blob: 969a05c580a051f105730595c94fd38fdd2db2e7 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
213 assert(false && "Duplicated entries?");
214 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
215 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
216 std::make_pair(RegOp, AuxInfo))))
217 AmbEntries.push_back(MemOp);
218 }
219
220 // If the third value is 1, then it's folding either a load or a store.
221 static const unsigned OpTbl0[][3] = {
222 { X86::CALL32r, X86::CALL32m, 1 },
223 { X86::CALL64r, X86::CALL64m, 1 },
224 { X86::CMP16ri, X86::CMP16mi, 1 },
225 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000226 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000227 { X86::CMP32ri, X86::CMP32mi, 1 },
228 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000229 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000230 { X86::CMP64ri32, X86::CMP64mi32, 1 },
231 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000232 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000233 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::DIV16r, X86::DIV16m, 1 },
236 { X86::DIV32r, X86::DIV32m, 1 },
237 { X86::DIV64r, X86::DIV64m, 1 },
238 { X86::DIV8r, X86::DIV8m, 1 },
239 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
240 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
241 { X86::IDIV16r, X86::IDIV16m, 1 },
242 { X86::IDIV32r, X86::IDIV32m, 1 },
243 { X86::IDIV64r, X86::IDIV64m, 1 },
244 { X86::IDIV8r, X86::IDIV8m, 1 },
245 { X86::IMUL16r, X86::IMUL16m, 1 },
246 { X86::IMUL32r, X86::IMUL32m, 1 },
247 { X86::IMUL64r, X86::IMUL64m, 1 },
248 { X86::IMUL8r, X86::IMUL8m, 1 },
249 { X86::JMP32r, X86::JMP32m, 1 },
250 { X86::JMP64r, X86::JMP64m, 1 },
251 { X86::MOV16ri, X86::MOV16mi, 0 },
252 { X86::MOV16rr, X86::MOV16mr, 0 },
253 { X86::MOV16to16_, X86::MOV16_mr, 0 },
254 { X86::MOV32ri, X86::MOV32mi, 0 },
255 { X86::MOV32rr, X86::MOV32mr, 0 },
256 { X86::MOV32to32_, X86::MOV32_mr, 0 },
257 { X86::MOV64ri32, X86::MOV64mi32, 0 },
258 { X86::MOV64rr, X86::MOV64mr, 0 },
259 { X86::MOV8ri, X86::MOV8mi, 0 },
260 { X86::MOV8rr, X86::MOV8mr, 0 },
261 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
262 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
263 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
264 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
265 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
266 { X86::MOVSDrr, X86::MOVSDmr, 0 },
267 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
268 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
269 { X86::MOVSSrr, X86::MOVSSmr, 0 },
270 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
271 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
272 { X86::MUL16r, X86::MUL16m, 1 },
273 { X86::MUL32r, X86::MUL32m, 1 },
274 { X86::MUL64r, X86::MUL64m, 1 },
275 { X86::MUL8r, X86::MUL8m, 1 },
276 { X86::SETAEr, X86::SETAEm, 0 },
277 { X86::SETAr, X86::SETAm, 0 },
278 { X86::SETBEr, X86::SETBEm, 0 },
279 { X86::SETBr, X86::SETBm, 0 },
280 { X86::SETEr, X86::SETEm, 0 },
281 { X86::SETGEr, X86::SETGEm, 0 },
282 { X86::SETGr, X86::SETGm, 0 },
283 { X86::SETLEr, X86::SETLEm, 0 },
284 { X86::SETLr, X86::SETLm, 0 },
285 { X86::SETNEr, X86::SETNEm, 0 },
286 { X86::SETNPr, X86::SETNPm, 0 },
287 { X86::SETNSr, X86::SETNSm, 0 },
288 { X86::SETPr, X86::SETPm, 0 },
289 { X86::SETSr, X86::SETSm, 0 },
290 { X86::TAILJMPr, X86::TAILJMPm, 1 },
291 { X86::TEST16ri, X86::TEST16mi, 1 },
292 { X86::TEST32ri, X86::TEST32mi, 1 },
293 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000294 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000295 };
296
297 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
298 unsigned RegOp = OpTbl0[i][0];
299 unsigned MemOp = OpTbl0[i][1];
300 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
301 assert(false && "Duplicated entries?");
302 unsigned FoldedLoad = OpTbl0[i][2];
303 // Index 0, folded load or store.
304 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
305 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
306 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
307 std::make_pair(RegOp, AuxInfo))))
308 AmbEntries.push_back(MemOp);
309 }
310
311 static const unsigned OpTbl1[][2] = {
312 { X86::CMP16rr, X86::CMP16rm },
313 { X86::CMP32rr, X86::CMP32rm },
314 { X86::CMP64rr, X86::CMP64rm },
315 { X86::CMP8rr, X86::CMP8rm },
316 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
317 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
318 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
319 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
320 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
321 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
322 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
323 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
324 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
325 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
326 { X86::FsMOVAPDrr, X86::MOVSDrm },
327 { X86::FsMOVAPSrr, X86::MOVSSrm },
328 { X86::IMUL16rri, X86::IMUL16rmi },
329 { X86::IMUL16rri8, X86::IMUL16rmi8 },
330 { X86::IMUL32rri, X86::IMUL32rmi },
331 { X86::IMUL32rri8, X86::IMUL32rmi8 },
332 { X86::IMUL64rri32, X86::IMUL64rmi32 },
333 { X86::IMUL64rri8, X86::IMUL64rmi8 },
334 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
335 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
336 { X86::Int_COMISDrr, X86::Int_COMISDrm },
337 { X86::Int_COMISSrr, X86::Int_COMISSrm },
338 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
339 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
340 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
341 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
342 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
343 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
344 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
345 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
346 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
347 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
348 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
349 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
350 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
351 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
352 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
353 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
354 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
355 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
356 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
357 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
358 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
359 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
360 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
361 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
362 { X86::MOV16rr, X86::MOV16rm },
363 { X86::MOV16to16_, X86::MOV16_rm },
364 { X86::MOV32rr, X86::MOV32rm },
365 { X86::MOV32to32_, X86::MOV32_rm },
366 { X86::MOV64rr, X86::MOV64rm },
367 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
368 { X86::MOV64toSDrr, X86::MOV64toSDrm },
369 { X86::MOV8rr, X86::MOV8rm },
370 { X86::MOVAPDrr, X86::MOVAPDrm },
371 { X86::MOVAPSrr, X86::MOVAPSrm },
372 { X86::MOVDDUPrr, X86::MOVDDUPrm },
373 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
374 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
375 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
376 { X86::MOVSDrr, X86::MOVSDrm },
377 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
378 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
379 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
380 { X86::MOVSSrr, X86::MOVSSrm },
381 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
382 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
383 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
384 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
385 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
386 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
387 { X86::MOVUPDrr, X86::MOVUPDrm },
388 { X86::MOVUPSrr, X86::MOVUPSrm },
389 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
390 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
391 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
392 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
393 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
394 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
395 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
396 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
397 { X86::PSHUFDri, X86::PSHUFDmi },
398 { X86::PSHUFHWri, X86::PSHUFHWmi },
399 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000400 { X86::RCPPSr, X86::RCPPSm },
401 { X86::RCPPSr_Int, X86::RCPPSm_Int },
402 { X86::RSQRTPSr, X86::RSQRTPSm },
403 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
404 { X86::RSQRTSSr, X86::RSQRTSSm },
405 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
406 { X86::SQRTPDr, X86::SQRTPDm },
407 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
408 { X86::SQRTPSr, X86::SQRTPSm },
409 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
410 { X86::SQRTSDr, X86::SQRTSDm },
411 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
412 { X86::SQRTSSr, X86::SQRTSSm },
413 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
414 { X86::TEST16rr, X86::TEST16rm },
415 { X86::TEST32rr, X86::TEST32rm },
416 { X86::TEST64rr, X86::TEST64rm },
417 { X86::TEST8rr, X86::TEST8rm },
418 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
419 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000420 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000421 };
422
423 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
424 unsigned RegOp = OpTbl1[i][0];
425 unsigned MemOp = OpTbl1[i][1];
426 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
427 assert(false && "Duplicated entries?");
428 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
429 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
430 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
431 std::make_pair(RegOp, AuxInfo))))
432 AmbEntries.push_back(MemOp);
433 }
434
435 static const unsigned OpTbl2[][2] = {
436 { X86::ADC32rr, X86::ADC32rm },
437 { X86::ADC64rr, X86::ADC64rm },
438 { X86::ADD16rr, X86::ADD16rm },
439 { X86::ADD32rr, X86::ADD32rm },
440 { X86::ADD64rr, X86::ADD64rm },
441 { X86::ADD8rr, X86::ADD8rm },
442 { X86::ADDPDrr, X86::ADDPDrm },
443 { X86::ADDPSrr, X86::ADDPSrm },
444 { X86::ADDSDrr, X86::ADDSDrm },
445 { X86::ADDSSrr, X86::ADDSSrm },
446 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
447 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
448 { X86::AND16rr, X86::AND16rm },
449 { X86::AND32rr, X86::AND32rm },
450 { X86::AND64rr, X86::AND64rm },
451 { X86::AND8rr, X86::AND8rm },
452 { X86::ANDNPDrr, X86::ANDNPDrm },
