blob: 2d8309d520284e724bc0e89b02ec99afde90ea6e [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000019#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000020#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000021#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000022#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000023#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000029#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000030#include "llvm/Support/Debug.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000031#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000032using namespace llvm;
33
Chris Lattnerbd3401f2008-04-20 22:39:42 +000034STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000036STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000037
Chris Lattner177480b2008-04-20 21:13:06 +000038static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40 cl::desc("Max block size to duplicate for jump threading"),
41 cl::init(6), cl::Hidden);
42
Chris Lattner8383a7b2008-04-20 20:35:01 +000043namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000044 /// This pass performs 'jump threading', which looks at blocks that have
45 /// multiple predecessors and multiple successors. If one or more of the
46 /// predecessors of the block can be proven to always jump to one of the
47 /// successors, we forward the edge from the predecessor to the successor by
48 /// duplicating the contents of this block.
49 ///
50 /// An example of when this can occur is code like this:
51 ///
52 /// if () { ...
53 /// X = 4;
54 /// }
55 /// if (X < 3) {
56 ///
57 /// In this case, the unconditional branch at the end of the first if can be
58 /// revectored to the false side of the second if.
59 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000060 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000061 TargetData *TD;
Mike Stumpfe095f32009-05-04 18:40:41 +000062#ifdef NDEBUG
63 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000067 public:
68 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +000069 JumpThreading() : FunctionPass(&ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000070
71 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000072 void FindLoopHeaders(Function &F);
73
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000074 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000075 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000077 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78 BasicBlock *PredBB);
Chris Lattner5729d382009-11-07 08:05:03 +000079
80 typedef SmallVectorImpl<std::pair<ConstantInt*,
81 BasicBlock*> > PredValueInfo;
82
83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84 PredValueInfo &Result);
85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
Chris Lattner421fa9e2008-12-03 07:48:08 +000088 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +000089 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +000090
Chris Lattnerd38c14e2008-04-22 06:36:15 +000091 bool ProcessJumpOnPHI(PHINode *PN);
Chris Lattner69e067f2008-11-27 05:07:53 +000092
93 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +000094 };
Chris Lattner8383a7b2008-04-20 20:35:01 +000095}
96
Dan Gohman844731a2008-05-13 00:00:25 +000097char JumpThreading::ID = 0;
98static RegisterPass<JumpThreading>
99X("jump-threading", "Jump Threading");
100
Chris Lattner8383a7b2008-04-20 20:35:01 +0000101// Public interface to the Jump Threading pass
102FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103
104/// runOnFunction - Top level algorithm.
105///
106bool JumpThreading::runOnFunction(Function &F) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000107 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000108 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000109
Mike Stumpfe095f32009-05-04 18:40:41 +0000110 FindLoopHeaders(F);
111
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000112 bool AnotherIteration = true, EverChanged = false;
113 while (AnotherIteration) {
114 AnotherIteration = false;
115 bool Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000116 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117 BasicBlock *BB = I;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000118 // Thread all of the branches we can over this block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000119 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000120 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000121
122 ++I;
123
124 // If the block is trivially dead, zap it. This eliminates the successor
125 // edges which simplifies the CFG.
126 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000127 BB != &BB->getParent()->getEntryBlock()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000128 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000129 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000130 LoopHeaders.erase(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000131 DeleteDeadBlock(BB);
132 Changed = true;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000133 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
134 // Can't thread an unconditional jump, but if the block is "almost
135 // empty", we can replace uses of it with uses of the successor and make
136 // this dead.
137 if (BI->isUnconditional() &&
138 BB != &BB->getParent()->getEntryBlock()) {
139 BasicBlock::iterator BBI = BB->getFirstNonPHI();
140 // Ignore dbg intrinsics.
141 while (isa<DbgInfoIntrinsic>(BBI))
142 ++BBI;
143 // If the terminator is the only non-phi instruction, try to nuke it.
144 if (BBI->isTerminator()) {
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000145 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
146 // block, we have to make sure it isn't in the LoopHeaders set. We
147 // reinsert afterward in the rare case when the block isn't deleted.
148 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
Chris Lattnerf3183f62009-11-10 21:40:01 +0000149
150 if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
151 Changed = true;
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000152 else if (ErasedFromLoopHeaders)
Chris Lattnerf3183f62009-11-10 21:40:01 +0000153 LoopHeaders.insert(BB);
154 }
155 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000156 }
157 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000158 AnotherIteration = Changed;
159 EverChanged |= Changed;
160 }
Mike Stumpfe095f32009-05-04 18:40:41 +0000161
162 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000163 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000164}
Chris Lattner177480b2008-04-20 21:13:06 +0000165
Chris Lattner78c552e2009-10-11 07:24:57 +0000166/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
167/// thread across it.
168static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
169 /// Ignore PHI nodes, these will be flattened when duplication happens.
170 BasicBlock::const_iterator I = BB->getFirstNonPHI();
171
172 // Sum up the cost of each instruction until we get to the terminator. Don't
173 // include the terminator because the copy won't include it.
174 unsigned Size = 0;
175 for (; !isa<TerminatorInst>(I); ++I) {
176 // Debugger intrinsics don't incur code size.
177 if (isa<DbgInfoIntrinsic>(I)) continue;
178
179 // If this is a pointer->pointer bitcast, it is free.
180 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
181 continue;
182
183 // All other instructions count for at least one unit.
184 ++Size;
185
186 // Calls are more expensive. If they are non-intrinsic calls, we model them
187 // as having cost of 4. If they are a non-vector intrinsic, we model them
188 // as having cost of 2 total, and if they are a vector intrinsic, we model
189 // them as having cost 1.
