blob: e2b7d3d60db822f60dae1b07702a6fa9a5d89078 [file] [log] [blame]
Chris Lattner753a2b42010-01-05 07:32:13 +00001//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
Eric Christopher27ceaa12010-03-06 10:50:38 +000019#include "llvm/Transforms/Utils/BuildLibCalls.h"
Chris Lattner753a2b42010-01-05 07:32:13 +000020using namespace llvm;
21
22/// getPromotedType - Return the specified type promoted as it would be to pass
23/// though a va_arg area.
24static const Type *getPromotedType(const Type *Ty) {
25 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
26 if (ITy->getBitWidth() < 32)
27 return Type::getInt32Ty(Ty->getContext());
28 }
29 return Ty;
30}
31
32/// EnforceKnownAlignment - If the specified pointer points to an object that
33/// we control, modify the object's alignment to PrefAlign. This isn't
34/// often possible though. If alignment is important, a more reliable approach
35/// is to simply align all global variables and allocation instructions to
36/// their preferred alignment from the beginning.
37///
38static unsigned EnforceKnownAlignment(Value *V,
39 unsigned Align, unsigned PrefAlign) {
40
41 User *U = dyn_cast<User>(V);
42 if (!U) return Align;
43
44 switch (Operator::getOpcode(U)) {
45 default: break;
46 case Instruction::BitCast:
47 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
48 case Instruction::GetElementPtr: {
49 // If all indexes are zero, it is just the alignment of the base pointer.
50 bool AllZeroOperands = true;
51 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
52 if (!isa<Constant>(*i) ||
53 !cast<Constant>(*i)->isNullValue()) {
54 AllZeroOperands = false;
55 break;
56 }
57
58 if (AllZeroOperands) {
59 // Treat this like a bitcast.
60 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
61 }
62 break;
63 }
64 }
65
66 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
67 // If there is a large requested alignment and we can, bump up the alignment
68 // of the global.
69 if (!GV->isDeclaration()) {
70 if (GV->getAlignment() >= PrefAlign)
71 Align = GV->getAlignment();
72 else {
73 GV->setAlignment(PrefAlign);
74 Align = PrefAlign;
75 }
76 }
77 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
78 // If there is a requested alignment and if this is an alloca, round up.
79 if (AI->getAlignment() >= PrefAlign)
80 Align = AI->getAlignment();
81 else {
82 AI->setAlignment(PrefAlign);
83 Align = PrefAlign;
84 }
85 }
86
87 return Align;
88}
89
90/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
91/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
92/// and it is more than the alignment of the ultimate object, see if we can
93/// increase the alignment of the ultimate object, making this check succeed.
94unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
95 unsigned PrefAlign) {
96 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
97 sizeof(PrefAlign) * CHAR_BIT;
98 APInt Mask = APInt::getAllOnesValue(BitWidth);
99 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
100 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
101 unsigned TrailZ = KnownZero.countTrailingOnes();
102 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
103
104 if (PrefAlign > Align)
105 Align = EnforceKnownAlignment(V, Align, PrefAlign);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000106
Chris Lattner753a2b42010-01-05 07:32:13 +0000107 // We don't need to make any adjustment.
108 return Align;
109}
110
111Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
112 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
113 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
114 unsigned MinAlign = std::min(DstAlign, SrcAlign);
115 unsigned CopyAlign = MI->getAlignment();
116
117 if (CopyAlign < MinAlign) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000118 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Chris Lattner753a2b42010-01-05 07:32:13 +0000119 MinAlign, false));
120 return MI;
121 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000122
Chris Lattner753a2b42010-01-05 07:32:13 +0000123 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
124 // load/store.
125 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
126 if (MemOpLength == 0) return 0;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000127
Chris Lattner753a2b42010-01-05 07:32:13 +0000128 // Source and destination pointer types are always "i8*" for intrinsic. See
129 // if the size is something we can handle with a single primitive load/store.
130 // A single load+store correctly handles overlapping memory in the memmove
131 // case.
132 unsigned Size = MemOpLength->getZExtValue();
133 if (Size == 0) return MI; // Delete this mem transfer.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000134
Chris Lattner753a2b42010-01-05 07:32:13 +0000135 if (Size > 8 || (Size&(Size-1)))
136 return 0; // If not 1/2/4/8 bytes, exit.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000137
Chris Lattner753a2b42010-01-05 07:32:13 +0000138 // Use an integer load+store unless we can find something better.
139 Type *NewPtrTy =
140 PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000141
Chris Lattner753a2b42010-01-05 07:32:13 +0000142 // Memcpy forces the use of i8* for the source and destination. That means
143 // that if you're using memcpy to move one double around, you'll get a cast
144 // from double* to i8*. We'd much rather use a double load+store rather than
145 // an i64 load+store, here because this improves the odds that the source or
146 // dest address will be promotable. See if we can find a better type than the
147 // integer datatype.
148 Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
149 if (StrippedDest != MI->getOperand(1)) {
150 const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
151 ->getElementType();
152 if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
153 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
154 // down through these levels if so.
155 while (!SrcETy->isSingleValueType()) {
156 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
157 if (STy->getNumElements() == 1)
158 SrcETy = STy->getElementType(0);
159 else
160 break;
161 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
162 if (ATy->getNumElements() == 1)
163 SrcETy = ATy->getElementType();
164 else
165 break;
166 } else
167 break;
168 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000169
Chris Lattner753a2b42010-01-05 07:32:13 +0000170 if (SrcETy->isSingleValueType())
171 NewPtrTy = PointerType::getUnqual(SrcETy);
172 }
173 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000174
175
Chris Lattner753a2b42010-01-05 07:32:13 +0000176 // If the memcpy/memmove provides better alignment info than we can
177 // infer, use it.
178 SrcAlign = std::max(SrcAlign, CopyAlign);
179 DstAlign = std::max(DstAlign, CopyAlign);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000180
Chris Lattner753a2b42010-01-05 07:32:13 +0000181 Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
182 Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
183 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
184 InsertNewInstBefore(L, *MI);
185 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
186
187 // Set the size of the copy to 0, it will be deleted on the next iteration.
