrBuilder MIB = BuildMI(get(Opc));
1749 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1750 MIB = X86InstrAddOperand(MIB, Addr[i]);
1751 MIB.addReg(SrcReg, false, false, isKill);
1752 NewMIs.push_back(MIB);
1753}
1754
1755static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1756 unsigned StackAlign) {
1757 unsigned Opc = 0;
1758 if (RC == &X86::GR64RegClass) {
1759 Opc = X86::MOV64rm;
1760 } else if (RC == &X86::GR32RegClass) {
1761 Opc = X86::MOV32rm;
1762 } else if (RC == &X86::GR16RegClass) {
1763 Opc = X86::MOV16rm;
1764 } else if (RC == &X86::GR8RegClass) {
1765 Opc = X86::MOV8rm;
1766 } else if (RC == &X86::GR32_RegClass) {
1767 Opc = X86::MOV32_rm;
1768 } else if (RC == &X86::GR16_RegClass) {
1769 Opc = X86::MOV16_rm;
1770 } else if (RC == &X86::RFP80RegClass) {
1771 Opc = X86::LD_Fp80m;
1772 } else if (RC == &X86::RFP64RegClass) {
1773 Opc = X86::LD_Fp64m;
1774 } else if (RC == &X86::RFP32RegClass) {
1775 Opc = X86::LD_Fp32m;
1776 } else if (RC == &X86::FR32RegClass) {
1777 Opc = X86::MOVSSrm;
1778 } else if (RC == &X86::FR64RegClass) {
1779 Opc = X86::MOVSDrm;
1780 } else if (RC == &X86::VR128RegClass) {
1781 // FIXME: Use movaps once we are capable of selectively
1782 // aligning functions that spill SSE registers on 16-byte boundaries.
1783 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1784 } else if (RC == &X86::VR64RegClass) {
1785 Opc = X86::MMX_MOVQ64rm;
1786 } else {
1787 assert(0 && "Unknown regclass");
1788 abort();
1789 }
1790
1791 return Opc;
1792}
1793
1794void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1795 MachineBasicBlock::iterator MI,
1796 unsigned DestReg, int FrameIdx,
1797 const TargetRegisterClass *RC) const{
1798 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1799 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1800}
1801
1802void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001803 SmallVectorImpl<MachineOperand> &Addr,
1804 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001805 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1806 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1807 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1808 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1809 MIB = X86InstrAddOperand(MIB, Addr[i]);
1810 NewMIs.push_back(MIB);
1811}
1812
Owen Anderson6690c7f2008-01-04 23:57:37 +00001813bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1814 MachineBasicBlock::iterator MI,
1815 const std::vector<CalleeSavedInfo> &CSI) const {
1816 if (CSI.empty())
1817 return false;
1818
1819 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1820 unsigned SlotSize = is64Bit ? 8 : 4;
1821
1822 MachineFunction &MF = *MBB.getParent();
1823 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1824 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1825
1826 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1827 for (unsigned i = CSI.size(); i != 0; --i) {
1828 unsigned Reg = CSI[i-1].getReg();
1829 // Add the callee-saved register as live-in. It's killed at the spill.
1830 MBB.addLiveIn(Reg);
1831 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1832 }
1833 return true;
1834}
1835
1836bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1837 MachineBasicBlock::iterator MI,
1838 const std::vector<CalleeSavedInfo> &CSI) const {
1839 if (CSI.empty())
1840 return false;
1841
1842 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1843
1844 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1845 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1846 unsigned Reg = CSI[i].getReg();
1847 BuildMI(MBB, MI, get(Opc), Reg);
1848 }
1849 return true;
1850}
1851
Owen Anderson9a184ef2008-01-07 01:35:02 +00001852static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1853 SmallVector<MachineOperand,4> &MOs,
1854 MachineInstr *MI, const TargetInstrInfo &TII) {
1855 // Create the base instruction with the memory operand as the first part.
