blob: cf5887e6e210f730d7d29a8555c28055e7e6560b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
Dale Johannesen5981f6b2009-03-06 01:41:59 +000029#include "llvm/IntrinsicInst.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/ADT/PostOrderIterator.h"
36#include "llvm/ADT/Statistic.h"
37#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000038#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039using namespace llvm;
40
41STATISTIC(NumLinear , "Number of insts linearized");
42STATISTIC(NumChanged, "Number of insts reassociated");
43STATISTIC(NumAnnihil, "Number of expr tree annihilated");
44STATISTIC(NumFactor , "Number of multiplies factored");
45
46namespace {
47 struct VISIBILITY_HIDDEN ValueEntry {
48 unsigned Rank;
49 Value *Op;
50 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
51 };
52 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
53 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
54 }
55}
56
Devang Patele93afd52008-11-21 21:00:20 +000057#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058/// PrintOps - Print out the expression identified in the Ops list.
59///
60static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
61 Module *M = I->getParent()->getParent()->getParent();
62 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner51216ad2008-08-19 04:45:19 +000063 << *Ops[0].Op->getType();
64 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
65 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
66 cerr << "," << Ops[i].Rank;
67 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000068}
Devang Patel4354f5c2008-11-21 20:00:59 +000069#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070
Dan Gohman089efff2008-05-13 00:00:25 +000071namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000072 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
73 std::map<BasicBlock*, unsigned> RankMap;
74 std::map<Value*, unsigned> ValueRankMap;
75 bool MadeChange;
76 public:
77 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000078 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079
80 bool runOnFunction(Function &F);
81
82 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83 AU.setPreservesCFG();
84 }
85 private:
86 void BuildRankMap(Function &F);
87 unsigned getRank(Value *V);
88 void ReassociateExpression(BinaryOperator *I);
89 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
90 unsigned Idx = 0);
91 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
92 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
93 void LinearizeExpr(BinaryOperator *I);
94 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
95 void ReassociateBB(BasicBlock *BB);
96
97 void RemoveDeadBinaryOp(Value *V);
98 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +000099}
100
Dan Gohman089efff2008-05-13 00:00:25 +0000101char Reassociate::ID = 0;
102static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
103
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104// Public interface to the Reassociate pass
105FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
106
107void Reassociate::RemoveDeadBinaryOp(Value *V) {
108 Instruction *Op = dyn_cast<Instruction>(V);
109 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
110 return;
111
112 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
113 RemoveDeadBinaryOp(LHS);
114 RemoveDeadBinaryOp(RHS);
115}
116
117
118static bool isUnmovableInstruction(Instruction *I) {
119 if (I->getOpcode() == Instruction::PHI ||
120 I->getOpcode() == Instruction::Alloca ||
121 I->getOpcode() == Instruction::Load ||
122 I->getOpcode() == Instruction::Malloc ||
123 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen5981f6b2009-03-06 01:41:59 +0000124 (I->getOpcode() == Instruction::Call &&
125 !isa<DbgInfoIntrinsic>(I)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 I->getOpcode() == Instruction::UDiv ||
127 I->getOpcode() == Instruction::SDiv ||
128 I->getOpcode() == Instruction::FDiv ||
129 I->getOpcode() == Instruction::URem ||
130 I->getOpcode() == Instruction::SRem ||
131 I->getOpcode() == Instruction::FRem)
132 return true;
133 return false;
134}
135
136void Reassociate::BuildRankMap(Function &F) {
137 unsigned i = 2;
138
139 // Assign distinct ranks to function arguments
140 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
141 ValueRankMap[I] = ++i;
142
143 ReversePostOrderTraversal<Function*> RPOT(&F);
144 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
145 E = RPOT.end(); I != E; ++I) {
146 BasicBlock *BB = *I;
147 unsigned BBRank = RankMap[BB] = ++i << 16;
148
149 // Walk the basic block, adding precomputed ranks for any instructions that
150 // we cannot move. This ensures that the ranks for these instructions are
151 // all different in the block.