188 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
189 return MI;
190}
191
192Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
193 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
194 if (MI->getAlignment() < Alignment) {
195 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
196 Alignment, false));
197 return MI;
198 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000199
Chris Lattner753a2b42010-01-05 07:32:13 +0000200 // Extract the length and alignment and fill if they are constant.
201 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
202 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000203 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
Chris Lattner753a2b42010-01-05 07:32:13 +0000204 return 0;
205 uint64_t Len = LenC->getZExtValue();
206 Alignment = MI->getAlignment();
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000207
Chris Lattner753a2b42010-01-05 07:32:13 +0000208 // If the length is zero, this is a no-op
209 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000210
Chris Lattner753a2b42010-01-05 07:32:13 +0000211 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
212 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
213 const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000214
Chris Lattner753a2b42010-01-05 07:32:13 +0000215 Value *Dest = MI->getDest();
216 Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
217
218 // Alignment 0 is identity for alignment 1 for memset, but not store.
219 if (Alignment == 0) Alignment = 1;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000220
Chris Lattner753a2b42010-01-05 07:32:13 +0000221 // Extract the fill value and store.
222 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
223 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
224 Dest, false, Alignment), *MI);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000225
Chris Lattner753a2b42010-01-05 07:32:13 +0000226 // Set the size of the copy to 0, it will be deleted on the next iteration.
227 MI->setLength(Constant::getNullValue(LenC->getType()));
228 return MI;
229 }
230
231 return 0;
232}
233
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000234/// visitCallInst - CallInst simplification. This mostly only handles folding
Chris Lattner753a2b42010-01-05 07:32:13 +0000235/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
236/// the heavy lifting.
237///
238Instruction *InstCombiner::visitCallInst(CallInst &CI) {
239 if (isFreeCall(&CI))
240 return visitFree(CI);
241
242 // If the caller function is nounwind, mark the call as nounwind, even if the
243 // callee isn't.
244 if (CI.getParent()->getParent()->doesNotThrow() &&
245 !CI.doesNotThrow()) {
246 CI.setDoesNotThrow();
247 return &CI;
248 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000249
Chris Lattner753a2b42010-01-05 07:32:13 +0000250 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
251 if (!II) return visitCallSite(&CI);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000252
Chris Lattner753a2b42010-01-05 07:32:13 +0000253 // Intrinsics cannot occur in an invoke, so handle them here instead of in
254 // visitCallSite.
255 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
256 bool Changed = false;
257
258 // memmove/cpy/set of zero bytes is a noop.
259 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
260 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
261
262 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
263 if (CI->getZExtValue() == 1) {
264 // Replace the instruction with just byte operations. We would
265 // transform other cases to loads/stores, but we don't know if
266 // alignment is sufficient.
267 }
268 }
269
270 // If we have a memmove and the source operation is a constant global,
271 // then the source and dest pointers can't alias, so we can change this
272 // into a call to memcpy.
273 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
274 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
275 if (GVSrc->isConstant()) {
276 Module *M = CI.getParent()->getParent()->getParent();
277 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
278 const Type *Tys[1];
279 Tys[0] = CI.getOperand(3)->getType();
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000280 CI.setOperand(0,
Chris Lattner753a2b42010-01-05 07:32:13 +0000281 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
282 Changed = true;
283 }
284 }
285
286 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
287 // memmove(x,x,size) -> noop.
288 if (MTI->getSource() == MTI->getDest())
289 return EraseInstFromFunction(CI);
290 }
291
292 // If we can determine a pointer alignment that is bigger than currently
293 // set, update the alignment.
294 if (isa<MemTransferInst>(MI)) {
295 if (Instruction *I = SimplifyMemTransfer(MI))
296 return I;
297 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
298 if (Instruction *I = SimplifyMemSet(MSI))
299 return I;
300 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000301
Chris Lattner753a2b42010-01-05 07:32:13 +0000302 if (Changed) return II;
303 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000304
Chris Lattner753a2b42010-01-05 07:32:13 +0000305 switch (II->getIntrinsicID()) {
306 default: break;
Eric Christopher415326b2010-02-09 21:24:27 +0000307 case Intrinsic::objectsize: {
Eric Christopher26d0e892010-02-11 01:48:54 +0000308 // We need target data for just about everything so depend on it.
Eric Christopher415326b2010-02-09 21:24:27 +0000309 if (!TD) break;
Eric Christopher26d0e892010-02-11 01:48:54 +0000310
Evan Chenga8623262010-03-05 20:47:23 +0000311 const Type *ReturnTy = CI.getType();
312 bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
313
Eric Christopher26d0e892010-02-11 01:48:54 +0000314 // Get to the real allocated thing and offset as fast as possible.
Evan Chenga8623262010-03-05 20:47:23 +0000315 Value *Op1 = II->getOperand(1)->stripPointerCasts();
Eric Christopher415326b2010-02-09 21:24:27 +0000316
Eric Christopher26d0e892010-02-11 01:48:54 +0000317 // If we've stripped down to a single global variable that we
318 // can know the size of then just return that.
Eric Christopher415326b2010-02-09 21:24:27 +0000319 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
320 if (GV->hasDefinitiveInitializer()) {
321 Constant *C = GV->getInitializer();
Evan Chenga8623262010-03-05 20:47:23 +0000322 uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
323 return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
Eric Christopher415326b2010-02-09 21:24:27 +0000324 } else {
Evan Chenga8623262010-03-05 20:47:23 +0000325 // Can't determine size of the GV.
Eric Christopher415326b2010-02-09 21:24:27 +0000326 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
327 return ReplaceInstUsesWith(CI, RetVal);
328 }
Evan Chenga8623262010-03-05 20:47:23 +0000329 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
330 // Get alloca size.
331 if (AI->getAllocatedType()->isSized()) {
332 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
333 if (AI->isArrayAllocation()) {
334 const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
335 if (!C) break;
336 AllocaSize *= C->getZExtValue();
337 }
338 return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
339 }
340 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
Eric Christopher26d0e892010-02-11 01:48:54 +0000341 // Only handle constant GEPs here.