190 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
191 if (!isa<IntrinsicInst>(CI))
192 Size += 3;
193 else if (!isa<VectorType>(CI->getType()))
194 Size += 1;
195 }
196 }
197
198 // Threading through a switch statement is particularly profitable. If this
199 // block ends in a switch, decrease its cost to make it more likely to happen.
200 if (isa<SwitchInst>(I))
201 Size = Size > 6 ? Size-6 : 0;
202
203 return Size;
204}
205
206
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000207//===----------------------------------------------------------------------===//
208
Chris Lattnerfddcf472009-11-10 01:57:31 +0000209/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
210/// delete the From instruction. In addition to a basic RAUW, this does a
211/// recursive simplification of the newly formed instructions. This catches
212/// things where one simplification exposes other opportunities. This only
213/// simplifies and deletes scalar operations, it does not change the CFG.
214///
215static void ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
216 const TargetData *TD) {
217 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
218
219 // FromHandle - This keeps a weakvh on the from value so that we can know if
220 // it gets deleted out from under us in a recursive simplification.
221 WeakVH FromHandle(From);
222
223 while (!From->use_empty()) {
224 // Update the instruction to use the new value.
225 Use &U = From->use_begin().getUse();
226 Instruction *User = cast<Instruction>(U.getUser());
227 U = To;
228
229 // See if we can simplify it.
230 if (Value *V = SimplifyInstruction(User, TD)) {
231 // Recursively simplify this.
232 ReplaceAndSimplifyAllUses(User, V, TD);
233
234 // If the recursive simplification ended up revisiting and deleting 'From'
235 // then we're done.
236 if (FromHandle == 0)
237 return;
238 }
239 }
240 From->eraseFromParent();
241}
242
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000243
244/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
245/// method is called when we're about to delete Pred as a predecessor of BB. If
246/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
247///
248/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
249/// nodes that collapse into identity values. For example, if we have:
250/// x = phi(1, 0, 0, 0)
251/// y = and x, z
252///
253/// .. and delete the predecessor corresponding to the '1', this will attempt to
254/// recursively fold the and to 0.
255static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
256 TargetData *TD) {
257 // This only adjusts blocks with PHI nodes.
258 if (!isa<PHINode>(BB->begin()))
259 return;
260
261 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
262 // them down. This will leave us with single entry phi nodes and other phis
263 // that can be removed.
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000264 BB->removePredecessor(Pred, true);
265
266 WeakVH PhiIt = &BB->front();
267 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
268 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
269
270 Value *PNV = PN->hasConstantValue();
271 if (PNV == 0) continue;
272
Chris Lattnerfddcf472009-11-10 01:57:31 +0000273 // If we're able to simplify the phi to a single value, substitute the new
274 // value into all of its uses.
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000275 assert(PNV != PN && "hasConstantValue broken");
276
Chris Lattnerfddcf472009-11-10 01:57:31 +0000277 ReplaceAndSimplifyAllUses(PN, PNV, TD);
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000278
279 // If recursive simplification ended up deleting the next PHI node we would
280 // iterate to, then our iterator is invalid, restart scanning from the top
281 // of the block.
282 if (PhiIt == 0) PhiIt = &BB->front();
283 }
284}
285
286//===----------------------------------------------------------------------===//
287
Chris Lattner78c552e2009-10-11 07:24:57 +0000288
Mike Stumpfe095f32009-05-04 18:40:41 +0000289/// FindLoopHeaders - We do not want jump threading to turn proper loop
290/// structures into irreducible loops. Doing this breaks up the loop nesting
291/// hierarchy and pessimizes later transformations. To prevent this from
292/// happening, we first have to find the loop headers. Here we approximate this
293/// by finding targets of backedges in the CFG.
294///
295/// Note that there definitely are cases when we want to allow threading of
296/// edges across a loop header. For example, threading a jump from outside the
297/// loop (the preheader) to an exit block of the loop is definitely profitable.
298/// It is also almost always profitable to thread backedges from within the loop
299/// to exit blocks, and is often profitable to thread backedges to other blocks
300/// within the loop (forming a nested loop). This simple analysis is not rich
301/// enough to track all of these properties and keep it up-to-date as the CFG
302/// mutates, so we don't allow any of these transformations.
303///
304void JumpThreading::FindLoopHeaders(Function &F) {
305 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
306 FindFunctionBackedges(F, Edges);
307
308 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
309 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
310}
311
Chris Lattner5729d382009-11-07 08:05:03 +0000312/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
313/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000314/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000315/// result vector. If a value is known to be undef, it is returned as null.
316///
317/// The BB basic block is known to start with a PHI node.
318///
319/// This returns true if there were any known values.
320///
321///
322/// TODO: Per PR2563, we could infer value range information about a predecessor
323/// based on its terminator.
324bool JumpThreading::
325ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
326 PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
Chris Lattner78567252009-11-06 18:15:14 +0000327
Chris Lattner5729d382009-11-07 08:05:03 +0000328 // If V is a constantint, then it is known in all predecessors.
329 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
330 ConstantInt *CI = dyn_cast<ConstantInt>(V);
331 Result.resize(TheFirstPHI->getNumIncomingValues());
332 for (unsigned i = 0, e = Result.size(); i != e; ++i)
333 Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
334 return true;
335 }
336
337 // If V is a non-instruction value, or an instruction in a different block,
338 // then it can't be derived from a PHI.
339 Instruction *I = dyn_cast<Instruction>(V);
340 if (I == 0 || I->getParent() != BB)
341 return false;
342
343 /// If I is a PHI node, then we know the incoming values for any constants.
344 if (PHINode *PN = dyn_cast<PHINode>(I)) {
345 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
346 Value *InVal = PN->getIncomingValue(i);
347 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
348 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
349 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
350 }
351 }
352 return !Result.empty();
353 }
354
355 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
356
357 // Handle some boolean conditions.