152 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
153 if (isUnmovableInstruction(I))
154 ValueRankMap[I] = ++BBRank;
155 }
156}
157
158unsigned Reassociate::getRank(Value *V) {
159 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
160
161 Instruction *I = dyn_cast<Instruction>(V);
162 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
163
164 unsigned &CachedRank = ValueRankMap[I];
165 if (CachedRank) return CachedRank; // Rank already known?
166
167 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
168 // we can reassociate expressions for code motion! Since we do not recurse
169 // for PHI nodes, we cannot have infinite recursion here, because there
170 // cannot be loops in the value graph that do not go through PHI nodes.
171 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
172 for (unsigned i = 0, e = I->getNumOperands();
173 i != e && Rank != MaxRank; ++i)
174 Rank = std::max(Rank, getRank(I->getOperand(i)));
175
176 // If this is a not or neg instruction, do not count it for rank. This
177 // assures us that X and ~X will have the same rank.
178 if (!I->getType()->isInteger() ||
179 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
180 ++Rank;
181
182 //DOUT << "Calculated Rank[" << V->getName() << "] = "
183 // << Rank << "\n";
184
185 return CachedRank = Rank;
186}
187
188/// isReassociableOp - Return true if V is an instruction of the specified
189/// opcode and if it only has one use.
190static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
191 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
192 cast<Instruction>(V)->getOpcode() == Opcode)
193 return cast<BinaryOperator>(V);
194 return 0;
195}
196
197/// LowerNegateToMultiply - Replace 0-X with X*-1.
198///
199static Instruction *LowerNegateToMultiply(Instruction *Neg) {
200 Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
201
Gabor Greifa645dd32008-05-16 19:29:10 +0000202 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 Res->takeName(Neg);
204 Neg->replaceAllUsesWith(Res);
205 Neg->eraseFromParent();
206 return Res;
207}
208
209// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
210// Note that if D is also part of the expression tree that we recurse to
211// linearize it as well. Besides that case, this does not recurse into A,B, or
212// C.
213void Reassociate::LinearizeExpr(BinaryOperator *I) {
214 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
215 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
216 assert(isReassociableOp(LHS, I->getOpcode()) &&
217 isReassociableOp(RHS, I->getOpcode()) &&
218 "Not an expression that needs linearization?");
219
220 DOUT << "Linear" << *LHS << *RHS << *I;
221
222 // Move the RHS instruction to live immediately before I, avoiding breaking
223 // dominator properties.
224 RHS->moveBefore(I);
225
226 // Move operands around to do the linearization.
227 I->setOperand(1, RHS->getOperand(0));
228 RHS->setOperand(0, LHS);
229 I->setOperand(0, RHS);
230
231 ++NumLinear;
232 MadeChange = true;
233 DOUT << "Linearized: " << *I;
234
235 // If D is part of this expression tree, tail recurse.
236 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
237 LinearizeExpr(I);
238}
239
240
241/// LinearizeExprTree - Given an associative binary expression tree, traverse
242/// all of the uses putting it into canonical form. This forces a left-linear
243/// form of the the expression (((a+b)+c)+d), and collects information about the
244/// rank of the non-tree operands.
245///
246/// NOTE: These intentionally destroys the expression tree operands (turning
247/// them into undef values) to reduce #uses of the values. This means that the
248/// caller MUST use something like RewriteExprTree to put the values back in.
249///
250void Reassociate::LinearizeExprTree(BinaryOperator *I,
251 std::vector<ValueEntry> &Ops) {
252 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
253 unsigned Opcode = I->getOpcode();
254
255 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
256 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
257 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
258
259 // If this is a multiply expression tree and it contains internal negations,
260 // transform them into multiplies by -1 so they can be reassociated.
261 if (I->getOpcode() == Instruction::Mul) {
262 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
263 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
264 LHSBO = isReassociableOp(LHS, Opcode);
265 }
266 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
267 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
268 RHSBO = isReassociableOp(RHS, Opcode);
269 }
270 }
271
272 if (!LHSBO) {
273 if (!RHSBO) {
274 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
275 // such, just remember these operands and their rank.