1856 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1857 MachineInstrBuilder MIB(NewMI);
1858 unsigned NumAddrOps = MOs.size();
1859 for (unsigned i = 0; i != NumAddrOps; ++i)
1860 MIB = X86InstrAddOperand(MIB, MOs[i]);
1861 if (NumAddrOps < 4) // FrameIndex only
1862 MIB.addImm(1).addReg(0).addImm(0);
1863
1864 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001865 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001866 for (unsigned i = 0; i != NumOps; ++i) {
1867 MachineOperand &MO = MI->getOperand(i+2);
1868 MIB = X86InstrAddOperand(MIB, MO);
1869 }
1870 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1871 MachineOperand &MO = MI->getOperand(i);
1872 MIB = X86InstrAddOperand(MIB, MO);
1873 }
1874 return MIB;
1875}
1876
1877static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1878 SmallVector<MachineOperand,4> &MOs,
1879 MachineInstr *MI, const TargetInstrInfo &TII) {
1880 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1881 MachineInstrBuilder MIB(NewMI);
1882
1883 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1884 MachineOperand &MO = MI->getOperand(i);
1885 if (i == OpNo) {
1886 assert(MO.isRegister() && "Expected to fold into reg operand!");
1887 unsigned NumAddrOps = MOs.size();
1888 for (unsigned i = 0; i != NumAddrOps; ++i)
1889 MIB = X86InstrAddOperand(MIB, MOs[i]);
1890 if (NumAddrOps < 4) // FrameIndex only
1891 MIB.addImm(1).addReg(0).addImm(0);
1892 } else {
1893 MIB = X86InstrAddOperand(MIB, MO);
1894 }
1895 }
1896 return MIB;
1897}
1898
1899static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1900 SmallVector<MachineOperand,4> &MOs,
1901 MachineInstr *MI) {
1902 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1903
1904 unsigned NumAddrOps = MOs.size();
1905 for (unsigned i = 0; i != NumAddrOps; ++i)
1906 MIB = X86InstrAddOperand(MIB, MOs[i]);
1907 if (NumAddrOps < 4) // FrameIndex only
1908 MIB.addImm(1).addReg(0).addImm(0);
1909 return MIB.addImm(0);
1910}
1911
1912MachineInstr*
1913X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001914 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001915 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1916 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001917 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001918 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001919 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001920
1921 MachineInstr *NewMI = NULL;
1922 // Folding a memory location into the two-address part of a two-address
1923 // instruction is different than folding it other places. It requires
1924 // replacing the *two* registers with the memory location.
1925 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1926 MI->getOperand(0).isRegister() &&
1927 MI->getOperand(1).isRegister() &&
1928 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1929 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1930 isTwoAddrFold = true;
1931 } else if (i == 0) { // If operand 0
1932 if (MI->getOpcode() == X86::MOV16r0)
1933 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1934 else if (MI->getOpcode() == X86::MOV32r0)
1935 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1936 else if (MI->getOpcode() == X86::MOV64r0)
1937 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1938 else if (MI->getOpcode() == X86::MOV8r0)
1939 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00001940 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00001941 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001942
1943 OpcodeTablePtr = &RegOp2MemOpTable0;
1944 } else if (i == 1) {
1945 OpcodeTablePtr = &RegOp2MemOpTable1;
1946 } else if (i == 2) {
1947 OpcodeTablePtr = &RegOp2MemOpTable2;
1948 }
1949
1950 // If table selected...
1951 if (OpcodeTablePtr) {
1952 // Find the Opcode to fuse
1953 DenseMap<unsigned*, unsigned>::iterator I =
1954 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1955 if (I != OpcodeTablePtr->end()) {
1956 if (isTwoAddrFold)
1957 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1958 else
1959 NewMI = FuseInst(I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001960 return NewMI;
1961 }
1962 }
1963
1964 // No fusion
1965 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001966 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001967 return NULL;
1968}
1969
1970
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001971MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1972 MachineInstr *MI,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001973 SmallVectorImpl<unsigned> &Ops,
1974 int FrameIndex) const {
1975 // Check switch flag
1976 if (NoFusing) return NULL;
1977
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001978 const MachineFrameInfo *MFI = MF.getFrameInfo();
1979 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1980 // FIXME: Move alignment requirement into tables?
1981 if (Alignment < 16) {
1982 switch (MI->getOpcode()) {
1983 default: break;
1984 // Not always safe to fold movsd into these instructions since their load
1985 // folding variants expects the address to be 16 byte aligned.
1986 case X86::FsANDNPDrr:
1987 case X86::FsANDNPSrr:
1988 case X86::FsANDPDrr:
1989 case X86::FsANDPSrr:
1990 case X86::FsORPDrr:
1991 case X86::FsORPSrr:
1992 case X86::FsXORPDrr:
1993 case X86::FsXORPSrr:
1994 return NULL;
1995 }
1996 }
1997
Owen Anderson9a184ef2008-01-07 01:35:02 +00001998 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1999 unsigned NewOpc = 0;
2000 switch (MI->getOpcode()) {
2001 default: return NULL;
2002 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2003 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2004 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2005 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2006 }
2007 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002008 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002009 MI->getOperand(1).ChangeToImmediate(0);
2010 } else if (Ops.size() != 1)
2011 return NULL;
2012
2013 SmallVector<MachineOperand,4> MOs;
2014 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
2015 return foldMemoryOperand(MI, Ops[0], MOs);
2016}
2017
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002018MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
2019 MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002020 SmallVectorImpl<unsigned> &Ops,
2021 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002022 // Check switch flag
2023 if (NoFusing) return NULL;
2024
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002025 unsigned Alignment = 0;
2026 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
Dan Gohman1fad9e62008-04-07 19:35:22 +00002027 const MachineMemOperand &MRO = LoadMI->getMemOperand(i);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002028 unsigned Align = MRO.getAlignment();
2029 if (Align > Alignment)
2030 Alignment = Align;
2031 }
2032
2033 // FIXME: Move alignment requirement into tables?
