blob: eac24c63451056b836e904ada34c03c161fccd6b [file] [log] [blame]
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
Duncan Sands82fdab32010-12-21 14:00:22 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chris Lattnerd12c27c2010-01-05 06:09:35 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Chris Lattner1add46d2011-05-22 18:18:41 +000022
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero. If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27 // If V has multiple uses, then we would have to do more analysis to determine
28 // if this is safe. For example, the use could be in dynamically unreached
29 // code.
30 if (!V->hasOneUse()) return 0;
Jim Grosbach03fceff2013-04-05 21:20:12 +000031
Chris Lattner613f1a32011-05-23 00:32:19 +000032 bool MadeChange = false;
33
Chris Lattner1add46d2011-05-22 18:18:41 +000034 // ((1 << A) >>u B) --> (1 << (A-B))
35 // Because V cannot be zero, we know that B is less than A.
Chris Lattner6083bb92011-05-23 00:09:55 +000036 Value *A = 0, *B = 0, *PowerOf2 = 0;
37 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
Chris Lattner1add46d2011-05-22 18:18:41 +000038 m_Value(B))) &&
39 // The "1" can be any value known to be a power of 2.
Rafael Espindoladbaa2372012-12-13 03:37:24 +000040 isKnownToBeAPowerOfTwo(PowerOf2)) {
Benjamin Kramera9390a42011-09-27 20:39:19 +000041 A = IC.Builder->CreateSub(A, B);
Chris Lattner6083bb92011-05-23 00:09:55 +000042 return IC.Builder->CreateShl(PowerOf2, A);
Chris Lattner1add46d2011-05-22 18:18:41 +000043 }
Jim Grosbach03fceff2013-04-05 21:20:12 +000044
Chris Lattner613f1a32011-05-23 00:32:19 +000045 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46 // inexact. Similarly for <<.
47 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
Rafael Espindoladbaa2372012-12-13 03:37:24 +000048 if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
Chris Lattner613f1a32011-05-23 00:32:19 +000049 // We know that this is an exact/nuw shift and that the input is a
50 // non-zero context as well.
51 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
52 I->setOperand(0, V2);
53 MadeChange = true;
54 }
Jim Grosbach03fceff2013-04-05 21:20:12 +000055
Chris Lattner613f1a32011-05-23 00:32:19 +000056 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
57 I->setIsExact();
58 MadeChange = true;
59 }
Jim Grosbach03fceff2013-04-05 21:20:12 +000060
Chris Lattner613f1a32011-05-23 00:32:19 +000061 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
62 I->setHasNoUnsignedWrap();
63 MadeChange = true;
64 }
65 }
66
Chris Lattner6c9b8d32011-05-22 18:26:48 +000067 // TODO: Lots more we could do here:
Chris Lattner6c9b8d32011-05-22 18:26:48 +000068 // If V is a phi node, we can call this on each of its operands.
69 // "select cond, X, 0" can simplify to "X".
Jim Grosbach03fceff2013-04-05 21:20:12 +000070
Chris Lattner613f1a32011-05-23 00:32:19 +000071 return MadeChange ? V : 0;
Chris Lattner1add46d2011-05-22 18:18:41 +000072}
73
74
Chris Lattnerd12c27c2010-01-05 06:09:35 +000075/// MultiplyOverflows - True if the multiply can not be expressed in an int
76/// this size.
77static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
78 uint32_t W = C1->getBitWidth();
79 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
80 if (sign) {
Jay Foad40f8f622010-12-07 08:25:19 +000081 LHSExt = LHSExt.sext(W * 2);
82 RHSExt = RHSExt.sext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000083 } else {
Jay Foad40f8f622010-12-07 08:25:19 +000084 LHSExt = LHSExt.zext(W * 2);
85 RHSExt = RHSExt.zext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000086 }
Jim Grosbach03fceff2013-04-05 21:20:12 +000087
Chris Lattnerd12c27c2010-01-05 06:09:35 +000088 APInt MulExt = LHSExt * RHSExt;
Jim Grosbach03fceff2013-04-05 21:20:12 +000089
Chris Lattnerd12c27c2010-01-05 06:09:35 +000090 if (!sign)
91 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
Jim Grosbach03fceff2013-04-05 21:20:12 +000092
Chris Lattnerd12c27c2010-01-05 06:09:35 +000093 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
94 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
95 return MulExt.slt(Min) || MulExt.sgt(Max);
96}
97
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +000098/// \brief A helper routine of InstCombiner::visitMul().
99///
100/// If C is a vector of known powers of 2, then this function returns
101/// a new vector obtained from C replacing each element with its logBase2.
102/// Return a null pointer otherwise.
103static Constant *getLogBase2Vector(ConstantDataVector *CV) {
104 const APInt *IVal;
105 SmallVector<Constant *, 4> Elts;
106
107 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
108 Constant *Elt = CV->getElementAsConstant(I);
109 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
110 return 0;
111 Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
112 }
113
114 return ConstantVector::get(Elts);
115}
116
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000117Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000118 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000119 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
120
Duncan Sands82fdab32010-12-21 14:00:22 +0000121 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
122 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000123
Duncan Sands37bf92b2010-12-22 13:36:08 +0000124 if (Value *V = SimplifyUsingDistributiveLaws(I))
125 return ReplaceInstUsesWith(I, V);
126
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000127 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
128 return BinaryOperator::CreateNeg(Op0, I.getName());
Jim Grosbach03fceff2013-04-05 21:20:12 +0000129
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000130 // Also allow combining multiply instructions on vectors.
