blob: 27eab7516f1f1a4129c8ca92a9d7231598f36696 [file] [log] [blame]
Chris Lattner80f43d32010-01-04 07:53:58 +00001//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000020/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression. If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Dan Gohman28d2e0a2010-05-28 04:33:04 +000025 uint64_t &Offset) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000026 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
27 Offset = CI->getZExtValue();
28 Scale = 0;
Dan Gohman28d2e0a2010-05-28 04:33:04 +000029 return ConstantInt::get(Val->getType(), 0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000030 }
31
32 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000033 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
34 if (I->getOpcode() == Instruction::Shl) {
35 // This is a value scaled by '1 << the shift amt'.
Dan Gohman28d2e0a2010-05-28 04:33:04 +000036 Scale = UINT64_C(1) << RHS->getZExtValue();
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000037 Offset = 0;
38 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000039 }
40
41 if (I->getOpcode() == Instruction::Mul) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000042 // This value is scaled by 'RHS'.
43 Scale = RHS->getZExtValue();
44 Offset = 0;
45 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000046 }
47
48 if (I->getOpcode() == Instruction::Add) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000049 // We have X+C. Check to see if we really have (X*C2)+C1,
50 // where C1 is divisible by C2.
51 unsigned SubScale;
52 Value *SubVal =
53 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
54 Offset += RHS->getZExtValue();
55 Scale = SubScale;
56 return SubVal;
57 }
58 }
59 }
60
61 // Otherwise, we can't look past this.
62 Scale = 1;
63 Offset = 0;
64 return Val;
65}
66
67/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
68/// try to eliminate the cast by moving the type information into the alloc.
69Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
70 AllocaInst &AI) {
71 // This requires TargetData to get the alloca alignment and size information.
72 if (!TD) return 0;
73
74 const PointerType *PTy = cast<PointerType>(CI.getType());
75
76 BuilderTy AllocaBuilder(*Builder);
77 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
78
79 // Get the type really allocated and the type casted to.
80 const Type *AllocElTy = AI.getAllocatedType();
81 const Type *CastElTy = PTy->getElementType();
82 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
83
84 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
85 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
86 if (CastElTyAlign < AllocElTyAlign) return 0;
87
88 // If the allocation has multiple uses, only promote it if we are strictly
89 // increasing the alignment of the resultant allocation. If we keep it the
90 // same, we open the door to infinite loops of various kinds. (A reference
91 // from a dbg.declare doesn't count as a use for this purpose.)
92 if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
93 CastElTyAlign == AllocElTyAlign) return 0;
94
95 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
96 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
97 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
98
99 // See if we can satisfy the modulus by pulling a scale out of the array
100 // size argument.
101 unsigned ArraySizeScale;
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000102 uint64_t ArrayOffset;
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000103 Value *NumElements = // See if the array size is a decomposable linear expr.
104 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
105
106 // If we can now satisfy the modulus, by using a non-1 scale, we really can
107 // do the xform.
108 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
109 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
110
111 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
112 Value *Amt = 0;
113 if (Scale == 1) {
114 Amt = NumElements;
115 } else {
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000116 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000117 // Insert before the alloca, not before the cast.
118 Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
119 }
120
Dan Gohman28d2e0a2010-05-28 04:33:04 +0000121 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
122 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +0000123 Offset, true);
124 Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
125 }
126
127 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
128 New->setAlignment(AI.getAlignment());
129 New->takeName(&AI);
130
131 // If the allocation has one real use plus a dbg.declare, just remove the
132 // declare.
133 if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
134 EraseInstFromFunction(*(Instruction*)DI);
135 }
136 // If the allocation has multiple real uses, insert a cast and change all
137 // things that used it to use the new cast. This will also hack on CI, but it
138 // will die soon.
139 else if (!AI.hasOneUse()) {
140 // New is the allocation instruction, pointer typed. AI is the original
141 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
142 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
143 AI.replaceAllUsesWith(NewCast);
144 }
145 return ReplaceInstUsesWith(CI, New);
146}
147
148
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000149
Chris Lattner5f0290e2010-01-04 07:54:59 +0000150/// EvaluateInDifferentType - Given an expression that
Chris Lattner14bf8f02010-01-08 19:19:23 +0000151/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000152/// insert the code to evaluate the expression.
Chris Lattner5f0290e2010-01-04 07:54:59 +0000153Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
154 bool isSigned) {
Chris Lattnerc8b3fce2010-01-08 19:28:47 +0000155 if (Constant *C = dyn_cast<Constant>(V)) {
156 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
157 // If we got a constantexpr back, try to simplify it with TD info.
158 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
159 C = ConstantFoldConstantExpression(CE, TD);
160 return C;
161 }
Chris Lattner5f0290e2010-01-04 07:54:59 +0000162
163 // Otherwise, it must be an instruction.
164 Instruction *I = cast<Instruction>(V);
165 Instruction *Res = 0;
166 unsigned Opc = I->getOpcode();
167 switch (Opc) {
168 case Instruction::Add:
169 case Instruction::Sub:
170 case Instruction::Mul:
171 case Instruction::And:
172 case Instruction::Or:
173 case Instruction::Xor:
174 case Instruction::AShr:
175 case Instruction::LShr:
176 case Instruction::Shl:
177 case Instruction::UDiv:
178 case Instruction::URem: {
179 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
180 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
181 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
182 break;
183 }
184 case Instruction::Trunc:
185 case Instruction::ZExt:
186 case Instruction::SExt:
187 // If the source type of the cast is the type we're trying for then we can
188 // just return the source. There's no need to insert it because it is not
189 // new.
190 if (I->getOperand(0)->getType() == Ty)
191 return I->getOperand(0);
192
193 // Otherwise, must be the same type of cast, so just reinsert a new one.
Chris Lattner9ee947c2010-01-10 20:25:54 +0000194 // This also handles the case of zext(trunc(x)) -> zext(x).
195 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
196 Opc == Instruction::SExt);
Chris Lattner5f0290e2010-01-04 07:54:59 +0000197 break;
198 case Instruction::Select: {
199 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
200 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
201 Res = SelectInst::Create(I->getOperand(0), True, False);
202 break;
203 }
204 case Instruction::PHI: {
205 PHINode *OPN = cast<PHINode>(I);
206 PHINode *NPN = PHINode::Create(Ty);
207 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
208 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
209 NPN->addIncoming(V, OPN->getIncomingBlock(i));
210 }
211 Res = NPN;
212 break;
213 }
214 default:
215 // TODO: Can handle more cases here.
216 llvm_unreachable("Unreachable!");
217 break;
218 }
219
220 Res->takeName(I);
221 return InsertNewInstBefore(Res, *I);
222}
Chris Lattner80f43d32010-01-04 07:53:58 +0000223
224
225/// This function is a wrapper around CastInst::isEliminableCastPair. It
226/// simply extracts arguments and returns what that function returns.
227static Instruction::CastOps
228isEliminableCastPair(
229 const CastInst *CI, ///< The first cast instruction
230 unsigned opcode, ///< The opcode of the second cast instruction
231 const Type *DstTy, ///< The target type for the second cast instruction
232 TargetData *TD ///< The target data for pointer size
233) {
234
235 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
236 const Type *MidTy = CI->getType(); // B from above
237
238 // Get the opcodes of the two Cast instructions
239 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
240 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
241
242 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
243 DstTy,
244 TD ? TD->getIntPtrType(CI->getContext()) : 0);
245
246 // We don't want to form an inttoptr or ptrtoint that converts to an integer
247 // type that differs from the pointer size.
248 if ((Res == Instruction::IntToPtr &&
249 (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
250 (Res == Instruction::PtrToInt &&
251 (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
252 Res = 0;
253
254 return Instruction::CastOps(Res);
255}
256
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000257/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
258/// results in any code being generated and is interesting to optimize out. If
259/// the cast can be eliminated by some other simple transformation, we prefer
260/// to do the simplification first.
261bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
262 const Type *Ty) {
263 // Noop casts and casts of constants should be eliminated trivially.
Chris Lattner80f43d32010-01-04 07:53:58 +0000264 if (V->getType() == Ty || isa<Constant>(V)) return false;
265
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000266 // If this is another cast that can be eliminated, we prefer to have it
267 // eliminated.
Chris Lattner80f43d32010-01-04 07:53:58 +0000268 if (const CastInst *CI = dyn_cast<CastInst>(V))
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000269 if (isEliminableCastPair(CI, opc, Ty, TD))
Chris Lattner80f43d32010-01-04 07:53:58 +0000270 return false;
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000271
272 // If this is a vector sext from a compare, then we don't want to break the
273 // idiom where each element of the extended vector is either zero or all ones.
Duncan Sands1df98592010-02-16 11:11:14 +0000274 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
Chris Lattner8c5ad3a2010-02-11 06:26:33 +0000275 return false;
276
Chris Lattner80f43d32010-01-04 07:53:58 +0000277 return true;
278}
279
280
281/// @brief Implement the transforms common to all CastInst visitors.
282Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
283 Value *Src = CI.getOperand(0);
284
285 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
286 // eliminate it now.
287 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
288 if (Instruction::CastOps opc =
289 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
290 // The first cast (CSrc) is eliminable so we need to fix up or replace
291 // the second cast (CI). CSrc will then have a good chance of being dead.
292 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
293 }
294 }
295
296 // If we are casting a select then fold the cast into the select
297 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
298 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
299 return NV;
300
301 // If we are casting a PHI then fold the cast into the PHI
302 if (isa<PHINode>(Src)) {
303 // We don't do this if this would create a PHI node with an illegal type if
304 // it is currently legal.
Duncan Sands1df98592010-02-16 11:11:14 +0000305 if (!Src->getType()->isIntegerTy() ||
306 !CI.getType()->isIntegerTy() ||
Chris Lattner80f43d32010-01-04 07:53:58 +0000307 ShouldChangeType(CI.getType(), Src->getType()))
308 if (Instruction *NV = FoldOpIntoPhi(CI))
309 return NV;
310 }
311
312 return 0;
313}
314
Chris Lattner75215c92010-01-10 00:58:42 +0000315/// CanEvaluateTruncated - Return true if we can evaluate the specified
316/// expression tree as type Ty instead of its larger type, and arrive with the
317/// same value. This is used by code that tries to eliminate truncates.
318///
319/// Ty will always be a type smaller than V. We should return true if trunc(V)
320/// can be computed by computing V in the smaller type. If V is an instruction,
321/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
322/// makes sense if x and y can be efficiently truncated.
323///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000324/// This function works on both vectors and scalars.
325///
Chris Lattner75215c92010-01-10 00:58:42 +0000326static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
327 // We can always evaluate constants in another type.
328 if (isa<Constant>(V))
329 return true;
Chris Lattner68c6e892010-01-05 23:00:30 +0000330
Chris Lattner75215c92010-01-10 00:58:42 +0000331 Instruction *I = dyn_cast<Instruction>(V);
332 if (!I) return false;
333
334 const Type *OrigTy = V->getType();
335
Chris Lattnera958cbf2010-01-11 22:45:25 +0000336 // If this is an extension from the dest type, we can eliminate it, even if it
337 // has multiple uses.
Chris Lattner53af2d12010-01-11 22:49:40 +0000338 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
Chris Lattner75215c92010-01-10 00:58:42 +0000339 I->getOperand(0)->getType() == Ty)
340 return true;
341
342 // We can't extend or shrink something that has multiple uses: doing so would
343 // require duplicating the instruction in general, which isn't profitable.
344 if (!I->hasOneUse()) return false;
345
346 unsigned Opc = I->getOpcode();
347 switch (Opc) {
348 case Instruction::Add:
349 case Instruction::Sub:
350 case Instruction::Mul:
351 case Instruction::And:
352 case Instruction::Or:
353 case Instruction::Xor:
354 // These operators can all arbitrarily be extended or truncated.
355 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
356 CanEvaluateTruncated(I->getOperand(1), Ty);
357
358 case Instruction::UDiv:
359 case Instruction::URem: {
360 // UDiv and URem can be truncated if all the truncated bits are zero.
361 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
362 uint32_t BitWidth = Ty->getScalarSizeInBits();
363 if (BitWidth < OrigBitWidth) {
364 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
365 if (MaskedValueIsZero(I->getOperand(0), Mask) &&
366 MaskedValueIsZero(I->getOperand(1), Mask)) {
367 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
368 CanEvaluateTruncated(I->getOperand(1), Ty);
369 }
370 }
371 break;
372 }
373 case Instruction::Shl:
374 // If we are truncating the result of this SHL, and if it's a shift of a
375 // constant amount, we can always perform a SHL in a smaller type.
376 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
377 uint32_t BitWidth = Ty->getScalarSizeInBits();
378 if (CI->getLimitedValue(BitWidth) < BitWidth)
379 return CanEvaluateTruncated(I->getOperand(0), Ty);
380 }
381 break;
382 case Instruction::LShr:
383 // If this is a truncate of a logical shr, we can truncate it to a smaller
384 // lshr iff we know that the bits we would otherwise be shifting in are
385 // already zeros.
386 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
387 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
388 uint32_t BitWidth = Ty->getScalarSizeInBits();
389 if (MaskedValueIsZero(I->getOperand(0),
390 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
391 CI->getLimitedValue(BitWidth) < BitWidth) {
392 return CanEvaluateTruncated(I->getOperand(0), Ty);
393 }
394 }
395 break;
396 case Instruction::Trunc:
397 // trunc(trunc(x)) -> trunc(x)
398 return true;
Chris Lattnerf9d05ab2010-08-27 20:32:06 +0000399 case Instruction::ZExt:
400 case Instruction::SExt:
401 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
402 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
403 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000404 case Instruction::Select: {
405 SelectInst *SI = cast<SelectInst>(I);
406 return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
407 CanEvaluateTruncated(SI->getFalseValue(), Ty);
408 }
409 case Instruction::PHI: {
410 // We can change a phi if we can change all operands. Note that we never
411 // get into trouble with cyclic PHIs here because we only consider
412 // instructions with a single use.
413 PHINode *PN = cast<PHINode>(I);
414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
415 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
416 return false;
417 return true;
418 }
419 default:
420 // TODO: Can handle more cases here.
421 break;
422 }
423
424 return false;
425}
426
427Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000428 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner75215c92010-01-10 00:58:42 +0000429 return Result;
430
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000431 // See if we can simplify any instructions used by the input whose sole
432 // purpose is to compute bits we don't care about.
433 if (SimplifyDemandedInstructionBits(CI))
434 return &CI;
435
Chris Lattner75215c92010-01-10 00:58:42 +0000436 Value *Src = CI.getOperand(0);
437 const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
438
439 // Attempt to truncate the entire input expression tree to the destination
440 // type. Only do this if the dest type is a simple type, don't convert the
Chris Lattner80f43d32010-01-04 07:53:58 +0000441 // expression tree to something weird like i93 unless the source is also
442 // strange.
Duncan Sands1df98592010-02-16 11:11:14 +0000443 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner75215c92010-01-10 00:58:42 +0000444 CanEvaluateTruncated(Src, DestTy)) {
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000445
Chris Lattner80f43d32010-01-04 07:53:58 +0000446 // If this cast is a truncate, evaluting in a different type always
Chris Lattner68c6e892010-01-05 23:00:30 +0000447 // eliminates the cast, so it is always a win.
