blob: 8f12ee0b6162823c3f80d5a39ed7ee15178d9ded [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000019#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc4d3b22009-11-11 02:08:33 +000020#include "llvm/Analysis/LazyValueInfo.h"
Dan Gohmandd9344f2010-05-28 16:19:17 +000021#include "llvm/Analysis/Loads.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000022#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000023#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000024#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000025#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000026#include "llvm/ADT/DenseMap.h"
Owen Andersoncb211902010-08-31 07:36:34 +000027#include "llvm/ADT/DenseSet.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000028#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000032#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000033#include "llvm/Support/Debug.h"
Chris Lattner56608462009-12-28 08:20:46 +000034#include "llvm/Support/ValueHandle.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000035#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000036using namespace llvm;
37
Chris Lattnerbd3401f2008-04-20 22:39:42 +000038STATISTIC(NumThreads, "Number of jumps threaded");
39STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000040STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000041
Chris Lattner177480b2008-04-20 21:13:06 +000042static cl::opt<unsigned>
43Threshold("jump-threading-threshold",
44 cl::desc("Max block size to duplicate for jump threading"),
45 cl::init(6), cl::Hidden);
46
Chris Lattner8383a7b2008-04-20 20:35:01 +000047namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000048 /// This pass performs 'jump threading', which looks at blocks that have
49 /// multiple predecessors and multiple successors. If one or more of the
50 /// predecessors of the block can be proven to always jump to one of the
51 /// successors, we forward the edge from the predecessor to the successor by
52 /// duplicating the contents of this block.
53 ///
54 /// An example of when this can occur is code like this:
55 ///
56 /// if () { ...
57 /// X = 4;
58 /// }
59 /// if (X < 3) {
60 ///
61 /// In this case, the unconditional branch at the end of the first if can be
62 /// revectored to the false side of the second if.
63 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000064 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000065 TargetData *TD;
Chris Lattnercc4d3b22009-11-11 02:08:33 +000066 LazyValueInfo *LVI;
Mike Stumpfe095f32009-05-04 18:40:41 +000067#ifdef NDEBUG
68 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
69#else
70 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
71#endif
Owen Andersoncb211902010-08-31 07:36:34 +000072 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
Owen Anderson9ba35362010-08-31 19:24:27 +000073
74 // RAII helper for updating the recursion stack.
75 struct RecursionSetRemover {
76 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
77 std::pair<Value*, BasicBlock*> ThePair;
78
79 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
80 std::pair<Value*, BasicBlock*> P)
81 : TheSet(S), ThePair(P) { }
82
83 ~RecursionSetRemover() {
84 TheSet.erase(ThePair);
85 }
86 };
Chris Lattner8383a7b2008-04-20 20:35:01 +000087 public:
88 static char ID; // Pass identification
Owen Anderson081c34b2010-10-19 17:21:58 +000089 JumpThreading() : FunctionPass(ID) {
90 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
91 }
Chris Lattner8383a7b2008-04-20 20:35:01 +000092
93 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000094
Chris Lattnercc4d3b22009-11-11 02:08:33 +000095 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Owen Andersonc809d902010-09-14 20:57:41 +000096 AU.addRequired<LazyValueInfo>();
97 AU.addPreserved<LazyValueInfo>();
Chris Lattnercc4d3b22009-11-11 02:08:33 +000098 }
99
100 void FindLoopHeaders(Function &F);
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000101 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +0000102 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
103 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +0000104 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
Chris Lattner2249a0b2010-01-12 02:07:17 +0000105 const SmallVectorImpl<BasicBlock *> &PredBBs);
Chris Lattner5729d382009-11-07 08:05:03 +0000106
107 typedef SmallVectorImpl<std::pair<ConstantInt*,
108 BasicBlock*> > PredValueInfo;
109
110 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
111 PredValueInfo &Result);
Chris Lattner1c96b412009-11-12 01:37:43 +0000112 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +0000113
114
Chris Lattner421fa9e2008-12-03 07:48:08 +0000115 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000116 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +0000117
Chris Lattner77beb472010-01-11 23:41:09 +0000118 bool ProcessBranchOnPHI(PHINode *PN);
Chris Lattner2249a0b2010-01-12 02:07:17 +0000119 bool ProcessBranchOnXOR(BinaryOperator *BO);
Chris Lattner69e067f2008-11-27 05:07:53 +0000120
121 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +0000122 };
Chris Lattner8383a7b2008-04-20 20:35:01 +0000123}
124
Dan Gohman844731a2008-05-13 00:00:25 +0000125char JumpThreading::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000126INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
127 "Jump Threading", false, false)
128INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
129INITIALIZE_PASS_END(JumpThreading, "jump-threading",
Owen Andersonce665bd2010-10-07 22:25:06 +0000130 "Jump Threading", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000131
Chris Lattner8383a7b2008-04-20 20:35:01 +0000132// Public interface to the Jump Threading pass
133FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
134
135/// runOnFunction - Top level algorithm.
136///
137bool JumpThreading::runOnFunction(Function &F) {
David Greenefe7fe662010-01-05 01:27:19 +0000138 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000139 TD = getAnalysisIfAvailable<TargetData>();
Owen Andersonc809d902010-09-14 20:57:41 +0000140 LVI = &getAnalysis<LazyValueInfo>();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000141
Mike Stumpfe095f32009-05-04 18:40:41 +0000142 FindLoopHeaders(F);
143
Benjamin Kramer66b581e2010-01-07 13:50:07 +0000144 bool Changed, EverChanged = false;
145 do {
146 Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000147 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
148 BasicBlock *BB = I;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000149 // Thread all of the branches we can over this block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000150 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000151 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000152
153 ++I;
154
155 // If the block is trivially dead, zap it. This eliminates the successor
156 // edges which simplifies the CFG.
157 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000158 BB != &BB->getParent()->getEntryBlock()) {
David Greenefe7fe662010-01-05 01:27:19 +0000159 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000160 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000161 LoopHeaders.erase(BB);
Owen Andersonc809d902010-09-14 20:57:41 +0000162 LVI->eraseBlock(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000163 DeleteDeadBlock(BB);
164 Changed = true;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000165 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
166 // Can't thread an unconditional jump, but if the block is "almost
167 // empty", we can replace uses of it with uses of the successor and make
168 // this dead.
169 if (BI->isUnconditional() &&
170 BB != &BB->getParent()->getEntryBlock()) {
171 BasicBlock::iterator BBI = BB->getFirstNonPHI();
172 // Ignore dbg intrinsics.
173 while (isa<DbgInfoIntrinsic>(BBI))
174 ++BBI;
175 // If the terminator is the only non-phi instruction, try to nuke it.
176 if (BBI->isTerminator()) {
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000177 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
178 // block, we have to make sure it isn't in the LoopHeaders set. We
Chris Lattner46875c02009-12-01 06:04:43 +0000179 // reinsert afterward if needed.
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000180 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
Chris Lattner46875c02009-12-01 06:04:43 +0000181 BasicBlock *Succ = BI->getSuccessor(0);
Chris Lattnerf3183f62009-11-10 21:40:01 +0000182
Owen Anderson00ac77e2010-08-18 18:39:01 +0000183 // FIXME: It is always conservatively correct to drop the info
184 // for a block even if it doesn't get erased. This isn't totally
185 // awesome, but it allows us to use AssertingVH to prevent nasty
186 // dangling pointer issues within LazyValueInfo.
Owen Andersonc809d902010-09-14 20:57:41 +0000187 LVI->eraseBlock(BB);
Chris Lattner46875c02009-12-01 06:04:43 +0000188 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
Chris Lattnerf3183f62009-11-10 21:40:01 +0000189 Changed = true;
Chris Lattner46875c02009-12-01 06:04:43 +0000190 // If we deleted BB and BB was the header of a loop, then the
191 // successor is now the header of the loop.
192 BB = Succ;
193 }
194
195 if (ErasedFromLoopHeaders)
Chris Lattnerf3183f62009-11-10 21:40:01 +0000196 LoopHeaders.insert(BB);
197 }
198 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000199 }
200 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000201 EverChanged |= Changed;
Benjamin Kramer66b581e2010-01-07 13:50:07 +0000202 } while (Changed);
Mike Stumpfe095f32009-05-04 18:40:41 +0000203
204 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000205 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000206}
Chris Lattner177480b2008-04-20 21:13:06 +0000207
Chris Lattner78c552e2009-10-11 07:24:57 +0000208/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
209/// thread across it.
210static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
211 /// Ignore PHI nodes, these will be flattened when duplication happens.
