blob: b432641a1403fe72ce0ee6738d949aed3fa45795 [file] [log] [blame]
Chris Lattner80f43d32010-01-04 07:53:58 +00001//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000020/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression. If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Dan Gohman28d2e0a2010-05-28 04:33:04 +000025 uint64_t &Offset) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000026 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
27 Offset = CI->getZExtValue();
28 Scale = 0;
Dan Gohman28d2e0a2010-05-28 04:33:04 +000029 return ConstantInt::get(Val->getType(), 0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000030 }
31
32 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000033 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
34 if (I->getOpcode() == Instruction::Shl) {
35 // This is a value scaled by '1 << the shift amt'.
Dan Gohman28d2e0a2010-05-28 04:33:04 +000036 Scale = UINT64_C(1) << RHS->getZExtValue();
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000037 Offset = 0;
38 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000039 }
40
41 if (I->getOpcode() == Instruction::Mul) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000042 // This value is scaled by 'RHS'.
43 Scale = RHS->getZExtValue();
44 Offset = 0;
45 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000046 }
47
48 if (I->getOpcode() == Instruction::Add) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000049 // We have X+C. Check to see if we really have (X*C2)+C1,
50 // where C1 is divisible by C2.
51 unsigned SubScale;
52 Value *SubVal =
53 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
54 Offset += RHS->getZExtValue();
55 Scale = SubScale;
56 return SubVal;
57 }
58 }
59 }
60
61 // Otherwise, we can't look past this.
62 Scale = 1;
63 Offset = 0;
64 return Val;
65}
66
67/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
68/// try to eliminate the cast by moving the type information into the alloc.
69Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
70 AllocaInst &AI) {
71 // This requires TargetData to get the alloca alignment and size information.
72 if (!TD) return 0;
73
74 const PointerType *PTy = cast<PointerType>(CI.getType());
75
76 BuilderTy AllocaBuilder(*Builder);
77 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
78
79 // Get the type really allocated and the type casted to.
80 const Type *AllocElTy = AI.getAllocatedType();
81 const Type *CastElTy = PTy->getElementType();
82 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
83
84 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
85 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
86 if (CastElTyAlign < AllocElTyAlign) return 0;
87
88 // If the allocation has multiple uses, only promote it if we are strictly
89 // increasing the alignment of the resultant allocation. If we keep it the
90 // same, we open the door to infinite loops of various kinds. (A reference
91 // from a dbg.declare doesn't count as a use for this purpose.)
92 if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
93 CastElTyAlign == AllocElTyAlign) return 0;
94
95 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
96 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
97 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
98
99 // See if we can satisfy the modulus by pulling a scale out of the array
100 // size argument.
101 unsigned ArraySizeScale;
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000102 uint64_t ArrayOffset;
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000103 Value *NumElements = // See if the array size is a decomposable linear expr.
104 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
105
106 // If we can now satisfy the modulus, by using a non-1 scale, we really can
107 // do the xform.
108 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
109 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
110
111 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
112 Value *Amt = 0;
113 if (Scale == 1) {
114 Amt = NumElements;
115 } else {
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000116 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000117 // Insert before the alloca, not before the cast.
118 Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
119 }
120
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000121 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
122 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000123 Offset, true);
124 Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
125 }
126
127 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
128 New->setAlignment(AI.getAlignment());
129 New->takeName(&AI);
130
131 // If the allocation has one real use plus a dbg.declare, just remove the
132 // declare.
133 if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
134 EraseInstFromFunction(*(Instruction*)DI);
135 }
136 // If the allocation has multiple real uses, insert a cast and change all
137 // things that used it to use the new cast. This will also hack on CI, but it
138 // will die soon.
139 else if (!AI.hasOneUse()) {
140 // New is the allocation instruction, pointer typed. AI is the original
141 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
142 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
143 AI.replaceAllUsesWith(NewCast);
144 }
145 return ReplaceInstUsesWith(CI, New);
146}
147
148
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000149
Chris Lattner5f0290e2010-01-04 07:54:59 +0000150/// EvaluateInDifferentType - Given an expression that
Chris Lattner14bf8f02010-01-08 19:19:23 +0000151/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000152/// insert the code to evaluate the expression.
Chris Lattner5f0290e2010-01-04 07:54:59 +0000153Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
154 bool isSigned) {
Chris Lattnerc8b3fce2010-01-08 19:28:47 +0000155 if (Constant *C = dyn_cast<Constant>(V)) {
156 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
157 // If we got a constantexpr back, try to simplify it with TD info.
158 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
159 C = ConstantFoldConstantExpression(CE, TD);
160 return C;
161 }
Chris Lattner5f0290e2010-01-04 07:54:59 +0000162
163 // Otherwise, it must be an instruction.
164 Instruction *I = cast<Instruction>(V);
165 Instruction *Res = 0;
166 unsigned Opc = I->getOpcode();
167 switch (Opc) {
168 case Instruction::Add:
169 case Instruction::Sub:
170 case Instruction::Mul:
171 case Instruction::And:
172 case Instruction::Or:
173 case Instruction::Xor:
174 case Instruction::AShr:
175 case Instruction::LShr:
176 case Instruction::Shl:
177 case Instruction::UDiv:
178 case Instruction::URem: {
179 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
180 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
181 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
182 break;
183 }
184 case Instruction::Trunc:
185 case Instruction::ZExt:
186 case Instruction::SExt:
187 // If the source type of the cast is the type we're trying for then we can
188 // just return the source. There's no need to insert it because it is not
189 // new.
190 if (I->getOperand(0)->getType() == Ty)
191 return I->getOperand(0);
192
193 // Otherwise, must be the same type of cast, so just reinsert a new one.
Chris Lattner9ee947c2010-01-10 20:25:54 +0000194 // This also handles the case of zext(trunc(x)) -> zext(x).
195 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
196 Opc == Instruction::SExt);
Chris Lattner5f0290e2010-01-04 07:54:59 +0000197 break;
198 case Instruction::Select: {
199 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
200 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
201 Res = SelectInst::Create(I->getOperand(0), True, False);
202 break;
203 }
204 case Instruction::PHI: {
205 PHINode *OPN = cast<PHINode>(I);
206 PHINode *NPN = PHINode::Create(Ty);
207 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
208 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
209 NPN->addIncoming(V, OPN->getIncomingBlock(i));
210 }
211 Res = NPN;
212 break;
213 }
214 default:
215 // TODO: Can handle more cases here.
216 llvm_unreachable("Unreachable!");
217 break;
218 }
219
220 Res->takeName(I);
221 return InsertNewInstBefore(Res, *I);
222}
Chris Lattner80f43d32010-01-04 07:53:58 +0000223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229 const CastInst *CI, ///< The first cast instruction
230 unsigned opcode, ///< The opcode of the second cast instruction
231 const Type *DstTy, ///< The target type for the second cast instruction
232 TargetData *TD ///< The target data for pointer size
233) {
234
235 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
236 const Type *MidTy = CI->getType(); // B from above
237
238 // Get the opcodes of the two Cast instructions
239 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241
242 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
243 DstTy,
244 TD ? TD->getIntPtrType(CI->getContext()) : 0);
245
246 // We don't want to form an inttoptr or ptrtoint that converts to an integer
247 // type that differs from the pointer size.
248 if ((Res == Instruction::IntToPtr &&
249 (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
250 (Res == Instruction::PtrToInt &&
251 (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
252 Res = 0;
253
254 return Instruction::CastOps(Res);
255}
256
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000257/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
258/// results in any code being generated and is interesting to optimize out. If
259/// the cast can be eliminated by some other simple transformation, we prefer
260/// to do the simplification first.
261bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
262 const Type *Ty) {
263 // Noop casts and casts of constants should be eliminated trivially.
Chris Lattner80f43d32010-01-04 07:53:58 +0000264 if (V->getType() == Ty || isa<Constant>(V)) return false;
265
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000266 // If this is another cast that can be eliminated, we prefer to have it
267 // eliminated.