2034 if (Alignment < 16) {
2035 switch (MI->getOpcode()) {
2036 default: break;
2037 // Not always safe to fold movsd into these instructions since their load
2038 // folding variants expects the address to be 16 byte aligned.
2039 case X86::FsANDNPDrr:
2040 case X86::FsANDNPSrr:
2041 case X86::FsANDPDrr:
2042 case X86::FsANDPSrr:
2043 case X86::FsORPDrr:
2044 case X86::FsORPSrr:
2045 case X86::FsXORPDrr:
2046 case X86::FsXORPSrr:
2047 return NULL;
2048 }
2049 }
2050
Owen Anderson9a184ef2008-01-07 01:35:02 +00002051 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2052 unsigned NewOpc = 0;
2053 switch (MI->getOpcode()) {
2054 default: return NULL;
2055 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2056 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2057 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2058 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2059 }
2060 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002061 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002062 MI->getOperand(1).ChangeToImmediate(0);
2063 } else if (Ops.size() != 1)
2064 return NULL;
2065
2066 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00002067 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002068 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2069 MOs.push_back(LoadMI->getOperand(i));
2070 return foldMemoryOperand(MI, Ops[0], MOs);
2071}
2072
2073
2074bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002075 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002076 // Check switch flag
2077 if (NoFusing) return 0;
2078
2079 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2080 switch (MI->getOpcode()) {
2081 default: return false;
2082 case X86::TEST8rr:
2083 case X86::TEST16rr:
2084 case X86::TEST32rr:
2085 case X86::TEST64rr:
2086 return true;
2087 }
2088 }
2089
2090 if (Ops.size() != 1)
2091 return false;
2092
2093 unsigned OpNum = Ops[0];
2094 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002095 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002096 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002097 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002098
2099 // Folding a memory location into the two-address part of a two-address
2100 // instruction is different than folding it other places. It requires
2101 // replacing the *two* registers with the memory location.
2102 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2103 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2104 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2105 } else if (OpNum == 0) { // If operand 0
2106 switch (Opc) {
2107 case X86::MOV16r0:
2108 case X86::MOV32r0:
2109 case X86::MOV64r0:
2110 case X86::MOV8r0:
2111 return true;
2112 default: break;
2113 }
2114 OpcodeTablePtr = &RegOp2MemOpTable0;
2115 } else if (OpNum == 1) {
2116 OpcodeTablePtr = &RegOp2MemOpTable1;
2117 } else if (OpNum == 2) {
2118 OpcodeTablePtr = &RegOp2MemOpTable2;
2119 }
2120
2121 if (OpcodeTablePtr) {
2122 // Find the Opcode to fuse
2123 DenseMap<unsigned*, unsigned>::iterator I =
2124 OpcodeTablePtr->find((unsigned*)Opc);
2125 if (I != OpcodeTablePtr->end())
2126 return true;
2127 }
2128 return false;
2129}
2130
2131bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2132 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2133 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2134 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2135 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2136 if (I == MemOp2RegOpTable.end())
2137 return false;
2138 unsigned Opc = I->second.first;
2139 unsigned Index = I->second.second & 0xf;
2140 bool FoldedLoad = I->second.second & (1 << 4);
2141 bool FoldedStore = I->second.second & (1 << 5);
2142 if (UnfoldLoad && !FoldedLoad)
2143 return false;
2144 UnfoldLoad &= FoldedLoad;
2145 if (UnfoldStore && !FoldedStore)
2146 return false;
2147 UnfoldStore &= FoldedStore;
2148
Chris Lattner5b930372008-01-07 07:27:27 +00002149 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002150 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002151 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002152 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2153 SmallVector<MachineOperand,4> AddrOps;
2154 SmallVector<MachineOperand,2> BeforeOps;
2155 SmallVector<MachineOperand,2> AfterOps;
2156 SmallVector<MachineOperand,4> ImpOps;
2157 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2158 MachineOperand &Op = MI->getOperand(i);
2159 if (i >= Index && i < Index+4)
2160 AddrOps.push_back(Op);
2161 else if (Op.isRegister() && Op.isImplicit())
2162 ImpOps.push_back(Op);
2163 else if (i < Index)
2164 BeforeOps.push_back(Op);
2165 else if (i > Index)
2166 AfterOps.push_back(Op);
2167 }
2168
2169 // Emit the load instruction.