212 BasicBlock::const_iterator I = BB->getFirstNonPHI();
213
Chris Lattnerb14b88a2009-11-11 00:21:58 +0000214 // FIXME: THREADING will delete values that are just used to compute the
215 // branch, so they shouldn't count against the duplication cost.
216
217
Chris Lattner78c552e2009-10-11 07:24:57 +0000218 // Sum up the cost of each instruction until we get to the terminator. Don't
219 // include the terminator because the copy won't include it.
220 unsigned Size = 0;
221 for (; !isa<TerminatorInst>(I); ++I) {
222 // Debugger intrinsics don't incur code size.
223 if (isa<DbgInfoIntrinsic>(I)) continue;
224
225 // If this is a pointer->pointer bitcast, it is free.
Duncan Sands1df98592010-02-16 11:11:14 +0000226 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
Chris Lattner78c552e2009-10-11 07:24:57 +0000227 continue;
228
229 // All other instructions count for at least one unit.
230 ++Size;
231
232 // Calls are more expensive. If they are non-intrinsic calls, we model them
233 // as having cost of 4. If they are a non-vector intrinsic, we model them
234 // as having cost of 2 total, and if they are a vector intrinsic, we model
235 // them as having cost 1.
236 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
237 if (!isa<IntrinsicInst>(CI))
238 Size += 3;
Duncan Sands1df98592010-02-16 11:11:14 +0000239 else if (!CI->getType()->isVectorTy())
Chris Lattner78c552e2009-10-11 07:24:57 +0000240 Size += 1;
241 }
242 }
243
244 // Threading through a switch statement is particularly profitable. If this
245 // block ends in a switch, decrease its cost to make it more likely to happen.
246 if (isa<SwitchInst>(I))
247 Size = Size > 6 ? Size-6 : 0;
248
249 return Size;
250}
251
Mike Stumpfe095f32009-05-04 18:40:41 +0000252/// FindLoopHeaders - We do not want jump threading to turn proper loop
253/// structures into irreducible loops. Doing this breaks up the loop nesting
254/// hierarchy and pessimizes later transformations. To prevent this from
255/// happening, we first have to find the loop headers. Here we approximate this
256/// by finding targets of backedges in the CFG.
257///
258/// Note that there definitely are cases when we want to allow threading of
259/// edges across a loop header. For example, threading a jump from outside the
260/// loop (the preheader) to an exit block of the loop is definitely profitable.
261/// It is also almost always profitable to thread backedges from within the loop
262/// to exit blocks, and is often profitable to thread backedges to other blocks
263/// within the loop (forming a nested loop). This simple analysis is not rich
264/// enough to track all of these properties and keep it up-to-date as the CFG
265/// mutates, so we don't allow any of these transformations.
266///
267void JumpThreading::FindLoopHeaders(Function &F) {
268 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
269 FindFunctionBackedges(F, Edges);
270
271 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
272 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
273}
274
Owen Anderson0eb355a2010-08-31 20:26:04 +0000275// Helper method for ComputeValueKnownInPredecessors. If Value is a
276// ConstantInt, push it. If it's an undef, push 0. Otherwise, do nothing.
277static void PushConstantIntOrUndef(SmallVectorImpl<std::pair<ConstantInt*,
278 BasicBlock*> > &Result,
279 Constant *Value, BasicBlock* BB){
280 if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Value))
281 Result.push_back(std::make_pair(FoldedCInt, BB));
282 else if (isa<UndefValue>(Value))
283 Result.push_back(std::make_pair((ConstantInt*)0, BB));
284}
285
Chris Lattner5729d382009-11-07 08:05:03 +0000286/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
287/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000288/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000289/// result vector. If a value is known to be undef, it is returned as null.
290///
Chris Lattner5729d382009-11-07 08:05:03 +0000291/// This returns true if there were any known values.
292///
Chris Lattner5729d382009-11-07 08:05:03 +0000293bool JumpThreading::
294ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
Owen Anderson9ba35362010-08-31 19:24:27 +0000295 // This method walks up use-def chains recursively. Because of this, we could
296 // get into an infinite loop going around loops in the use-def chain. To
297 // prevent this, keep track of what (value, block) pairs we've already visited
298 // and terminate the search if we loop back to them
Owen Andersoncb211902010-08-31 07:36:34 +0000299 if (!RecursionSet.insert(std::make_pair(V, BB)).second)
300 return false;
301
Owen Anderson9ba35362010-08-31 19:24:27 +0000302 // An RAII help to remove this pair from the recursion set once the recursion
303 // stack pops back out again.
304 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
305
Chris Lattner5729d382009-11-07 08:05:03 +0000306 // If V is a constantint, then it is known in all predecessors.
307 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
308 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000309
310 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
311 Result.push_back(std::make_pair(CI, *PI));
Owen Andersoncb211902010-08-31 07:36:34 +0000312
Chris Lattner5729d382009-11-07 08:05:03 +0000313 return true;
314 }
315
316 // If V is a non-instruction value, or an instruction in a different block,
317 // then it can't be derived from a PHI.
318 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000319 if (I == 0 || I->getParent() != BB) {
320
321 // Okay, if this is a live-in value, see if it has a known value at the end
322 // of any of our predecessors.
323 //
324 // FIXME: This should be an edge property, not a block end property.
325 /// TODO: Per PR2563, we could infer value range information about a
326 /// predecessor based on its terminator.
327 //
Owen Andersonc809d902010-09-14 20:57:41 +0000328 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
329 // "I" is a non-local compare-with-a-constant instruction. This would be
330 // able to handle value inequalities better, for example if the compare is
331 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
332 // Perhaps getConstantOnEdge should be smart enough to do this?
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000333
Owen Andersonc809d902010-09-14 20:57:41 +0000334 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
335 BasicBlock *P = *PI;
336 // If the value is known by LazyValueInfo to be a constant in a
337 // predecessor, use that information to try to thread this block.
338 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
339 if (PredCst == 0 ||
340 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
341 continue;
342
343 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
344 }
345
346 return !Result.empty();
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000347 }
Chris Lattner5729d382009-11-07 08:05:03 +0000348
349 /// If I is a PHI node, then we know the incoming values for any constants.
350 if (PHINode *PN = dyn_cast<PHINode>(I)) {
351 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
352 Value *InVal = PN->getIncomingValue(i);
353 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
354 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
355 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
Owen Andersonc809d902010-09-14 20:57:41 +0000356 } else {
Owen Anderson62efd3b2010-08-26 17:40:24 +0000357 Constant *CI = LVI->getConstantOnEdge(InVal,
358 PN->getIncomingBlock(i), BB);
Owen Anderson327ca7b2010-08-30 23:22:36 +0000359 // LVI returns null is no value could be determined.
360 if (!CI) continue;
Owen Anderson0eb355a2010-08-31 20:26:04 +0000361 PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i));
Chris Lattner5729d382009-11-07 08:05:03 +0000362 }
363 }
Owen Andersoncb211902010-08-31 07:36:34 +0000364
Chris Lattner5729d382009-11-07 08:05:03 +0000365 return !Result.empty();
366 }
367
368 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
369
370 // Handle some boolean conditions.
371 if (I->getType()->getPrimitiveSizeInBits() == 1) {
372 // X | true -> true
373 // X & false -> false
374 if (I->getOpcode() == Instruction::Or ||
375 I->getOpcode() == Instruction::And) {
376 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
377 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
378
Owen Anderson9ba35362010-08-31 19:24:27 +0000379 if (LHSVals.empty() && RHSVals.empty())
Chris Lattner5729d382009-11-07 08:05:03 +0000380 return false;
381
382 ConstantInt *InterestingVal;
383 if (I->getOpcode() == Instruction::Or)
384 InterestingVal = ConstantInt::getTrue(I->getContext());
385 else
386 InterestingVal = ConstantInt::getFalse(I->getContext());
387
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000388 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
389
Chris Lattner1e452652010-02-11 04:40:44 +0000390 // Scan for the sentinel. If we find an undef, force it to the
391 // interesting value: x|undef -> true and x&undef -> false.
Chris Lattner5729d382009-11-07 08:05:03 +0000392 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
Chris Lattner1e452652010-02-11 04:40:44 +0000393 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
Chris Lattner5729d382009-11-07 08:05:03 +0000394 Result.push_back(LHSVals[i]);
Chris Lattner1e452652010-02-11 04:40:44 +0000395 Result.back().first = InterestingVal;
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000396 LHSKnownBBs.insert(LHSVals[i].second);
Chris Lattner1e452652010-02-11 04:40:44 +0000397 }
Chris Lattner5729d382009-11-07 08:05:03 +0000398 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
Chris Lattner1e452652010-02-11 04:40:44 +0000399 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
Chris Lattner0a961442010-07-12 00:47:34 +0000400 // If we already inferred a value for this block on the LHS, don't
401 // re-add it.