Chris Lattner075f6922010-01-07 23:41:00 +0000448 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
Dan Gohman5b71dce2010-05-25 21:50:35 +0000449 " to avoid cast: " << CI << '\n');
Chris Lattner075f6922010-01-07 23:41:00 +0000450 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
451 assert(Res->getType() == DestTy);
452 return ReplaceInstUsesWith(CI, Res);
453 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000454
Chris Lattner7a34d6c2010-01-05 22:21:18 +0000455 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
456 if (DestTy->getScalarSizeInBits() == 1) {
Chris Lattner80f43d32010-01-04 07:53:58 +0000457 Constant *One = ConstantInt::get(Src->getType(), 1);
458 Src = Builder->CreateAnd(Src, One, "tmp");
459 Value *Zero = Constant::getNullValue(Src->getType());
460 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
461 }
Chris Lattner784f3332010-08-27 18:31:05 +0000462
463 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
464 Value *A = 0; ConstantInt *Cst = 0;
465 if (match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst))) &&
466 Src->hasOneUse()) {
467 // We have three types to worry about here, the type of A, the source of
468 // the truncate (MidSize), and the destination of the truncate. We know that
469 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
470 // between ASize and ResultSize.
471 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
472
473 // If the shift amount is larger than the size of A, then the result is
474 // known to be zero because all the input bits got shifted out.
475 if (Cst->getZExtValue() >= ASize)
476 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
477
478 // Since we're doing an lshr and a zero extend, and know that the shift
479 // amount is smaller than ASize, it is always safe to do the shift in A's
480 // type, then zero extend or truncate to the result.
481 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
482 Shift->takeName(Src);
483 return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
484 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000485
Chris Lattner80f43d32010-01-04 07:53:58 +0000486 return 0;
487}
488
489/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
490/// in order to eliminate the icmp.
491Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
492 bool DoXform) {
493 // If we are just checking for a icmp eq of a single bit and zext'ing it
494 // to an integer, then shift the bit to the appropriate place and then
495 // cast to integer to avoid the comparison.
496 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
497 const APInt &Op1CV = Op1C->getValue();
498
499 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
500 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
501 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
502 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
503 if (!DoXform) return ICI;
504
505 Value *In = ICI->getOperand(0);
506 Value *Sh = ConstantInt::get(In->getType(),
507 In->getType()->getScalarSizeInBits()-1);
508 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
509 if (In->getType() != CI.getType())
510 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
511
512 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
513 Constant *One = ConstantInt::get(In->getType(), 1);
514 In = Builder->CreateXor(In, One, In->getName()+".not");
515 }
516
517 return ReplaceInstUsesWith(CI, In);
518 }
519
520
521
522 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
523 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
524 // zext (X == 1) to i32 --> X iff X has only the low bit set.
525 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
526 // zext (X != 0) to i32 --> X iff X has only the low bit set.
527 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
528 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
529 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
530 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
531 // This only works for EQ and NE
532 ICI->isEquality()) {
533 // If Op1C some other power of two, convert:
534 uint32_t BitWidth = Op1C->getType()->getBitWidth();
535 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
536 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
537 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
538
539 APInt KnownZeroMask(~KnownZero);
540 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
541 if (!DoXform) return ICI;
542
543 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
544 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
545 // (X&4) == 2 --> false
546 // (X&4) != 2 --> true
547 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
548 isNE);
549 Res = ConstantExpr::getZExt(Res, CI.getType());
550 return ReplaceInstUsesWith(CI, Res);
551 }
552
553 uint32_t ShiftAmt = KnownZeroMask.logBase2();
554 Value *In = ICI->getOperand(0);
555 if (ShiftAmt) {
556 // Perform a logical shr by shiftamt.
557 // Insert the shift to put the result in the low bit.
558 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
559 In->getName()+".lobit");
560 }
561
562 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
563 Constant *One = ConstantInt::get(In->getType(), 1);
564 In = Builder->CreateXor(In, One, "tmp");
565 }
566
567 if (CI.getType() == In->getType())
568 return ReplaceInstUsesWith(CI, In);
Chris Lattner29cc0b32010-08-27 22:24:38 +0000569 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
Chris Lattner80f43d32010-01-04 07:53:58 +0000570 }
571 }
572 }
573
574 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
575 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
576 // may lead to additional simplifications.
577 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
578 if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
579 uint32_t BitWidth = ITy->getBitWidth();
580 Value *LHS = ICI->getOperand(0);
581 Value *RHS = ICI->getOperand(1);
582
583 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
584 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
585 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
586 ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
587 ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
588
589 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
590 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
591 APInt UnknownBit = ~KnownBits;
592 if (UnknownBit.countPopulation() == 1) {
593 if (!DoXform) return ICI;
594
595 Value *Result = Builder->CreateXor(LHS, RHS);
596
597 // Mask off any bits that are set and won't be shifted away.
598 if (KnownOneLHS.uge(UnknownBit))
599 Result = Builder->CreateAnd(Result,
600 ConstantInt::get(ITy, UnknownBit));
601
602 // Shift the bit we're testing down to the lsb.
603 Result = Builder->CreateLShr(
604 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
605
606 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
607 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
608 Result->takeName(ICI);
609 return ReplaceInstUsesWith(CI, Result);
610 }
611 }
612 }
613 }
614
615 return 0;
616}
617
Chris Lattner75215c92010-01-10 00:58:42 +0000618/// CanEvaluateZExtd - Determine if the specified value can be computed in the
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000619/// specified wider type and produce the same low bits. If not, return false.
620///
Chris Lattner789162a2010-01-11 03:32:00 +0000621/// If this function returns true, it can also return a non-zero number of bits
622/// (in BitsToClear) which indicates that the value it computes is correct for
623/// the zero extend, but that the additional BitsToClear bits need to be zero'd
624/// out. For example, to promote something like:
625///
626/// %B = trunc i64 %A to i32
627/// %C = lshr i32 %B, 8
628/// %E = zext i32 %C to i64
629///
630/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
631/// set to 8 to indicate that the promoted value needs to have bits 24-31
632/// cleared in addition to bits 32-63. Since an 'and' will be generated to
633/// clear the top bits anyway, doing this has no extra cost.
634///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000635/// This function works on both vectors and scalars.
Chris Lattner789162a2010-01-11 03:32:00 +0000636static bool CanEvaluateZExtd(Value *V, const Type *Ty, unsigned &BitsToClear) {
637 BitsToClear = 0;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000638 if (isa<Constant>(V))
639 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000640
641 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner9e390dd2010-01-10 02:50:04 +0000642 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000643
644 // If the input is a truncate from the destination type, we can trivially
Chris Lattnera958cbf2010-01-11 22:45:25 +0000645 // eliminate it, even if it has multiple uses.
646 // FIXME: This is currently disabled until codegen can handle this without
647 // pessimizing code, PR5997.
648 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattner9e390dd2010-01-10 02:50:04 +0000649 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000650
651 // We can't extend or shrink something that has multiple uses: doing so would
652 // require duplicating the instruction in general, which isn't profitable.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000653 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000654
Chris Lattner789162a2010-01-11 03:32:00 +0000655 unsigned Opc = I->getOpcode(), Tmp;
Chris Lattner75215c92010-01-10 00:58:42 +0000656 switch (Opc) {
Chris Lattner9ee947c2010-01-10 20:25:54 +0000657 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
658 case Instruction::SExt: // zext(sext(x)) -> sext(x).
659 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
660 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000661 case Instruction::And:
Chris Lattner75215c92010-01-10 00:58:42 +0000662 case Instruction::Or:
663 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +0000664 case Instruction::Add:
665 case Instruction::Sub:
666 case Instruction::Mul:
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000667 case Instruction::Shl:
Chris Lattner789162a2010-01-11 03:32:00 +0000668 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
669 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
670 return false;
671 // These can all be promoted if neither operand has 'bits to clear'.