358 if (I->getType()->getPrimitiveSizeInBits() == 1) {
359 // X | true -> true
360 // X & false -> false
361 if (I->getOpcode() == Instruction::Or ||
362 I->getOpcode() == Instruction::And) {
363 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
364 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
365
366 if (LHSVals.empty() && RHSVals.empty())
367 return false;
368
369 ConstantInt *InterestingVal;
370 if (I->getOpcode() == Instruction::Or)
371 InterestingVal = ConstantInt::getTrue(I->getContext());
372 else
373 InterestingVal = ConstantInt::getFalse(I->getContext());
374
375 // Scan for the sentinel.
376 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
377 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
378 Result.push_back(LHSVals[i]);
379 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
380 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
381 Result.push_back(RHSVals[i]);
382 return !Result.empty();
383 }
384
385 // TODO: Should handle the NOT form of XOR.
386
387 }
388
389 // Handle compare with phi operand, where the PHI is defined in this block.
390 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
391 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
392 if (PN && PN->getParent() == BB) {
393 // We can do this simplification if any comparisons fold to true or false.
394 // See if any do.
395 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
396 BasicBlock *PredBB = PN->getIncomingBlock(i);
397 Value *LHS = PN->getIncomingValue(i);
398 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
399
Chris Lattner9dbb4292009-11-09 23:28:39 +0000400 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
Chris Lattner5729d382009-11-07 08:05:03 +0000401 if (Res == 0) continue;
402
403 if (isa<UndefValue>(Res))
404 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
405 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
406 Result.push_back(std::make_pair(CI, PredBB));
407 }
408
409 return !Result.empty();
410 }
411
412 // TODO: We could also recurse to see if we can determine constants another
413 // way.
414 }
415 return false;
416}
417
418
Chris Lattner6bf77502008-04-22 07:05:46 +0000419
Chris Lattnere33583b2009-10-11 04:18:15 +0000420/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
421/// in an undefined jump, decide which block is best to revector to.
422///
423/// Since we can pick an arbitrary destination, we pick the successor with the
424/// fewest predecessors. This should reduce the in-degree of the others.
425///
426static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
427 TerminatorInst *BBTerm = BB->getTerminator();
428 unsigned MinSucc = 0;
429 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
430 // Compute the successor with the minimum number of predecessors.
431 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
432 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
433 TestBB = BBTerm->getSuccessor(i);
434 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
435 if (NumPreds < MinNumPreds)
436 MinSucc = i;
437 }
438
439 return MinSucc;
440}
441
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000442/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000443/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000444bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000445 // If this block has a single predecessor, and if that pred has a single
446 // successor, merge the blocks. This encourages recursive jump threading
447 // because now the condition in this block can be threaded through
448 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000449 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000450 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
451 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000452 // If SinglePred was a loop header, BB becomes one.
453 if (LoopHeaders.erase(SinglePred))
454 LoopHeaders.insert(BB);
455
Chris Lattner3d86d242008-11-27 19:25:19 +0000456 // Remember if SinglePred was the entry block of the function. If so, we
457 // will need to move BB back to the entry position.
458 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattner69e067f2008-11-27 05:07:53 +0000459 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000460
461 if (isEntry && BB != &BB->getParent()->getEntryBlock())
462 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000463 return true;
464 }
Chris Lattner5729d382009-11-07 08:05:03 +0000465 }
466
467 // Look to see if the terminator is a branch of switch, if not we can't thread
468 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000469 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000470 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
471 // Can't thread an unconditional jump.
472 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000473 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000474 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000475 Condition = SI->getCondition();
476 else
477 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000478
479 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000480 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000481 // other blocks.
482 if (isa<ConstantInt>(Condition)) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000483 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000484 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000485 ++NumFolds;
486 ConstantFoldTerminator(BB);
487 return true;
488 }
489
Chris Lattner421fa9e2008-12-03 07:48:08 +0000490 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000491 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000492 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000493 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000494
495 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000496 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000497 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000498 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000499 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000500 }
501
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000502 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000503 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000504 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000505 BBTerm->eraseFromParent();
506 return true;
507 }
508
509 Instruction *CondInst = dyn_cast<Instruction>(Condition);
510
511 // If the condition is an instruction defined in another block, see if a
512 // predecessor has the same condition:
513 // br COND, BBX, BBY
514 // BBX:
515 // br COND, BBZ, BBW
516 if (!Condition->hasOneUse() && // Multiple uses.
517 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
518 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
519 if (isa<BranchInst>(BB->getTerminator())) {
520 for (; PI != E; ++PI)
521 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
522 if (PBI->isConditional() && PBI->getCondition() == Condition &&
523 ProcessBranchOnDuplicateCond(*PI, BB))
524 return true;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000525 } else {
526 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
527 for (; PI != E; ++PI)
528 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
529 if (PSI->getCondition() == Condition &&
530 ProcessSwitchOnDuplicateCond(*PI, BB))
531 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000532 }
533 }
534
Chris Lattner421fa9e2008-12-03 07:48:08 +0000535 // All the rest of our checks depend on the condition being an instruction.
536 if (CondInst == 0)
537 return false;
538
Chris Lattner177480b2008-04-20 21:13:06 +0000539 // See if this is a phi node in the current block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000540 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
541 if (PN->getParent() == BB)
542 return ProcessJumpOnPHI(PN);
Chris Lattner177480b2008-04-20 21:13:06 +0000543
Nick Lewycky9683f182009-06-19 04:56:29 +0000544 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000545 if (!isa<PHINode>(CondCmp->getOperand(0)) ||
546 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
547 // If we have a comparison, loop over the predecessors to see if there is
548 // a condition with a lexically identical value.