Chris Lattner80f43d32010-01-04 07:53:58 +0000268 if (const CastInst *CI = dyn_cast<CastInst>(V))
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000269 if (isEliminableCastPair(CI, opc, Ty, TD))
Chris Lattner80f43d32010-01-04 07:53:58 +0000270 return false;
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000271
272 // If this is a vector sext from a compare, then we don't want to break the
273 // idiom where each element of the extended vector is either zero or all ones.
Duncan Sands1df98592010-02-16 11:11:14 +0000274 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000275 return false;
276
Chris Lattner80f43d32010-01-04 07:53:58 +0000277 return true;
278}
279
280
281/// @brief Implement the transforms common to all CastInst visitors.
282Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
283 Value *Src = CI.getOperand(0);
284
285 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
286 // eliminate it now.
287 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
288 if (Instruction::CastOps opc =
289 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
290 // The first cast (CSrc) is eliminable so we need to fix up or replace
291 // the second cast (CI). CSrc will then have a good chance of being dead.
292 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
293 }
294 }
295
296 // If we are casting a select then fold the cast into the select
297 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
298 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
299 return NV;
300
301 // If we are casting a PHI then fold the cast into the PHI
302 if (isa<PHINode>(Src)) {
303 // We don't do this if this would create a PHI node with an illegal type if
304 // it is currently legal.
Duncan Sands1df98592010-02-16 11:11:14 +0000305 if (!Src->getType()->isIntegerTy() ||
306 !CI.getType()->isIntegerTy() ||
Chris Lattner80f43d32010-01-04 07:53:58 +0000307 ShouldChangeType(CI.getType(), Src->getType()))
308 if (Instruction *NV = FoldOpIntoPhi(CI))
309 return NV;
310 }
311
312 return 0;
313}
314
Chris Lattner75215c92010-01-10 00:58:42 +0000315/// CanEvaluateTruncated - Return true if we can evaluate the specified
316/// expression tree as type Ty instead of its larger type, and arrive with the
317/// same value. This is used by code that tries to eliminate truncates.
318///
319/// Ty will always be a type smaller than V. We should return true if trunc(V)
320/// can be computed by computing V in the smaller type. If V is an instruction,
321/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
322/// makes sense if x and y can be efficiently truncated.
323///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000324/// This function works on both vectors and scalars.
325///
Chris Lattner75215c92010-01-10 00:58:42 +0000326static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
327 // We can always evaluate constants in another type.
328 if (isa<Constant>(V))
329 return true;
Chris Lattner68c6e892010-01-05 23:00:30 +0000330
Chris Lattner75215c92010-01-10 00:58:42 +0000331 Instruction *I = dyn_cast<Instruction>(V);
332 if (!I) return false;
333
334 const Type *OrigTy = V->getType();
335
Chris Lattnera958cbf2010-01-11 22:45:25 +0000336 // If this is an extension from the dest type, we can eliminate it, even if it
337 // has multiple uses.
Chris Lattner53af2d12010-01-11 22:49:40 +0000338 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
Chris Lattner75215c92010-01-10 00:58:42 +0000339 I->getOperand(0)->getType() == Ty)
340 return true;
341
342 // We can't extend or shrink something that has multiple uses: doing so would
343 // require duplicating the instruction in general, which isn't profitable.
344 if (!I->hasOneUse()) return false;
345
346 unsigned Opc = I->getOpcode();
347 switch (Opc) {
348 case Instruction::Add:
349 case Instruction::Sub:
350 case Instruction::Mul:
351 case Instruction::And:
352 case Instruction::Or:
353 case Instruction::Xor:
354 // These operators can all arbitrarily be extended or truncated.
355 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
356 CanEvaluateTruncated(I->getOperand(1), Ty);
357
358 case Instruction::UDiv:
359 case Instruction::URem: {
360 // UDiv and URem can be truncated if all the truncated bits are zero.
361 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
362 uint32_t BitWidth = Ty->getScalarSizeInBits();
363 if (BitWidth < OrigBitWidth) {
364 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
365 if (MaskedValueIsZero(I->getOperand(0), Mask) &&
366 MaskedValueIsZero(I->getOperand(1), Mask)) {
367 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368 CanEvaluateTruncated(I->getOperand(1), Ty);
369 }
370 }
371 break;
372 }
373 case Instruction::Shl:
374 // If we are truncating the result of this SHL, and if it's a shift of a
375 // constant amount, we can always perform a SHL in a smaller type.
376 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
377 uint32_t BitWidth = Ty->getScalarSizeInBits();
378 if (CI->getLimitedValue(BitWidth) < BitWidth)
379 return CanEvaluateTruncated(I->getOperand(0), Ty);
380 }
381 break;
382 case Instruction::LShr:
383 // If this is a truncate of a logical shr, we can truncate it to a smaller
384 // lshr iff we know that the bits we would otherwise be shifting in are
385 // already zeros.
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
387 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
388 uint32_t BitWidth = Ty->getScalarSizeInBits();
389 if (MaskedValueIsZero(I->getOperand(0),
390 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
391 CI->getLimitedValue(BitWidth) < BitWidth) {
392 return CanEvaluateTruncated(I->getOperand(0), Ty);
393 }
394 }
395 break;
396 case Instruction::Trunc:
397 // trunc(trunc(x)) -> trunc(x)
398 return true;
Chris Lattnerf9d05ab2010-08-27 20:32:06 +0000399 case Instruction::ZExt:
400 case Instruction::SExt:
401 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
402 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
403 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000404 case Instruction::Select: {
405 SelectInst *SI = cast<SelectInst>(I);
406 return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
407 CanEvaluateTruncated(SI->getFalseValue(), Ty);
408 }
409 case Instruction::PHI: {
410 // We can change a phi if we can change all operands. Note that we never
411 // get into trouble with cyclic PHIs here because we only consider
412 // instructions with a single use.
413 PHINode *PN = cast<PHINode>(I);
414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
415 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
416 return false;
417 return true;
418 }
419 default:
420 // TODO: Can handle more cases here.
421 break;
422 }
423
424 return false;
425}
426
427Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000428 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner75215c92010-01-10 00:58:42 +0000429 return Result;
430
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000431 // See if we can simplify any instructions used by the input whose sole
432 // purpose is to compute bits we don't care about.
433 if (SimplifyDemandedInstructionBits(CI))
434 return &CI;
435
Chris Lattner75215c92010-01-10 00:58:42 +0000436 Value *Src = CI.getOperand(0);
437 const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
438
439 // Attempt to truncate the entire input expression tree to the destination
440 // type. Only do this if the dest type is a simple type, don't convert the
Chris Lattner80f43d32010-01-04 07:53:58 +0000441 // expression tree to something weird like i93 unless the source is also
442 // strange.
Duncan Sands1df98592010-02-16 11:11:14 +0000443 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner75215c92010-01-10 00:58:42 +0000444 CanEvaluateTruncated(Src, DestTy)) {
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000445
Chris Lattner80f43d32010-01-04 07:53:58 +0000446 // If this cast is a truncate, evaluting in a different type always
Chris Lattner68c6e892010-01-05 23:00:30 +0000447 // eliminates the cast, so it is always a win.
Chris Lattner075f6922010-01-07 23:41:00 +0000448 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
Dan Gohman5b71dce2010-05-25 21:50:35 +0000449 " to avoid cast: " << CI << '\n');
Chris Lattner075f6922010-01-07 23:41:00 +0000450 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
451 assert(Res->getType() == DestTy);
452 return ReplaceInstUsesWith(CI, Res);
453 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000454
Chris Lattner7a34d6c2010-01-05 22:21:18 +0000455 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
456 if (DestTy->getScalarSizeInBits() == 1) {
Chris Lattner80f43d32010-01-04 07:53:58 +0000457 Constant *One = ConstantInt::get(Src->getType(), 1);
458 Src = Builder->CreateAnd(Src, One, "tmp");
459 Value *Zero = Constant::getNullValue(Src->getType());
460 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
461 }
Chris Lattner784f3332010-08-27 18:31:05 +0000462
463 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
464 Value *A = 0; ConstantInt *Cst = 0;
Chris Lattner62fe4062011-01-15 06:32:33 +0000465 if (Src->hasOneUse() &&
466 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
Chris Lattner784f3332010-08-27 18:31:05 +0000467 // We have three types to worry about here, the type of A, the source of
468 // the truncate (MidSize), and the destination of the truncate. We know that
469 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
470 // between ASize and ResultSize.