453 { X86::ANDNPSrr, X86::ANDNPSrm },
454 { X86::ANDPDrr, X86::ANDPDrm },
455 { X86::ANDPSrr, X86::ANDPSrm },
456 { X86::CMOVA16rr, X86::CMOVA16rm },
457 { X86::CMOVA32rr, X86::CMOVA32rm },
458 { X86::CMOVA64rr, X86::CMOVA64rm },
459 { X86::CMOVAE16rr, X86::CMOVAE16rm },
460 { X86::CMOVAE32rr, X86::CMOVAE32rm },
461 { X86::CMOVAE64rr, X86::CMOVAE64rm },
462 { X86::CMOVB16rr, X86::CMOVB16rm },
463 { X86::CMOVB32rr, X86::CMOVB32rm },
464 { X86::CMOVB64rr, X86::CMOVB64rm },
465 { X86::CMOVBE16rr, X86::CMOVBE16rm },
466 { X86::CMOVBE32rr, X86::CMOVBE32rm },
467 { X86::CMOVBE64rr, X86::CMOVBE64rm },
468 { X86::CMOVE16rr, X86::CMOVE16rm },
469 { X86::CMOVE32rr, X86::CMOVE32rm },
470 { X86::CMOVE64rr, X86::CMOVE64rm },
471 { X86::CMOVG16rr, X86::CMOVG16rm },
472 { X86::CMOVG32rr, X86::CMOVG32rm },
473 { X86::CMOVG64rr, X86::CMOVG64rm },
474 { X86::CMOVGE16rr, X86::CMOVGE16rm },
475 { X86::CMOVGE32rr, X86::CMOVGE32rm },
476 { X86::CMOVGE64rr, X86::CMOVGE64rm },
477 { X86::CMOVL16rr, X86::CMOVL16rm },
478 { X86::CMOVL32rr, X86::CMOVL32rm },
479 { X86::CMOVL64rr, X86::CMOVL64rm },
480 { X86::CMOVLE16rr, X86::CMOVLE16rm },
481 { X86::CMOVLE32rr, X86::CMOVLE32rm },
482 { X86::CMOVLE64rr, X86::CMOVLE64rm },
483 { X86::CMOVNE16rr, X86::CMOVNE16rm },
484 { X86::CMOVNE32rr, X86::CMOVNE32rm },
485 { X86::CMOVNE64rr, X86::CMOVNE64rm },
486 { X86::CMOVNP16rr, X86::CMOVNP16rm },
487 { X86::CMOVNP32rr, X86::CMOVNP32rm },
488 { X86::CMOVNP64rr, X86::CMOVNP64rm },
489 { X86::CMOVNS16rr, X86::CMOVNS16rm },
490 { X86::CMOVNS32rr, X86::CMOVNS32rm },
491 { X86::CMOVNS64rr, X86::CMOVNS64rm },
492 { X86::CMOVP16rr, X86::CMOVP16rm },
493 { X86::CMOVP32rr, X86::CMOVP32rm },
494 { X86::CMOVP64rr, X86::CMOVP64rm },
495 { X86::CMOVS16rr, X86::CMOVS16rm },
496 { X86::CMOVS32rr, X86::CMOVS32rm },
497 { X86::CMOVS64rr, X86::CMOVS64rm },
498 { X86::CMPPDrri, X86::CMPPDrmi },
499 { X86::CMPPSrri, X86::CMPPSrmi },
500 { X86::CMPSDrr, X86::CMPSDrm },
501 { X86::CMPSSrr, X86::CMPSSrm },
502 { X86::DIVPDrr, X86::DIVPDrm },
503 { X86::DIVPSrr, X86::DIVPSrm },
504 { X86::DIVSDrr, X86::DIVSDrm },
505 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000506 { X86::FsANDNPDrr, X86::FsANDNPDrm },
507 { X86::FsANDNPSrr, X86::FsANDNPSrm },
508 { X86::FsANDPDrr, X86::FsANDPDrm },
509 { X86::FsANDPSrr, X86::FsANDPSrm },
510 { X86::FsORPDrr, X86::FsORPDrm },
511 { X86::FsORPSrr, X86::FsORPSrm },
512 { X86::FsXORPDrr, X86::FsXORPDrm },
513 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000514 { X86::HADDPDrr, X86::HADDPDrm },
515 { X86::HADDPSrr, X86::HADDPSrm },
516 { X86::HSUBPDrr, X86::HSUBPDrm },
517 { X86::HSUBPSrr, X86::HSUBPSrm },
518 { X86::IMUL16rr, X86::IMUL16rm },
519 { X86::IMUL32rr, X86::IMUL32rm },
520 { X86::IMUL64rr, X86::IMUL64rm },
521 { X86::MAXPDrr, X86::MAXPDrm },
522 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
523 { X86::MAXPSrr, X86::MAXPSrm },
524 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
525 { X86::MAXSDrr, X86::MAXSDrm },
526 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
527 { X86::MAXSSrr, X86::MAXSSrm },
528 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
529 { X86::MINPDrr, X86::MINPDrm },
530 { X86::MINPDrr_Int, X86::MINPDrm_Int },
531 { X86::MINPSrr, X86::MINPSrm },
532 { X86::MINPSrr_Int, X86::MINPSrm_Int },
533 { X86::MINSDrr, X86::MINSDrm },
534 { X86::MINSDrr_Int, X86::MINSDrm_Int },
535 { X86::MINSSrr, X86::MINSSrm },
536 { X86::MINSSrr_Int, X86::MINSSrm_Int },
537 { X86::MULPDrr, X86::MULPDrm },
538 { X86::MULPSrr, X86::MULPSrm },
539 { X86::MULSDrr, X86::MULSDrm },
540 { X86::MULSSrr, X86::MULSSrm },
541 { X86::OR16rr, X86::OR16rm },
542 { X86::OR32rr, X86::OR32rm },
543 { X86::OR64rr, X86::OR64rm },
544 { X86::OR8rr, X86::OR8rm },
545 { X86::ORPDrr, X86::ORPDrm },
546 { X86::ORPSrr, X86::ORPSrm },
547 { X86::PACKSSDWrr, X86::PACKSSDWrm },
548 { X86::PACKSSWBrr, X86::PACKSSWBrm },
549 { X86::PACKUSWBrr, X86::PACKUSWBrm },
550 { X86::PADDBrr, X86::PADDBrm },
551 { X86::PADDDrr, X86::PADDDrm },
552 { X86::PADDQrr, X86::PADDQrm },
553 { X86::PADDSBrr, X86::PADDSBrm },
554 { X86::PADDSWrr, X86::PADDSWrm },
555 { X86::PADDWrr, X86::PADDWrm },
556 { X86::PANDNrr, X86::PANDNrm },
557 { X86::PANDrr, X86::PANDrm },
558 { X86::PAVGBrr, X86::PAVGBrm },
559 { X86::PAVGWrr, X86::PAVGWrm },
560 { X86::PCMPEQBrr, X86::PCMPEQBrm },
561 { X86::PCMPEQDrr, X86::PCMPEQDrm },
562 { X86::PCMPEQWrr, X86::PCMPEQWrm },
563 { X86::PCMPGTBrr, X86::PCMPGTBrm },
564 { X86::PCMPGTDrr, X86::PCMPGTDrm },
565 { X86::PCMPGTWrr, X86::PCMPGTWrm },
566 { X86::PINSRWrri, X86::PINSRWrmi },
567 { X86::PMADDWDrr, X86::PMADDWDrm },
568 { X86::PMAXSWrr, X86::PMAXSWrm },
569 { X86::PMAXUBrr, X86::PMAXUBrm },
570 { X86::PMINSWrr, X86::PMINSWrm },
571 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000572 { X86::PMULDQrr, X86::PMULDQrm },
573 { X86::PMULDQrr_int, X86::PMULDQrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000574 { X86::PMULHUWrr, X86::PMULHUWrm },
575 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000576 { X86::PMULLDrr, X86::PMULLDrm },
577 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000578 { X86::PMULLWrr, X86::PMULLWrm },
579 { X86::PMULUDQrr, X86::PMULUDQrm },
580 { X86::PORrr, X86::PORrm },
581 { X86::PSADBWrr, X86::PSADBWrm },
582 { X86::PSLLDrr, X86::PSLLDrm },
583 { X86::PSLLQrr, X86::PSLLQrm },
584 { X86::PSLLWrr, X86::PSLLWrm },
585 { X86::PSRADrr, X86::PSRADrm },
586 { X86::PSRAWrr, X86::PSRAWrm },
587 { X86::PSRLDrr, X86::PSRLDrm },
588 { X86::PSRLQrr, X86::PSRLQrm },
589 { X86::PSRLWrr, X86::PSRLWrm },
590 { X86::PSUBBrr, X86::PSUBBrm },
591 { X86::PSUBDrr, X86::PSUBDrm },
592 { X86::PSUBSBrr, X86::PSUBSBrm },
593 { X86::PSUBSWrr, X86::PSUBSWrm },
594 { X86::PSUBWrr, X86::PSUBWrm },
595 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
596 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
597 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
598 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
599 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
600 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
601 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
602 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
603 { X86::PXORrr, X86::PXORrm },
604 { X86::SBB32rr, X86::SBB32rm },
605 { X86::SBB64rr, X86::SBB64rm },
606 { X86::SHUFPDrri, X86::SHUFPDrmi },
607 { X86::SHUFPSrri, X86::SHUFPSrmi },
608 { X86::SUB16rr, X86::SUB16rm },
609 { X86::SUB32rr, X86::SUB32rm },
610 { X86::SUB64rr, X86::SUB64rm },
611 { X86::SUB8rr, X86::SUB8rm },
612 { X86::SUBPDrr, X86::SUBPDrm },
613 { X86::SUBPSrr, X86::SUBPSrm },
614 { X86::SUBSDrr, X86::SUBSDrm },
615 { X86::SUBSSrr, X86::SUBSSrm },
616 // FIXME: TEST*rr -> swapped operand of TEST*mr.
617 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
618 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
619 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
620 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
621 { X86::XOR16rr, X86::XOR16rm },
622 { X86::XOR32rr, X86::XOR32rm },
623 { X86::XOR64rr, X86::XOR64rm },
624 { X86::XOR8rr, X86::XOR8rm },
625 { X86::XORPDrr, X86::XORPDrm },
626 { X86::XORPSrr, X86::XORPSrm }
627 };
628
629 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
630 unsigned RegOp = OpTbl2[i][0];
631 unsigned MemOp = OpTbl2[i][1];
632 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
633 assert(false && "Duplicated entries?");
634 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
635 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
636 std::make_pair(RegOp, AuxInfo))))
637 AmbEntries.push_back(MemOp);
638 }
639
640 // Remove ambiguous entries.
641 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642}
643
644bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
645 unsigned& sourceReg,
646 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000647 switch (MI.getOpcode()) {
648 default:
649 return false;
650 case X86::MOV8rr:
651 case X86::MOV16rr:
652 case X86::MOV32rr:
653 case X86::MOV64rr:
654 case X86::MOV16to16_:
655 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000656 case X86::MOVSSrr:
657 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000658
659 // FP Stack register class copies
660 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
661 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
662 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
663
Chris Lattnerff195282008-03-11 19:28:17 +0000664 case X86::FsMOVAPSrr:
665 case X86::FsMOVAPDrr:
666 case X86::MOVAPSrr:
667 case X86::MOVAPDrr:
668 case X86::MOVSS2PSrr:
669 case X86::MOVSD2PDrr:
670 case X86::MOVPS2SSrr:
671 case X86::MOVPD2SDrr:
672 case X86::MMX_MOVD64rr:
673 case X86::MMX_MOVQ64rr:
674 assert(MI.getNumOperands() >= 2 &&
675 MI.getOperand(0).isRegister() &&
676 MI.getOperand(1).isRegister() &&
677 "invalid register-register move instruction");
678 sourceReg = MI.getOperand(1).getReg();
679 destReg = MI.getOperand(0).getReg();
680 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682}
683
684unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
685 int &FrameIndex) const {
686 switch (MI->getOpcode()) {
687 default: break;
688 case X86::MOV8rm:
689 case X86::MOV16rm:
690 case X86::MOV16_rm:
691 case X86::MOV32rm:
692 case X86::MOV32_rm:
693 case X86::MOV64rm:
694 case X86::LD_Fp64m:
695 case X86::MOVSSrm:
696 case X86::MOVSDrm:
697 case X86::MOVAPSrm:
698 case X86::MOVAPDrm:
699 case X86::MMX_MOVD64rm:
700 case X86::MMX_MOVQ64rm:
Chris Lattner6017d482007-12-30 23:10:15 +0000701 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
702 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000703 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000705 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000706 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 return MI->getOperand(0).getReg();
708 }
709 break;
710 }
711 return 0;
712}
713
714unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
715 int &FrameIndex) const {
716 switch (MI->getOpcode()) {
717 default: break;
718 case X86::MOV8mr:
719 case X86::MOV16mr:
720 case X86::MOV16_mr:
721 case X86::MOV32mr:
722 case X86::MOV32_mr:
723 case X86::MOV64mr:
724 case X86::ST_FpP64m:
725 case X86::MOVSSmr:
726 case X86::MOVSDmr:
727 case X86::MOVAPSmr:
728 case X86::MOVAPDmr:
729 case X86::MMX_MOVD64mr:
730 case X86::MMX_MOVQ64mr:
731 case X86::MMX_MOVNTQmr:
Chris Lattner6017d482007-12-30 23:10:15 +0000732 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
733 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000734 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000736 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000737 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738 return MI->getOperand(4).getReg();
739 }
740 break;
741 }
742 return 0;
743}
744
745
Evan Chengb819a512008-03-27 01:45:11 +0000746/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
747/// X86::MOVPC32r.