342 if (CE->getOpcode() != Instruction::GetElementPtr) break;
343 GEPOperator *GEP = cast<GEPOperator>(CE);
344
Eric Christopherdfdddd82010-02-11 17:44:04 +0000345 // Make sure we're not a constant offset from an external
346 // global.
347 Value *Operand = GEP->getPointerOperand();
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000348 Operand = Operand->stripPointerCasts();
Eric Christopherdfdddd82010-02-11 17:44:04 +0000349 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
350 if (!GV->hasDefinitiveInitializer()) break;
Eric Christopher27ceaa12010-03-06 10:50:38 +0000351
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000352 // Get what we're pointing to and its size.
353 const PointerType *BaseType =
Eric Christopherdfdddd82010-02-11 17:44:04 +0000354 cast<PointerType>(Operand->getType());
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000355 uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
Eric Christopher26d0e892010-02-11 01:48:54 +0000356
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000357 // Get the current byte offset into the thing. Use the original
358 // operand in case we're looking through a bitcast.
Eric Christopher26d0e892010-02-11 01:48:54 +0000359 SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000360 const PointerType *OffsetType =
361 cast<PointerType>(GEP->getPointerOperand()->getType());
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000362 uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
Eric Christopher26d0e892010-02-11 01:48:54 +0000363
Evan Cheng6e5dfd42010-02-22 23:34:00 +0000364 if (Size < Offset) {
365 // Out of bound reference? Negative index normalized to large
366 // index? Just return "I don't know".
367 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
368 return ReplaceInstUsesWith(CI, RetVal);
369 }
Eric Christopher26d0e892010-02-11 01:48:54 +0000370
371 Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
372 return ReplaceInstUsesWith(CI, RetVal);
373
Eric Christopher27ceaa12010-03-06 10:50:38 +0000374 }
Evan Chenga8623262010-03-05 20:47:23 +0000375
376 // Do not return "I don't know" here. Later optimization passes could
377 // make it possible to evaluate objectsize to a constant.
Evan Chengf79d6242010-03-05 01:22:47 +0000378 break;
Eric Christopher415326b2010-02-09 21:24:27 +0000379 }
Chris Lattner753a2b42010-01-05 07:32:13 +0000380 case Intrinsic::bswap:
381 // bswap(bswap(x)) -> x
382 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
383 if (Operand->getIntrinsicID() == Intrinsic::bswap)
384 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000385
Chris Lattner753a2b42010-01-05 07:32:13 +0000386 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
387 if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
388 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
389 if (Operand->getIntrinsicID() == Intrinsic::bswap) {
390 unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
391 TI->getType()->getPrimitiveSizeInBits();
392 Value *CV = ConstantInt::get(Operand->getType(), C);
393 Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
394 return new TruncInst(V, TI->getType());
395 }
396 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000397
Chris Lattner753a2b42010-01-05 07:32:13 +0000398 break;
399 case Intrinsic::powi:
400 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
401 // powi(x, 0) -> 1.0
402 if (Power->isZero())
403 return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
404 // powi(x, 1) -> x
405 if (Power->isOne())
406 return ReplaceInstUsesWith(CI, II->getOperand(1));
407 // powi(x, -1) -> 1/x
408 if (Power->isAllOnesValue())
409 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
410 II->getOperand(1));
411 }
412 break;
413 case Intrinsic::cttz: {
414 // If all bits below the first known one are known zero,
415 // this value is constant.
416 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
417 uint32_t BitWidth = IT->getBitWidth();
418 APInt KnownZero(BitWidth, 0);
419 APInt KnownOne(BitWidth, 0);
420 ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
421 KnownZero, KnownOne);
422 unsigned TrailingZeros = KnownOne.countTrailingZeros();
423 APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
424 if ((Mask & KnownZero) == Mask)
425 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
426 APInt(BitWidth, TrailingZeros)));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000427
Chris Lattner753a2b42010-01-05 07:32:13 +0000428 }
429 break;
430 case Intrinsic::ctlz: {
431 // If all bits above the first known one are known zero,
432 // this value is constant.
433 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
434 uint32_t BitWidth = IT->getBitWidth();
435 APInt KnownZero(BitWidth, 0);
436 APInt KnownOne(BitWidth, 0);
437 ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
438 KnownZero, KnownOne);
439 unsigned LeadingZeros = KnownOne.countLeadingZeros();
440 APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
441 if ((Mask & KnownZero) == Mask)
442 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
443 APInt(BitWidth, LeadingZeros)));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000444
Chris Lattner753a2b42010-01-05 07:32:13 +0000445 }
446 break;
447 case Intrinsic::uadd_with_overflow: {
448 Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
449 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
450 uint32_t BitWidth = IT->getBitWidth();
451 APInt Mask = APInt::getSignBit(BitWidth);
452 APInt LHSKnownZero(BitWidth, 0);
453 APInt LHSKnownOne(BitWidth, 0);
454 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
455 bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
456 bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
457
458 if (LHSKnownNegative || LHSKnownPositive) {
459 APInt RHSKnownZero(BitWidth, 0);
460 APInt RHSKnownOne(BitWidth, 0);
461 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
462 bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
463 bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
464 if (LHSKnownNegative && RHSKnownNegative) {
465 // The sign bit is set in both cases: this MUST overflow.
466 // Create a simple add instruction, and insert it into the struct.
467 Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
468 Worklist.Add(Add);
469 Constant *V[] = {
470 UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
471 };
472 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
473 return InsertValueInst::Create(Struct, Add, 0);
474 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000475
Chris Lattner753a2b42010-01-05 07:32:13 +0000476 if (LHSKnownPositive && RHSKnownPositive) {
477 // The sign bit is clear in both cases: this CANNOT overflow.
478 // Create a simple add instruction, and insert it into the struct.
479 Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
480 Worklist.Add(Add);
481 Constant *V[] = {
482 UndefValue::get(LHS->getType()),
483 ConstantInt::getFalse(II->getContext())
484 };
485 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
486 return InsertValueInst::Create(Struct, Add, 0);
487 }
488 }
489 }
490 // FALL THROUGH uadd into sadd
491 case Intrinsic::sadd_with_overflow:
492 // Canonicalize constants into the RHS.