131 {
132 Value *NewOp;
133 Constant *C1, *C2;
134 const APInt *IVal;
135 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
136 m_Constant(C1))) &&
137 match(C1, m_APInt(IVal)))
138 // ((X << C1)*C2) == (X * (C2 << C1))
139 return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2));
Jim Grosbach03fceff2013-04-05 21:20:12 +0000140
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000141 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
142 Constant *NewCst = 0;
143 if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
144 // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
145 NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
146 else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
147 // Replace X*(2^C) with X << C, where C is a vector of known
148 // constant powers of 2.
149 NewCst = getLogBase2Vector(CV);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000150
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000151 if (NewCst) {
152 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
153 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
154 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
155 return Shl;
156 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000157 }
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000158 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000159
Rafael Espindola4f3d7ee2013-05-31 14:27:15 +0000160 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000161 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
162 { Value *X; ConstantInt *C1;
163 if (Op0->hasOneUse() &&
164 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramera9390a42011-09-27 20:39:19 +0000165 Value *Add = Builder->CreateMul(X, CI);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000166 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000167 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000168 }
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000169
Stuart Hastingsf1002822011-06-01 16:42:47 +0000170 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
171 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
172 // The "* (2**n)" thus becomes a potential shifting opportunity.
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000173 {
174 const APInt & Val = CI->getValue();
175 const APInt &PosVal = Val.abs();
176 if (Val.isNegative() && PosVal.isPowerOf2()) {
Stuart Hastingsf1002822011-06-01 16:42:47 +0000177 Value *X = 0, *Y = 0;
178 if (Op0->hasOneUse()) {
179 ConstantInt *C1;
180 Value *Sub = 0;
181 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
182 Sub = Builder->CreateSub(X, Y, "suba");
183 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
184 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
185 if (Sub)
186 return
187 BinaryOperator::CreateMul(Sub,
188 ConstantInt::get(Y->getType(), PosVal));
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000189 }
190 }
191 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000192 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000193
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000194 // Simplify mul instructions with a constant RHS.
Jim Grosbach03fceff2013-04-05 21:20:12 +0000195 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000196 // Try to fold constant mul into select arguments.
197 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
198 if (Instruction *R = FoldOpIntoSelect(I, SI))
199 return R;
200
201 if (isa<PHINode>(Op0))
202 if (Instruction *NV = FoldOpIntoPhi(I))
203 return NV;
204 }
205
206 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
207 if (Value *Op1v = dyn_castNegVal(Op1))
208 return BinaryOperator::CreateMul(Op0v, Op1v);
209
210 // (X / Y) * Y = X - (X % Y)
211 // (X / Y) * -Y = (X % Y) - X
212 {
213 Value *Op1C = Op1;
214 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
215 if (!BO ||
Jim Grosbach03fceff2013-04-05 21:20:12 +0000216 (BO->getOpcode() != Instruction::UDiv &&
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000217 BO->getOpcode() != Instruction::SDiv)) {
218 Op1C = Op0;
219 BO = dyn_cast<BinaryOperator>(Op1);
220 }
221 Value *Neg = dyn_castNegVal(Op1C);
222 if (BO && BO->hasOneUse() &&
223 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
224 (BO->getOpcode() == Instruction::UDiv ||
225 BO->getOpcode() == Instruction::SDiv)) {
226 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
227
Chris Lattner35bda892011-02-06 21:44:57 +0000228 // If the division is exact, X % Y is zero, so we end up with X or -X.
229 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000230 if (SDiv->isExact()) {
231 if (Op1BO == Op1C)
232 return ReplaceInstUsesWith(I, Op0BO);
233 return BinaryOperator::CreateNeg(Op0BO);
234 }
235
236 Value *Rem;
237 if (BO->getOpcode() == Instruction::UDiv)
238 Rem = Builder->CreateURem(Op0BO, Op1BO);
239 else
240 Rem = Builder->CreateSRem(Op0BO, Op1BO);
241 Rem->takeName(BO);
242
243 if (Op1BO == Op1C)
244 return BinaryOperator::CreateSub(Op0BO, Rem);
245 return BinaryOperator::CreateSub(Rem, Op0BO);
246 }
247 }
248
249 /// i1 mul -> i1 and.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000250 if (I.getType()->isIntegerTy(1))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000251 return BinaryOperator::CreateAnd(Op0, Op1);
252
253 // X*(1 << Y) --> X << Y
254 // (1 << Y)*X --> X << Y
255 {
256 Value *Y;
257 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
258 return BinaryOperator::CreateShl(Op1, Y);
259 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
260 return BinaryOperator::CreateShl(Op0, Y);
261 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000262
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000263 // If one of the operands of the multiply is a cast from a boolean value, then
264 // we know the bool is either zero or one, so this is a 'masking' multiply.
265 // X * Y (where Y is 0 or 1) -> X & (0-Y)
Duncan Sands1df98592010-02-16 11:11:14 +0000266 if (!I.getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000267 // -2 is "-1 << 1" so it is all bits set except the low one.