748static bool regIsPICBase(unsigned BaseReg, MachineRegisterInfo &MRI) {
749 bool isPICBase = false;
750 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
751 E = MRI.def_end(); I != E; ++I) {
752 MachineInstr *DefMI = I.getOperand().getParent();
753 if (DefMI->getOpcode() != X86::MOVPC32r)
754 return false;
755 assert(!isPICBase && "More than one PIC base?");
756 isPICBase = true;
757 }
758 return isPICBase;
759}
Evan Chenge9caab52008-03-31 07:54:19 +0000760
761/// isGVStub - Return true if the GV requires an extra load to get the
762/// real address.
763static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
764 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
765}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000766
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000767bool
768X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000769 switch (MI->getOpcode()) {
770 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000771 case X86::MOV8rm:
772 case X86::MOV16rm:
773 case X86::MOV16_rm:
774 case X86::MOV32rm:
775 case X86::MOV32_rm:
776 case X86::MOV64rm:
777 case X86::LD_Fp64m:
778 case X86::MOVSSrm:
779 case X86::MOVSDrm:
780 case X86::MOVAPSrm:
781 case X86::MOVAPDrm:
782 case X86::MMX_MOVD64rm:
783 case X86::MMX_MOVQ64rm: {
784 // Loads from constant pools are trivially rematerializable.
785 if (MI->getOperand(1).isReg() &&
786 MI->getOperand(2).isImm() &&
787 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Chenge9caab52008-03-31 07:54:19 +0000788 (MI->getOperand(4).isCPI() ||
789 (MI->getOperand(4).isGlobal() &&
790 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000791 unsigned BaseReg = MI->getOperand(1).getReg();
792 if (BaseReg == 0)
793 return true;
794 // Allow re-materialization of PIC load.
Evan Chengc87df652008-04-01 23:26:12 +0000795 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
796 return false;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000797 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
798 bool isPICBase = false;
799 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
800 E = MRI.def_end(); I != E; ++I) {
801 MachineInstr *DefMI = I.getOperand().getParent();
802 if (DefMI->getOpcode() != X86::MOVPC32r)
803 return false;
804 assert(!isPICBase && "More than one PIC base?");
805 isPICBase = true;
806 }
807 return isPICBase;
808 }
809 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000810 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000811
812 case X86::LEA32r:
813 case X86::LEA64r: {
814 if (MI->getOperand(1).isReg() &&
815 MI->getOperand(2).isImm() &&
816 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
817 !MI->getOperand(4).isReg()) {
818 // lea fi#, lea GV, etc. are all rematerializable.
819 unsigned BaseReg = MI->getOperand(1).getReg();
820 if (BaseReg == 0)
821 return true;
822 // Allow re-materialization of lea PICBase + x.
Evan Chengb819a512008-03-27 01:45:11 +0000823 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
824 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000825 }
826 return false;
827 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000828 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000829
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000830 // All other instructions marked M_REMATERIALIZABLE are always trivially
831 // rematerializable.
832 return true;
833}
834
Evan Chengc564ded2008-06-24 07:10:51 +0000835/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
836/// would clobber the EFLAGS condition register. Note the result may be
837/// conservative. If it cannot definitely determine the safety after visiting
838/// two instructions it assumes it's not safe.
839static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
840 MachineBasicBlock::iterator I) {
841 // For compile time consideration, if we are not able to determine the
842 // safety after visiting 2 instructions, we will assume it's not safe.
843 for (unsigned i = 0; i < 2; ++i) {
844 if (I == MBB.end())
845 // Reached end of block, it's safe.
846 return true;
847 bool SeenDef = false;
848 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
849 MachineOperand &MO = I->getOperand(j);
850 if (!MO.isRegister())
851 continue;
852 if (MO.getReg() == X86::EFLAGS) {
853 if (MO.isUse())
854 return false;
855 SeenDef = true;
856 }
857 }
858
859 if (SeenDef)
860 // This instruction defines EFLAGS, no need to look any further.
861 return true;
862 ++I;
863 }
864
865 // Conservative answer.
866 return false;
867}
868
Evan Cheng7d73efc2008-03-31 20:40:39 +0000869void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
870 MachineBasicBlock::iterator I,
871 unsigned DestReg,
872 const MachineInstr *Orig) const {
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000873 unsigned SubIdx = Orig->getOperand(0).isReg()
874 ? Orig->getOperand(0).getSubReg() : 0;
875 bool ChangeSubIdx = SubIdx != 0;
876 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
877 DestReg = RI.getSubReg(DestReg, SubIdx);
878 SubIdx = 0;
879 }
880
Evan Cheng7d73efc2008-03-31 20:40:39 +0000881 // MOV32r0 etc. are implemented with xor which clobbers condition code.
882 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000883 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000884 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000885 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000886 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000887 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000888 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000889 case X86::MOV64r0: {
890 if (!isSafeToClobberEFLAGS(MBB, I)) {
891 unsigned Opc = 0;
892 switch (Orig->getOpcode()) {
893 default: break;
894 case X86::MOV8r0: Opc = X86::MOV8ri; break;
895 case X86::MOV16r0: Opc = X86::MOV16ri; break;
896 case X86::MOV32r0: Opc = X86::MOV32ri; break;
897 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
898 }
899 BuildMI(MBB, I, get(Opc), DestReg).addImm(0);
900 Emitted = true;
901 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000902 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000903 }
904 }
905
906 if (!Emitted) {
Evan Cheng7d73efc2008-03-31 20:40:39 +0000907 MachineInstr *MI = Orig->clone();
908 MI->getOperand(0).setReg(DestReg);
909 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000910 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000911
912 if (ChangeSubIdx) {
913 MachineInstr *NewMI = prior(I);
914 NewMI->getOperand(0).setSubReg(SubIdx);
915 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000916}
917
Chris Lattnerea3a1812008-01-10 23:08:24 +0000918/// isInvariantLoad - Return true if the specified instruction (which is marked
919/// mayLoad) is loading from a location whose value is invariant across the
920/// function. For example, loading a value from the constant pool or from
921/// from the argument area of a function if it does not change. This should
922/// only return true of *all* loads the instruction does are invariant (if it
923/// does multiple loads).
924bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000925 // This code cares about loads from three cases: constant pool entries,
926 // invariant argument slots, and global stubs. In order to handle these cases
927 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000928 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000929 // none of these three cases is ever used as anything other than a load base
930 // and X86 doesn't have any instructions that load from multiple places.
931
932 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
933 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000934 // Loads from constant pools are trivially invariant.
Chris Lattner0875b572008-01-12 00:35:08 +0000935 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000936 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000937
938 if (MO.isGlobal())
939 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000940
941 // If this is a load from an invariant stack slot, the load is a constant.
942 if (MO.isFI()) {
943 const MachineFrameInfo &MFI =
944 *MI->getParent()->getParent()->getFrameInfo();
945 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000946 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
947 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000948 }
Chris Lattner0875b572008-01-12 00:35:08 +0000949
Chris Lattnerea3a1812008-01-10 23:08:24 +0000950 // All other instances of these instructions are presumed to have other
951 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000952 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000953}
954
Evan Chengfa1a4952007-10-05 08:04:01 +0000955/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
956/// is not marked dead.
957static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000958 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
959 MachineOperand &MO = MI->getOperand(i);
960 if (MO.isRegister() && MO.isDef() &&
961 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
962 return true;
963 }
964 }
965 return false;
966}
967
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000968/// convertToThreeAddress - This method must be implemented by targets that
969/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
970/// may be able to convert a two-address instruction into a true
971/// three-address instruction on demand. This allows the X86 target (for
972/// example) to convert ADD and SHL instructions into LEA instructions if they
973/// would require register copies due to two-addressness.
974///
975/// This method returns a null pointer if the transformation cannot be
976/// performed, otherwise it returns the new instruction.
977///
978MachineInstr *
979X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
980 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +0000981 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 MachineInstr *MI = MBBI;
983 // All instructions input are two-addr instructions. Get the known operands.
984 unsigned Dest = MI->getOperand(0).getReg();
985 unsigned Src = MI->getOperand(1).getReg();
986
987 MachineInstr *NewMI = NULL;
988 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
989 // we have better subtarget support, enable the 16-bit LEA generation here.
990 bool DisableLEA16 = true;
991
Evan Cheng6b96ed32007-10-05 20:34:26 +0000992 unsigned MIOpc = MI->getOpcode();
993 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994 case X86::SHUFPSrri: {
995 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
996 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
997
998 unsigned A = MI->getOperand(0).getReg();
999 unsigned B = MI->getOperand(1).getReg();
1000 unsigned C = MI->getOperand(2).getReg();
1001 unsigned M = MI->getOperand(3).getImm();
1002 if (B != C) return 0;
1003 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
1004 break;
1005 }
1006 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001007 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001008 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1009 // the flags produced by a shift yet, so this is safe.
1010 unsigned Dest = MI->getOperand(0).getReg();
1011 unsigned Src = MI->getOperand(1).getReg();
1012 unsigned ShAmt = MI->getOperand(2).getImm();
1013 if (ShAmt == 0 || ShAmt >= 4) return 0;
1014
1015 NewMI = BuildMI(get(X86::LEA64r), Dest)
1016 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
1017 break;
1018 }
1019 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001020 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1022 // the flags produced by a shift yet, so this is safe.
1023 unsigned Dest = MI->getOperand(0).getReg();
1024 unsigned Src = MI->getOperand(1).getReg();
1025 unsigned ShAmt = MI->getOperand(2).getImm();
1026 if (ShAmt == 0 || ShAmt >= 4) return 0;
1027
1028 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1029 X86::LEA64_32r : X86::LEA32r;
1030 NewMI = BuildMI(get(Opc), Dest)
1031 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
1032 break;
1033 }
1034 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001035 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001036 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1037 // the flags produced by a shift yet, so this is safe.
1038 unsigned Dest = MI->getOperand(0).getReg();
1039 unsigned Src = MI->getOperand(1).getReg();
1040 unsigned ShAmt = MI->getOperand(2).getImm();
1041 if (ShAmt == 0 || ShAmt >= 4) return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001042
Christopher Lamb380c6272007-08-10 21:18:25 +00001043 if (DisableLEA16) {
1044 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001045 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001046 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1047 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001048 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1049 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001050
Christopher Lamb8d226a22008-03-11 10:27:36 +00001051 // Build and insert into an implicit UNDEF value. This is OK because
1052 // well be shifting and then extracting the lower 16-bits.
Christopher Lamb76d72da2008-03-16 03:12:01 +00001053 MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
1054
Christopher Lamb8d226a22008-03-11 10:27:36 +00001055 MachineInstr *Ins =
Christopher Lambb371e032008-03-13 05:47:01 +00001056 BuildMI(get(X86::INSERT_SUBREG),leaInReg)
Christopher Lamb76d72da2008-03-16 03:12:01 +00001057 .addReg(leaInReg).addReg(Src).addImm(X86::SUBREG_16BIT);
Christopher Lamb380c6272007-08-10 21:18:25 +00001058
1059 NewMI = BuildMI(get(Opc), leaOutReg)
1060 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
1061
Evan Cheng0b1e8712007-09-06 00:14:41 +00001062 MachineInstr *Ext =
Christopher Lamb8d226a22008-03-11 10:27:36 +00001063 BuildMI(get(X86::EXTRACT_SUBREG), Dest)
1064 .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
Christopher Lamb380c6272007-08-10 21:18:25 +00001065 Ext->copyKillDeadInfo(MI);
1066
Christopher Lamb76d72da2008-03-16 03:12:01 +00001067 MFI->insert(MBBI, Undef);
Christopher Lamb380c6272007-08-10 21:18:25 +00001068 MFI->insert(MBBI, Ins); // Insert the insert_subreg
Owen Andersonc6959722008-07-02 23:41:07 +00001069 if (LV) {
1070 LV->instructionChanged(MI, NewMI); // Update live variables
1071 LV->addVirtualRegisterKilled(leaInReg, NewMI);
1072 }
Christopher Lamb380c6272007-08-10 21:18:25 +00001073 MFI->insert(MBBI, NewMI); // Insert the new inst
Owen Andersonc6959722008-07-02 23:41:07 +00001074 if (LV) LV->addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng0b1e8712007-09-06 00:14:41 +00001075 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lamb380c6272007-08-10 21:18:25 +00001076 return Ext;
1077 } else {
1078 NewMI = BuildMI(get(X86::LEA16r), Dest)
1079 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
1080 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001081 break;
1082 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001083 default: {
1084 // The following opcodes also sets the condition code register(s). Only
1085 // convert them to equivalent lea if the condition code register def's
1086 // are dead!