672 if (BitsToClear == 0 && Tmp == 0)
673 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000674
Chris Lattner7acc4b12010-01-11 04:05:13 +0000675 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
676 // other side, BitsToClear is ok.
677 if (Tmp == 0 &&
678 (Opc == Instruction::And || Opc == Instruction::Or ||
679 Opc == Instruction::Xor)) {
680 // We use MaskedValueIsZero here for generality, but the case we care
681 // about the most is constant RHS.
682 unsigned VSize = V->getType()->getScalarSizeInBits();
683 if (MaskedValueIsZero(I->getOperand(1),
684 APInt::getHighBitsSet(VSize, BitsToClear)))
685 return true;
686 }
687
688 // Otherwise, we don't know how to analyze this BitsToClear case yet.
Chris Lattner789162a2010-01-11 03:32:00 +0000689 return false;
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000690
Chris Lattner789162a2010-01-11 03:32:00 +0000691 case Instruction::LShr:
692 // We can promote lshr(x, cst) if we can promote x. This requires the
693 // ultimate 'and' to clear out the high zero bits we're clearing out though.
694 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
695 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
696 return false;
697 BitsToClear += Amt->getZExtValue();
698 if (BitsToClear > V->getType()->getScalarSizeInBits())
699 BitsToClear = V->getType()->getScalarSizeInBits();
700 return true;
701 }
702 // Cannot promote variable LSHR.
703 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000704 case Instruction::Select:
Chris Lattner789162a2010-01-11 03:32:00 +0000705 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
706 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
Chris Lattner7acc4b12010-01-11 04:05:13 +0000707 // TODO: If important, we could handle the case when the BitsToClear are
708 // known zero in the disagreeing side.
Chris Lattner789162a2010-01-11 03:32:00 +0000709 Tmp != BitsToClear)
710 return false;
711 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000712
713 case Instruction::PHI: {
714 // We can change a phi if we can change all operands. Note that we never
715 // get into trouble with cyclic PHIs here because we only consider
716 // instructions with a single use.
717 PHINode *PN = cast<PHINode>(I);
Chris Lattner789162a2010-01-11 03:32:00 +0000718 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
719 return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000720 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner789162a2010-01-11 03:32:00 +0000721 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
Chris Lattner7acc4b12010-01-11 04:05:13 +0000722 // TODO: If important, we could handle the case when the BitsToClear
723 // are known zero in the disagreeing input.
Chris Lattner789162a2010-01-11 03:32:00 +0000724 Tmp != BitsToClear)
725 return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000726 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000727 }
728 default:
729 // TODO: Can handle more cases here.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000730 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000731 }
732}
733
Chris Lattner80f43d32010-01-04 07:53:58 +0000734Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +0000735 // If this zero extend is only used by a truncate, let the truncate by
736 // eliminated before we try to optimize this zext.
737 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
738 return 0;
739
Chris Lattner80f43d32010-01-04 07:53:58 +0000740 // If one of the common conversion will work, do it.
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000741 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +0000742 return Result;
743
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000744 // See if we can simplify any instructions used by the input whose sole
745 // purpose is to compute bits we don't care about.
746 if (SimplifyDemandedInstructionBits(CI))
747 return &CI;
Chris Lattner75215c92010-01-10 00:58:42 +0000748
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000749 Value *Src = CI.getOperand(0);
Chris Lattner75215c92010-01-10 00:58:42 +0000750 const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
751
752 // Attempt to extend the entire input expression tree to the destination
753 // type. Only do this if the dest type is a simple type, don't convert the
754 // expression tree to something weird like i93 unless the source is also
755 // strange.
Chris Lattner789162a2010-01-11 03:32:00 +0000756 unsigned BitsToClear;
Duncan Sands1df98592010-02-16 11:11:14 +0000757 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner789162a2010-01-11 03:32:00 +0000758 CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
759 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
760 "Unreasonable BitsToClear");
761
Chris Lattner5324d802010-01-10 02:39:31 +0000762 // Okay, we can transform this! Insert the new expression now.
763 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
764 " to avoid zero extend: " << CI);
765 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
766 assert(Res->getType() == DestTy);
767
Chris Lattner789162a2010-01-11 03:32:00 +0000768 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
769 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
770
Chris Lattner5324d802010-01-10 02:39:31 +0000771 // If the high bits are already filled with zeros, just replace this
772 // cast with the result.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000773 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
Chris Lattner789162a2010-01-11 03:32:00 +0000774 DestBitSize-SrcBitsKept)))
Chris Lattner5324d802010-01-10 02:39:31 +0000775 return ReplaceInstUsesWith(CI, Res);
776
777 // We need to emit an AND to clear the high bits.
Chris Lattner9ee947c2010-01-10 20:25:54 +0000778 Constant *C = ConstantInt::get(Res->getType(),
Chris Lattner789162a2010-01-11 03:32:00 +0000779 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
Chris Lattner5324d802010-01-10 02:39:31 +0000780 return BinaryOperator::CreateAnd(Res, C);
Chris Lattner75215c92010-01-10 00:58:42 +0000781 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000782
783 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
784 // types and if the sizes are just right we can convert this into a logical
785 // 'and' which will be much cheaper than the pair of casts.
786 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000787 // TODO: Subsume this into EvaluateInDifferentType.
788
Chris Lattner80f43d32010-01-04 07:53:58 +0000789 // Get the sizes of the types involved. We know that the intermediate type
790 // will be smaller than A or C, but don't know the relation between A and C.
791 Value *A = CSrc->getOperand(0);
792 unsigned SrcSize = A->getType()->getScalarSizeInBits();
793 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
794 unsigned DstSize = CI.getType()->getScalarSizeInBits();
795 // If we're actually extending zero bits, then if
796 // SrcSize < DstSize: zext(a & mask)
797 // SrcSize == DstSize: a & mask
798 // SrcSize > DstSize: trunc(a) & mask
799 if (SrcSize < DstSize) {
800 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
801 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
802 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
803 return new ZExtInst(And, CI.getType());
804 }
805
806 if (SrcSize == DstSize) {
807 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
808 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
809 AndValue));
810 }
811 if (SrcSize > DstSize) {
812 Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
813 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
814 return BinaryOperator::CreateAnd(Trunc,
815 ConstantInt::get(Trunc->getType(),
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000816 AndValue));
Chris Lattner80f43d32010-01-04 07:53:58 +0000817 }
818 }
819
820 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
821 return transformZExtICmp(ICI, CI);
822
823 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
824 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
825 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
826 // of the (zext icmp) will be transformed.
827 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
828 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
829 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
830 (transformZExtICmp(LHS, CI, false) ||
831 transformZExtICmp(RHS, CI, false))) {
832 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
833 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
834 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
835 }
836 }
837
838 // zext(trunc(t) & C) -> (t & zext(C)).
839 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
840 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
841 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
842 Value *TI0 = TI->getOperand(0);
843 if (TI0->getType() == CI.getType())
844 return
845 BinaryOperator::CreateAnd(TI0,
846 ConstantExpr::getZExt(C, CI.getType()));
847 }
848
849 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
850 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
851 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
852 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
853 if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
854 And->getOperand(1) == C)
855 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
856 Value *TI0 = TI->getOperand(0);
857 if (TI0->getType() == CI.getType()) {
858 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
859 Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
860 return BinaryOperator::CreateXor(NewAnd, ZC);
861 }
862 }
863
Chris Lattner718bf3f2010-01-05 21:04:47 +0000864 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
865 Value *X;
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000866 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
Chris Lattner49bdfef2010-01-05 21:11:17 +0000867 match(SrcI, m_Not(m_Value(X))) &&
Chris Lattner718bf3f2010-01-05 21:04:47 +0000868 (!X->hasOneUse() || !isa<CmpInst>(X))) {
869 Value *New = Builder->CreateZExt(X, CI.getType());
870 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
871 }
872
Chris Lattner80f43d32010-01-04 07:53:58 +0000873 return 0;
874}
875
Chris Lattner75215c92010-01-10 00:58:42 +0000876/// CanEvaluateSExtd - Return true if we can take the specified value
877/// and return it as type Ty without inserting any new casts and without
878/// changing the value of the common low bits. This is used by code that tries
879/// to promote integer operations to a wider types will allow us to eliminate
880/// the extension.