268 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000269
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000270 Value *BoolCast = 0, *OtherOp = 0;
271 if (MaskedValueIsZero(Op0, Negative2))
272 BoolCast = Op0, OtherOp = Op1;
273 else if (MaskedValueIsZero(Op1, Negative2))
274 BoolCast = Op1, OtherOp = Op0;
275
276 if (BoolCast) {
277 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
Benjamin Kramera9390a42011-09-27 20:39:19 +0000278 BoolCast);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000279 return BinaryOperator::CreateAnd(V, OtherOp);
280 }
281 }
282
283 return Changed ? &I : 0;
284}
285
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000286//
287// Detect pattern:
288//
289// log2(Y*0.5)
290//
291// And check for corresponding fast math flags
292//
293
294static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
Pedro Artigasef2ef3e2012-11-30 22:47:15 +0000295
296 if (!Op->hasOneUse())
297 return;
298
299 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
300 if (!II)
301 return;
302 if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
303 return;
304 Log2 = II;
305
306 Value *OpLog2Of = II->getArgOperand(0);
307 if (!OpLog2Of->hasOneUse())
308 return;
309
310 Instruction *I = dyn_cast<Instruction>(OpLog2Of);
311 if (!I)
312 return;
313 if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
314 return;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000315
Pedro Artigasef2ef3e2012-11-30 22:47:15 +0000316 ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
317 if (CFP && CFP->isExactlyValue(0.5)) {
318 Y = I->getOperand(1);
319 return;
320 }
321 CFP = dyn_cast<ConstantFP>(I->getOperand(1));
322 if (CFP && CFP->isExactlyValue(0.5))
323 Y = I->getOperand(0);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000324}
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000325
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000326/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
327/// true iff the given value is FMul or FDiv with one and only one operand
328/// being a normal constant (i.e. not Zero/NaN/Infinity).
329static bool isFMulOrFDivWithConstant(Value *V) {
330 Instruction *I = dyn_cast<Instruction>(V);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000331 if (!I || (I->getOpcode() != Instruction::FMul &&
Shuxin Yangf2797312013-01-07 22:41:28 +0000332 I->getOpcode() != Instruction::FDiv))
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000333 return false;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000334
335 ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
336 ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
337
338 if (C0 && C1)
339 return false;
340
Michael Gottesman07969dc2013-06-19 21:23:18 +0000341 return (C0 && C0->getValueAPF().isFiniteNonZero()) ||
342 (C1 && C1->getValueAPF().isFiniteNonZero());
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000343}
344
345static bool isNormalFp(const ConstantFP *C) {
346 const APFloat &Flt = C->getValueAPF();
Michael Gottesmanc3cfe532013-06-26 23:17:31 +0000347 return Flt.isNormal();
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000348}
349
350/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
351/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
352/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
Jim Grosbach03fceff2013-04-05 21:20:12 +0000353/// This function is to simplify "FMulOrDiv * C" and returns the
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000354/// resulting expression. Note that this function could return NULL in
355/// case the constants cannot be folded into a normal floating-point.
Jim Grosbach03fceff2013-04-05 21:20:12 +0000356///
Shuxin Yangf2797312013-01-07 22:41:28 +0000357Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C,
358 Instruction *InsertBefore) {
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000359 assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
360
361 Value *Opnd0 = FMulOrDiv->getOperand(0);
362 Value *Opnd1 = FMulOrDiv->getOperand(1);
363
364 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
365 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
366
367 BinaryOperator *R = 0;
368
369 // (X * C0) * C => X * (C0*C)
370 if (FMulOrDiv->getOpcode() == Instruction::FMul) {
371 Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
372 if (isNormalFp(cast<ConstantFP>(F)))
373 R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
374 } else {
375 if (C0) {
376 // (C0 / X) * C => (C0 * C) / X
377 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
378 if (isNormalFp(F))
379 R = BinaryOperator::CreateFDiv(F, Opnd1);
380 } else {
381 // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
382 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
383 if (isNormalFp(F)) {
384 R = BinaryOperator::CreateFMul(Opnd0, F);
385 } else {
Jim Grosbach03fceff2013-04-05 21:20:12 +0000386 // (X / C1) * C => X / (C1/C)
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000387 Constant *F = ConstantExpr::getFDiv(C1, C);
388 if (isNormalFp(cast<ConstantFP>(F)))
389 R = BinaryOperator::CreateFDiv(Opnd0, F);
390 }
391 }
392 }
393
394 if (R) {
395 R->setHasUnsafeAlgebra(true);
396 InsertNewInstWith(R, *InsertBefore);
397 }
398
399 return R;
400}
401
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000402Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000403 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000404 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
405
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000406 if (isa<Constant>(Op0))
407 std::swap(Op0, Op1);
408
Michael Ilsemanc244f382012-12-12 00:28:32 +0000409 if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
410 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000411
Shuxin Yanga1444212013-01-15 21:09:32 +0000412 bool AllowReassociate = I.hasUnsafeAlgebra();
413
Michael Ilsemanc244f382012-12-12 00:28:32 +0000414 // Simplify mul instructions with a constant RHS.
415 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000416 // Try to fold constant mul into select arguments.
417 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
418 if (Instruction *R = FoldOpIntoSelect(I, SI))
419 return R;
420
421 if (isa<PHINode>(Op0))
422 if (Instruction *NV = FoldOpIntoPhi(I))
423 return NV;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000424
425 ConstantFP *C = dyn_cast<ConstantFP>(Op1);
Michael Gottesman07969dc2013-06-19 21:23:18 +0000426 if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) {
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000427 // Let MDC denote an expression in one of these forms:
428 // X * C, C/X, X/C, where C is a constant.