1087 if (hasLiveCondCodeDef(MI))
1088 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001089
Evan Chenga28a9562007-10-09 07:14:53 +00001090 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001091 switch (MIOpc) {
1092 default: return 0;
1093 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001094 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001095 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001096 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1097 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001098 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
1099 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001100 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001101 case X86::INC16r:
1102 case X86::INC64_16r:
1103 if (DisableLEA16) return 0;
1104 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1105 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
1106 break;
1107 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001108 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001109 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001110 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1111 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001112 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
1113 break;
1114 }
1115 case X86::DEC16r:
1116 case X86::DEC64_16r:
1117 if (DisableLEA16) return 0;
1118 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1119 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
1120 break;
1121 case X86::ADD64rr:
1122 case X86::ADD32rr: {
1123 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001124 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1125 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001126 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
1127 MI->getOperand(2).getReg());
1128 break;
1129 }
1130 case X86::ADD16rr:
1131 if (DisableLEA16) return 0;
1132 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1133 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
1134 MI->getOperand(2).getReg());
1135 break;
1136 case X86::ADD64ri32:
1137 case X86::ADD64ri8:
1138 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1139 if (MI->getOperand(2).isImmediate())
1140 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001141 MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001142 break;
1143 case X86::ADD32ri:
1144 case X86::ADD32ri8:
1145 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001146 if (MI->getOperand(2).isImmediate()) {
1147 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1148 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001149 MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001150 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001151 break;
1152 case X86::ADD16ri:
1153 case X86::ADD16ri8:
1154 if (DisableLEA16) return 0;
1155 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1156 if (MI->getOperand(2).isImmediate())
1157 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001158 MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001159 break;
1160 case X86::SHL16ri:
1161 if (DisableLEA16) return 0;
1162 case X86::SHL32ri:
1163 case X86::SHL64ri: {
1164 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1165 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001166 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001167 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1168 X86AddressMode AM;
1169 AM.Scale = 1 << ShAmt;
1170 AM.IndexReg = Src;
1171 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001172 : (MIOpc == X86::SHL32ri
1173 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001174 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1175 }
1176 break;
1177 }
1178 }
1179 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 }
1181
Evan Chengc3cb24d2008-02-07 08:29:53 +00001182 if (!NewMI) return 0;
1183
Evan Cheng6b96ed32007-10-05 20:34:26 +00001184 NewMI->copyKillDeadInfo(MI);
Owen Andersonc6959722008-07-02 23:41:07 +00001185 if (LV) LV->instructionChanged(MI, NewMI); // Update live variables
Evan Cheng6b96ed32007-10-05 20:34:26 +00001186 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001187 return NewMI;
1188}
1189
1190/// commuteInstruction - We have a few instructions that must be hacked on to
1191/// commute them.
1192///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001193MachineInstr *
1194X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 switch (MI->getOpcode()) {
1196 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1197 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1198 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001199 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1200 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1201 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001202 unsigned Opc;
1203 unsigned Size;
1204 switch (MI->getOpcode()) {
1205 default: assert(0 && "Unreachable!");
1206 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1207 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1208 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1209 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001210 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1211 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001212 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001213 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001214 unsigned A = MI->getOperand(0).getReg();
1215 unsigned B = MI->getOperand(1).getReg();
1216 unsigned C = MI->getOperand(2).getReg();
1217 bool BisKill = MI->getOperand(1).isKill();
1218 bool CisKill = MI->getOperand(2).isKill();
Evan Chengb554e532008-02-13 02:46:49 +00001219 // If machine instrs are no longer in two-address forms, update
1220 // destination register as well.
1221 if (A == B) {
1222 // Must be two address instruction!
1223 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1224 "Expecting a two-address instruction!");
1225 A = C;
1226 CisKill = false;
1227 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001228 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
1229 .addReg(B, false, false, BisKill).addImm(Size-Amt);
1230 }
Evan Cheng926658c2007-10-05 23:13:21 +00001231 case X86::CMOVB16rr:
1232 case X86::CMOVB32rr:
1233 case X86::CMOVB64rr:
1234 case X86::CMOVAE16rr:
1235 case X86::CMOVAE32rr:
1236 case X86::CMOVAE64rr:
1237 case X86::CMOVE16rr:
1238 case X86::CMOVE32rr:
1239 case X86::CMOVE64rr:
1240 case X86::CMOVNE16rr:
1241 case X86::CMOVNE32rr:
1242 case X86::CMOVNE64rr:
1243 case X86::CMOVBE16rr:
1244 case X86::CMOVBE32rr:
1245 case X86::CMOVBE64rr:
1246 case X86::CMOVA16rr:
1247 case X86::CMOVA32rr:
1248 case X86::CMOVA64rr:
1249 case X86::CMOVL16rr:
1250 case X86::CMOVL32rr:
1251 case X86::CMOVL64rr:
1252 case X86::CMOVGE16rr:
1253 case X86::CMOVGE32rr:
1254 case X86::CMOVGE64rr:
1255 case X86::CMOVLE16rr:
1256 case X86::CMOVLE32rr:
1257 case X86::CMOVLE64rr:
1258 case X86::CMOVG16rr:
1259 case X86::CMOVG32rr:
1260 case X86::CMOVG64rr:
1261 case X86::CMOVS16rr:
1262 case X86::CMOVS32rr:
1263 case X86::CMOVS64rr:
1264 case X86::CMOVNS16rr:
1265 case X86::CMOVNS32rr:
1266 case X86::CMOVNS64rr:
1267 case X86::CMOVP16rr:
1268 case X86::CMOVP32rr:
1269 case X86::CMOVP64rr:
1270 case X86::CMOVNP16rr:
1271 case X86::CMOVNP32rr:
1272 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001273 unsigned Opc = 0;
1274 switch (MI->getOpcode()) {
1275 default: break;
1276 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1277 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1278 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1279 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1280 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1281 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1282 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1283 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1284 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1285 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1286 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1287 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1288 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1289 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1290 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1291 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1292 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1293 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1294 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1295 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1296 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1297 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1298 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1299 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1300 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1301 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1302 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1303 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1304 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1305 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1306 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1307 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1308 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1309 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1310 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1311 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1312 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1313 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1314 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1315 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1316 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1317 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1318 }
1319
Chris Lattner86bb02f2008-01-11 18:10:50 +00001320 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001321 // Fallthrough intended.
1322 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001323 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001324 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001325 }
1326}
1327
1328static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1329 switch (BrOpc) {
1330 default: return X86::COND_INVALID;
1331 case X86::JE: return X86::COND_E;
1332 case X86::JNE: return X86::COND_NE;
1333 case X86::JL: return X86::COND_L;
1334 case X86::JLE: return X86::COND_LE;
1335 case X86::JG: return X86::COND_G;
1336 case X86::JGE: return X86::COND_GE;
1337 case X86::JB: return X86::COND_B;
1338 case X86::JBE: return X86::COND_BE;
1339 case X86::JA: return X86::COND_A;
1340 case X86::JAE: return X86::COND_AE;
1341 case X86::JS: return X86::COND_S;
1342 case X86::JNS: return X86::COND_NS;
1343 case X86::JP: return X86::COND_P;
1344 case X86::JNP: return X86::COND_NP;
1345 case X86::JO: return X86::COND_O;
1346 case X86::JNO: return X86::COND_NO;
1347 }
1348}
1349
1350unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1351 switch (CC) {
1352 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001353 case X86::COND_E: return X86::JE;
1354 case X86::COND_NE: return X86::JNE;
1355 case X86::COND_L: return X86::JL;
1356 case X86::COND_LE: return X86::JLE;
1357 case X86::COND_G: return X86::JG;
1358 case X86::COND_GE: return X86::JGE;
1359 case X86::COND_B: return X86::JB;
1360 case X86::COND_BE: return X86::JBE;
1361 case X86::COND_A: return X86::JA;
1362 case X86::COND_AE: return X86::JAE;
1363 case X86::COND_S: return X86::JS;
1364 case X86::COND_NS: return X86::JNS;
1365 case X86::COND_P: return X86::JP;
1366 case X86::COND_NP: return X86::JNP;
1367 case X86::COND_O: return X86::JO;
1368 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 }
1370}
1371
1372/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1373/// e.g. turning COND_E to COND_NE.
1374X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1375 switch (CC) {
1376 default: assert(0 && "Illegal condition code!");
1377 case X86::COND_E: return X86::COND_NE;
1378 case X86::COND_NE: return X86::COND_E;
1379 case X86::COND_L: return X86::COND_GE;
1380 case X86::COND_LE: return X86::COND_G;
1381 case X86::COND_G: return X86::COND_LE;
1382 case X86::COND_GE: return X86::COND_L;
1383 case X86::COND_B: return X86::COND_AE;
1384 case X86::COND_BE: return X86::COND_A;
1385 case X86::COND_A: return X86::COND_BE;
1386 case X86::COND_AE: return X86::COND_B;
1387 case X86::COND_S: return X86::COND_NS;
1388 case X86::COND_NS: return X86::COND_S;
1389 case X86::COND_P: return X86::COND_NP;
1390 case X86::COND_NP: return X86::COND_P;
1391 case X86::COND_O: return X86::COND_NO;
1392 case X86::COND_NO: return X86::COND_O;
1393 }
1394}
1395
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001396bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001397 const TargetInstrDesc &TID = MI->getDesc();
1398 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001399
1400 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001401 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001402 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001403 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001404 return true;
1405 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001406}
1407
Evan Cheng12515792007-07-26 17:32:14 +00001408// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1409static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1410 const X86InstrInfo &TII) {
1411 if (MI->getOpcode() == X86::FP_REG_KILL)
1412 return false;
1413 return TII.isUnpredicatedTerminator(MI);
1414}
1415
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001416bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1417 MachineBasicBlock *&TBB,
1418 MachineBasicBlock *&FBB,
1419 std::vector<MachineOperand> &Cond) const {
1420 // If the block has no terminators, it just falls into the block after it.
1421 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001422 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001423 return false;
1424
1425 // Get the last instruction in the block.
1426 MachineInstr *LastInst = I;
1427
1428 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001429 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001430 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001431 return true;
1432
1433 // If the block ends with a branch there are 3 possibilities:
1434 // it's an unconditional, conditional, or indirect branch.
1435
1436 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001437 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001438 return false;
1439 }
1440 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1441 if (BranchCode == X86::COND_INVALID)
1442 return true; // Can't handle indirect branch.
1443
1444 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001445 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001446 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1447 return false;
1448 }
1449
1450 // Get the instruction before it if it's a terminator.