493 if (isa<Constant>(II->getOperand(1)) &&
494 !isa<Constant>(II->getOperand(2))) {
495 Value *LHS = II->getOperand(1);
496 II->setOperand(1, II->getOperand(2));
497 II->setOperand(2, LHS);
498 return II;
499 }
500
501 // X + undef -> undef
502 if (isa<UndefValue>(II->getOperand(2)))
503 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000504
Chris Lattner753a2b42010-01-05 07:32:13 +0000505 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
506 // X + 0 -> {X, false}
507 if (RHS->isZero()) {
508 Constant *V[] = {
509 UndefValue::get(II->getOperand(0)->getType()),
510 ConstantInt::getFalse(II->getContext())
511 };
512 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
513 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
514 }
515 }
516 break;
517 case Intrinsic::usub_with_overflow:
518 case Intrinsic::ssub_with_overflow:
519 // undef - X -> undef
520 // X - undef -> undef
521 if (isa<UndefValue>(II->getOperand(1)) ||
522 isa<UndefValue>(II->getOperand(2)))
523 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000524
Chris Lattner753a2b42010-01-05 07:32:13 +0000525 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
526 // X - 0 -> {X, false}
527 if (RHS->isZero()) {
528 Constant *V[] = {
529 UndefValue::get(II->getOperand(1)->getType()),
530 ConstantInt::getFalse(II->getContext())
531 };
532 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
533 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
534 }
535 }
536 break;
537 case Intrinsic::umul_with_overflow:
538 case Intrinsic::smul_with_overflow:
539 // Canonicalize constants into the RHS.
540 if (isa<Constant>(II->getOperand(1)) &&
541 !isa<Constant>(II->getOperand(2))) {
542 Value *LHS = II->getOperand(1);
543 II->setOperand(1, II->getOperand(2));
544 II->setOperand(2, LHS);
545 return II;
546 }
547
548 // X * undef -> undef
549 if (isa<UndefValue>(II->getOperand(2)))
550 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000551
Chris Lattner753a2b42010-01-05 07:32:13 +0000552 if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
553 // X*0 -> {0, false}
554 if (RHSI->isZero())
555 return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000556
Chris Lattner753a2b42010-01-05 07:32:13 +0000557 // X * 1 -> {X, false}
558 if (RHSI->equalsInt(1)) {
559 Constant *V[] = {
560 UndefValue::get(II->getOperand(1)->getType()),
561 ConstantInt::getFalse(II->getContext())
562 };
563 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
564 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
565 }
566 }
567 break;
568 case Intrinsic::ppc_altivec_lvx:
569 case Intrinsic::ppc_altivec_lvxl:
570 case Intrinsic::x86_sse_loadu_ps:
571 case Intrinsic::x86_sse2_loadu_pd:
572 case Intrinsic::x86_sse2_loadu_dq:
573 // Turn PPC lvx -> load if the pointer is known aligned.
574 // Turn X86 loadups -> load if the pointer is known aligned.
575 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
576 Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
577 PointerType::getUnqual(II->getType()));
578 return new LoadInst(Ptr);
579 }
580 break;
581 case Intrinsic::ppc_altivec_stvx:
582 case Intrinsic::ppc_altivec_stvxl:
583 // Turn stvx -> store if the pointer is known aligned.
584 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000585 const Type *OpPtrTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000586 PointerType::getUnqual(II->getOperand(1)->getType());
587 Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
588 return new StoreInst(II->getOperand(1), Ptr);
589 }
590 break;
591 case Intrinsic::x86_sse_storeu_ps:
592 case Intrinsic::x86_sse2_storeu_pd:
593 case Intrinsic::x86_sse2_storeu_dq:
594 // Turn X86 storeu -> store if the pointer is known aligned.
595 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000596 const Type *OpPtrTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000597 PointerType::getUnqual(II->getOperand(2)->getType());
598 Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
599 return new StoreInst(II->getOperand(2), Ptr);
600 }
601 break;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000602
Chris Lattner753a2b42010-01-05 07:32:13 +0000603 case Intrinsic::x86_sse_cvttss2si: {
604 // These intrinsics only demands the 0th element of its input vector. If
605 // we can simplify the input based on that, do so now.
606 unsigned VWidth =
607 cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
608 APInt DemandedElts(VWidth, 1);
609 APInt UndefElts(VWidth, 0);
610 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
611 UndefElts)) {
612 II->setOperand(1, V);
613 return II;
614 }
615 break;
616 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000617
Chris Lattner753a2b42010-01-05 07:32:13 +0000618 case Intrinsic::ppc_altivec_vperm:
619 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
620 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
621 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000622
Chris Lattner753a2b42010-01-05 07:32:13 +0000623 // Check that all of the elements are integer constants or undefs.
624 bool AllEltsOk = true;
625 for (unsigned i = 0; i != 16; ++i) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000626 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
Chris Lattner753a2b42010-01-05 07:32:13 +0000627 !isa<UndefValue>(Mask->getOperand(i))) {
628 AllEltsOk = false;
629 break;
630 }
631 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000632
Chris Lattner753a2b42010-01-05 07:32:13 +0000633 if (AllEltsOk) {
634 // Cast the input vectors to byte vectors.
635 Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
636 Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
637 Value *Result = UndefValue::get(Op0->getType());
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000638
Chris Lattner753a2b42010-01-05 07:32:13 +0000639 // Only extract each element once.
640 Value *ExtractedElts[32];
641 memset(ExtractedElts, 0, sizeof(ExtractedElts));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000642
Chris Lattner753a2b42010-01-05 07:32:13 +0000643 for (unsigned i = 0; i != 16; ++i) {
644 if (isa<UndefValue>(Mask->getOperand(i)))
645 continue;
646 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
647 Idx &= 31; // Match the hardware behavior.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000648
Chris Lattner753a2b42010-01-05 07:32:13 +0000649 if (ExtractedElts[Idx] == 0) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000650 ExtractedElts[Idx] =
651 Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
Chris Lattner753a2b42010-01-05 07:32:13 +0000652 ConstantInt::get(Type::getInt32Ty(II->getContext()),
653 Idx&15, false), "tmp");
654 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000655
Chris Lattner753a2b42010-01-05 07:32:13 +0000656 // Insert this value into the result vector.