429 //
430 // Try to simplify "MDC * Constant"
431 if (isFMulOrFDivWithConstant(Op0)) {
432 Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
433 if (V)
434 return ReplaceInstUsesWith(I, V);
435 }
436
Quentin Colombetc5a4c252013-02-28 21:12:40 +0000437 // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000438 Instruction *FAddSub = dyn_cast<Instruction>(Op0);
439 if (FAddSub &&
440 (FAddSub->getOpcode() == Instruction::FAdd ||
441 FAddSub->getOpcode() == Instruction::FSub)) {
442 Value *Opnd0 = FAddSub->getOperand(0);
443 Value *Opnd1 = FAddSub->getOperand(1);
444 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
445 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
446 bool Swap = false;
447 if (C0) {
Shuxin Yangf2797312013-01-07 22:41:28 +0000448 std::swap(C0, C1);
449 std::swap(Opnd0, Opnd1);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000450 Swap = true;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000451 }
452
Michael Gottesman07969dc2013-06-19 21:23:18 +0000453 if (C1 && C1->getValueAPF().isFiniteNonZero() &&
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000454 isFMulOrFDivWithConstant(Opnd0)) {
Quentin Colombetc5a4c252013-02-28 21:12:40 +0000455 Value *M1 = ConstantExpr::getFMul(C1, C);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000456 Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ?
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000457 foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
458 0;
459 if (M0 && M1) {
460 if (Swap && FAddSub->getOpcode() == Instruction::FSub)
461 std::swap(M0, M1);
462
463 Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
464 BinaryOperator::CreateFAdd(M0, M1) :
465 BinaryOperator::CreateFSub(M0, M1);
466 Instruction *RI = cast<Instruction>(R);
Shuxin Yanga1444212013-01-15 21:09:32 +0000467 RI->copyFastMathFlags(&I);
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000468 return RI;
469 }
470 }
471 }
472 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000473 }
474
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000475
Pedro Artigas84030dc2012-11-30 19:09:41 +0000476 // Under unsafe algebra do:
477 // X * log2(0.5*Y) = X*log2(Y) - X
478 if (I.hasUnsafeAlgebra()) {
479 Value *OpX = NULL;
480 Value *OpY = NULL;
481 IntrinsicInst *Log2;
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000482 detectLog2OfHalf(Op0, OpY, Log2);
483 if (OpY) {
484 OpX = Op1;
485 } else {
486 detectLog2OfHalf(Op1, OpY, Log2);
487 if (OpY) {
488 OpX = Op0;
Pedro Artigas84030dc2012-11-30 19:09:41 +0000489 }
490 }
491 // if pattern detected emit alternate sequence
492 if (OpX && OpY) {
493 Log2->setArgOperand(0, OpY);
494 Value *FMulVal = Builder->CreateFMul(OpX, Log2);
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000495 Instruction *FMul = cast<Instruction>(FMulVal);
Pedro Artigas84030dc2012-11-30 19:09:41 +0000496 FMul->copyFastMathFlags(Log2);
497 Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
498 FSub->copyFastMathFlags(Log2);
499 return FSub;
500 }
501 }
502
Shuxin Yanga1444212013-01-15 21:09:32 +0000503 // Handle symmetric situation in a 2-iteration loop
504 Value *Opnd0 = Op0;
505 Value *Opnd1 = Op1;
506 for (int i = 0; i < 2; i++) {
507 bool IgnoreZeroSign = I.hasNoSignedZeros();
508 if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
509 Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
510 Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000511
Shuxin Yanga1444212013-01-15 21:09:32 +0000512 // -X * -Y => X*Y
513 if (N1)
514 return BinaryOperator::CreateFMul(N0, N1);
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000515
Shuxin Yanga1444212013-01-15 21:09:32 +0000516 if (Opnd0->hasOneUse()) {
517 // -X * Y => -(X*Y) (Promote negation as high as possible)
518 Value *T = Builder->CreateFMul(N0, Opnd1);
519 cast<Instruction>(T)->setDebugLoc(I.getDebugLoc());
520 Instruction *Neg = BinaryOperator::CreateFNeg(T);
521 if (I.getFastMathFlags().any()) {
522 cast<Instruction>(T)->copyFastMathFlags(&I);
523 Neg->copyFastMathFlags(&I);
524 }
525 return Neg;
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000526 }
527 }
Shuxin Yanga1444212013-01-15 21:09:32 +0000528
529 // (X*Y) * X => (X*X) * Y where Y != X
Jim Grosbach03fceff2013-04-05 21:20:12 +0000530 // The purpose is two-fold:
Shuxin Yanga1444212013-01-15 21:09:32 +0000531 // 1) to form a power expression (of X).
532 // 2) potentially shorten the critical path: After transformation, the
533 // latency of the instruction Y is amortized by the expression of X*X,
534 // and therefore Y is in a "less critical" position compared to what it
535 // was before the transformation.
536 //
537 if (AllowReassociate) {
538 Value *Opnd0_0, *Opnd0_1;
539 if (Opnd0->hasOneUse() &&
540 match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
541 Value *Y = 0;
542 if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
543 Y = Opnd0_1;
544 else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
545 Y = Opnd0_0;
546
547 if (Y) {
548 Instruction *T = cast<Instruction>(Builder->CreateFMul(Opnd1, Opnd1));
549 T->copyFastMathFlags(&I);
550 T->setDebugLoc(I.getDebugLoc());
551
552 Instruction *R = BinaryOperator::CreateFMul(T, Y);
553 R->copyFastMathFlags(&I);
554 return R;
555 }
556 }
557 }
558
559 if (!isa<Constant>(Op1))
560 std::swap(Opnd0, Opnd1);
561 else
562 break;
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000563 }
564
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000565 return Changed ? &I : 0;
566}
567
568/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
569/// instruction.
570bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
571 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
Jim Grosbach03fceff2013-04-05 21:20:12 +0000572
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000573 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
574 int NonNullOperand = -1;
575 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
576 if (ST->isNullValue())
577 NonNullOperand = 2;
578 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
579 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
580 if (ST->isNullValue())
581 NonNullOperand = 1;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000582
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000583 if (NonNullOperand == -1)
584 return false;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000585
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000586 Value *SelectCond = SI->getOperand(0);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000587
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000588 // Change the div/rem to use 'Y' instead of the select.
589 I.setOperand(1, SI->getOperand(NonNullOperand));
Jim Grosbach03fceff2013-04-05 21:20:12 +0000590
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000591 // Okay, we know we replace the operand of the div/rem with 'Y' with no
592 // problem. However, the select, or the condition of the select may have
593 // multiple uses. Based on our knowledge that the operand must be non-zero,
594 // propagate the known value for the select into other uses of it, and
595 // propagate a known value of the condition into its other users.
Jim Grosbach03fceff2013-04-05 21:20:12 +0000596
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000597 // If the select and condition only have a single use, don't bother with this,
598 // early exit.
599 if (SI->use_empty() && SelectCond->hasOneUse())
600 return true;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000601
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000602 // Scan the current block backward, looking for other uses of SI.
603 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
Jim Grosbach03fceff2013-04-05 21:20:12 +0000604
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000605 while (BBI != BBFront) {
606 --BBI;
607 // If we found a call to a function, we can't assume it will return, so
608 // information from below it cannot be propagated above it.
609 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
610 break;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000611
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000612 // Replace uses of the select or its condition with the known values.
613 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
614 I != E; ++I) {
615 if (*I == SI) {
616 *I = SI->getOperand(NonNullOperand);
617 Worklist.Add(BBI);
618 } else if (*I == SelectCond) {
Jakub Staszak6a72c842013-06-06 23:34:59 +0000619 *I = Builder->getInt1(NonNullOperand == 1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000620 Worklist.Add(BBI);
621 }
622 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000623
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000624 // If we past the instruction, quit looking for it.
625 if (&*BBI == SI)
626 SI = 0;
627 if (&*BBI == SelectCond)
628 SelectCond = 0;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000629
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000630 // If we ran out of things to eliminate, break out of the loop.
631 if (SelectCond == 0 && SI == 0)
632 break;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000633
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000634 }
635 return true;
636}
637
638
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000639/// This function implements the transforms common to both integer division
640/// instructions (udiv and sdiv). It is called by the visitors to those integer
641/// division instructions.
642/// @brief Common integer divide transforms
643Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
644 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
645
Chris Lattner1add46d2011-05-22 18:18:41 +0000646 // The RHS is known non-zero.
647 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
648 I.setOperand(1, V);
649 return &I;
650 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000651
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000652 // Handle cases involving: [su]div X, (select Cond, Y, Z)
653 // This does not apply for fdiv.
654 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
655 return &I;
656
657 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000658 // (X / C1) / C2 -> X / (C1*C2)
659 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
660 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
661 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
662 if (MultiplyOverflows(RHS, LHSRHS,
663 I.getOpcode()==Instruction::SDiv))
664 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000665 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
666 ConstantExpr::getMul(RHS, LHSRHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000667 }
668
669 if (!RHS->isZero()) { // avoid X udiv 0
670 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
671 if (Instruction *R = FoldOpIntoSelect(I, SI))
672 return R;
673 if (isa<PHINode>(Op0))
674 if (Instruction *NV = FoldOpIntoPhi(I))
675 return NV;
676 }
677 }
678
Benjamin Kramer23b02cd2011-04-30 18:16:00 +0000679 // See if we can fold away this div instruction.
680 if (SimplifyDemandedInstructionBits(I))
681 return &I;
682
Duncan Sands593faa52011-01-28 16:51:11 +0000683 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
684 Value *X = 0, *Z = 0;
685 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
686 bool isSigned = I.getOpcode() == Instruction::SDiv;
687 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
688 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
689 return BinaryOperator::Create(I.getOpcode(), X, Op1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000690 }
691
692 return 0;
693}
694
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000695/// dyn_castZExtVal - Checks if V is a zext or constant that can
696/// be truncated to Ty without losing bits.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000697static Value *dyn_castZExtVal(Value *V, Type *Ty) {
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000698 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
699 if (Z->getSrcTy() == Ty)
700 return Z->getOperand(0);
701 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
702 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
703 return ConstantExpr::getTrunc(C, Ty);
704 }
705 return 0;
706}
707
David Majnemere7006bb2013-07-04 21:17:49 +0000708namespace {
709const unsigned MaxDepth = 6;
710typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
711 const BinaryOperator &I,
712 InstCombiner &IC);
713
714/// \brief Used to maintain state for visitUDivOperand().
715struct UDivFoldAction {
716 FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
717 ///< operand. This can be zero if this action
718 ///< joins two actions together.
719
720 Value *OperandToFold; ///< Which operand to fold.
721 union {
722 Instruction *FoldResult; ///< The instruction returned when FoldAction is
723 ///< invoked.
724
725 size_t SelectLHSIdx; ///< Stores the LHS action index if this action
726 ///< joins two actions together.