1451 MachineInstr *SecondLastInst = I;
1452
1453 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001454 if (SecondLastInst && I != MBB.begin() &&
1455 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001456 return true;
1457
1458 // If the block ends with X86::JMP and a conditional branch, handle it.
1459 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1460 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001461 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001462 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001463 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001464 return false;
1465 }
1466
1467 // If the block ends with two X86::JMPs, handle it. The second one is not
1468 // executed, so remove it.
1469 if (SecondLastInst->getOpcode() == X86::JMP &&
1470 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001471 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001472 I = LastInst;
1473 I->eraseFromParent();
1474 return false;
1475 }
1476
1477 // Otherwise, can't handle this.
1478 return true;
1479}
1480
1481unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1482 MachineBasicBlock::iterator I = MBB.end();
1483 if (I == MBB.begin()) return 0;
1484 --I;
1485 if (I->getOpcode() != X86::JMP &&
1486 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1487 return 0;
1488
1489 // Remove the branch.
1490 I->eraseFromParent();
1491
1492 I = MBB.end();
1493
1494 if (I == MBB.begin()) return 1;
1495 --I;
1496 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1497 return 1;
1498
1499 // Remove the branch.
1500 I->eraseFromParent();
1501 return 2;
1502}
1503
Owen Anderson81875432008-01-01 21:11:32 +00001504static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1505 MachineOperand &MO) {
1506 if (MO.isRegister())
1507 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1508 false, false, MO.getSubReg());
1509 else if (MO.isImmediate())
1510 MIB = MIB.addImm(MO.getImm());
1511 else if (MO.isFrameIndex())
1512 MIB = MIB.addFrameIndex(MO.getIndex());
1513 else if (MO.isGlobalAddress())
1514 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1515 else if (MO.isConstantPoolIndex())
1516 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1517 else if (MO.isJumpTableIndex())
1518 MIB = MIB.addJumpTableIndex(MO.getIndex());
1519 else if (MO.isExternalSymbol())
1520 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1521 else
1522 assert(0 && "Unknown operand for X86InstrAddOperand!");
1523
1524 return MIB;
1525}
1526
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001527unsigned
1528X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1529 MachineBasicBlock *FBB,
1530 const std::vector<MachineOperand> &Cond) const {
1531 // Shouldn't be a fall through.
1532 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1533 assert((Cond.size() == 1 || Cond.size() == 0) &&
1534 "X86 branch conditions have one component!");
1535
1536 if (FBB == 0) { // One way branch.
1537 if (Cond.empty()) {
1538 // Unconditional branch?
1539 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1540 } else {
1541 // Conditional branch.
1542 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1543 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1544 }
1545 return 1;
1546 }
1547
1548 // Two-way Conditional branch.
1549 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1550 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1551 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1552 return 2;
1553}
1554
Owen Anderson8f2c8932007-12-31 06:32:00 +00001555void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001556 MachineBasicBlock::iterator MI,
1557 unsigned DestReg, unsigned SrcReg,
1558 const TargetRegisterClass *DestRC,
1559 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001560 if (DestRC == SrcRC) {
1561 unsigned Opc;
1562 if (DestRC == &X86::GR64RegClass) {
1563 Opc = X86::MOV64rr;
1564 } else if (DestRC == &X86::GR32RegClass) {
1565 Opc = X86::MOV32rr;
1566 } else if (DestRC == &X86::GR16RegClass) {
1567 Opc = X86::MOV16rr;
1568 } else if (DestRC == &X86::GR8RegClass) {
1569 Opc = X86::MOV8rr;
1570 } else if (DestRC == &X86::GR32_RegClass) {
1571 Opc = X86::MOV32_rr;
1572 } else if (DestRC == &X86::GR16_RegClass) {
1573 Opc = X86::MOV16_rr;
1574 } else if (DestRC == &X86::RFP32RegClass) {
1575 Opc = X86::MOV_Fp3232;
1576 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1577 Opc = X86::MOV_Fp6464;
1578 } else if (DestRC == &X86::RFP80RegClass) {
1579 Opc = X86::MOV_Fp8080;
1580 } else if (DestRC == &X86::FR32RegClass) {
1581 Opc = X86::FsMOVAPSrr;
1582 } else if (DestRC == &X86::FR64RegClass) {
1583 Opc = X86::FsMOVAPDrr;
1584 } else if (DestRC == &X86::VR128RegClass) {
1585 Opc = X86::MOVAPSrr;
1586 } else if (DestRC == &X86::VR64RegClass) {
1587 Opc = X86::MMX_MOVQ64rr;
1588 } else {
1589 assert(0 && "Unknown regclass");
1590 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001591 }
Chris Lattner59707122008-03-09 07:58:04 +00001592 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1593 return;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001594 }
Chris Lattner59707122008-03-09 07:58:04 +00001595
1596 // Moving EFLAGS to / from another register requires a push and a pop.
1597 if (SrcRC == &X86::CCRRegClass) {
1598 assert(SrcReg == X86::EFLAGS);
1599 if (DestRC == &X86::GR64RegClass) {
1600 BuildMI(MBB, MI, get(X86::PUSHFQ));
1601 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1602 return;
1603 } else if (DestRC == &X86::GR32RegClass) {
1604 BuildMI(MBB, MI, get(X86::PUSHFD));
1605 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1606 return;
1607 }
1608 } else if (DestRC == &X86::CCRRegClass) {
1609 assert(DestReg == X86::EFLAGS);
1610 if (SrcRC == &X86::GR64RegClass) {
1611 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1612 BuildMI(MBB, MI, get(X86::POPFQ));
1613 return;
1614 } else if (SrcRC == &X86::GR32RegClass) {
1615 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1616 BuildMI(MBB, MI, get(X86::POPFD));
1617 return;
1618 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001619 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001620
Chris Lattner0d128722008-03-09 09:15:31 +00001621 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001622 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001623 // Copying from ST(0)/ST(1).
1624 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1625 "Can only copy from ST(0)/ST(1) right now");
1626 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001627 unsigned Opc;
1628 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001629 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001630 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001631 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001632 else {
1633 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner60d14d82008-03-21 06:38:26 +00001634 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001635 }
1636 BuildMI(MBB, MI, get(Opc), DestReg);
1637 return;
1638 }
Chris Lattner0d128722008-03-09 09:15:31 +00001639
1640 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1641 if (DestRC == &X86::RSTRegClass) {
1642 // Copying to ST(0). FIXME: handle ST(1) also
1643 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1644 unsigned Opc;
1645 if (SrcRC == &X86::RFP32RegClass)
1646 Opc = X86::FpSET_ST0_32;
1647 else if (SrcRC == &X86::RFP64RegClass)
1648 Opc = X86::FpSET_ST0_64;
1649 else {
1650 assert(SrcRC == &X86::RFP80RegClass);
1651 Opc = X86::FpSET_ST0_80;
1652 }
1653 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1654 return;
1655 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001656
Chris Lattnercffd2472008-03-10 23:56:08 +00001657 assert(0 && "Not yet supported!");
Chris Lattner59707122008-03-09 07:58:04 +00001658 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001659}
1660
Owen Anderson81875432008-01-01 21:11:32 +00001661static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1662 unsigned StackAlign) {
1663 unsigned Opc = 0;
1664 if (RC == &X86::GR64RegClass) {
1665 Opc = X86::MOV64mr;
1666 } else if (RC == &X86::GR32RegClass) {
1667 Opc = X86::MOV32mr;
1668 } else if (RC == &X86::GR16RegClass) {
1669 Opc = X86::MOV16mr;
1670 } else if (RC == &X86::GR8RegClass) {
1671 Opc = X86::MOV8mr;
1672 } else if (RC == &X86::GR32_RegClass) {
1673 Opc = X86::MOV32_mr;
1674 } else if (RC == &X86::GR16_RegClass) {
1675 Opc = X86::MOV16_mr;
1676 } else if (RC == &X86::RFP80RegClass) {
1677 Opc = X86::ST_FpP80m; // pops
1678 } else if (RC == &X86::RFP64RegClass) {
1679 Opc = X86::ST_Fp64m;
1680 } else if (RC == &X86::RFP32RegClass) {
1681 Opc = X86::ST_Fp32m;
1682 } else if (RC == &X86::FR32RegClass) {
1683 Opc = X86::MOVSSmr;
1684 } else if (RC == &X86::FR64RegClass) {
1685 Opc = X86::MOVSDmr;
1686 } else if (RC == &X86::VR128RegClass) {
1687 // FIXME: Use movaps once we are capable of selectively
1688 // aligning functions that spill SSE registers on 16-byte boundaries.
1689 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1690 } else if (RC == &X86::VR64RegClass) {
1691 Opc = X86::MMX_MOVQ64mr;
1692 } else {
1693 assert(0 && "Unknown regclass");
1694 abort();
1695 }
1696
1697 return Opc;
1698}
1699
1700void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1701 MachineBasicBlock::iterator MI,
1702 unsigned SrcReg, bool isKill, int FrameIdx,
1703 const TargetRegisterClass *RC) const {
1704 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1705 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1706 .addReg(SrcReg, false, false, isKill);
1707}
1708
1709void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1710 bool isKill,
1711 SmallVectorImpl<MachineOperand> &Addr,
1712 const TargetRegisterClass *RC,
1713 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1714 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1715 MachineInstrBuilder MIB = BuildMI(get(Opc));
1716 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1717 MIB = X86InstrAddOperand(MIB, Addr[i]);
1718 MIB.addReg(SrcReg, false, false, isKill);
1719 NewMIs.push_back(MIB);
1720}
1721
1722static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1723 unsigned StackAlign) {
1724 unsigned Opc = 0;
1725 if (RC == &X86::GR64RegClass) {
1726 Opc = X86::MOV64rm;
1727 } else if (RC == &X86::GR32RegClass) {
1728 Opc = X86::MOV32rm;
1729 } else if (RC == &X86::GR16RegClass) {
1730 Opc = X86::MOV16rm;
1731 } else if (RC == &X86::GR8RegClass) {
1732 Opc = X86::MOV8rm;
1733 } else if (RC == &X86::GR32_RegClass) {
1734 Opc = X86::MOV32_rm;
1735 } else if (RC == &X86::GR16_RegClass) {
1736 Opc = X86::MOV16_rm;
1737 } else if (RC == &X86::RFP80RegClass) {
1738 Opc = X86::LD_Fp80m;
1739 } else if (RC == &X86::RFP64RegClass) {
1740 Opc = X86::LD_Fp64m;
1741 } else if (RC == &X86::RFP32RegClass) {
1742 Opc = X86::LD_Fp32m;
1743 } else if (RC == &X86::FR32RegClass) {
1744 Opc = X86::MOVSSrm;
1745 } else if (RC == &X86::FR64RegClass) {
1746 Opc = X86::MOVSDrm;
1747 } else if (RC == &X86::VR128RegClass) {
1748 // FIXME: Use movaps once we are capable of selectively
1749 // aligning functions that spill SSE registers on 16-byte boundaries.