657 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
658 ConstantInt::get(Type::getInt32Ty(II->getContext()),
659 i, false), "tmp");
660 }
661 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
662 }
663 }
664 break;
665
666 case Intrinsic::stackrestore: {
667 // If the save is right next to the restore, remove the restore. This can
668 // happen when variable allocas are DCE'd.
669 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
670 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
671 BasicBlock::iterator BI = SS;
672 if (&*++BI == II)
673 return EraseInstFromFunction(CI);
674 }
675 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000676
Chris Lattner753a2b42010-01-05 07:32:13 +0000677 // Scan down this block to see if there is another stack restore in the
678 // same block without an intervening call/alloca.
679 BasicBlock::iterator BI = II;
680 TerminatorInst *TI = II->getParent()->getTerminator();
681 bool CannotRemove = false;
682 for (++BI; &*BI != TI; ++BI) {
683 if (isa<AllocaInst>(BI) || isMalloc(BI)) {
684 CannotRemove = true;
685 break;
686 }
687 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
688 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
689 // If there is a stackrestore below this one, remove this one.
690 if (II->getIntrinsicID() == Intrinsic::stackrestore)
691 return EraseInstFromFunction(CI);
692 // Otherwise, ignore the intrinsic.
693 } else {
694 // If we found a non-intrinsic call, we can't remove the stack
695 // restore.
696 CannotRemove = true;
697 break;
698 }
699 }
700 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000701
Chris Lattner753a2b42010-01-05 07:32:13 +0000702 // If the stack restore is in a return/unwind block and if there are no
703 // allocas or calls between the restore and the return, nuke the restore.
704 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
705 return EraseInstFromFunction(CI);
706 break;
707 }
Chris Lattner753a2b42010-01-05 07:32:13 +0000708 }
709
710 return visitCallSite(II);
711}
712
713// InvokeInst simplification
714//
715Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
716 return visitCallSite(&II);
717}
718
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000719/// isSafeToEliminateVarargsCast - If this cast does not affect the value
Chris Lattner753a2b42010-01-05 07:32:13 +0000720/// passed through the varargs area, we can eliminate the use of the cast.
721static bool isSafeToEliminateVarargsCast(const CallSite CS,
722 const CastInst * const CI,
723 const TargetData * const TD,
724 const int ix) {
725 if (!CI->isLosslessCast())
726 return false;
727
728 // The size of ByVal arguments is derived from the type, so we
729 // can't change to a type with a different size. If the size were
730 // passed explicitly we could avoid this check.
731 if (!CS.paramHasAttr(ix, Attribute::ByVal))
732 return true;
733
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000734 const Type* SrcTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000735 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
736 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
737 if (!SrcTy->isSized() || !DstTy->isSized())
738 return false;
739 if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
740 return false;
741 return true;
742}
743
Eric Christopher27ceaa12010-03-06 10:50:38 +0000744// Try to fold some different type of calls here.
745// Currently we're only working with the checking functions, memcpy_chk,
746// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
747// strcat_chk and strncat_chk.
748Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
749 if (CI->getCalledFunction() == 0) return 0;
750
751 StringRef Name = CI->getCalledFunction()->getName();
752 BasicBlock *BB = CI->getParent();
753 IRBuilder<> B(CI->getParent()->getContext());
754
755 // Set the builder to the instruction after the call.
756 B.SetInsertPoint(BB, CI);
757
758 if (Name == "__memcpy_chk") {
759 ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
760 if (!SizeCI)
761 return 0;
762 ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
763 if (!SizeArg)
764 return 0;
765 if (SizeCI->isAllOnesValue() ||
766 SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
767 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
768 1, B, TD);
769 return ReplaceInstUsesWith(*CI, CI->getOperand(1));
770 }
771 return 0;
772 }
773
774 // Should be similar to memcpy.
775 if (Name == "__mempcpy_chk") {
776 return 0;
777 }
778
779 if (Name == "__memmove_chk") {
780 ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
781 if (!SizeCI)
782 return 0;
783 ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
784 if (!SizeArg)
785 return 0;
786 if (SizeCI->isAllOnesValue() ||
787 SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
788 EmitMemMove(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3),
789 1, B, TD);
790 return ReplaceInstUsesWith(*CI, CI->getOperand(1));
791 }
792 return 0;
793 }
794
795 if (Name == "__memset_chk") {
796 ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
797 if (!SizeCI)
798 return 0;
799 ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
800 if (!SizeArg)
801 return 0;
802 if (SizeCI->isAllOnesValue() ||
803 SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
804 Value *Val = B.CreateIntCast(CI->getOperand(2), B.getInt8Ty(),
805 false);
806 EmitMemSet(CI->getOperand(1), Val, CI->getOperand(3), B, TD);
807 return ReplaceInstUsesWith(*CI, CI->getOperand(1));
808 }
809 return 0;
810 }
811
812 if (Name == "__strcpy_chk") {
813 ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(3));
814 if (!SizeCI)
815 return 0;
816 // If a) we don't have any length information, or b) we know this will
817 // fit then just lower to a plain strcpy. Otherwise we'll keep our
818 // strcpy_chk call which may fail at runtime if the size is too long.
819 // TODO: It might be nice to get a maximum length out of the possible
820 // string lengths for varying.
821 if (SizeCI->isAllOnesValue() ||
822 SizeCI->getZExtValue() >= GetStringLength(CI->getOperand(2))) {
823 Value *Ret = EmitStrCpy(CI->getOperand(1), CI->getOperand(2), B, TD);
824 return ReplaceInstUsesWith(*CI, Ret);
825 }
826 return 0;
827 }
828
829 // Should be similar to strcpy.