881///
Chris Lattneraa9c8942010-01-10 07:57:20 +0000882/// This function works on both vectors and scalars.
Chris Lattner75215c92010-01-10 00:58:42 +0000883///
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000884static bool CanEvaluateSExtd(Value *V, const Type *Ty) {
Chris Lattner75215c92010-01-10 00:58:42 +0000885 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
886 "Can't sign extend type to a smaller type");
Chris Lattneraa9c8942010-01-10 07:57:20 +0000887 // If this is a constant, it can be trivially promoted.
888 if (isa<Constant>(V))
889 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000890
891 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattneraa9c8942010-01-10 07:57:20 +0000892 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000893
Chris Lattnera958cbf2010-01-11 22:45:25 +0000894 // If this is a truncate from the dest type, we can trivially eliminate it,
895 // even if it has multiple uses.
896 // FIXME: This is currently disabled until codegen can handle this without
897 // pessimizing code, PR5997.
898 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
Chris Lattneraa9c8942010-01-10 07:57:20 +0000899 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000900
901 // We can't extend or shrink something that has multiple uses: doing so would
902 // require duplicating the instruction in general, which isn't profitable.
Chris Lattneraa9c8942010-01-10 07:57:20 +0000903 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000904
Chris Lattneraa9c8942010-01-10 07:57:20 +0000905 switch (I->getOpcode()) {
Chris Lattner11ea8122010-01-10 20:30:41 +0000906 case Instruction::SExt: // sext(sext(x)) -> sext(x)
907 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
908 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
909 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000910 case Instruction::And:
911 case Instruction::Or:
912 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +0000913 case Instruction::Add:
914 case Instruction::Sub:
Chris Lattner75215c92010-01-10 00:58:42 +0000915 case Instruction::Mul:
Chris Lattneraa9c8942010-01-10 07:57:20 +0000916 // These operators can all arbitrarily be extended if their inputs can.
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000917 return CanEvaluateSExtd(I->getOperand(0), Ty) &&
918 CanEvaluateSExtd(I->getOperand(1), Ty);
Chris Lattner75215c92010-01-10 00:58:42 +0000919
920 //case Instruction::Shl: TODO
921 //case Instruction::LShr: TODO
Chris Lattner75215c92010-01-10 00:58:42 +0000922
Chris Lattneraa9c8942010-01-10 07:57:20 +0000923 case Instruction::Select:
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000924 return CanEvaluateSExtd(I->getOperand(1), Ty) &&
925 CanEvaluateSExtd(I->getOperand(2), Ty);
Chris Lattner9ee947c2010-01-10 20:25:54 +0000926
Chris Lattner75215c92010-01-10 00:58:42 +0000927 case Instruction::PHI: {
928 // We can change a phi if we can change all operands. Note that we never
929 // get into trouble with cyclic PHIs here because we only consider
930 // instructions with a single use.
931 PHINode *PN = cast<PHINode>(I);
Chris Lattner9ee947c2010-01-10 20:25:54 +0000932 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000933 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
Chris Lattneraa9c8942010-01-10 07:57:20 +0000934 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000935 }
936 default:
937 // TODO: Can handle more cases here.
938 break;
939 }
940
Chris Lattneraa9c8942010-01-10 07:57:20 +0000941 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000942}
943
Chris Lattner80f43d32010-01-04 07:53:58 +0000944Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +0000945 // If this sign extend is only used by a truncate, let the truncate by
946 // eliminated before we try to optimize this zext.
947 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
948 return 0;
949
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000950 if (Instruction *I = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +0000951 return I;
952
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000953 // See if we can simplify any instructions used by the input whose sole
954 // purpose is to compute bits we don't care about.
955 if (SimplifyDemandedInstructionBits(CI))
956 return &CI;
957
Chris Lattner80f43d32010-01-04 07:53:58 +0000958 Value *Src = CI.getOperand(0);
Chris Lattner75215c92010-01-10 00:58:42 +0000959 const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
960
Chris Lattner75215c92010-01-10 00:58:42 +0000961 // Attempt to extend the entire input expression tree to the destination
962 // type. Only do this if the dest type is a simple type, don't convert the
963 // expression tree to something weird like i93 unless the source is also
964 // strange.
Duncan Sands1df98592010-02-16 11:11:14 +0000965 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
Chris Lattner8cf4f6f2010-01-11 02:43:35 +0000966 CanEvaluateSExtd(Src, DestTy)) {
Chris Lattnerdde5ee52010-01-10 07:40:50 +0000967 // Okay, we can transform this! Insert the new expression now.
968 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
969 " to avoid sign extend: " << CI);
970 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
971 assert(Res->getType() == DestTy);
972
Chris Lattner75215c92010-01-10 00:58:42 +0000973 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
974 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Chris Lattnerdde5ee52010-01-10 07:40:50 +0000975
976 // If the high bits are already filled with sign bit, just replace this
977 // cast with the result.
Chris Lattneraa9c8942010-01-10 07:57:20 +0000978 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
Chris Lattnerdde5ee52010-01-10 07:40:50 +0000979 return ReplaceInstUsesWith(CI, Res);
Chris Lattner75215c92010-01-10 00:58:42 +0000980
Chris Lattnerdde5ee52010-01-10 07:40:50 +0000981 // We need to emit a shl + ashr to do the sign extend.
982 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
983 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
984 ShAmt);
Chris Lattner75215c92010-01-10 00:58:42 +0000985 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000986
Chris Lattnercd5adbb2010-01-18 22:19:16 +0000987 // If this input is a trunc from our destination, then turn sext(trunc(x))
988 // into shifts.
989 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
990 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
991 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
992 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
993
994 // We need to emit a shl + ashr to do the sign extend.
995 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
996 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
997 return BinaryOperator::CreateAShr(Res, ShAmt);
998 }
999
Chris Lattnerabb992d2010-01-24 00:09:49 +00001000
1001 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
1002 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
1003 {
1004 ICmpInst::Predicate Pred; Value *CmpLHS; ConstantInt *CmpRHS;
1005 if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_ConstantInt(CmpRHS)))) {
1006 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
1007 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
1008 if ((Pred == ICmpInst::ICMP_SLT && CmpRHS->isZero()) ||
1009 (Pred == ICmpInst::ICMP_SGT && CmpRHS->isAllOnesValue())) {
1010 Value *Sh = ConstantInt::get(CmpLHS->getType(),
1011 CmpLHS->getType()->getScalarSizeInBits()-1);
1012 Value *In = Builder->CreateAShr(CmpLHS, Sh, CmpLHS->getName()+".lobit");
1013 if (In->getType() != CI.getType())
1014 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/, "tmp");
1015
1016 if (Pred == ICmpInst::ICMP_SGT)
1017 In = Builder->CreateNot(In, In->getName()+".not");
1018 return ReplaceInstUsesWith(CI, In);
1019 }
1020 }
1021 }
1022
1023
Chris Lattner80f43d32010-01-04 07:53:58 +00001024 // If the input is a shl/ashr pair of a same constant, then this is a sign
1025 // extension from a smaller value. If we could trust arbitrary bitwidth
1026 // integers, we could turn this into a truncate to the smaller bit and then
1027 // use a sext for the whole extension. Since we don't, look deeper and check
1028 // for a truncate. If the source and dest are the same type, eliminate the
1029 // trunc and extend and just do shifts. For example, turn:
1030 // %a = trunc i32 %i to i8
1031 // %b = shl i8 %a, 6
1032 // %c = ashr i8 %b, 6
1033 // %d = sext i8 %c to i32
1034 // into:
1035 // %a = shl i32 %i, 30
1036 // %d = ashr i32 %a, 30
1037 Value *A = 0;
Chris Lattner4f379782010-01-10 01:04:31 +00001038 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
Chris Lattner80f43d32010-01-04 07:53:58 +00001039 ConstantInt *BA = 0, *CA = 0;
Chris Lattner4f379782010-01-10 01:04:31 +00001040 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
Chris Lattner80f43d32010-01-04 07:53:58 +00001041 m_ConstantInt(CA))) &&
Chris Lattner4f379782010-01-10 01:04:31 +00001042 BA == CA && A->getType() == CI.getType()) {
1043 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1044 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1045 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1046 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1047 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1048 return BinaryOperator::CreateAShr(A, ShAmtV);
Chris Lattner80f43d32010-01-04 07:53:58 +00001049 }
1050
1051 return 0;
1052}
1053
1054
1055/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1056/// in the specified FP type without changing its value.