1750 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1751 } else if (RC == &X86::VR64RegClass) {
1752 Opc = X86::MMX_MOVQ64rm;
1753 } else {
1754 assert(0 && "Unknown regclass");
1755 abort();
1756 }
1757
1758 return Opc;
1759}
1760
1761void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1762 MachineBasicBlock::iterator MI,
1763 unsigned DestReg, int FrameIdx,
1764 const TargetRegisterClass *RC) const{
1765 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1766 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1767}
1768
1769void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1770 SmallVectorImpl<MachineOperand> &Addr,
1771 const TargetRegisterClass *RC,
1772 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1773 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1774 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1775 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1776 MIB = X86InstrAddOperand(MIB, Addr[i]);
1777 NewMIs.push_back(MIB);
1778}
1779
Owen Anderson6690c7f2008-01-04 23:57:37 +00001780bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1781 MachineBasicBlock::iterator MI,
1782 const std::vector<CalleeSavedInfo> &CSI) const {
1783 if (CSI.empty())
1784 return false;
1785
1786 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1787 unsigned SlotSize = is64Bit ? 8 : 4;
1788
1789 MachineFunction &MF = *MBB.getParent();
1790 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1791 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1792
1793 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1794 for (unsigned i = CSI.size(); i != 0; --i) {
1795 unsigned Reg = CSI[i-1].getReg();
1796 // Add the callee-saved register as live-in. It's killed at the spill.
1797 MBB.addLiveIn(Reg);
1798 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1799 }
1800 return true;
1801}
1802
1803bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1804 MachineBasicBlock::iterator MI,
1805 const std::vector<CalleeSavedInfo> &CSI) const {
1806 if (CSI.empty())
1807 return false;
1808
1809 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1810
1811 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1812 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1813 unsigned Reg = CSI[i].getReg();
1814 BuildMI(MBB, MI, get(Opc), Reg);
1815 }
1816 return true;
1817}
1818
Owen Anderson9a184ef2008-01-07 01:35:02 +00001819static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1820 SmallVector<MachineOperand,4> &MOs,
1821 MachineInstr *MI, const TargetInstrInfo &TII) {
1822 // Create the base instruction with the memory operand as the first part.
1823 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1824 MachineInstrBuilder MIB(NewMI);
1825 unsigned NumAddrOps = MOs.size();
1826 for (unsigned i = 0; i != NumAddrOps; ++i)
1827 MIB = X86InstrAddOperand(MIB, MOs[i]);
1828 if (NumAddrOps < 4) // FrameIndex only
1829 MIB.addImm(1).addReg(0).addImm(0);
1830
1831 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001832 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001833 for (unsigned i = 0; i != NumOps; ++i) {
1834 MachineOperand &MO = MI->getOperand(i+2);
1835 MIB = X86InstrAddOperand(MIB, MO);
1836 }
1837 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1838 MachineOperand &MO = MI->getOperand(i);
1839 MIB = X86InstrAddOperand(MIB, MO);
1840 }
1841 return MIB;
1842}
1843
1844static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1845 SmallVector<MachineOperand,4> &MOs,
1846 MachineInstr *MI, const TargetInstrInfo &TII) {
1847 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1848 MachineInstrBuilder MIB(NewMI);
1849
1850 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1851 MachineOperand &MO = MI->getOperand(i);
1852 if (i == OpNo) {
1853 assert(MO.isRegister() && "Expected to fold into reg operand!");
1854 unsigned NumAddrOps = MOs.size();
1855 for (unsigned i = 0; i != NumAddrOps; ++i)
1856 MIB = X86InstrAddOperand(MIB, MOs[i]);
1857 if (NumAddrOps < 4) // FrameIndex only
1858 MIB.addImm(1).addReg(0).addImm(0);
1859 } else {
1860 MIB = X86InstrAddOperand(MIB, MO);
1861 }
1862 }
1863 return MIB;
1864}
1865
1866static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1867 SmallVector<MachineOperand,4> &MOs,
1868 MachineInstr *MI) {
1869 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1870
1871 unsigned NumAddrOps = MOs.size();
1872 for (unsigned i = 0; i != NumAddrOps; ++i)
1873 MIB = X86InstrAddOperand(MIB, MOs[i]);
1874 if (NumAddrOps < 4) // FrameIndex only
1875 MIB.addImm(1).addReg(0).addImm(0);
1876 return MIB.addImm(0);
1877}
1878
1879MachineInstr*
1880X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001881 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001882 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1883 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001884 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001885 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001886 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001887
1888 MachineInstr *NewMI = NULL;
1889 // Folding a memory location into the two-address part of a two-address
1890 // instruction is different than folding it other places. It requires
1891 // replacing the *two* registers with the memory location.
1892 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1893 MI->getOperand(0).isRegister() &&
1894 MI->getOperand(1).isRegister() &&
1895 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1896 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1897 isTwoAddrFold = true;
1898 } else if (i == 0) { // If operand 0
1899 if (MI->getOpcode() == X86::MOV16r0)
1900 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1901 else if (MI->getOpcode() == X86::MOV32r0)
1902 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1903 else if (MI->getOpcode() == X86::MOV64r0)
1904 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1905 else if (MI->getOpcode() == X86::MOV8r0)
1906 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1907 if (NewMI) {
1908 NewMI->copyKillDeadInfo(MI);
1909 return NewMI;
1910 }
1911
1912 OpcodeTablePtr = &RegOp2MemOpTable0;
1913 } else if (i == 1) {
1914 OpcodeTablePtr = &RegOp2MemOpTable1;
1915 } else if (i == 2) {
1916 OpcodeTablePtr = &RegOp2MemOpTable2;
1917 }
1918
1919 // If table selected...
1920 if (OpcodeTablePtr) {
1921 // Find the Opcode to fuse
1922 DenseMap<unsigned*, unsigned>::iterator I =
1923 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1924 if (I != OpcodeTablePtr->end()) {
1925 if (isTwoAddrFold)
1926 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1927 else
1928 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1929 NewMI->copyKillDeadInfo(MI);
1930 return NewMI;
1931 }
1932 }
1933
1934 // No fusion
1935 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001936 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001937 return NULL;
1938}
1939
1940
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001941MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1942 MachineInstr *MI,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001943 SmallVectorImpl<unsigned> &Ops,
1944 int FrameIndex) const {
1945 // Check switch flag
1946 if (NoFusing) return NULL;
1947
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001948 const MachineFrameInfo *MFI = MF.getFrameInfo();
1949 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1950 // FIXME: Move alignment requirement into tables?
1951 if (Alignment < 16) {
1952 switch (MI->getOpcode()) {
1953 default: break;
1954 // Not always safe to fold movsd into these instructions since their load
1955 // folding variants expects the address to be 16 byte aligned.
1956 case X86::FsANDNPDrr:
1957 case X86::FsANDNPSrr:
1958 case X86::FsANDPDrr:
1959 case X86::FsANDPSrr:
1960 case X86::FsORPDrr:
1961 case X86::FsORPSrr:
1962 case X86::FsXORPDrr:
1963 case X86::FsXORPSrr:
1964 return NULL;
1965 }
1966 }
1967
Owen Anderson9a184ef2008-01-07 01:35:02 +00001968 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1969 unsigned NewOpc = 0;
1970 switch (MI->getOpcode()) {
1971 default: return NULL;
1972 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1973 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1974 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1975 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1976 }
1977 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00001978 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001979 MI->getOperand(1).ChangeToImmediate(0);
1980 } else if (Ops.size() != 1)
1981 return NULL;
1982
1983 SmallVector<MachineOperand,4> MOs;
1984 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1985 return foldMemoryOperand(MI, Ops[0], MOs);
1986}
1987
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001988MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1989 MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001990 SmallVectorImpl<unsigned> &Ops,
1991 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001992 // Check switch flag
1993 if (NoFusing) return NULL;
1994
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001995 unsigned Alignment = 0;
1996 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
Dan Gohman1fad9e62008-04-07 19:35:22 +00001997 const MachineMemOperand &MRO = LoadMI->getMemOperand(i);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001998 unsigned Align = MRO.getAlignment();
1999 if (Align > Alignment)
2000 Alignment = Align;
2001 }
2002
2003 // FIXME: Move alignment requirement into tables?
2004 if (Alignment < 16) {
2005 switch (MI->getOpcode()) {
2006 default: break;
2007 // Not always safe to fold movsd into these instructions since their load
2008 // folding variants expects the address to be 16 byte aligned.
2009 case X86::FsANDNPDrr:
2010 case X86::FsANDNPSrr:
2011 case X86::FsANDPDrr:
2012 case X86::FsANDPSrr:
2013 case X86::FsORPDrr:
2014 case X86::FsORPSrr:
2015 case X86::FsXORPDrr:
2016 case X86::FsXORPSrr:
2017 return NULL;
2018 }
2019 }
2020
Owen Anderson9a184ef2008-01-07 01:35:02 +00002021 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2022 unsigned NewOpc = 0;
2023 switch (MI->getOpcode()) {
2024 default: return NULL;
2025 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2026 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2027 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2028 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2029 }
2030 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002031 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002032 MI->getOperand(1).ChangeToImmediate(0);
2033 } else if (Ops.size() != 1)
2034 return NULL;
2035
2036 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00002037 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002038 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2039 MOs.push_back(LoadMI->getOperand(i));
2040 return foldMemoryOperand(MI, Ops[0], MOs);
2041}
2042
2043
2044bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00002045 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002046 // Check switch flag
2047 if (NoFusing) return 0;
2048
2049 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2050 switch (MI->getOpcode()) {
2051 default: return false;
2052 case X86::TEST8rr:
2053 case X86::TEST16rr:
2054 case X86::TEST32rr:
2055 case X86::TEST64rr:
2056 return true;
2057 }
2058 }
2059
2060 if (Ops.size() != 1)
2061 return false;
2062
2063 unsigned OpNum = Ops[0];
2064 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002065 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002066 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002067 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002068
2069 // Folding a memory location into the two-address part of a two-address
2070 // instruction is different than folding it other places. It requires
2071 // replacing the *two* registers with the memory location.
2072 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2073 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2074 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2075 } else if (OpNum == 0) { // If operand 0
2076 switch (Opc) {
2077 case X86::MOV16r0:
2078 case X86::MOV32r0:
2079 case X86::MOV64r0:
2080 case X86::MOV8r0:
2081 return true;
2082 default: break;
2083 }
2084 OpcodeTablePtr = &RegOp2MemOpTable0;
2085 } else if (OpNum == 1) {
2086 OpcodeTablePtr = &RegOp2MemOpTable1;
2087 } else if (OpNum == 2) {
2088 OpcodeTablePtr = &RegOp2MemOpTable2;
2089 }
2090
2091 if (OpcodeTablePtr) {
2092 // Find the Opcode to fuse
2093 DenseMap<unsigned*, unsigned>::iterator I =
2094 OpcodeTablePtr->find((unsigned*)Opc);
2095 if (I != OpcodeTablePtr->end())
2096 return true;
2097 }
2098 return false;
2099}
2100
2101bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2102 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2103 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2104 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2105 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2106 if (I == MemOp2RegOpTable.end())
2107 return false;
2108 unsigned Opc = I->second.first;
2109 unsigned Index = I->second.second & 0xf;
2110 bool FoldedLoad = I->second.second & (1 << 4);
2111 bool FoldedStore = I->second.second & (1 << 5);
2112 if (UnfoldLoad && !FoldedLoad)
2113 return false;
2114 UnfoldLoad &= FoldedLoad;
2115 if (UnfoldStore && !FoldedStore)
2116 return false;
2117 UnfoldStore &= FoldedStore;
2118
Chris Lattner5b930372008-01-07 07:27:27 +00002119 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002120 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002121 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002122 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2123 SmallVector<MachineOperand,4> AddrOps;
2124 SmallVector<MachineOperand,2> BeforeOps;
2125 SmallVector<MachineOperand,2> AfterOps;
2126 SmallVector<MachineOperand,4> ImpOps;
2127 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2128 MachineOperand &Op = MI->getOperand(i);
2129 if (i >= Index && i < Index+4)
2130 AddrOps.push_back(Op);
2131 else if (Op.isRegister() && Op.isImplicit())
2132 ImpOps.push_back(Op);
2133 else if (i < Index)
2134 BeforeOps.push_back(Op);
2135 else if (i > Index)
2136 AfterOps.push_back(Op);
2137 }
2138
2139 // Emit the load instruction.