471 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
472
473 // If the shift amount is larger than the size of A, then the result is
474 // known to be zero because all the input bits got shifted out.
475 if (Cst->getZExtValue() >= ASize)
476 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
477
478 // Since we're doing an lshr and a zero extend, and know that the shift
479 // amount is smaller than ASize, it is always safe to do the shift in A's
480 // type, then zero extend or truncate to the result.
481 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
482 Shift->takeName(Src);
483 return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
484 }
Chris Lattner62fe4062011-01-15 06:32:33 +0000485
486 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
487 // type isn't non-native.
488 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
489 ShouldChangeType(Src->getType(), CI.getType()) &&
490 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
491 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
492 return BinaryOperator::CreateAnd(NewTrunc,
493 ConstantExpr::getTrunc(Cst, CI.getType()));
494 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000495
Chris Lattner80f43d32010-01-04 07:53:58 +0000496 return 0;
497}
498
499/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
500/// in order to eliminate the icmp.
501Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
502 bool DoXform) {
503 // If we are just checking for a icmp eq of a single bit and zext'ing it
504 // to an integer, then shift the bit to the appropriate place and then
505 // cast to integer to avoid the comparison.
506 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
507 const APInt &Op1CV = Op1C->getValue();
508
509 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
510 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
511 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
512 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
513 if (!DoXform) return ICI;
514
515 Value *In = ICI->getOperand(0);
516 Value *Sh = ConstantInt::get(In->getType(),
517 In->getType()->getScalarSizeInBits()-1);
518 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
519 if (In->getType() != CI.getType())
520 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
521
522 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
523 Constant *One = ConstantInt::get(In->getType(), 1);
524 In = Builder->CreateXor(In, One, In->getName()+".not");
525 }
526
527 return ReplaceInstUsesWith(CI, In);
528 }
529
530
531
532 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
533 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
534 // zext (X == 1) to i32 --> X iff X has only the low bit set.
535 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
536 // zext (X != 0) to i32 --> X iff X has only the low bit set.
537 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
538 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
539 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
540 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
541 // This only works for EQ and NE
542 ICI->isEquality()) {
543 // If Op1C some other power of two, convert:
544 uint32_t BitWidth = Op1C->getType()->getBitWidth();
545 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
546 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
547 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
548
549 APInt KnownZeroMask(~KnownZero);
550 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
551 if (!DoXform) return ICI;
552
553 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
554 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
555 // (X&4) == 2 --> false
556 // (X&4) != 2 --> true
557 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
558 isNE);
559 Res = ConstantExpr::getZExt(Res, CI.getType());
560 return ReplaceInstUsesWith(CI, Res);
561 }
562
563 uint32_t ShiftAmt = KnownZeroMask.logBase2();
564 Value *In = ICI->getOperand(0);
565 if (ShiftAmt) {
566 // Perform a logical shr by shiftamt.
567 // Insert the shift to put the result in the low bit.
568 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
569 In->getName()+".lobit");
570 }
571
572 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
573 Constant *One = ConstantInt::get(In->getType(), 1);
574 In = Builder->CreateXor(In, One, "tmp");
575 }
576
577 if (CI.getType() == In->getType())
578 return ReplaceInstUsesWith(CI, In);
Chris Lattner29cc0b32010-08-27 22:24:38 +0000579 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner80f43d32010-01-04 07:53:58 +0000580 }
581 }
582 }
583
584 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
585 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
586 // may lead to additional simplifications.
587 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
588 if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
589 uint32_t BitWidth = ITy->getBitWidth();
590 Value *LHS = ICI->getOperand(0);
591 Value *RHS = ICI->getOperand(1);
592
593 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
594 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
595 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
596 ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
597 ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
598
599 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
600 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
601 APInt UnknownBit = ~KnownBits;
602 if (UnknownBit.countPopulation() == 1) {
603 if (!DoXform) return ICI;
604
605 Value *Result = Builder->CreateXor(LHS, RHS);
606
607 // Mask off any bits that are set and won't be shifted away.
608 if (KnownOneLHS.uge(UnknownBit))
609 Result = Builder->CreateAnd(Result,
610 ConstantInt::get(ITy, UnknownBit));
611
612 // Shift the bit we're testing down to the lsb.
613 Result = Builder->CreateLShr(
614 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
615
616 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
617 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
618 Result->takeName(ICI);
619 return ReplaceInstUsesWith(CI, Result);
620 }
621 }
622 }
623 }
624
625 return 0;
626}
627
Chris Lattner75215c92010-01-10 00:58:42 +0000628/// CanEvaluateZExtd - Determine if the specified value can be computed in the
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000629/// specified wider type and produce the same low bits. If not, return false.
630///
Chris Lattner789162a2010-01-11 03:32:00 +0000631/// If this function returns true, it can also return a non-zero number of bits
632/// (in BitsToClear) which indicates that the value it computes is correct for
633/// the zero extend, but that the additional BitsToClear bits need to be zero'd
634/// out. For example, to promote something like:
635///
636/// %B = trunc i64 %A to i32
637/// %C = lshr i32 %B, 8
638/// %E = zext i32 %C to i64
639///
640/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
641/// set to 8 to indicate that the promoted value needs to have bits 24-31
642/// cleared in addition to bits 32-63. Since an 'and' will be generated to
643/// clear the top bits anyway, doing this has no extra cost.
644///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000645/// This function works on both vectors and scalars.
Chris Lattner789162a2010-01-11 03:32:00 +0000646static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
647 BitsToClear = 0;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000648 if (isa<Constant>(V))
649 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000650
651 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner9e390dd2010-01-10 02:50:04 +0000652 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000653
654 // If the input is a truncate from the destination type, we can trivially
Chris Lattnera958cbf2010-01-11 22:45:25 +0000655 // eliminate it, even if it has multiple uses.
656 // FIXME: This is currently disabled until codegen can handle this without
657 // pessimizing code, PR5997.
658 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattner9e390dd2010-01-10 02:50:04 +0000659 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000660
661 // We can't extend or shrink something that has multiple uses: doing so would
662 // require duplicating the instruction in general, which isn't profitable.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000663 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000664
Chris Lattner789162a2010-01-11 03:32:00 +0000665 unsigned Opc = I->getOpcode(), Tmp;
Chris Lattner75215c92010-01-10 00:58:42 +0000666 switch (Opc) {
Chris Lattner9ee947c2010-01-10 20:25:54 +0000667 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
668 case Instruction::SExt: // zext(sext(x)) -> sext(x).
669 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
670 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000671 case Instruction::And:
Chris Lattner75215c92010-01-10 00:58:42 +0000672 case Instruction::Or:
673 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +0000674 case Instruction::Add:
675 case Instruction::Sub:
676 case Instruction::Mul:
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000677 case Instruction::Shl:
Chris Lattner789162a2010-01-11 03:32:00 +0000678 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
679 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
680 return false;
681 // These can all be promoted if neither operand has 'bits to clear'.
682 if (BitsToClear == 0 && Tmp == 0)
683 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000684
Chris Lattner7acc4b12010-01-11 04:05:13 +0000685 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
686 // other side, BitsToClear is ok.
687 if (Tmp == 0 &&
688 (Opc == Instruction::And || Opc == Instruction::Or ||
689 Opc == Instruction::Xor)) {
690 // We use MaskedValueIsZero here for generality, but the case we care
691 // about the most is constant RHS.
692 unsigned VSize = V->getType()->getScalarSizeInBits();
693 if (MaskedValueIsZero(I->getOperand(1),
694 APInt::getHighBitsSet(VSize, BitsToClear)))
695 return true;
696 }
697
698 // Otherwise, we don't know how to analyze this BitsToClear case yet.