549 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
550 for (; PI != E; ++PI)
551 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
552 if (PBI->isConditional() && *PI != BB) {
553 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
554 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
555 CI->getOperand(1) == CondCmp->getOperand(1) &&
556 CI->getPredicate() == CondCmp->getPredicate()) {
557 // TODO: Could handle things like (x != 4) --> (x == 17)
558 if (ProcessBranchOnDuplicateCond(*PI, BB))
559 return true;
560 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000561 }
562 }
Chris Lattner5729d382009-11-07 08:05:03 +0000563 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000564 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000565
566 // Check for some cases that are worth simplifying. Right now we want to look
567 // for loads that are used by a switch or by the condition for the branch. If
568 // we see one, check to see if it's partially redundant. If so, insert a PHI
569 // which can then be used to thread the values.
570 //
571 // This is particularly important because reg2mem inserts loads and stores all
572 // over the place, and this blocks jump threading if we don't zap them.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000573 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000574 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
575 if (isa<Constant>(CondCmp->getOperand(1)))
576 SimplifyValue = CondCmp->getOperand(0);
577
578 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
579 if (SimplifyPartiallyRedundantLoad(LI))
580 return true;
581
Chris Lattner5729d382009-11-07 08:05:03 +0000582
583 // Handle a variety of cases where we are branching on something derived from
584 // a PHI node in the current block. If we can prove that any predecessors
585 // compute a predictable value based on a PHI node, thread those predecessors.
586 //
587 // We only bother doing this if the current block has a PHI node and if the
588 // conditional instruction lives in the current block. If either condition
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000589 // fails, this won't be a computable value anyway.
Chris Lattner5729d382009-11-07 08:05:03 +0000590 if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
591 if (ProcessThreadableEdges(CondInst, BB))
592 return true;
593
594
Chris Lattner69e067f2008-11-27 05:07:53 +0000595 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
596 // "(X == 4)" thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000597
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000598 return false;
599}
600
Chris Lattner421fa9e2008-12-03 07:48:08 +0000601/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
602/// block that jump on exactly the same condition. This means that we almost
603/// always know the direction of the edge in the DESTBB:
604/// PREDBB:
605/// br COND, DESTBB, BBY
606/// DESTBB:
607/// br COND, BBZ, BBW
608///
609/// If DESTBB has multiple predecessors, we can't just constant fold the branch
610/// in DESTBB, we have to thread over it.
611bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
612 BasicBlock *BB) {
613 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
614
615 // If both successors of PredBB go to DESTBB, we don't know anything. We can
616 // fold the branch to an unconditional one, which allows other recursive
617 // simplifications.
618 bool BranchDir;
619 if (PredBI->getSuccessor(1) != BB)
620 BranchDir = true;
621 else if (PredBI->getSuccessor(0) != BB)
622 BranchDir = false;
623 else {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000624 DEBUG(errs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000625 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000626 ++NumFolds;
627 ConstantFoldTerminator(PredBB);
628 return true;
629 }
630
631 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
632
633 // If the dest block has one predecessor, just fix the branch condition to a
634 // constant and fold it.
635 if (BB->getSinglePredecessor()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000636 DEBUG(errs() << " In block '" << BB->getName()
637 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000638 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000639 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000640 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000641 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
642 BranchDir));
Chris Lattner421fa9e2008-12-03 07:48:08 +0000643 ConstantFoldTerminator(BB);
Chris Lattner5a06cf62009-10-11 18:39:58 +0000644 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000645 return true;
646 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000647
Chris Lattner421fa9e2008-12-03 07:48:08 +0000648
649 // Next, figure out which successor we are threading to.
650 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
651
Chris Lattner5729d382009-11-07 08:05:03 +0000652 SmallVector<BasicBlock*, 2> Preds;
653 Preds.push_back(PredBB);
654
Mike Stumpfe095f32009-05-04 18:40:41 +0000655 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000656 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000657}
658
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000659/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
660/// block that switch on exactly the same condition. This means that we almost
661/// always know the direction of the edge in the DESTBB:
662/// PREDBB:
663/// switch COND [... DESTBB, BBY ... ]
664/// DESTBB:
665/// switch COND [... BBZ, BBW ]
666///
667/// Optimizing switches like this is very important, because simplifycfg builds
668/// switches out of repeated 'if' conditions.
669bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
670 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000671 // Can't thread edge to self.
672 if (PredBB == DestBB)
673 return false;
674
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000675 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
676 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
677
678 // There are a variety of optimizations that we can potentially do on these
679 // blocks: we order them from most to least preferable.
680
681 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
682 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000683 // growth. Skip debug info first.
684 BasicBlock::iterator BBI = DestBB->begin();
685 while (isa<DbgInfoIntrinsic>(BBI))
686 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000687
688 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000689 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000690 bool MadeChange = false;
691 // Ignore the default edge for now.
692 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
693 ConstantInt *DestVal = DestSI->getCaseValue(i);
694 BasicBlock *DestSucc = DestSI->getSuccessor(i);
695
696 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
697 // PredSI has an explicit case for it. If so, forward. If it is covered
698 // by the default case, we can't update PredSI.
699 unsigned PredCase = PredSI->findCaseValue(DestVal);
700 if (PredCase == 0) continue;
701
702 // If PredSI doesn't go to DestBB on this value, then it won't reach the
703 // case on this condition.
704 if (PredSI->getSuccessor(PredCase) != DestBB &&
705 DestSI->getSuccessor(i) != DestBB)
706 continue;
707
708 // Otherwise, we're safe to make the change. Make sure that the edge from
709 // DestSI to DestSucc is not critical and has no PHI nodes.