2170 if (UnfoldLoad) {
2171 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2172 if (UnfoldStore) {
2173 // Address operands cannot be marked isKill.
2174 for (unsigned i = 1; i != 5; ++i) {
2175 MachineOperand &MO = NewMIs[0]->getOperand(i);
2176 if (MO.isRegister())
2177 MO.setIsKill(false);
2178 }
2179 }
2180 }
2181
2182 // Emit the data processing instruction.
2183 MachineInstr *DataMI = new MachineInstr(TID, true);
2184 MachineInstrBuilder MIB(DataMI);
2185
2186 if (FoldedStore)
2187 MIB.addReg(Reg, true);
2188 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2189 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2190 if (FoldedLoad)
2191 MIB.addReg(Reg);
2192 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2193 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2194 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2195 MachineOperand &MO = ImpOps[i];
2196 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2197 }
2198 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2199 unsigned NewOpc = 0;
2200 switch (DataMI->getOpcode()) {
2201 default: break;
2202 case X86::CMP64ri32:
2203 case X86::CMP32ri:
2204 case X86::CMP16ri:
2205 case X86::CMP8ri: {
2206 MachineOperand &MO0 = DataMI->getOperand(0);
2207 MachineOperand &MO1 = DataMI->getOperand(1);
2208 if (MO1.getImm() == 0) {
2209 switch (DataMI->getOpcode()) {
2210 default: break;
2211 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2212 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2213 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2214 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2215 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002216 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002217 MO1.ChangeToRegister(MO0.getReg(), false);
2218 }
2219 }
2220 }
2221 NewMIs.push_back(DataMI);
2222
2223 // Emit the store instruction.
2224 if (UnfoldStore) {
2225 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002226 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002227 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2228 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2229 }
2230
2231 return true;
2232}
2233
2234bool
2235X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2236 SmallVectorImpl<SDNode*> &NewNodes) const {
2237 if (!N->isTargetOpcode())
2238 return false;
2239
2240 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2241 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2242 if (I == MemOp2RegOpTable.end())
2243 return false;
2244 unsigned Opc = I->second.first;
2245 unsigned Index = I->second.second & 0xf;
2246 bool FoldedLoad = I->second.second & (1 << 4);
2247 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002248 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002249 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002250 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002251 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2252 std::vector<SDOperand> AddrOps;
2253 std::vector<SDOperand> BeforeOps;
2254 std::vector<SDOperand> AfterOps;
2255 unsigned NumOps = N->getNumOperands();
2256 for (unsigned i = 0; i != NumOps-1; ++i) {
2257 SDOperand Op = N->getOperand(i);
2258 if (i >= Index && i < Index+4)
2259 AddrOps.push_back(Op);
2260 else if (i < Index)
2261 BeforeOps.push_back(Op);
2262 else if (i > Index)
2263 AfterOps.push_back(Op);
2264 }
2265 SDOperand Chain = N->getOperand(NumOps-1);
2266 AddrOps.push_back(Chain);
2267
2268 // Emit the load instruction.
2269 SDNode *Load = 0;
2270 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002271 MVT VT = *RC->vt_begin();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002272 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2273 MVT::Other, &AddrOps[0], AddrOps.size());
2274 NewNodes.push_back(Load);
2275 }
2276
2277 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002278 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002279 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002280 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002281 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002282 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002283 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2284 VTs.push_back(*DstRC->vt_begin());
2285 }
2286 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002287 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002288 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002289 VTs.push_back(VT);
2290 }
2291 if (Load)
2292 BeforeOps.push_back(SDOperand(Load, 0));
2293 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2294 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2295 NewNodes.push_back(NewNode);
2296
2297 // Emit the store instruction.
2298 if (FoldedStore) {
2299 AddrOps.pop_back();
2300 AddrOps.push_back(SDOperand(NewNode, 0));
2301 AddrOps.push_back(Chain);
2302 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2303 MVT::Other, &AddrOps[0], AddrOps.size());
2304 NewNodes.push_back(Store);
2305 }
2306
2307 return true;
2308}
2309
2310unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2311 bool UnfoldLoad, bool UnfoldStore) const {
2312 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2313 MemOp2RegOpTable.find((unsigned*)Opc);
2314 if (I == MemOp2RegOpTable.end())
2315 return 0;
2316 bool FoldedLoad = I->second.second & (1 << 4);
2317 bool FoldedStore = I->second.second & (1 << 5);
2318 if (UnfoldLoad && !FoldedLoad)
2319 return 0;
2320 if (UnfoldStore && !FoldedStore)
2321 return 0;
2322 return I->second.first;
2323}
2324
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002325bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2326 if (MBB.empty()) return false;
2327
2328 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002329 case X86::TCRETURNri:
2330 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002331 case X86::RET: // Return.