Chris Lattner789162a2010-01-11 03:32:00 +0000699 return false;
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000700
Chris Lattner789162a2010-01-11 03:32:00 +0000701 case Instruction::LShr:
702 // We can promote lshr(x, cst) if we can promote x. This requires the
703 // ultimate 'and' to clear out the high zero bits we're clearing out though.
704 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
705 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
706 return false;
707 BitsToClear += Amt->getZExtValue();
708 if (BitsToClear > V->getType()->getScalarSizeInBits())
709 BitsToClear = V->getType()->getScalarSizeInBits();
710 return true;
711 }
712 // Cannot promote variable LSHR.
713 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000714 case Instruction::Select:
Chris Lattner789162a2010-01-11 03:32:00 +0000715 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
716 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
Chris Lattner7acc4b12010-01-11 04:05:13 +0000717 // TODO: If important, we could handle the case when the BitsToClear are
718 // known zero in the disagreeing side.
Chris Lattner789162a2010-01-11 03:32:00 +0000719 Tmp != BitsToClear)
720 return false;
721 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000722
723 case Instruction::PHI: {
724 // We can change a phi if we can change all operands. Note that we never
725 // get into trouble with cyclic PHIs here because we only consider
726 // instructions with a single use.
727 PHINode *PN = cast<PHINode>(I);
Chris Lattner789162a2010-01-11 03:32:00 +0000728 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
729 return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000730 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner789162a2010-01-11 03:32:00 +0000731 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
Chris Lattner7acc4b12010-01-11 04:05:13 +0000732 // TODO: If important, we could handle the case when the BitsToClear
733 // are known zero in the disagreeing input.
Chris Lattner789162a2010-01-11 03:32:00 +0000734 Tmp != BitsToClear)
735 return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000736 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000737 }
738 default:
739 // TODO: Can handle more cases here.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000740 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000741 }
742}
743
Chris Lattner80f43d32010-01-04 07:53:58 +0000744Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +0000745 // If this zero extend is only used by a truncate, let the truncate by
746 // eliminated before we try to optimize this zext.
747 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
748 return 0;
749
Chris Lattner80f43d32010-01-04 07:53:58 +0000750 // If one of the common conversion will work, do it.
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000751 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +0000752 return Result;
753
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000754 // See if we can simplify any instructions used by the input whose sole
755 // purpose is to compute bits we don't care about.
756 if (SimplifyDemandedInstructionBits(CI))
757 return &CI;
Chris Lattner75215c92010-01-10 00:58:42 +0000758
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000759 Value *Src = CI.getOperand(0);
Chris Lattner75215c92010-01-10 00:58:42 +0000760 const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
761
762 // Attempt to extend the entire input expression tree to the destination
763 // type. Only do this if the dest type is a simple type, don't convert the
764 // expression tree to something weird like i93 unless the source is also
765 // strange.
Chris Lattner789162a2010-01-11 03:32:00 +0000766 unsigned BitsToClear;
Duncan Sands1df98592010-02-16 11:11:14 +0000767 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner789162a2010-01-11 03:32:00 +0000768 CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
769 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
770 "Unreasonable BitsToClear");
771
Chris Lattner5324d802010-01-10 02:39:31 +0000772 // Okay, we can transform this! Insert the new expression now.
773 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
774 " to avoid zero extend: " << CI);
775 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
776 assert(Res->getType() == DestTy);
777
Chris Lattner789162a2010-01-11 03:32:00 +0000778 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
779 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
780
Chris Lattner5324d802010-01-10 02:39:31 +0000781 // If the high bits are already filled with zeros, just replace this
782 // cast with the result.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000783 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
Chris Lattner789162a2010-01-11 03:32:00 +0000784 DestBitSize-SrcBitsKept)))
Chris Lattner5324d802010-01-10 02:39:31 +0000785 return ReplaceInstUsesWith(CI, Res);
786
787 // We need to emit an AND to clear the high bits.
Chris Lattner9ee947c2010-01-10 20:25:54 +0000788 Constant *C = ConstantInt::get(Res->getType(),
Chris Lattner789162a2010-01-11 03:32:00 +0000789 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
Chris Lattner5324d802010-01-10 02:39:31 +0000790 return BinaryOperator::CreateAnd(Res, C);
Chris Lattner75215c92010-01-10 00:58:42 +0000791 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000792
793 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
794 // types and if the sizes are just right we can convert this into a logical
795 // 'and' which will be much cheaper than the pair of casts.
796 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000797 // TODO: Subsume this into EvaluateInDifferentType.
798
Chris Lattner80f43d32010-01-04 07:53:58 +0000799 // Get the sizes of the types involved. We know that the intermediate type
800 // will be smaller than A or C, but don't know the relation between A and C.
801 Value *A = CSrc->getOperand(0);
802 unsigned SrcSize = A->getType()->getScalarSizeInBits();
803 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
804 unsigned DstSize = CI.getType()->getScalarSizeInBits();
805 // If we're actually extending zero bits, then if
806 // SrcSize < DstSize: zext(a & mask)
807 // SrcSize == DstSize: a & mask
808 // SrcSize > DstSize: trunc(a) & mask
809 if (SrcSize < DstSize) {
810 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
811 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
812 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
813 return new ZExtInst(And, CI.getType());
814 }
815
816 if (SrcSize == DstSize) {
817 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
818 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
819 AndValue));
820 }
821 if (SrcSize > DstSize) {
822 Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
823 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
824 return BinaryOperator::CreateAnd(Trunc,
825 ConstantInt::get(Trunc->getType(),
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000826 AndValue));
Chris Lattner80f43d32010-01-04 07:53:58 +0000827 }
828 }
829
830 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
831 return transformZExtICmp(ICI, CI);
832
833 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
834 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
835 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
836 // of the (zext icmp) will be transformed.
837 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
838 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
839 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
840 (transformZExtICmp(LHS, CI, false) ||
841 transformZExtICmp(RHS, CI, false))) {
842 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
843 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
844 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
845 }
846 }
847
848 // zext(trunc(t) & C) -> (t & zext(C)).
849 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
850 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
851 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
852 Value *TI0 = TI->getOperand(0);
853 if (TI0->getType() == CI.getType())
854 return
855 BinaryOperator::CreateAnd(TI0,
856 ConstantExpr::getZExt(C, CI.getType()));
857 }
858
859 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
860 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
861 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
862 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
863 if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
864 And->getOperand(1) == C)
865 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
866 Value *TI0 = TI->getOperand(0);
867 if (TI0->getType() == CI.getType()) {
868 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
869 Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
870 return BinaryOperator::CreateXor(NewAnd, ZC);
871 }
872 }
873
Chris Lattner718bf3f2010-01-05 21:04:47 +0000874 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
875 Value *X;
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000876 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
Chris Lattner49bdfef2010-01-05 21:11:17 +0000877 match(SrcI, m_Not(m_Value(X))) &&
Chris Lattner718bf3f2010-01-05 21:04:47 +0000878 (!X->hasOneUse() || !isa<CmpInst>(X))) {
879 Value *New = Builder->CreateZExt(X, CI.getType());
880 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
881 }
882
Chris Lattner80f43d32010-01-04 07:53:58 +0000883 return 0;
884}
885
Chris Lattner75215c92010-01-10 00:58:42 +0000886/// CanEvaluateSExtd - Return true if we can take the specified value
887/// and return it as type Ty without inserting any new casts and without
888/// changing the value of the common low bits. This is used by code that tries
889/// to promote integer operations to a wider types will allow us to eliminate
890/// the extension.
891///
Chris Lattneraa9c8942010-01-10 07:57:20 +0000892/// This function works on both vectors and scalars.
Chris Lattner75215c92010-01-10 00:58:42 +0000893///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000894static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
Chris Lattner75215c92010-01-10 00:58:42 +0000895 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
896 "Can't sign extend type to a smaller type");
Chris Lattneraa9c8942010-01-10 07:57:20 +0000897 // If this is a constant, it can be trivially promoted.