830 if (Name == "__stpcpy_chk") {
831 return 0;
832 }
833
834 if (Name == "__strncpy_chk") {
835 ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(4));
836 if (!SizeCI)
837 return 0;
838 ConstantInt *SizeArg = dyn_cast<ConstantInt>(CI->getOperand(3));
839 if (!SizeArg)
840 return 0;
841 if (SizeCI->isAllOnesValue() ||
842 SizeCI->getZExtValue() <= SizeArg->getZExtValue()) {
843 Value *Ret = EmitStrCpy(CI->getOperand(1), CI->getOperand(2), B, TD);
844 return ReplaceInstUsesWith(*CI, Ret);
845 }
846 return 0;
847 }
848
849 if (Name == "__strcat_chk") {
850 return 0;
851 }
852
853 if (Name == "__strncat_chk") {
854 return 0;
855 }
856
857 return 0;
858}
859
Chris Lattner753a2b42010-01-05 07:32:13 +0000860// visitCallSite - Improvements for call and invoke instructions.
861//
862Instruction *InstCombiner::visitCallSite(CallSite CS) {
863 bool Changed = false;
864
865 // If the callee is a constexpr cast of a function, attempt to move the cast
866 // to the arguments of the call/invoke.
867 if (transformConstExprCastCall(CS)) return 0;
868
869 Value *Callee = CS.getCalledValue();
870
871 if (Function *CalleeF = dyn_cast<Function>(Callee))
Chris Lattnerd5695612010-02-01 18:11:34 +0000872 // If the call and callee calling conventions don't match, this call must
873 // be unreachable, as the call is undefined.
874 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
875 // Only do this for calls to a function with a body. A prototype may
876 // not actually end up matching the implementation's calling conv for a
877 // variety of reasons (e.g. it may be written in assembly).
878 !CalleeF->isDeclaration()) {
Chris Lattner753a2b42010-01-05 07:32:13 +0000879 Instruction *OldCall = CS.getInstruction();
Chris Lattner753a2b42010-01-05 07:32:13 +0000880 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000881 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
Chris Lattner753a2b42010-01-05 07:32:13 +0000882 OldCall);
883 // If OldCall dues not return void then replaceAllUsesWith undef.
884 // This allows ValueHandlers and custom metadata to adjust itself.
885 if (!OldCall->getType()->isVoidTy())
886 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
Chris Lattner830f3f22010-02-01 18:04:58 +0000887 if (isa<CallInst>(OldCall))
Chris Lattner753a2b42010-01-05 07:32:13 +0000888 return EraseInstFromFunction(*OldCall);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000889
Chris Lattner830f3f22010-02-01 18:04:58 +0000890 // We cannot remove an invoke, because it would change the CFG, just
891 // change the callee to a null pointer.
892 cast<InvokeInst>(OldCall)->setOperand(0,
893 Constant::getNullValue(CalleeF->getType()));
Chris Lattner753a2b42010-01-05 07:32:13 +0000894 return 0;
895 }
896
897 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
898 // This instruction is not reachable, just remove it. We insert a store to
899 // undef so that we know that this code is not reachable, despite the fact
900 // that we can't modify the CFG here.
901 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
902 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
903 CS.getInstruction());
904
905 // If CS dues not return void then replaceAllUsesWith undef.
906 // This allows ValueHandlers and custom metadata to adjust itself.
907 if (!CS.getInstruction()->getType()->isVoidTy())
908 CS.getInstruction()->
909 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
910
911 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
912 // Don't break the CFG, insert a dummy cond branch.
913 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
914 ConstantInt::getTrue(Callee->getContext()), II);
915 }
916 return EraseInstFromFunction(*CS.getInstruction());
917 }
918
919 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
920 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
921 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
922 return transformCallThroughTrampoline(CS);
923
924 const PointerType *PTy = cast<PointerType>(Callee->getType());
925 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
926 if (FTy->isVarArg()) {
927 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
928 // See if we can optimize any arguments passed through the varargs area of
929 // the call.
930 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
931 E = CS.arg_end(); I != E; ++I, ++ix) {
932 CastInst *CI = dyn_cast<CastInst>(*I);
933 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
934 *I = CI->getOperand(0);
935 Changed = true;
936 }
937 }
938 }
939
940 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
941 // Inline asm calls cannot throw - mark them 'nounwind'.
942 CS.setDoesNotThrow();
943 Changed = true;
944 }
945
Eric Christopher27ceaa12010-03-06 10:50:38 +0000946 // Try to optimize the call if possible, we require TargetData for most of
947 // this. None of these calls are seen as possibly dead so go ahead and
948 // delete the instruction now.
949 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
950 Instruction *I = tryOptimizeCall(CI, TD);
Eric Christopher7b323a32010-03-06 10:59:25 +0000951 // If we changed something return the result, etc. Otherwise let
952 // the fallthrough check.
953 if (I) return EraseInstFromFunction(*I);
Eric Christopher27ceaa12010-03-06 10:50:38 +0000954 }
955
Chris Lattner753a2b42010-01-05 07:32:13 +0000956 return Changed ? CS.getInstruction() : 0;
957}
958
959// transformConstExprCastCall - If the callee is a constexpr cast of a function,
960// attempt to move the cast to the arguments of the call/invoke.
961//
962bool InstCombiner::transformConstExprCastCall(CallSite CS) {
963 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
964 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000965 if (CE->getOpcode() != Instruction::BitCast ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000966 !isa<Function>(CE->getOperand(0)))
967 return false;
968 Function *Callee = cast<Function>(CE->getOperand(0));
969 Instruction *Caller = CS.getInstruction();
970 const AttrListPtr &CallerPAL = CS.getAttributes();
971
972 // Okay, this is a cast from a function to a different type. Unless doing so
973 // would cause a type conversion of one of our arguments, change this call to
974 // be a direct call with arguments casted to the appropriate types.
975 //
976 const FunctionType *FT = Callee->getFunctionType();
977 const Type *OldRetTy = Caller->getType();
978 const Type *NewRetTy = FT->getReturnType();
979
Duncan Sands1df98592010-02-16 11:11:14 +0000980 if (NewRetTy->isStructTy())
Chris Lattner753a2b42010-01-05 07:32:13 +0000981 return false; // TODO: Handle multiple return values.
982
983 // Check to see if we are changing the return type...
984 if (OldRetTy != NewRetTy) {
985 if (Callee->isDeclaration() &&
986 // Conversion is ok if changing from one pointer type to another or from
987 // a pointer to an integer of the same size.