2332 case X86::RETI:
2333 case X86::TAILJMPd:
2334 case X86::TAILJMPr:
2335 case X86::TAILJMPm:
2336 case X86::JMP: // Uncond branch.
2337 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002338 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002340 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002341 return true;
2342 default: return false;
2343 }
2344}
2345
2346bool X86InstrInfo::
2347ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
2348 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2349 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2350 return false;
2351}
2352
2353const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2354 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2355 if (Subtarget->is64Bit())
2356 return &X86::GR64RegClass;
2357 else
2358 return &X86::GR32RegClass;
2359}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002360
2361unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2362 switch (Desc->TSFlags & X86II::ImmMask) {
2363 case X86II::Imm8: return 1;
2364 case X86II::Imm16: return 2;
2365 case X86II::Imm32: return 4;
2366 case X86II::Imm64: return 8;
2367 default: assert(0 && "Immediate size not set!");
2368 return 0;
2369 }
2370}
2371
2372/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2373/// e.g. r8, xmm8, etc.
2374bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2375 if (!MO.isRegister()) return false;
2376 switch (MO.getReg()) {
2377 default: break;
2378 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2379 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2380 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2381 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2382 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2383 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2384 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2385 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2386 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2387 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2388 return true;
2389 }
2390 return false;
2391}
2392
2393
2394/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2395/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2396/// size, and 3) use of X86-64 extended registers.
2397unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2398 unsigned REX = 0;
2399 const TargetInstrDesc &Desc = MI.getDesc();
2400
2401 // Pseudo instructions do not need REX prefix byte.
2402 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2403 return 0;
2404 if (Desc.TSFlags & X86II::REX_W)
2405 REX |= 1 << 3;
2406
2407 unsigned NumOps = Desc.getNumOperands();
2408 if (NumOps) {
2409 bool isTwoAddr = NumOps > 1 &&
2410 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2411
2412 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2413 unsigned i = isTwoAddr ? 1 : 0;
2414 for (unsigned e = NumOps; i != e; ++i) {
2415 const MachineOperand& MO = MI.getOperand(i);
2416 if (MO.isRegister()) {
2417 unsigned Reg = MO.getReg();
2418 if (isX86_64NonExtLowByteReg(Reg))
2419 REX |= 0x40;
2420 }
2421 }
2422
2423 switch (Desc.TSFlags & X86II::FormMask) {
2424 case X86II::MRMInitReg:
2425 if (isX86_64ExtendedReg(MI.getOperand(0)))
2426 REX |= (1 << 0) | (1 << 2);
2427 break;
2428 case X86II::MRMSrcReg: {
2429 if (isX86_64ExtendedReg(MI.getOperand(0)))
2430 REX |= 1 << 2;
2431 i = isTwoAddr ? 2 : 1;
2432 for (unsigned e = NumOps; i != e; ++i) {
2433 const MachineOperand& MO = MI.getOperand(i);
2434 if (isX86_64ExtendedReg(MO))
2435 REX |= 1 << 0;
2436 }
2437 break;
2438 }
2439 case X86II::MRMSrcMem: {
2440 if (isX86_64ExtendedReg(MI.getOperand(0)))
2441 REX |= 1 << 2;
2442 unsigned Bit = 0;
2443 i = isTwoAddr ? 2 : 1;
2444 for (; i != NumOps; ++i) {
2445 const MachineOperand& MO = MI.getOperand(i);
2446 if (MO.isRegister()) {
2447 if (isX86_64ExtendedReg(MO))
2448 REX |= 1 << Bit;
2449 Bit++;
2450 }
2451 }
2452 break;
2453 }
2454 case X86II::MRM0m: case X86II::MRM1m:
2455 case X86II::MRM2m: case X86II::MRM3m:
2456 case X86II::MRM4m: case X86II::MRM5m:
2457 case X86II::MRM6m: case X86II::MRM7m:
2458 case X86II::MRMDestMem: {
2459 unsigned e = isTwoAddr ? 5 : 4;
2460 i = isTwoAddr ? 1 : 0;
2461 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2462 REX |= 1 << 2;
2463 unsigned Bit = 0;