Chris Lattner2fa7b48e2010-08-18 03:14:36 +0000402 if (!LHSKnownBBs.count(RHSVals[i].second)) {
Chris Lattner0a961442010-07-12 00:47:34 +0000403 Result.push_back(RHSVals[i]);
404 Result.back().first = InterestingVal;
405 }
Chris Lattner1e452652010-02-11 04:40:44 +0000406 }
Owen Andersoncb211902010-08-31 07:36:34 +0000407
Chris Lattner5729d382009-11-07 08:05:03 +0000408 return !Result.empty();
409 }
410
Chris Lattner055d0462009-11-10 22:39:16 +0000411 // Handle the NOT form of XOR.
412 if (I->getOpcode() == Instruction::Xor &&
413 isa<ConstantInt>(I->getOperand(1)) &&
414 cast<ConstantInt>(I->getOperand(1))->isOne()) {
415 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
Owen Anderson9ba35362010-08-31 19:24:27 +0000416 if (Result.empty())
Chris Lattner055d0462009-11-10 22:39:16 +0000417 return false;
418
419 // Invert the known values.
420 for (unsigned i = 0, e = Result.size(); i != e; ++i)
Chris Lattner1fb56302009-11-15 19:57:43 +0000421 if (Result[i].first)
422 Result[i].first =
423 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
Owen Andersoncb211902010-08-31 07:36:34 +0000424
Chris Lattner055d0462009-11-10 22:39:16 +0000425 return true;
426 }
Owen Anderson62efd3b2010-08-26 17:40:24 +0000427
428 // Try to simplify some other binary operator values.
429 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
Owen Anderson0eb355a2010-08-31 20:26:04 +0000430 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Owen Anderson62efd3b2010-08-26 17:40:24 +0000431 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
432 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
Owen Andersoncb211902010-08-31 07:36:34 +0000433
434 // Try to use constant folding to simplify the binary operator.
435 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
Chris Lattner906a6752010-09-05 20:03:09 +0000436 Constant *V = LHSVals[i].first;
437 if (V == 0) V = UndefValue::get(BO->getType());
Owen Anderson0eb355a2010-08-31 20:26:04 +0000438 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
Owen Andersoncb211902010-08-31 07:36:34 +0000439
Owen Anderson0eb355a2010-08-31 20:26:04 +0000440 PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
Owen Andersoncb211902010-08-31 07:36:34 +0000441 }
Owen Anderson62efd3b2010-08-26 17:40:24 +0000442 }
Owen Andersoncb211902010-08-31 07:36:34 +0000443
Owen Andersoncb211902010-08-31 07:36:34 +0000444 return !Result.empty();
Chris Lattner5729d382009-11-07 08:05:03 +0000445 }
446
447 // Handle compare with phi operand, where the PHI is defined in this block.
448 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
449 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
450 if (PN && PN->getParent() == BB) {
451 // We can do this simplification if any comparisons fold to true or false.
452 // See if any do.
453 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
454 BasicBlock *PredBB = PN->getIncomingBlock(i);
455 Value *LHS = PN->getIncomingValue(i);
456 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
457
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000458 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
Chris Lattner66c04c42009-11-12 05:24:05 +0000459 if (Res == 0) {
Owen Andersonc809d902010-09-14 20:57:41 +0000460 if (!isa<Constant>(RHS))
Chris Lattner66c04c42009-11-12 05:24:05 +0000461 continue;
462
463 LazyValueInfo::Tristate
464 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
465 cast<Constant>(RHS), PredBB, BB);
466 if (ResT == LazyValueInfo::Unknown)
467 continue;
468 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
469 }
Chris Lattner5729d382009-11-07 08:05:03 +0000470
Owen Anderson0eb355a2010-08-31 20:26:04 +0000471 if (Constant *ConstRes = dyn_cast<Constant>(Res))
472 PushConstantIntOrUndef(Result, ConstRes, PredBB);
Chris Lattner5729d382009-11-07 08:05:03 +0000473 }
474
475 return !Result.empty();
476 }
477
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000478
479 // If comparing a live-in value against a constant, see if we know the
480 // live-in value on any predecessors.
Owen Andersonc809d902010-09-14 20:57:41 +0000481 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
Owen Anderson62efd3b2010-08-26 17:40:24 +0000482 if (!isa<Instruction>(Cmp->getOperand(0)) ||
Owen Anderson327ca7b2010-08-30 23:22:36 +0000483 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
Owen Anderson62efd3b2010-08-26 17:40:24 +0000484 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
Gabor Greifee1f44f2010-07-12 14:10:24 +0000485
Owen Anderson62efd3b2010-08-26 17:40:24 +0000486 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
487 BasicBlock *P = *PI;
488 // If the value is known by LazyValueInfo to be a constant in a
489 // predecessor, use that information to try to thread this block.
490 LazyValueInfo::Tristate Res =
491 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
492 RHSCst, P, BB);
493 if (Res == LazyValueInfo::Unknown)
494 continue;
Chris Lattner0e0ff292009-11-12 04:37:50 +0000495
Owen Anderson62efd3b2010-08-26 17:40:24 +0000496 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
497 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
498 }
499
500 return !Result.empty();
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000501 }
Owen Anderson62efd3b2010-08-26 17:40:24 +0000502
Owen Andersoncb211902010-08-31 07:36:34 +0000503 // Try to find a constant value for the LHS of a comparison,
Owen Anderson62efd3b2010-08-26 17:40:24 +0000504 // and evaluate it statically if we can.
Owen Anderson327ca7b2010-08-30 23:22:36 +0000505 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
Owen Anderson62efd3b2010-08-26 17:40:24 +0000506 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
507 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
508
Owen Anderson62efd3b2010-08-26 17:40:24 +0000509 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
Chris Lattner906a6752010-09-05 20:03:09 +0000510 Constant *V = LHSVals[i].first;
511 if (V == 0) V = UndefValue::get(CmpConst->getType());
Owen Anderson0eb355a2010-08-31 20:26:04 +0000512 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
513 V, CmpConst);
514 PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
Owen Anderson62efd3b2010-08-26 17:40:24 +0000515 }
516
517 return !Result.empty();
518 }
Chris Lattner2ad00bf2009-11-11 22:31:38 +0000519 }
Chris Lattner5729d382009-11-07 08:05:03 +0000520 }
Owen Anderson62efd3b2010-08-26 17:40:24 +0000521
Owen Andersonc809d902010-09-14 20:57:41 +0000522 // If all else fails, see if LVI can figure out a constant value for us.
523 Constant *CI = LVI->getConstant(V, BB);
524 ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
525 if (CInt) {
526 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
527 Result.push_back(std::make_pair(CInt, *PI));
Owen Anderson62efd3b2010-08-26 17:40:24 +0000528 }
Owen Andersonc809d902010-09-14 20:57:41 +0000529
530 return !Result.empty();
Chris Lattner5729d382009-11-07 08:05:03 +0000531}
532
533
Chris Lattner6bf77502008-04-22 07:05:46 +0000534
Chris Lattnere33583b2009-10-11 04:18:15 +0000535/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
536/// in an undefined jump, decide which block is best to revector to.
537///
538/// Since we can pick an arbitrary destination, we pick the successor with the
539/// fewest predecessors. This should reduce the in-degree of the others.
540///
541static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
542 TerminatorInst *BBTerm = BB->getTerminator();
543 unsigned MinSucc = 0;
544 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
545 // Compute the successor with the minimum number of predecessors.
546 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
547 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
548 TestBB = BBTerm->getSuccessor(i);
549 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
550 if (NumPreds < MinNumPreds)
551 MinSucc = i;
552 }
553
554 return MinSucc;
555}
556
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000557/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000558/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000559bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner8231fd12010-01-23 18:56:07 +0000560 // If the block is trivially dead, just return and let the caller nuke it.
561 // This simplifies other transformations.
562 if (pred_begin(BB) == pred_end(BB) &&
563 BB != &BB->getParent()->getEntryBlock())
564 return false;
565
Chris Lattner69e067f2008-11-27 05:07:53 +0000566 // If this block has a single predecessor, and if that pred has a single
567 // successor, merge the blocks. This encourages recursive jump threading
568 // because now the condition in this block can be threaded through
569 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000570 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000571 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
572 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000573 // If SinglePred was a loop header, BB becomes one.
574 if (LoopHeaders.erase(SinglePred))
575 LoopHeaders.insert(BB);
576
Chris Lattner3d86d242008-11-27 19:25:19 +0000577 // Remember if SinglePred was the entry block of the function. If so, we
578 // will need to move BB back to the entry position.