1057static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1058 bool losesInfo;
1059 APFloat F = CFP->getValueAPF();
1060 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1061 if (!losesInfo)
1062 return ConstantFP::get(CFP->getContext(), F);
1063 return 0;
1064}
1065
1066/// LookThroughFPExtensions - If this is an fp extension instruction, look
1067/// through it until we get the source value.
1068static Value *LookThroughFPExtensions(Value *V) {
1069 if (Instruction *I = dyn_cast<Instruction>(V))
1070 if (I->getOpcode() == Instruction::FPExt)
1071 return LookThroughFPExtensions(I->getOperand(0));
1072
1073 // If this value is a constant, return the constant in the smallest FP type
1074 // that can accurately represent it. This allows us to turn
1075 // (float)((double)X+2.0) into x+2.0f.
1076 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1077 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1078 return V; // No constant folding of this.
1079 // See if the value can be truncated to float and then reextended.
1080 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1081 return V;
Benjamin Kramerf0127052010-01-05 13:12:22 +00001082 if (CFP->getType()->isDoubleTy())
Chris Lattner80f43d32010-01-04 07:53:58 +00001083 return V; // Won't shrink.
1084 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1085 return V;
1086 // Don't try to shrink to various long double types.
1087 }
1088
1089 return V;
1090}
1091
1092Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1093 if (Instruction *I = commonCastTransforms(CI))
1094 return I;
1095
1096 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1097 // smaller than the destination type, we can eliminate the truncate by doing
1098 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
1099 // as many builtins (sqrt, etc).
1100 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1101 if (OpI && OpI->hasOneUse()) {
1102 switch (OpI->getOpcode()) {
1103 default: break;
1104 case Instruction::FAdd:
1105 case Instruction::FSub:
1106 case Instruction::FMul:
1107 case Instruction::FDiv:
1108 case Instruction::FRem:
1109 const Type *SrcTy = OpI->getType();
1110 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1111 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1112 if (LHSTrunc->getType() != SrcTy &&
1113 RHSTrunc->getType() != SrcTy) {
1114 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1115 // If the source types were both smaller than the destination type of
1116 // the cast, do this xform.
1117 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1118 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1119 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1120 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1121 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1122 }
1123 }
1124 break;
1125 }
1126 }
Owen Andersond9029012010-07-19 08:09:34 +00001127
1128 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1129 // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
1130 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1131 if (Call && Call->getCalledFunction() &&
1132 Call->getCalledFunction()->getName() == "sqrt" &&
1133 Call->getNumArgOperands() == 1) {
1134 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1135 if (Arg && Arg->getOpcode() == Instruction::FPExt &&
Owen Anderson5f23a932010-07-19 19:23:32 +00001136 CI.getType()->isFloatTy() &&
1137 Call->getType()->isDoubleTy() &&
1138 Arg->getType()->isDoubleTy() &&
1139 Arg->getOperand(0)->getType()->isFloatTy()) {
1140 Function *Callee = Call->getCalledFunction();
1141 Module *M = CI.getParent()->getParent()->getParent();
Owen Andersond9029012010-07-19 08:09:34 +00001142 Constant* SqrtfFunc = M->getOrInsertFunction("sqrtf",
Owen Anderson5f23a932010-07-19 19:23:32 +00001143 Callee->getAttributes(),
Owen Andersond9029012010-07-19 08:09:34 +00001144 Builder->getFloatTy(),
1145 Builder->getFloatTy(),
1146 NULL);
1147 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1148 "sqrtfcall");
Owen Anderson5f23a932010-07-19 19:23:32 +00001149 ret->setAttributes(Callee->getAttributes());
Owen Andersond9029012010-07-19 08:09:34 +00001150 return ret;
1151 }
1152 }
1153
Chris Lattner80f43d32010-01-04 07:53:58 +00001154 return 0;
1155}
1156
1157Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1158 return commonCastTransforms(CI);
1159}
1160
1161Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1162 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1163 if (OpI == 0)
1164 return commonCastTransforms(FI);
1165
1166 // fptoui(uitofp(X)) --> X
1167 // fptoui(sitofp(X)) --> X
1168 // This is safe if the intermediate type has enough bits in its mantissa to
1169 // accurately represent all values of X. For example, do not do this with
1170 // i64->float->i64. This is also safe for sitofp case, because any negative
1171 // 'X' value would cause an undefined result for the fptoui.
1172 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1173 OpI->getOperand(0)->getType() == FI.getType() &&
1174 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1175 OpI->getType()->getFPMantissaWidth())
1176 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1177
1178 return commonCastTransforms(FI);
1179}
1180
1181Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1182 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1183 if (OpI == 0)
1184 return commonCastTransforms(FI);
1185
1186 // fptosi(sitofp(X)) --> X
1187 // fptosi(uitofp(X)) --> X
1188 // This is safe if the intermediate type has enough bits in its mantissa to
1189 // accurately represent all values of X. For example, do not do this with
1190 // i64->float->i64. This is also safe for sitofp case, because any negative
1191 // 'X' value would cause an undefined result for the fptoui.
1192 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1193 OpI->getOperand(0)->getType() == FI.getType() &&
1194 (int)FI.getType()->getScalarSizeInBits() <=
1195 OpI->getType()->getFPMantissaWidth())
1196 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1197
1198 return commonCastTransforms(FI);
1199}
1200
1201Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1202 return commonCastTransforms(CI);
1203}
1204
1205Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1206 return commonCastTransforms(CI);
1207}
1208
Chris Lattner80f43d32010-01-04 07:53:58 +00001209Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
Dan Gohman3b5487e2010-02-02 01:44:02 +00001210 // If the source integer type is not the intptr_t type for this target, do a
1211 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1212 // cast to be exposed to other transforms.
1213 if (TD) {
1214 if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1215 TD->getPointerSizeInBits()) {
1216 Value *P = Builder->CreateTrunc(CI.getOperand(0),
1217 TD->getIntPtrType(CI.getContext()), "tmp");
1218 return new IntToPtrInst(P, CI.getType());
1219 }
1220 if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1221 TD->getPointerSizeInBits()) {
1222 Value *P = Builder->CreateZExt(CI.getOperand(0),
1223 TD->getIntPtrType(CI.getContext()), "tmp");
1224 return new IntToPtrInst(P, CI.getType());
1225 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001226 }
1227
1228 if (Instruction *I = commonCastTransforms(CI))
1229 return I;
1230
1231 return 0;
1232}
1233
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001234/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1235Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1236 Value *Src = CI.getOperand(0);
1237
1238 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1239 // If casting the result of a getelementptr instruction with no offset, turn
1240 // this into a cast of the original pointer!