276 Ops.push_back(ValueEntry(getRank(LHS), LHS));
277 Ops.push_back(ValueEntry(getRank(RHS), RHS));
278
279 // Clear the leaves out.
280 I->setOperand(0, UndefValue::get(I->getType()));
281 I->setOperand(1, UndefValue::get(I->getType()));
282 return;
283 } else {
284 // Turn X+(Y+Z) -> (Y+Z)+X
285 std::swap(LHSBO, RHSBO);
286 std::swap(LHS, RHS);
287 bool Success = !I->swapOperands();
288 assert(Success && "swapOperands failed");
Devang Patel4354f5c2008-11-21 20:00:59 +0000289 Success = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000290 MadeChange = true;
291 }
292 } else if (RHSBO) {
293 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
294 // part of the expression tree.
295 LinearizeExpr(I);
296 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
297 RHS = I->getOperand(1);
298 RHSBO = 0;
299 }
300
301 // Okay, now we know that the LHS is a nested expression and that the RHS is
302 // not. Perform reassociation.
303 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
304
305 // Move LHS right before I to make sure that the tree expression dominates all
306 // values.
307 LHSBO->moveBefore(I);
308
309 // Linearize the expression tree on the LHS.
310 LinearizeExprTree(LHSBO, Ops);
311
312 // Remember the RHS operand and its rank.
313 Ops.push_back(ValueEntry(getRank(RHS), RHS));
314
315 // Clear the RHS leaf out.
316 I->setOperand(1, UndefValue::get(I->getType()));
317}
318
319// RewriteExprTree - Now that the operands for this expression tree are
320// linearized and optimized, emit them in-order. This function is written to be
321// tail recursive.
322void Reassociate::RewriteExprTree(BinaryOperator *I,
323 std::vector<ValueEntry> &Ops,
324 unsigned i) {
325 if (i+2 == Ops.size()) {
326 if (I->getOperand(0) != Ops[i].Op ||
327 I->getOperand(1) != Ops[i+1].Op) {
328 Value *OldLHS = I->getOperand(0);
329 DOUT << "RA: " << *I;
330 I->setOperand(0, Ops[i].Op);
331 I->setOperand(1, Ops[i+1].Op);
332 DOUT << "TO: " << *I;
333 MadeChange = true;
334 ++NumChanged;
335
336 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
337 // delete the extra, now dead, nodes.
338 RemoveDeadBinaryOp(OldLHS);
339 }
340 return;
341 }
342 assert(i+2 < Ops.size() && "Ops index out of range!");
343
344 if (I->getOperand(1) != Ops[i].Op) {
345 DOUT << "RA: " << *I;
346 I->setOperand(1, Ops[i].Op);
347 DOUT << "TO: " << *I;
348 MadeChange = true;
349 ++NumChanged;
350 }
351
352 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
353 assert(LHS->getOpcode() == I->getOpcode() &&
354 "Improper expression tree!");
355
356 // Compactify the tree instructions together with each other to guarantee
357 // that the expression tree is dominated by all of Ops.
358 LHS->moveBefore(I);
359 RewriteExprTree(LHS, Ops, i+1);
360}
361
362
363
364// NegateValue - Insert instructions before the instruction pointed to by BI,
365// that computes the negative version of the value specified. The negative
366// version of the value is returned, and BI is left pointing at the instruction
367// that should be processed next by the reassociation pass.
368//
369static Value *NegateValue(Value *V, Instruction *BI) {
370 // We are trying to expose opportunity for reassociation. One of the things
371 // that we want to do to achieve this is to push a negation as deep into an
372 // expression chain as possible, to expose the add instructions. In practice,
373 // this means that we turn this:
374 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
375 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
376 // the constants. We assume that instcombine will clean up the mess later if
377 // we introduce tons of unnecessary negation instructions...