727 };
728
729 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
730 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(0) {}
731 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
732 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
733};
734}
735
736// X udiv 2^C -> X >> C
737static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
738 const BinaryOperator &I, InstCombiner &IC) {
739 const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
740 BinaryOperator *LShr = BinaryOperator::CreateLShr(
741 Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
742 if (I.isExact()) LShr->setIsExact();
743 return LShr;
744}
745
746// X udiv C, where C >= signbit
747static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
748 const BinaryOperator &I, InstCombiner &IC) {
749 Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
750
751 return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
752 ConstantInt::get(I.getType(), 1));
753}
754
755// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
756static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
757 InstCombiner &IC) {
758 Instruction *ShiftLeft = cast<Instruction>(Op1);
759 if (isa<ZExtInst>(ShiftLeft))
760 ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
761
762 const APInt &CI =
763 cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
764 Value *N = ShiftLeft->getOperand(1);
765 if (CI != 1)
766 N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
767 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
768 N = IC.Builder->CreateZExt(N, Z->getDestTy());
769 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
770 if (I.isExact()) LShr->setIsExact();
771 return LShr;
772}
773
774// \brief Recursively visits the possible right hand operands of a udiv
775// instruction, seeing through select instructions, to determine if we can
776// replace the udiv with something simpler. If we find that an operand is not
777// able to simplify the udiv, we abort the entire transformation.
778static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
779 SmallVectorImpl<UDivFoldAction> &Actions,
780 unsigned Depth = 0) {
781 // Check to see if this is an unsigned division with an exact power of 2,
782 // if so, convert to a right shift.
783 if (match(Op1, m_Power2())) {
784 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
785 return Actions.size();
786 }
787
788 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
789 // X udiv C, where C >= signbit
790 if (C->getValue().isNegative()) {
791 Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
792 return Actions.size();
793 }
794
795 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
796 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
797 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
798 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
799 return Actions.size();
800 }
801
802 // The remaining tests are all recursive, so bail out if we hit the limit.
803 if (Depth++ == MaxDepth)
804 return 0;
805
806 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
807 if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions))
808 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) {
809 Actions.push_back(UDivFoldAction((FoldUDivOperandCb)0, Op1, LHSIdx-1));
810 return Actions.size();
811 }
812
813 return 0;
814}
815
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000816Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
817 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
818
Duncan Sands593faa52011-01-28 16:51:11 +0000819 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
820 return ReplaceInstUsesWith(I, V);
821
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000822 // Handle the integer div common cases
823 if (Instruction *Common = commonIDivTransforms(I))
824 return Common;
Jim Grosbach03fceff2013-04-05 21:20:12 +0000825
Benjamin Kramerc81fe9c2012-08-30 15:07:40 +0000826 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
Nadav Rotema694e2a2012-08-28 12:23:22 +0000827 if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
Benjamin Krameraac7c652012-08-28 13:08:13 +0000828 Value *X;
829 ConstantInt *C1;
830 if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramer37dca632012-08-28 13:59:23 +0000831 APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
Benjamin Krameraac7c652012-08-28 13:08:13 +0000832 return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
Nadav Rotem9753f0b2012-08-28 10:01:43 +0000833 }
834 }
835
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000836 // (zext A) udiv (zext B) --> zext (A udiv B)
837 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
838 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
839 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
840 I.isExact()),
841 I.getType());
842
David Majnemere7006bb2013-07-04 21:17:49 +0000843 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
844 SmallVector<UDivFoldAction, 6> UDivActions;
845 if (visitUDivOperand(Op0, Op1, I, UDivActions))
846 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
847 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
848 Value *ActionOp1 = UDivActions[i].OperandToFold;
849 Instruction *Inst;
850 if (Action)
851 Inst = Action(Op0, ActionOp1, I, *this);
852 else {
853 // This action joins two actions together. The RHS of this action is
854 // simply the last action we processed, we saved the LHS action index in
855 // the joining action.
856 size_t SelectRHSIdx = i - 1;
857 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
858 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
859 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
860 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
861 SelectLHS, SelectRHS);
862 }
863
864 // If this is the last action to process, return it to the InstCombiner.
865 // Otherwise, we insert it before the UDiv and record it so that we may
866 // use it as part of a joining action (i.e., a SelectInst).
867 if (e - i != 1) {
868 Inst->insertBefore(&I);
869 UDivActions[i].FoldResult = Inst;
870 } else
871 return Inst;
872 }
873
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000874 return 0;
875}
876
877Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
878 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
879
Duncan Sands593faa52011-01-28 16:51:11 +0000880 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
881 return ReplaceInstUsesWith(I, V);
882
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000883 // Handle the integer div common cases
884 if (Instruction *Common = commonIDivTransforms(I))
885 return Common;
886
887 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
888 // sdiv X, -1 == -X
889 if (RHS->isAllOnesValue())
890 return BinaryOperator::CreateNeg(Op0);
891
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000892 // sdiv X, C --> ashr exact X, log2(C)
893 if (I.isExact() && RHS->getValue().isNonNegative() &&
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000894 RHS->getValue().isPowerOf2()) {
895 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
896 RHS->getValue().exactLogBase2());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000897 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000898 }
899
900 // -X/C --> X/-C provided the negation doesn't overflow.
901 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000902 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000903 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
904 ConstantExpr::getNeg(RHS));
905 }
906
907 // If the sign bits of both operands are zero (i.e. we can prove they are
908 // unsigned inputs), turn this into a udiv.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000909 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000910 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
911 if (MaskedValueIsZero(Op0, Mask)) {
912 if (MaskedValueIsZero(Op1, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000913 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000914 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
915 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000916
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000917 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000918 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
919 // Safe because the only negative value (1 << Y) can take on is
920 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
921 // the sign bit set.