898 if (isa<Constant>(V))
899 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000900
901 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattneraa9c8942010-01-10 07:57:20 +0000902 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000903
Chris Lattnera958cbf2010-01-11 22:45:25 +0000904 // If this is a truncate from the dest type, we can trivially eliminate it,
905 // even if it has multiple uses.
906 // FIXME: This is currently disabled until codegen can handle this without
907 // pessimizing code, PR5997.
908 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattneraa9c8942010-01-10 07:57:20 +0000909 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000910
911 // We can't extend or shrink something that has multiple uses: doing so would
912 // require duplicating the instruction in general, which isn't profitable.
Chris Lattneraa9c8942010-01-10 07:57:20 +0000913 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000914
Chris Lattneraa9c8942010-01-10 07:57:20 +0000915 switch (I->getOpcode()) {
Chris Lattner11ea8122010-01-10 20:30:41 +0000916 case Instruction::SExt: // sext(sext(x)) -> sext(x)
917 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
918 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
919 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000920 case Instruction::And:
921 case Instruction::Or:
922 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +0000923 case Instruction::Add:
924 case Instruction::Sub:
Chris Lattner75215c92010-01-10 00:58:42 +0000925 case Instruction::Mul:
Chris Lattneraa9c8942010-01-10 07:57:20 +0000926 // These operators can all arbitrarily be extended if their inputs can.
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000927 return CanEvaluateSExtd(I->getOperand(0), Ty) &&
928 CanEvaluateSExtd(I->getOperand(1), Ty);
Chris Lattner75215c92010-01-10 00:58:42 +0000929
930 //case Instruction::Shl: TODO
931 //case Instruction::LShr: TODO
Chris Lattner75215c92010-01-10 00:58:42 +0000932
Chris Lattneraa9c8942010-01-10 07:57:20 +0000933 case Instruction::Select:
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000934 return CanEvaluateSExtd(I->getOperand(1), Ty) &&
935 CanEvaluateSExtd(I->getOperand(2), Ty);
Chris Lattner9ee947c2010-01-10 20:25:54 +0000936
Chris Lattner75215c92010-01-10 00:58:42 +0000937 case Instruction::PHI: {
938 // We can change a phi if we can change all operands. Note that we never
939 // get into trouble with cyclic PHIs here because we only consider
940 // instructions with a single use.
941 PHINode *PN = cast<PHINode>(I);
Chris Lattner9ee947c2010-01-10 20:25:54 +0000942 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000943 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
Chris Lattneraa9c8942010-01-10 07:57:20 +0000944 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000945 }
946 default:
947 // TODO: Can handle more cases here.
948 break;
949 }
950
Chris Lattneraa9c8942010-01-10 07:57:20 +0000951 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000952}
953
Chris Lattner80f43d32010-01-04 07:53:58 +0000954Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +0000955 // If this sign extend is only used by a truncate, let the truncate by
956 // eliminated before we try to optimize this zext.
957 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
958 return 0;
959
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000960 if (Instruction *I = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +0000961 return I;
962
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000963 // See if we can simplify any instructions used by the input whose sole
964 // purpose is to compute bits we don't care about.
965 if (SimplifyDemandedInstructionBits(CI))
966 return &CI;
967
Chris Lattner80f43d32010-01-04 07:53:58 +0000968 Value *Src = CI.getOperand(0);
Chris Lattner75215c92010-01-10 00:58:42 +0000969 const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
970
Chris Lattner75215c92010-01-10 00:58:42 +0000971 // Attempt to extend the entire input expression tree to the destination
972 // type. Only do this if the dest type is a simple type, don't convert the
973 // expression tree to something weird like i93 unless the source is also
974 // strange.
Duncan Sands1df98592010-02-16 11:11:14 +0000975 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000976 CanEvaluateSExtd(Src, DestTy)) {
Chris Lattnerdde5ee52010-01-10 07:40:50 +0000977 // Okay, we can transform this! Insert the new expression now.
978 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
979 " to avoid sign extend: " << CI);
980 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
981 assert(Res->getType() == DestTy);
982
Chris Lattner75215c92010-01-10 00:58:42 +0000983 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
984 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Chris Lattnerdde5ee52010-01-10 07:40:50 +0000985
986 // If the high bits are already filled with sign bit, just replace this
987 // cast with the result.
Chris Lattneraa9c8942010-01-10 07:57:20 +0000988 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
Chris Lattnerdde5ee52010-01-10 07:40:50 +0000989 return ReplaceInstUsesWith(CI, Res);
Chris Lattner75215c92010-01-10 00:58:42 +0000990
Chris Lattnerdde5ee52010-01-10 07:40:50 +0000991 // We need to emit a shl + ashr to do the sign extend.
992 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
993 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
994 ShAmt);
Chris Lattner75215c92010-01-10 00:58:42 +0000995 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000996
Chris Lattnercd5adbb2010-01-18 22:19:16 +0000997 // If this input is a trunc from our destination, then turn sext(trunc(x))
998 // into shifts.
999 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1000 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1001 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1002 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1003
1004 // We need to emit a shl + ashr to do the sign extend.
1005 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1006 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1007 return BinaryOperator::CreateAShr(Res, ShAmt);
1008 }
1009
Chris Lattnerabb992d2010-01-24 00:09:49 +00001010
1011 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
1012 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
1013 {
1014 ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
1015 if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
1016 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
1017 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
1018 if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
1019 (Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
1020 Value *Sh = ConstantInt::get(CmpLHS->getType(),
1021 CmpLHS->getType()->getScalarSizeInBits()-1);
1022 Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
1023 if (In->getType() != CI.getType())
1024 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
1025
1026 if (Pred == ICmpInst::ICMP_SGT)
1027 In = Builder->CreateNot(In, In->getName()+".not");
1028 return ReplaceInstUsesWith(CI, In);
1029 }
1030 }
1031 }
Nate Begeman9a3dc552010-12-17 23:12:19 +00001032
Bill Wendling2d0537c2010-12-17 23:27:41 +00001033 // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
1034 if (const VectorType *VTy = dyn_cast<VectorType>(DestTy)) {
1035 ICmpInst::Predicate Pred; Value *CmpLHS;
1036 if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_Zero()))) {
1037 if (Pred == ICmpInst::ICMP_SLT && CmpLHS->getType() == DestTy) {
1038 const Type *EltTy = VTy->getElementType();
1039
Chris Lattner2ca5c862011-02-15 00:14:00 +00001040 // splat the shift constant to a constant vector.
1041 Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
Bill Wendling2d0537c2010-12-17 23:27:41 +00001042 Value *In = Builder->CreateAShr(CmpLHS, VSh,CmpLHS->getName()+".lobit");
1043 return ReplaceInstUsesWith(CI, In);
1044 }
Nate Begeman9a3dc552010-12-17 23:12:19 +00001045 }
1046 }
Bill Wendling2d0537c2010-12-17 23:27:41 +00001047
Chris Lattner80f43d32010-01-04 07:53:58 +00001048 // If the input is a shl/ashr pair of a same constant, then this is a sign
1049 // extension from a smaller value. If we could trust arbitrary bitwidth
1050 // integers, we could turn this into a truncate to the smaller bit and then
1051 // use a sext for the whole extension. Since we don't, look deeper and check
1052 // for a truncate. If the source and dest are the same type, eliminate the
1053 // trunc and extend and just do shifts. For example, turn:
1054 // %a = trunc i32 %i to i8
1055 // %b = shl i8 %a, 6
1056 // %c = ashr i8 %b, 6
1057 // %d = sext i8 %c to i32
1058 // into:
1059 // %a = shl i32 %i, 30
1060 // %d = ashr i32 %a, 30
1061 Value *A = 0;
Chris Lattner4f379782010-01-10 01:04:31 +00001062 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
Chris Lattner80f43d32010-01-04 07:53:58 +00001063 ConstantInt *BA = 0, *CA = 0;
Chris Lattner4f379782010-01-10 01:04:31 +00001064 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
Chris Lattner80f43d32010-01-04 07:53:58 +00001065 m_ConstantInt(CA))) &&
Chris Lattner4f379782010-01-10 01:04:31 +00001066 BA == CA && A->getType() == CI.getType()) {
1067 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1068 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1069 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1070 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1071 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1072 return BinaryOperator::CreateAShr(A, ShAmtV);
Chris Lattner80f43d32010-01-04 07:53:58 +00001073 }
1074
1075 return 0;
1076}
1077
1078
1079/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1080/// in the specified FP type without changing its value.