2464 for (; i != e; ++i) {
2465 const MachineOperand& MO = MI.getOperand(i);
2466 if (MO.isRegister()) {
2467 if (isX86_64ExtendedReg(MO))
2468 REX |= 1 << Bit;
2469 Bit++;
2470 }
2471 }
2472 break;
2473 }
2474 default: {
2475 if (isX86_64ExtendedReg(MI.getOperand(0)))
2476 REX |= 1 << 0;
2477 i = isTwoAddr ? 2 : 1;
2478 for (unsigned e = NumOps; i != e; ++i) {
2479 const MachineOperand& MO = MI.getOperand(i);
2480 if (isX86_64ExtendedReg(MO))
2481 REX |= 1 << 2;
2482 }
2483 break;
2484 }
2485 }
2486 }
2487 return REX;
2488}
2489
2490/// sizePCRelativeBlockAddress - This method returns the size of a PC
2491/// relative block address instruction
2492///
2493static unsigned sizePCRelativeBlockAddress() {
2494 return 4;
2495}
2496
2497/// sizeGlobalAddress - Give the size of the emission of this global address
2498///
2499static unsigned sizeGlobalAddress(bool dword) {
2500 return dword ? 8 : 4;
2501}
2502
2503/// sizeConstPoolAddress - Give the size of the emission of this constant
2504/// pool address
2505///
2506static unsigned sizeConstPoolAddress(bool dword) {
2507 return dword ? 8 : 4;
2508}
2509
2510/// sizeExternalSymbolAddress - Give the size of the emission of this external
2511/// symbol
2512///
2513static unsigned sizeExternalSymbolAddress(bool dword) {
2514 return dword ? 8 : 4;
2515}
2516
2517/// sizeJumpTableAddress - Give the size of the emission of this jump
2518/// table address
2519///
2520static unsigned sizeJumpTableAddress(bool dword) {
2521 return dword ? 8 : 4;
2522}
2523
2524static unsigned sizeConstant(unsigned Size) {
2525 return Size;
2526}
2527
2528static unsigned sizeRegModRMByte(){
2529 return 1;
2530}
2531
2532static unsigned sizeSIBByte(){
2533 return 1;
2534}
2535
2536static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2537 unsigned FinalSize = 0;
2538 // If this is a simple integer displacement that doesn't require a relocation.
2539 if (!RelocOp) {
2540 FinalSize += sizeConstant(4);
2541 return FinalSize;
2542 }
2543
2544 // Otherwise, this is something that requires a relocation.
2545 if (RelocOp->isGlobalAddress()) {
2546 FinalSize += sizeGlobalAddress(false);
2547 } else if (RelocOp->isConstantPoolIndex()) {
2548 FinalSize += sizeConstPoolAddress(false);
2549 } else if (RelocOp->isJumpTableIndex()) {
2550 FinalSize += sizeJumpTableAddress(false);
2551 } else {
2552 assert(0 && "Unknown value to relocate!");
2553 }
2554 return FinalSize;
2555}
2556
2557static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2558 bool IsPIC, bool Is64BitMode) {
2559 const MachineOperand &Op3 = MI.getOperand(Op+3);
2560 int DispVal = 0;
2561 const MachineOperand *DispForReloc = 0;
2562 unsigned FinalSize = 0;
2563
2564 // Figure out what sort of displacement we have to handle here.
2565 if (Op3.isGlobalAddress()) {
2566 DispForReloc = &Op3;
2567 } else if (Op3.isConstantPoolIndex()) {
2568 if (Is64BitMode || IsPIC) {
2569 DispForReloc = &Op3;
2570 } else {
2571 DispVal = 1;
2572 }
2573 } else if (Op3.isJumpTableIndex()) {
2574 if (Is64BitMode || IsPIC) {
2575 DispForReloc = &Op3;
2576 } else {
2577 DispVal = 1;
2578 }
2579 } else {
2580 DispVal = 1;
2581 }
2582
2583 const MachineOperand &Base = MI.getOperand(Op);
2584 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2585
2586 unsigned BaseReg = Base.getReg();
2587
2588 // Is a SIB byte needed?
2589 if (IndexReg.getReg() == 0 &&
2590 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2591 if (BaseReg == 0) { // Just a displacement?
2592 // Emit special case [disp32] encoding
2593 ++FinalSize;
2594 FinalSize += getDisplacementFieldSize(DispForReloc);
2595 } else {
2596 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2597 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2598 // Emit simple indirect register encoding... [EAX] f.e.
2599 ++FinalSize;
2600 // Be pessimistic and assume it's a disp32, not a disp8
2601 } else {
2602 // Emit the most general non-SIB encoding: [REG+disp32]
2603 ++FinalSize;
2604 FinalSize += getDisplacementFieldSize(DispForReloc);
2605 }
2606 }
2607
2608 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2609 assert(IndexReg.getReg() != X86::ESP &&
2610 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2611
2612 bool ForceDisp32 = false;
2613 if (BaseReg == 0 || DispForReloc) {
2614 // Emit the normal disp32 encoding.