Duncan Sands1df98592010-02-16 11:11:14 +0000988 !((OldRetTy->isPointerTy() || !TD ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000989 OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
Duncan Sands1df98592010-02-16 11:11:14 +0000990 (NewRetTy->isPointerTy() || !TD ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000991 NewRetTy == TD->getIntPtrType(Caller->getContext()))))
992 return false; // Cannot transform this return value.
993
994 if (!Caller->use_empty() &&
995 // void -> non-void is handled specially
996 !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
997 return false; // Cannot transform this return value.
998
999 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
1000 Attributes RAttrs = CallerPAL.getRetAttributes();
1001 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
1002 return false; // Attribute not compatible with transformed value.
1003 }
1004
1005 // If the callsite is an invoke instruction, and the return value is used by
1006 // a PHI node in a successor, we cannot change the return type of the call
1007 // because there is no place to put the cast instruction (without breaking
1008 // the critical edge). Bail out in this case.
1009 if (!Caller->use_empty())
1010 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
1011 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
1012 UI != E; ++UI)
1013 if (PHINode *PN = dyn_cast<PHINode>(*UI))
1014 if (PN->getParent() == II->getNormalDest() ||
1015 PN->getParent() == II->getUnwindDest())
1016 return false;
1017 }
1018
1019 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
1020 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
1021
1022 CallSite::arg_iterator AI = CS.arg_begin();
1023 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
1024 const Type *ParamTy = FT->getParamType(i);
1025 const Type *ActTy = (*AI)->getType();
1026
1027 if (!CastInst::isCastable(ActTy, ParamTy))
1028 return false; // Cannot transform this parameter value.
1029
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001030 if (CallerPAL.getParamAttributes(i + 1)
Chris Lattner753a2b42010-01-05 07:32:13 +00001031 & Attribute::typeIncompatible(ParamTy))
1032 return false; // Attribute not compatible with transformed value.
1033
1034 // Converting from one pointer type to another or between a pointer and an
1035 // integer of the same size is safe even if we do not have a body.
1036 bool isConvertible = ActTy == ParamTy ||
Duncan Sands1df98592010-02-16 11:11:14 +00001037 (TD && ((ParamTy->isPointerTy() ||
Chris Lattner753a2b42010-01-05 07:32:13 +00001038 ParamTy == TD->getIntPtrType(Caller->getContext())) &&
Duncan Sands1df98592010-02-16 11:11:14 +00001039 (ActTy->isPointerTy() ||
Chris Lattner753a2b42010-01-05 07:32:13 +00001040 ActTy == TD->getIntPtrType(Caller->getContext()))));
1041 if (Callee->isDeclaration() && !isConvertible) return false;
1042 }
1043
1044 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
1045 Callee->isDeclaration())
1046 return false; // Do not delete arguments unless we have a function body.
1047
1048 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
1049 !CallerPAL.isEmpty())
1050 // In this case we have more arguments than the new function type, but we
1051 // won't be dropping them. Check that these extra arguments have attributes
1052 // that are compatible with being a vararg call argument.
1053 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
1054 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
1055 break;
1056 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
1057 if (PAttrs & Attribute::VarArgsIncompatible)
1058 return false;
1059 }
1060
1061 // Okay, we decided that this is a safe thing to do: go ahead and start
1062 // inserting cast instructions as necessary...
1063 std::vector<Value*> Args;
1064 Args.reserve(NumActualArgs);
1065 SmallVector<AttributeWithIndex, 8> attrVec;
1066 attrVec.reserve(NumCommonArgs);
1067
1068 // Get any return attributes.
1069 Attributes RAttrs = CallerPAL.getRetAttributes();
1070
1071 // If the return value is not being used, the type may not be compatible
1072 // with the existing attributes. Wipe out any problematic attributes.
1073 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
1074
1075 // Add the new return attributes.
1076 if (RAttrs)
1077 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
1078
1079 AI = CS.arg_begin();
1080 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
1081 const Type *ParamTy = FT->getParamType(i);
1082 if ((*AI)->getType() == ParamTy) {
1083 Args.push_back(*AI);
1084 } else {
1085 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
1086 false, ParamTy, false);
1087 Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
1088 }
1089
1090 // Add any parameter attributes.
1091 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1092 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1093 }
1094
1095 // If the function takes more arguments than the call was taking, add them
1096 // now.
1097 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
1098 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
1099
1100 // If we are removing arguments to the function, emit an obnoxious warning.
1101 if (FT->getNumParams() < NumActualArgs) {
1102 if (!FT->isVarArg()) {
1103 errs() << "WARNING: While resolving call to function '"
1104 << Callee->getName() << "' arguments were dropped!\n";
1105 } else {
1106 // Add all of the arguments in their promoted form to the arg list.
1107 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
1108 const Type *PTy = getPromotedType((*AI)->getType());
1109 if (PTy != (*AI)->getType()) {
1110 // Must promote to pass through va_arg area!
1111 Instruction::CastOps opcode =
1112 CastInst::getCastOpcode(*AI, false, PTy, false);
1113 Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
1114 } else {
1115 Args.push_back(*AI);
1116 }
1117
1118 // Add any parameter attributes.
1119 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
1120 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
1121 }
1122 }
1123 }
1124
1125 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
1126 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
1127
1128 if (NewRetTy->isVoidTy())
1129 Caller->setName(""); // Void type should not have a name.
1130
1131 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
1132 attrVec.end());
1133
1134 Instruction *NC;
1135 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1136 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
1137 Args.begin(), Args.end(),
1138 Caller->getName(), Caller);
1139 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
1140 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
1141 } else {
1142 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
1143 Caller->getName(), Caller);
1144 CallInst *CI = cast<CallInst>(Caller);
1145 if (CI->isTailCall())
1146 cast<CallInst>(NC)->setTailCall();
1147 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1148 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1149 }
1150
1151 // Insert a cast of the return type as necessary.
1152 Value *NV = NC;
1153 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1154 if (!NV->getType()->isVoidTy()) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001155 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Chris Lattner753a2b42010-01-05 07:32:13 +00001156 OldRetTy, false);
1157 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1158
1159 // If this is an invoke instruction, we should insert it after the first
1160 // non-phi, instruction in the normal successor block.