2140 if (UnfoldLoad) {
2141 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2142 if (UnfoldStore) {
2143 // Address operands cannot be marked isKill.
2144 for (unsigned i = 1; i != 5; ++i) {
2145 MachineOperand &MO = NewMIs[0]->getOperand(i);
2146 if (MO.isRegister())
2147 MO.setIsKill(false);
2148 }
2149 }
2150 }
2151
2152 // Emit the data processing instruction.
2153 MachineInstr *DataMI = new MachineInstr(TID, true);
2154 MachineInstrBuilder MIB(DataMI);
2155
2156 if (FoldedStore)
2157 MIB.addReg(Reg, true);
2158 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2159 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2160 if (FoldedLoad)
2161 MIB.addReg(Reg);
2162 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2163 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2164 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2165 MachineOperand &MO = ImpOps[i];
2166 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2167 }
2168 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2169 unsigned NewOpc = 0;
2170 switch (DataMI->getOpcode()) {
2171 default: break;
2172 case X86::CMP64ri32:
2173 case X86::CMP32ri:
2174 case X86::CMP16ri:
2175 case X86::CMP8ri: {
2176 MachineOperand &MO0 = DataMI->getOperand(0);
2177 MachineOperand &MO1 = DataMI->getOperand(1);
2178 if (MO1.getImm() == 0) {
2179 switch (DataMI->getOpcode()) {
2180 default: break;
2181 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2182 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2183 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2184 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2185 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002186 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002187 MO1.ChangeToRegister(MO0.getReg(), false);
2188 }
2189 }
2190 }
2191 NewMIs.push_back(DataMI);
2192
2193 // Emit the store instruction.
2194 if (UnfoldStore) {
2195 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002196 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002197 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2198 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2199 }
2200
2201 return true;
2202}
2203
2204bool
2205X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2206 SmallVectorImpl<SDNode*> &NewNodes) const {
2207 if (!N->isTargetOpcode())
2208 return false;
2209
2210 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2211 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2212 if (I == MemOp2RegOpTable.end())
2213 return false;
2214 unsigned Opc = I->second.first;
2215 unsigned Index = I->second.second & 0xf;
2216 bool FoldedLoad = I->second.second & (1 << 4);
2217 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002218 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002219 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002220 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002221 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2222 std::vector<SDOperand> AddrOps;
2223 std::vector<SDOperand> BeforeOps;
2224 std::vector<SDOperand> AfterOps;
2225 unsigned NumOps = N->getNumOperands();
2226 for (unsigned i = 0; i != NumOps-1; ++i) {
2227 SDOperand Op = N->getOperand(i);
2228 if (i >= Index && i < Index+4)
2229 AddrOps.push_back(Op);
2230 else if (i < Index)
2231 BeforeOps.push_back(Op);
2232 else if (i > Index)
2233 AfterOps.push_back(Op);
2234 }
2235 SDOperand Chain = N->getOperand(NumOps-1);
2236 AddrOps.push_back(Chain);
2237
2238 // Emit the load instruction.
2239 SDNode *Load = 0;
2240 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002241 MVT VT = *RC->vt_begin();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002242 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2243 MVT::Other, &AddrOps[0], AddrOps.size());
2244 NewNodes.push_back(Load);
2245 }
2246
2247 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002248 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002249 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002250 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002251 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002252 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002253 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2254 VTs.push_back(*DstRC->vt_begin());
2255 }
2256 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002257 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002258 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002259 VTs.push_back(VT);
2260 }
2261 if (Load)
2262 BeforeOps.push_back(SDOperand(Load, 0));
2263 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2264 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2265 NewNodes.push_back(NewNode);
2266
2267 // Emit the store instruction.
2268 if (FoldedStore) {
2269 AddrOps.pop_back();
2270 AddrOps.push_back(SDOperand(NewNode, 0));
2271 AddrOps.push_back(Chain);
2272 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2273 MVT::Other, &AddrOps[0], AddrOps.size());
2274 NewNodes.push_back(Store);
2275 }
2276
2277 return true;
2278}
2279
2280unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2281 bool UnfoldLoad, bool UnfoldStore) const {
2282 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2283 MemOp2RegOpTable.find((unsigned*)Opc);
2284 if (I == MemOp2RegOpTable.end())
2285 return 0;
2286 bool FoldedLoad = I->second.second & (1 << 4);
2287 bool FoldedStore = I->second.second & (1 << 5);
2288 if (UnfoldLoad && !FoldedLoad)
2289 return 0;
2290 if (UnfoldStore && !FoldedStore)
2291 return 0;
2292 return I->second.first;
2293}
2294
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002295bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2296 if (MBB.empty()) return false;
2297
2298 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002299 case X86::TCRETURNri:
2300 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002301 case X86::RET: // Return.
2302 case X86::RETI:
2303 case X86::TAILJMPd:
2304 case X86::TAILJMPr:
2305 case X86::TAILJMPm:
2306 case X86::JMP: // Uncond branch.
2307 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002308 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002309 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002310 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002311 return true;
2312 default: return false;
2313 }
2314}
2315
2316bool X86InstrInfo::
2317ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
2318 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2319 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2320 return false;
2321}
2322
2323const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2324 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2325 if (Subtarget->is64Bit())
2326 return &X86::GR64RegClass;
2327 else
2328 return &X86::GR32RegClass;
2329}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002330
2331unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2332 switch (Desc->TSFlags & X86II::ImmMask) {
2333 case X86II::Imm8: return 1;
2334 case X86II::Imm16: return 2;
2335 case X86II::Imm32: return 4;
2336 case X86II::Imm64: return 8;
2337 default: assert(0 && "Immediate size not set!");
2338 return 0;
2339 }
2340}
2341
2342/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2343/// e.g. r8, xmm8, etc.
2344bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2345 if (!MO.isRegister()) return false;
2346 switch (MO.getReg()) {
2347 default: break;
2348 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2349 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2350 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2351 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2352 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2353 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2354 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2355 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2356 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2357 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2358 return true;
2359 }
2360 return false;
2361}
2362
2363
2364/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2365/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2366/// size, and 3) use of X86-64 extended registers.
2367unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2368 unsigned REX = 0;
2369 const TargetInstrDesc &Desc = MI.getDesc();
2370
2371 // Pseudo instructions do not need REX prefix byte.
2372 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2373 return 0;
2374 if (Desc.TSFlags & X86II::REX_W)
2375 REX |= 1 << 3;
2376
2377 unsigned NumOps = Desc.getNumOperands();
2378 if (NumOps) {
2379 bool isTwoAddr = NumOps > 1 &&
2380 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2381
2382 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2383 unsigned i = isTwoAddr ? 1 : 0;
2384 for (unsigned e = NumOps; i != e; ++i) {
2385 const MachineOperand& MO = MI.getOperand(i);
2386 if (MO.isRegister()) {
2387 unsigned Reg = MO.getReg();
2388 if (isX86_64NonExtLowByteReg(Reg))
2389 REX |= 0x40;
2390 }
2391 }
2392
2393 switch (Desc.TSFlags & X86II::FormMask) {
2394 case X86II::MRMInitReg:
2395 if (isX86_64ExtendedReg(MI.getOperand(0)))
2396 REX |= (1 << 0) | (1 << 2);
2397 break;
2398 case X86II::MRMSrcReg: {
2399 if (isX86_64ExtendedReg(MI.getOperand(0)))
2400 REX |= 1 << 2;
2401 i = isTwoAddr ? 2 : 1;
2402 for (unsigned e = NumOps; i != e; ++i) {
2403 const MachineOperand& MO = MI.getOperand(i);
2404 if (isX86_64ExtendedReg(MO))
2405 REX |= 1 << 0;
2406 }
2407 break;
2408 }
2409 case X86II::MRMSrcMem: {
2410 if (isX86_64ExtendedReg(MI.getOperand(0)))
2411 REX |= 1 << 2;
2412 unsigned Bit = 0;
2413 i = isTwoAddr ? 2 : 1;
2414 for (; i != NumOps; ++i) {
2415 const MachineOperand& MO = MI.getOperand(i);
2416 if (MO.isRegister()) {
2417 if (isX86_64ExtendedReg(MO))
2418 REX |= 1 << Bit;
2419 Bit++;
2420 }
2421 }
2422 break;
2423 }
2424 case X86II::MRM0m: case X86II::MRM1m:
2425 case X86II::MRM2m: case X86II::MRM3m:
2426 case X86II::MRM4m: case X86II::MRM5m:
2427 case X86II::MRM6m: case X86II::MRM7m:
2428 case X86II::MRMDestMem: {
2429 unsigned e = isTwoAddr ? 5 : 4;
2430 i = isTwoAddr ? 1 : 0;
2431 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2432 REX |= 1 << 2;
2433 unsigned Bit = 0;
2434 for (; i != e; ++i) {
2435 const MachineOperand& MO = MI.getOperand(i);
2436 if (MO.isRegister()) {
2437 if (isX86_64ExtendedReg(MO))
2438 REX |= 1 << Bit;
2439 Bit++;
2440 }
2441 }
2442 break;
2443 }
2444 default: {
2445 if (isX86_64ExtendedReg(MI.getOperand(0)))
2446 REX |= 1 << 0;
2447 i = isTwoAddr ? 2 : 1;
2448 for (unsigned e = NumOps; i != e; ++i) {
2449 const MachineOperand& MO = MI.getOperand(i);
2450 if (isX86_64ExtendedReg(MO))
2451 REX |= 1 << 2;
2452 }
2453 break;
2454 }
2455 }
2456 }
2457 return REX;
2458}
2459
2460/// sizePCRelativeBlockAddress - This method returns the size of a PC
2461/// relative block address instruction
2462///
2463static unsigned sizePCRelativeBlockAddress() {
2464 return 4;
2465}
2466
2467/// sizeGlobalAddress - Give the size of the emission of this global address
2468///
2469static unsigned sizeGlobalAddress(bool dword) {
2470 return dword ? 8 : 4;
2471}
2472
2473/// sizeConstPoolAddress - Give the size of the emission of this constant
2474/// pool address
2475///
2476static unsigned sizeConstPoolAddress(bool dword) {
2477 return dword ? 8 : 4;
2478}
2479
2480/// sizeExternalSymbolAddress - Give the size of the emission of this external
2481/// symbol
2482///
2483static unsigned sizeExternalSymbolAddress(bool dword) {
2484 return dword ? 8 : 4;
2485}
2486
2487/// sizeJumpTableAddress - Give the size of the emission of this jump
2488/// table address
2489///
2490static unsigned sizeJumpTableAddress(bool dword) {
2491 return dword ? 8 : 4;
2492}
2493
2494static unsigned sizeConstant(unsigned Size) {
2495 return Size;
2496}
2497
2498static unsigned sizeRegModRMByte(){
2499 return 1;
2500}
2501
2502static unsigned sizeSIBByte(){
2503 return 1;
2504}
2505
2506static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2507 unsigned FinalSize = 0;
2508 // If this is a simple integer displacement that doesn't require a relocation.
2509 if (!RelocOp) {
2510 FinalSize += sizeConstant(4);
2511 return FinalSize;
2512 }
2513
2514 // Otherwise, this is something that requires a relocation.