1081static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1082 bool losesInfo;
1083 APFloat F = CFP->getValueAPF();
1084 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1085 if (!losesInfo)
1086 return ConstantFP::get(CFP->getContext(), F);
1087 return 0;
1088}
1089
1090/// LookThroughFPExtensions - If this is an fp extension instruction, look
1091/// through it until we get the source value.
1092static Value *LookThroughFPExtensions(Value *V) {
1093 if (Instruction *I = dyn_cast<Instruction>(V))
1094 if (I->getOpcode() == Instruction::FPExt)
1095 return LookThroughFPExtensions(I->getOperand(0));
1096
1097 // If this value is a constant, return the constant in the smallest FP type
1098 // that can accurately represent it. This allows us to turn
1099 // (float)((double)X+2.0) into x+2.0f.
1100 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1101 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1102 return V; // No constant folding of this.
1103 // See if the value can be truncated to float and then reextended.
1104 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1105 return V;
Benjamin Kramerf0127052010-01-05 13:12:22 +00001106 if (CFP->getType()->isDoubleTy())
Chris Lattner80f43d32010-01-04 07:53:58 +00001107 return V; // Won't shrink.
1108 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1109 return V;
1110 // Don't try to shrink to various long double types.
1111 }
1112
1113 return V;
1114}
1115
1116Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1117 if (Instruction *I = commonCastTransforms(CI))
1118 return I;
1119
1120 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1121 // smaller than the destination type, we can eliminate the truncate by doing
1122 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
1123 // as many builtins (sqrt, etc).
1124 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1125 if (OpI && OpI->hasOneUse()) {
1126 switch (OpI->getOpcode()) {
1127 default: break;
1128 case Instruction::FAdd:
1129 case Instruction::FSub:
1130 case Instruction::FMul:
1131 case Instruction::FDiv:
1132 case Instruction::FRem:
1133 const Type *SrcTy = OpI->getType();
1134 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1135 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1136 if (LHSTrunc->getType() != SrcTy &&
1137 RHSTrunc->getType() != SrcTy) {
1138 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1139 // If the source types were both smaller than the destination type of
1140 // the cast, do this xform.
1141 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1142 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1143 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1144 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1145 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1146 }
1147 }
1148 break;
1149 }
1150 }
Owen Andersond9029012010-07-19 08:09:34 +00001151
1152 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1153 // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
1154 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1155 if (Call && Call->getCalledFunction() &&
1156 Call->getCalledFunction()->getName() == "sqrt" &&
1157 Call->getNumArgOperands() == 1) {
1158 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1159 if (Arg && Arg->getOpcode() == Instruction::FPExt &&
Owen Anderson5f23a932010-07-19 19:23:32 +00001160 CI.getType()->isFloatTy() &&
1161 Call->getType()->isDoubleTy() &&
1162 Arg->getType()->isDoubleTy() &&
1163 Arg->getOperand(0)->getType()->isFloatTy()) {
1164 Function *Callee = Call->getCalledFunction();
1165 Module *M = CI.getParent()->getParent()->getParent();
Chris Lattner979ed442010-09-07 20:01:38 +00001166 Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
Owen Anderson5f23a932010-07-19 19:23:32 +00001167 Callee->getAttributes(),
Owen Andersond9029012010-07-19 08:09:34 +00001168 Builder->getFloatTy(),
1169 Builder->getFloatTy(),
1170 NULL);
1171 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1172 "sqrtfcall");
Owen Anderson5f23a932010-07-19 19:23:32 +00001173 ret->setAttributes(Callee->getAttributes());
Chris Lattner979ed442010-09-07 20:01:38 +00001174
1175
1176 // Remove the old Call. With -fmath-errno, it won't get marked readnone.
1177 Call->replaceAllUsesWith(UndefValue::get(Call->getType()));
1178 EraseInstFromFunction(*Call);
Owen Andersond9029012010-07-19 08:09:34 +00001179 return ret;
1180 }
1181 }
1182
Chris Lattner80f43d32010-01-04 07:53:58 +00001183 return 0;
1184}
1185
1186Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1187 return commonCastTransforms(CI);
1188}
1189
1190Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1191 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1192 if (OpI == 0)
1193 return commonCastTransforms(FI);
1194
1195 // fptoui(uitofp(X)) --> X
1196 // fptoui(sitofp(X)) --> X
1197 // This is safe if the intermediate type has enough bits in its mantissa to
1198 // accurately represent all values of X. For example, do not do this with
1199 // i64->float->i64. This is also safe for sitofp case, because any negative
1200 // 'X' value would cause an undefined result for the fptoui.
1201 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1202 OpI->getOperand(0)->getType() == FI.getType() &&
1203 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1204 OpI->getType()->getFPMantissaWidth())
1205 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1206
1207 return commonCastTransforms(FI);
1208}
1209
1210Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1211 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1212 if (OpI == 0)
1213 return commonCastTransforms(FI);
1214
1215 // fptosi(sitofp(X)) --> X
1216 // fptosi(uitofp(X)) --> X
1217 // This is safe if the intermediate type has enough bits in its mantissa to
1218 // accurately represent all values of X. For example, do not do this with
1219 // i64->float->i64. This is also safe for sitofp case, because any negative
1220 // 'X' value would cause an undefined result for the fptoui.
1221 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1222 OpI->getOperand(0)->getType() == FI.getType() &&
1223 (int)FI.getType()->getScalarSizeInBits() <=
1224 OpI->getType()->getFPMantissaWidth())
1225 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1226
1227 return commonCastTransforms(FI);
1228}
1229
1230Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1231 return commonCastTransforms(CI);
1232}
1233
1234Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1235 return commonCastTransforms(CI);
1236}
1237
Chris Lattner80f43d32010-01-04 07:53:58 +00001238Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
Dan Gohman3b5487e2010-02-02 01:44:02 +00001239 // If the source integer type is not the intptr_t type for this target, do a
1240 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1241 // cast to be exposed to other transforms.
1242 if (TD) {
1243 if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1244 TD->getPointerSizeInBits()) {
1245 Value *P = Builder->CreateTrunc(CI.getOperand(0),
1246 TD->getIntPtrType(CI.getContext()), "tmp");
1247 return new IntToPtrInst(P, CI.getType());
1248 }
1249 if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1250 TD->getPointerSizeInBits()) {
1251 Value *P = Builder->CreateZExt(CI.getOperand(0),
1252 TD->getIntPtrType(CI.getContext()), "tmp");
1253 return new IntToPtrInst(P, CI.getType());
1254 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001255 }
1256
1257 if (Instruction *I = commonCastTransforms(CI))
1258 return I;
1259
1260 return 0;
1261}
1262
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001263/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1264Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1265 Value *Src = CI.getOperand(0);
1266
1267 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1268 // If casting the result of a getelementptr instruction with no offset, turn
1269 // this into a cast of the original pointer!
1270 if (GEP->hasAllZeroIndices()) {
1271 // Changing the cast operand is usually not a good idea but it is safe
1272 // here because the pointer operand is being replaced with another
1273 // pointer operand so the opcode doesn't need to change.
1274 Worklist.Add(GEP);
1275 CI.setOperand(0, GEP->getOperand(0));
1276 return &CI;
1277 }
1278
1279 // If the GEP has a single use, and the base pointer is a bitcast, and the
1280 // GEP computes a constant offset, see if we can convert these three
1281 // instructions into fewer. This typically happens with unions and other
1282 // non-type-safe code.
1283 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1284 GEP->hasAllConstantIndices()) {
1285 // We are guaranteed to get a constant from EmitGEPOffset.
1286 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1287 int64_t Offset = OffsetV->getSExtValue();
1288
1289 // Get the base pointer input of the bitcast, and the type it points to.