922 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
923 }
924 }
925 }
Jim Grosbach03fceff2013-04-05 21:20:12 +0000926
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000927 return 0;
928}
929
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000930/// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
931/// FP value and:
Jim Grosbach03fceff2013-04-05 21:20:12 +0000932/// 1) 1/C is exact, or
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000933/// 2) reciprocal is allowed.
Sylvestre Ledruda2ed452013-05-14 23:36:24 +0000934/// If the conversion was successful, the simplified expression "X * 1/C" is
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000935/// returned; otherwise, NULL is returned.
936///
937static Instruction *CvtFDivConstToReciprocal(Value *Dividend,
938 ConstantFP *Divisor,
939 bool AllowReciprocal) {
940 const APFloat &FpVal = Divisor->getValueAPF();
941 APFloat Reciprocal(FpVal.getSemantics());
942 bool Cvt = FpVal.getExactInverse(&Reciprocal);
Jim Grosbach03fceff2013-04-05 21:20:12 +0000943
Michael Gottesman07969dc2013-06-19 21:23:18 +0000944 if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000945 Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
946 (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
947 Cvt = !Reciprocal.isDenormal();
948 }
949
950 if (!Cvt)
951 return 0;
952
953 ConstantFP *R;
954 R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
955 return BinaryOperator::CreateFMul(Dividend, R);
956}
957
Frits van Bommel31726c12011-01-29 17:50:27 +0000958Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
959 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
960
961 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
962 return ReplaceInstUsesWith(I, V);
963
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000964 bool AllowReassociate = I.hasUnsafeAlgebra();
965 bool AllowReciprocal = I.hasAllowReciprocal();
Benjamin Kramer54673962011-03-30 15:42:35 +0000966
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000967 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
968 if (AllowReassociate) {
969 ConstantFP *C1 = 0;
970 ConstantFP *C2 = Op1C;
971 Value *X;
972 Instruction *Res = 0;
973
974 if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) {
975 // (X*C1)/C2 => X * (C1/C2)
976 //
977 Constant *C = ConstantExpr::getFDiv(C1, C2);
978 const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
Michael Gottesmanc3cfe532013-06-26 23:17:31 +0000979 if (F.isNormal())
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000980 Res = BinaryOperator::CreateFMul(X, C);
981 } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) {
982 // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
983 //
984 Constant *C = ConstantExpr::getFMul(C1, C2);
985 const APFloat &F = cast<ConstantFP>(C)->getValueAPF();
Michael Gottesmanc3cfe532013-06-26 23:17:31 +0000986 if (F.isNormal()) {
Jim Grosbach03fceff2013-04-05 21:20:12 +0000987 Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C),
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000988 AllowReciprocal);
989 if (!Res)
Jim Grosbach03fceff2013-04-05 21:20:12 +0000990 Res = BinaryOperator::CreateFDiv(X, C);
Shuxin Yang7d72cf82013-01-14 22:48:41 +0000991 }
992 }
993
994 if (Res) {
995 Res->setFastMathFlags(I.getFastMathFlags());
996 return Res;
997 }
998 }
999
1000 // X / C => X * 1/C
1001 if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal))
1002 return T;
1003
1004 return 0;
1005 }
1006
1007 if (AllowReassociate && isa<ConstantFP>(Op0)) {
1008 ConstantFP *C1 = cast<ConstantFP>(Op0), *C2;
1009 Constant *Fold = 0;
1010 Value *X;
1011 bool CreateDiv = true;
1012
1013 // C1 / (X*C2) => (C1/C2) / X
1014 if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2))))
1015 Fold = ConstantExpr::getFDiv(C1, C2);
1016 else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) {
1017 // C1 / (X/C2) => (C1*C2) / X
1018 Fold = ConstantExpr::getFMul(C1, C2);
1019 } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) {
1020 // C1 / (C2/X) => (C1/C2) * X
1021 Fold = ConstantExpr::getFDiv(C1, C2);
1022 CreateDiv = false;
1023 }
1024
1025 if (Fold) {
1026 const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF();
Michael Gottesmanc3cfe532013-06-26 23:17:31 +00001027 if (FoldC.isNormal()) {
Jim Grosbach03fceff2013-04-05 21:20:12 +00001028 Instruction *R = CreateDiv ?
Shuxin Yang7d72cf82013-01-14 22:48:41 +00001029 BinaryOperator::CreateFDiv(Fold, X) :
1030 BinaryOperator::CreateFMul(X, Fold);
1031 R->setFastMathFlags(I.getFastMathFlags());
1032 return R;
1033 }
1034 }
1035 return 0;
1036 }
1037
1038 if (AllowReassociate) {
1039 Value *X, *Y;
1040 Value *NewInst = 0;
1041 Instruction *SimpR = 0;
1042
1043 if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
1044 // (X/Y) / Z => X / (Y*Z)
1045 //
1046 if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) {
1047 NewInst = Builder->CreateFMul(Y, Op1);
1048 SimpR = BinaryOperator::CreateFDiv(X, NewInst);
1049 }
1050 } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
1051 // Z / (X/Y) => Z*Y / X
1052 //
1053 if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) {
1054 NewInst = Builder->CreateFMul(Op0, Y);
1055 SimpR = BinaryOperator::CreateFDiv(NewInst, X);
1056 }
1057 }
1058
1059 if (NewInst) {
1060 if (Instruction *T = dyn_cast<Instruction>(NewInst))
1061 T->setDebugLoc(I.getDebugLoc());
1062 SimpR->setFastMathFlags(I.getFastMathFlags());
1063 return SimpR;
Benjamin Kramer54673962011-03-30 15:42:35 +00001064 }
1065 }
1066
Frits van Bommel31726c12011-01-29 17:50:27 +00001067 return 0;
1068}
1069
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001070/// This function implements the transforms common to both integer remainder
1071/// instructions (urem and srem). It is called by the visitors to those integer
1072/// remainder instructions.