378 //
379 if (Instruction *I = dyn_cast<Instruction>(V))
380 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
381 // Push the negates through the add.
382 I->setOperand(0, NegateValue(I->getOperand(0), BI));
383 I->setOperand(1, NegateValue(I->getOperand(1), BI));
384
385 // We must move the add instruction here, because the neg instructions do
386 // not dominate the old add instruction in general. By moving it, we are
387 // assured that the neg instructions we just inserted dominate the
388 // instruction we are about to insert after them.
389 //
390 I->moveBefore(BI);
391 I->setName(I->getName()+".neg");
392 return I;
393 }
394
395 // Insert a 'neg' instruction that subtracts the value from zero to get the
396 // negation.
397 //
Gabor Greifa645dd32008-05-16 19:29:10 +0000398 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399}
400
Chris Lattner6cf17172008-02-17 20:44:51 +0000401/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
402/// X-Y into (X + -Y).
403static bool ShouldBreakUpSubtract(Instruction *Sub) {
404 // If this is a negation, we can't split it up!
405 if (BinaryOperator::isNeg(Sub))
406 return false;
407
408 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000409 // subtract or if this is only used by one.
410 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
411 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000412 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000413 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000414 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000415 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000416 if (Sub->hasOneUse() &&
417 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
418 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000419 return true;
420
421 return false;
422}
423
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
425/// only used by an add, transform this into (X+(0-Y)) to promote better
426/// reassociation.
427static Instruction *BreakUpSubtract(Instruction *Sub) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428 // Convert a subtract into an add and a neg instruction... so that sub
429 // instructions can be commuted with other add instructions...
430 //
431 // Calculate the negative value of Operand 1 of the sub instruction...
432 // and set it as the RHS of the add instruction we just made...
433 //
434 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
435 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000436 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000437 New->takeName(Sub);
438
439 // Everyone now refers to the add instruction.
440 Sub->replaceAllUsesWith(New);
441 Sub->eraseFromParent();
442
443 DOUT << "Negated: " << *New;
444 return New;
445}
446
447/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
448/// by one, change this into a multiply by a constant to assist with further
449/// reassociation.
450static Instruction *ConvertShiftToMul(Instruction *Shl) {
451 // If an operand of this shift is a reassociable multiply, or if the shift
452 // is used by a reassociable multiply or add, turn into a multiply.
453 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
454 (Shl->hasOneUse() &&
455 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
456 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
457 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
458 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
459
Gabor Greifa645dd32008-05-16 19:29:10 +0000460 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461 "", Shl);
462 Mul->takeName(Shl);
463 Shl->replaceAllUsesWith(Mul);
464 Shl->eraseFromParent();
465 return Mul;
466 }
467 return 0;
468}
469
470// Scan backwards and forwards among values with the same rank as element i to
471// see if X exists. If X does not exist, return i.
472static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
473 Value *X) {
474 unsigned XRank = Ops[i].Rank;
475 unsigned e = Ops.size();
476 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
477 if (Ops[j].Op == X)
478 return j;
479 // Scan backwards
480 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
481 if (Ops[j].Op == X)
482 return j;
483 return i;
484}
485
486/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
487/// and returning the result. Insert the tree before I.
488static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
489 if (Ops.size() == 1) return Ops.back();
490
491 Value *V1 = Ops.back();
492 Ops.pop_back();
493 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000494 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000495}
496
497/// RemoveFactorFromExpression - If V is an expression tree that is a
498/// multiplication sequence, and if this sequence contains a multiply by Factor,
499/// remove Factor from the tree and return the new tree.
500Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
501 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
502 if (!BO) return 0;
503
504 std::vector<ValueEntry> Factors;
505 LinearizeExprTree(BO, Factors);
506
507 bool FoundFactor = false;
508 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
509 if (Factors[i].Op == Factor) {
510 FoundFactor = true;
511 Factors.erase(Factors.begin()+i);
512 break;
513 }
514 if (!FoundFactor) {
515 // Make sure to restore the operands to the expression tree.