579 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Owen Andersonc809d902010-09-14 20:57:41 +0000580 LVI->eraseBlock(SinglePred);
Chris Lattner69e067f2008-11-27 05:07:53 +0000581 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000582
583 if (isEntry && BB != &BB->getParent()->getEntryBlock())
584 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000585 return true;
586 }
Chris Lattner5729d382009-11-07 08:05:03 +0000587 }
588
589 // Look to see if the terminator is a branch of switch, if not we can't thread
590 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000591 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000592 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
593 // Can't thread an unconditional jump.
594 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000595 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000596 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000597 Condition = SI->getCondition();
598 else
599 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000600
601 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000602 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000603 // other blocks.
604 if (isa<ConstantInt>(Condition)) {
David Greenefe7fe662010-01-05 01:27:19 +0000605 DEBUG(dbgs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000606 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000607 ++NumFolds;
608 ConstantFoldTerminator(BB);
609 return true;
610 }
611
Chris Lattner421fa9e2008-12-03 07:48:08 +0000612 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000613 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000614 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000615 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000616
617 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000618 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000619 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000620 if (i == BestSucc) continue;
Owen Anderson36c4deb2010-09-29 20:34:41 +0000621 BBTerm->getSuccessor(i)->removePredecessor(BB, true);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000622 }
623
David Greenefe7fe662010-01-05 01:27:19 +0000624 DEBUG(dbgs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000625 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000626 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000627 BBTerm->eraseFromParent();
628 return true;
629 }
630
631 Instruction *CondInst = dyn_cast<Instruction>(Condition);
632
Chris Lattner421fa9e2008-12-03 07:48:08 +0000633 // All the rest of our checks depend on the condition being an instruction.
Chris Lattner87e9f592009-11-12 01:41:34 +0000634 if (CondInst == 0) {
635 // FIXME: Unify this with code below.
Owen Andersonc809d902010-09-14 20:57:41 +0000636 if (ProcessThreadableEdges(Condition, BB))
Chris Lattner87e9f592009-11-12 01:41:34 +0000637 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000638 return false;
Chris Lattner87e9f592009-11-12 01:41:34 +0000639 }
640
Chris Lattner421fa9e2008-12-03 07:48:08 +0000641
Nick Lewycky9683f182009-06-19 04:56:29 +0000642 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Owen Anderson660cab32010-08-27 17:12:29 +0000643 // For a comparison where the LHS is outside this block, it's possible
Owen Andersonfc2fb172010-08-27 20:32:56 +0000644 // that we've branched on it before. Used LVI to see if we can simplify
Owen Anderson660cab32010-08-27 17:12:29 +0000645 // the branch based on that.
646 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
647 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
Owen Andersonc1bdac62010-08-31 18:48:48 +0000648 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
Owen Andersonc809d902010-09-14 20:57:41 +0000649 if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
Owen Anderson660cab32010-08-27 17:12:29 +0000650 (!isa<Instruction>(CondCmp->getOperand(0)) ||
651 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
652 // For predecessor edge, determine if the comparison is true or false
653 // on that edge. If they're all true or all false, we can simplify the
654 // branch.
655 // FIXME: We could handle mixed true/false by duplicating code.
Owen Andersonc1bdac62010-08-31 18:48:48 +0000656 LazyValueInfo::Tristate Baseline =
657 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
658 CondConst, *PI, BB);
659 if (Baseline != LazyValueInfo::Unknown) {
660 // Check that all remaining incoming values match the first one.
661 while (++PI != PE) {
Chris Lattnerbdabacd2010-09-05 20:10:47 +0000662 LazyValueInfo::Tristate Ret =
663 LVI->getPredicateOnEdge(CondCmp->getPredicate(),
664 CondCmp->getOperand(0), CondConst, *PI, BB);
Owen Andersonc1bdac62010-08-31 18:48:48 +0000665 if (Ret != Baseline) break;
666 }
667
668 // If we terminated early, then one of the values didn't match.
669 if (PI == PE) {
670 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
671 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
Owen Anderson36c4deb2010-09-29 20:34:41 +0000672 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
Owen Andersonc1bdac62010-08-31 18:48:48 +0000673 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
674 CondBr->eraseFromParent();
675 return true;
676 }
Owen Anderson660cab32010-08-27 17:12:29 +0000677 }
678 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000679 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000680
681 // Check for some cases that are worth simplifying. Right now we want to look
682 // for loads that are used by a switch or by the condition for the branch. If
683 // we see one, check to see if it's partially redundant. If so, insert a PHI
684 // which can then be used to thread the values.
685 //
Chris Lattner421fa9e2008-12-03 07:48:08 +0000686 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000687 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
688 if (isa<Constant>(CondCmp->getOperand(1)))
689 SimplifyValue = CondCmp->getOperand(0);
690
Chris Lattner4e447eb2009-11-15 19:58:31 +0000691 // TODO: There are other places where load PRE would be profitable, such as
692 // more complex comparisons.
Chris Lattner69e067f2008-11-27 05:07:53 +0000693 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
694 if (SimplifyPartiallyRedundantLoad(LI))
695 return true;
696
Chris Lattner5729d382009-11-07 08:05:03 +0000697
698 // Handle a variety of cases where we are branching on something derived from
699 // a PHI node in the current block. If we can prove that any predecessors
700 // compute a predictable value based on a PHI node, thread those predecessors.
701 //
Chris Lattnercc4d3b22009-11-11 02:08:33 +0000702 if (ProcessThreadableEdges(CondInst, BB))
703 return true;
Chris Lattner5729d382009-11-07 08:05:03 +0000704
Chris Lattner77beb472010-01-11 23:41:09 +0000705 // If this is an otherwise-unfoldable branch on a phi node in the current
706 // block, see if we can simplify.
707 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
708 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
709 return ProcessBranchOnPHI(PN);
Chris Lattner5729d382009-11-07 08:05:03 +0000710
Chris Lattner2249a0b2010-01-12 02:07:17 +0000711
712 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
713 if (CondInst->getOpcode() == Instruction::Xor &&
714 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
715 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
716
717
Chris Lattner69e067f2008-11-27 05:07:53 +0000718 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
Chris Lattner77beb472010-01-11 23:41:09 +0000719 // "(X == 4)", thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000720
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000721 return false;
722}
723
Chris Lattner421fa9e2008-12-03 07:48:08 +0000724/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
725/// block that jump on exactly the same condition. This means that we almost
726/// always know the direction of the edge in the DESTBB:
727/// PREDBB:
728/// br COND, DESTBB, BBY
729/// DESTBB:
730/// br COND, BBZ, BBW
731///
732/// If DESTBB has multiple predecessors, we can't just constant fold the branch
733/// in DESTBB, we have to thread over it.
734bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
735 BasicBlock *BB) {
736 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
737
738 // If both successors of PredBB go to DESTBB, we don't know anything. We can
739 // fold the branch to an unconditional one, which allows other recursive
740 // simplifications.
741 bool BranchDir;
742 if (PredBI->getSuccessor(1) != BB)
743 BranchDir = true;
744 else if (PredBI->getSuccessor(0) != BB)
745 BranchDir = false;
746 else {
David Greenefe7fe662010-01-05 01:27:19 +0000747 DEBUG(dbgs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000748 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000749 ++NumFolds;
750 ConstantFoldTerminator(PredBB);
751 return true;
752 }
753
754 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
755
756 // If the dest block has one predecessor, just fix the branch condition to a
757 // constant and fold it.
758 if (BB->getSinglePredecessor()) {
David Greenefe7fe662010-01-05 01:27:19 +0000759 DEBUG(dbgs() << " In block '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000760 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000761 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000762 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000763 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000764 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
765 BranchDir));
Chris Lattner6f285d22010-04-10 18:26:57 +0000766 // Delete dead instructions before we fold the branch. Folding the branch
767 // can eliminate edges from the CFG which can end up deleting OldCond.
Chris Lattner5a06cf62009-10-11 18:39:58 +0000768 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner6f285d22010-04-10 18:26:57 +0000769 ConstantFoldTerminator(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000770 return true;
771 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000772
Chris Lattner421fa9e2008-12-03 07:48:08 +0000773
774 // Next, figure out which successor we are threading to.
775 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
776
Chris Lattner5729d382009-11-07 08:05:03 +0000777 SmallVector<BasicBlock*, 2> Preds;
778 Preds.push_back(PredBB);
779
Mike Stumpfe095f32009-05-04 18:40:41 +0000780 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000781 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000782}
783
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000784/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
785/// block that switch on exactly the same condition. This means that we almost
786/// always know the direction of the edge in the DESTBB:
787/// PREDBB:
788/// switch COND [... DESTBB, BBY ... ]
789/// DESTBB:
790/// switch COND [... BBZ, BBW ]
791///
792/// Optimizing switches like this is very important, because simplifycfg builds
793/// switches out of repeated 'if' conditions.
794bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
795 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000796 // Can't thread edge to self.
797 if (PredBB == DestBB)
798 return false;
799
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000800 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
801 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
802
803 // There are a variety of optimizations that we can potentially do on these
804 // blocks: we order them from most to least preferable.
805
806 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
807 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000808 // growth. Skip debug info first.
809 BasicBlock::iterator BBI = DestBB->begin();
810 while (isa<DbgInfoIntrinsic>(BBI))
811 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000812
813 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000814 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000815 bool MadeChange = false;
816 // Ignore the default edge for now.
817 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
818 ConstantInt *DestVal = DestSI->getCaseValue(i);
819 BasicBlock *DestSucc = DestSI->getSuccessor(i);
820
821 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
822 // PredSI has an explicit case for it. If so, forward. If it is covered
823 // by the default case, we can't update PredSI.
824 unsigned PredCase = PredSI->findCaseValue(DestVal);
825 if (PredCase == 0) continue;
826
827 // If PredSI doesn't go to DestBB on this value, then it won't reach the
828 // case on this condition.
829 if (PredSI->getSuccessor(PredCase) != DestBB &&
830 DestSI->getSuccessor(i) != DestBB)
831 continue;
Chris Lattner08bc2702009-12-06 17:17:23 +0000832
833 // Do not forward this if it already goes to this destination, this would
834 // be an infinite loop.
835 if (PredSI->getSuccessor(PredCase) == DestSucc)
836 continue;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000837
838 // Otherwise, we're safe to make the change. Make sure that the edge from
839 // DestSI to DestSucc is not critical and has no PHI nodes.
David Greenefe7fe662010-01-05 01:27:19 +0000840 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
841 DEBUG(dbgs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000842
843 // If the destination has PHI nodes, just split the edge for updating
844 // simplicity.
845 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
846 SplitCriticalEdge(DestSI, i, this);
847 DestSucc = DestSI->getSuccessor(i);
848 }
849 FoldSingleEntryPHINodes(DestSucc);
850 PredSI->setSuccessor(PredCase, DestSucc);
851 MadeChange = true;
852 }
853
854 if (MadeChange)
855 return true;
856 }
857
858 return false;
859}
860
861
Chris Lattner69e067f2008-11-27 05:07:53 +0000862/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
863/// load instruction, eliminate it by replacing it with a PHI node. This is an
864/// important optimization that encourages jump threading, and needs to be run
865/// interlaced with other jump threading tasks.
866bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
867 // Don't hack volatile loads.
868 if (LI->isVolatile()) return false;
869
870 // If the load is defined in a block with exactly one predecessor, it can't be
871 // partially redundant.
872 BasicBlock *LoadBB = LI->getParent();
873 if (LoadBB->getSinglePredecessor())
874 return false;
875
876 Value *LoadedPtr = LI->getOperand(0);
877
878 // If the loaded operand is defined in the LoadBB, it can't be available.
Chris Lattner4e447eb2009-11-15 19:58:31 +0000879 // TODO: Could do simple PHI translation, that would be fun :)
Chris Lattner69e067f2008-11-27 05:07:53 +0000880 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
881 if (PtrOp->getParent() == LoadBB)
882 return false;
883
884 // Scan a few instructions up from the load, to see if it is obviously live at
885 // the entry to its block.
886 BasicBlock::iterator BBIt = LI;
887
Chris Lattner4e447eb2009-11-15 19:58:31 +0000888 if (Value *AvailableVal =
889 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000890 // If the value if the load is locally available within the block, just use
891 // it. This frequently occurs for reg2mem'd allocas.
892 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000893
894 // If the returned value is the load itself, replace with an undef. This can
895 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000896 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000897 LI->replaceAllUsesWith(AvailableVal);
898 LI->eraseFromParent();
899 return true;
900 }
901
902 // Otherwise, if we scanned the whole block and got to the top of the block,
903 // we know the block is locally transparent to the load. If not, something
904 // might clobber its value.
905 if (BBIt != LoadBB->begin())
906 return false;
907
908
909 SmallPtrSet<BasicBlock*, 8> PredsScanned;
910 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
911 AvailablePredsTy AvailablePreds;
912 BasicBlock *OneUnavailablePred = 0;
913
914 // If we got here, the loaded value is transparent through to the start of the
915 // block. Check to see if it is available in any of the predecessor blocks.
916 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
917 PI != PE; ++PI) {
918 BasicBlock *PredBB = *PI;
919
920 // If we already scanned this predecessor, skip it.
921 if (!PredsScanned.insert(PredBB))
922 continue;
923
924 // Scan the predecessor to see if the value is available in the pred.
925 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000926 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000927 if (!PredAvailable) {
928 OneUnavailablePred = PredBB;
929 continue;
930 }
931
932 // If so, this load is partially redundant. Remember this info so that we
933 // can create a PHI node.
934 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
935 }
936
937 // If the loaded value isn't available in any predecessor, it isn't partially
938 // redundant.
939 if (AvailablePreds.empty()) return false;
940
941 // Okay, the loaded value is available in at least one (and maybe all!)
942 // predecessors. If the value is unavailable in more than one unique
943 // predecessor, we want to insert a merge block for those common predecessors.
944 // This ensures that we only have to insert one reload, thus not increasing
945 // code size.
946 BasicBlock *UnavailablePred = 0;
947
948 // If there is exactly one predecessor where the value is unavailable, the
949 // already computed 'OneUnavailablePred' block is it. If it ends in an
950 // unconditional branch, we know that it isn't a critical edge.
951 if (PredsScanned.size() == AvailablePreds.size()+1 &&
952 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
953 UnavailablePred = OneUnavailablePred;
954 } else if (PredsScanned.size() != AvailablePreds.size()) {
955 // Otherwise, we had multiple unavailable predecessors or we had a critical
956 // edge from the one.
957 SmallVector<BasicBlock*, 8> PredsToSplit;
958 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
959
960 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
961 AvailablePredSet.insert(AvailablePreds[i].first);
962
963 // Add all the unavailable predecessors to the PredsToSplit list.
964 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
Chris Lattnere58867e2010-06-14 19:45:43 +0000965 PI != PE; ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +0000966 BasicBlock *P = *PI;
Chris Lattnere58867e2010-06-14 19:45:43 +0000967 // If the predecessor is an indirect goto, we can't split the edge.
Gabor Greifee1f44f2010-07-12 14:10:24 +0000968 if (isa<IndirectBrInst>(P->getTerminator()))
Chris Lattnere58867e2010-06-14 19:45:43 +0000969 return false;
970
Gabor Greifee1f44f2010-07-12 14:10:24 +0000971 if (!AvailablePredSet.count(P))
972 PredsToSplit.push_back(P);
Chris Lattnere58867e2010-06-14 19:45:43 +0000973 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000974
975 // Split them out to their own block.
976 UnavailablePred =
977 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
Chris Lattner4e447eb2009-11-15 19:58:31 +0000978 "thread-pre-split", this);
Chris Lattner69e067f2008-11-27 05:07:53 +0000979 }
980
981 // If the value isn't available in all predecessors, then there will be
982 // exactly one where it isn't available. Insert a load on that edge and add
983 // it to the AvailablePreds list.
984 if (UnavailablePred) {
985 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
986 "Can't handle critical edge here!");
Chris Lattner4e447eb2009-11-15 19:58:31 +0000987 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
988 LI->getAlignment(),
Chris Lattner69e067f2008-11-27 05:07:53 +0000989 UnavailablePred->getTerminator());
990 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
991 }
992
993 // Now we know that each predecessor of this block has a value in
994 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000995 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000996
997 // Create a PHI node at the start of the block for the PRE'd load value.
998 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
999 PN->takeName(LI);
1000
1001 // Insert new entries into the PHI for each predecessor. A single block may
1002 // have multiple entries here.