1073/// @brief Common integer remainder transforms
1074Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1075 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1076
Chris Lattner1add46d2011-05-22 18:18:41 +00001077 // The RHS is known non-zero.
1078 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
1079 I.setOperand(1, V);
1080 return &I;
1081 }
1082
Duncan Sandsf24ed772011-05-02 16:27:02 +00001083 // Handle cases involving: rem X, (select Cond, Y, Z)
1084 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1085 return &I;
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001086
Duncan Sands00676a62011-05-02 18:41:29 +00001087 if (isa<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001088 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1089 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1090 if (Instruction *R = FoldOpIntoSelect(I, SI))
1091 return R;
1092 } else if (isa<PHINode>(Op0I)) {
1093 if (Instruction *NV = FoldOpIntoPhi(I))
1094 return NV;
1095 }
1096
1097 // See if we can fold away this rem instruction.
1098 if (SimplifyDemandedInstructionBits(I))
1099 return &I;
1100 }
1101 }
1102
1103 return 0;
1104}
1105
1106Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1107 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1108
Duncan Sandsf24ed772011-05-02 16:27:02 +00001109 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
1110 return ReplaceInstUsesWith(I, V);
1111
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001112 if (Instruction *common = commonIRemTransforms(I))
1113 return common;
Jim Grosbach03fceff2013-04-05 21:20:12 +00001114
David Majnemerfa49d7d2013-05-12 00:07:05 +00001115 // (zext A) urem (zext B) --> zext (A urem B)
1116 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
1117 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
1118 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
1119 I.getType());
1120
David Majnemera8ccefc2013-05-11 09:01:28 +00001121 // X urem Y -> X and Y-1, where Y is a power of 2,
1122 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +00001123 Constant *N1 = Constant::getAllOnesValue(I.getType());
Benjamin Kramera9390a42011-09-27 20:39:19 +00001124 Value *Add = Builder->CreateAdd(Op1, N1);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +00001125 return BinaryOperator::CreateAnd(Op0, Add);
1126 }
1127
Nick Lewycky75681bb2013-07-13 01:16:47 +00001128 // 1 urem X -> zext(X != 1)
1129 if (match(Op0, m_One())) {
1130 Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
1131 Value *Ext = Builder->CreateZExt(Cmp, I.getType());
1132 return ReplaceInstUsesWith(I, Ext);
1133 }
1134
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001135 return 0;
1136}
1137
1138Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1139 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1140
Duncan Sandsf24ed772011-05-02 16:27:02 +00001141 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
1142 return ReplaceInstUsesWith(I, V);
1143
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001144 // Handle the integer rem common cases
1145 if (Instruction *Common = commonIRemTransforms(I))
1146 return Common;
Jim Grosbach03fceff2013-04-05 21:20:12 +00001147
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001148 if (Value *RHSNeg = dyn_castNegVal(Op1))
1149 if (!isa<Constant>(RHSNeg) ||
1150 (isa<ConstantInt>(RHSNeg) &&
1151 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
1152 // X % -Y -> X % Y
1153 Worklist.AddValue(I.getOperand(1));
1154 I.setOperand(1, RHSNeg);
1155 return &I;
1156 }
1157
1158 // If the sign bits of both operands are zero (i.e. we can prove they are
1159 // unsigned inputs), turn this into a urem.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001160 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001161 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
1162 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +00001163 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001164 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1165 }
1166 }
1167
1168 // If it's a constant vector, flip any negative values positive.
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001169 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1170 Constant *C = cast<Constant>(Op1);
1171 unsigned VWidth = C->getType()->getVectorNumElements();
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001172
1173 bool hasNegative = false;
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001174 bool hasMissing = false;
1175 for (unsigned i = 0; i != VWidth; ++i) {
1176 Constant *Elt = C->getAggregateElement(i);
1177 if (Elt == 0) {
1178 hasMissing = true;
1179 break;
1180 }
1181
1182 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001183 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001184 hasNegative = true;
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001185 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001186
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001187 if (hasNegative && !hasMissing) {
Chris Lattner4ca829e2012-01-25 06:02:56 +00001188 SmallVector<Constant *, 16> Elts(VWidth);
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001189 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7302d802012-02-06 21:56:39 +00001190 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001191 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001192 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001193 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001194 }
1195 }
1196
1197 Constant *NewRHSV = ConstantVector::get(Elts);
Chris Lattnera78fa8c2012-01-27 03:08:05 +00001198 if (NewRHSV != C) { // Don't loop on -MININT
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001199 Worklist.AddValue(I.getOperand(1));
1200 I.setOperand(1, NewRHSV);
1201 return &I;
1202 }
1203 }
1204 }
1205
1206 return 0;
1207}
1208
1209Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001210 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001211
Duncan Sandsf24ed772011-05-02 16:27:02 +00001212 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
1213 return ReplaceInstUsesWith(I, V);
1214
1215 // Handle cases involving: rem X, (select Cond, Y, Z)
1216 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
1217 return &I;
1218
1219 return 0;
1220}