516 RewriteExprTree(BO, Factors);
517 return 0;
518 }
519
520 if (Factors.size() == 1) return Factors[0].Op;
521
522 RewriteExprTree(BO, Factors);
523 return BO;
524}
525
526/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
527/// add its operands as factors, otherwise add V to the list of factors.
528static void FindSingleUseMultiplyFactors(Value *V,
529 std::vector<Value*> &Factors) {
530 BinaryOperator *BO;
531 if ((!V->hasOneUse() && !V->use_empty()) ||
532 !(BO = dyn_cast<BinaryOperator>(V)) ||
533 BO->getOpcode() != Instruction::Mul) {
534 Factors.push_back(V);
535 return;
536 }
537
538 // Otherwise, add the LHS and RHS to the list of factors.
539 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
540 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
541}
542
543
544
545Value *Reassociate::OptimizeExpression(BinaryOperator *I,
546 std::vector<ValueEntry> &Ops) {
547 // Now that we have the linearized expression tree, try to optimize it.
548 // Start by folding any constants that we found.
549 bool IterateOptimization = false;
550 if (Ops.size() == 1) return Ops[0].Op;
551
552 unsigned Opcode = I->getOpcode();
553
554 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
555 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
556 Ops.pop_back();
557 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
558 return OptimizeExpression(I, Ops);
559 }
560
561 // Check for destructive annihilation due to a constant being used.
562 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
563 switch (Opcode) {
564 default: break;
565 case Instruction::And:
566 if (CstVal->isZero()) { // ... & 0 -> 0
567 ++NumAnnihil;
568 return CstVal;
569 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
570 Ops.pop_back();
571 }
572 break;
573 case Instruction::Mul:
574 if (CstVal->isZero()) { // ... * 0 -> 0
575 ++NumAnnihil;
576 return CstVal;
577 } else if (cast<ConstantInt>(CstVal)->isOne()) {
578 Ops.pop_back(); // ... * 1 -> ...
579 }
580 break;
581 case Instruction::Or:
582 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
583 ++NumAnnihil;
584 return CstVal;
585 }
586 // FALLTHROUGH!
587 case Instruction::Add:
588 case Instruction::Xor:
589 if (CstVal->isZero()) // ... [|^+] 0 -> ...
590 Ops.pop_back();
591 break;
592 }
593 if (Ops.size() == 1) return Ops[0].Op;
594
595 // Handle destructive annihilation do to identities between elements in the
596 // argument list here.
597 switch (Opcode) {
598 default: break;
599 case Instruction::And:
600 case Instruction::Or:
601 case Instruction::Xor:
602 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
603 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
604 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
605 // First, check for X and ~X in the operand list.
606 assert(i < Ops.size());
607 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
608 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
609 unsigned FoundX = FindInOperandList(Ops, i, X);
610 if (FoundX != i) {
611 if (Opcode == Instruction::And) { // ...&X&~X = 0
612 ++NumAnnihil;
613 return Constant::getNullValue(X->getType());
614 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
615 ++NumAnnihil;
616 return ConstantInt::getAllOnesValue(X->getType());
617 }
618 }
619 }
620
621 // Next, check for duplicate pairs of values, which we assume are next to
622 // each other, due to our sorting criteria.
623 assert(i < Ops.size());
624 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
625 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
626 // Drop duplicate values.
627 Ops.erase(Ops.begin()+i);
628 --i; --e;
629 IterateOptimization = true;
630 ++NumAnnihil;
631 } else {
632 assert(Opcode == Instruction::Xor);
633 if (e == 2) {
634 ++NumAnnihil;
635 return Constant::getNullValue(Ops[0].Op->getType());
636 }
637 // ... X^X -> ...
638 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
639 i -= 1; e -= 2;
640 IterateOptimization = true;
641 ++NumAnnihil;
642 }
643 }
644 }
645 break;
646
647 case Instruction::Add:
648 // Scan the operand lists looking for X and -X pairs. If we find any, we
649 // can simplify the expression. X+-X == 0.