1161 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1162 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1163 InsertNewInstBefore(NC, *I);
1164 } else {
1165 // Otherwise, it's a call, just insert cast right after the call instr
1166 InsertNewInstBefore(NC, *Caller);
1167 }
1168 Worklist.AddUsersToWorkList(*Caller);
1169 } else {
1170 NV = UndefValue::get(Caller->getType());
1171 }
1172 }
1173
1174
1175 if (!Caller->use_empty())
1176 Caller->replaceAllUsesWith(NV);
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001177
Chris Lattner753a2b42010-01-05 07:32:13 +00001178 EraseInstFromFunction(*Caller);
1179 return true;
1180}
1181
1182// transformCallThroughTrampoline - Turn a call to a function created by the
1183// init_trampoline intrinsic into a direct call to the underlying function.
1184//
1185Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1186 Value *Callee = CS.getCalledValue();
1187 const PointerType *PTy = cast<PointerType>(Callee->getType());
1188 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1189 const AttrListPtr &Attrs = CS.getAttributes();
1190
1191 // If the call already has the 'nest' attribute somewhere then give up -
1192 // otherwise 'nest' would occur twice after splicing in the chain.
1193 if (Attrs.hasAttrSomewhere(Attribute::Nest))
1194 return 0;
1195
1196 IntrinsicInst *Tramp =
1197 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1198
1199 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1200 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1201 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1202
1203 const AttrListPtr &NestAttrs = NestF->getAttributes();
1204 if (!NestAttrs.isEmpty()) {
1205 unsigned NestIdx = 1;
1206 const Type *NestTy = 0;
1207 Attributes NestAttr = Attribute::None;
1208
1209 // Look for a parameter marked with the 'nest' attribute.
1210 for (FunctionType::param_iterator I = NestFTy->param_begin(),
1211 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1212 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1213 // Record the parameter type and any other attributes.
1214 NestTy = *I;
1215 NestAttr = NestAttrs.getParamAttributes(NestIdx);
1216 break;
1217 }
1218
1219 if (NestTy) {
1220 Instruction *Caller = CS.getInstruction();
1221 std::vector<Value*> NewArgs;
1222 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1223
1224 SmallVector<AttributeWithIndex, 8> NewAttrs;
1225 NewAttrs.reserve(Attrs.getNumSlots() + 1);
1226
1227 // Insert the nest argument into the call argument list, which may
1228 // mean appending it. Likewise for attributes.
1229
1230 // Add any result attributes.
1231 if (Attributes Attr = Attrs.getRetAttributes())
1232 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1233
1234 {
1235 unsigned Idx = 1;
1236 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1237 do {
1238 if (Idx == NestIdx) {
1239 // Add the chain argument and attributes.
1240 Value *NestVal = Tramp->getOperand(3);
1241 if (NestVal->getType() != NestTy)
1242 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1243 NewArgs.push_back(NestVal);
1244 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1245 }
1246
1247 if (I == E)
1248 break;
1249
1250 // Add the original argument and attributes.
1251 NewArgs.push_back(*I);
1252 if (Attributes Attr = Attrs.getParamAttributes(Idx))
1253 NewAttrs.push_back
1254 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1255
1256 ++Idx, ++I;
1257 } while (1);
1258 }
1259
1260 // Add any function attributes.
1261 if (Attributes Attr = Attrs.getFnAttributes())
1262 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1263
1264 // The trampoline may have been bitcast to a bogus type (FTy).
1265 // Handle this by synthesizing a new function type, equal to FTy
1266 // with the chain parameter inserted.
1267
1268 std::vector<const Type*> NewTypes;
1269 NewTypes.reserve(FTy->getNumParams()+1);
1270
1271 // Insert the chain's type into the list of parameter types, which may
1272 // mean appending it.
1273 {
1274 unsigned Idx = 1;
1275 FunctionType::param_iterator I = FTy->param_begin(),
1276 E = FTy->param_end();
1277
1278 do {
1279 if (Idx == NestIdx)
1280 // Add the chain's type.
1281 NewTypes.push_back(NestTy);
1282
1283 if (I == E)
1284 break;
1285
1286 // Add the original type.
1287 NewTypes.push_back(*I);
1288
1289 ++Idx, ++I;
1290 } while (1);
1291 }
1292
1293 // Replace the trampoline call with a direct call. Let the generic
1294 // code sort out any function type mismatches.
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001295 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
Chris Lattner753a2b42010-01-05 07:32:13 +00001296 FTy->isVarArg());
1297 Constant *NewCallee =
1298 NestF->getType() == PointerType::getUnqual(NewFTy) ?
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001299 NestF : ConstantExpr::getBitCast(NestF,
Chris Lattner753a2b42010-01-05 07:32:13 +00001300 PointerType::getUnqual(NewFTy));
1301 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1302 NewAttrs.end());
1303
1304 Instruction *NewCaller;
1305 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1306 NewCaller = InvokeInst::Create(NewCallee,
1307 II->getNormalDest(), II->getUnwindDest(),
1308 NewArgs.begin(), NewArgs.end(),
1309 Caller->getName(), Caller);
1310 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1311 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1312 } else {
1313 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1314 Caller->getName(), Caller);
1315 if (cast<CallInst>(Caller)->isTailCall())
1316 cast<CallInst>(NewCaller)->setTailCall();
1317 cast<CallInst>(NewCaller)->
1318 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1319 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1320 }
1321 if (!Caller->getType()->isVoidTy())
1322 Caller->replaceAllUsesWith(NewCaller);
1323 Caller->eraseFromParent();
1324 Worklist.Remove(Caller);
1325 return 0;
1326 }
1327 }
1328
1329 // Replace the trampoline call with a direct call. Since there is no 'nest'
1330 // parameter, there is no need to adjust the argument list. Let the generic
1331 // code sort out any function type mismatches.
1332 Constant *NewCallee =
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001333 NestF->getType() == PTy ? NestF :
Chris Lattner753a2b42010-01-05 07:32:13 +00001334 ConstantExpr::getBitCast(NestF, PTy);
1335 CS.setCalledFunction(NewCallee);
1336 return CS.getInstruction();
1337}
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001338