2615 ++FinalSize;
2616 ForceDisp32 = true;
2617 } else {
2618 ++FinalSize;
2619 }
2620
2621 FinalSize += sizeSIBByte();
2622
2623 // Do we need to output a displacement?
2624 if (DispVal != 0 || ForceDisp32) {
2625 FinalSize += getDisplacementFieldSize(DispForReloc);
2626 }
2627 }
2628 return FinalSize;
2629}
2630
2631
2632static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2633 const TargetInstrDesc *Desc,
2634 bool IsPIC, bool Is64BitMode) {
2635
2636 unsigned Opcode = Desc->Opcode;
2637 unsigned FinalSize = 0;
2638
2639 // Emit the lock opcode prefix as needed.
2640 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2641
2642 // Emit the repeat opcode prefix as needed.
2643 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2644
2645 // Emit the operand size opcode prefix as needed.
2646 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2647
2648 // Emit the address size opcode prefix as needed.
2649 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2650
2651 bool Need0FPrefix = false;
2652 switch (Desc->TSFlags & X86II::Op0Mask) {
2653 case X86II::TB: // Two-byte opcode prefix
2654 case X86II::T8: // 0F 38
2655 case X86II::TA: // 0F 3A
2656 Need0FPrefix = true;
2657 break;
2658 case X86II::REP: break; // already handled.
2659 case X86II::XS: // F3 0F
2660 ++FinalSize;
2661 Need0FPrefix = true;
2662 break;
2663 case X86II::XD: // F2 0F
2664 ++FinalSize;
2665 Need0FPrefix = true;
2666 break;
2667 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2668 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2669 ++FinalSize;
2670 break; // Two-byte opcode prefix
2671 default: assert(0 && "Invalid prefix!");
2672 case 0: break; // No prefix!
2673 }
2674
2675 if (Is64BitMode) {
2676 // REX prefix
2677 unsigned REX = X86InstrInfo::determineREX(MI);
2678 if (REX)
2679 ++FinalSize;
2680 }
2681
2682 // 0x0F escape code must be emitted just before the opcode.
2683 if (Need0FPrefix)
2684 ++FinalSize;
2685
2686 switch (Desc->TSFlags & X86II::Op0Mask) {
2687 case X86II::T8: // 0F 38
2688 ++FinalSize;
2689 break;
2690 case X86II::TA: // 0F 3A
2691 ++FinalSize;
2692 break;
2693 }
2694
2695 // If this is a two-address instruction, skip one of the register operands.
2696 unsigned NumOps = Desc->getNumOperands();
2697 unsigned CurOp = 0;
2698 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2699 CurOp++;
2700
2701 switch (Desc->TSFlags & X86II::FormMask) {
2702 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2703 case X86II::Pseudo:
2704 // Remember the current PC offset, this is the PIC relocation
2705 // base address.
2706 switch (Opcode) {
2707 default:
2708 break;
2709 case TargetInstrInfo::INLINEASM: {
2710 const MachineFunction *MF = MI.getParent()->getParent();
2711 const char *AsmStr = MI.getOperand(0).getSymbolName();
2712 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2713 FinalSize += AI->getInlineAsmLength(AsmStr);
2714 break;
2715 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002716 case TargetInstrInfo::DBG_LABEL:
2717 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002718 break;
2719 case TargetInstrInfo::IMPLICIT_DEF:
2720 case TargetInstrInfo::DECLARE:
2721 case X86::DWARF_LOC:
2722 case X86::FP_REG_KILL:
2723 break;
2724 case X86::MOVPC32r: {
2725 // This emits the "call" portion of this pseudo instruction.