1241 if (GEP->hasAllZeroIndices()) {
1242 // Changing the cast operand is usually not a good idea but it is safe
1243 // here because the pointer operand is being replaced with another
1244 // pointer operand so the opcode doesn't need to change.
1245 Worklist.Add(GEP);
1246 CI.setOperand(0, GEP->getOperand(0));
1247 return &CI;
1248 }
1249
1250 // If the GEP has a single use, and the base pointer is a bitcast, and the
1251 // GEP computes a constant offset, see if we can convert these three
1252 // instructions into fewer. This typically happens with unions and other
1253 // non-type-safe code.
1254 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1255 GEP->hasAllConstantIndices()) {
1256 // We are guaranteed to get a constant from EmitGEPOffset.
1257 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1258 int64_t Offset = OffsetV->getSExtValue();
1259
1260 // Get the base pointer input of the bitcast, and the type it points to.
1261 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1262 const Type *GEPIdxTy =
1263 cast<PointerType>(OrigBase->getType())->getElementType();
1264 SmallVector<Value*, 8> NewIndices;
1265 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1266 // If we were able to index down into an element, create the GEP
1267 // and bitcast the result. This eliminates one bitcast, potentially
1268 // two.
1269 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1270 Builder->CreateInBoundsGEP(OrigBase,
1271 NewIndices.begin(), NewIndices.end()) :
1272 Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1273 NGEP->takeName(GEP);
1274
1275 if (isa<BitCastInst>(CI))
1276 return new BitCastInst(NGEP, CI.getType());
1277 assert(isa<PtrToIntInst>(CI));
1278 return new PtrToIntInst(NGEP, CI.getType());
1279 }
1280 }
1281 }
1282
1283 return commonCastTransforms(CI);
1284}
1285
1286Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
Dan Gohman3b5487e2010-02-02 01:44:02 +00001287 // If the destination integer type is not the intptr_t type for this target,
1288 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1289 // to be exposed to other transforms.
1290 if (TD) {
1291 if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1292 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1293 TD->getIntPtrType(CI.getContext()),
1294 "tmp");
1295 return new TruncInst(P, CI.getType());
1296 }
1297 if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1298 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1299 TD->getIntPtrType(CI.getContext()),
1300 "tmp");
1301 return new ZExtInst(P, CI.getType());
1302 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001303 }
1304
1305 return commonPointerCastTransforms(CI);
1306}
1307
Chris Lattner67451912010-05-08 21:50:26 +00001308/// OptimizeVectorResize - This input value (which is known to have vector type)
1309/// is being zero extended or truncated to the specified vector type. Try to
1310/// replace it with a shuffle (and vector/vector bitcast) if possible.
1311///
1312/// The source and destination vector types may have different element types.
1313static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
1314 InstCombiner &IC) {
1315 // We can only do this optimization if the output is a multiple of the input
1316 // element size, or the input is a multiple of the output element size.
1317 // Convert the input type to have the same element type as the output.
1318 const VectorType *SrcTy = cast<VectorType>(InVal->getType());
1319
1320 if (SrcTy->getElementType() != DestTy->getElementType()) {
1321 // The input types don't need to be identical, but for now they must be the
1322 // same size. There is no specific reason we couldn't handle things like
1323 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1324 // there yet.
1325 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1326 DestTy->getElementType()->getPrimitiveSizeInBits())
1327 return 0;
1328
1329 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1330 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1331 }
1332
1333 // Now that the element types match, get the shuffle mask and RHS of the
1334 // shuffle to use, which depends on whether we're increasing or decreasing the
1335 // size of the input.
1336 SmallVector<Constant*, 16> ShuffleMask;
1337 Value *V2;
1338 const IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1339
1340 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1341 // If we're shrinking the number of elements, just shuffle in the low
1342 // elements from the input and use undef as the second shuffle input.
1343 V2 = UndefValue::get(SrcTy);
1344 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1345 ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1346
1347 } else {
1348 // If we're increasing the number of elements, shuffle in all of the
1349 // elements from InVal and fill the rest of the result elements with zeros
1350 // from a constant zero.
1351 V2 = Constant::getNullValue(SrcTy);
1352 unsigned SrcElts = SrcTy->getNumElements();
1353 for (unsigned i = 0, e = SrcElts; i != e; ++i)
1354 ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1355
1356 // The excess elements reference the first element of the zero input.
1357 ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1358 ConstantInt::get(Int32Ty, SrcElts));
1359 }
1360
1361 Constant *Mask = ConstantVector::get(ShuffleMask.data(), ShuffleMask.size());
1362 return new ShuffleVectorInst(InVal, V2, Mask);
1363}
1364
Chris Lattner3dd08732010-08-28 01:20:38 +00001365static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
1366 return Value % Ty->getPrimitiveSizeInBits() == 0;
1367}
1368
1369static bool getTypeSizeIndex(unsigned Value, const Type *Ty) {
1370 return Value / Ty->getPrimitiveSizeInBits();
1371}
1372
1373/// CollectInsertionElements - V is a value which is inserted into a vector of
1374/// VecEltTy. Look through the value to see if we can decompose it into
1375/// insertions into the vector. See the example in the comment for
1376/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1377/// The type of V is always a non-zero multiple of VecEltTy's size.
1378///
1379/// This returns false if the pattern can't be matched or true if it can,
1380/// filling in Elements with the elements found here.
1381static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1382 SmallVectorImpl<Value*> &Elements,
1383 const Type *VecEltTy) {
1384 // If we got down to a value of the right type, we win, try inserting into the
1385 // right element.
1386 if (V->getType() == VecEltTy) {
1387 // Fail if multiple elements are inserted into this slot.
1388 if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1389 return false;
1390
1391 Elements[ElementIndex] = V;
1392 return true;
1393 }
1394
1395 //if (Constant *C = dyn_cast<Constant>(V)) {
1396 // Figure out the # elements this provides, and bitcast it or slice it up
1397 // as required.
1398 //}
1399
1400 if (!V->hasOneUse()) return false;
1401
1402 Instruction *I = dyn_cast<Instruction>(V);
1403 if (I == 0) return false;
1404 switch (I->getOpcode()) {
1405 default: return false; // Unhandled case.
1406 case Instruction::BitCast:
1407 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1408 Elements, VecEltTy);
1409 case Instruction::ZExt:
1410 if (!isMultipleOfTypeSize(
1411 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1412 VecEltTy))
1413 return false;
1414 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1415 Elements, VecEltTy);
1416 case Instruction::Or:
1417 return CollectInsertionElements(I->getOperand(0), ElementIndex,
1418 Elements, VecEltTy) &&
1419 CollectInsertionElements(I->getOperand(1), ElementIndex,
1420 Elements, VecEltTy);
1421 case Instruction::Shl: {
1422 // Must be shifting by a constant that is a multiple of the element size.
1423 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1424 if (CI == 0) return false;
1425 if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1426 unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1427
1428 return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1429 Elements, VecEltTy);
1430 }
1431
1432 }
1433}
1434
1435
1436/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1437/// may be doing shifts and ors to assemble the elements of the vector manually.
1438/// Try to rip the code out and replace it with insertelements. This is to
1439/// optimize code like this:
1440///
1441/// %tmp37 = bitcast float %inc to i32
1442/// %tmp38 = zext i32 %tmp37 to i64
1443/// %tmp31 = bitcast float %inc5 to i32
1444/// %tmp32 = zext i32 %tmp31 to i64
1445/// %tmp33 = shl i64 %tmp32, 32
1446/// %ins35 = or i64 %tmp33, %tmp38
1447/// %tmp43 = bitcast i64 %ins35 to <2 x float>
1448///
1449/// Into two insertelements that do "buildvector{%inc, %inc5}".