1290 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1291 const Type *GEPIdxTy =
1292 cast<PointerType>(OrigBase->getType())->getElementType();
1293 SmallVector<Value*, 8> NewIndices;
1294 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1295 // If we were able to index down into an element, create the GEP
1296 // and bitcast the result. This eliminates one bitcast, potentially
1297 // two.
1298 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1299 Builder->CreateInBoundsGEP(OrigBase,
1300 NewIndices.begin(), NewIndices.end()) :
1301 Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1302 NGEP->takeName(GEP);
1303
1304 if (isa<BitCastInst>(CI))
1305 return new BitCastInst(NGEP, CI.getType());
1306 assert(isa<PtrToIntInst>(CI));
1307 return new PtrToIntInst(NGEP, CI.getType());
1308 }
1309 }
1310 }
1311
1312 return commonCastTransforms(CI);
1313}
1314
1315Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
Dan Gohman3b5487e2010-02-02 01:44:02 +00001316 // If the destination integer type is not the intptr_t type for this target,
1317 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1318 // to be exposed to other transforms.
1319 if (TD) {
1320 if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1321 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1322 TD->getIntPtrType(CI.getContext()),
1323 "tmp");
1324 return new TruncInst(P, CI.getType());
1325 }
1326 if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1327 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1328 TD->getIntPtrType(CI.getContext()),
1329 "tmp");
1330 return new ZExtInst(P, CI.getType());
1331 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001332 }
1333
1334 return commonPointerCastTransforms(CI);
1335}
1336
Chris Lattner67451912010-05-08 21:50:26 +00001337/// OptimizeVectorResize - This input value (which is known to have vector type)
1338/// is being zero extended or truncated to the specified vector type. Try to
1339/// replace it with a shuffle (and vector/vector bitcast) if possible.
1340///
1341/// The source and destination vector types may have different element types.
1342static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
1343 InstCombiner &IC) {
1344 // We can only do this optimization if the output is a multiple of the input
1345 // element size, or the input is a multiple of the output element size.
1346 // Convert the input type to have the same element type as the output.
1347 const VectorType *SrcTy = cast<VectorType>(InVal->getType());
1348
1349 if (SrcTy->getElementType() != DestTy->getElementType()) {
1350 // The input types don't need to be identical, but for now they must be the
1351 // same size. There is no specific reason we couldn't handle things like
1352 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1353 // there yet.
1354 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1355 DestTy->getElementType()->getPrimitiveSizeInBits())
1356 return 0;
1357
1358 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1359 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1360 }
1361
1362 // Now that the element types match, get the shuffle mask and RHS of the
1363 // shuffle to use, which depends on whether we're increasing or decreasing the
1364 // size of the input.
1365 SmallVector<Constant*, 16> ShuffleMask;
1366 Value *V2;
1367 const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1368
1369 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1370 // If we're shrinking the number of elements, just shuffle in the low
1371 // elements from the input and use undef as the second shuffle input.
1372 V2 = UndefValue::get(SrcTy);
1373 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1374 ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1375
1376 } else {
1377 // If we're increasing the number of elements, shuffle in all of the
1378 // elements from InVal and fill the rest of the result elements with zeros
1379 // from a constant zero.
1380 V2 = Constant::getNullValue(SrcTy);
1381 unsigned SrcElts = SrcTy->getNumElements();
1382 for (unsigned i = 0, e = SrcElts; i != e; ++i)
1383 ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1384
1385 // The excess elements reference the first element of the zero input.
1386 ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1387 ConstantInt::get(Int32Ty, SrcElts));
1388 }
1389
Chris Lattner2ca5c862011-02-15 00:14:00 +00001390 return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
Chris Lattner67451912010-05-08 21:50:26 +00001391}
1392
Chris Lattner3dd08732010-08-28 01:20:38 +00001393static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
1394 return Value % Ty->getPrimitiveSizeInBits() == 0;
1395}
1396
Chris Lattner79007792010-08-28 01:50:57 +00001397static unsigned getTypeSizeIndex(unsigned Value, const Type *Ty) {
Chris Lattner3dd08732010-08-28 01:20:38 +00001398 return Value / Ty->getPrimitiveSizeInBits();
1399}
1400
1401/// CollectInsertionElements - V is a value which is inserted into a vector of
1402/// VecEltTy. Look through the value to see if we can decompose it into
1403/// insertions into the vector. See the example in the comment for
1404/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1405/// The type of V is always a non-zero multiple of VecEltTy's size.
1406///
1407/// This returns false if the pattern can't be matched or true if it can,
1408/// filling in Elements with the elements found here.
1409static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1410 SmallVectorImpl<Value*> &Elements,
1411 const Type *VecEltTy) {
Chris Lattner157d4ea2010-08-28 03:36:51 +00001412 // Undef values never contribute useful bits to the result.
1413 if (isa<UndefValue>(V)) return true;
1414
Chris Lattner3dd08732010-08-28 01:20:38 +00001415 // If we got down to a value of the right type, we win, try inserting into the
1416 // right element.
1417 if (V->getType() == VecEltTy) {
Chris Lattner79007792010-08-28 01:50:57 +00001418 // Inserting null doesn't actually insert any elements.
1419 if (Constant *C = dyn_cast<Constant>(V))
1420 if (C->isNullValue())
1421 return true;
1422
Chris Lattner3dd08732010-08-28 01:20:38 +00001423 // Fail if multiple elements are inserted into this slot.
1424 if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1425 return false;
1426
1427 Elements[ElementIndex] = V;
1428 return true;
1429 }
1430
Chris Lattner79007792010-08-28 01:50:57 +00001431 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner3dd08732010-08-28 01:20:38 +00001432 // Figure out the # elements this provides, and bitcast it or slice it up
1433 // as required.
Chris Lattner79007792010-08-28 01:50:57 +00001434 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1435 VecEltTy);
1436 // If the constant is the size of a vector element, we just need to bitcast
1437 // it to the right type so it gets properly inserted.
1438 if (NumElts == 1)
1439 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1440 ElementIndex, Elements, VecEltTy);
1441
1442 // Okay, this is a constant that covers multiple elements. Slice it up into
1443 // pieces and insert each element-sized piece into the vector.
1444 if (!isa<IntegerType>(C->getType()))
1445 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1446 C->getType()->getPrimitiveSizeInBits()));
1447 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1448 const Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1449
1450 for (unsigned i = 0; i != NumElts; ++i) {
1451 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1452 i*ElementSize));
1453 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1454 if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1455 return false;
1456 }
1457 return true;
1458 }
Chris Lattner3dd08732010-08-28 01:20:38 +00001459
1460 if (!V->hasOneUse()) return false;
1461
1462 Instruction *I = dyn_cast<Instruction>(V);
1463 if (I == 0) return false;
1464 switch (I->getOpcode()) {
1465 default: return false; // Unhandled case.
1466 case Instruction::BitCast:
1467 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1468 Elements, VecEltTy);
1469 case Instruction::ZExt:
1470 if (!isMultipleOfTypeSize(
1471 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1472 VecEltTy))
1473 return false;
1474 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1475 Elements, VecEltTy);
1476 case Instruction::Or:
1477 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1478 Elements, VecEltTy) &&
1479 CollectInsertionElements(I->getOperand(1), ElementIndex,
1480 Elements, VecEltTy);
1481 case Instruction::Shl: {
1482 // Must be shifting by a constant that is a multiple of the element size.
1483 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1484 if (CI == 0) return false;
1485 if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1486 unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1487
1488 return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1489 Elements, VecEltTy);
1490 }
1491
1492 }
1493}
1494
1495
1496/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1497/// may be doing shifts and ors to assemble the elements of the vector manually.
1498/// Try to rip the code out and replace it with insertelements. This is to
1499/// optimize code like this:
1500///
1501/// %tmp37 = bitcast float %inc to i32
1502/// %tmp38 = zext i32 %tmp37 to i64
1503/// %tmp31 = bitcast float %inc5 to i32
1504/// %tmp32 = zext i32 %tmp31 to i64
1505/// %tmp33 = shl i64 %tmp32, 32
1506/// %ins35 = or i64 %tmp33, %tmp38
1507/// %tmp43 = bitcast i64 %ins35 to <2 x float>
1508///
1509/// Into two insertelements that do "buildvector{%inc, %inc5}".