1003 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1004 ++PI) {
Gabor Greifee1f44f2010-07-12 14:10:24 +00001005 BasicBlock *P = *PI;
Chris Lattner69e067f2008-11-27 05:07:53 +00001006 AvailablePredsTy::iterator I =
1007 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
Gabor Greifee1f44f2010-07-12 14:10:24 +00001008 std::make_pair(P, (Value*)0));
Chris Lattner69e067f2008-11-27 05:07:53 +00001009
Gabor Greifee1f44f2010-07-12 14:10:24 +00001010 assert(I != AvailablePreds.end() && I->first == P &&
Chris Lattner69e067f2008-11-27 05:07:53 +00001011 "Didn't find entry for predecessor!");
1012
1013 PN->addIncoming(I->second, I->first);
1014 }
1015
1016 //cerr << "PRE: " << *LI << *PN << "\n";
1017
1018 LI->replaceAllUsesWith(PN);
1019 LI->eraseFromParent();
1020
1021 return true;
1022}
1023
Chris Lattner5729d382009-11-07 08:05:03 +00001024/// FindMostPopularDest - The specified list contains multiple possible
1025/// threadable destinations. Pick the one that occurs the most frequently in
1026/// the list.
1027static BasicBlock *
1028FindMostPopularDest(BasicBlock *BB,
1029 const SmallVectorImpl<std::pair<BasicBlock*,
1030 BasicBlock*> > &PredToDestList) {
1031 assert(!PredToDestList.empty());
1032
1033 // Determine popularity. If there are multiple possible destinations, we
1034 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1035 // blocks with known and real destinations to threading undef. We'll handle
1036 // them later if interesting.
1037 DenseMap<BasicBlock*, unsigned> DestPopularity;
1038 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1039 if (PredToDestList[i].second)
1040 DestPopularity[PredToDestList[i].second]++;
1041
1042 // Find the most popular dest.
1043 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1044 BasicBlock *MostPopularDest = DPI->first;
1045 unsigned Popularity = DPI->second;
1046 SmallVector<BasicBlock*, 4> SamePopularity;
1047
1048 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1049 // If the popularity of this entry isn't higher than the popularity we've
1050 // seen so far, ignore it.
1051 if (DPI->second < Popularity)
1052 ; // ignore.
1053 else if (DPI->second == Popularity) {
1054 // If it is the same as what we've seen so far, keep track of it.
1055 SamePopularity.push_back(DPI->first);
1056 } else {
1057 // If it is more popular, remember it.
1058 SamePopularity.clear();
1059 MostPopularDest = DPI->first;
1060 Popularity = DPI->second;
1061 }
1062 }
1063
1064 // Okay, now we know the most popular destination. If there is more than
1065 // destination, we need to determine one. This is arbitrary, but we need
1066 // to make a deterministic decision. Pick the first one that appears in the
1067 // successor list.
1068 if (!SamePopularity.empty()) {
1069 SamePopularity.push_back(MostPopularDest);
1070 TerminatorInst *TI = BB->getTerminator();
1071 for (unsigned i = 0; ; ++i) {
1072 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1073
1074 if (std::find(SamePopularity.begin(), SamePopularity.end(),
1075 TI->getSuccessor(i)) == SamePopularity.end())
1076 continue;
1077
1078 MostPopularDest = TI->getSuccessor(i);
1079 break;
1080 }
1081 }
1082
1083 // Okay, we have finally picked the most popular destination.
1084 return MostPopularDest;
1085}
1086
Chris Lattner1c96b412009-11-12 01:37:43 +00001087bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
Chris Lattner5729d382009-11-07 08:05:03 +00001088 // If threading this would thread across a loop header, don't even try to
1089 // thread the edge.
1090 if (LoopHeaders.count(BB))
1091 return false;
1092
Chris Lattner5729d382009-11-07 08:05:03 +00001093 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
Owen Anderson0eb355a2010-08-31 20:26:04 +00001094 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
Chris Lattner5729d382009-11-07 08:05:03 +00001095 return false;
Owen Anderson0eb355a2010-08-31 20:26:04 +00001096
Chris Lattner5729d382009-11-07 08:05:03 +00001097 assert(!PredValues.empty() &&
1098 "ComputeValueKnownInPredecessors returned true with no values");
1099
David Greenefe7fe662010-01-05 01:27:19 +00001100 DEBUG(dbgs() << "IN BB: " << *BB;
Chris Lattner5729d382009-11-07 08:05:03 +00001101 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
David Greenefe7fe662010-01-05 01:27:19 +00001102 dbgs() << " BB '" << BB->getName() << "': FOUND condition = ";
Chris Lattner5729d382009-11-07 08:05:03 +00001103 if (PredValues[i].first)
David Greenefe7fe662010-01-05 01:27:19 +00001104 dbgs() << *PredValues[i].first;
Chris Lattner5729d382009-11-07 08:05:03 +00001105 else
David Greenefe7fe662010-01-05 01:27:19 +00001106 dbgs() << "UNDEF";
1107 dbgs() << " for pred '" << PredValues[i].second->getName()
Chris Lattner5729d382009-11-07 08:05:03 +00001108 << "'.\n";
1109 });
1110
1111 // Decide what we want to thread through. Convert our list of known values to
1112 // a list of known destinations for each pred. This also discards duplicate
1113 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +00001114 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +00001115 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1116 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1117
1118 BasicBlock *OnlyDest = 0;
1119 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1120
1121 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1122 BasicBlock *Pred = PredValues[i].second;
1123 if (!SeenPreds.insert(Pred))
1124 continue; // Duplicate predecessor entry.
1125
1126 // If the predecessor ends with an indirect goto, we can't change its
1127 // destination.
1128 if (isa<IndirectBrInst>(Pred->getTerminator()))
1129 continue;
1130
1131 ConstantInt *Val = PredValues[i].first;
1132
1133 BasicBlock *DestBB;
1134 if (Val == 0) // Undef.
1135 DestBB = 0;
1136 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1137 DestBB = BI->getSuccessor(Val->isZero());
1138 else {
1139 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1140 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1141 }
1142
1143 // If we have exactly one destination, remember it for efficiency below.
1144 if (i == 0)
1145 OnlyDest = DestBB;
1146 else if (OnlyDest != DestBB)
1147 OnlyDest = MultipleDestSentinel;
1148
1149 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1150 }
1151
1152 // If all edges were unthreadable, we fail.
1153 if (PredToDestList.empty())
1154 return false;
1155
1156 // Determine which is the most common successor. If we have many inputs and
1157 // this block is a switch, we want to start by threading the batch that goes
1158 // to the most popular destination first. If we only know about one
1159 // threadable destination (the common case) we can avoid this.
1160 BasicBlock *MostPopularDest = OnlyDest;
1161
1162 if (MostPopularDest == MultipleDestSentinel)
1163 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1164
1165 // Now that we know what the most popular destination is, factor all
1166 // predecessors that will jump to it into a single predecessor.
1167 SmallVector<BasicBlock*, 16> PredsToFactor;
1168 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1169 if (PredToDestList[i].second == MostPopularDest) {
1170 BasicBlock *Pred = PredToDestList[i].first;
1171
1172 // This predecessor may be a switch or something else that has multiple
1173 // edges to the block. Factor each of these edges by listing them
1174 // according to # occurrences in PredsToFactor.
1175 TerminatorInst *PredTI = Pred->getTerminator();
1176 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1177 if (PredTI->getSuccessor(i) == BB)
1178 PredsToFactor.push_back(Pred);
1179 }
1180
1181 // If the threadable edges are branching on an undefined value, we get to pick
1182 // the destination that these predecessors should get to.
1183 if (MostPopularDest == 0)
1184 MostPopularDest = BB->getTerminator()->
1185 getSuccessor(GetBestDestForJumpOnUndef(BB));
1186
1187 // Ok, try to thread it!
1188 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1189}
Chris Lattner69e067f2008-11-27 05:07:53 +00001190
Chris Lattner77beb472010-01-11 23:41:09 +00001191/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1192/// a PHI node in the current block. See if there are any simplifications we
1193/// can do based on inputs to the phi node.
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001194///
Chris Lattner77beb472010-01-11 23:41:09 +00001195bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001196 BasicBlock *BB = PN->getParent();
1197
Chris Lattner2249a0b2010-01-12 02:07:17 +00001198 // TODO: We could make use of this to do it once for blocks with common PHI
1199 // values.
1200 SmallVector<BasicBlock*, 1> PredBBs;
1201 PredBBs.resize(1);
1202
Chris Lattner5729d382009-11-07 08:05:03 +00001203 // If any of the predecessor blocks end in an unconditional branch, we can
Chris Lattner77beb472010-01-11 23:41:09 +00001204 // *duplicate* the conditional branch into that block in order to further
1205 // encourage jump threading and to eliminate cases where we have branch on a
1206 // phi of an icmp (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001207 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1208 BasicBlock *PredBB = PN->getIncomingBlock(i);
1209 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
Chris Lattner2249a0b2010-01-12 02:07:17 +00001210 if (PredBr->isUnconditional()) {
1211 PredBBs[0] = PredBB;
1212 // Try to duplicate BB into PredBB.