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000710 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
711 DEBUG(errs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000712
713 // If the destination has PHI nodes, just split the edge for updating
714 // simplicity.
715 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
716 SplitCriticalEdge(DestSI, i, this);
717 DestSucc = DestSI->getSuccessor(i);
718 }
719 FoldSingleEntryPHINodes(DestSucc);
720 PredSI->setSuccessor(PredCase, DestSucc);
721 MadeChange = true;
722 }
723
724 if (MadeChange)
725 return true;
726 }
727
728 return false;
729}
730
731
Chris Lattner69e067f2008-11-27 05:07:53 +0000732/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
733/// load instruction, eliminate it by replacing it with a PHI node. This is an
734/// important optimization that encourages jump threading, and needs to be run
735/// interlaced with other jump threading tasks.
736bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
737 // Don't hack volatile loads.
738 if (LI->isVolatile()) return false;
739
740 // If the load is defined in a block with exactly one predecessor, it can't be
741 // partially redundant.
742 BasicBlock *LoadBB = LI->getParent();
743 if (LoadBB->getSinglePredecessor())
744 return false;
745
746 Value *LoadedPtr = LI->getOperand(0);
747
748 // If the loaded operand is defined in the LoadBB, it can't be available.
749 // FIXME: Could do PHI translation, that would be fun :)
750 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
751 if (PtrOp->getParent() == LoadBB)
752 return false;
753
754 // Scan a few instructions up from the load, to see if it is obviously live at
755 // the entry to its block.
756 BasicBlock::iterator BBIt = LI;
757
Chris Lattner52c95852008-11-27 08:10:05 +0000758 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
759 BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000760 // If the value if the load is locally available within the block, just use
761 // it. This frequently occurs for reg2mem'd allocas.
762 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000763
764 // If the returned value is the load itself, replace with an undef. This can
765 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000766 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000767 LI->replaceAllUsesWith(AvailableVal);
768 LI->eraseFromParent();
769 return true;
770 }
771
772 // Otherwise, if we scanned the whole block and got to the top of the block,
773 // we know the block is locally transparent to the load. If not, something
774 // might clobber its value.
775 if (BBIt != LoadBB->begin())
776 return false;
777
778
779 SmallPtrSet<BasicBlock*, 8> PredsScanned;
780 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
781 AvailablePredsTy AvailablePreds;
782 BasicBlock *OneUnavailablePred = 0;
783
784 // If we got here, the loaded value is transparent through to the start of the
785 // block. Check to see if it is available in any of the predecessor blocks.
786 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
787 PI != PE; ++PI) {
788 BasicBlock *PredBB = *PI;
789
790 // If we already scanned this predecessor, skip it.
791 if (!PredsScanned.insert(PredBB))
792 continue;
793
794 // Scan the predecessor to see if the value is available in the pred.
795 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000796 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000797 if (!PredAvailable) {
798 OneUnavailablePred = PredBB;
799 continue;
800 }
801
802 // If so, this load is partially redundant. Remember this info so that we
803 // can create a PHI node.
804 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
805 }
806
807 // If the loaded value isn't available in any predecessor, it isn't partially
808 // redundant.
809 if (AvailablePreds.empty()) return false;
810
811 // Okay, the loaded value is available in at least one (and maybe all!)
812 // predecessors. If the value is unavailable in more than one unique
813 // predecessor, we want to insert a merge block for those common predecessors.
814 // This ensures that we only have to insert one reload, thus not increasing
815 // code size.
816 BasicBlock *UnavailablePred = 0;
817
818 // If there is exactly one predecessor where the value is unavailable, the
819 // already computed 'OneUnavailablePred' block is it. If it ends in an
820 // unconditional branch, we know that it isn't a critical edge.
821 if (PredsScanned.size() == AvailablePreds.size()+1 &&
822 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
823 UnavailablePred = OneUnavailablePred;
824 } else if (PredsScanned.size() != AvailablePreds.size()) {
825 // Otherwise, we had multiple unavailable predecessors or we had a critical
826 // edge from the one.
827 SmallVector<BasicBlock*, 8> PredsToSplit;
828 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
829
830 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
831 AvailablePredSet.insert(AvailablePreds[i].first);
832
833 // Add all the unavailable predecessors to the PredsToSplit list.
834 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
835 PI != PE; ++PI)
836 if (!AvailablePredSet.count(*PI))
837 PredsToSplit.push_back(*PI);
838
839 // Split them out to their own block.
840 UnavailablePred =
841 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
842 "thread-split", this);
843 }
844
845 // If the value isn't available in all predecessors, then there will be
846 // exactly one where it isn't available. Insert a load on that edge and add
847 // it to the AvailablePreds list.
848 if (UnavailablePred) {
849 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
850 "Can't handle critical edge here!");
851 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
852 UnavailablePred->getTerminator());
853 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
854 }
855
856 // Now we know that each predecessor of this block has a value in
857 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000858 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000859
860 // Create a PHI node at the start of the block for the PRE'd load value.
861 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
862 PN->takeName(LI);
863
864 // Insert new entries into the PHI for each predecessor. A single block may
865 // have multiple entries here.
866 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
867 ++PI) {
868 AvailablePredsTy::iterator I =
869 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
870 std::make_pair(*PI, (Value*)0));
871
872 assert(I != AvailablePreds.end() && I->first == *PI &&
873 "Didn't find entry for predecessor!");
874
875 PN->addIncoming(I->second, I->first);
876 }
877
878 //cerr << "PRE: " << *LI << *PN << "\n";
879
880 LI->replaceAllUsesWith(PN);
881 LI->eraseFromParent();
882
883 return true;
884}
885
Chris Lattner5729d382009-11-07 08:05:03 +0000886/// FindMostPopularDest - The specified list contains multiple possible
887/// threadable destinations. Pick the one that occurs the most frequently in
888/// the list.