650 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
651 assert(i < Ops.size());
652 // Check for X and -X in the operand list.
653 if (BinaryOperator::isNeg(Ops[i].Op)) {
654 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
655 unsigned FoundX = FindInOperandList(Ops, i, X);
656 if (FoundX != i) {
657 // Remove X and -X from the operand list.
658 if (Ops.size() == 2) {
659 ++NumAnnihil;
660 return Constant::getNullValue(X->getType());
661 } else {
662 Ops.erase(Ops.begin()+i);
663 if (i < FoundX)
664 --FoundX;
665 else
666 --i; // Need to back up an extra one.
667 Ops.erase(Ops.begin()+FoundX);
668 IterateOptimization = true;
669 ++NumAnnihil;
670 --i; // Revisit element.
671 e -= 2; // Removed two elements.
672 }
673 }
674 }
675 }
676
677
678 // Scan the operand list, checking to see if there are any common factors
679 // between operands. Consider something like A*A+A*B*C+D. We would like to
680 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
681 // To efficiently find this, we count the number of times a factor occurs
682 // for any ADD operands that are MULs.
683 std::map<Value*, unsigned> FactorOccurrences;
684 unsigned MaxOcc = 0;
685 Value *MaxOccVal = 0;
686 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
687 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
688 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
689 // Compute all of the factors of this added value.
690 std::vector<Value*> Factors;
691 FindSingleUseMultiplyFactors(BOp, Factors);
692 assert(Factors.size() > 1 && "Bad linearize!");
693
694 // Add one to FactorOccurrences for each unique factor in this op.
695 if (Factors.size() == 2) {
696 unsigned Occ = ++FactorOccurrences[Factors[0]];
697 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
698 if (Factors[0] != Factors[1]) { // Don't double count A*A.
699 Occ = ++FactorOccurrences[Factors[1]];
700 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
701 }
702 } else {
703 std::set<Value*> Duplicates;
704 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
705 if (Duplicates.insert(Factors[i]).second) {
706 unsigned Occ = ++FactorOccurrences[Factors[i]];
707 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
708 }
709 }
710 }
711 }
712 }
713 }
714
715 // If any factor occurred more than one time, we can pull it out.
716 if (MaxOcc > 1) {
717 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
718
719 // Create a new instruction that uses the MaxOccVal twice. If we don't do
720 // this, we could otherwise run into situations where removing a factor
721 // from an expression will drop a use of maxocc, and this can cause
722 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greifa645dd32008-05-16 19:29:10 +0000723 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 std::vector<Value*> NewMulOps;
725 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
726 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
727 NewMulOps.push_back(V);
728 Ops.erase(Ops.begin()+i);
729 --i; --e;
730 }
731 }
732
733 // No need for extra uses anymore.
734 delete DummyInst;
735
736 unsigned NumAddedValues = NewMulOps.size();
737 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greifa645dd32008-05-16 19:29:10 +0000738 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000739
740 // Now that we have inserted V and its sole use, optimize it. This allows
741 // us to handle cases that require multiple factoring steps, such as this:
742 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
743 if (NumAddedValues > 1)
744 ReassociateExpression(cast<BinaryOperator>(V));
745
746 ++NumFactor;
747
Dan Gohman301f4052008-01-29 13:02:09 +0000748 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000749 return V2;
750
751 // Add the new value to the list of things being added.
752 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
753
754 // Rewrite the tree so that there is now a use of V.
755 RewriteExprTree(I, Ops);
756 return OptimizeExpression(I, Ops);
757 }
758 break;
759 //case Instruction::Mul:
760 }
761
762 if (IterateOptimization)
763 return OptimizeExpression(I, Ops);
764 return 0;
765}
766
767
768/// ReassociateBB - Inspect all of the instructions in this basic block,
769/// reassociating them as we go.