1450static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1451 InstCombiner &IC) {
1452 const VectorType *DestVecTy = cast<VectorType>(CI.getType());
1453 Value *IntInput = CI.getOperand(0);
1454
1455 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1456 if (!CollectInsertionElements(IntInput, 0, Elements,
1457 DestVecTy->getElementType()))
1458 return 0;
1459
1460 // If we succeeded, we know that all of the element are specified by Elements
1461 // or are zero if Elements has a null entry. Recast this as a set of
1462 // insertions.
1463 Value *Result = Constant::getNullValue(CI.getType());
1464 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1465 if (Elements[i] == 0) continue; // Unset element.
1466
1467 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1468 IC.Builder->getInt32(i));
1469 }
1470
1471 return Result;
1472}
1473
1474
Chris Lattnere5a14262010-08-26 21:55:42 +00001475/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1476/// bitcast. The various long double bitcasts can't get in here.
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001477static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
Chris Lattnere5a14262010-08-26 21:55:42 +00001478 Value *Src = CI.getOperand(0);
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001479 const Type *DestTy = CI.getType();
Chris Lattnere5a14262010-08-26 21:55:42 +00001480
1481 // If this is a bitcast from int to float, check to see if the int is an
1482 // extraction from a vector.
1483 Value *VecInput = 0;
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001484 // bitcast(trunc(bitcast(somevector)))
Chris Lattnere5a14262010-08-26 21:55:42 +00001485 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1486 isa<VectorType>(VecInput->getType())) {
1487 const VectorType *VecTy = cast<VectorType>(VecInput->getType());
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001488 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1489
1490 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1491 // If the element type of the vector doesn't match the result type,
1492 // bitcast it to be a vector type we can extract from.
1493 if (VecTy->getElementType() != DestTy) {
1494 VecTy = VectorType::get(DestTy,
1495 VecTy->getPrimitiveSizeInBits() / DestWidth);
1496 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1497 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001498
Chris Lattnere5a14262010-08-26 21:55:42 +00001499 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001500 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001501 }
1502
Chris Lattner26dbe7e2010-08-26 22:14:59 +00001503 // bitcast(trunc(lshr(bitcast(somevector), cst))
1504 ConstantInt *ShAmt = 0;
1505 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1506 m_ConstantInt(ShAmt)))) &&
1507 isa<VectorType>(VecInput->getType())) {
1508 const VectorType *VecTy = cast<VectorType>(VecInput->getType());
1509 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1510 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1511 ShAmt->getZExtValue() % DestWidth == 0) {
1512 // If the element type of the vector doesn't match the result type,
1513 // bitcast it to be a vector type we can extract from.
1514 if (VecTy->getElementType() != DestTy) {
1515 VecTy = VectorType::get(DestTy,
1516 VecTy->getPrimitiveSizeInBits() / DestWidth);
1517 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1518 }
1519
1520 unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1521 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1522 }
1523 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001524 return 0;
1525}
Chris Lattner67451912010-05-08 21:50:26 +00001526
Chris Lattner80f43d32010-01-04 07:53:58 +00001527Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1528 // If the operands are integer typed then apply the integer transforms,
1529 // otherwise just apply the common ones.
1530 Value *Src = CI.getOperand(0);
1531 const Type *SrcTy = Src->getType();
1532 const Type *DestTy = CI.getType();
1533
Chris Lattner80f43d32010-01-04 07:53:58 +00001534 // Get rid of casts from one type to the same type. These are useless and can
1535 // be replaced by the operand.
1536 if (DestTy == Src->getType())
1537 return ReplaceInstUsesWith(CI, Src);
1538
1539 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1540 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1541 const Type *DstElTy = DstPTy->getElementType();
1542 const Type *SrcElTy = SrcPTy->getElementType();
1543
1544 // If the address spaces don't match, don't eliminate the bitcast, which is
1545 // required for changing types.
1546 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1547 return 0;
1548
1549 // If we are casting a alloca to a pointer to a type of the same
1550 // size, rewrite the allocation instruction to allocate the "right" type.
1551 // There is no need to modify malloc calls because it is their bitcast that
1552 // needs to be cleaned up.
1553 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1554 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1555 return V;
1556
1557 // If the source and destination are pointers, and this cast is equivalent
1558 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1559 // This can enhance SROA and other transforms that want type-safe pointers.
1560 Constant *ZeroUInt =
1561 Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1562 unsigned NumZeros = 0;
1563 while (SrcElTy != DstElTy &&
Duncan Sands1df98592010-02-16 11:11:14 +00001564 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
Chris Lattner80f43d32010-01-04 07:53:58 +00001565 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1566 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1567 ++NumZeros;
1568 }
1569
1570 // If we found a path from the src to dest, create the getelementptr now.
1571 if (SrcElTy == DstElTy) {
1572 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1573 return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001574 ((Instruction*)NULL));
Chris Lattner80f43d32010-01-04 07:53:58 +00001575 }
1576 }
Chris Lattnere5a14262010-08-26 21:55:42 +00001577
1578 // Try to optimize int -> float bitcasts.
1579 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1580 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1581 return I;
Chris Lattner80f43d32010-01-04 07:53:58 +00001582
1583 if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
Duncan Sands1df98592010-02-16 11:11:14 +00001584 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001585 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1586 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Chris Lattner80f43d32010-01-04 07:53:58 +00001587 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
Chris Lattner80f43d32010-01-04 07:53:58 +00001588 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1589 }
Chris Lattner67451912010-05-08 21:50:26 +00001590
Chris Lattner3dd08732010-08-28 01:20:38 +00001591 if (isa<IntegerType>(SrcTy)) {
1592 // If this is a cast from an integer to vector, check to see if the input
1593 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1594 // the casts with a shuffle and (potentially) a bitcast.
1595 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1596 CastInst *SrcCast = cast<CastInst>(Src);
1597 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1598 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1599 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
Chris Lattner67451912010-05-08 21:50:26 +00001600 cast<VectorType>(DestTy), *this))
Chris Lattner3dd08732010-08-28 01:20:38 +00001601 return I;
1602 }
1603
1604 // If the input is an 'or' instruction, we may be doing shifts and ors to
1605 // assemble the elements of the vector manually. Try to rip the code out
1606 // and replace it with insertelements.
1607 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1608 return ReplaceInstUsesWith(CI, V);
Chris Lattner67451912010-05-08 21:50:26 +00001609 }
Chris Lattner80f43d32010-01-04 07:53:58 +00001610 }
1611
1612 if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
Duncan Sands1df98592010-02-16 11:11:14 +00001613 if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001614 Value *Elem =
1615 Builder->CreateExtractElement(Src,
1616 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1617 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
Chris Lattner80f43d32010-01-04 07:53:58 +00001618 }
1619 }
1620
1621 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001622 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
Dan Gohmana5ced592010-04-07 23:22:42 +00001623 // a bitcast to a vector with the same # elts.
Duncan Sands1df98592010-02-16 11:11:14 +00001624 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001625 cast<VectorType>(DestTy)->getNumElements() ==
1626 SVI->getType()->getNumElements() &&
1627 SVI->getType()->getNumElements() ==
1628 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1629 BitCastInst *Tmp;
1630 // If either of the operands is a cast from CI.getType(), then
1631 // evaluating the shuffle in the casted destination's type will allow
1632 // us to eliminate at least one cast.
1633 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1634 Tmp->getOperand(0)->getType() == DestTy) ||
1635 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1636 Tmp->getOperand(0)->getType() == DestTy)) {
1637 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1638 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1639 // Return a new shuffle vector. Use the same element ID's, as we
1640 // know the vector types match #elts.
1641 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner80f43d32010-01-04 07:53:58 +00001642 }
1643 }
1644 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001645
Duncan Sands1df98592010-02-16 11:11:14 +00001646 if (SrcTy->isPointerTy())
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001647 return commonPointerCastTransforms(CI);
1648 return commonCastTransforms(CI);
Chris Lattner80f43d32010-01-04 07:53:58 +00001649}