2726 ++FinalSize;
2727 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2728 break;
2729 }
2730 }
2731 CurOp = NumOps;
2732 break;
2733 case X86II::RawFrm:
2734 ++FinalSize;
2735
2736 if (CurOp != NumOps) {
2737 const MachineOperand &MO = MI.getOperand(CurOp++);
2738 if (MO.isMachineBasicBlock()) {
2739 FinalSize += sizePCRelativeBlockAddress();
2740 } else if (MO.isGlobalAddress()) {
2741 FinalSize += sizeGlobalAddress(false);
2742 } else if (MO.isExternalSymbol()) {
2743 FinalSize += sizeExternalSymbolAddress(false);
2744 } else if (MO.isImmediate()) {
2745 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2746 } else {
2747 assert(0 && "Unknown RawFrm operand!");
2748 }
2749 }
2750 break;
2751
2752 case X86II::AddRegFrm:
2753 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002754 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002755
2756 if (CurOp != NumOps) {
2757 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2758 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2759 if (MO1.isImmediate())
2760 FinalSize += sizeConstant(Size);
2761 else {
2762 bool dword = false;
2763 if (Opcode == X86::MOV64ri)
2764 dword = true;
2765 if (MO1.isGlobalAddress()) {
2766 FinalSize += sizeGlobalAddress(dword);
2767 } else if (MO1.isExternalSymbol())
2768 FinalSize += sizeExternalSymbolAddress(dword);
2769 else if (MO1.isConstantPoolIndex())
2770 FinalSize += sizeConstPoolAddress(dword);
2771 else if (MO1.isJumpTableIndex())
2772 FinalSize += sizeJumpTableAddress(dword);
2773 }
2774 }
2775 break;
2776
2777 case X86II::MRMDestReg: {
2778 ++FinalSize;
2779 FinalSize += sizeRegModRMByte();
2780 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002781 if (CurOp != NumOps) {
2782 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002783 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002784 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002785 break;
2786 }
2787 case X86II::MRMDestMem: {
2788 ++FinalSize;
2789 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2790 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002791 if (CurOp != NumOps) {
2792 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002793 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002794 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002795 break;
2796 }
2797
2798 case X86II::MRMSrcReg:
2799 ++FinalSize;
2800 FinalSize += sizeRegModRMByte();
2801 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002802 if (CurOp != NumOps) {
2803 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002804 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002805 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002806 break;
2807
2808 case X86II::MRMSrcMem: {
2809
2810 ++FinalSize;
2811 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2812 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002813 if (CurOp != NumOps) {
2814 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002815 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002816 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002817 break;
2818 }
2819
2820 case X86II::MRM0r: case X86II::MRM1r:
2821 case X86II::MRM2r: case X86II::MRM3r:
2822 case X86II::MRM4r: case X86II::MRM5r:
2823 case X86II::MRM6r: case X86II::MRM7r:
2824 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002825 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002826 FinalSize += sizeRegModRMByte();
2827
2828 if (CurOp != NumOps) {
2829 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2830 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2831 if (MO1.isImmediate())
2832 FinalSize += sizeConstant(Size);
2833 else {
2834 bool dword = false;
2835 if (Opcode == X86::MOV64ri32)
2836 dword = true;
2837 if (MO1.isGlobalAddress()) {
2838 FinalSize += sizeGlobalAddress(dword);
2839 } else if (MO1.isExternalSymbol())
2840 FinalSize += sizeExternalSymbolAddress(dword);
2841 else if (MO1.isConstantPoolIndex())
2842 FinalSize += sizeConstPoolAddress(dword);
2843 else if (MO1.isJumpTableIndex())
2844 FinalSize += sizeJumpTableAddress(dword);
2845 }
2846 }
2847 break;
2848
2849 case X86II::MRM0m: case X86II::MRM1m:
2850 case X86II::MRM2m: case X86II::MRM3m:
2851 case X86II::MRM4m: case X86II::MRM5m:
2852 case X86II::MRM6m: case X86II::MRM7m: {
2853
2854 ++FinalSize;
2855 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2856 CurOp += 4;
2857
2858 if (CurOp != NumOps) {
2859 const MachineOperand &MO = MI.getOperand(CurOp++);
2860 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2861 if (MO.isImmediate())
2862 FinalSize += sizeConstant(Size);
2863 else {
2864 bool dword = false;
2865 if (Opcode == X86::MOV64mi32)
2866 dword = true;
2867 if (MO.isGlobalAddress()) {
2868 FinalSize += sizeGlobalAddress(dword);
2869 } else if (MO.isExternalSymbol())
2870 FinalSize += sizeExternalSymbolAddress(dword);
2871 else if (MO.isConstantPoolIndex())
2872 FinalSize += sizeConstPoolAddress(dword);
2873 else if (MO.isJumpTableIndex())
2874 FinalSize += sizeJumpTableAddress(dword);
2875 }
2876 }
2877 break;
2878 }
2879
2880 case X86II::MRMInitReg:
2881 ++FinalSize;
2882 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2883 FinalSize += sizeRegModRMByte();
2884 ++CurOp;
2885 break;
2886 }
2887
2888 if (!Desc->isVariadic() && CurOp != NumOps) {
2889 cerr << "Cannot determine size: ";
2890 MI.dump();
2891 cerr << '\n';
2892 abort();
2893 }
2894
2895
2896 return FinalSize;
2897}
2898
2899
2900unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2901 const TargetInstrDesc &Desc = MI->getDesc();
2902 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00002903 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002904 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2905 if (Desc.getOpcode() == X86::MOVPC32r) {
2906 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2907 }
2908 return Size;
2909}