889static BasicBlock *
890FindMostPopularDest(BasicBlock *BB,
891 const SmallVectorImpl<std::pair<BasicBlock*,
892 BasicBlock*> > &PredToDestList) {
893 assert(!PredToDestList.empty());
894
895 // Determine popularity. If there are multiple possible destinations, we
896 // explicitly choose to ignore 'undef' destinations. We prefer to thread
897 // blocks with known and real destinations to threading undef. We'll handle
898 // them later if interesting.
899 DenseMap<BasicBlock*, unsigned> DestPopularity;
900 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
901 if (PredToDestList[i].second)
902 DestPopularity[PredToDestList[i].second]++;
903
904 // Find the most popular dest.
905 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
906 BasicBlock *MostPopularDest = DPI->first;
907 unsigned Popularity = DPI->second;
908 SmallVector<BasicBlock*, 4> SamePopularity;
909
910 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
911 // If the popularity of this entry isn't higher than the popularity we've
912 // seen so far, ignore it.
913 if (DPI->second < Popularity)
914 ; // ignore.
915 else if (DPI->second == Popularity) {
916 // If it is the same as what we've seen so far, keep track of it.
917 SamePopularity.push_back(DPI->first);
918 } else {
919 // If it is more popular, remember it.
920 SamePopularity.clear();
921 MostPopularDest = DPI->first;
922 Popularity = DPI->second;
923 }
924 }
925
926 // Okay, now we know the most popular destination. If there is more than
927 // destination, we need to determine one. This is arbitrary, but we need
928 // to make a deterministic decision. Pick the first one that appears in the
929 // successor list.
930 if (!SamePopularity.empty()) {
931 SamePopularity.push_back(MostPopularDest);
932 TerminatorInst *TI = BB->getTerminator();
933 for (unsigned i = 0; ; ++i) {
934 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
935
936 if (std::find(SamePopularity.begin(), SamePopularity.end(),
937 TI->getSuccessor(i)) == SamePopularity.end())
938 continue;
939
940 MostPopularDest = TI->getSuccessor(i);
941 break;
942 }
943 }
944
945 // Okay, we have finally picked the most popular destination.
946 return MostPopularDest;
947}
948
949bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
950 BasicBlock *BB) {
951 // If threading this would thread across a loop header, don't even try to
952 // thread the edge.
953 if (LoopHeaders.count(BB))
954 return false;
955
Chris Lattner5729d382009-11-07 08:05:03 +0000956 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
957 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
958 return false;
959 assert(!PredValues.empty() &&
960 "ComputeValueKnownInPredecessors returned true with no values");
961
962 DEBUG(errs() << "IN BB: " << *BB;
963 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
964 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
965 if (PredValues[i].first)
966 errs() << *PredValues[i].first;
967 else
968 errs() << "UNDEF";
969 errs() << " for pred '" << PredValues[i].second->getName()
970 << "'.\n";
971 });
972
973 // Decide what we want to thread through. Convert our list of known values to
974 // a list of known destinations for each pred. This also discards duplicate
975 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000976 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +0000977 SmallPtrSet<BasicBlock*, 16> SeenPreds;
978 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
979
980 BasicBlock *OnlyDest = 0;
981 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
982
983 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
984 BasicBlock *Pred = PredValues[i].second;
985 if (!SeenPreds.insert(Pred))
986 continue; // Duplicate predecessor entry.
987
988 // If the predecessor ends with an indirect goto, we can't change its
989 // destination.
990 if (isa<IndirectBrInst>(Pred->getTerminator()))
991 continue;
992
993 ConstantInt *Val = PredValues[i].first;
994
995 BasicBlock *DestBB;
996 if (Val == 0) // Undef.
997 DestBB = 0;
998 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
999 DestBB = BI->getSuccessor(Val->isZero());
1000 else {
1001 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1002 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1003 }
1004
1005 // If we have exactly one destination, remember it for efficiency below.
1006 if (i == 0)
1007 OnlyDest = DestBB;
1008 else if (OnlyDest != DestBB)
1009 OnlyDest = MultipleDestSentinel;
1010
1011 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1012 }
1013
1014 // If all edges were unthreadable, we fail.
1015 if (PredToDestList.empty())
1016 return false;
1017
1018 // Determine which is the most common successor. If we have many inputs and
1019 // this block is a switch, we want to start by threading the batch that goes
1020 // to the most popular destination first. If we only know about one
1021 // threadable destination (the common case) we can avoid this.
1022 BasicBlock *MostPopularDest = OnlyDest;
1023
1024 if (MostPopularDest == MultipleDestSentinel)
1025 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1026
1027 // Now that we know what the most popular destination is, factor all
1028 // predecessors that will jump to it into a single predecessor.
1029 SmallVector<BasicBlock*, 16> PredsToFactor;
1030 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1031 if (PredToDestList[i].second == MostPopularDest) {
1032 BasicBlock *Pred = PredToDestList[i].first;
1033
1034 // This predecessor may be a switch or something else that has multiple
1035 // edges to the block. Factor each of these edges by listing them
1036 // according to # occurrences in PredsToFactor.
1037 TerminatorInst *PredTI = Pred->getTerminator();
1038 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1039 if (PredTI->getSuccessor(i) == BB)
1040 PredsToFactor.push_back(Pred);
1041 }
1042
1043 // If the threadable edges are branching on an undefined value, we get to pick
1044 // the destination that these predecessors should get to.
1045 if (MostPopularDest == 0)
1046 MostPopularDest = BB->getTerminator()->
1047 getSuccessor(GetBestDestForJumpOnUndef(BB));
1048
1049 // Ok, try to thread it!