2515 if (RelocOp->isGlobalAddress()) {
2516 FinalSize += sizeGlobalAddress(false);
2517 } else if (RelocOp->isConstantPoolIndex()) {
2518 FinalSize += sizeConstPoolAddress(false);
2519 } else if (RelocOp->isJumpTableIndex()) {
2520 FinalSize += sizeJumpTableAddress(false);
2521 } else {
2522 assert(0 && "Unknown value to relocate!");
2523 }
2524 return FinalSize;
2525}
2526
2527static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2528 bool IsPIC, bool Is64BitMode) {
2529 const MachineOperand &Op3 = MI.getOperand(Op+3);
2530 int DispVal = 0;
2531 const MachineOperand *DispForReloc = 0;
2532 unsigned FinalSize = 0;
2533
2534 // Figure out what sort of displacement we have to handle here.
2535 if (Op3.isGlobalAddress()) {
2536 DispForReloc = &Op3;
2537 } else if (Op3.isConstantPoolIndex()) {
2538 if (Is64BitMode || IsPIC) {
2539 DispForReloc = &Op3;
2540 } else {
2541 DispVal = 1;
2542 }
2543 } else if (Op3.isJumpTableIndex()) {
2544 if (Is64BitMode || IsPIC) {
2545 DispForReloc = &Op3;
2546 } else {
2547 DispVal = 1;
2548 }
2549 } else {
2550 DispVal = 1;
2551 }
2552
2553 const MachineOperand &Base = MI.getOperand(Op);
2554 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2555
2556 unsigned BaseReg = Base.getReg();
2557
2558 // Is a SIB byte needed?
2559 if (IndexReg.getReg() == 0 &&
2560 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2561 if (BaseReg == 0) { // Just a displacement?
2562 // Emit special case [disp32] encoding
2563 ++FinalSize;
2564 FinalSize += getDisplacementFieldSize(DispForReloc);
2565 } else {
2566 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2567 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2568 // Emit simple indirect register encoding... [EAX] f.e.
2569 ++FinalSize;
2570 // Be pessimistic and assume it's a disp32, not a disp8
2571 } else {
2572 // Emit the most general non-SIB encoding: [REG+disp32]
2573 ++FinalSize;
2574 FinalSize += getDisplacementFieldSize(DispForReloc);
2575 }
2576 }
2577
2578 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2579 assert(IndexReg.getReg() != X86::ESP &&
2580 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2581
2582 bool ForceDisp32 = false;
2583 if (BaseReg == 0 || DispForReloc) {
2584 // Emit the normal disp32 encoding.
2585 ++FinalSize;
2586 ForceDisp32 = true;
2587 } else {
2588 ++FinalSize;
2589 }
2590
2591 FinalSize += sizeSIBByte();
2592
2593 // Do we need to output a displacement?
2594 if (DispVal != 0 || ForceDisp32) {
2595 FinalSize += getDisplacementFieldSize(DispForReloc);
2596 }
2597 }
2598 return FinalSize;
2599}
2600
2601
2602static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2603 const TargetInstrDesc *Desc,
2604 bool IsPIC, bool Is64BitMode) {
2605
2606 unsigned Opcode = Desc->Opcode;
2607 unsigned FinalSize = 0;
2608
2609 // Emit the lock opcode prefix as needed.
2610 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2611
2612 // Emit the repeat opcode prefix as needed.
2613 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2614
2615 // Emit the operand size opcode prefix as needed.
2616 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2617
2618 // Emit the address size opcode prefix as needed.
2619 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2620
2621 bool Need0FPrefix = false;
2622 switch (Desc->TSFlags & X86II::Op0Mask) {
2623 case X86II::TB: // Two-byte opcode prefix
2624 case X86II::T8: // 0F 38
2625 case X86II::TA: // 0F 3A
2626 Need0FPrefix = true;
2627 break;
2628 case X86II::REP: break; // already handled.
2629 case X86II::XS: // F3 0F
2630 ++FinalSize;
2631 Need0FPrefix = true;
2632 break;
2633 case X86II::XD: // F2 0F
2634 ++FinalSize;
2635 Need0FPrefix = true;
2636 break;
2637 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2638 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2639 ++FinalSize;
2640 break; // Two-byte opcode prefix
2641 default: assert(0 && "Invalid prefix!");
2642 case 0: break; // No prefix!
2643 }
2644
2645 if (Is64BitMode) {
2646 // REX prefix
2647 unsigned REX = X86InstrInfo::determineREX(MI);
2648 if (REX)
2649 ++FinalSize;
2650 }
2651
2652 // 0x0F escape code must be emitted just before the opcode.
2653 if (Need0FPrefix)
2654 ++FinalSize;
2655
2656 switch (Desc->TSFlags & X86II::Op0Mask) {
2657 case X86II::T8: // 0F 38
2658 ++FinalSize;
2659 break;
2660 case X86II::TA: // 0F 3A
2661 ++FinalSize;
2662 break;
2663 }
2664
2665 // If this is a two-address instruction, skip one of the register operands.
2666 unsigned NumOps = Desc->getNumOperands();
2667 unsigned CurOp = 0;
2668 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2669 CurOp++;
2670
2671 switch (Desc->TSFlags & X86II::FormMask) {
2672 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2673 case X86II::Pseudo:
2674 // Remember the current PC offset, this is the PIC relocation
2675 // base address.
2676 switch (Opcode) {
2677 default:
2678 break;
2679 case TargetInstrInfo::INLINEASM: {
2680 const MachineFunction *MF = MI.getParent()->getParent();
2681 const char *AsmStr = MI.getOperand(0).getSymbolName();
2682 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2683 FinalSize += AI->getInlineAsmLength(AsmStr);
2684 break;
2685 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002686 case TargetInstrInfo::DBG_LABEL:
2687 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002688 break;
2689 case TargetInstrInfo::IMPLICIT_DEF:
2690 case TargetInstrInfo::DECLARE:
2691 case X86::DWARF_LOC:
2692 case X86::FP_REG_KILL:
2693 break;
2694 case X86::MOVPC32r: {
2695 // This emits the "call" portion of this pseudo instruction.
2696 ++FinalSize;
2697 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2698 break;
2699 }
2700 }
2701 CurOp = NumOps;
2702 break;
2703 case X86II::RawFrm:
2704 ++FinalSize;
2705
2706 if (CurOp != NumOps) {
2707 const MachineOperand &MO = MI.getOperand(CurOp++);
2708 if (MO.isMachineBasicBlock()) {
2709 FinalSize += sizePCRelativeBlockAddress();
2710 } else if (MO.isGlobalAddress()) {
2711 FinalSize += sizeGlobalAddress(false);
2712 } else if (MO.isExternalSymbol()) {
2713 FinalSize += sizeExternalSymbolAddress(false);
2714 } else if (MO.isImmediate()) {
2715 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2716 } else {
2717 assert(0 && "Unknown RawFrm operand!");
2718 }
2719 }
2720 break;
2721
2722 case X86II::AddRegFrm:
2723 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002724 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002725
2726 if (CurOp != NumOps) {
2727 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2728 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2729 if (MO1.isImmediate())
2730 FinalSize += sizeConstant(Size);
2731 else {
2732 bool dword = false;
2733 if (Opcode == X86::MOV64ri)
2734 dword = true;
2735 if (MO1.isGlobalAddress()) {
2736 FinalSize += sizeGlobalAddress(dword);
2737 } else if (MO1.isExternalSymbol())
2738 FinalSize += sizeExternalSymbolAddress(dword);
2739 else if (MO1.isConstantPoolIndex())
2740 FinalSize += sizeConstPoolAddress(dword);
2741 else if (MO1.isJumpTableIndex())
2742 FinalSize += sizeJumpTableAddress(dword);
2743 }
2744 }
2745 break;
2746
2747 case X86II::MRMDestReg: {
2748 ++FinalSize;
2749 FinalSize += sizeRegModRMByte();
2750 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002751 if (CurOp != NumOps) {
2752 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002753 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002754 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002755 break;
2756 }
2757 case X86II::MRMDestMem: {
2758 ++FinalSize;
2759 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2760 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002761 if (CurOp != NumOps) {
2762 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002763 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002764 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002765 break;
2766 }
2767
2768 case X86II::MRMSrcReg:
2769 ++FinalSize;
2770 FinalSize += sizeRegModRMByte();
2771 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002772 if (CurOp != NumOps) {
2773 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002774 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002775 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002776 break;
2777
2778 case X86II::MRMSrcMem: {
2779
2780 ++FinalSize;
2781 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2782 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002783 if (CurOp != NumOps) {
2784 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002785 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002786 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002787 break;
2788 }
2789
2790 case X86II::MRM0r: case X86II::MRM1r:
2791 case X86II::MRM2r: case X86II::MRM3r:
2792 case X86II::MRM4r: case X86II::MRM5r:
2793 case X86II::MRM6r: case X86II::MRM7r:
2794 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002795 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002796 FinalSize += sizeRegModRMByte();
2797
2798 if (CurOp != NumOps) {
2799 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2800 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2801 if (MO1.isImmediate())
2802 FinalSize += sizeConstant(Size);
2803 else {
2804 bool dword = false;
2805 if (Opcode == X86::MOV64ri32)
2806 dword = true;
2807 if (MO1.isGlobalAddress()) {
2808 FinalSize += sizeGlobalAddress(dword);
2809 } else if (MO1.isExternalSymbol())
2810 FinalSize += sizeExternalSymbolAddress(dword);
2811 else if (MO1.isConstantPoolIndex())
2812 FinalSize += sizeConstPoolAddress(dword);
2813 else if (MO1.isJumpTableIndex())
2814 FinalSize += sizeJumpTableAddress(dword);
2815 }
2816 }
2817 break;
2818
2819 case X86II::MRM0m: case X86II::MRM1m:
2820 case X86II::MRM2m: case X86II::MRM3m:
2821 case X86II::MRM4m: case X86II::MRM5m:
2822 case X86II::MRM6m: case X86II::MRM7m: {
2823
2824 ++FinalSize;
2825 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2826 CurOp += 4;
2827
2828 if (CurOp != NumOps) {
2829 const MachineOperand &MO = MI.getOperand(CurOp++);
2830 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2831 if (MO.isImmediate())
2832 FinalSize += sizeConstant(Size);
2833 else {
2834 bool dword = false;
2835 if (Opcode == X86::MOV64mi32)
2836 dword = true;
2837 if (MO.isGlobalAddress()) {
2838 FinalSize += sizeGlobalAddress(dword);
2839 } else if (MO.isExternalSymbol())
2840 FinalSize += sizeExternalSymbolAddress(dword);
2841 else if (MO.isConstantPoolIndex())
2842 FinalSize += sizeConstPoolAddress(dword);
2843 else if (MO.isJumpTableIndex())
2844 FinalSize += sizeJumpTableAddress(dword);
2845 }
2846 }
2847 break;
2848 }
2849
2850 case X86II::MRMInitReg:
2851 ++FinalSize;
2852 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2853 FinalSize += sizeRegModRMByte();
2854 ++CurOp;
2855 break;
2856 }
2857
2858 if (!Desc->isVariadic() && CurOp != NumOps) {
2859 cerr << "Cannot determine size: ";
2860 MI.dump();
2861 cerr << '\n';
2862 abort();
2863 }
2864
2865
2866 return FinalSize;
2867}
2868
2869
2870unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2871 const TargetInstrDesc &Desc = MI->getDesc();
2872 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00002873 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002874 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2875 if (Desc.getOpcode() == X86::MOVPC32r) {
2876 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2877 }
2878 return Size;
2879}