1510static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1511 InstCombiner &IC) {
1512 const VectorType *DestVecTy = cast<VectorType>(CI.getType());
1513 Value *IntInput = CI.getOperand(0);
1514
1515 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1516 if (!CollectInsertionElements(IntInput, 0, Elements,
1517 DestVecTy->getElementType()))
1518 return 0;
1519
1520 // If we succeeded, we know that all of the element are specified by Elements
1521 // or are zero if Elements has a null entry. Recast this as a set of
1522 // insertions.
1523 Value *Result = Constant::getNullValue(CI.getType());
1524 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1525 if (Elements[i] == 0) continue; // Unset element.
1526
1527 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1528 IC.Builder->getInt32(i));
1529 }
1530
1531 return Result;
1532}
1533
1534
Chris Lattnere5a14262010-08-26 21:55:42 +00001535/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1536/// bitcast. The various long double bitcasts can't get in here.
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001537static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
Chris Lattnere5a14262010-08-26 21:55:42 +00001538 Value *Src = CI.getOperand(0);
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001539 const Type *DestTy = CI.getType();
Chris Lattnere5a14262010-08-26 21:55:42 +00001540
1541 // If this is a bitcast from int to float, check to see if the int is an
1542 // extraction from a vector.
1543 Value *VecInput = 0;
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001544 // bitcast(trunc(bitcast(somevector)))
Chris Lattnere5a14262010-08-26 21:55:42 +00001545 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1546 isa<VectorType>(VecInput->getType())) {
1547 const VectorType *VecTy = cast<VectorType>(VecInput->getType());
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001548 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1549
1550 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1551 // If the element type of the vector doesn't match the result type,
1552 // bitcast it to be a vector type we can extract from.
1553 if (VecTy->getElementType() != DestTy) {
1554 VecTy = VectorType::get(DestTy,
1555 VecTy->getPrimitiveSizeInBits() / DestWidth);
1556 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1557 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001558
Chris Lattnere5a14262010-08-26 21:55:42 +00001559 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001560 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001561 }
1562
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001563 // bitcast(trunc(lshr(bitcast(somevector), cst))
1564 ConstantInt *ShAmt = 0;
1565 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1566 m_ConstantInt(ShAmt)))) &&
1567 isa<VectorType>(VecInput->getType())) {
1568 const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1569 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1570 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1571 ShAmt->getZExtValue() % DestWidth == 0) {
1572 // If the element type of the vector doesn't match the result type,
1573 // bitcast it to be a vector type we can extract from.
1574 if (VecTy->getElementType() != DestTy) {
1575 VecTy = VectorType::get(DestTy,
1576 VecTy->getPrimitiveSizeInBits() / DestWidth);
1577 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1578 }
1579
1580 unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1581 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1582 }
1583 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001584 return 0;
1585}
Chris Lattner67451912010-05-08 21:50:26 +00001586
Chris Lattner80f43d32010-01-04 07:53:58 +00001587Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1588 // If the operands are integer typed then apply the integer transforms,
1589 // otherwise just apply the common ones.
1590 Value *Src = CI.getOperand(0);
1591 const Type *SrcTy = Src->getType();
1592 const Type *DestTy = CI.getType();
1593
Chris Lattner80f43d32010-01-04 07:53:58 +00001594 // Get rid of casts from one type to the same type. These are useless and can
1595 // be replaced by the operand.
1596 if (DestTy == Src->getType())
1597 return ReplaceInstUsesWith(CI, Src);
1598
1599 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1600 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1601 const Type *DstElTy = DstPTy->getElementType();
1602 const Type *SrcElTy = SrcPTy->getElementType();
1603
1604 // If the address spaces don't match, don't eliminate the bitcast, which is
1605 // required for changing types.
1606 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1607 return 0;
1608
1609 // If we are casting a alloca to a pointer to a type of the same
1610 // size, rewrite the allocation instruction to allocate the "right" type.
1611 // There is no need to modify malloc calls because it is their bitcast that
1612 // needs to be cleaned up.
1613 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1614 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1615 return V;
1616
1617 // If the source and destination are pointers, and this cast is equivalent
1618 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1619 // This can enhance SROA and other transforms that want type-safe pointers.
1620 Constant *ZeroUInt =
1621 Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1622 unsigned NumZeros = 0;
1623 while (SrcElTy != DstElTy &&
Duncan Sands1df98592010-02-16 11:11:14 +00001624 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
Chris Lattner80f43d32010-01-04 07:53:58 +00001625 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1626 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1627 ++NumZeros;
1628 }
1629
1630 // If we found a path from the src to dest, create the getelementptr now.
1631 if (SrcElTy == DstElTy) {
1632 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1633 return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001634 ((Instruction*)NULL));
Chris Lattner80f43d32010-01-04 07:53:58 +00001635 }
1636 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001637
1638 // Try to optimize int -> float bitcasts.
1639 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1640 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1641 return I;
Chris Lattner80f43d32010-01-04 07:53:58 +00001642
1643 if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
Duncan Sands1df98592010-02-16 11:11:14 +00001644 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001645 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1646 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Chris Lattner80f43d32010-01-04 07:53:58 +00001647 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
Chris Lattner80f43d32010-01-04 07:53:58 +00001648 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1649 }
Chris Lattner67451912010-05-08 21:50:26 +00001650
Chris Lattner3dd08732010-08-28 01:20:38 +00001651 if (isa<IntegerType>(SrcTy)) {
1652 // If this is a cast from an integer to vector, check to see if the input
1653 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1654 // the casts with a shuffle and (potentially) a bitcast.
1655 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1656 CastInst *SrcCast = cast<CastInst>(Src);
1657 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1658 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1659 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
Chris Lattner67451912010-05-08 21:50:26 +00001660 cast<VectorType>(DestTy), *this))
Chris Lattner3dd08732010-08-28 01:20:38 +00001661 return I;
1662 }
1663
1664 // If the input is an 'or' instruction, we may be doing shifts and ors to
1665 // assemble the elements of the vector manually. Try to rip the code out
1666 // and replace it with insertelements.
1667 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1668 return ReplaceInstUsesWith(CI, V);
Chris Lattner67451912010-05-08 21:50:26 +00001669 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001670 }
1671
1672 if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
Duncan Sands1df98592010-02-16 11:11:14 +00001673 if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001674 Value *Elem =
1675 Builder->CreateExtractElement(Src,
1676 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1677 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
Chris Lattner80f43d32010-01-04 07:53:58 +00001678 }
1679 }
1680
1681 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001682 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
Dan Gohmana5ced592010-04-07 23:22:42 +00001683 // a bitcast to a vector with the same # elts.
Duncan Sands1df98592010-02-16 11:11:14 +00001684 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001685 cast<VectorType>(DestTy)->getNumElements() ==
1686 SVI->getType()->getNumElements() &&
1687 SVI->getType()->getNumElements() ==
1688 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1689 BitCastInst *Tmp;
1690 // If either of the operands is a cast from CI.getType(), then
1691 // evaluating the shuffle in the casted destination's type will allow
1692 // us to eliminate at least one cast.
1693 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1694 Tmp->getOperand(0)->getType() == DestTy) ||
1695 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1696 Tmp->getOperand(0)->getType() == DestTy)) {
1697 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1698 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1699 // Return a new shuffle vector. Use the same element ID's, as we
1700 // know the vector types match #elts.
1701 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner80f43d32010-01-04 07:53:58 +00001702 }
1703 }
1704 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001705
Duncan Sands1df98592010-02-16 11:11:14 +00001706 if (SrcTy->isPointerTy())
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001707 return commonPointerCastTransforms(CI);
1708 return commonCastTransforms(CI);
Chris Lattner80f43d32010-01-04 07:53:58 +00001709}