1050 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1051}
Chris Lattner69e067f2008-11-27 05:07:53 +00001052
Chris Lattnere33583b2009-10-11 04:18:15 +00001053/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001054/// the current block. See if there are any simplifications we can do based on
1055/// inputs to the phi node.
1056///
1057bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001058 BasicBlock *BB = PN->getParent();
1059
Chris Lattner5729d382009-11-07 08:05:03 +00001060 // If any of the predecessor blocks end in an unconditional branch, we can
1061 // *duplicate* the jump into that block in order to further encourage jump
1062 // threading and to eliminate cases where we have branch on a phi of an icmp
1063 // (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001064
1065 // We don't want to do this tranformation for switches, because we don't
1066 // really want to duplicate a switch.
1067 if (isa<SwitchInst>(BB->getTerminator()))
1068 return false;
1069
1070 // Look for unconditional branch predecessors.
1071 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1072 BasicBlock *PredBB = PN->getIncomingBlock(i);
1073 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1074 if (PredBr->isUnconditional() &&
1075 // Try to duplicate BB into PredBB.
1076 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1077 return true;
1078 }
1079
Chris Lattner6b65f472009-10-11 04:40:21 +00001080 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001081}
1082
Chris Lattnera5ddb592008-04-22 21:40:39 +00001083
Chris Lattner78c552e2009-10-11 07:24:57 +00001084/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1085/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1086/// NewPred using the entries from OldPred (suitably mapped).
1087static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1088 BasicBlock *OldPred,
1089 BasicBlock *NewPred,
1090 DenseMap<Instruction*, Value*> &ValueMap) {
1091 for (BasicBlock::iterator PNI = PHIBB->begin();
1092 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1093 // Ok, we have a PHI node. Figure out what the incoming value was for the
1094 // DestBlock.
1095 Value *IV = PN->getIncomingValueForBlock(OldPred);
1096
1097 // Remap the value if necessary.
1098 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1099 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1100 if (I != ValueMap.end())
1101 IV = I->second;
1102 }
1103
1104 PN->addIncoming(IV, NewPred);
1105 }
1106}
Chris Lattner6bf77502008-04-22 07:05:46 +00001107
Chris Lattner5729d382009-11-07 08:05:03 +00001108/// ThreadEdge - We have decided that it is safe and profitable to factor the
1109/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1110/// across BB. Transform the IR to reflect this change.
1111bool JumpThreading::ThreadEdge(BasicBlock *BB,
1112 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001113 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001114 // If threading to the same block as we come from, we would infinite loop.
1115 if (SuccBB == BB) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001116 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1117 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001118 return false;
1119 }
1120
1121 // If threading this would thread across a loop header, don't thread the edge.
1122 // See the comments above FindLoopHeaders for justifications and caveats.
1123 if (LoopHeaders.count(BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +00001124 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001125 << "' to dest BB '" << SuccBB->getName()
1126 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001127 return false;
1128 }
1129
Chris Lattner78c552e2009-10-11 07:24:57 +00001130 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1131 if (JumpThreadCost > Threshold) {
1132 DEBUG(errs() << " Not threading BB '" << BB->getName()
1133 << "' - Cost is too high: " << JumpThreadCost << "\n");
1134 return false;
1135 }
1136
Chris Lattner5729d382009-11-07 08:05:03 +00001137 // And finally, do it! Start by factoring the predecessors is needed.
1138 BasicBlock *PredBB;
1139 if (PredBBs.size() == 1)
1140 PredBB = PredBBs[0];
1141 else {
1142 DEBUG(errs() << " Factoring out " << PredBBs.size()
1143 << " common predecessors.\n");
1144 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1145 ".thr_comm", this);
1146 }
1147
Mike Stumpfe095f32009-05-04 18:40:41 +00001148 // And finally, do it!
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001149 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001150 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001151 << ", across block:\n "
1152 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001153
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001154 // We are going to have to map operands from the original BB block to the new
1155 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1156 // account for entry from PredBB.
1157 DenseMap<Instruction*, Value*> ValueMapping;
1158
Owen Anderson1d0be152009-08-13 21:58:54 +00001159 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1160 BB->getName()+".thread",
1161 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001162 NewBB->moveAfter(PredBB);
1163
1164 BasicBlock::iterator BI = BB->begin();
1165 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1166 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1167
1168 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1169 // mapping and using it to remap operands in the cloned instructions.
1170 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001171 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001172 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001173 NewBB->getInstList().push_back(New);
1174 ValueMapping[BI] = New;
1175
1176 // Remap operands to patch up intra-block references.
1177 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001178 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1179 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1180 if (I != ValueMapping.end())
1181 New->setOperand(i, I->second);
1182 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001183 }
1184
1185 // We didn't copy the terminator from BB over to NewBB, because there is now
1186 // an unconditional jump to SuccBB. Insert the unconditional jump.
1187 BranchInst::Create(SuccBB, NewBB);
1188
1189 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1190 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001191 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001192
Chris Lattner433a0db2009-10-10 09:05:58 +00001193 // If there were values defined in BB that are used outside the block, then we
1194 // now have to update all uses of the value to use either the original value,
1195 // the cloned value, or some PHI derived value. This can require arbitrary
1196 // PHI insertion, of which we are prepared to do, clean these up now.
1197 SSAUpdater SSAUpdate;
1198 SmallVector<Use*, 16> UsesToRename;
1199 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1200 // Scan all uses of this instruction to see if it is used outside of its
1201 // block, and if so, record them in UsesToRename.