1213 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1214 return true;
1215 }
Chris Lattner78c552e2009-10-11 07:24:57 +00001216 }
1217
Chris Lattner6b65f472009-10-11 04:40:21 +00001218 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001219}
1220
Chris Lattner2249a0b2010-01-12 02:07:17 +00001221/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1222/// a xor instruction in the current block. See if there are any
1223/// simplifications we can do based on inputs to the xor.
1224///
1225bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1226 BasicBlock *BB = BO->getParent();
1227
1228 // If either the LHS or RHS of the xor is a constant, don't do this
1229 // optimization.
1230 if (isa<ConstantInt>(BO->getOperand(0)) ||
1231 isa<ConstantInt>(BO->getOperand(1)))
1232 return false;
1233
Chris Lattner2dd76572010-01-23 19:16:25 +00001234 // If the first instruction in BB isn't a phi, we won't be able to infer
1235 // anything special about any particular predecessor.
1236 if (!isa<PHINode>(BB->front()))
1237 return false;
1238
Chris Lattner2249a0b2010-01-12 02:07:17 +00001239 // If we have a xor as the branch input to this block, and we know that the
1240 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1241 // the condition into the predecessor and fix that value to true, saving some
1242 // logical ops on that path and encouraging other paths to simplify.
1243 //
1244 // This copies something like this:
1245 //
1246 // BB:
1247 // %X = phi i1 [1], [%X']
1248 // %Y = icmp eq i32 %A, %B
1249 // %Z = xor i1 %X, %Y
1250 // br i1 %Z, ...
1251 //
1252 // Into:
1253 // BB':
1254 // %Y = icmp ne i32 %A, %B
1255 // br i1 %Z, ...
1256
1257 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1258 bool isLHS = true;
1259 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1260 assert(XorOpValues.empty());
1261 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1262 return false;
1263 isLHS = false;
1264 }
1265
1266 assert(!XorOpValues.empty() &&
1267 "ComputeValueKnownInPredecessors returned true with no values");
1268
1269 // Scan the information to see which is most popular: true or false. The
1270 // predecessors can be of the set true, false, or undef.
1271 unsigned NumTrue = 0, NumFalse = 0;
1272 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1273 if (!XorOpValues[i].first) continue; // Ignore undefs for the count.
1274 if (XorOpValues[i].first->isZero())
1275 ++NumFalse;
1276 else
1277 ++NumTrue;
1278 }
1279
1280 // Determine which value to split on, true, false, or undef if neither.
1281 ConstantInt *SplitVal = 0;
1282 if (NumTrue > NumFalse)
1283 SplitVal = ConstantInt::getTrue(BB->getContext());
1284 else if (NumTrue != 0 || NumFalse != 0)
1285 SplitVal = ConstantInt::getFalse(BB->getContext());
1286
1287 // Collect all of the blocks that this can be folded into so that we can
1288 // factor this once and clone it once.
1289 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1290 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1291 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1292
1293 BlocksToFoldInto.push_back(XorOpValues[i].second);
1294 }
1295
Chris Lattner2dd76572010-01-23 19:16:25 +00001296 // If we inferred a value for all of the predecessors, then duplication won't
1297 // help us. However, we can just replace the LHS or RHS with the constant.
1298 if (BlocksToFoldInto.size() ==
1299 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1300 if (SplitVal == 0) {
1301 // If all preds provide undef, just nuke the xor, because it is undef too.
1302 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1303 BO->eraseFromParent();
1304 } else if (SplitVal->isZero()) {
1305 // If all preds provide 0, replace the xor with the other input.
1306 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1307 BO->eraseFromParent();
1308 } else {
1309 // If all preds provide 1, set the computed value to 1.
1310 BO->setOperand(!isLHS, SplitVal);
1311 }
1312
1313 return true;
1314 }
1315
Chris Lattner2249a0b2010-01-12 02:07:17 +00001316 // Try to duplicate BB into PredBB.
Chris Lattner797c4402010-01-12 02:07:50 +00001317 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
Chris Lattner2249a0b2010-01-12 02:07:17 +00001318}
1319
1320
Chris Lattner78c552e2009-10-11 07:24:57 +00001321/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1322/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1323/// NewPred using the entries from OldPred (suitably mapped).
1324static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1325 BasicBlock *OldPred,
1326 BasicBlock *NewPred,
1327 DenseMap<Instruction*, Value*> &ValueMap) {
1328 for (BasicBlock::iterator PNI = PHIBB->begin();
1329 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1330 // Ok, we have a PHI node. Figure out what the incoming value was for the
1331 // DestBlock.
1332 Value *IV = PN->getIncomingValueForBlock(OldPred);
1333
1334 // Remap the value if necessary.
1335 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1336 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1337 if (I != ValueMap.end())
1338 IV = I->second;
1339 }
1340
1341 PN->addIncoming(IV, NewPred);
1342 }
1343}
Chris Lattner6bf77502008-04-22 07:05:46 +00001344
Chris Lattner5729d382009-11-07 08:05:03 +00001345/// ThreadEdge - We have decided that it is safe and profitable to factor the
1346/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1347/// across BB. Transform the IR to reflect this change.
1348bool JumpThreading::ThreadEdge(BasicBlock *BB,
1349 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001350 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001351 // If threading to the same block as we come from, we would infinite loop.
1352 if (SuccBB == BB) {
David Greenefe7fe662010-01-05 01:27:19 +00001353 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001354 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001355 return false;
1356 }
1357
1358 // If threading this would thread across a loop header, don't thread the edge.
1359 // See the comments above FindLoopHeaders for justifications and caveats.
1360 if (LoopHeaders.count(BB)) {
David Greenefe7fe662010-01-05 01:27:19 +00001361 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001362 << "' to dest BB '" << SuccBB->getName()
1363 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001364 return false;
1365 }
1366
Chris Lattner78c552e2009-10-11 07:24:57 +00001367 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1368 if (JumpThreadCost > Threshold) {
David Greenefe7fe662010-01-05 01:27:19 +00001369 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001370 << "' - Cost is too high: " << JumpThreadCost << "\n");
1371 return false;
1372 }
1373
Chris Lattner5729d382009-11-07 08:05:03 +00001374 // And finally, do it! Start by factoring the predecessors is needed.
1375 BasicBlock *PredBB;
1376 if (PredBBs.size() == 1)
1377 PredBB = PredBBs[0];
1378 else {
David Greenefe7fe662010-01-05 01:27:19 +00001379 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
Chris Lattner5729d382009-11-07 08:05:03 +00001380 << " common predecessors.\n");
1381 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1382 ".thr_comm", this);
1383 }
1384
Mike Stumpfe095f32009-05-04 18:40:41 +00001385 // And finally, do it!
David Greenefe7fe662010-01-05 01:27:19 +00001386 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001387 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001388 << ", across block:\n "
1389 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001390
Owen Andersonc809d902010-09-14 20:57:41 +00001391 LVI->threadEdge(PredBB, BB, SuccBB);
Owen Andersoncfa7fb62010-07-26 18:48:03 +00001392
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001393 // We are going to have to map operands from the original BB block to the new
1394 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1395 // account for entry from PredBB.
1396 DenseMap<Instruction*, Value*> ValueMapping;
1397
Owen Anderson1d0be152009-08-13 21:58:54 +00001398 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1399 BB->getName()+".thread",
1400 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001401 NewBB->moveAfter(PredBB);
1402
1403 BasicBlock::iterator BI = BB->begin();
1404 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1405 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1406
1407 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1408 // mapping and using it to remap operands in the cloned instructions.
1409 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001410 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001411 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001412 NewBB->getInstList().push_back(New);
1413 ValueMapping[BI] = New;
1414
1415 // Remap operands to patch up intra-block references.
1416 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001417 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1418 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1419 if (I != ValueMapping.end())
1420 New->setOperand(i, I->second);
1421 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001422 }
1423
1424 // We didn't copy the terminator from BB over to NewBB, because there is now
1425 // an unconditional jump to SuccBB. Insert the unconditional jump.
1426 BranchInst::Create(SuccBB, NewBB);
1427
1428 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1429 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001430 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001431
Chris Lattner433a0db2009-10-10 09:05:58 +00001432 // If there were values defined in BB that are used outside the block, then we
1433 // now have to update all uses of the value to use either the original value,
1434 // the cloned value, or some PHI derived value. This can require arbitrary
1435 // PHI insertion, of which we are prepared to do, clean these up now.
1436 SSAUpdater SSAUpdate;
1437 SmallVector<Use*, 16> UsesToRename;
1438 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1439 // Scan all uses of this instruction to see if it is used outside of its
1440 // block, and if so, record them in UsesToRename.