770void Reassociate::ReassociateBB(BasicBlock *BB) {
771 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
772 Instruction *BI = BBI++;
773 if (BI->getOpcode() == Instruction::Shl &&
774 isa<ConstantInt>(BI->getOperand(1)))
775 if (Instruction *NI = ConvertShiftToMul(BI)) {
776 MadeChange = true;
777 BI = NI;
778 }
779
780 // Reject cases where it is pointless to do this.
781 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
782 isa<VectorType>(BI->getType()))
783 continue; // Floating point ops are not associative.
784
785 // If this is a subtract instruction which is not already in negate form,
786 // see if we can convert it to X+-Y.
787 if (BI->getOpcode() == Instruction::Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000788 if (ShouldBreakUpSubtract(BI)) {
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000789 BI = BreakUpSubtract(BI);
790 MadeChange = true;
Chris Lattner6cf17172008-02-17 20:44:51 +0000791 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792 // Otherwise, this is a negation. See if the operand is a multiply tree
793 // and if this is not an inner node of a multiply tree.
794 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
795 (!BI->hasOneUse() ||
796 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
797 BI = LowerNegateToMultiply(BI);
798 MadeChange = true;
799 }
800 }
801 }
802
803 // If this instruction is a commutative binary operator, process it.
804 if (!BI->isAssociative()) continue;
805 BinaryOperator *I = cast<BinaryOperator>(BI);
806
807 // If this is an interior node of a reassociable tree, ignore it until we
808 // get to the root of the tree, to avoid N^2 analysis.
809 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
810 continue;
811
812 // If this is an add tree that is used by a sub instruction, ignore it
813 // until we process the subtract.
814 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
815 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
816 continue;
817
818 ReassociateExpression(I);
819 }
820}
821
822void Reassociate::ReassociateExpression(BinaryOperator *I) {
823
824 // First, walk the expression tree, linearizing the tree, collecting
825 std::vector<ValueEntry> Ops;
826 LinearizeExprTree(I, Ops);
827
828 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
829
830 // Now that we have linearized the tree to a list and have gathered all of
831 // the operands and their ranks, sort the operands by their rank. Use a
832 // stable_sort so that values with equal ranks will have their relative
833 // positions maintained (and so the compiler is deterministic). Note that
834 // this sorts so that the highest ranking values end up at the beginning of
835 // the vector.
836 std::stable_sort(Ops.begin(), Ops.end());
837
838 // OptimizeExpression - Now that we have the expression tree in a convenient
839 // sorted form, optimize it globally if possible.
840 if (Value *V = OptimizeExpression(I, Ops)) {
841 // This expression tree simplified to something that isn't a tree,
842 // eliminate it.
843 DOUT << "Reassoc to scalar: " << *V << "\n";
844 I->replaceAllUsesWith(V);
845 RemoveDeadBinaryOp(I);
846 return;
847 }
848
849 // We want to sink immediates as deeply as possible except in the case where
850 // this is a multiply tree used only by an add, and the immediate is a -1.
851 // In this case we reassociate to put the negation on the outside so that we
852 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
853 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
854 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
855 isa<ConstantInt>(Ops.back().Op) &&
856 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
857 Ops.insert(Ops.begin(), Ops.back());
858 Ops.pop_back();
859 }
860
861 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
862
863 if (Ops.size() == 1) {
864 // This expression tree simplified to something that isn't a tree,
865 // eliminate it.
866 I->replaceAllUsesWith(Ops[0].Op);
867 RemoveDeadBinaryOp(I);
868 } else {
869 // Now that we ordered and optimized the expressions, splat them back into
870 // the expression tree, removing any unneeded nodes.
871 RewriteExprTree(I, Ops);
872 }
873}
874
875
876bool Reassociate::runOnFunction(Function &F) {
877 // Recalculate the rank map for F
878 BuildRankMap(F);
879
880 MadeChange = false;
881 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
882 ReassociateBB(FI);
883
884 // We are done with the rank map...
885 RankMap.clear();
886 ValueRankMap.clear();
887 return MadeChange;
888}
889