1202 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1203 ++UI) {
1204 Instruction *User = cast<Instruction>(*UI);
1205 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1206 if (UserPN->getIncomingBlock(UI) == BB)
1207 continue;
1208 } else if (User->getParent() == BB)
1209 continue;
1210
1211 UsesToRename.push_back(&UI.getUse());
1212 }
1213
1214 // If there are no uses outside the block, we're done with this instruction.
1215 if (UsesToRename.empty())
1216 continue;
1217
1218 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1219
1220 // We found a use of I outside of BB. Rename all uses of I that are outside
1221 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1222 // with the two values we know.
1223 SSAUpdate.Initialize(I);
1224 SSAUpdate.AddAvailableValue(BB, I);
1225 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1226
1227 while (!UsesToRename.empty())
1228 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1229 DEBUG(errs() << "\n");
1230 }
1231
1232
Chris Lattneref0c6742008-12-01 04:48:07 +00001233 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001234 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1235 // us to simplify any PHI nodes in BB.
1236 TerminatorInst *PredTerm = PredBB->getTerminator();
1237 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1238 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001239 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001240 PredTerm->setSuccessor(i, NewBB);
1241 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001242
1243 // At this point, the IR is fully up to date and consistent. Do a quick scan
1244 // over the new instructions and zap any that are constants or dead. This
1245 // frequently happens because of phi translation.
1246 BI = NewBB->begin();
1247 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1248 Instruction *Inst = BI++;
Chris Lattnerfddcf472009-11-10 01:57:31 +00001249
Chris Lattnere3453782009-11-10 01:08:51 +00001250 if (Value *V = SimplifyInstruction(Inst, TD)) {
Chris Lattnerfddcf472009-11-10 01:57:31 +00001251 WeakVH BIHandle(BI);
1252 ReplaceAndSimplifyAllUses(Inst, V, TD);
1253 if (BIHandle == 0)
1254 BI = NewBB->begin();
Chris Lattneref0c6742008-12-01 04:48:07 +00001255 continue;
1256 }
1257
1258 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1259 }
Mike Stumpfe095f32009-05-04 18:40:41 +00001260
1261 // Threaded an edge!
1262 ++NumThreads;
1263 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001264}
Chris Lattner78c552e2009-10-11 07:24:57 +00001265
1266/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1267/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1268/// If we can duplicate the contents of BB up into PredBB do so now, this
1269/// improves the odds that the branch will be on an analyzable instruction like
1270/// a compare.
1271bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1272 BasicBlock *PredBB) {
1273 // If BB is a loop header, then duplicating this block outside the loop would
1274 // cause us to transform this into an irreducible loop, don't do this.
1275 // See the comments above FindLoopHeaders for justifications and caveats.
1276 if (LoopHeaders.count(BB)) {
1277 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1278 << "' into predecessor block '" << PredBB->getName()
1279 << "' - it might create an irreducible loop!\n");
1280 return false;
1281 }
1282
1283 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1284 if (DuplicationCost > Threshold) {
1285 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1286 << "' - Cost is too high: " << DuplicationCost << "\n");
1287 return false;
1288 }
1289
1290 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1291 // of PredBB.
1292 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1293 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1294 << DuplicationCost << " block is:" << *BB << "\n");
1295
1296 // We are going to have to map operands from the original BB block into the
1297 // PredBB block. Evaluate PHI nodes in BB.
1298 DenseMap<Instruction*, Value*> ValueMapping;
1299
1300 BasicBlock::iterator BI = BB->begin();
1301 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1302 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1303
1304 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1305
1306 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1307 // mapping and using it to remap operands in the cloned instructions.
1308 for (; BI != BB->end(); ++BI) {
1309 Instruction *New = BI->clone();
1310 New->setName(BI->getName());
1311 PredBB->getInstList().insert(OldPredBranch, New);
1312 ValueMapping[BI] = New;
1313
1314 // Remap operands to patch up intra-block references.
1315 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1316 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1317 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1318 if (I != ValueMapping.end())
1319 New->setOperand(i, I->second);
1320 }
1321 }
1322
1323 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1324 // add entries to the PHI nodes for branch from PredBB now.
1325 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1326 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1327 ValueMapping);
1328 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1329 ValueMapping);
1330
1331 // If there were values defined in BB that are used outside the block, then we
1332 // now have to update all uses of the value to use either the original value,
1333 // the cloned value, or some PHI derived value. This can require arbitrary
1334 // PHI insertion, of which we are prepared to do, clean these up now.
1335 SSAUpdater SSAUpdate;
1336 SmallVector<Use*, 16> UsesToRename;
1337 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1338 // Scan all uses of this instruction to see if it is used outside of its
1339 // block, and if so, record them in UsesToRename.
1340 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1341 ++UI) {
1342 Instruction *User = cast<Instruction>(*UI);
1343 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1344 if (UserPN->getIncomingBlock(UI) == BB)
1345 continue;
1346 } else if (User->getParent() == BB)
1347 continue;
1348
1349 UsesToRename.push_back(&UI.getUse());
1350 }
1351
1352 // If there are no uses outside the block, we're done with this instruction.
1353 if (UsesToRename.empty())
1354 continue;
1355
1356 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1357
1358 // We found a use of I outside of BB. Rename all uses of I that are outside
1359 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1360 // with the two values we know.
1361 SSAUpdate.Initialize(I);
1362 SSAUpdate.AddAvailableValue(BB, I);
1363 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1364
1365 while (!UsesToRename.empty())
1366 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1367 DEBUG(errs() << "\n");
1368 }
1369
1370 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1371 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001372 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001373
1374 // Remove the unconditional branch at the end of the PredBB block.
1375 OldPredBranch->eraseFromParent();
1376
1377 ++NumDupes;
1378 return true;
1379}
1380
1381