1441 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1442 ++UI) {
1443 Instruction *User = cast<Instruction>(*UI);
1444 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1445 if (UserPN->getIncomingBlock(UI) == BB)
1446 continue;
1447 } else if (User->getParent() == BB)
1448 continue;
1449
1450 UsesToRename.push_back(&UI.getUse());
1451 }
1452
1453 // If there are no uses outside the block, we're done with this instruction.
1454 if (UsesToRename.empty())
1455 continue;
1456
David Greenefe7fe662010-01-05 01:27:19 +00001457 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
Chris Lattner433a0db2009-10-10 09:05:58 +00001458
1459 // We found a use of I outside of BB. Rename all uses of I that are outside
1460 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1461 // with the two values we know.
Duncan Sandsfc6e29d2010-09-02 08:14:03 +00001462 SSAUpdate.Initialize(I->getType(), I->getName());
Chris Lattner433a0db2009-10-10 09:05:58 +00001463 SSAUpdate.AddAvailableValue(BB, I);
1464 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1465
1466 while (!UsesToRename.empty())
1467 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
David Greenefe7fe662010-01-05 01:27:19 +00001468 DEBUG(dbgs() << "\n");
Chris Lattner433a0db2009-10-10 09:05:58 +00001469 }
1470
1471
Chris Lattneref0c6742008-12-01 04:48:07 +00001472 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001473 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1474 // us to simplify any PHI nodes in BB.
1475 TerminatorInst *PredTerm = PredBB->getTerminator();
1476 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1477 if (PredTerm->getSuccessor(i) == BB) {
Owen Anderson36c4deb2010-09-29 20:34:41 +00001478 BB->removePredecessor(PredBB, true);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001479 PredTerm->setSuccessor(i, NewBB);
1480 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001481
1482 // At this point, the IR is fully up to date and consistent. Do a quick scan
1483 // over the new instructions and zap any that are constants or dead. This
1484 // frequently happens because of phi translation.
Chris Lattner972a46c2010-01-12 20:41:47 +00001485 SimplifyInstructionsInBlock(NewBB, TD);
Mike Stumpfe095f32009-05-04 18:40:41 +00001486
1487 // Threaded an edge!
1488 ++NumThreads;
1489 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001490}
Chris Lattner78c552e2009-10-11 07:24:57 +00001491
1492/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1493/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1494/// If we can duplicate the contents of BB up into PredBB do so now, this
1495/// improves the odds that the branch will be on an analyzable instruction like
1496/// a compare.
1497bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
Chris Lattner2249a0b2010-01-12 02:07:17 +00001498 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1499 assert(!PredBBs.empty() && "Can't handle an empty set");
1500
Chris Lattner78c552e2009-10-11 07:24:57 +00001501 // If BB is a loop header, then duplicating this block outside the loop would
1502 // cause us to transform this into an irreducible loop, don't do this.
1503 // See the comments above FindLoopHeaders for justifications and caveats.
1504 if (LoopHeaders.count(BB)) {
David Greenefe7fe662010-01-05 01:27:19 +00001505 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
Chris Lattner2249a0b2010-01-12 02:07:17 +00001506 << "' into predecessor block '" << PredBBs[0]->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001507 << "' - it might create an irreducible loop!\n");
1508 return false;
1509 }
1510
1511 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1512 if (DuplicationCost > Threshold) {
David Greenefe7fe662010-01-05 01:27:19 +00001513 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +00001514 << "' - Cost is too high: " << DuplicationCost << "\n");
1515 return false;
1516 }
1517
Chris Lattner2249a0b2010-01-12 02:07:17 +00001518 // And finally, do it! Start by factoring the predecessors is needed.
1519 BasicBlock *PredBB;
1520 if (PredBBs.size() == 1)
1521 PredBB = PredBBs[0];
1522 else {
1523 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1524 << " common predecessors.\n");
1525 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1526 ".thr_comm", this);
1527 }
1528
Chris Lattner78c552e2009-10-11 07:24:57 +00001529 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1530 // of PredBB.
David Greenefe7fe662010-01-05 01:27:19 +00001531 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
Chris Lattner78c552e2009-10-11 07:24:57 +00001532 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1533 << DuplicationCost << " block is:" << *BB << "\n");
1534
Chris Lattner2249a0b2010-01-12 02:07:17 +00001535 // Unless PredBB ends with an unconditional branch, split the edge so that we
1536 // can just clone the bits from BB into the end of the new PredBB.
Chris Lattnerd6688392010-01-23 19:21:31 +00001537 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
Chris Lattner2249a0b2010-01-12 02:07:17 +00001538
Chris Lattnerd6688392010-01-23 19:21:31 +00001539 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
Chris Lattner2249a0b2010-01-12 02:07:17 +00001540 PredBB = SplitEdge(PredBB, BB, this);
1541 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1542 }
1543
Chris Lattner78c552e2009-10-11 07:24:57 +00001544 // We are going to have to map operands from the original BB block into the
1545 // PredBB block. Evaluate PHI nodes in BB.
1546 DenseMap<Instruction*, Value*> ValueMapping;
1547
1548 BasicBlock::iterator BI = BB->begin();
1549 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1550 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1551
Chris Lattner78c552e2009-10-11 07:24:57 +00001552 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1553 // mapping and using it to remap operands in the cloned instructions.
1554 for (; BI != BB->end(); ++BI) {
1555 Instruction *New = BI->clone();
Chris Lattner78c552e2009-10-11 07:24:57 +00001556
1557 // Remap operands to patch up intra-block references.
1558 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1559 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1560 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1561 if (I != ValueMapping.end())
1562 New->setOperand(i, I->second);
1563 }
Chris Lattner972a46c2010-01-12 20:41:47 +00001564
1565 // If this instruction can be simplified after the operands are updated,
1566 // just use the simplified value instead. This frequently happens due to
1567 // phi translation.
1568 if (Value *IV = SimplifyInstruction(New, TD)) {
1569 delete New;
1570 ValueMapping[BI] = IV;
1571 } else {
1572 // Otherwise, insert the new instruction into the block.
1573 New->setName(BI->getName());
1574 PredBB->getInstList().insert(OldPredBranch, New);
1575 ValueMapping[BI] = New;
1576 }
Chris Lattner78c552e2009-10-11 07:24:57 +00001577 }
1578
1579 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1580 // add entries to the PHI nodes for branch from PredBB now.
1581 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1582 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1583 ValueMapping);
1584 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1585 ValueMapping);
1586
1587 // If there were values defined in BB that are used outside the block, then we
1588 // now have to update all uses of the value to use either the original value,
1589 // the cloned value, or some PHI derived value. This can require arbitrary
1590 // PHI insertion, of which we are prepared to do, clean these up now.
1591 SSAUpdater SSAUpdate;
1592 SmallVector<Use*, 16> UsesToRename;
1593 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1594 // Scan all uses of this instruction to see if it is used outside of its
1595 // block, and if so, record them in UsesToRename.
1596 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1597 ++UI) {
1598 Instruction *User = cast<Instruction>(*UI);
1599 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1600 if (UserPN->getIncomingBlock(UI) == BB)
1601 continue;
1602 } else if (User->getParent() == BB)
1603 continue;
1604
1605 UsesToRename.push_back(&UI.getUse());
1606 }
1607
1608 // If there are no uses outside the block, we're done with this instruction.
1609 if (UsesToRename.empty())
1610 continue;
1611
David Greenefe7fe662010-01-05 01:27:19 +00001612 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
Chris Lattner78c552e2009-10-11 07:24:57 +00001613
1614 // We found a use of I outside of BB. Rename all uses of I that are outside
1615 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1616 // with the two values we know.
Duncan Sandsfc6e29d2010-09-02 08:14:03 +00001617 SSAUpdate.Initialize(I->getType(), I->getName());
Chris Lattner78c552e2009-10-11 07:24:57 +00001618 SSAUpdate.AddAvailableValue(BB, I);
1619 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1620
1621 while (!UsesToRename.empty())
1622 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
David Greenefe7fe662010-01-05 01:27:19 +00001623 DEBUG(dbgs() << "\n");
Chris Lattner78c552e2009-10-11 07:24:57 +00001624 }
1625
1626 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1627 // that we nuked.
Owen Anderson36c4deb2010-09-29 20:34:41 +00001628 BB->removePredecessor(PredBB, true);
Chris Lattner78c552e2009-10-11 07:24:57 +00001629
1630 // Remove the unconditional branch at the end of the PredBB block.
1631 OldPredBranch->eraseFromParent();
1632
1633 ++NumDupes;
1634 return true;
1635}
1636
1637